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ABSTRACT 

 

The Upper Mississippi Embayment (UME), where the seismically active New 

Madrid Seismic Zone resides, experienced two phases of subsidence commencing in the 

Late Precambrian and Cretaceous, respectively. To provide new constraints on models 

proposed for the mechanisms responsible for the subsidence, we computed and stacked 

P-to-S receiver functions recorded by 49 USArray and other seismic stations located in 

the UME and the adjacent Ozark Uplift and modeled Bouguer gravity anomaly data. The 

inferred thickness, density, and Vp/Vs of the upper and lower crustal layers suggest that 

the UME is characterized by a mafic and high-density upper crustal layer of ∼30 km 

thickness, which is underlain by a higher-density lower crustal layer of up to ∼15 km. 

Those measurements were the consequence of the passage of a previously proposed 

thermal plume. The thermoelastic effects of the plume would have induced wide-spread 

intrusion of mafic mantle material into the weak UME crust fractured by Precambrian 

rifting and increased its density, resulting in renewed subsidence after the thermal source 

was removed.  

In addition, to image upper mantle seismic discontinuities beneath the contiguous 

United States, a total of 284,121 S-to-P receiver functions (SRFs) recorded by 3,594 

broadband seismic stations in the EarthScope Transportable Array and other permanent 

and temporary deployments are stacked in circular bins of 2° in radius. A robust negative 

arrival, representing a sharp discontinuity of velocity reduction with depth, is visible in 

virtually all the stacked traces in the depth range of 30-110 km.  
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SECTION 

1. INTRODUCTION 

 

As demonstrated by numerous previous investigations, receiver functions using P-

to-S and S-to-P converted waves at the discontinuities in the crust and upper mantle have 

been widely applied to measure the lithospheric layering and thickness. The 

Transportable Array (TA) component of the USArray project, which started in 2004 and 

has recently completed its coverage of the contiguous United States, has produced a 

broadband seismic data set at stations ∼70 km apart with unprecedented quality and 

spatial coverage, enabling the investigation of a wide spectrum of significant problems 

related to the structure and processes in the Earth’s interior. 

The dissertation is mainly composed of two parts. The first part delineates crustal 

thickness and Vp/Vs in the vicinity of the Upper Mississippi Embayment (UME) and the 

neighboring Ozark Uplift, two of the most significant geological features of the central 

United States. Although the crustal thicknesses of the United States have been measured 

by many previous P-to-S receiver function studies [Hansen et al., 2015; McGlannan and 

Gilbert, 2016; Shen and Ritzwoller, 2016], for some areas overlaying a loose Quaternary 

sedimentary layer, the strong reverberations mask the P-to-S phases from crust and 

mantle boundary, resulting in inaccurate measurements of crustal thicknesses and Vp/Vs 

ratios. This study estimates the crustal thickness, Vp/Vs, and density in the UME and 

adjacent areas through gravity modeling and H-𝜅 stacking after removing the effects of 

the overlying sediments using a recently developed technique Yu et al. [2015a], for the 

purpose of constraining the subsidence models of the UME. 
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The second part measure the sub-crustal lithospheric layering beneath the 

contiguous United States based on S-to-P waves converted at the mid-lithospheric 

discontinuity (MLD) and lithosphere-asthenosphere boundary (LAB). The P-to-S phases 

from MLD/LAB are disturbed by crustal multiples because they arrive at similar time 

window and have similar amplitudes. In this study we image the depth of and S-to-P 

receiver function stacking amplitude associated with lithospheric discontinuities beneath 

the contiguous United States, with an unprecedented station coverage for the area. 

Additionally, we perform synthetic test on the possibility that the observed negative 

arrival corresponding to the negative-velocity discontinuity is an artifact from the Moho. 
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PAPER 

I. RECEIVER FUNCTION AND GRAVITY CONSTRAINTS ON CRUSTAL 

STRUCTURE AND VERTICAL MOVEMENTS OF THE UPPER MISSISSIPPI 

EMBAYMENT AND OZARK UPLIFT 

ABSTRACT 

 

The Upper Mississippi Embayment (UME), where the seismically active New 

madrid seismic zone resides, experienced two phases of subsidence commencing in the 

Late Precambrian and Cretaceous, respectively. To provide new constraints on models 

proposed for the mechanisms of the subsidence, we computed and stacked P-to-S 

receiver functions recorded by 49 USArray and other seismic stations located in the UME 

and Ozark Uplift and modeled Bouguer gravity anomaly data. The thickness, density, and 

Vp/Vs of the upper and lower crustal layers suggest that the UME is characterized by a 

mafic and high-density upper crustal layer of ∼30 km thickness, which is underlain by a 

higher-density lower crustal layer of up to ∼15 km. Those measurements are in 

agreement with the model that the Cretaceous subsidence, which was suggested to be 

preceded by an approximately 2 km uplift, was the consequence of the passage of a 

previously proposed thermal plume. The thermoelastic effects of the plume would have 

induced wide-spread intrusion of mafic mantle material into the weak UME crust 

fractured by Precambrian rifting and increased its density, resulting in renewed 

subsidence after the thermal source was removed. In contrast, the Ozark Uplift has crustal 

density, thickness, and Vp/Vs measurements that are comparable to those observed on 

cratonic areas, suggesting an overall normal crust without significant modification by the 

proposed plume, probably owing to the relatively strong and thick lithosphere. 
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1. INTRODUCTION 

 

The Transportable Array (TA) component of the USArray project, which started 

in 2004 and has recently completed its coverage of the contiguous United States, has 

produced a broadband seismic data set at stations ∼70 km apart with unprecedented 

quality and spatial coverage, enabling the investigation of a wide spectrum of significant 

problems related to the structure and processes in the Earth’s interior. This study takes 

advantage of the outstanding data set from the TA and other networks and employs a 

recently developed modified version of a widely used technique for crustal studies, the H-

𝜅 (or thickness-Vp/Vs) stacking [Zhu and Kanamori, 2000; Yu et al., 2015a], to delineate 

crustal thickness and Vp/Vs in the vicinity of the Upper Mississippi Embayment (UME) 

and the neighboring Ozark Uplift, two of the most significant geological features of the 

central United States. 

 

1.1. TECTONIC SETTING 

The UME (Figure 1), where the seismically active New Madrid Seismic Zone 

(NMSZ) resides, is a broad southwest plunging trough with a complex rifting, uplift, and 

subsidence history in the heart of the relatively stable North American continent [Mooney 

et al., 1983; Thomas, 1991; Catchings, 1999; Van Arsdale and Cox, 2007]. The center of 

the UME is occupied by the Reelfoot Rift formed within the Precambrian Eastern 

Granite-Rhyolite Province (1470 ± 30 Ma) and Southern Granite-Rhyolite Province 

(1370 ± 30 Ma) [VanSchmus, 1992]. Thegranite provinces are also home to the Ozark 

Uplift, a 150,000 km2 intracratonic highland region located to the west of the Reelfoot 
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Rift and eroded to expose Precambrian granites and rhyolites [Van Schmus, 1992; Liang 

and Langston, 2009]. 

 

 

Figure 1. Topographic map showing boundaries of major tectonic features (black lines), 

igneous bodies (red areas) [Hildenbrand et al., 1996], and broadband seismic stations 

used in the study. Stations represented by squares, circles, and stars are located in the 

Ozark Uplift, Upper Mississippi Embayment, and the Illinois Basin, respectively. The 

area between the purple dashed lines is the Reelfoot Rift, in which the NMSZ is located. 

The inset in the lower left corner displays the map of the contiguous United States 

showing the location of study area (red rectangle) and proposed possible Bermuda 

hotspot tracks (orange dash lines) [Pollitz and Mooney, 2014]. 
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Unlike many other continental rifts which have a single phase of subsidence [e.g., 

Logatchev and Florensov, 1978; Keller et al., 1991], the Reelfoot Rift experienced two 

distinct phases of subsidence separated by about 250 Ma of relative tectonic quiescence 

[Ervin and McGinnis, 1975]. The initial rifting phase began during the Late Precambrian, 

when the North American Plate experienced wide-spread rifting events [Ervin and 

McGinnis, 1975]. The major basinal development period was in the Cambrian-

Ordovician time, as determined by drilling [Schwalb, 1969; Ervin and McGinnis, 1975]. 

The second phase of subsidence, which was responsible for the accumulation of several 

kilometers of deltaic and marine sediments and was coeval with the emplacement of 

mafic igneous intrusions found inside and along the shoulders of the rift (Figure 1), 

started in the Cretaceous and may have continued until the present time and is believed to 

be the ultimate cause of the high seismicity level in the NMSZ [Mooney et al., 1983; 

Hildenbrand and Hendricks, 1995; Cox and Van Arsdale, 2002]. 

