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ABSTRACT 

 

The rapid progress and development in machine-learning algorithms becomes a key 

factor in determining the future of humanity. These algorithms and techniques were utilized 

to solve a wide spectrum of problems extended from data mining and knowledge discovery 

to unsupervised learning and optimization. This dissertation consists of two study areas. 

The first area investigates the use of reinforcement learning and adaptive critic design 

algorithms in the field of power grid control. The second area in this dissertation, consisting 

of three papers, focuses on developing and applying clustering algorithms on biomedical 

data. The first paper presents a novel modelling approach for demand side management of 

electric water heaters using Q-learning and action-dependent heuristic dynamic 

programming. The implemented approaches provide an efficient load management 

mechanism that reduces the overall power cost and smooths grid load profile.  The second 

paper implements an ensemble statistical and subspace-clustering model for analyzing the 

heterogeneous data of the autism spectrum disorder. The paper implements a novel k-

dimensional algorithm that shows efficiency in handling heterogeneous dataset. The third 

paper provides a unified learning model for clustering neuroimaging data to identify the 

potential risk factors for suboptimal brain aging. In the last paper, clustering and clustering 

validation indices are utilized to identify the groups of compounds that are responsible for 

plant uptake and contaminant transportation from roots to plants edible parts.          
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1. INTRODUCTION 

 

1.1. BACKGROUND  

The continuous growth in population all around the globe adds new challenges to 

multiple aspects of life, including the increase in demand on power and better healthcare. 

These challenges and others require nontraditional solutions that are robust and reliable. 

Machine-learning algorithms provide the required resources for such solutions due to the 

revolutionized and adaptive nature of most of these algorithms. Machine learning has 

become the leading approach in scientific discoveries and innovations that has moved 

civilization forward in all fields. Machine-learning applications are the reason behind many 

inventions that are available to us in daily life such as human-machine vocal 

communication (i.e., speech understanding), machine vision, automatic navigation, route 

planning, customer segmentation, credit card fraud detection, data mining, internet routing, 

face recognition, digitization, and medical diagnoses. 

Energy management is one of the most challenging problems for power companies. 

Demand side management is essential in smoothing the grid load profile, which leads to 

stable and lower cost. Load management techniques have focused on controlling domestic 

electric water heaters since they have the ability of storing energy. Surveys and official 

reports show that the load resulting from electric water heaters represents 18% and 23% of 

the total grid load in the domestic sector in the United States and India, respectively. The 

peaks in the total grid load profile match those of the electric water heaters’ load profile. 

The peak load management is vital in controlling the total grid demand. Therefore, several 

approaches have been applied to control domestic electric water heaters. Some studies 
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shifted the operation of the electric water heaters unconditionally outside load peak periods. 

Others prioritized their operation after the peak load periods over one or two hours.  

The described problem is a multi-objective problem. Solving such problems 

requires adaptive and robust algorithms. Reinforcement learning (RL) approaches are 

efficient in solving such problems. Approximate dynamic programming and simulation-

based approaches have shown impressive performance in solving high-dimensional 

problems within a feasible amount of time.  

   In addition to the energy management in metropolitan cities, healthcare has 

become a challenging and attractive field for researchers. In recent years, many studies 

invested machine learning in healthcare industry and biomedical applications such as early 

disease detection, monitoring devices, and tracking devices. Healthcare and 

pharmaceutical companies invests billions of dollars annually to improve the quality of 

their products. The majority of these investments go for funding advance research centers 

and developing innovative technologies in the field. Due to the advanced tracking and 

imaging devices, large datasets are generated to record various types of information 

ranging from clinical test results to routine questionnaires. The biomedical datasets are 

heterogeneous in general and need advanced preprocessing. The heterogeneity of clinical 

datasets exists in patient characteristics, illness severity, and treatment responses. 

Therefore, clustering becomes the most convenient method for understanding and 

analyzing the heterogeneous clinical data. Clustering is effective in exploring such 

complex data and identifying important subsets. In general, machine learning aim to 

discover unknown patterns or relationships that infer new knowledge that can be further 

used for prevention, prognosis, and treatment.   
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1.2. REINFORCEMENT LEARNING 

Reinforcement learning is a simulation-based dynamic programming approach that 

can solve complex sequential decision-making problems such as Markov and semi-Markov 

decision process. Markov decision process (MDP) models are widely used for modeling 

sequential decision-making problems that appeared in various fields of science and 

research. However, many real-world problems modeled by MDPs have large state and/or 

action spaces, leading to the well-known curse of dimensionality and the curse of modeling, 

which make solving these models infeasible using dynamic programming. Dynamic 

programming finds the optimal solution for Markov decision problems, but it needs the 

transition rewards, transition probabilities, and transition times. These values are almost 

impossible to determine in most cases. Therefore, machine learning methods such as 

reinforcement learning are used to determine a suboptimal solution for MDPs. The trade-

off between finding a suboptimal solution and the optimal solution is necessary when 

looking into the massive resources and amount of time required to solve high-dimensional 

problems using standard methods. 

 

1.3. CLUSTERING 

Clustering, also known as unsupervised learning, is a field of machine learning that 

explores and reveals hidden structures in datasets. Recently, clustering has become more 

important than ever due to the unprecedented increase in data from various disciplines. 

Therefore, domain experts are no longer able to analyze such massive datasets and the need 

for automated approaches and machine-learning techniques becomes imminent. Clustering 

aims to group data samples into distinctive, compact, and homogeneous groups called 
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clusters. There is no formal definition for a cluster, but it can be described as a group of 

data samples that share common features with each other more than they do with samples 

in other clusters. The process of exploring these datasets often leads to groundbreaking 

discoveries, such as unexpected causes for a specific phenomenon, or a group of samples 

that requires attention.  

Many clustering algorithms are available for data analysts; therefore, selecting the 

proper one among them is challenging. Choosing a clustering algorithm depends on the 

nature of the dataset. However, several metrics can be used to evaluate clustering 

algorithms. There are three types of cluster evaluations: internal criteria, external criteria, 

and relative criteria. These evaluation techniques are important in determining the quality 

of the resulting clusters and evaluating the performance of the applied clustering method. 

 

1.4. RESEARCH OBJECTIVES AND CONTRIBUTIONS  

In this work, several improvised machine-learning techniques and algorithms were 

implemented in the areas of smart grid and biomedical data analysis. The first area 

includes novel approaches in demand side management. In demand side management, a 

novel modeling approach is implemented to mitigate the peaks in grid load profile by 

using adaptive control algorithms, such as Q-learning and action dependent heuristic 

dynamic programming, to control the domestic electric water heaters. The implemented 

approach includes several novel techniques that were used for the first time in this 

optimization problem: 
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 An embedded event-driven simulator was designed to simulate each 

household hot-water consumption rate. 

 The control operation of the domestic electric water heater was modeled as 

a Markov decision process and solved using reinforcement learning. 

 Novel approaches were implemented to estimate water temperature and to 

identify system states. 

  The problem was modeled as a multi-objective optimization problem, with 

the goals of reducing energy cost and smoothing load grid profile while 

maintaining desirable temperature for the supplied water. 

  The implemented approach has the potential to be utilized in the internet of 

things.  

   According to the simulation results, the approximate dynamic programming 

approaches (Q-learning and action dependent heuristic dynamic programming) 

outperformed all other scenarios in terms of cost reduction, while maintaining desirable 

water temperature.  

In the area of biomedical data analysis, this dissertation presents three papers. Each 

paper applied enhanced and improvised clustering techniques on specific biomedical 

datasets. The first paper in this area (Paper II), implements an ensemble statistical and 

subspace-clustering model to analyze autism spectrum disorder (ASD) phenotypes. This 

dataset is challenging due to the complex heterogeneity it conveys from the variability in 

behavioral phenotypes as well as clinical, physiologic, and pathologic parameters. In this 

paper, a new k-dimensional subspace-clustering algorithm is presented and used to analyze 
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and cluster the autism dataset. This algorithm is part of the general model that was 

implemented in this project. The implemented approach is general and can be applied to 

other biomedical datasets. It incorporates several statistical methods at different levels of 

the model. The implemented approach successfully sorts out the heterogeneity in the ASD 

dataset and produces clinically meaningful clusters. This approach is useful in 

understanding and studying etiology, diagnosis, treatment, and prognosis of ASD. 

The second paper (Paper III) in this area applied a robust unified learning 

framework to cluster subgroups using neuroimaging data for brain volume and white 

matter. This unified model was used to identify neurological phenotypes that can sort the 

heterogeneity in cognitive aging and help identify potential risk factors for suboptimal 

brain aging. The use of machine-learning approaches identified two unique subgroups in 

healthy older adults with different patterns of white matter integrity and brain volumetric 

measures. The implemented model identified significant measurements that could 

potentially serve as biomarkers for delineating clinically meaningful aging subgroups. 

The last paper (Paper IV) used machine-learning techniques to study the effect of 

contaminants and chemical compounds on plant uptake and the causes of pollutants 

transportation from the environment to vegetation and food. Several approaches were 

implemented in this paper: neural networks (NN), fuzzy logic, clustering, and statistical 

methods. The NN model was built to predict transpiration stream concentration factor. 

Fuzzy logic and clustering were used for predicting TSCF using physicochemical 

properties of compounds, and examining the interactions between compound properties. 

Several clustering algorithms have been applied, and they all discovered two major distinct 

clusters. The clusters resulting from k-means algorithm were the most significant and only 
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these are presented. Physiochemical property cutoffs, i.e. restrictions, for compounds 

passing plant roots membrane were shown to be lower than the cutoffs for transmembrane 

transport in mammalian intestinal systems. Therefore, the human health impacts through 

consumption of contaminated crops is elucidated and indicated that plant roots are a 

restrictive barrier to organic pollutants entering our foods. Improved understanding and 

prediction of plant uptake has significant implications for human health as we continue to 

shorten our water cycles.  
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PAPER 

 

I. DEMAND-SIDE MANAGEMENT OF DOMESTIC ELECTRIC WATER 

HEATERS USING APPROXIMATE DYNAMIC PROGRAMMING 

 

Khalid Al-jabery, Zhezhao Xu, Wenjian Yu, Donald C. Wunsch, II, Jinjun Xiong, and 

Yiyu Shi 

 

ABSTRACT 

 

In this paper, two techniques based on Q-learning and action dependent heuristic 

dynamic programming (ADHDP) are demonstrated for the demand-side management of 

domestic electric water heaters (DEWHs). The problem is modeled as a dynamic 

programming problem, with the state space defined by the temperature of output water, the 

instantaneous hot water consumption rate, and the estimated grid load. According to 

simulation, Q-learning and ADHDP reduce the cost of energy consumed by DEWHs by 

approximately 26% and 21%, respectively. The simulation results also indicate that these 

techniques will minimize the energy consumed during load peak periods. As a result, the 

customers saved about $466 and $367 annually by using Q-learning and ADHDP 

techniques to control their DEWHs (100 gallons tank size) operation, which is better than 

the cost reduction that resulted from using the state-of-the-art ($246) control technique 

under the same simulation parameters. To the best of the authors’ knowledge, this is the 

first work that uses the approximate dynamic programming techniques to solve the 

DEWH’s load management problem. 
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INDEX TERMS 

 

Approximate dynamic programming (ADP), load management, machine learning, Markov 

processes, power demand, smart grids, unsupervised learning. 

 

1. INTRODUCTION 

 

The importance of domestic electric water heaters (DEWHs) can be seen from its 

effect on the overall grid load and energy consumption. For example, in the U.S. the 

average energy consumed by DEWHs is 18% as shown in Fig. 1. This share did not change 

during the last decade according to the U.S. Energy Information Administration [1]. The 

average annual cost of energy consumed by each DEWH is about $500 according to the 

office of energy and renewable energy [2]. Previous and current researches show that the 

total energy consumed in a city is highly dependent on the amount of power that the 

DEWHs consume [3]–[7]. For example, in the city of Quebec, Canada, the peaks in the 

grid load depends on the water heaters load, as illustrated in Fig. 2. The data plotted in Fig. 

2, are from the field studies performed in two different cities [3], [4]. There is a clear 

relationship between the peaks in the grid load demand and those in the energy consumed 

for heating water in London and Quebec City. As a result, governmental agencies, policy 

makers, and of course energy companies, focus on domestic energy consumption with high 

priority for the water heaters. On April 30, 2015, president Obama signed into law S535, 

The Energy Efficiency Improvement Act, which established a new product category for 

large-capacity (75 + gallons) electric resistance “grid-enabled” water heaters for residential 

demand-response applications. Before that in the 15th of April, the Department of Energy 



10 
 

 

provided new rule that requires all large capacity (55+ gallons) DEWH would have to be 

integrated electric heat pump water heaters. The current trend of research according to the 

peak load management agency is to design efficient grid enabled water heater, which is 

exactly what we have produced in this paper [8]. The attention to water heaters and load 

management is not only in the U.S. According to the reports of the Ministry of Power in 

India, DEWHs consumes nearly 23% of the electricity in the domestic sector [9]. 

The DEWHs are often selected for demand side management projects because both 

their load profiles and their average daily load profiles almost follow the same pattern as 

shown in Fig. 2. Furthermore, DEWH loads are easier to control than other domestic 

appliances, because of their energy storage ability. Although many researches have been 

conducted on DEWHs, most of them failed to be widely applied to the DEWH industry for 

various reasons. There are different demand side management strategies for controlling 

DEWH loads. In 1998, Nehrir et al. [6] introduced a fuzzy logic controller that can shift 

the DEWH load outside the peak demand period. Some of the suggested approaches 

significantly affected the temperature of the DEWH’s output water, resulting in customer 

dissatisfaction, plus the complex modeling process it needs [7]. In 2007, Atwa et al. [10] 

used Elman neural network to control the power consumed by water heaters. Some 

researchers, used detailed analytical methods for modeling the DEWH and provided 

control strategies based on dividing the load into groups and control them through the 

thermostats [10]–[17]. In 2011, Moreau [3] described control strategies aimed at 

distributing and shifting DEWH’s operation to within one or two hours outside the peak 

periods. The new coming technology in water heaters industry is the use of electric heat 

pump and gas condensing technology for water heaters with tanks that are larger than 55 
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gallons [18]. However, there are three concerns raised on this new technology, first it needs 

new installations, second it tends to be used in water heaters with large tanks only. The 

third concern and the most important one is low temperature operation when the heat pump 

water heater operates in electric resistance mode, it does not save energy or money 

compared to a conventional unit [19]. Even if the new heat pump water heaters dominated 

the market, the approaches demonstrated in this paper still can be used to improve the 

performance because they are designed to adapt with the user activities, grid load and the 

temperature of the output water as discussed next.  

In this paper, we used action dependent heuristic dynamic programing (ADHDP) 

[20] and Q-learning approaches to solve the DEWH management problem, which is a 

multi-objectives optimization problem. The objectives are: minimizing the total cost of the 

energy consumed, reducing the load demand during peak periods, and achieving 

customer’s satisfaction. The Q-learning algorithm and the ADHDP approach are both 

approximate dynamic programming (ADP) techniques [20], [21]. It should be pointed out 

that this paper is the first study using ADP techniques in the DEWH’s load management. 

The novelty of this paper lies in the way that the system is modeled. Three factors 

were used to define and control a DEWH: 1) the temperature of the water delivered to the 

customers; 2) instantaneous hot water consumption; and 3) estimated grid load demand 

(i.e., instantaneous energy price). In the Q-learning based approach, the three factors are 

considered linguistic variables. They are categorized as either “high,” “medium,” or “low.” 

The problem was modeled as a semi-Markov decision process (SMDP) with two possible 

actions in each state: 1) “ON” and 2) “OFF.” Specific fuzzy rules are used to determine the 

system’s current state. Each DEWH is considered to be an artificial agent that was trained 
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to adapt to the diversity within a user’s consumption profile and grid load demand. The 

agent learns how to adapt, in the Q-learning approach, after finding the final Q-factors that 

specified the operating’s policy during real time operation. In the ADHDP approach, the 

adaptation process consists of two phases: 1) critic training and 2) action training. The 

system learns to estimate the correct cost value during training the critic network, and then 

uses that cost in training the action network. The system tries to minimize the cost by 

adapting the weights of the action network [20]. 

These techniques can be applied to any DEWH, regardless of its capacity, heating 

elements, or operating environment. Furthermore, according to the simulation results, the 

approaches are able to reduce the energy consumed by DEWH more than the existing state-

of-the-art methods [3]. The experiments show that the Q-learning and ADHDP controllers 

have reduced the cost of the energy consumed by the DEWHs by approximately 26% and 

21%, respectively when using large (100 gallon tank) DEWH. As a result, both techniques 

will save about $466 and $367 per year, respectively, for the customers who use them to 

control their DEWH’s operation. In comparison, only $246 would be saved annually by 

using the state-of-the-art control strategy [3], as illustrated in Table 3. 