Several models have been proposed for the second (or reactivation) phase of 

subsidence. The first model attributes the renewed subsidence of the UME to the 

extensional stress regime associated with the opening of the Gulf of Mexico [Ervin and 

McGinnis, 1975; Kane et al., 1981]. However, this model has been questioned because 

the subsidence did not start until about 80 Ma after the cessation of the rifting of the Gulf 

margin [Cox and Van Arsdale, 1997]. The second model postulates that the later phase of 

subsidence of the UME represents isostatic adjustment of a high-density, mafic lower 

crustal layer during a period of decreased lithospheric viscosity owing to increased 

geothermal gradient [DeRito et al., 1983; Braile et al., 1986]. The third model advocates 

the role that the proposed Bermuda mantle plume played during its passage over the 
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previously rifted area [Cox and Van Arsdale, 1997], leading to uplift, intrusion of high-

density igneous rocks into the crust, erosion of the uplifted axial area of the UME, and 

subsidence due to thermal contraction and loading of both the sediments and dense 

intrusions [Cox and Van Arsdale, 1997]. 

 

 

Figure 2. Previous determinations of crustal thickness plotted on top of Bouguer gravity 

anomalies. Pluses and circles indicate larger and smaller H measurements, respectively 

(see legend). Dashed lines indicate seismic refraction profiles, and triangles are shot 

points [McCamy and Meyer, 1966; Stewart, 1968; Mooney et al., 1983; Catchings, 

1999]. 
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This study aims at providing constraints on the proposed subsidence models by 

measuring crustal thickness and the bulk composition beneath the UME and the adjacent 

Ozark Uplift. It represents the first joint receiver function (RF) and gravity data 

investigation of the crustal thickness, Vp/Vs, and density for the study area. 

 

1.2. PREVIOUS CRUSTAL STRUCTURE INVESTIGATIONS 

Numerous geophysical studies have been conducted in the vicinity of the UME 

over the past decades for the purpose of understanding the formation mechanism of 

active faults associated with the intracontinental earthquakes occurring in the area. The 

most significant results regarding crustal thickness, P wave velocity, and layered 

structures were from active-source seismic refraction/wide-angle reflection surveys 

[McCamy and Meyer, 1966; Mooney et al., 1983; Catchings, 1999]. One of the major 

discoveries reported by virtually all the active-source studies is that the lowest 10–20 km 

of the crust beneath the UME has a Vp of about 7.3–7.4 km/s which is about 10% higher 

than that of a typical continental lower crust. This lower crustal layer is directly above the 

Moho, which has a depth of 43–46 km in the UME [McCamy and Meyer, 1966; Mooney 

et al., 1983; Catchings, 1999]. 

Due to the limited spatial coverage of the active source seismic profiles as a result 

of the high cost of such experiments, the lateral extent of this layer is not well defined 

beneath the UME, and the Ozark Uplift was poorly sampled by the above profiles (Figure 

2). In addition, because only P wave velocities are measured, the Vp/Vs, which is closely 

related to rock composition and physical properties [Christensen and Mooney, 1995], is 

not available at most of the areas with the exception of a N-S profile of about 400 km 
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length across the UME (Figure 2) [Catchings, 1999]. Vp/Vs values were estimated along 

the profile in several crustal layers, but because the shear wave arrivals cannot be clearly 

picked, the results suffer from large uncertainties [Catchings, 1999]. 

Source-normalized P-to-S converted phases from the Moho, i.e., RFs [Langston, 

1977], have been routinely used to measure crustal thickness (H) and most recently 

Vp/Vs [Zhu and Kanamori, 2000] over a large area with relatively low cost. A recent RF 

study that is most relevant to the present one was conducted by McGlannan and Gilbert 

[2016]. Using RFs recorded by the USArray TA stations, the study concludes that the 

depth of the Moho beneath the UME is mostly 30–35 km, which is shallower than that of 

the surrounding areas (40–45 km) and is also shallower than the ∼45 km depth reported 

by most of the active-source seismic studies. Instead of simultaneously searching for both 

the optimal H and Vp/Vs [Zhu and Kanamori, 2000], a fixed Vp/Vs of 1.785 was used 

for the stacking in the McGlannan and Gilbert [2016] study, and the results were obtained 

for overlapping 0.5∘ by 0.5∘ bins (rather than at the stations; Figure 2). As demonstrated 

by the examples shown in Figure 3, RFs in the UME may have been contaminated by 

strong reverberations generated in the loose sedimentary layer covering most of the 

UME, and thus, studies using raw RFs might have produced biased results. 

 

1.3. RATIONALE OF THE PRESENT STUDY 

Although many previous studies have estimated the crustal thickness beneath the 

NMSZ and adjacent areas, the active-source seismic experiments were limited to 2-D 

profiles that traversed only part of the UME (Figure 2) and thus have a limited spatial 

coverage, making it difficult to compare results from various portions of the UME and 
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with the surrounding areas. More importantly, the calculation of the Vp/Vs, which is 

crucial for the understanding of tectonic processes that have modified the crust, has yet to 

be performed on the majority of the stations. The lack of reliable Vp/Vs determinations is 

most likely caused by the strong reverberations on the RFs associated with the loose 

sedimentary layer. This study estimates the crustal thickness, Vp/Vs, and density in the 

UME and adjacent areas through gravity modeling and H-𝜅 stacking after removing the 

effects of the overlying sediments using a recently developed technique Yu et al. [2015a], 

for the purpose of constraining the subsidence models of the UME. 

 

 

Figure 3. (a) Original RFs from station HENM plotted against back azimuth (BAZ). The 

red trace is the result of simple time domain summation of the individual RFs and 

demonstrates the strong decaying periodic arrivals of the reverberations. (b) H-𝜅 stacking 

using the raw RFs shown in Figure 3a. The dot denotes the maximum stacking amplitude. 

(c) Same as Figure 3a but for RFs after removing the reverberations using the approach 

of Yu et al. [2015a]. (d) H-𝜅 stacking using the filtered RFs shown in Figure 3c. 
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Table 1. Observations of Crustal Thickness (H, Hn) and Vp/Vs (𝜅) 
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2. DATA AND METHODS 

 

All the three-component broadband teleseismic (epicentral distance ≥30°) data 

were obtained from the Incorporated Research Institutions for Seismology (IRIS) Data 

Management Center (DMC) within the area of 94°W–88°W and 34°N–38°N (Figure 1) 

for the time frame from September 1989 to April 2015, when the USArray TA stations 

completed their recording in the area. A cutoff magnitude (Mc), which is calculated using 

Mc =5.2+ (Δ −30.0)/(180.0−30.0) –D/700.0, where Δ and D are the epicentral distance in 

degree and focal depth in kilometers, respectively, is used to select earthquakes [Liu and 

Gao, 2010]. 

The seismograms were windowed starting 20 s prior to and extending to 260 s 

after the first theoretical P wave arrival according to the IASP91 Earth model [Kennett 

and Engdahl, 1991]. After being band pass filtered within the frequency range of 0.04 to 

1.0 Hz, all the events having a P wave signal-to-noise ratio of 4.0 or greater on the radial 

component were selected and converted into radial RFs using the water level 

deconvolution procedure described in Ammon [1991], with a water level of 0.03 and a 

Gaussian filter width of 5.0. Subsequently, the radial RFs were inspected visually to keep 

only the ones with a well-defined first arrival in the 0-2 second window. A total of 7627 

high-quality RFs are used in the study. 

Strong reverberations in the resulting RFs produced by multiple reflections 

between the Earth’s surface and the bottom of a loose sedimentary layer can seriously 

mask the P-to-S converted phases (PmS, PPmS, and PSmS) from the Moho (Figure 3), 

leading to erroneous crustal thickness and Vp/Vs determinations beneath a recording site 
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[Zelt and Ellis, 1999; Yu et al., 2015a]. A resonance-removal filter in the frequency 

domain is designed to remove or significantly reduce the reverberations [Yu et al., 

2015a]. After removing the travel times associated with the loose sedimentary layer, the 

conventional H-𝜅 stacking method [Zhu and Kanamori, 2000] can then be employed to 

determine the crustal thickness and Vp/Vs (Figure 3) beneath the loose sedimentary 

layer, which is less than 1 km thick in the study area [Dart and Swolfs, 1998]. Among the 

49 stations that led to reliable H results, 23 were processed with the reverberation 

removal technique (Table 1). Figure 4 shows examples of the H-𝜅 diagram, and Figures 

S1–S4 in the supporting information show all the H-𝜅 diagrams and the RFs used to 

produce them. 

An accurate average crustal P wave velocity is essential to produce reliable results 

from the H-𝜅 stacking. Previously estimated average crustal Vp beneath the UME ranges 

from 6.0 to 6.4 km/s [Mooney et al., 1983; Chiu et al., 1992; Catchings, 1999; Ramírez-

Guzmán et al., 2012]. After considering results from various studies and also the presence 

of both the low-velocity sedimentary layer and high-velocity lower crust, in this study, 

we use an average P wave velocity of 6.1 km/s, which is the same as that in the IASP91 

Earth model. Nair et al. [2006] stack 66 CORE (Complete Ordered Ray Expansion) 

synthetic seismograms to estimate the magnitude of error when an inaccurate Vp is used. 

They show that if the velocity has a 1% bias, the resulting crustal thickness will be off by 

about 0.5 km. Likewise, the resulting Vp/Vs will vary by 0.0024 with a 1% bias in Vp. In 

the study area, previous studies show that the mean crustal velocity is unlikely to depart 

from 6.1 km/s by more than Figure 4. Image of stacking energy from H-𝜅 stacking using 

the filtered RFs from stations JRTN and U45A located in the UME. The black dots and 
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triangles show points with the first and second largest stacking amplitudes, corresponding 

to the top and bottom of a lower crustal layer, respectively. 5% [Mooney et al., 1983; 

Chiu et al., 1992; Catchings, 1999], corresponding to a possible error of less than 3 km in 

the resulting H, and less than 0.01 in the Vp/Vs determinations. 

 

 

Figure 4. Image of stacking energy from H-𝜅 stacking using the filtered RFs from 

stations JRTN and U45A located in the UME. The black dots and triangles show points 

with the first and second largest stacking amplitudes, corresponding to the top and bottom 

of a lower crustal layer, respectively. 
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Figure 5. Resulting thickness of the crustal layer corresponding to the maximum stacking 

amplitude. Filled triangles are category A stations, and open triangles are category B 

stations. To produce the plot, the observations are fitted using a surface gridding 

algorithm [Wessel and Smith, 1991]. Only areas that are 40 km or closer to a station are 

shown. Lines A-B and C-D are the locations of the gravity model shown in Figures 7 and 

8, respectively. 

 

The Bouguer gravity anomaly data consisting of over 69,000 measurement points 

were obtained from the National Geospatial and Imaging Agency, the United States 

Geological Survey, and detailed surveys by Larson and Mickus [2013] and Ives et al. 

[2014]. The average data spacing of the merged data set ranges from less than 1 km 

within the UME to 1–4 km elsewhere. The merged data set was processed into simple 

Bouguer gravity anomalies using the 1967 International Gravity formula [Morelli, 1976], 

sea level as a datum, and 2.67 g/cm3 as a reduction density.  
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3. RESULTS 

 

3.1. RF STACKING RESULTS 

The 49 stations with observable PmS phases on the RFs are divided into 

categories A and B (Table 1) according to the characteristics of the RFs [Nair et al., 

2006]. Stations in category A show a clear PmS arrival in the time window of 4 to 8 s, at 

least one of the PPmS and PSmS arrivals, and a well-defined peak on the H-𝜅 plot. For 

category B stations, only the PmS is observed, resulting in an ambiguous determination 

of H and Vp/Vs [Nair et al., 2006]. For these stations, Vp/Vs cannot be reliably 

determined, and to estimate the crustal thickness, we assume a constant Vp/Vs based on 

the average Vp/Vs of category A stations in the same tectonic province (1.85 for stations 

in the UME and 1.78 for those on the Ozark Uplift) to get the crustal thickness (Hn). 

Thirty-three stations belong to category A and 16 to category B. In the following 

discussions, the H measurements for category A and Hn measurements for category B 

stations are used to qualify crustal thicknesses. Note that due to the influence of the loose 

sedimentary layer and relatively high noise level suffered by stations on loose sediments, 

some stations in the UME did not lead to a sufficient number of RFs with clear PmS 

arrivals, even after the reverberation removal technique is applied to the RFs. They are 

not used in the study. 
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Figure 6. Resulting Vp/Vs measurements obtained at Category A stations. 

 

The observed crustal thicknesses range from 26.8 to 50.3 km with a mean value of 

38.4 ± 5.4 km (Figure 5), and the Vp/Vs observations of the 33 category A stations range 

from 1.75 to 1.93 with an average of 1.83 ± 0.04 (Figure 6). At the stations in the UME, 

the resulting thickness may not be that of the entire crust; instead, it may be the thickness 

of the upper crustal layer above a lower crustal layer with anomalously high density and 

seismic velocity. In other words, it is the vertical distance between the surface and an 

intracrustal interface. The bottom of the lower crustal layer is hinted in the H-𝜅 plots of 

some of the stations in the NMSZ (Figure 4) and can also be represented by the deeper 
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arrival shown at most of the stations in the UME (Figures 7 and 8). This weaker interface 

has a depth of about 45–50 km, which is consistent with crustal thickness from seismic 

refraction studies [e.g., Mooney et al., 1983; Catchings, 1999]. The refraction studies also 

revealed an intracrustal layer at the depth of 25–30 km beneath the UME [see Catchings, 

1999, Figures 8 and 9], a value that is comparable to the RF results (Figure 5). 

3.1.1. Ozark Uplift. The crustal thickness measurements obtained using 4045 

RFs from 22 stations on the Ozark Uplift range from 37.6 to 50.3 km with a mean value 

of 42.5 ± 3.0 km, and the Vp/Vs results range from 1.75 to 1.84 with a mean value of 

1.80 ± 0.02 (Figures 5 and 6). The crustal thickness values are in general agreement with 

previous studies for this area [Chulick and Mooney, 2002; Ramírez-Guzmán et al., 2012; 

Hansen et al., 2015; McGlannan and Gilbert, 2016]. Both the crustal thickness and Vp/Vs 

results are typical for the North American cratonic areas [Keller, 2013]. 

3.1.2. UME and Illinois Basin. Almost all the stations in the UME are overlaid 

with unconsolidated Quaternary sediments, which lead to strong reverberations and a 

delayed first peak on the RFs (Figure 3a). After reverberation removal and manual 

checking, 2146 RFs from 24 stations are used for characterizing the crust beneath this 

area. As discussed earlier, the resulting depth from H-𝜅 stacking represents most likely 

the top of the high-velocity lower crustal layer, except for a few stations at the edges of 

the areas. The resulting depths of the interface corresponding to the maximum stacking 

amplitude on the H-𝜅 plots range from 26.8 to 40.0 km with an average of 33.9 ± 3.2 km, 

and the Vp/Vs values are between 1.79 and 1.93 with an average of 1.86 ± 0.03, 

suggesting a mafic composition [Christensen, 1996]. Another possible cause of the high 

Vp/Vs is partial melting of crustal rocks [Watanabe, 1993]. However, continental areas 
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with pervasive crustal partial melting are usually modern rift zones characterized by high 

heat flow, greatly thinned crust, negative gravity anomalies, and slower crustal seismic 

velocities (e.g., Reed et al. [2014] for the Afar Depression). These characteristics are 

generally not associated with the UME. 

McGlannan and Gilbert [2016] conducted RF stacking by using a reference Vp of 

6.6 km/s [Catchings, 1999] and a constant Vp/Vs value of 1.785. The resulting 

thicknesses corresponding to the largest stacking amplitude are 5–10 km greater than 

those of ours in this area (Figures 2 and 5). The discrepancy is most likely caused by the 

different reference P wave velocities. Increasing Vp by 8% (from 6.1 to 6.6 km/s) would 

increase the resulting crustal thickness by nearly 3.7 km. In addition, assuming a Vp/Vs 

of 1.785 instead of 1.85 can further increase the resulting H by approximately 4 km [Nair 

et al., 2006]. 

The southernmost portion of the Illinois Basin is sampled by 1436 RFs recorded 

at three stations. The observed crustal thicknesses range from 42.0 to 45.9 km, while the 

Vp∕Vs values are from 1.78 to 1.81. The average crustal thickness is 44.0 ± 1.9 km, and 

the mean Vp/Vs value is 1.80 ± 0.02, which is comparable to those observed on the 

Ozark Uplift but is smaller than those obtained in the UME. The measured crustal 

thicknesses of Ramírez-Guzmán et al. [2012], Chen et al. [2014], Pollitz and Mooney 

[2014], andMcGlannan and Gilbert [2016] are approximately 40 km beneath the 

southernmost part of the Illinois Basin, while those of Hansen et al. [2015] are greater 

than 45 km. Therefore, results from this study are in general agreement with those from 

previous studies. 
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Figure 7. Gravity model of the crust and uppermost mantle and stacked RFs along profile 

A-B (Figure 5). Densities are in g/cm3. (top) Observed (black dots) and calculated (solid 

line) Bouguer gravity anomalies. (middle) Resulting gravity model. Blue circles represent 

the depth of the arrival on the H-𝜅 plots with the largest stacking amplitude at stations in 

a 100 km wide band centered on the profile, filled circles are category A stations, open 

circles are category B stations, and green circles are the approximate depths of the deeper 

secondary arrival. (bottom) Stacked and depth-converted RFs using the resulting Vp/Vs 

corresponding to the maximum stacking amplitude on the H-𝜅 plot for each of the 

stations. 
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Figure 8. Same as Figure 7 but along profile C-D. 