 

2. SYSTEM MODELING AND THE APPROXIMATE DYNAMIC 

PROGRAMMING 

 

ADP techniques have been used effectively in solving optimization problems that 

consist of sequences of control actions whose efficiency remains unknown until the end of 

sequence. For the demand side management problem of DEWH, two ADP techniques: 1) 

ADHDP and 2) Q-learning (which is a special case of ADHDP) [20], were considered. The 
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system modeling, and the training and controlling processes of both techniques are 

explained in the following sections. 

 

2.1. SYSTEM MODEL  

 

The DEWH model is defined by three variables: the output water temperature (Th), 

Hot water consumption rate (Whc), and the grid load (GL). Whc is generated randomly (See 

Section 3.3), Th is calculated using (2) and (3) based on the selected action, GL depends on 

the city grid load profile. Therefore, the three variables are not correlated. However, the 

values of these variables were used differently for the two approaches presented in this 

paper.   

In the Q-learning based approach, the variables were converted in to linguistic 

values using fuzzy membership functions, as illustrated in Fig. 3. The variables (Th and 

Whc) have three possible values (low ‘L’, medium ‘M’ or high ‘H’) while GL has only two 

possible values low or high. (This assumption was based on the time-of-use ToU pricing 

profile that is used in this paper where there is no medium grid load or in other word 

medium power cost also it is meaningless practically to describe grid load as medium).        

Therefore, a discrete state system can be defined with 332=18 different states. 

The demand side management problem is to decide whether to turn the DEWH “On” or 

“Off” at each event time, which refers to the time when user consumes any quantity of 

water from the DEWH’s tank. In practice, the numeric value of each variable should be 

fuzzified and mapped to its corresponding linguistic value. The fuzzy membership 

functions 𝑓𝑧,𝑖(∙), (𝑖 = 1,2, 3) are defined for the three variables, and illustrated in Fig. 3. 

For variables Th and Whc, values of L, M and H correspond to 0, 1 and 2 respectively. For 



14 
 

 

variable GL, the values of L and H correspond to 0 and 1, respectively. The water 

temperature thresholds were specified based on the fact that legionella bacteria begin to die 

at temperatures above 120° F [22].   

Suppose 𝑣1, 𝑣2 and 𝑣3 are the numeric values of the three variables respectively, 

and 𝑆(𝑣1, 𝑣2, 𝑣3) is the corresponding state’s index number. Then, 

                      𝑆(𝑣1, 𝑣2, 𝑣3 ) = ∑ [3𝑖−1𝑓𝑧,𝑖(𝑣𝑖)]3
𝑖=1 + 1                                            (1) 

The system states are encoded as listed in Table 1. 

Equation (1) is used to determine the system’s current state during the training 

phase. It is used during the simulation as well. The linguistic values are vital for calculating 

the immediate reward during training (see Section 3). Actions are selected randomly with 

equal probability during the training phase in order to provide stochastic value iterations 

and update the Q-factors accordingly. As discussed in Section 3.2.  

Variable Th's numeric value at time (t+1), denoted by 𝑣1(𝑡 + 1) can be estimated 

based on the action decision made at time (t). From the law of energy conservation [23], 

[24], we derive: 

                    𝑣1(𝑡 + 1)|𝑎(𝑡)=1 =
9𝑃𝜏

5𝐾𝑗𝑉
∙

𝑚1𝐶ℎ𝑤𝑇ℎ(𝑡)+[𝐶𝑐𝑤𝑇𝑐−𝐶ℎ𝑤𝑇ℎ(𝑡)]∙𝑚2(𝑡)

𝑚1𝐶ℎ𝑤+(𝐶𝑐𝑤−𝐶ℎ𝑤)∙𝑚2(𝑡)
+ 32 ,                      (2) 

                       𝑣1(𝑡 + 1)|𝑎(𝑡)=2 =
9

5
∙

𝑚1𝐶ℎ𝑤𝑇ℎ(𝑡)+[𝐶𝑐𝑤𝑇𝑐−𝐶ℎ𝑤𝑇ℎ(𝑡)]∙𝑚2(𝑡)

𝑚1𝐶ℎ𝑤+(𝐶𝑐𝑤−𝐶ℎ𝑤)∙𝑚2(𝑡)
+ 32 ,                         (3) 

where v1(t) is the current temperature of the water, a(t) is the current action, 1 means “On” 

and 2 means “Off”. m1 is the total mass of water in the DEWH tank, m2(t) is the mass of 

water consumed at the time (t), and m2(t)= v2(t)3.785 [25]. Chw and Ccw represent the heat 

capacity of hot water and cold water, respectively [23]. Tc is the temperature of the water 
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supplied to the DEWH, typically 10~13 ͦ C [26]. P is the power rating of the heating 

element (4500, 2800 or 36000 Watts per hour in this study). Kj =2.42 W*h/gal*℉, which 

is the recovery rate calculation constant [27], [28], and V is the total volume of the DEWH 

tank. τ is the sampling period (30 minutes in this study). v1(t) and v1(t+1) are in unit of ℉. 

Heat dissipation and heat exchange between the DEWH metal surface and air is negligible 

(less than 0.25 ℃/hour) [19]. These two equations are to estimate the water temperature 

using energy saving formula. According to the behavior and ranges of the calculated 

temperature at each time step in compare with field studies [3]-[5], the model was 

acceptable. However, accurate performance to these models have not presented in this 

work. Due to the involvement of several random functions in profiles generation and the 

absence of real data.    

An event driven simulator was designed to generate users’ profiles. The simulator 

mimics the data that were collected in [3] and [4]. The distribution fitting toolbox in 

MATLAB was used in this study to determine the random variable distribution. The 

designed event driven simulator generates the time of the events (which specifies the 

current grid load GL) and the quantity of hot water used in each event Whc. The linguistic 

value of the grid load factor (GL) is determined based on the event time since previous 

studies have shown that there are specific periods during the day when the load demand 

becomes high [3]-[7], [13]. However, a time-of-use (ToU) pricing profile is used to 

calculate the real cost of the consumed power [29] as illustrated in Section 3.3. The 

instantaneous output water temperature, Th, is calculated using (2) and (3) when the 

selected action at time (t) is “Off” and “On” respectively. One of the advantages of the 

approach is that it avoids the complicated thermodynamic and heat transfer operations, 
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which occur inside the DEWH’s tank, by using (2) and (3) to estimate the value of Th at 

time (t+1). Furthermore, the presented work does not require any complex calculations 

such as that described in previous studies [7] to solve the optimization problem.  

In the ADHDP approach, the system is modeled as a continuous state space system. 

The system’s state is also defined by the same variables (Th, Whc, and GL) used in the Q-

learning approach, but there is no fuzzification/ defuzzification process. The state variables 

are the inputs of the Critic and the Action neural networks in the ADHDP controller. Their 

normalized numeric values are used to train the neural networks. This will be explained in 

more detail in Section 3.1. 

 

2.2. APPROXIMATE DYNAMIC PROGRAMMING  

Approximate or Adaptive Dynamic programming (ADP), also known as the 

reinforcement learning, simulation-based dynamic programming, stochastic programming, 

and neuro-dynamic programming, refers to a group of algorithms designed to solve the 

problem of Markov and semi-Markov decision processes given by (4) [30]. 

                     𝐽∗(𝑖) = max
𝑎∈𝐴(𝑖)

[∑ 𝑝(𝑖, 𝑎, 𝑗)[𝑟(𝑖, 𝑎, 𝑗) + 𝜆𝐽∗(𝑗)
|𝑆|
𝑗=1 ],                           (4) 

where J*(i) is the i-th element of the vector value function associated with the optimal 

policy. A(i) is the set of all actions allowed in state i, p(i, a, j) represents the transition 

probability of going from state i to state j under the influence of action a.  r(i, a, j) is an 

immediate reward earned when action a is selected in state i and the system transfers to 

state j as a result. S represents the set of states in the Markov chain, and λ is the discounting 

factor. 
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2.3. Q-LEARNING ALGORITHM  

Watkins published the Q-learning algorithm in 1989. He defined this method as “a 

form of model free reinforcement learning and it can be viewed as a method of 

asynchronous dynamic programming” [31]. The Q-learning algorithm associates a scalar 

value, the Q-factor, with each state action pair. It solves (4) by updating the Q-factors 

associated with an optimal policy instead of approximating the cost function of a particular 

policy. Furthermore, it uses policy iteration (PI), as described in (5), to avoid the evaluation 

of multiple policies. The PI serves as the Q-factor version of the Bellman equation [21], 

[30]. 

                 𝑸(𝒊, 𝒂) = ∑ 𝒑(𝒊, 𝒂, 𝒋)[𝒓(𝒊, 𝒂, 𝒋) + 𝝀 𝐦𝐚𝐱
𝒃∈𝑨(𝒋)

𝑸(𝒋, 𝒃)]
|𝑺|
𝒋=𝟏 ,                        (5) 

where Q(i, a) and Q(j, b) are the Q-factors associated with state-action pairs (i, a) and (j, 

b), respectively. 

Equation (5) still requires the transition probabilities. Therefore, the Robbins-

Monro algorithm [32] was used to estimate the optimal Q-factors. The optimal Q-factors’ 

estimation was achieved by expressing every Q-factor as an average of a random variable. 

Equation (6) represents the Q-factor version of the value iteration, which is the Q-learning 

algorithm for a discounted Markov Decision Process (MDP). The derivation of (6) from 

(5) can be found in [30]. 

            𝑸𝒏+𝟏(𝒊, 𝒂) = (𝟏 − 𝜶𝒏+𝟏) 𝑸𝒏(𝒊, 𝒂) + 𝜶𝒏+𝟏[𝒓(𝒊, 𝒂, 𝒋) + 𝝀 𝐦𝐚𝐱
𝒃∈𝑨(𝒋)

𝑸(𝒋, 𝒃)],              (6) 

where αn+1 represents the adaptive learning rate and attenuating with time. Qn+1 is the 

updated Q-factor, n is the time step. 
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Algorithm 1: Q-learning 

1 Set up the training parameter: imax, and initialize Q-factors=0 and t=0.  

2 Randomly select initial state and action (S0,a0). 

3 

 

Repeat until (number of iterations > imax). 

 Apply action a(t) on DEWH model and read the current and the estimated values 

of vi(t) and vi(t+1),  respectively. 

 Determine S(t+1) using  (1). 

 Calculate immediate Reward r(St,at,St+1) 

 Update Total Reward Rt=Rt+ r(St,at,St+1). 

 Update: t=t+1; S(t-1)=S(t);S(t)=S(t+1). 

 a Update learning rate: 𝜶 = 𝜶𝒕+𝟏
.  

 Update Q-factors using (6).    

4 Construct the final policy from (S, a) pairs with higher Q-factors using the 

following formula on each state (i): 

 𝑷(𝒊) = 𝒂𝒓𝒈𝒃∈𝑨(𝒊)
𝒎𝒂𝒙 𝑸(𝒊, 𝒃); 𝑷(𝒊) is the policy at state (i) (i.e. action that lead to 

maximum reward on the long run). 

5 Record 𝑷̂(optimum policy for all states) and stop. 
a There are multiple ways to update the learning rate (α) [21]. In this work, we update 𝛼 

using: 𝛼𝑡+1 =
𝑐1

𝑐2+𝑡
, where the positive constants 𝑐1 and 𝑐2 fulfills 𝑐1 < 𝑐2. (e.g. we set 𝑐1 =

200 𝑎𝑛𝑑 𝑐2 = 220. More discussion on learning rate selection can be found in [21]).   

In this study, the Q-learning version of the value iteration was used to solve the pre-

described SMDP problem, which can be viewed as a discounted reward for the 

reinforcement learning based on the stochastic value iteration. However, the Q-learning 

version used in this paper uses a specific cost function to generate the immediate 

cost/reward for each system state transition, as illustrated in Section 3.1. This cost function 

eliminates the need for the transition reward matrix TRM, which is usually used in Q-

learning algorithms. The same cost function was used to evaluate the system’s transition 

in the ADHDP approach as well (See Section 2.4). 
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2.4. ACTION DEPENDENT HDP 

The family of adaptive critic design (ACD) controllers has been presented by 

Werbos [33]. HDP, and its action dependent ADHDP forms, have a critic network that 

estimates the cost-to-go function J* in (4) which calculates the Bellman equation of dynamic 

programming [20]. The standard structure of HDP and ADHDP is illustrated in Fig. 4. 

ADHDP is a generalization of Q-learning for the continuous domain system. In ADHDP, 

the critic is trained to provide an accurate estimation for the cost-to-go function J and to 

minimize the following error E(t): 

                          𝐸(𝑡) = 𝐽[𝑋(𝑡)] − 𝛾𝐽[𝑋(𝑡 + 1)] − 𝑈(𝑡),                                   (7) 

where X(t) is the vector of observations/variables that define the system’s current state. 

The ADHDP controller adaptation process consists of two phases: Critic and Action 

networks training. These two processes are implemented continuously in sequence but not 

in parallel. 

The critic network is designed to minimize a back propagated error signal (7), and 

the gradient of J with respect to the weights of the critic Wc is given by: 

                                             Δ𝑊𝑐 = −𝜂𝑐[𝐸(𝑡)] ×
𝜕𝐽

𝜕𝑊𝑐
 ,                                                   (8) 

where 𝜂𝑐 is a positive learning rate (0 < 𝜂𝑐 ≤ 1). The action network is connected as 

shown in Fig. 4(b) in order to minimize J in the next time step and optimize the total cost 

over the entire domain. In the action network’s adaptation phase, the gradient of J with 

respect to A (i.e. 𝜕𝐽/𝜕𝐴) is back propagated as illustrated in Fig. 4(b) and in (9): 

                                                      Δ𝑊𝐴 = −𝜂𝑎 ×
𝜕𝐽

𝜕𝑊𝐴
   ,                                                 (9) 

where 𝜕𝐽/𝜕𝑊𝐴 = (
𝜕𝐽

𝜕𝐴
) × (

𝜕𝐴

𝜕𝑊𝐴
), is the gradient of the cost-to-go function J with respect to 
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the weights of the action network WA. 𝜂𝑎 is the action network learning rate ( 𝜂𝑎 doesn’t 

have to be equal to 𝜂𝑐 in (8.) 

In HDP the immediate cost or the utility function U(t) is approximated as well using 

neural networks, while in ADHDP, U(t) is calculated using a model and the action network 

is connected directly to the critic [20]. The approaches described in this paper were designed 

to overcome the limitations presented by previous solutions. These improvements focused 

on the following: 

 Reducing the need for permanent communications and synchronizations between DEWHs 

and the smart grid infrastructure [7], [12].  

 Either shifting or eliminating the peaks with in the grid load [3]. 

 Reducing power consumption during peak periods and as a result minimizing the cost of 

the power consumed without sacrificing customer satisfaction. 

 

3. TRAINING AND IMPLEMENTATION 

 

This section contains the discussion on the processes required to transform a normal 

DEWH into a smart appliance. The discussion clarifies and compares the technical 

implementation of the presented approaches:  the ADHDP and the Q-learning. 

 

3.1. ADHDP IMPLEMENTATION 

The ADHDP controller is illustrated in Fig. 5. It consists of the following 

components: 
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 The DEWH system module: which was described in (2) and (3) is the same module used 

during Q-learning and the final simulation (to be discussed further in Section 3.2 and 

Section 4).  

 The critic network used in this work consists of: one input layer with four neurons (for 

each state variable and the action network output), one hidden layer with 30 neurons each 

of which has a hyperbolic tangent sigmoid activation function, and one neuron in the 

output layer with a linear activation function. The output of the critic is J(t), if the inputs 

were X(t) and A(t) or J(t+1) if the inputs were X(t+1) and A(t+1).   

 The action network is almost identical to the critic network, but it only has three neurons 

in the input layer, and the sigmoid activation function is used in the hidden and also the 

output layer. The action network generates the control action (On or Off) during normal 

operation and simulation. 

The transition evaluation module (or utility function) was designed to replace the 

TRM as illustrated in Section 2.3. This utility function (in some literature called a cost 

function) calculates the immediate transition reward/cost for each system’s state transition. 

The same function was used in Q-learning as well. The utility function provides a more 

efficient evaluation than the TRM. The utility function calculates the immediate transition 

cost based on the energy consumed during the transition and all the other control variables 

(Th(t), Whc(t), GL(t)), as illustrated in Algorithm 2. The pseudo code of the cost function 

illustrated in Algorithm 2 is of major importance because it highly reduced the complexity 

of the training process for both ADHDP and Q-learning compared to previous work [34]. 