 

3.2. GRAVITY MODELING RESULTS 

Modeling of Bouguer gravity anomalies can aid in constraining the crustal 

structures determined from the seismic results and provide a more detailed image of the 

upper crustal layer than that determined from broadband seismic modeling [e.g., Bashir et 

al., 2011; England and Ebbing, 2012; Yu et al., 2015b; Schiffer et al., 2016]. Two models 

along profiles A-B and C-D (Figure 5) were constructed. The forward modeling of the 
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observed Bouguer gravity anomaly data (Figures 7 and 8) was constrained by seismic 

refraction modeling [Mooney et al., 1983], previous gravity and magnetic analysis 

[Hildenbrand, 1985], and the resulting crustal thickness and Vp/Vs results from the H-𝜅 

stacking (Figures 5 and 6) in this study. The H-𝜅 stacking results from this study were 

used to model the crustal thickness or the thickness of the upper crustal layer beneath the 

UME. The seismic refraction models [Mooney et al., 1983] were used to constrain the 

upper crustal geometries, while previous gravity and magnetic studies [Hildenbrand, 

1985] were applied to estimate the location of the mafic intrusions. The P wave velocities 

from the seismic refraction models of Mooney et al. [1983] were converted to densities 

and used as starting values for the densities in each of the bodies shown in the gravity 

models. The densities were then varied by a maximum of 15% in order for the calculated 

gravity values to match the observed gravity anomalies. 

The resulting Bouguer gravity anomaly models along profiles A-B and C-D 

(Figures 7 and 8) are consistent with the existence of both a high-density upper crustal 

layer and a higher-density lower crustal layer beneath the UME. Like many other 

continental rifts [Thybo and Artemieva, 2013] such as the Baikal [Thybo and Nielsen, 

2009] and East African rifts [Birt et al., 1997], the Reelfoot Rift is characterized by an 

upper crustal graben and an altered lower crustal layer [Mooney et al., 1983; Catchings, 

1999; Ramírez-Guzmán et al., 2012], and the existence of the high-density upper crustal 

layer is consistent with the distribution of the relatively high Vp/Vs values (Figure 6). 

It is well known that gravity modeling is non-unique. During the modeling 

process a number of different models were created to determine this non-uniqueness. The 

gravity modeling alone could not determine the exact thicknesses and densities of the 
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crustal layers nor could it determine if a high-density upper crustal body was required. 

However, if the high-density upper crustal layer was not modeled, then the crust was 

thinner (∼40 km) than observed under the UME. While this model does roughly fit the 

available constraints, including the high-density crustal body better explains the high 

Vp/Vs measurements, and the resulting thicknesses are more consistent with the RF and 

seismic refraction results. 
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4. DISCUSSION 

 

4.1. MAFIC INTRUSION INTO THE UPPER CRUSTAL LAYER BENEATH 

THE UME 

The bulk properties of the crust can be determined by the resulting crustal 

thickness and Vp/Vs measurements. It is commonly accepted that felsic, intermediate, 

and mafic rocks have typical Vp/Vs values of smaller than 1.78, between 1.78 and 1.81, 

and greater than 1.81, respectively [Christensen, 1996]. The laboratory measurements 

made by Christensen [1996] also concluded that the average Vp/Vs is approximately 1.74 

and 1.81 in the upper and lower crust, respectively, with an average value of 1.78 for the 

entire continental crust. 

 The UME is located within the granite-rhyolite provinces [Van Schmus, 1992], 

where the crust was pervasively modified by granitic and associated anorthitic intrusions 

during the Proterozoic [Whitmeyer and Karlstrom, 2007]. As granite is a felsic rock and 

has a low Vp/Vs value of 1.71, the high Vp/Vs observed beneath the UME most likely 

reflects intrusion of mafic material into the upper crust. We argue that the mafic intrusion 

took place during the Cretaceous time, mostly because of the fact that the vast majority of 

mafic intrusions found near the surface are Cretaceous in age [Hildenbrand and 

Hendricks, 1995], and thus, it is reasonable to assume that mafic intrusions of the same 

age also exist deep in the crust. 

One of the new findings from this study is the likely existence of a mafic high-

density upper crustal layer beneath the UME sampled by the broadband seismic stations 

(Figure 6). Unlike the mafic lower crustal layer which has been identified beneath almost 

all continental rifts [Mooney et al., 1983; Keller et al., 2006; Thybo and Nielsen, 2009; 
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Birt et al., 1997], the existence of a mafic upper crustal layer is rare, if not previously 

unrecognized, for continental rifts, and might be responsible for the second phase of 

subsidence the studied UME area has experienced since the Cretaceous through isostatic 

adjustment. 

 

4.2. CONSTRAINTS ON SUBSIDENCE MODELS 

Among the proposed mechanisms for the second phase of subsidence of the 

UME, including far-field regional extensional stress [Ervin and McGinnis, 1975; Kane et 

al., 1981], episodic variations in lithospheric viscosity due to increased geothermal 

gradient [DeRito et al., 1983; Braile et al., 1986], and the thermal-elastic effects of a 

passing mantle plume [Van Arsdale and Cox, 2007], the passage of the proposed 

Bermuda mantle plume is arguably most capable of inducing pervasive igneous 

intrusions into both the upper and lower crustal layers along previous fractured zones of 

weakness produced by the initial rifting in the Late Precambrian. This model can also 

explain the ∼2 km uplift of the UME during the Cretaceous [Van Arsdale and Cox, 2007; 

Hildenbrand et al., 1996; Cox and Van Arsdale, 2002]. The model further suggests that 

the plume heated the continental lithosphere, causing it to expand and rise to form an arch 

which was then eroded to low relief. When the area moved off of the plume, the heavier-

than-normal UME crust cooled and sank starting from the Late Cretaceous. The surface 

was lowered below sea level, resulting in a depression that allowed water from the Gulf 

of Mexico to invade the area [Van Arsdale and Cox, 2007]. 

It should be pointed out that while our observations are in agreement with the 

predictions of a passing plume model, the existence of such a plume during the Mesozoic 
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beneath our study area was solely based on conclusions from some of the previous 

studies. Similar to most other perceived mantle plumes, the origin of the igneous rocks in 

the UME remains enigmatic, and seismological observations regarding whether the 

recent Bermuda volcanism is associated with a lower mantle plume, a plume originated in 

the mantle transition zone, or edge-driven small-scale convection is a debated topic, 

which requires additional interdisciplinary studies to possibly resolve [Benoit et al., 2013; 

Gao and Liu, 2014]. 

 

4.3. EFFECT OF THE POSSIBLE THERMAL UPWELLING ON THE OZARK 

UPLIFT 

In comparison with the spatial variation of crustal thickness and Vp/Vs 

measurements in the central U.S. [Chulick and Mooney, 2002; Keller, 2013], especially 

the midcontinental cratonic region to the north of the study area, our observations (42.5 ± 

3.0 km and 1.80 ± 0.02) beneath the Ozark Uplift are normal values. Corresponding to 

the negative Bouguer gravity anomalies and felsic upper crustal layer in our gravity 

modeling (Figures 7 and 8), a low-density granitic upper crustal layer is implied and can 

be explained as being derived from the Proterozoic granite-rhyolite intrusion event 

[Hildenbrand et al., 1996]. Although mafic intrusions occurred beneath the UME, it is 

apparent that the thermal upwelling could not penetrate the strong cratonic lithosphere of 

the Ozark Uplift [Cox and Van Arsdale, 2002]. The difference in the influence of the 

passing plume might suggest that the plume could only significantly affect areas of 

weakness of the continental lithosphere, and the strong cratonic lithosphere can prevent 

major intrusion, so the crust is essentially unmodified by the passing plume. 

 



 27 

5. CONCLUSIONS 

 

Observations of crustal properties measured using RFs and gravity anomaly data 

confirm the existence of a mafic, high-density lower crustal layer beneath the UME, and 

reveal a high-density mafic upper crustal layer which is not commonly found beneath 

other continental rifts. The previously inferred dominantly Cretaceous age of the mafic 

intrusions found in the UME and the approximately 2 km rise of the area preceding the 

post-Cretaceous subsidence suggest a possible role of a passing mantle plume on the 

tectonic evolution of the UME. Intrusion of mantle material into the UME crust fractured 

by rifting during the Late Precambrian increased the bulk density of the crust, leading to 

renewed subsidence after the plume moved away from the area. The Ozark Uplift, in 

contrast, is characterized by normal crustal thickness and Vp/Vs measurements that are 

similar to those of midcontinent cratonic crust, suggesting that the plume did not 

penetrate the strong and thick lithosphere beneath the Ozark Uplift. 
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II. LITHOSPHERIC LAYERING BENEATH THE CONTIGUOUS UNITED 

STATES CONSTRAINED BY S-TO-P RECEIVER FUNCTIONS 

ABSTRACT 

 

To image upper mantle seismic discontinuities beneath the contiguous United 

States, a total of 284,121 S-to-P receiver functions (SRFs) recorded by 3,594 broadband 

seismic stations in the EarthScope Transportable Array and other permanent and 

temporary deployments are common-conversion-point (CCP) stacked in circular bins of 

2° 11 in radius. A robust negative arrival, representing a sharp discontinuity of velocity 

reduction with depth, is visible in virtually all the CCP stacked traces in the depth range 

of 30-110 km. Beneath the western U.S., the mean depth of this discontinuity is 69 ± 17 

km, and beneath the eastern U.S., it is 76 ± 5 km, both of which are comparable to the 

depth of the tomographically-determined lithosphere asthenosphere boundary (LAB). In 

contrast, the depth of the discontinuity beneath the stable cratonic region of the central 

U.S. is 87 ± 6 km, which is significantly shallower than the ~250 km LAB depth 

determined by seismic tomography. Based on the amplitude of the corresponding arrival 

in the SRFs and findings from previous seismic tomography and mantle xenolith studies, 

this discontinuity beneath the central U.S. is interpreted as the top of an intra-lithospheric 

low-velocity, probably phlogopite-rich layer. The observations also provide new 

constraints on a number of regional scale tectonic  processes, such as lithospheric 

stretching in the Texas-Louisiana Gulf Coastal Plain and Basin and Range Province, and 

possible lithospheric basal erosion beneath the northeastern U.S. 
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1. INTRODUCTION 

 

Reliably mapping the thickness and layering of the lithosphere, which is the 

outermost rigid shell of the Earth, is essential in understanding upper mantle structure and 

dynamics (Chen, 2017). Two of the most frequently employed seismological techniques 

for investigating lithospheric thickness and layering are surface wave tomography (Bedle 

and van der Lee, 2009; Calò et al., 2016) and common-conversion-point (CCP) stacking 

of receiver functions which are P-to-S or S-to-P converted phases (Ps and Sp, 

respectively) from velocity discontinuities at the bottom of or inside the lithosphere 

(Fischer et al., 2010; Kind et al., 2012). Surface wave tomography can detect gradual 

variations in velocity gradient, but is insensitive to sharp discontinuities due to low 

vertical resolution (Li et al., 2007; Rychert et al., 2007). In contrast, P-to-S receiver 

functions are widely used for imaging the Moho and mantle transition zone 

discontinuities (Zhu and Kanamori, 2000; Liu et al., 2017; Gao and Liu, 2014), but are 

not effective to study lithospheric discontinuities because of the strong Moho multiples in 

the expected time window of the arrivals associated with the  discontinuities (Faber and 

Müller, 1980). Instead, lithospheric discontinuities are commonly imaged using S-to-P 

receiver functions 48 (SRFs), in which the Sp arrivals are precursors to the direct S-wave. 

Because the Moho multiples appear after the direct S-wave, a separation of the primary 

converted phases and the multiples is expected on the SRFs (Faber and Müller, 1980). 

Relative to surface wave tomography, SRF stacking has the disadvantage that only sharp 

discontinuities can be detected. Tests suggest that a discontinuity that is 50 km or thicker 

cannot generate observable S-to-P converted phases (Kumar et al., 2012). 
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Figure 1. Number of S receiver functions in radius = 2° circular bins and broadband 

seismic stations (blue triangles) used in the study. The thick black lines delineate major 

tectonic provinces CR: Coast Ranges, CaR: Cascade Range-Sierra Nevada, CoP: 

Columbia Plateau, BRP: Basin and Range Province, RM: Rocky Mountains, CP: 

Colorado Plateau, and RGR: Rio Grande Rift (Hoffman, 1988). 

 

 

Figure 2. Example plots of cross-sections along four latitudinal lines. The black circles 

mark the picked depth of the NVD. Similar plots for all the 27 latitudinal lines can be 

found in Fig. S1. 
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Beneath the contiguous United States, the observed lithospheric thickness from 

most surface wave tomography studies demonstrates similar spatial variations, with 

values as small as less than 70 km beneath the western U.S., 90-150 km along the Rocky 

Mountains, Colorado Plateau, and Appalachians, and about 250 km beneath the 

tectonically stable cratonic region of the central U.S. (Bedle and van der Lee, 2009; 

Schaeffer and Lebedev, 2014). The observed spatial variations of lithospheric thickness 

correspond well with measurements from shear wave velocity gradient (Yuan and 

Romanowicz, 2010), electrical conductivity (Murphy and Egbert, 2017), mantle xenolith  

(Mareschal and Jaupart, 2004), and shear wave splitting (Yang et al., 2014). 

A number of SRF studies have been conducted over the past decade to image 

lithospheric discontinuities beneath North America (Li et al., 2007; Rychert et al., 2007; 

Abt et al., 2010; Kind et al., 2012; Kumar et al., 2012; Levander and Miller, 2012; Lekić 

and Fischer, 2014; Hansen et al., 2015; Hopper and Fischer, 2015; Reeves et al., 2015). 

Most previous work report a sharp negative-velocity discontinuity (NVD) in the depth 

range of 40-180 km beneath the contiguous U.S. The NVD beneath the western and 

eastern U.S. has a depth ranging 73 from 40 to 110 km, which is similar to the depth of 

the lithosphere-asthenosphere boundary (LAB) revealed by surface wave tomography, 

and is consequently considered as the bottom of the lithosphere (Rychert et al., 2007; Abt 

et al., 2010; Hansen et al., 2015). In contrast, the depth of the NVD beneath the central 

U.S. ranges from 80 to 180 km (Kumar et al., 2012; Hansen et al., 2015), which is 

significantly smaller than the ~250 km depth determined using surface wave tomography 

(Bedle and van der Lee, 2009; Schaeffer and Lebedev., 2014).  The NVD is therefore 
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regarded as a mid-lithospheric discontinuity (MLD) rather than the LAB beneath most 

areas of the central U.S. 

The current study is motivated by a number of factors. First, previous SRF CCP 

studies used only a portion of the EarthScope Transportable Array (TA) stations, leading 

to limited station coverage especially for the eastern U.S. Second, there are apparent 

discrepancies among existing SRF investigations in the resulting depth of the NVD (see 

Figure 8 in Hansen et al., 2015 for a comparison of results from four SRF studies). For 

instance, in the stable cratonic region of the central U.S., the depth is ~100 km in Abt et 

al. (2010), Kumar et al. (2012), Foster et al. (2014) and Hopper and Fischer (2015), but is 

as large as 160 km in Hansen et al. (2015). Such discrepancies are most likely caused by 

the weak signal from the target discontinuities and the consequent uncertainties in 

reliably identifying the correct arrivals, especially when a small bin size for stacking is 

used to reach a high lateral resolution (e.g., the radius is about 0.4° in Hansen et al., 

2015). In this study, we use a relatively large bin size (radius=2°) to obtain more reliable 

results with a comparatively lower resolution for the whole contiguous U.S. Third, while 

it is 98 known that the stacking amplitude of the negative arrival from the NVD is a 

significant parameter to quantify the sharpness of the interface to provide additional 

constraints on the nature of the discontinuities (Abt et al., 2010), spatial variation of the 

amplitude over the entire study area is still lacking. Finally, some of the SRF studies (Li 

et al., 2007; Kumar et al., 2012; Hansen et al., 2015) briefly discussed the possibility that 

the negative arrival beneath the Moho could be a side-lobe of the strong S-to-P 

conversion from the Moho. Although this possibility has been considered as unlikely 

based on the strong amplitude of the negative arrival and the occasionally independent 
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structure of the Moho and the NVD, a systematic synthetic study to confirm this is still 

lacking. 

In this study we use all the available broadband seismic data recorded prior to 

January, 2016, including those from all the TA stations, to image the depth of and SRF 

stacking amplitude associated with lithospheric discontinuities beneath the contiguous 

U.S., with an unprecedented station coverage for the area. Additionally, we perform 

synthetic test on the possibility that the observed negative arrival corresponding to the 

NVD is an artifact from the Moho. 

 

 

Figure 3. (a) Resulting depth distribution of the negative velocity discontinuity. (b) 

Distribution of stacking amplitudes (relative to that of the direct S-wave) for the NVD. 
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2. DATA AND METHODS 

 

The broadband seismograms used in the study are obtained from the Incorporated 

Research Institutions for Seismology (IRIS) Data Management Center (DMC). A total of 

3,594 stations contributed to the dataset, including 1,667 TA stations which sample the 

study area with an ~70 km interval. The seismograms are recorded within a duration of 

up to 28 years, from January 1988 to January 2016, during which all the USArray TA 

stations have finished their recording in the study area (125°W - 65°W and 25°N -50°N). 

The cutoff magnitude (Mc) for data requesting is calculated using Mc = 5.2 + ( - 

30)/(180.0 – 30.0) – D/700.0, where  is the epicentral distance in degree which is 

between 60° and 85° for the study, and D is the focal depth in km (Liu and Gao, 2010). 