The utility function rewarded the agent for each gallon of output water supplied with Th > 

120 ℉ and penalized failure to do so. It also considers each consumed kWh as a penalty, 
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but that penalty depends also on whether it was consumed during peak or normal load. If 

GL is low, the penalty will be mitigated through dividing the kWh by (𝑎) and vice versa, 

as illustrated in Algorithm 2. The guidance factors (𝑎 𝑎𝑛𝑑 𝑏) provide control over the 

multi-objective optimization process. (i.e. they encourage the agent to turn the heating 

element on during low load periods and to reduce the effect of the different scale between 

energy and output water units). Experimental results showed that: choosing 𝑎 𝑎𝑛𝑑 𝑏 such 

that (𝑎 ≥ 2𝑏, ∀𝑏 ≥ 1), provides better performance for the ADHDP controller. However, 

these factors have no effect at all on the Q-learning performance, as illustrated later in 

Table 3.  

 Algorithm 2: Utility function 

Calculate_cost(power in kwh, state: X(t)= [Th, Whc, GL], t) 

1 if  GL is high 

 J=energy in kwh*a;    % penalty P1 {peak load} 

if Th< threshold 

     J=J+Whc;              % increase cost {penalty} 

else: J=J-b*Whc;       % decrease cost {reward}  

2 else 

if time (t) is between 3 and 5:30 am 

    J= energy in kwh/a;     % P2<P1 low load 

Else 

    J= energy in kwh/b;    % P1>P3>P2 

if Th< threshold 

    J=J+Whc*a;           % increase cost  {penalty} 

else: J=J-Whc;           % decrease cost {reward} 

3 If Q_learning                    % see Section 3.1 

       J=-J; 

4 Return J; 

 

The adaptation of the presented ADHDP controller was implemented in two phases: 

 Offline training: In the offline training, the critic network was trained first using the data 

generated from the Q-learning algorithm. The critic training stops when the back 
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propagated error signal from (7) becomes less than a pre-specified small value, or when 

the training lasts for the maximum number of iterations. The critic training of the 

presented ADHDP is illustrated in Fig. 6. Furthermore, the action network is also trained 

during the offline phase using the same data used in critic adaptation. The size of the 

data sets depends on for how many simulation days Q-learning was trained, and each 

day contained about 150 samples. It was noted during experiences that repeating the 

offline training after the online training enhances the ADHDP controller’s performance. 

The selection of the guidance factors has major effect on the ADHDP performance too 

as illustrated in Sections 4 and 5. 

 Online training: The online training is executed during the simulation phase. The action 

network keeps adapting during the simulation to minimize the system’s cost to go (i.e., 

J). Simulation here is the same as real time operation, because of the use of the event 

driven simulator that explained in Section 4. The adaptation of the action network is 

illustrated in Section 2.4.  

The presented ADHDP controller showed better performance in cost reduction as 

the number of iterations increased. The critic adaptation is illustrated in Fig. 6 and was 

recorded during training for 100 simulation days with a total data set size of about 15000 

samples. 

 

3.2. Q-LEARNING IMPLEMENTATION 

The second optimization approach implemented in this work is the Q-learning 

algorithm. The actions are selected randomly with equal probability at each time step to 

achieve better exploration of the solution space during the training phase. The algorithm 
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then receives the control variables’ estimated values at (t+1) from the DEWH model and 

evaluates the performed action based on the utility function illustrated in Algorithm 2, 

which is the same utility function used in ADHDP. In step 3 from Algorithm 2, the 

calculated cost is negated. This is because Q-learning selects the optimum policy based on 

the Q-factor with the maximum value, unlike ADHDP which seeks to minimize the cost. 

The Q-factor associated with (𝑺𝒕, 𝒂𝒕) was last updated using (6). This algorithm repeats the 

same procedures and continues until the maximum number of iterations are performed. The 

Q-factors have been stored in an (18x2) scalar matrix. The optimum policy is then derived, 

as illustrated in Algorithm 1 and Fig. 7. 

Each iteration here represents a one-day simulation that contains about 150 time 

steps based on the event driven simulator used. The best value for the discount factor 𝛌 

was derived heuristically as 0.9. Note that the same notation used in Fig. 5, to indicate the 

fact the same discount factor was used in ADHDP as well. The training phase for both of 

the presented approaches (ADHDP and Q-learning) was conducted using a DEWH’s 

module with the following parameters: 

1) The heating element power= 36, 4.5, 4.5 or 2.8 kWh. 

2) Tank size=120,100, 70 or 40 gallons respectively. 

3) Discount factor 𝜆=0.9. 

The state’s variables linguistic values were derived as illustrated in Fig. 3, for Q-

learning. The same specifications were used with in the simulation for all the other 

simulated approaches as well. 
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3.3. DATA PROCESSING 

This section includes discussion on the process of generating the control variables’ 

numerical values (Th, Whc, and GL) and illustrates the event driven simulator. 

The event driven simulator presented in this work provided comparable results with 

those obtained from previous field studies [3], [7]. The simulator is designed to mimic 

human activities in consuming hot water. This simulation was required to provide a reliable 

assessment for the presented DEWH’s control approaches. The simulator generates (per 

simulation day) unique and random profiles for each DEWH used in the simulation as 

shown in Fig. 8. The simulator assumes 4 occupants in each house, for simplicity we 

avoided considering the ages, gender, and other social factors for the occupants that may 

affect their hot water consumption rate. The generated profile shown in Fig. 8, is comparable 

to the profiles obtained from the field studies in the British Department for Environment, 

Food and Rural Affairs’ report [4]. 

The simulation consists of two phases: 1) Profile generation which was used in 

training and in performance evaluation or comparison and 2) comparator simulator, in 

which an evaluation process implemented among the presented approaches and the 

state_of_the_art approaches [3]. The profile’s generator also provides the time of using the 

hot water and how much hot water was used. In the evaluation phase, different models for 

the DEWHs were used, uncontrolled “reference”, Scenario0, 1, and 2, Q-learning, and 

ADHDP. Each group of DEWH have the same number of DEWHs units, the same tank size 

(120, 100, 70 or 40 gallons) and heating element (36, 4.5 or 2.8 kWh). The simulator 

assumes that, we are creating six parallel universes or copies from every house dwelling and 

give each copy different brand (i.e. version) of DEWH. The performance of each group is 
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evaluated during the simulation based how much energy each group can save with respect 

to the uncontrolled scenario (All scenarios operated for the same period of time and using 

the same user profile). 

This criteria is used to guarantee a fair comparison among the different approaches. 

Otherwise, it is difficult to present an accurate comparison among the different control 

strategies. The user profiles which includes events’ time indices and the consumed hot water 

quantities were generated using special combination of Poisson random variables. The 

choice of these variables is based on using the distribution fitting tool box from MATLAB 

on the previous studies’ data. The profile generator function was adjusted empirically till it 

provides user profiles similar to the actual user profiles obtained by previous studies [3]-

[5]. Artificial profiles needed due to the limitations of real data profiles. The numerical 

variables used for calculating the variables are explained as follows. 

 Water temperature: In this work, instead of diving deep inside the thermodynamic 

operations of the DEWH, we utilized the law of energy preservation to provide a 

reasonable estimation for the temperature of the output water at the hot water faucet, as 

in (2) and (3). Since calculating the output water’s exact instantaneous temperature is 

almost impossible without using an expensive embedded system to calculate the 

temperature of the DEWH’s output water [23]-[25].  

 Hot Water consumption rate: Estimating or predicting any human activity is extremely 

difficult. This study relied on statistics from field surveys, which have been performed 

in London, UK and Québec, Canada [3], [4]. However, to generate the required data, an 

embedded event driven simulator was designed as illustrated in the previous section.     
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 Grid Load “Energy Cost”: The estimated instantaneous grid load can be obtained from 

the local utility companies, and they are time dependent as illustrated in Fig. 3 (c.) As 

mentioned earlier the grid load characteristics used in this work are based on data 

obtained from Quebec and London [3], [4]. However, the numeric values of this factor 

are the time indices of the operation. The load peak periods occurred approximately 

between 5:30 am and 10:00 am and between 4:30 pm and 10:00 pm. Furthermore, the 

final comparison was conducted using a time-of-use profile [29]. 

 Energy consumed by the DEWH’s heating element: The amount of the consumed energy 

is calculated using the module described in (2) and (3). The values of the immediate 

energy consumption in kWh were used to calculate the value of the utility function at 

each system transition as illustrated in Figs. 5 and 7. 

The control variables’ numerical values are normalized before being used as inputs 

for the action and the critic networks in the ADHDP controller. The same profiles generated 

during the Q-learning process were used in the ADHDP approach as well. 

 

4. SIMULATION AND EVALUATION 

 

The simulation process was designed to provide the same operating conditions for 

all the simulated scenarios as discussed in the previous section. Five different approaches 

were simulated under the same operating conditions. These operating conditions are as 

follow: 

1) The DEWH specifications as listed in Section 3.2.  

2) All DEWHs must supply water in a temperature higher than 120 ℉. 
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3) A soft threshold specified to be 125 ℉. This soft threshold was used to prevent the 

output water’s temperature to fall below 120 ℉ for all the compared approaches [22] (To 

maintain customers’ satisfaction.) The DEWH heating element should be turned “On” 

whenever the water temperature fell below the soft threshold. However, the simulator 

recorded even the quantities of water outputted to users below thresholds to provide more 

accurate evaluation to each of the control strategies as illustrated in Tables 3 and 4. 

The evaluation comparison is performed among five groups of DEWHs plus the 

uncontrolled operation as a reference. Each group has the same number of identical 

DEWHs. The results in this paper were derived from simulating the operation of 100 

DEWHs in each group. Any number of DEWHs can be used and from experiences no effect 

on the comparison. Since the same user profiles is being used for the different groups. In 

other words: the same group of DEWHs were simulated using 5 different control scenarios 

and the uncontrolled scenario. The final assessment was presented based on the percentage 

cost reduction of the consumed energy cost using a ToU pricing profile. The ToU profile 

gives three different prices for the kWh during the day: 5.62¢, 10.29¢ and 23.26¢ [29]. 

These prices were applied to the load profile of the city of Quebec that used in this study 

and the state-of-the-art work that is compared with. As a result, the pricing profile that was 

used in our comparison simulator is as follow for the energy unit price: 

 23.26 ¢ for each kWh consumed between 5:30 and 10:30 am (load peak 1.) 

 10.29 ¢ for each kWh consumed between 4 pm and 9 pm (load peak 2.) 

 5.62 ¢ for each kWh consumed other times of the day (low grid load period.)    
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The different scenarios presented in the state-of-the-art work in the field (i.e., 

Scenarios 0, 1, and 2 in the list) [3], the uncontrolled scenario (i.e., Scenario 4), and our 

scenarios (scenarios 3 and 6) are all discussed below. 

1) Scenario 0: The demand pick-up at the end of the load shifting period is not controlled.  

2) Scenario 1: The pick-up is controlled according to a prioritized random function that 

was spread over a range of one hour after the peak period ended. In this scenario, the agent 

turns the heating element off during the peak period. 

3) Scenario 2: The pick-up is controlled according to a prioritized random function that 

is spread over a range of two hours after the peak period ended. The success of the simulator 

can be verified by looking at the energy consumption curves in Figs 10-13.   

4) Scenario 3 (Q-learning): The entire operation of every DEWH in the group is 

controlled according to the policy selected after the presented Q-learning algorithm (also 

known as the trained group in the comparison charts), which is used to train the agent. 

5) Scenario 4 (Ref. or uncontrolled scenario): The DEWHs that are simulated under this 

scenario are operating under no artificial control. The heating element is turned “On” 

whenever the water temperature became less than the specified soft threshold and “Off” if 

it exceeds140 ℉. This scenario (also known as the uncontrolled group in the comparison 

charts) is used as a reference to calculate the performance of all other scenarios. 

6) Scenario 5 (ADHDP): All the DEWHs simulated with in this group are trained, as 

illustrated in Section 3.1, using the adaptive critic technique ADHDP. 

Scenarios 3 and 5 are the techniques implemented in this work. Both scenarios (Q-

learning and ADHDP) perform well and even better than the state-of-the-art strategies 

(Scenarios 0, 1, and 2) in the existing work [3]. 
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In Scenario 0, the agent simply deactivated the heating element during peak periods 

unless Th fell below the soft threshold, which is in this work was 125 ℉. The controller 

turned the heating element “On” all the time it was outside the specified peak periods unless 

their (Th) exceeded the maximum allowed temperature (140 °F). New peaks appeared when 

the heating elements for all DEWHs were reactivated  simultaneously. In Scenarios 1 and 

2, the agent  randomly reactivated the water heaters at the end of the load shifting period, 

giving priority to those that were having the lowest water temperature to be turned “On” 

first. The time required for the water heaters to reactivate at the end of the shifting load 

was based on a random function. It was also based on the water’s temperature at the end 

of the load shifting period.  

Scenario 3 and 5 represented the control approaches that were presented in this 

study. In Scenario 3, the operation of the DEWH’s heating element was entirely controlled 

by the suboptimal policy that was achieved during the Q-learning’s training phase. The 

same simulator that generated the control variables during training was used to calculate 

them during comparison as well. 

Furthermore, in all scenarios, the DEWH controller overrode its control scenario 

on two occasions: when Th either decreased below or exceeded the pre-specified soft-

threshold (125 °F) or maximum (140 °F) thresholds, respectively. The soft threshold was 

used in the comparator simulator in order to guarantee the same degree of customer’s 

satisfaction for all scenarios (when all scenarios maintained their water’s temperature 

above the hard threshold of 120 °F. It also provided clear performance measurement for 

the different scenarios, based on the consumed power cost only. The cost of the consumed 

power was calculated using a ToU pricing profile [29] as illustrated in Section 3.3. 
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5. RESULTS 

 

The event driven simulator, the described system’s modelling, the Q-learning 

process, ADHDP controller back propagation training, and the simulator used for 

evaluating the performance of all approaches were all designed using MATLAB. Many 

simulations were conducted in this work using different training parameters. As a result, 

the best learning schemes for Q-learning in terms of distance between Q-factors and policy 

stability were obtained using a discount factor of λ=0.9. Table 2 illustrates the optimum 

policies selected by Q-learning for 30 and 100 iterations for DEWH with tank size 70 

gallons. 

The Q-learning agent showed the best performance in all experiences. The Q-

learning approach implemented here is more advanced and comprehensive than that 

presented in previous work [34]. The current work uses realistic time events as generated 

by the event driven simulator. (In the previous work [34], the controller made a decision 

every 30 minutes). The ADHDP approach is also conducted in all experiments and it 

outperformed the state_of_the_art approaches [3] when setting the appropriate values for 

the guidance parameters (𝑎 𝑎𝑛𝑑 𝑏, See Section 3.1). The ADHDP approach is based on the 

continuous state space version of the problem, not a discrete state space like Q-learning 

[20]-[21], [30]-[31], [35]. Several experiments were implemented as illustrated in Tables 

3 and 4. Table 3 contains results for the experiments that were implemented using the same 

profiles during training and evaluation, with user profiles illustrated in Fig.8. Table 3 also 

includes the results for different values for the guidance parameters (𝑎 𝑎𝑛𝑑 𝑏) and clearly 

shows their effect on the ADHDP performance. Table 4 contains results for experiments 
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that uses extreme profiles during the evaluation phase, as illustrated in Fig.9. All the 

experiments in Table 3 were implemented twice using two different combinations of the 

guidance factors (𝑎 𝑎𝑛𝑑 𝑏). The results are recorded twice for Q-learning and ADHDP, 

since these are the only approaches that may get affected by the influence of the guidance 

factors on the cost function. The remaining results were recorded when using (𝑎 = 2 ∗ 𝑏). 

There were slight fluctuations in the values due to the random profile generation.  

In experiment 1, a 100 typical DEWH with tank size of 70 gallons and 4.5 kWh 

heating element were simulated for 100 iterations (i.e. simulation days.) Experiment 2 

repeats experiment 1 but using 30 iterations only. Experiment 3 evaluates the performance 

of all approaches for smaller tank size DEWH. DEWH of 40 gallons tank was used in this 

experiment. Experiments 4 and 5 show and compare the performance of all the different 

scenarios using DEWHs with larger tanks (i.e. 100 and 120 gallons). In experiment 5 a 

commercial DEWH model with 36 kWh heating element was simulated. The experiments 

listed in Table 4 (Experiments 6 and 7) were performed using extreme user profiles during 

the evaluation process, in order to measure the robustness of the presented approaches. The 

results obtained from experiments 1-5, showed outstanding performance for the Q-learning 

approach regardless of the guidance factors (𝑎 𝑎𝑛𝑑 𝑏). The ADHDP approach 

outperformed the state_of_the_art techniques when 𝑎 = 2 ∗ 𝑏; 𝑏 = 2. But it performed 

poorly when setting 𝑎 = 𝑏 = 1. It was observed during some additional experiments that 

ADHDP has shown better performance in cost reduction when setting 𝑎 >>b (e.g. 𝑎 = 8 ∗

𝑏; 𝑏 = 1). 