The requested seismograms are then band-pass filtered in the frequency band of 0.06-0.6 

Hz. Those with direct S-wave signal-to-noise ratio of 1.5 or greater on the radial 

component are selected to compute SRFs. The three-component ZNE (vertical, N-S, E-

W) seismograms are rotated to LQT (P, SV, SH) components on the basis of theoretical 

back-azimuth and incident angle (Farra and Vinnik, 2000). The L component is in the 

propagation direction of the incident S-wave, primarily containing Sp energy and nearly 

zero direct S-wave energy for horizontally layered homogeneous media. The Q 

component, which is perpendicular to the L component, contains significant direct SV -

wave energy that can partially convert to P-wave at sharp velocity discontinuities (Farra 

and Vinnik, 2000). The rotated seismograms are time-reversed so that the Sp wave 

arrives after the direct S-wave and the crustal multiples prior to the S-wave. 

Subsequently, the L component is time-domain deconvolved by the S signal on the Q 
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component to generate SRFs for the purpose of eliminating the influence of the source 

(Langston, 1979; Kumar et al., 2012). The arrival time of the Sp wave in the SRFs 

depends on the depth of the discontinuity, the velocities in the overlying layer, and the 

ray parameter of the direct S-wave, whereas its amplitude is proportional to the velocity 

contrast across and the sharpness of the discontinuity. 

 

 

Figure 4. (a) Depth series from CORE synthetic seismograms. (b) Observed depth series 

along an N-S profile following the 96◦ W longitudinal line. The circles in the depth 

range of 60-100 km mark the NVD, and the pluses at the southern part of the profile 

indicate a negative arrival possibly representing the LAB beneath the Texas Coastal 

Plain.  
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The procedure to moveout correct and stack the SRFs is similar to the one that 

Gao and Liu (2014) used for imaging the mantle transition zone discontinuities across the 

contiguous U.S., and is briefly described below. To remove the influence of the ray 

parameter on the arrival times, moveout correction is then applied prior to CCP stacking 

to the SRFs using (Sheriff and Geldart, 1982; Dueker and Sheehan, 1997) 

 

where p is the S-wave ray parameter, h is the depth of the candidate discontinuity which 

ranges from 0 to 300 km with an interval of 1 km, Vp(z) and Vs(z) are P and S-wave 

velocities, respectively, at depth z which are taken as the same as those in the IASP91 

Earth model (Kennett and Engdahl, 1991). The SRFs are grouped into 2°-radius circular 

bins according to the location of the ray-piercing points computed based on the IASP91 

Earth model. The distance between the center of neighboring bins is 1°. The SRFs in each 

of the bins are then moveout-corrected according to Eq. (1) and stacked to form a depth 

series with a vertical resolution of 1 km. To ensure reliability, bins with less than 50 

SRFs are not used. The standard deviation of the resulting NVD depth is obtained 

through bootstrap resampling with 10 iterations. While a higher number of iterations can 

lead to more accurately determined mean and SD, the large number of SRFs involved in 

the computation requires about a week-long computation time for each iteration under 

today’s CPU clock rate and especially the input/output rate of the storage device. More 

importantly, the NVD arrival for the vast majority of the bins is unambiguously identified 

(Figs. 2 and S1), and therefore increasing the number of bootstrap iterations would 

unlikely lead to significantly different results. 
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3. RESULTS 

 

Totally 284,121 SRFs from 5,952 teleseismic events are used in the study. The 

number of SRFs per bin varies from 63 to 40,852 (Fig. 1). In comparison, the number of 

SRFs used by Hansen et al. (2015) for the central and western U.S. is 41,200, and that by 

Kumar et al. (2012) for the contiguous U.S. is 35,085. The edges of the study area are 

sampled by fewer SRFs, resulting in lower reliability than the interior. Fig. 2 shows 

examples of E-W cross-sections, and all the cross-sections with an interval of 1° can be 

found in Fig. S1, in which an NVD is observed corresponding to a robust negative arrival 

at the depth range of 30-110 km virtually in all the bins. 

The depths of the NVD and the corresponding stacking amplitudes show 

systematic spatial variations, with mean values of 79 ± 13 km and 0.018 ± 0.009 over the 

study area, respectively (Fig. 3). In the following, these values are referred to as normal 

values. The tectonically active western U.S. west of the Rocky Mountains, the Colorado 

Plateau, and the Rio Grande Rift is dominated by shallow (30-90 km) and spatially 

varying NVD depths, which are in agreement with most previous SRF studies (Kumar et 

al., 2012; Lekić and Fischer, 2014; Hansen et al., 2015). The Basin and Range Province 

and the area adjacent to the Gulf of California have the smallest depths (as low as ~30 

km) and relatively high amplitude (> 0.02), which are consistent with the measurements 

of Reeves et al. (2015). The NVD beneath the Coast Ranges is the deepest and the 

corresponding amplitude is the smallest in the western U.S. (~90 km and ~0.01, 

respectively), both are comparable to those observed beneath the central U.S. NVD 
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depths and amplitudes that are similar to the average over the study area are also found 

beneath the Columbia Plateau. 

The Rocky Mountains and the neighboring Colorado Plateau are characterized by 

the deepest NVD in the whole study area, with a mean value of 95 ± 3 km. This is in 

agreement with the results of Levander and Miller (2012) who reported a mean of ~100 

km. They are also consistent with the measurements of Kumar et al. (2012) and Hansen 

et al. (2015) for this study. The stacking amplitude in this area shows variable spatial 

distributions from 0.01 to 0.03. 

The central U.S. demonstrates NVD depths ranging from 73 to 108 km, with an 

average of 87 ± 6 km. The depths of the NVD in the area have small spatial undulations, 

except for a few isolated areas such as the Llano Plateau in north-central Texas and the 

Southern Illinois Basin. The NVD depths are consistent with the measurements of Kumar 

et al. (2012), but are shallower than the results of Hansen et al. (2015), which show NVD 

depths of more than 160 km. Stacking amplitudes that are about half of those beneath the  

western U.S. are found in this area. 

Anomalously shallow NVD depths and high stacking amplitudes are observed 

beneath the Texas-Louisiana Gulf Coastal Plain, in a coast-parallel band of about 200 km 

wide. The depths and amplitudes are spatially consistent within this band with a mean 

value of 63 ± 5 km and 0.030 ± 0.002, respectively. The NVD depth is significantly 

shallower than the ~110 km found by previous studies (Kumar et al., 2012; Hansen et al., 

2015). 

Slightly shallower than normal depths are revealed beneath the Grenville and 

Appalachian provinces of the eastern U.S., as well as the northeastern corner of the 
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central U.S. The depths range from 61-92 km, with an average of 76 ± 5 km. The NVD 

depths are consistent with SRF results obtained at isolated stations in the eastern U.S. 

(Rychert et al., 2007; Abt et al., 2010). The amplitudes in this region are in the range of 

0.01-0.03 with an average of 0.023 ± 0.005, and are comparable to those in the western 

U.S. 

The above depths were estimated based on the 1-D IASP91 Earth model and 

therefore the NVD depths are apparent rather than true depths. The uncertainty due to 

velocity perturbation in the depths can be estimated using Equation (2) in Gao and Liu  

(2014). For areas with a shallow NVD in the western and eastern U.S., under the 

assumption that there is a mean Vs anomaly of −5% for the layer above the NVD 

(Schaeffer and Lebedev, 2014), an apparent depth of 60 km, and a Vs and Vp relative 

velocity anomaly ratio of 2.0 (Gao and Liu, 2014), the estimated true depth is about 55 

km. Similarly, for the central U.S., when the corresponding values of +4%, 90 km, and 

1.8 are used, the estimated true depth is 96 km. The conclusion from the estimates is that 

in spite of the differences in the spatial distribution of the velocities in previous seismic 

tomography studies and in the Vs and Vp anomaly ratio, there is a possible bias in the 

estimated apparent depths of about 5 km. However, the contrast of the NVD depths 

between the central U.S. and the surrounding areas would be even more obvious in the 

corrected depths. 
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Figure 5. (a) Ratio of the depths of the observed NVD and the Moho. (b) Ratio of 

stacking amplitudes corresponding to the NVD and the Moho. 
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4. DISCUSSION 

 

4.1. SYNTHETIC TEST 

Due to the strong velocity increase (about 24% for Vp and 19% for Vs) across the 

Moho (Kennett and Engdahl, 1991), there is a robust positive arrival in the resulting 

SRFs corresponding to the Moho. With limited band width, a side-lobe may exist and 

could be misidentified as the NVD (e.g., Li et al., 2007; Kumar et al., 2012; Hansen et al., 

2015). To investigate this possibility, we produce about 2,000 synthetic seismograms 

with randomly assigned focal parameters (focal depth, epicentral distance, and focal 

mechanisms) using the Complete Ordered Ray Expansion (CORE) suite of programs 

(Clarke, 1993). The input 1-D model includes a 35 km thick crust, the 410 and 660 km 

discontinuities, and the core-mantle boundary. The velocities and densities are the same 

as those in the IASP91 Earth model. The synthetic seismograms are then processed and 

stacked using exactly the same procedures as those used for the real data. 

The resulting depth series produced using the synthetic SRFs (Fig. 4a) indeed 

possesses a negative arrival beneath the positive one corresponding to the Moho. 