The comparison simulation was implemented as illustrated in Section 4. The 

simulation parameters were the same for the different scenarios, and each scenario had the 
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same number of DEWHs.  Furthermore, the ADP approaches were tested using more 

extreme user profiles than those they were trained with, yet the Q-learning method was 

able to provide better cost reduction rates than those presented in the state_of_the_art 

techniques, as illustrated in Table 4, and Fig. 13. 

Tables 3 & 4 compares the performance of the ADP approaches with the state-of-

the-art control strategies [3] in terms of energy cost reduction and customers satisfaction. 

The amounts in the first row of each experiment were calculated in the code by 

accumulating the instantaneous costs of energy consumed in all the 100 dwellings. The 

cost is based on the ToU profile described earlier [29]. The percentage cost reduction rates 

(i.e. numeric values in the 2nd row) were calculated using (10).  

                        % 𝑪𝒐𝒔𝒕 𝑹𝒆𝒅𝒖𝒄𝒕𝒊𝒐𝒏 =
𝑨𝒑𝒑𝒓𝒐𝒂𝒄𝒉′𝒔 𝑻𝒐𝒕𝒂𝒍 𝒔𝒂𝒗𝒊𝒏𝒈

𝑹𝒆𝒇.  𝒆𝒏𝒆𝒓𝒈𝒚 𝒄𝒐𝒔𝒕
× %𝟏𝟎𝟎                        (10)         

Where approach’s total saving = (Cost of energy consumed using the uncontrolled 

approach ‘Ref.’ – The cost of energy consumed using the approach). The uncontrolled 

scenario is used as an index for comparison or to evaluate between all the control strategies. 

The estimated annual saving (EAS) was calculated from multiplying the per-day saving by 

365 as illustrated in (11). The customer’s satisfaction evaluation was based on the 

quantities of the output water with temperature less than ‘th’ (i.e. 120 deg. Fahrenheit) and 

the number of times that happened in the entire 100 dwellings. 

                                    𝑬𝑨𝑺 =
𝑨𝒑𝒑𝒓𝒐𝒂𝒄𝒉′𝒔 𝑻𝒐𝒕𝒂𝒍 𝒔𝒂𝒗𝒊𝒏𝒈

# 𝑫𝑬𝑾𝑯𝒔 
×

𝟑𝟔𝟓

# 𝒔𝒊𝒎𝒖𝒍𝒂𝒕𝒊𝒐𝒏 𝒅𝒂𝒚𝒔
                          (11) 

The results illustrated in Figs. 10-13, and in Tables 3 & 4 indicate that, in most 

cases, using Q-learning to control the 100 DEWHs reduced  the cost of the consumed power 

by  22% which is twice the cost reduction resulted from the state_of_the_art technique 
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“Scenario-0”. The ADHDP approach also outperforms the state_of_the_art techniques, 

through reducing the total cost by 16% and 12% when trained for 100 and 30 days 

respectively. 

In experiment 3, Q-learning reduced the total cost by 6.6% which is still higher than 

the reduction from other techniques (e.g. %5.7 for Scenario-0). ADHDP in this experiment 

reduced the cost by only 5.5% only which is less than Scenario-0, but higher than Scenarios 

1 and 2. However, the best performance recorded was in experiment 4 with tank size=100 

gallons and heating element of 4.5 kWh. The percentage cost reduction rates were ≈

𝟐𝟔% 𝒂𝒏𝒅 𝟐𝟏% for the Q-learning and ADHDP respectively. The annual savings were 

approximately $453 and $367 for Q-learning and ADHDP respectively.    

In experiments 6 and 7 (Table 4), a higher user profile was used in the evaluation 

than that used during training. The Q-learning also outperformed all other scenarios by 

producing about 15% cost reduction. According to the simulation results, the Q-learning 

controller maintained the temperature of the output water above the pre-specified threshold 

(120° F), except when the 40 gallons tank size was used, it provided a small amount of 

water slightly below the threshold, “th”. The ADHDP approach outperformed the 

state_of_the_art scenarios if the training was performed on the same data used during 

evaluation and a large tank size (70 gallons) was used. 

 

6. CONCLUSIONS 

 

In conclusion, the Q-learning approach can at least save a family of 4 persons 

between $102, $393 and $453 annually if they are using a DEWH with 40, 70 and 100 
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gallons respectively. Even for the commercial product the ADP approaches provide 

excellent annual saving of ($394) for DEWH with larger heating element (36 kWh) and 

tank size of 120 gallons.  Furthermore, the simulation showed that the Q-learning controller 

maintained the water temperature above 120° F, indicating an opportunity to enhance the 

system further by designing a flexible threshold. The simulation results shown in Tables 3 

& 4 clearly illustrate that Q-learning has the best performance in terms of cost reduction, 

customer’s satisfaction, and even in terms of load peak elimination or shifting as illustrated 

in Figs. 10-13. Another opportunity for further enhancement would be using real user 

profiles to control DEWH in real time. ADP may also be used to improve the most recent 

Heat pump water heaters. The presented techniques don’t depend on the technology used 

in the DEWH, but depend only on the grid load demand (i.e. instantaneous energy cost), 

the temperature of the output water, and the user profile. The authors therefore believe that 

various ADP approaches are worth further investigation. Q-learning outperformed 

ADHDP and previous state-of-the-art methods in these experiments. The authors speculate 

that ADHDP will still prove useful in scenarios that play to its strengths in continuous state 

spaces and dynamic environments such as adaptive thresholds.  The authors are also aware 

that some of the references cited in this paper demonstrated better performance with 

ADHDP than with Q-learning.  However, for these experiments, Q-learning outperformed 

it and all other methods, probably due to the reduced state space and the limited complexity 

of the implemented state space model.  This is encouraging; for Q-learning is a simple and 

robust, easily deployable ADP approach.  The results presented here strongly suggest it 

should not be difficult to use simple machine learning techniques to achieve substantial 

cost savings and environmental benefits. 
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Table 1. System states encoding (L: low=0, M: Medium=1, H: High=2).  

Si S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 

Th L M H L M H L M H L M H L M H L M H 

Whc L L L M M M H H H L L L M M M H H H 

GL L L L L L L L L L H H H H H H H H H 

 

 

 

 

Table 2. The optimum policies selected by q-learning (1= On, 0= Off). 

St
a
 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 

a(t)b
 1 1 1 1 0 1 1 1 1 1 0 0 1 0 0 1 0 0 

a(t)c 1 1 1 1 1 0 1 1 0 1 0 0 1 0 0 1 0 0 
a States (1-18) 
b policy for 30 iterations 
c policy for 100 iterations 

 

 

 

 

Table 3. Simulation results from different experiments using the same user profiles in 

training and simulation. 
  Experiment .1: Tank size:70 gallons, 100  simulation days, heating element 4500Wh 

Approaches Scenario-0 Scenario-1 Scenario-2 
Q-learning ADHDP 

Ref. 
𝒂 = 𝒃 = 𝟏 𝒂 = 𝟐 ∗ 𝒃 𝒂 = 𝒃 = 𝟏 𝒂 = 𝟐 ∗ 𝒃 

Energy Cost in US $ for all DEWHs 43765 45373 45325 37820 37996 54683 42917 48578 

Percentage of cost’s reduction 9.9% 6.6% 6.7% 22.4% 21.78% -12.2% 11.65% - 

Estimated Customer’s Annual saving $173 $115 $117 $393 $381 $-213 $204 - 

# times users receives water below ‘th’ 815 1998 1916 0 0 2042 954 132 

Output water below ‘th’ in gallons 2190 5035 5006 0 0 9114 2674 331 

  Experiment .2: Tank size: 70 gallons, 30 simulation days, heating element 4500Wh 

Energy Cost in US $ for all DEWHs 13296 13766 13775 11438 11571 16203 12522 14848 

Percentage of cost’s reduction 10.45% 7.29% 7.23% 22.25% 22% -10% 15.67% - 

Estimated Customer’s Annual saving $186 $130 $129 $393 $393 $-179 $279 - 

# times users receives water below ‘th’ 382 608 570 0 0 20 261 38 

Output water below ‘th’ in gallons 1031 1521 1453 0 0 56 692 124 

  Experiment .3: Tank size: 40 gallons, 100 simulation days, heating element 2800Wh 

Energy Cost in US $ for all DEWHs 40400 40922 40930 40014 40016 45661 40485 42843 

Percentage of cost’s reduction 5.7% 4.48% 4.46% 6.6% 6.6% -6.6% 5.5% - 

Estimated Customer’s Annual saving $87.97 $69.16 $68.86 $101 $102 $-102 $85 - 

# times users receives water below ‘th’ 17707 19763 19880 0 4 5388 13421 19528 

Output water below ‘th’ in gallons 35423 39515 39747 0 4.49 10830 26902 39072 

  Experiment .4: Tank size: 100 gallons, 30 simulation days, heating element 4500Wh 

Energy Cost in US $ for all DEWHs 12574 13188 13048 10819 10856 16900 11566 14628 

Percentage of cost’s reduction 14% 9.84% 10.8% 26.4% 25.78% -14.98% 20.93% - 

Estimated Customer’s Annual saving $246 $173 $190 $466 $453 $-264 $367 - 

# times users receives water below ‘th’ 33 288 315 3 0 1416 58 0 

Output water below ‘th’ in gallons 22.2 672.1 693.5 3.17 0 594.5 182 0 

  
Experiment .5: Tank size: 120 gallons, 100 simulation days, heating element 36000Wh (Commercial 

product) 

Energy Cost in US $ for all DEWHs 48807 46592 46441 36647 36585 48391 44915 47582 

Percentage of cost’s reduction -2.54% 2.08% 2.4% 22.98% 22.77% -1.7% 5.6% - 

Estimated Customer’s Annual saving $-44 $35.7 $41 $394 $388 $-29.45 $96 - 

# times users receives water below ‘th’ 0 0 10 0 0 0 0 0 

Output water below ‘th’ in gallons 0 0 5.3 0 0 0 0 0 
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Table 4. Simulation results from different experiments using user profile in fig. 8 for 

training and the profile in figure 9 in evaluation. 
Experiment .6: Tank size:70 gallons, 100  simulation days, heating element 4500 Wh 

Approaches Scenario-0 Scenario-1 Scenario-2 Q-learning ADHDP Ref. 

Energy Cost in US $ for all DEWHs 56011 57796 57785 53500 57114 62841 

Percentage of cost’s reduction 10.87% 8.03% 8.05% 14.86% 9.12% - 

Estimated Customer’s Annual saving $249.29 $184.14 $184.54 $340.95 $209.04 - 

# times users receives water below ‘th’ 49709 60584 60199 0 57242 18645 

Output water below ‘th’ in gallons 150140 182500 181250 0 172760 56596 

Experiment .7: Tank size: 70 gallons, 30 simulation days, heating element 4500 Wh 

Energy Cost in US $ for all DEWHs 16666 17227 17226 16032 16864 18873 

Percentage of cost’s reduction 11.52% 8.55% 8.553% 14.9% 10.47% - 

Estimated Customer’s Annual saving $268.52 $200.26 $200.39 $345.66 $244.43 - 

# times users receives water below ‘th’ 12708 14694 14530 0 14548 3599 

Output water below ‘th’ in gallons 38931 44903 44446 0 44464 11156 

 

 

 

 

 

 

Figure 1. House hold energy use distribution in the US (Aug. 2013) [1]. 
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Figure 2. Similarity in load peak periods between grid load demand and energy consumed 

by DEWH  in Quebec CA and London UK [2]. 

 

 

Figure 3. The illustrations of the fuzzy membership functions: (a) 𝑓(𝑧,1)(∙) for 𝑇ℎ, (b) 

𝑓(𝑧,2) (∙) for 𝑊ℎ𝑐, (c) 𝑓(𝑧,3)(∙) for GL. Where GL is a function of time in hour. 



39 
 

 

 
Figure 4. (a) Critic adaptation in ADHDP/HDP. This is the same critic network in two 

consecutive moments in time. The critic’s output J(t+1) is necessary in order to give us 

the training signal γJ(t + 1)+U(t), which is the target value for J(t). (b) Action adaptation. 

X is a vector of observables, and A is a control vector. We use the constant   ∂J/∂J= 1 as 

the error signal in order to train the action network to minimize J. This figure is adapted 

from [20]. 

 

 

 

 

Figure 5. Implemented ADHDP controller’s structure. X: state, J: cost, A: action, any 

variable with (t) means current (t+1) means next. U(t) immediate transition cost “Utility”, 

WC,WA: Critic and Actor networks weight matrices respectively. 
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Figure 6. ADHDP Critic Network Adaptation. The top figure shows instantaneous error 

signals during critic adaptation. The lower figure illustrates the total cost reduction during 

critic adaptation. 

 

 

 

 

Figure 7. Q-learning’s schematic diagram. Qn+1:new value of Q-factor, 

R(St,at,St+1):immediate reward due to system’s transition from  current state St to St+1 

using the current action at, E[…] estimating the values of the enclosed factors, Q-factors’ 

matrix is an 18 x 2 matrix. 
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Figure 8. Sample user profile generated from the event driven simulator. Where the 

profile generated using embedded code as (See Section 3.3). 

 

 

 

 

 

Figure 9. Extreme user profile used in Experiments 6 and 7. In this profile higher rate of 

hot water consumption is assumed for users. 
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Figure 10. Aggregated energy consumed by all approaches during exp.1. DEWH’s Tank 

size 70 gallons, 100 simulation days. 

 

 

 

 

 
Figure 11. Aggregated energy consumed by all approaches during exp.2. DEWH’s Tank 

size 70 gallons, 30 simulation days. 
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Figure 12. Aggregated energy consumed by all approaches during exp.3. DEWH’s Tank 

size 40 gallons, 100 simulation days.  

 

 

 

 

 
Figure 13. Aggregated energy consumed by all approaches during exp.6. Users’ profiles 

in Figure 9 were used in comparison. 
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ABSTRACT 

 

Heterogeneity in Autism Spectrum Disorder (ASD) is complex including 

variability in behavioral phenotype as well as clinical, physiologic, and pathologic 

parameters. The fifth edition of the Diagnostic and Statistical Manual of Mental Disorders 

(DSM-5) now diagnoses ASD using a 2-dimensional model based social communication 

deficits and fixated interests and repetitive behaviors. Sorting out heterogeneity is crucial 

for study of etiology, diagnosis, treatment and prognosis.  In this paper, we present an 

ensemble model for analyzing ASD phenotypes using several machine learning techniques 

and a k-dimensional subspace clustering algorithm. Our ensemble also incorporates 

statistical methods at several stages of analysis. We apply this model to a sample of 208 

probands drawn from the Simon Simplex Collection Missouri Site patients. The results 

provide useful evidence that is helpful in elucidating the phenotype complexity within 

ASD. Our model can be extended to other disorders that exhibit a diverse range of 

heterogeneity. 

 

1. INTRODUCTION 

 

Children with Autism Spectrum Disorder (ASD) make up a heterogeneous 

population varying widely in the type, number and severity of social deficits, behavioral 
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problems, communication, language and cognitive difficulties, and etiologic conditions. 

Among all child-onset psychiatric disorders, autism is perhaps the most serious, intractable 

and challenging to address because of its vast heterogeneity observed along a spectrum of 

pathology [1]. The Diagnostic and Statistical Manual of Mental Disorders fifth edition 

(DSM-5) diagnostic criteria [2] for ASD are based on a severity gradient using a two- 

dimensional model:  social communication deficits (SCD) and fixated interests and 

repetitive behaviors (FIRB).  Heterogeneity in ASD is multidimensional and complex 

including variability in phenotype as well as clinical, physiologic, and pathologic 

parameters. Based on numerous studies that have attempted to illuminate the pathogenic 

mechanisms underlying ASD, it is widely accepted as a behavioral disorder with strong 

genetic components, given its high heritability index [3]. According to Miles [4], we would 

not be able to understand the heterogeneity until we have found specific autism genes. 

Connecting the genetic and etiological data to the behavioral and phenotypic data is critical 

to making strides in discoveries and effective solution. Hence, a better understanding of 

phenotypic heterogeneity in autism itself would generate useful information for the study 

of etiology, diagnosis, treatment and prognosis of the disorder. 

Cluster analysis is very useful in this context as it seeks to separate an unlabeled 

data set into a discrete set of “natural,” hidden data structures [5]. Different cluster 

methodologies [6-10] have been introduced to analyze ASD phenotype features with the 

objective of obtaining more homogenous meaningful subgroups. A key phase in any 

clustering framework is feature selection (or extraction). The presence of irrelevant 

features or of correlations among subsets of features heavily influences the appearance of 

clusters.  Feature selection methods attempt to globally remove irrelevant/redundant 
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features prior to clustering [11]. By viewing clustering as a multidimensional optimization 

problem of input features, we automatically remove redundant features by combining 

statistical correlation analysis with a two-phase subspace clustering framework. We apply 

our ensemble statistical and clustering model to analyze a population of ASD patients using 

a set of 27 ASD phenotype features that span the following categories: ASD-specific 

symptoms, cognitive and adaptive functioning, language & communication skills, and 

behavioral problems. This approach, as illustrated in Fig. 1, incorporates statistical 

techniques to validate and interpret the results. 

This ensemble statistical and clustering model is an efficient and scalable solution 

that can be applied to analysis of features from any complex biomedical dataset 

characterized by high dimensionality with unknown underlying subgroupings. It is 

applicable to other disorders that exhibit a diverse range of heterogeneity. 

 

2. METHODOLOGY 

 

2.1. DATA 

The study sample includes 208 ASD subjects that are part of the Simons Simplex 

Collection (SSC) [12]. (Simplex families have one child in the family with ASD with 

unaffected parents and siblings). Studying an SSC sample population guarantees that 

clinical and phenotype data is comprehensive, rigorous, reliable and consistent. It also 

makes replication for future studies easier since the entire dataset spans 12 different SSC 

sites and includes genotype data, which will be useful in translating these results to future 

genomic analysis. These 208 ASD subjects were recruited and diagnosed with ASD by the 
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University of Missouri (MU) Thompson Center for Autism and Neurodevelopmental 

Disorders (the Missouri SSC project site). ASD diagnoses were made using the Autism 

Diagnostic Interview – Revised (ADI-R) [13] and Autism Diagnostic Observation 

Schedules (ADOS) [14]. They also completed the SSC protocol, which included clinical, 

medical, behavioral, and family histories, physical, neurologic and dysmorphology 

examinations. The experimental procedures involving human subjects described in this 

paper were conducted under the guidelines and approval of Missouri University of Science 

and Technology (S&T) Institutional Review Board. 

 

2.2. ENSEMBLE CLUSTERING AND STATISTICAL ANALYSIS MODEL 

The ensemble model (Fig. 1) consists of five phases:  

Data Processing: The goal of this phase is to convert the features to a normalized 

numeric representation. Missing values are common in medical data, even in a rigorous 

dataset such as the SSC project. Several strategies have been developed to address this 

problem in machine learning. A review of the literature [15] reveals that the efficacy of the 

proposed methods (mean, missing data imputation, k-nearest neighbors, etc.) depends 

strongly on the problem domain (e.g., number of cases, number of variables, missingness 

patterns), and thus there is no clear indication that favors one method over the others. In 

our data set, the number of missing values is very minor, hence we applied the mean 

technique: a known simplistic model. The missing values are replaced with their average 

across the entire sample for that specific feature. Each feature was normalized between 0 

and 1, using known standard ranges for the feature, as guided by the ASD domain experts 

(S.K and T.N.T).  
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Correlation Analysis: We perform pairwise Pearson’s correlations to quantify the 

level of correlation present among the input numerical features. This is useful to refine the 

input features by retaining features that exhibit low correlation among each other. The 

refinement of features based on the results from the correlation analysis should be guided 

by the application domain experts to pick an appropriate threshold level for the tolerable 

level of correlation suited for the application data. 

Uni-dimensional Clustering: This is the initial phase of our feature-based subspace 

clustering. The uni-dimensional clustering is performed for each feature xj in the data set 

(x denotes the sample and j is the feature index). We cluster the data considering each input 

feature by itself using the Expectation-Maximization (EM) algorithm [16]. EM algorithm 

assumes a Gaussian distribution of the dataset and assigns a probability distribution to each 

feature, which indicates the probability of it belonging to each of the clusters. EM can 

decide how many clusters to create by cross validation or one may specify a priori how 

many clusters to generate. We allow EM to determine the optimal number of clusters for 

each feature in this phase. The number of solutions generated is proportional to m number 

of input features. 

At the end of uni-dimensional clustering, we have m clustering results. To rank the 

features in terms of their “goodness” in clustering the data, we apply an internal cluster 

validation index (Davies-Bouldin (DB) [17]) to the set of clustering solutions. We quantify 

the goodness of each feature based on its ability to singularly cluster the entire data into a 

set of clusters that mathematically demonstrate a strong degree of compactness within 

cluster and separation from other clusters. The DB index measures the average value of the 

similarity between each cluster and its most similar cluster given by: 
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where 𝑁𝐶 denotes number of clusters; 𝐶𝑖: the i–th cluster; 𝑛𝑖: number of objects in 𝐶𝑖; 𝑐𝑖: 

center of 𝐶𝑖; d(𝑥, 𝑦): distance between x and y. 

A lower DB index implies a better cluster configuration. We remove indiscriminant 

features (i.e. the features that clustered the entire sample as one). Thus, the output of this 

phase is a ranked set of features with possibly fewer features. 

k-dimensional Clustering: This phase clusters the data samples based on the results 

of the uni-dimensional phase using k of n total possible number of features. The dimension 

of the subspace is k, and n denotes the full space of features. The clusters are constructed 

by merging data samples that belong to same uni-dimensional clusters. The algorithm 

iterates through samples that shared the same uni-dimension clusters along k dimensions. 

If number of specified dimensions is n, then the clustering process iterates through all 

possible features: full-space clustering. In this phase, different subspace clustering methods 

can be applied based on the selected dimensions. The total possible number of subspace 

clusterings is ∑ 𝑷𝒊
𝒏𝒏

𝒊=𝟏    where 𝑷𝒊
𝒏: denotes the permutations of n using i dimensions.  

Clusters Evaluation: The k-dimensional phase yields different cluster 

configurations results. To determine which cluster configuration best fits the data, we 

evaluate the results of cluster analysis in a quantitative and objective fashion using a three 

step process: majority cluster validation indices voting, univariate analysis and multivariate 

analysis. During the uni-dimensional phase, for simplicity, we had used only a single 

cluster validation index (DB index) to rank the “quality” of the individual features. In this 

last phase of the model, to determine the optimal clustering solution we employ more than 
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one validation index. To ensure a robust model, we applied three validation indices (DB 

index, Silhoutte index, Calinski-Harabasz [18]) to the clustering results to measure the 

goodness of the clusters. We ranked the solutions based on the majority voting of the 

indices to determine the top three optimal clustering results. The goal of univariate analysis 

is to evaluate which input features are significantly discriminant among the resulting 

clusters. 

A feature to determine if there are any significant differences in average values 

(based on the global F-test p-values) between clusters. A Fisher’s exact test was employed 

to detect significant differences between clusters for nominal variables. The multivariate 

analysis [19] step involves performing a discriminant canonical analysis to determine 

which predictors (set of features) best discriminate between the clusters. For each 

clustering output, the following results are obtained: 

Squared canonical correlation gives the proportion of variation explained in the 

cluster grouping variable (feature) for each canonical variable (discriminating function).    

P-value to test for significance of each canonical variable (discriminating function).  

The number of canonical variables is the number of clusters – 1.  

Pooled within-group correlations between each variable and the standardized 

canonical discriminant functions. The closer to +1 or -1, the more important the variable is 

in distinguishing the clusters.  

Cross-validation error rate which is percent incorrectly classified with leave-one-

out cross-validation. 
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3. EXPERIMENTAL RESULTS 

 

3.1. ASD PHENOTYPE FEATURES AND CORRELATION ANALYSIS 

 

The set of 27 ASD phenotype features selected as input features are listed in Table 

1. We combined the CBCL (Child Behavior Check List) 2-5 scores with the CBCL 6-18 

scores after normalizing them separately. We intentionally included features that possibly 

had strong correlations with other features to test the ability of our model to filter out 

redundant features. Some of the features are actually derived from the same measure such 

as the Full IQ, Verbal and non-Verbal IQ scores (F1-F3).  The results of the correlation 

analysis on the 27 input features are presented in Table 1. We highlighted features that had 

a high pairwise correlation value of >0.7. Features in bold indicate a correlation value of 

≥0.9. 

 

3.2. FEATURE-BASED 2-PHASE SUBSPACE CLUSTERING RESULTS 

Out of 27 features, 18 were selected by the EM uni-clustering phase. The 9 

discarded features appear in Table 1. These exhibit a high level of similarity. Thus the 

resulting features for the k-dimensional phase had a lower level of correlation compared to 

the initial set. The unidimensional phase succeeded in filtering out most of the highly 

correlated features though the set of correlated IQ scores are left. However, full IQ score 

is ranked lowly by the uni-dimensional phase. (At this phase, one could also choose to 

manually further minimize the level of correlation by eliminating one from each pair of 

remaining highly correlated features.) Based on the ranking of the remaining 18 features 

by the DB cluster validation index, we grouped the features into 3 levels. Each level has 6 
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features, where level1 contains features {4, 1, 13, 8, 2, 11}, level2 = {14, 9, 12, 15, 6, 7} 

and level3 = {7, 16, 17, 3, 10, 18, 5}. The level1 features had the best validation index 

scores followed by level2 and level3. In the multi- dimensional subspace clustering phase, 

we performed 35 different subspace iterations by clustering the samples base on clusters in 

features of level1 vs. level2 and level3 and varying the number of difference allowed 

among the features. We also clustered using the full space (i.e. all features) as well as 

combinations of the levels. 

 

3.3. CLUSTER EVALUATION 

The top 3 clustering results (based on the cluster validation ranking of the 35 

different clustering configurations, aided by the visualization using Principal Component 

Analysis) is in Table 2. The ranking was based on the majority voting of the 3 indices (DB, 

Silhouette & Calinski-Harabasz) though only the DB index value is shown in Table 2. The 

univariate analysis in Table 1 demonstrates that all the features except F27 exhibited 

significant differences (p-value<0.05) between clusters for at least one of the top three 

clustering results. This demonstrates that our model yields solutions that maximize variance 

of the entire set of features among the clusters though only a subspace of the features are 

used to cluster. 

The multivariate discriminant analysis (MDA) in Table 2 reveals similar ranking of 

clustering configurations by the cross-validation error rate as those by the validation indices. 

Many of the features in the feature subspace were identified as being important (≥|0.3|) for 

distinguishing clusters in the MDA, providing further validation of results.  For clustering 

solution #1 (Table 2), 5/6 features in the subspace were identified as important in MDA; 
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whereas 7/12 and 4/7 were identified as important in discriminating clusters in MDA for 

clustering solutions #2 and #3, respectively. A plot of the canonical variable scores for 

output 1 (Fig. 2) is shown to assess how well the canonical variable is able to separate the 

clusters.  Clustering solutions #2 and #3 have two canonical variables and biplots (Figs. 3 

and 4) of the scores of these two variables are provided to assess individually how well each 

canonical variable does at separating the clusters. One can clearly see canonical variable 1 

does a reasonable job of separating the clusters in all three clustering configurations 

obtained. The canonical plot (Fig. 1) biplots in Figs 2 and 3 visually demonstrate that 

clustering solution 1 is the best. 

By applying a unified model that combines cluster validation indices with 

univariate analysis and MDA, we are able to confidently assess clustering solution 1 as the 

optimal clustering configuration for our data sample. Our cluster validation phase is 

enhanced beyond a cluster validation index value. This is a key contribution of our model. 

Finally, we analyze the optimal clustering solution clinically to see if the results are 

meaningful. The SSC data collection project was completed prior to DSM-5, hence we 

have no information on severity gradient levels of these patients. We used a more 

quantitative variable: the ADOS Calculated Severity Scores (ADOS CSS) which is 

calculated separately from the ADOS social communication and RRBs scores. The ADOS 

CSS scores provide a continuous measure of overall ASD symptom severity that is less 

influenced by child characteristics, such as age and language skills, than raw totals [20]. 

These scores can be used to compare ASD symptom severity across individuals of different 

developmental levels. As such, they provide a “purer” metric of overall ASD severity. A 

higher level implies higher severity with 10 as the highest level of severity.  As one can 
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observe from Table 3, cluster 2 (the smaller group) is distinct with a higher level of severity 

which corresponds to a lower overall IQ score (<70) and a lower Vineland II Composite 

score. Hence, our clustering model identified a distinct subgroup with higher severity levels 

compared to the overall sample population. 

 

4. CONCLUSIONS 

 

We applied a unique ensemble method, consisting of five stages of statistical and 

machine learning approaches, to achieve a subspace clustering of ASD data.  The clustering 

results show promise for sorting out the heterogeneity that is characteristic of these 

patients.  Multiple techniques were also combined for the validation of the identified 

clusters. 
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Table 1. Summary of ASD phenotype features; pairwise correlation; EM uni-dimensional 

clustering & univariate analysis.                                   

Feature  Description of Features 
Correlates highly* 

with 

EM 

Uni-

dimensional 

Ranking† 

Univariate Analysis†† 

p-values 

Output #1 Output 

#2 

Output 

#3 

F1 Overall Verbal IQ F2, F3, F16, F17 2 <.0001 0.05 <.0001 

F2 Overall Nonverbal IQ F1, F3, F17 5 <.0001 0.0384 <.0001 

F3 Full Scale IQ F1, F2, F16, F17 15 <.0001 0.0195 <.0001 

F4 Module of ADOS Administered  1 <.0001 0.5314 <.0001 

F5 ADI-R B Non Verbal Communication Total  18 <.0001 0.0645 0.0013 

F6 ADOS Communication Social Interaction Total F8 11 <.0001 <.0001 <.0001 

F7 
ADI-R A Total Abnormalities in Reciprocal Social 

Interaction 
 

12 <.0001 0.0025 0.0467 

F8 ADOS  Social Affect Total F6 4 <.0001 <.0001 0.0001 

F9 
ADI-R C Total Restricted Repetitive & Stereotyped 

Patterns of Behavior 
 

8 0.3475 0.0113 0.8393 

F10 
ADOS Restricted and Repetitive Behavior (RBB) 

Total 
 

16 0.0001 0.0016 <.0001 

F11 
Repetitive Behavior Scale-Revised (RBS-R) Overall 

Score 
F25 

6 0.0346 <.0001 0.4622 

F12 Aberrant Behavior Checklist (ABC) Total Score  9 <.0001 <.0001 0.2312 

F13 Regression  3 0.1881 0.4774 0.006 

F14 Vineland II Composite Standard Score F15, F16, F24 discarded    

F15 Vineland II Daily Living Skills Standard Score F14, F16 discarded    

F16 Vineland II Communication Standard Score 
F1, F3, F14, 

F15,F24 
discarded 

   

F17 
Peabody Picture Vocabulary Test (PPVT4A) Standard 

Score 
F1, F2, F3 7 

<.0001 0.0183 <.0001 

F18 
Social Responsiveness Scale (SRS) Parent -Awareness 
Raw Score 

F20, F23 discarded 
   

F19 SRS Parent - Cognition Raw Score F23 discarded    

F20 SRS Parent - Communication Raw Score F18, F22, F23 10 <.0001 0.0004 0.3525 

F21 SRS Parent - Mannerisms Raw Score F23 discarded    

F22 SRS Parent - Motivation Raw Score F20, F23 discarded    

F23 SRS Parent Total Raw Score 
F18,F19, 

F20,F21,F22 
discarded 

   

F24 Vineland II Socialization Standard Score F14, F16 discarded    

F25 RBS-R Subscale V Sameness Behavior F11 13 0.162 <.0001 0.7986 

F26 
Child Behavior Checklist (CBCL) Internalizing 

Problems Total 
 

14 0.1906 0.688 0.0005 

F27 CBCL Externalizing Problems Total  17 0.5288 0.2127 0.0717 
*pairwise correlation value >0.7. Features in bold have pairwise correlation value ≥0.9. †: Ranking determined by Davies-Bouldin (DB) validation index. ††: Analysis 

done for the top three clustering results. 

 

 

 

 

Table 2. Top 3 clustering configurations by validation index and multivariate 

discriminant analysis result.                                      
Clustering 

Solution+ 

Feature subspace 

(k-dimensional 

clustering) 

DB 

Index† 

# of 

Clusters 

Multivariate Analysis 

Features important for distinguishing 

clusters  

SCC1 CER2  

1 F6, F7, F9, F12, F17, F20 2.14 2 Can 1: F6, F8. F3, F17, F2, F1, F7, F12, F4, 

F20, F10 

29.9% 8.65% 

2 F1, F2, F4, F6, F7, F8, 

F9, F11, F12, F13, F17, 

F20 

2.84 3 Can 1: F6, F8, F3, F11, F12, F25, F20, F7, 

F10 

Can2: F13 

35.7% 

9.7% 

15.4% 

3 F3, F5, F7, F10, F25, 
F26, F27 

3.33 3 *  Can 1: F3, F2, F1, F17, F10, F4, F8, F6, 
F26, F13, F5 

Can2: F10, F6 

25.5% 
13.2% 

34.6%  
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Table 3. ASD severity analysis of clustering solution 1. 
Cluster 

(size) 

ADOS Calculated 

Severity Score* 

Mean (Std) 

Overall IQ 

Score 

Mean (Std) 

Vineland II 

Composite 

Mean (Std) 

1 (189) 7.41 (1.58) 81.83 (27.55) 74.88 (11.82) 

2 (19) 9.0 (1.12) 49.32(11.70) 61.47(8.17) 
*ADOS SSC scores available for of patients due to age limit.. All three variables has mean values that were significant in differences between clusters: p<0.001 for all 

 

 

Figure 1. Overview of ensemble statistical and two-phase feature-based subspace 

clustering model. Note that this is a unique combination of various statistical and 

machine learning techniques. 