However, comparing with the depth series created using the observed data (Fig. 4b), 

several differences can be observed. First, on the synthetic result, the ratio between the 

depth of the negative arrival beneath the Moho and the depth of the Moho (Fig. S2) is 

about 1.8, while it varies systematically from 1.0 to 4.6 across the study area (Fig. 5a). 

Even when possible lateral variations in crustal velocities are considered, it is unlikely 

that the depth of the Moho side-lobe can display such variability. Second, the ratio 

between the amplitudes of the sub-Moho negative arrival and the Moho arrival (Fig. S2) 
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is about 0.4 on the synthetic trace, while that for the observed data is mostly greater than 

0.4 and can be as large as 4.0 (Fig. 5b). Third, while the two side-lobes on the synthetic 

trace are symmetric with regard to the peak of the Moho arrival, the two negative arrivals 

on most of the observed traces are asymmetric, with the lower one being significantly 

more separated from the Moho arrival (Fig. 4). Therefore, the result of the synthetic test 

is inconsistent with the possibility that the NVD is a side-lobe of the Moho arrival on the 

SRFs. Instead, it represents a real negative discontinuity in the upper mantle. 

 

4.2. A SHALLOW AND SHARP LITHOSPHERE-ASTHENOSPHERE 

TRANSITIONAL LAYER IN THE WESTERN U.S. 

The mean depth (69 ± 17 km) of the NVD observed beneath the western U.S. is 

comparable to the depth of the bottom of the rigid lithosphere revealed from seismic 

surface wave tomography (Schaeffer and Lebedev, 2014) and the depth of the LAB 

inferred from mantle xenolith data (Mareschal and Jaupart, 2004). Therefore, similar to 

previous SRF studies (e.g., Kumar et al., 2012; Lekić and Fischer, 2014; Hansen et al., 

2015), we consider this discontinuity to be the sharp lithosphere-asthenosphere 

transitional layer (LATL; Figs. 6 and S3) which is commonly referred to as the LAB in 

previous studies. This interpretation of the NVD is consistent with the inferred 

anomalously high temperature of 1200°C at the depth of about 80 km beneath the 

western U.S. (Hansen et al., 2015). 

In the area adjacent to the Gulf of California, the depth of the LATL is the 

shallowest (30-50 km) in the entire study area, and the crustal thickness varies from 20 to 

25 km (Yan and Clayton, 2007; Zhu and Kanamori, 2000). The thinning of both the crust 

and sub-crustal lithosphere beneath the Gulf of California and adjacent areas is consistent 
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with the hypothesis of strain-localization-induced lithospheric thinning, probably 

originating from the clockwise rotation of the Transverse Range (Reeves et al., 2015). 

 

 

Figure 6. A schematic model illustrating the stratification of the lithosphere along an E-W 

profile across the study area. The red line is the SRF-detected boundary. 

 

Another area with thin lithosphere (~60 km) in the western U.S. is the Basin and 

Range Province (BRP), which is characterized by crustal thinning as well. For the BRP, 

there are two possible mechanisms contributing to the thinning of the lithosphere, 

including removal of the lower part of the lithosphere by the Farallon flat-lying 

subduction (Humphreys, 1995; Cox et al., 2016), and middle to late Cenozoic continental 

extension (Wernicke and Snow, 1998; Lekić and Fischer, 2014). With an average crustal 

thickness of 25 km and 50 km beneath the BRP and the Colorado Plateau, respectively, 

the crustal stretch rate of the BRP is 60-100% based on previous studies (Bashir et al., 

2011). Comparing with our observations of lithospheric thickness beneath the BRP (50-
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70 km) and the neighboring Colorado Plateau (90-110 km), the amount of thinning of the 

sub-lithosphere is approximately proportional to that of the crust if we assume that the 

pre-stretching lithospheric thickness was comparable beneath the Plateau and 

surrounding areas. Therefore, uniform lateral stretching of the entire lithosphere seems to 

be a viable cause of the observed lithospheric thinning. 

 

 

Figure 7. Depths of the NVD plotted against the corresponding stacking amplitudes for 

stations in the Western U.S. XCC: cross correlation coefficient. 
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The thickest lithosphere and smallest stacking amplitudes in the western U.S. are 

observed beneath the Cascade Range-Sierra Nevada, which is mostly located above the 

subducted Juan De Fuca slab. The reduced velocity contrast across the LATL beneath 

this area, as reflected by the small stacking amplitudes, might be caused by partial 

melting within the lithospheric mantle induced by the hydrous oceanic slab (Walowski et 

al., 2016). Dehydration reactions have been recognized by previous studies (Walowski et 

al., 2016), and flux melting of the crust of the Juan De Fuca slab may have migrated into 

the overlying mantle of the North American plate, resulting in melting in the lower 

lithosphere, which in turn may reduce mantle velocities and result in the observed small 

stacking amplitudes. 

In general, beneath the western U.S., areas with thin lithosphere possess large 

stacking amplitudes and vice versa (Fig. 7). The cross correlation coefficient is -0.55, 

indicating the robust negative relationship between the thickness and amplitude. One of 

the simplest explanations for this relationship is a higher degree of partial melting in the 

top-most layer of the asthenosphere beneath thinner lithosphere, leading to a greater 

velocity contrast between the lithosphere and asthenosphere. Under the assumption that 

the bottom of the lithosphere is a constant temperature interface, the lower pressure 

corresponding to a thinner lithosphere leads to a higher degree of partial melting (e.g., 

Ganguly, 2005). Experimental and modeling studies suggest that melting can be induced 

by the presence of volatiles (Green et al., 2010) and by a dramatic reduction in water 

solubility of aluminous orthopyroxene (Mierdel et al., 2007). 
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4.3. AN INTRA-LITHOSPHERIC LOW-VELOCITY LAYER BENEATH THE 

CENTRAL U.S. 

Most seismic surface wave tomography studies suggest that beneath the cratonic 

region of the central U.S., the thickness of the lithosphere is about 250 km and can be 

further divided into various sub-layers (Bedle and van der Lee, 2009; Yuan and 

Romanowicz, 2010; Schaeffer and Lebedev, 2014). Therefore, the NVD observed at the 

average depth of 87 ± 6 km beneath this area is a mid-lithospheric discontinuity. 

Combined with previous results of mantle temperature (Hansen et al., 2015), shear wave 

velocity (Abt et al., 2010; Yuan and Romanowicz, 2010), with the weaker amplitude 

corresponding to the NVD relative to that of the western U.S. obtained in this study (Fig. 

3b), this discontinuity may represent the top boundary of a 40-60 km thick low-velocity 

intra-lithospheric layer (ILL). This interpretation is consistent with the lithospheric 

layering model obtained from joint inversion of long and short period seismic data (Calò 

et al., 2016), which detected double MLDs at depths of about 100-130 and 150-170 km, 

indicating the top and bottom of a low-velocity ILL. The 70-km-wide thermal root is a 

gradual instead of sharp LATL between the bottom of the ILL and the underlain 

asthenosphere (Fig. 6). 

Several formation mechanisms have been proposed for this sharp MLD, including 

1) high geothermal gradients or presence of partial melt (Yuan and Romanowicz, 2010; 

Kumar et al., 2012); 2) variation in the geometry of seismic anisotropy, from 

diffusion/superplastic to dislocation creep (Wirth and Long, 2014; Ford et al., 2016); and 

3) compositional variation caused by metasomatism or crystallized melts, e.g., volatile, 

chemical depletion or low-velocity minerals such as amphibole and phlogopite (Griffin et 

al., 2004; Foster et al., 2014; Hansen et al., 2015; Hopper and Fischer, 2015). In depth 
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discussions of the above mechanisms can be found in Hansen et al. (2015), who conclude 

that the ILL is most likely a compositionally distinct layer that is rich in phlogopite. 

 

4.4. LITHOSPHERIC EXTENSION IN THE TEXAS-LOUISIANA GULF 

COASTAL PLAIN 

The Gulf Coastal Plain has undergone several complicated geological processes, 

such as collision, extension, and rifting (Evanzia et al., 2014). The shallow but strong 

NVD observed at the depth of ~60 km beneath this area can be interpreted as a low-

velocity layer within the lithosphere (Ainsworth et al., 2014), similar to the central U.S. If 

we assume that the original depth of this interface is the same as that beneath the central 

U.S. (~100 km), a stretching () factor of about 1.7 is obtained. This is comparable to the 

average crustal stretching factor (e.g., Mickus et al., 2009) and suggests that the 

shallowing of the NVD is the consequence of lithospheric extension. An alternative 

explanation of the shallow NVD is that it is the result of an upward propagation of a 

metasomatic front associated with increased heat flow in areas with continental extension 

(Thibault et al., 1992; Hansen et al., 2015). 

Beneath this area, another negative signal is observed at the depth of ~150 km 

(Fig. 4b). It is not seen on the synthetic trace (Fig. 4a) and thus is unlikely to be an 

artifact (which is possibly the case for the positive arrival above the negative one which 

appears on the synthetic trace at the depth of about 150 km). This discontinuity has also 

been observed by previous studies (Kumar et al., 2012; Ainsworth et al., 2014; Hansen et 

al., 2015) and could be interpreted as representing the bottom of the rigid lithosphere. 