 

 

 

Figure 2. Plot of canonical variable for clustering solution 1. One can clearly see that 

canonical variable 1 does a reasonable job of separating the two clusters. Cluster 2 has 

mainly negative scores on Can 1, while cluster 1 has positive or negative scores closer to 

zero. 
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Figure 3. Biplot of the canonical variables scores vs. clusters for clustering solution 2. 

Canonical variable 1 does a reasonable job of separating the clusters. Canonical variable 

2 does seem to be able to distinguish clusters 2 and 3 but neither can be distinguished 

from cluster 1. 

 

 

Figure 4. Biplot of the canonical variables scores vs. clusters for clustering solution 3. 

One can observe more overlap between the clusters in Canonical variable 1 in this plot 

compared to Fig. 3. We can observe that clustering solution 2 (Fig. 3) is indeed better. 
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ABSTRACT 

 

Cognitive aging in healthy adults exhibits significant and heterogeneous variability. 

In this study, we apply a robust unified learning framework to cluster subgroups using 

neuroimaging data (brain volume and white matter), to identify neurological phenotypes 

that can sort out the heterogeneity in cognitive aging and help identify potential risk factors 

for suboptimal brain aging. Using machine learning analytics, results revealed two unique 

subgroups in healthy older adults with different patterns of white matter integrity and brain 

volumetric measures. The classification of phenotypical subgroups in healthy older adults 

may inform the understanding of the complexity of brain changes before the onset of 

clinical symptoms. The identified neuroimaging features that defined group classification 

are recognized as important structures that subserve cognitive performance. Further 

analysis of these potential biomarkers that help predict trajectory of cognitive decline in 

symptom free individuals could lead to the detection of early stages of neurodegenerative 

diseases. 

 

1. INTRODUCTION 

 

Machine learning models are very useful in the analytics and exploration of 

biomedical data. The goal is to discover unknown patterns or relationships that infer new 
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knowledge which can be further applied for prevention, prognosis and treatment [1], [2], 

[3]. A growing prolific area of research is the mining of heterogeneous medical data to 

identify quantifiable and objective criteria, known as biomarkers, for delineation of more 

homogeneous and meaningful subgroups. In this work, we apply machine learning 

techniques to address the problem of cognitive aging in otherwise healthy older adults.  

Aging is very complex. It is marked by significant diversity across individual 

organisms, among organs and systems, and within organs cellular elements, particularly 

the brain [4]. Noninvasive neuroimaging techniques (magnetic resonance imaging (MRI)) 

and have greatly advanced the inquiry into age-related changes in human brain structure 

[5]. Numerous studies describe significant inter-individual variability in brain aging [6], 

[7], which is presumed to reflect discordant risk for age-related degenerative diseases, 

including Alzheimer’s disease and subcortical ischemic vascular disease [8], [9], [10]. The 

phenotypic manifestations of age-related degenerative conditions reflect underlying 

structural changes to brain integrity and these anatomical alterations are evident using 

highresolution neuroimaging [11], [12].  

There has been significant progress in understanding the structural changes that 

occur in the brain as we age [5], [6], [7], [13], [14]. The results of crosssectional studies 

reveal that gray matter volume declines linearly with age, whereas white matter volume 

increases during young age, plateaus during middle age, and declines during old age [13], 

[14]. However, additional work is needed to determine whether specific neuroimaging 

signatures (biomarkers) reflect unique underlying processes of brain aging among healthy 

older adults. Mining of neuroimaging data offers great potential to identify these 

biomarkers and discover subgroups in normal aging that could inform current models of 
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brain aging prior to the expression of clinical signs of age-related neurodegenerative 

symptoms.  

This study investigates a unified learning model to sort out the heterogeneity 

associated with aging, identify viable neuroimaging biomarkers of aging and construct a 

prediction model applicable for further analysis. We examine variability in cognitive aging 

beyond traditional approaches that are focused on MRI analysis of specific or localized 

regions of the brain [7], [15] by employing unsupervised learning techniques. Previous 

studies have attempted to sort out the heterogeneity of aging by applying cluster analysis 

on data obtained from multiple neuropsychological evaluations [6], [7], [16]. In contrast, 

the hypothesis of this work is that analysis of neuroimaging data (specifically MRI brain 

volume and white matter fiber bundle integrity [17], [18]), using robust machine learning 

techniques will yield more objective results. The methodology presented here integrates 

statistical methods, outlier detection and removal as well as a rigorous feature selection 

process that uses structural MRI and diffusion tractography outcomes to identify subgroups 

of healthy adults that represent distinct aging phenotypes and potential biomarkers. In [19], 

we demonstrated an initial variation of this framework of an ensemble statistical and 

clustering model on the cluster analysis of autism spectrum disorders phenotype data. The 

model presented in this work is more robust and advanced to include a correlation filter 

algorithm and outlier detection for improved clustering results. The key strengths of this 

unified learning framework are: i) minimizing presence of irrelevant/redundant features 

that could bias cluster analysis using correlation filter algorithm; ii) robust iterative outlier 

detection and removal; iii) validation of results using both internal validation metrics and 

statistical techniques; iv) robust feature selection; and v) prediction model using supervised 
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learning algorithm. The integrated model is an efficient and scalable solution that can be 

applied to the analysis of complex biomedical features characterized by high 

dimensionality and a relatively small sample set to discover and validate underlying 

subgroupings. 

The remainder of this paper is structured as follows. Section 2 provides a 

description of the unsupervised learning framework. The experimental setup and results 

obtained are presented in section 3. Section 4 provides an analysis and discussion of results 

obtain while we conclude in Section 5. 

 

2. ROBUST UNIFIED LEARNING APPROACH 

 

The unified learning framework, as illustrated in Fig. 1, consists of four phases with 

some iteration expected between them. These phases address the key challenges of medical 

data analytics. Data preprocessing (Phase 1) consists of steps to improve quality of data by 

handling the issue of missing values, data normalization, and redundancy among 

attributes/features. The dimensionality reduction strategies also deal with another 

characteristic of medical data: high dimensional data space corresponding to few examples 

or patients. Phase 2 consists of unsupervised learning (clustering) techniques to infer the 

underlying homogeneous subgroups present in the data based on the inherent structure. 

Clustering methods are applied, as this is the first line of defense to mining unlabeled data. 

This phase also addresses the issue of possible outliers in the data. Feature selection 

analysis (Phase 3) identifies key quantifiable biomarkers/key phenotypes that discriminate 

the subgroups. The feature selection phase presented in this work exploits multiple machine 
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learning based feature selection algorithms. It also includes an extensive statistical analysis 

to increase confidence in the results obtained and eliminate any erroneous features. The 

last phase is the prediction model, which involves training a model using the discriminant 

set of features (phase 3) as well as the “labels” learned from phase 2 to predict subgroup 

membership of the subjects.  

Let S = 𝑠1, 𝑠2, . . . , 𝑠𝑛 denote a set of n data objects to be clustered to obtain k 

partitions. Each data point 𝑠𝑖  is represented by a set of D features: 𝑓1, 𝑓2, . . . , 𝑓𝐷. The key 

phases of the approach are described below. It is particularly suited to the problem domain 

where the dimension of the feature space, D, is almost the same or much higher than the 

number of samples, n, available. 

Phase1: Data Preprocessing 

The set of D features are extracted from raw neuroimaging data consisting of brain 

volumes and white matter fiber bundle measurements (described in section 3). The data are 

normalized to transform these original measurements into a comparable format by mapping 

them as numeric representations ([0, 1]). Missing values among the measurements are 

replaced with the mean of the set of measurements across all examples [20]. As discussed 

in [19], missing values are a common phenomena in medical data. In the machine learning 

community, several strategies have been proposed to address this problem. A review of the 

literature [20] reveals that the efficacy of the proposed methods (mean, missing data 

imputation, k-nearest neighbors, etc.) depends strongly on the problem domain and thus 

there is no clear indication that favors one method over the others. Given that the data 

analyzed in this work has relatively few missing values, we employ the mean-value 

replacement technique. Highly correlated features are known to bias clustering outcomes, 
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therefore to eliminate redundancy among the input features, we employ the correlation 

filter algorithm described below. 

Correlation Filter Algorithm: This involves applying statistical techniques to 

reduce the feature space f of size D to a minimal set {|f | = m,m < D} to maximize the 

efficiency and effectiveness of the subsequent cluster analysis (phase 2). The algorithm 

identifies and filters highly correlated features using pairwise Pearson correlation function 

r(fi, fj) based on a specified threshold value τ . The final minimal set of features employed 

is {f|∀fi, fj ∈ f, r(fi, fj) < τ}. The filter algorithm acts as a dimensionality reduction technique 

by reducing the original feature space. 

Phase 2: Ensemble Clustering 

The clustering analysis consists of two phases. The initial phase involves outlier 

detection followed by the actual cluster analysis, which can be applied using a single 

clustering algorithm or a combination of algorithms. In this work, we investigate algorithm 

selection and how to leverage learning opportunities to optimize clustering results using 

cluster validation techniques. 

Outlier Detection: Outliers are known to significantly bias clustering results, when 

the underlying assumption is that every data point has to reside within a cluster. Ott et al. 

[21] discuss a framework in which outlier detection is integrated with clustering and 

modeled as an integer programming optimization task that requires prior knowledge of the 

number of outliers. However, such prior knowledge may not be feasible in certain 

applications such as the one presented in this work. Similar to [22], an iterative step is 

employed to identify possible outliers, if any, and exclude them from further cluster 

analysis. The technique applied further extends the process described in [22] based on 
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hierarchical agglomerative methods to improve its robustness using a combination of 

cluster validation metrics to determine the stopping criteria. 

Cluster Evaluation/Validation: After excluding outliers, it is important to compare 

and exploit different algorithms, as they can vary significantly in performance. Clustering 

is a multidimensional optimization problem. For a single algorithm, multiple results can be 

obtained by varying different parameters. In this work, we employ K-means, K-medoids 

(also known as Partitioning About Medoids) and hierarchical clustering methods (ward, 

complete and average linkage) [23] and vary the number of clusters, k from 2 to 10. 

Validation indices assess the fit between the structure imposed by the clustering algorithm 

(clustering) and the data based on two main criteria: separation and compactness of clusters 

to determine the best fit for the data. To determine the optimal clustering configuration, we 

employ three commonly used internal validation metrics: Silhouette index [24], [25], 

Davies-Bouldin (DB) index [26] and Calinski-Harabasz (CH) index [27]. To ensure a 

robust model, the optimal configuration was determined by majority voting of the three 

cluster validation metrics.  

Let k denotes number of clusters; ki: the ith cluster; ni: number of objects in ki; ci: 

center of ki; d(x, y): distance between x and y. The SI index is a composite index that 

measures both the compactness (using the distance between all the points in the same 

cluster) and separation of clusters (based on the nearest neighbor distance) as defined 

below. 

                        𝑆𝐼 =
1

𝑘
Σ𝑖 {

1

𝑛𝑖
∑

𝑏(𝑥)−𝑎(𝑥)

(max[𝑏(𝑥)−𝑎(𝑥)]
 𝑥∈𝑘𝑖
 }                                                     (1) 
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where a(x): the average dissimilarity of x to all other objects in ki; b(x): minimum distance 

between x and all objects in other clusters (kj : j _= i). 

The DB index computes the dispersion of a cluster and a dissimilarity measure 

between pairs of clusters given by: 

          𝐷𝐵 =
1

𝑁𝑐
∑ max

𝑗,𝑗≠𝑖
{

1

𝑛𝑖
∑ 𝑑(𝑥, 𝑐𝑖) +

1

𝑛𝑗
∑ 𝑑(𝑥, 𝑐𝑗)𝑥∈𝐶𝑗𝑥∈𝐶𝑖

}𝑖                                        (2) 

The CH index computes the between-cluster isolation and within-cluster coherence. 

It is defined as: 

                                𝐶𝐻 =
∑ 𝑛𝑖𝑑2(𝑐𝑖,𝑐)/(𝑘−1)𝑖

∑ ∑ 𝑑2(𝑥,𝑐𝑖)/(𝑛−𝑘)𝑥∈𝑘𝑖𝑖
                                                                   (3) 

For both the SI and CH indices, a maximum value determines the optimal clustering 

configuration while for the DB index, the optimal is given by the minimum value. 

Phase 3: Feature Selection Analysis 

After estimating the number of meaningful subgroups in the data, the next step is 

to determine the most parsimonious set of discriminating features. We hypothesis that these 

neuroimaging signatures would represent potential biomarkers that inform the differences 

among the subgroups and identify potential risk factors for subsequent medical analysis. 

The subset of features obtained from this phase will be useful to build a reliable prediction 

model (phase 4). An ensemble feature selection approach is employed by combining the 

results of two feature selection algorithms: evolutionary feature selection method [28] and 

best-first selection method [29], along with feature ranking based on their information gain 

score [30]. To optimize the feature selection output, we incorporate the statistical 

techniques via univariate and multivariate discriminant analysis. The pooled within group 

correlation score between each feature and the standardized canonical discriminant 
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functions is employed as a filter to ensure that the final subset of features are indeed 

statistically significant and not over-fitted to the data. The closer to +1 or -1, the more 

important the feature is in distinguishing the clusters. 

Phase 4: Prediction Model 

Having employed a rigorous process to obtain a minimal set of discriminant 

features, the last phase in the unified learning model is to generate a supervised learning 

model to predict subgroup membership based on these features. We apply a known 

machine learning non-linear classifier - support vector machines (SVM) [31]. Given the 

small sample size, overfitting is a possible issue for any classification model. We apply 

two different cross-validation strategies and compare the results to minimize over-fitting 

and increase likelihood of generalization of classification model. 

 

3. EXPERIMENTAL SETUP AND RESULTS 

 

3.1. NEUROIMAGING DATA: BACKGROUND AND ACQUISITION 

The neuroimaging data analyzed in the study were obtained from 71 cognitively 

normal individuals (male and female English-speaking adults older than 50 years) [14]. 

Individuals were excluded based on the following criteria: 1) Lifetime history of substance 

use disorder according to DSM IV criteria [32]; 2) Major psychiatric illness including 

schizophrenia, bipolar disorder, personality disorders, and clinically significant 

depression); 3) Medical/neurological disorders related to brain abnormalities; 4) 

Developmental disorders [32]; 5) Contraindications for MRI (metallic implants, 
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claustrophobia); and 6) Self-reported impairment in hearing or vision. Approvals were 

obtained from the local institutional review boards of all participating institutions. 

Two types of neuroimaging data were analyzed in this study: structural MRI 

(sMRI) to quantify brain volumes, and quantitative tractography diffusion MRI (qtdMRI) 

to quantify white matter fiber bundle integrity [18], [17]. Brain volumetric data represents 

macrostructural measurements of brain integrity, particularly in subcortical regions. The 

qtdMRI is a novel imaging approach that combines diffusion tensor imaging (DTI) scalar 

metrics with tractography models to estimate bundle-specific properties such as average 

fiber bundle length (FBL), total fiber length (TL), and average scalar metrics across the 

fiber bundle. The primary advantage of qtdMRI compared to regional scalar metrics is the 

integration of data across a more complete biological system. Brain tractography models 

derived from DTI data can yield valuable insights about the topography and overall 

structural integrity of white matter [18]. 

All neuroimaging measurements were obtained from acquisitions conducted using 

a head-only Magnetom Allegra 3T MRI scanner at Washington University in St. Louis, 

MO. High-performance gradients (maximum strength 40 mT/m in a 100-ms rise time; 

maximum slew rate 400 T/m/s) were used to minimize scan times. Quality assurance was 

conducted daily to ensure data fidelity. Axial diffusion weighted imaging was acquired 

using a customized single-shot multislice echo-planar tensor-encoded pulse sequence. 

Thirty-one noncollinear diffusion-encoded directions were used in the acquisition 

consisting of 24 main directions. Pulse sequence and acquisition parameters were 

optimized for tractography, wide directional coverage as well as signal-to-noise ratio 

efficiency (see reference to parent study for further details). Individual DWI scans were 
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registered to the I0 image using FMRIBs Software Library (FSL) FMRIBs Linear Image 

Registration Tool (mutual information metric) to correct for subject motion, and the b-

vectors were adjusted to account registration-induced rotation [14]. Brain tissue was 

extracted automatically using FSL’s Brain Extraction Tool. Tensors and fractional 

anisotropy (FA) values were reconstructed by linear least squares with trilinear 

interpolation of the diffusion-weighted signal. Wholebrain streamline tractography was 

deterministic and performed with the principal eigenvector, one random seed per voxel, 

second-order Runge-Kutta integration, angle threshold of 35, FA threshold of 0.15, and a 

minimum-length threshold of 10 mm. The primary dependent variable from the diffusion 

sequence focused on average fiber bundle length (FBL) in each white matter tract of 

interest. (See parent study for details).  

The bundles included in this analysis are the uncinate fasciculus (UNC), inferior 

fronto-occipital fasciculus (IFOF), superior longitudinal fasciculus (SLF), inferior 

longitudinal fasciculus (ILF), arcuate fasciculus (ARC), anterior thalamic radiation (ATR), 

superior thalamic radiation (STR), anterior commissure (AC), cingulum of the cingulate 

(CGC), cingulum of the hippocampus (CHC), the corticospinal tract (CST), fornix, and 

subdivisions of the corpus callosum (CC). These were modeled separately for each 

hemisphere for a total of 16 bundles. From all fibers found by whole brain tractography, a 

fiber was included in a bundle if 80% or more of its arc length was contained in the 

associated white matter mask. FBLs were quantified by combining DTI scalars with 

tractography models to estimate bundle-specific properties including the sum of fiber 

lengths within a given bundle (sumFBL), and the total weighted length (twl) of both FA 
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and mean diffusivity (MD). Average FBL was normalized according to total intracranial 

brain volume. 

 

3.2. EXPERIMENTAL SETUP 

Multiple experiments were performed using three different sets of data: sMRI 

measurements, qtdMRI measurements, and combined-qtdMRI measurements. Combined-

qtdMRI measurements are the measurements obtained by summing all left and right 

hemisphere of the same variable in the qtdMRI data. For example, combined meanFA ARC 

is obtained by summing both meanFA ARC of the left hemisphere (lh) and meanFA 

ARC of the right hemisphere (rh) contained in the data. The objective of conducting 

experiments 1 (sMRI) and 2 (qtdMRI) separately was to determine if these varied feature 

sets would yield similar subgroups, and which set of features would be more effective in 

predicting individual subgroup membership. Experiment 3 (combined-qtdMRI) examines 

the hypothesis that summing left and right hemispheres of the white matter fiber bundle 

measurements is a natural dimensionality reduction method. Confirmation of this 

hypothesis would provide further evidence that cognitive aging in otherwise healthy adults 

is a symmetrical process. The results obtained for the different experiments are presented 

in the following section. The cluster validation indices were implemented using the using 

Cluster Validity Analysis Platform (CVAP) [33] while the feature selection and SVM 

algorithms were implemented using WEKA [34]. All statistical techniques were conducted 

in IBM SPSS Statistics 23. The software code developed for this unified learning model is 

available on our GitHub page (https://git.mst.edu/acil-group/MIMHaging).  

 

https://git.mst.edu/acil-group/MIMHaging
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3.3 EXPERIMENTAL RESULTS 

Experiment 1: (Analysis of brain volumes using sMRI features). The correlation 

filter algorithm reduced the initial set of 51 features to 38 using a threshold value τ = 0.9. 

The features removed included the right hemisphere measurements of the following 

regions of interest: lateral ventricle, temporal horn of lateral ventricle, cerebellum white 

matter, cerebellar cortex, thalamus, caudate. Total volumes of certain regions were also 

filtered such as total cortical gray matter volume, subcortical gray matter volume, total gray 

matter volume, supratentorial volume. Subsequent cluster analysis (Table 1) identified two 

distinct subgroups (Cluster 1, n = 34 and Cluster 2, n = 36) and one outlier. Results of the 

ensemble feature selection analysis revealed 19 features that discriminated the two 

subgroups. Cluster 1 is characterized by significantly higher mean brain volumes in the 

select regions listed in Table 1 compared to Cluster 2. These include both left and right of 

the hippocampus, amygdala, ventral diencephalon, pallidum, and general regions such as 

cortical white matter volumes, cortical gray matter, and brain stem. The differences of the 

means between the two clusters for these 19 features were all statistically significant, p-

value < 0.001, according the t-test. Results of the supervised prediction model (Table 2) 

revealed a mean classification accuracy of 95.7% for the SVM classifier for both 5-fold 

and 7-fold cross-validation strategies. 

Experiment 2: (Analysis of white matter fiber bundle using qtdMRI features). The 

correlation filter algorithm reduced the initial set of 186 features to 107 features using a 

threshold value τ = 0.8. All the FBLsum features were filtered out leaving a subset of the 

mean FBL, mean and twl FA measurements along with the MD measurements. Similar to 

the volumetric outcomes, cluster analysis (Table 3) identified 
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two subgroups (Cluster 1, n = 31 and Cluster 2, n = 38) and two outliers. The ensemble 

feature selection analysis revealed 24 discriminating features with statistically significant 

differences in mean between both groups (student t-test pvalue: < 0.005). Cluster 1 has 

statistically higher mean FA and twl FA lengths compared to Cluster 2. However, cluster 

1 had lower mean diffusivity (MD) value of superior thalamic radiation (STR) compared 

to Cluster 2. Similar ROIs between the sMRI features and the qtdMRI features include the 

corpus callosum. These were subsequently used to train and build the SVM classification 

model. The overall supervised mean classification accuracy for SVM was 91.3% for both 

models of cross-validation strategies. 

Experiment 3: (Hemisphere analyses using combined qtdMRI features). The 

number of features obtained by summing the right and left hemisphere bundles resulted in 

a reduced set of 108 features. Applying the correlation filter algorithm, using the same 

threshold value as in experiment 2, further reduced it to 52 features. The cluster analysis 

(Table 4) also identified two subgroups (Cluster 1, n = 31 and Cluster 2, n = 40). The 

discriminant feature subset obtained from the feature selection analysis identified 19 

features, of which 12 features were similar to the FBLs discriminant features. Similarly to 

experiment 2, Cluster 1 has statistically higher mean FA and twl FA lengths compared to 

Cluster 2. In terms of MD, cluster 1 had a lower value for the cingulate segment of the 

cingulum. Comparison of cluster membership of both qtdMRI results (experiments 2 and 

3) revealed highly similar group membership. These results suggest that the mechanisms 

of brain aging impact both hemispheres without preferential involvement of lateralized 

brain systems. Results of the supervised prediction model also revealed higher 

classification accuracy of 97.1% for the 5-fold cross-validation runs and 98.6% for the 7-
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fold crossvalidation runs. It appears the hemisphere classification model did not generalize 

well and over-fitted, hence the varying and overly high classification accuracy. 

The resulting clusters per experiment were also evaluated in terms of demography 

information (Table 5). Paired student t-tests were completed to examine the significance 

of the measures between the resulting clusters. Differences in age, gender, and education 

were statistically significant for all results with the exception of education for the qtdMRI 

clusters. Fig. 2 presents the visualization of the multidimensional clusters obtained from 

cluster analysis for the multiple experiments.   

 

4. DISCUSSION 

 

Identification of subgroups in normal aging has potential to inform current models 

of brain aging prior to the expression of clinical signs of age-related neurodegenerative 

symptoms. The results from all three sets of experiments identified two distinct groups of 

normal aging, suggesting unique outcomes and predictors of these outcomes among these 

individuals. The subgroups with higher brain volumetric measurements (or higher white 

matter fiber bundle integrity measures) had significant lower mean age, were 

predominantly female and had significantly higher number of years of education. (The 

sample analyzed consisted of 64.8% female and 35.2% female.) Decline in cognitive 

function associated with advanced age is widely recognized and characterized by 

reductions in psychomotor speed, learning efficiency, and executive functions [35]. 

From the findings on the sMRI feature analysis, the individual neuroimaging 

features that defined group classification are recognized as important structures that 
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subserve cognitive performance. Prior work identifies the sensitivity of these regions to 

neuropathological mechanisms of aging. Specifically, the pallidum (subcortex) and the 

cerebellum (which is itself connected to the cortical frontal lobe and also critical for motor 

function) are critically known cognitive variables while the amygdala and nucleus 

accumbens represent “key” regions of emotional behavior. The neuroimaging phenotypes 

(Table 1) that discriminate these subgroups may aid understanding of substrates of age 

related diseases and help elucidate the complexity of brain changes before the onset of 

clinical symptoms.  

The qtdMRI feature analysis (Table 3) provide additional evidence that both twl 

and mean FA lengths provide potentially non-redundant information about white matter 

integrity [18]. The subgroup defined by lower mean values in the features listed in Table 3 

is consistent with the literature on cognitive aging and represents the more impaired 

cognitive group [14]. Deterioration in white matter micro-structure interferes with the 

synchrony and speed of neural communication, resulting in slowed responses and poor 

performances on cognitive tasks that require mental manipulation and attentional control. 

Baker et al. [14] revealed a significant inverse relationship between age and FBL in the 

ATR and UNC, both of which are important fiber pathways that intersect frontal brain 

systems known to be comprised with advanced age. In this study, we identified significant 

differences in the mean and twl FA of the CC, SLF, CGC, IFOF. The hemisphere analyses 

require more investigation and more in-depth comparisons of the features identified to 

further inform our knowledge of bilateral mechanisms of brain aging. 

The main limitation of this study is the modest sample size of 71 individuals. A 

larger sample size could help with assessing outliers, further improve prediction accuracy, 
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and help determine or eliminate other possible causal factors that may not have been 

evaluated. The classification model could have suffered from over-fitting which may have 

inflated the accuracy of subgroup discrimination especially for the combined-qtdMRI-

based classifier. The learning framework presented here included statistical measures at 

various levels to increase confidence that real phenomena are being identified, rather than 

artifacts of the learning approach. Nevertheless, larger data sets can further improve 

confidence in these results. 

 

5. CONCLUSIONS 

 

Cognitive aging in healthy adults exhibits significant and heterogeneous variability. 

In this paper, we designed and applied a robust unified learning framework to sort out the 

heterogeneity associated with aging, identify viable neuroimaging biomarkers, and 

construct a prediction model applicable for further analysis. Our results revealed unique 

and populous subgroups in healthy older adults with greater than 90% accuracy. We 

identified significant measurements that could potentially serve as biomarkers for 

delineating clinically meaningful aging subgroups. 
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Table 1. Discriminant features outcomes of cluster analysis using sMRI features.                                      

 

1All 19 features are statistical significance in difference in means between both clusters, p-value of two-tailed t-test < 0:001; 
2SD: Standard Deviation.; 
3Pooled within-groups correlations between discriminating features and standardized canonical discriminant functions extracted from 

structure matrix of discriminant analysis. The closer to +1 or -1 the more important that variable was in distinguishing the clusters. 

Features with absolute value < 0:3 is commonly deemed as less important. 

 

 

Table 2. Classification performance of SVM prediction model. 

 

1 CV: Cross Validation 
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Table 3. Discriminant features outcomes of cluster analysis using qtdMRI features. 

 
1twl: total weighted length, FA: fractional anisotropy, FBL: fiber bundle length; MD: mean diffusivity; lh: left 

hemisphere, rh: right hemisphere, CC: corpus  allosum, SLF: superior longitudinal fasciculus, CGC: cingulate segment 

of the cingulum, IFOF: inferior fronto-occipital fasciculus, ARC: arcuate fasciculus, STR: superior thalamic radiation 

ATR:anterior thalamic radiation, ILF: inferior longitudinal fasciculus, UNC: uncinate fasciculus; 2All features listed are 

statistical significance in difference in means between both clusters, p-value of two-tailed t-test < 0:005; 3SD: Standard 

Deviation; 4 Pooled within-groups correlations between discriminating features and standardized canonical discriminant 

functions extracted from structure matrix of discriminant analysis. The closer to +1 or -1 the more important that variable 

was in distinguishing the clusters. Features with absolute value < 0:3 is commonly deemed as less important. 
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Table 4. Discriminant features outcomes of cluster analysis using combined qtdMRI 

features. 

 
 

 

 

 

 

 

 

 

 

 

 

Table 5. Demographics per cluster. 

 
All measures were statistically significant between clusters according to student t-test (p-value¡.05) with the exception of the education 
for the qtdMRI clusters. 

 

 

 

1 twl: total weighted length, FA: fractional anisotropy, FBL: fiber bundle length; MD: mean diffusivity; lh: left hemisphere, rh: 
right hemisphere, CC: corpus callosum, CGC: cingulate segment of the cingulum, ILF: inferior longitudinal fasciculus, IFOF: 

inferior fronto-occipital fasciculus, ATR: anterior thalamic radiation, SLF: superior longitudinal fasciculus, ARC: arcuate 

fasciculus, AC: anterior commissure; 2All features listed are statistical significance in difference in means between both clusters, 
p-value of two-tailed t-test < 0:005; 3SD: Standard Deviation.; 4 Pooled within-groups correlations between discriminating 

features and standardized canonical discriminant functions extracted from structure matrix of discriminant analysis. The closer to 

+1 or -1 the more important that variable was in distinguishing the clusters. Features with absolute value < 0:3 is commonly 

deemed as less important. 
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Figure 1. Overview of robust unified learning model for clustering unlabeled data, 

extracting statistically significant features and informing a prediction model. 

 

    

 

 

                                                             (c) 

Figure 2. Visualization of multidimensional clusters obtained from analysis of 

neuroimaging data of otherwise healthy adults using Principal Component Analysis 

(PCA). The first two axes of the PCA account for >95% of the variance among the 

features. (a) Clusters based on sMRI Features, (b) Clusters based on qtdMRI Features,  

(c) Clusters based on combined qtdMRI Features. 

(a) (b) 
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IV. A DEEPER LOOK AT PLANT UPTAKE OF ENVIRONMENTAL 

CONTAMINANTS AND ASSOCIATED HUMAN HEALTH RISKS USING 

INTELLIGENT APPROACHES 

 

Majid Bagheri, Khalid Al-jabery, Donald Wunsch, and Joel G. Burken 

 

ABSTRACT 

 

Emergence of new contaminants in the environment is prevalent due to the 

increased production, inadvertant spills, improper disposal, wastewater discharges, and 

reuse. These multiple sources of pollutants have the potential to impact vegetation and the 

food quality as a prominent part of the human exposome. Uptake of contaminants from the 

groundwater is one pathway of interest, and efforts have been made to relate root exposure 

to translocation throughout the plant, termed the transpiration stream concentration factor 

(TSCF).  This work utilized machine learning neural networks (NN), fuzzy logic and 

clustering for predicting TSCF using physicochemical properties of compounds, and 

examining the interactions between compound properties. The NN predicted the TSCF 

with improved accuracy compared to mechanistic models. It also delevered new insight to 

compound properteis and their importance in transmembrane migration. The sensitivity 

anlysis indicated that Log Kow, molecular weight, hydrogen bond donor, and rotatable 

bonds are the most significant properties. The results of fuzzy logic demonstrated that the 

relationship between molecular weight (MW) and Log Kow with TSCF are both bell-shape 

and sigmoidal. Several clustering algorithms have been applied, and they all discovered 

two major distinct clusters. The clusters resulting from k-means algorithm were the clearest 

and only these are presented. Physiochemical property cutoffs, i.e. restrictions, for 

compounds passing plant roots membrane were shown to be lower than the cutoffs for 



88 
 

 

transmembrane transport in mammalian intestinal systems. Therefore, the human health 

impacts through consumption of contaminated crops is elucidated and indicated that plant 

roots are a restrictive barrier to organic pollutants entering our foods. Improved 

understanding and prediction of plant uptake has significant implications for human health 

as we continue to shorten our water cycles. 

 

KEYWORDS 

 

Emerging contaminants, plant uptake, food safety, human health, machine learning. 

 

NOMENCLATURE 

 

TSCF transpiration stream concentration factor 

Log Kow octanol/water partition coefficient 

NN neural network 

MW molecular wright 

HBD hydrogen bond donor 

HBA hydrogen bond acceptor 

RB rotatable bonds 

PSA polar surface area 

R correlation coefficient 

MSE mean squared error 

DB Davies-Bouldin 
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CH Calinski-Harabasz 

PCA principal component analysis 

  

1. INTRODUCTION 

 

Our global reliance on anthropogenic organic compounds has risen exponentially 

and our ability to understand the growing human exposure to these molecules has not kept 

pace. The number of anthropogenic organic chemicals has expanded tremendously in: 

numbers, types and functions. The persistence and environmental fate of these molecules 

is often not well known nor predictable with current tools and knowledge. As a result, we 

are increasing societal exposure to a wide variety of organic compounds. Additionally, we 

are living in a closer proximity to each other and to many sources as we continue to 

urbanize globally. 