Under the assumption that the pre-stretching lithosphere is similar to that beneath the 

central U.S. (~250 km), the  factor for the lithosphere is ~1.7, which is the same as the  
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factor computed using the depth of the NVD. Note that relative to the western half of the 

Coastal Plain, the eastern part (east of 90°W) shows much smaller stretching. 

 

4.5. LITHOSPHERIC MODIFICATION IN THE EASTERN U.S. 

The depth and amplitude of the NVD beneath the eastern U.S. are similar to those 

observed beneath the tectonically active western U.S. Additionally, like for the western 

U.S., based on the similarities between the SRF-revealed and tomographically-

determined depths, we consider the NVD to be representing a sharp LATL, as proposed 

by previous SRF studies (Rychert et al., 2007; Abt et al., 2010). Beneath the northeastern 

U.S., the LATL is notably shallower (~70 km) and the amplitude is higher (~0.03) than 

those of the neighboring regions (Fig. 3). In this area, a low-velocity anomaly at the base 

of the lithosphere, referred to as an indentation or Great Lakes mantle divot, has been 

suggested by seismic tomographic studies, and was regarded as the consequence of 

mantle plume accumulation (Bedle and van der Lee, 2009; Burdick et al., 2017). The 

observed thinning of the lithosphere (Fig. 3a) could be the result of lithosphere-plume 

interaction (Eaton and Frederiksen, 2007), and the increased velocity contrast between 

the bottom of the eroded lithosphere and the underlying mantle plume material can 

explain the observed high stacking amplitudes beneath this area (Fig. 3b). 
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5. CONCLUSIONS 

 

A robust negative velocity discontinuity is pervasively detected in the contiguous 

U.S. in the depth range of 30-110 km in consecutive 2° circular bins using a high number 

of S receiver functions that is unprecedented for the study area. Beneath the extended 

crust of the western U.S. and the Gulf Coastal Plain and the eastern U.S., similarities 

between the depth of the this discontinuity and depths of the LAB revealed by seismic 

tomography and xenolith studies suggests that it represents the sharp transitional layer 

between the cold lithosphere and partially melt asthenosphere. In contrast, beneath the 

stable cratonic region of the central U.S., this discontinuity is most likely the sharp upper 

boundary of a chemically distinct layer probably formed by metasomatism in the ancient 

lithosphere. Further investigations are needed in order to understand the contrasting 

thickness of the LATL between the cratonic central U.S. and the adjacent tectonically 

younger areas. 

An intriguing anti-correlation between the depth of the negative velocity 

discontinuity and the amplitude of the Sp wave is revealed for the western U.S. One of 

the simplest explanations for this relationship is that the top-most layer of the 

asthenosphere experiences more volatile-induced melting beneath thinner lithosphere. 

Uniform extension of the lithosphere in the Basin and Range Province and the Texas-

Louisiana Gulf Coastal Plain can satisfactorily explain the observed thinning of the crust 

and the whole lithosphere. Finally, anomalously thin lithosphere and large stacking 

amplitudes observed beneath the northeastern U.S. may indicate erosion of the bottom of 

the lithosphere, probably by a passing mantle plume. 
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SUPPLEMENTARY INFORMATION 

 

 
 

Figure S1a. E-W stacked S-to-P Receiver Function profiles along latitudinal line 25°N. 

Warm (cool) colors indicate velocity increase (decrease) with depth. The circles trace the 

Negative Velocity Discontinuity in the upper mantle. 

 

 

 
 
Figure S1b. Same as Figure S1a but for latitudinal line 26°N.  
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Figure S1c. Same as Figure S1a but for latitudinal line 27°N.  

 

 
 

Figure S1d. Same as Figure S1a but for latitudinal line 28°N.  
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Figure S1e. Same as Figure S1a but for latitudinal line 29°N.  

 
 

 
 

Figure S1f. Same as Figure S1a but for latitudinal line 30°N.  
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Figure S1g. Same as Figure S1a but for latitudinal line 31°N.  

 

 
 
Figure S1h. Same as Figure S1a but for latitudinal line 32°N.  
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Figure S1i. Same as Figure S1a but for latitudinal line 33°N.  

 

 
 
Figure S1j. Same as Figure S1a but for latitudinal line 34°N.  
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Figure S1k. Same as Figure S1a but for latitudinal line 35°N.  

 

 
 
Figure S1l. Same as Figure S1a but for latitudinal line 36°N.  
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Figure S1m. Same as Figure S1a but for latitudinal line 37°N.  

 

 
 
Figure S1n. Same as Figure S1a but for latitudinal line 38°N.  
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Figure S1o. Same as Figure S1a but for latitudinal line 39°N.  

 

 
 
Figure S1p. Same as Figure S1a but for latitudinal line 40°N.  
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Figure S1q. Same as Figure S1a but for latitudinal line 41°N.  

 

 
 
Figure S1r. Same as Figure S1a but for latitudinal line 42°N.  
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Figure S1s. Same as Figure S1a but for latitudinal line 43°N.  

 

 
 
Figure S1t. Same as Figure S1a but for latitudinal line 44°N.  
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Figure S1u. Same as Figure S1a but for latitudinal line 45°N.  

 

 
 
Figure S1v. Same as Figure S1a but for latitudinal line 46°N.  
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Figure S1w. Same as Figure S1a but for latitudinal line 47°N.  

 

 
 
Figure S1x. Same as Figure S1a but for latitudinal line 48°N.  
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Figure S1y. Same as Figure S1a but for latitudinal line 49°N.  

 

 
 
Figure S1z. Same as Figure S1a but for latitudinal line 50°N.  
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Figure S1aa. Same as Figure S1a but for latitudinal line 51°N.  
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Figure S2. (a) Resulting depth distribution of the Moho. (b) Distribution of stacking 

amplitudes (relative to that of the direct S-wave) for the Moho.  
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Figure S3. The approximate geographic distribution of the classification of the Negative 

Velocity Discontinuity. 
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SECTION 

2. CONCLUSIONS 

 

In this research, we use all available broadband seismic data obtained from 

unprecedented spatial covered USArray Transportable Array (TA) and other seismic 

stations to analyze the negative-velocity discontinuities in the upper mantle in the 

contiguous United States and crustal thickness and Vp/Vs beneath the Upper Mississippi 

Embayment and Ozark Uplift. As a consequence of the analyses of these data sets, 

numerous significant findings are reportable. 

1) A robust negative velocity discontinuity is pervasively detected in the 

contiguous U.S. in the depth range of 30-110 km in consecutive 2° circular bins using 

284,121 S-to-P receiver functions that is unprecedented for the study area. Beneath the 

extended crust of the western U.S. and the Gulf Coastal Plain and the eastern U.S., 

similarities between the depth of the this discontinuity and depths of the LAB revealed by 

seismic tomography and xenolith studies suggests that it represents the sharp transitional 

layer between the cold lithosphere and partially melt asthenosphere. In contrast, beneath 

the stable cratonic region of the central U.S., this discontinuity is most likely the sharp 

upper boundary of a chemically distinct layer probably formed by metasomatism in the 

ancient lithosphere. 

An intriguing anti-correlation between the depth of the negative velocity 

discontinuity and the amplitude of the Sp wave is revealed for the western U.S. One of 

the simplest explanations for this relationship is that the top-most layer of the 

asthenosphere experiences more volatile-induced melting beneath thinner lithosphere. 
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Uniform extension of the lithosphere in the Basin and Range Province and the Texas-

Louisiana Gulf Coastal Plain can satisfactorily explain the observed thinning of the crust 

and the whole lithosphere. Finally, anomalously thin lithosphere and large stacking 

amplitudes observed beneath the northeastern U.S. may indicate erosion of the bottom of 

the lithosphere, probably by a passing mantle plume. 

2) The first sedimentary-removal P-to-S receiver function (PRF) study, employing  

49 stations beneath the Upper Mississippi Embayment (UME) and the Ozark Uplift, has 

been conducted. Observations of crustal properties measured using PRFs and gravity 

anomaly data confirm the existence of a mafic, high-density lower crustal layer beneath 

the UME, and reveal a high-density mafic upper crustal layer which is not commonly 

found beneath other continental rifts. The previously inferred dominantly Cretaceous age 

of the mafic intrusions found in the UME and the approximately 2 km rise of the area 

preceding the post-Cretaceous subsidence suggest a possible role of a passing mantle 

plume on the tectonic evolution of the UME. Intrusion of mantle material into the UME 

crust fractured by rifting during the Late Precambrian increased the bulk density of the 

crust, leading to renewed subsidence after the plume moved away from the area. The 

Ozark Uplift, in contrast, is characterized by normal crustal thickness and Vp/Vs 

measurements that are similar to those of midcontinent cratonic crust, suggesting that the 

plume did not penetrate the strong and thick lithosphere beneath the Ozark Uplift. 
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