To add to the human exosome, we are distinctly shortening the water cycle with 

our increased need for freshwater. The use of reclaimed wastewater had grown to be a 

notable source of freshwater.  While many waters undergo advanced treatment to destroy 

recalcitrant organics, many other municipal wastewaters and agricultural run-off still 

contain considerable synthetic organic molecules. Irrigation of crops with reclaimed 

wastewater and application of agricultural chemicals have in part ameliorated water 

shortage problems and also enhanced agricultural productivity [1]. Along with the 

irrigation of reclaimed wastewater and application of agricultural chemicals the exposure 

of plants to these compounds has increased. In the case of food crops, the concern of food 

safety has increased. The concerns remain for food safety and contaminant exposure 
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mainly because some organic molecules can migrate across plants’ root membranes [2]. 

The chemical contaminants in the soil have the potential of being transported to foliage 

through plant evapotranspiration. Thus, quantification and prediction of transmembrane 

migration and transport from soil to foliage has direct linkage to potential human health 

impacts. Russell and Shorrocks [3] introduced transpiration stream concentration factor 

(TSCF) to show the possibility of transporting a given chemical to foliage. TSCF is the 

ratio of a chemical concentration in the xylem sap to the concentration of that chemical in 

the solution used by the roots.  

The high cost of experimental studies and inconsistent testing guidelines have 

resulted in generating few number of experimental TSCF values for a limited number of 

chemicals and plant species. The variability of the reported TSCF values for a given 

chemical and plant species is large due to the lack of consistent testing guidelines and 

difficulty in measuring metabolism and volatilization losses during the experiments [4]. 

The estimation of TSCF values for new contaminants not only helps to have predictive 

tools on efficiency of a specific molecule to be translocated by plants but also helps 

researchers focus efforts on contaminants with likely translocation capacity. Since 1974 

several studies have been conducted to introduce a relationship between the physical 

properties of organic chemicals and their translocation in plants [4-7]. These studies 

introduced single-parameter relationships relating the TSCF to octanol/water partition 

coefficient (Log Kow) which is as a term to describe hydrophobicity.  

Due to the low precision of single-parameter relationships and the limitation of 

these relationships for applying to a wide variety of contaminants and plants species, 

researchers came up with more complicated prediction models for plant uptake and 
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translocation. The single-parameter relationships were outperformed with the advent of 

recent models correlating multiple compound properties to TSCF [1, 2]. More complex 

approaches are compartmental models [8-10], which consider more chemical and 

environmental properties, and also incorporate the complexity of uptake and translocation 

processes into their mechanistic relationships. These modeling approaches still have 

limited accuracy in many cases in spite of improving our understanding of plant uptake 

and translocation of contaminants. However, in the majority of these modeling efforts, the 

models are calibrated or verified with specific plan species and chemicals tested in the 

laboratory portion. Plant selection and experimental design can certainly impact findings 

and modeling efforts.  The current field of contaminant uptake has developed a large data 

pool [1, 2, 11] that can be used to investigate the comprehensive data sets for uptake of a 

wide array of compounds, by a range of plants, and in multiple laboratory arrangements, 

thereby limiting impacts of any one arrangement or data set. The assessment of these large 

data agglomerations can be challenging given the complexity of the data, and thus needing 

advanced data assessment methods and tools. 

Simulation has been a useful approach to deal with various problems in different 

fields of science and engineering [12, 13]. NNs and fuzzy logic have been used for 

monitoring, control, classification, and simulation of engineering and environmental 

problems in particular [14-17]. One of the most important application of NNs is function 

approximation. NNs have been used to study complicated ecosystems from activated 

sludge cultures to land use and land cover systems, in which many factors are acting 

together [18, 19].  The successful application of  fuzzy logic NNs in providing accurate 

and practical models for these systems has outperformed traditional modeling [20]. Such 
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complicated systems can be compared with complexity of plant uptake and translocation 

of contaminants due to the interaction of plant roots with many subsurface factors. 

In this work, a NN predicts the plant uptake and translocation of environmental 

contaminants. The NN uses physicochemical properties of compounds to assess past data 

collections and predict TSCF. The physicochemical properties of compounds are analyzed 

using statistical analysis to determine the importance of each property to the TSCF values. 

Fuzzy logic was used to examine the interactions between important physicochemical 

properties as predictors of experimentally-determined TSCF values. The results of fuzzy 

logic accurately project TSCF values and can be used for screening of chemicals that are 

uptaken or excluded by plants and offer insight on the concerns regarding human health 

due to plant uptake and translocation of environmental contaminants. Furthermore, in this 

study, clustering techniques were utilized to determine any distinct groups and hidden data 

structures in the comprehensive dataset. Another contribution of this work is providing a 

statistical estimate for the TSCF threshold of high and low plant uptake based on clustering 

validation indices.  

In order to build the NN model, a comprehensive selection of TSCF data was 

compiled from published literature [5-7, 21-57]. The compound properties including Log 

Kow, molecular weight (MW), hydrogen bond donor (HBD), hydrogen bond acceptor 

(HBA), rotatable bonds (RB) and polar surface area (PSA), were obtained from chemical 

structure databases. Table 1 shows compound properties used in this study for the neural 

network modeling. 
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2. BACKGROUND AND IMPLEMENTED APPROACHES 

 

2.1. LIPINSKI’S RULE OF FIVE AND DRUG DEVELOPMENT 

      The advent of the high throughput screening method in drug discovery enabled 

researchers to screen a large number of drug-like compounds across in vitro assays. High 

throughput screening method utilizes robotics, data processing software, liquid handling 

devices, and sensitive detectors to quickly conduct millions of chemical or 

pharmacological tests [58]. Lipinski and his colleagues [59] introduced the rule of five, 

which can be considered as a primary step in high throughput screening and drug discovery. 

The rule of five, which focuses on psychochemical properties of compounds, says that an 

orally administrated compound is likely to be absorbed by intestine when molecular weight 

is less than 500 Da, log Kow is less than 5, the number of hydrogen bond donors is less than 

5, and the number of oxygen plus nitrogen atoms is less than 10. Application of a method 

like high throughput screening in study of plant uptake and translocation of emerging 

contaminants, and introducing a rule for compounds passing roots membrane improves 

understanding of the relation between contaminates in the environment and their possible 

risks for human health. 

 

2.2. NEURAL NETWORK MODEL  

A NN is a massively parallel distributed processor consisting of simple processing 

units that have the ability to learn from experience [60],[61]. The NN implemented in this 

work consists of three layers of interconnected neurons. A single-output NN with M 

neurons in the hidden layer is expressed by Eq. (1): 
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                         𝑦(𝑤, 𝑥) = 𝜑𝑜𝑢𝑡(∑ (𝑊𝑖,𝑜𝑢𝑡 × 𝑥𝑖) + 𝑏𝑜𝑢𝑡
𝑀
𝑖=1 )                                   (1) 

where 𝜑𝑜𝑢𝑡 is the activation function of the output layer, 𝑊𝑖,𝑜𝑢𝑡 is the weight between the 

ith neuron in the hidden layer and the output neuron, 𝑏𝑜𝑢𝑡 is the bias of output neuron, and 

𝑥𝑖 is the output of each neuron in the hidden layer and is calculated by Eq. (2): 

                                 𝑦𝑚 = 𝜑ℎ(∑ (𝑊𝑖,𝑚 × 𝑥𝑖) + 𝑏𝑚
𝑀
𝑖=1 )                                       (2) 

where 𝜑ℎ is the activation function of hidden layer, M is the number of input parameters, 

𝑊𝑖,𝑚 is the weight between the ith input parameter and the mth neuron in the hidden layer, 

𝑏𝑚 is the bias of mth neuron in the hidden layer, and 𝑥𝑖 is the ith input parameter. 

In this study, a NN was used for the first time to predict the uptake and translocation 

of emerging contaminants in plants. The NN modeling was utilized due to its higher 

accuracy than current mechanistic models [8]. The input layer of the NN model consisted 

of six neurons for each of the six inputs (Log Kow, MW, HBD, HBA, RB, and PSA). These 

molecular descriptors were considered as inputs of the NN because the properties have 

been cited as important parameters in the modeling of TSCF in recent studies [1, 2]. The 

network architecture that was implemented in this work is a feedforward NN. The dataset 

was divided randomly into three parts, 70% for training, 15% for testing, and 15% for 

validation of the NN model. The code was written in MATLAB R2014a. More information 

regarding various NNs can be found in [60]. The prediction performance of the NN model 

for the TSCF was measured using correlation coefficient (R) and mean squared error 

(MSE), as illustrated in Figs. 1-3. 
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2.3. STATISTICAL ANALYSIS 

In this study, stepwise and forward regression were used to determine the most 

important predictors in modeling TSCF. Forward regression is the simplest data-driven 

selection approach in which one predictor is added to the model at a time. Forward 

regression starts with no predictors in the model and calculates the p-value (a criterion for 

selection) for all predictors not in the model [62]. It adds the predictors with p-value less 

than p-critical, and this process is repeated until no new variable can be selected and added 

to the model. Stepwise regression is a modification of forward regression. In this method, 

a predictor may be added or removed from the model at a time. Like forward regression, it 

starts with no predictors in the model and calculates the p-value for all predictors not in the 

model. After adding a predictor to the model, all variables in the model are examined to 

find if their importance has been reduced to a predefined limit [63]. The predictors in the 

model with importance less than a predefined limit are removed from the model. Forward 

and stepwise regression were performed using SPSS 16.0 software in order to determine 

the significant predictors. 

 

2.4. FUZZY LOGIC 

Fuzzy logic is based on degrees of truth rather than true or false logic that assigns 

values to an imprecise spectrum of data in order to solve problems. The fuzzy approach is 

efficient addressing different types of uncertainties associated with environmental 

problems. Fuzzy logic is distinguished from familiar approaches such as Boolean algebra 

due to its ability to present results in the form of recommendations[16, 64]. Fuzzy logic is 

conducted through four main steps: fuzzification, generating fuzzy rules, generating a 
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fuzzy inference system, and defuzzification. More discussion on fuzzy logic can be found 

in  [65-67].  

In this study, an adaptive neuro-fuzzy inference system was used to examine 

simultaneous impacts of compound properties on the uptake and translocation. Fuzzy logic 

was utilized to screen the capacity of chemical compounds for uptake and translocation in 

plants through correlating TSCF values with various compound properties at the same time, 

using MATLAB R2014a.  

 

2.5. CLUSTERING ALGORITHMS 

Clustering algorithms are used to explore and reveal hidden relationships and 

structures in data [68]. In this work, two types of clustering algorithms have been applied: 

hierarchical and partitional clustering.  

Hierarchical clustering provides divisions for the data on all levels, from singleton 

clusters to a cluster that contains the entire dataset. Partitional clustering divides data 

samples into a pre-specified number of clusters (partitions) regardless of their hierarchy 

(further discussion on these approaches can be found in [68]). To compare between the 

clustering algorithms used in this study, internal validation indices (see Section 2.6) and 

visualization-based methods were used. The best clusters according to the validation 

indices and visual assessment were obtained by k-means [69] (See Section 3.4). In fact, 

when using majority voting in internal validation indices, both k-means (k=2) and 

hierarchical clustering were the same. They both isolated a distinct group of samples that 

do not share any variables with the remaining dataset. However, the second in rank was 

the k-means (k=3), where the results further divided the large cluster into two distinct and 



97 
 

 

visually-isolated clusters, as illustrated in Section 3.4. Furthermore, in this study, we 

provided an estimate for a threshold that classifies the samples with high TSCF from those 

that have low TSCF and provide an estimated definition for the terms “High” and “Low” 

TSCF. We have tested the data divisions using multiple TSCF’s thresholds [0.4, 0.5, 0.6, 

0.7, 0.8 and 0.9], as discussed in Section 3.4. 

 

2.6. CLUSTER EVALUATION AND VISUALIZATION 

In this paper, we have used two approaches for evaluating clusters: internal 

validation indices and visual representation. The internal validation indices are Silhouette 

(S), Davies-Bouldin (DB), and Calinski-Harabasz (CH). The Silhouette index [70] 

evaluates the clustering performance based on the pairwise difference of between and 

within cluster distances. The optimal cluster number is determined by maximizing the 

value of this index. The Davies-Bouldin index [71] is calculated as follows. For each 

cluster 𝐶, the similarities between 𝐶 and all other clusters are computed, and the highest 

value is assigned to 𝐶 as its cluster similarity. Then the DB index can be obtained by 

averaging all the cluster similarities. The smaller the index is, the better the clustering result 

is. The Calinski-Harabasz index [72] evaluates the cluster validity based on the average 

between and within the cluster sum of squares. The mathematical formulas and further 

discussion on the above cluster validation indices can be found in  [68] or [73].  

The second approach is the visualization-based approach. In order to provide a 

descriptive visualization, principal component analysis (PCA) visualized the resulting 

clusters from different algorithms using the first two components, as illustrated in Section 

3.4. PCA is the process of data transformation from higher dimensions to lower dimensions 



98 
 

 

without losing a significant amount of information [60, 74]. Usually the first three variables 

of the resulting matrix represent more than 90% of the original data. 

 

3. RESULTS AND DISCUSSION 

 

3.1. OPTIMAL NEURAL NETWORK ARCHITECTURE AND PERFORMANCE 

In this paper, the best results were achieved after 30 epochs using a NN with 50 

neurons in its hidden layer. Table 2 illustrates the different performance evaluations for the 

various NN architectures. The experiments showed that increasing the interaction between 

input parameters including Log Kow, MW, HBD, HBA, RB, and PSA did not notably 

increase the accuracy of the NN prediction. The data was partitioned into 70% for training, 

15% for validation and 15% for testing. The validation subset is used to validate the NN 

model during training to avoid overfitting and to ensure NN generalization. The test subset 

is used to assess the performance of NN. 

The NN learned an acceptable fit between predicted and measured values, as the 

regression line for measured values of TSCF (Target) and predicted values of TSCF 

(Output) were in agreement. The Correlation levels between predicted and original values 

were approximately 0.83, 0.73 and 0.79 for training, validation and testing respectively, as 

illustrated in Fig. 1. The minimum calculated MSE was 0.0159 and 0.059 for training and 

testing respectively. These results indicate that the NN has adapted well during training 

and can be used as a general model for predicting TSCF using the given parameters, 

whereas traditional models were proven to be inaccurate for some compounds [1].  

 

https://mail.google.com/mail/u/0/#m_8179291882287285760__ENREF_1
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The results of the model for training, validation, and testing datasets have been 

plotted  versus the frequency of data in Fig. 2b. The  determination of a normal distribution 

of residuals is important, as such distribution is one of the assumptions for regression 

analysis [75] and validates the lack of bias in NN model predictions. 

 The NN is able to predict the plant uptake and translocation of environmental 

contaminants with higher accuracy than traditional modeling approaches [1]. The testing 

model demonstrated a positive prediction performance in comparison with traditional 

models, and the MSE value for this model was 0.0372 vs 0.25 to 0.3 for traditional 

models[1].  

The NN learned to predict the TSCF from the compound properties, and the multi-

parameters model captured the general changes in TSCF values with an acceptable 

accuracy and no notable oscillations, as shown in Fig. 3. Earlier modeling approaches 

reliant on a single parameter have shown inconsistency in predicting TSCF values, notably 

for hydrophilic compounds [1]. The results of previous studies show that the models did 

not capture the general changes of output and were unreliable. In contrast, the implemented 

NN model demonstrated a good generalization ability for learning and predicting plant 

uptake and translocation efficiency, which originates from the inherent ability of these 

approaches in function approximation and considering multi-parameter complexity. 

The accuracy of the model may be improved if a dataset were expanded to include 

a more uniform range of records for the input parameters. These results were achieved 

despite a lack of uniform datasets, in part resulting from inconsistent data reporting and 

testing guidelines for experimental studies. Two recently published works offer 

recommendations for experimental studies to follow guidelines in order to achieve a strong 
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dataset for the modeling of uptake and translocation [1, 76]. Expansion of the current 

datasets will certainly advance the ability of current and future modeling methods and offer 

more advanced in-silico capabilities to project plant uptake of organic molecules. 

 

3.2. SENSITIVITY ANALYSIS FOR PREDICTORS 

Stepwise and forward regression methods were used to analyze the sensitivity of 

TSCF to the input parameters including Log Kow, MW, HBD, HBA, RB, and PSA. The 

results of sensitivity analysis were highly correlated for both methods. Both selection 

methods confirmed that Log Kow is the most important predictor. With a p-value less than 

0.05 and t-statistics equal to 6.36, the Log Kow is a compound property with highly 

significant impacts for the plant uptake and translocation models. The molecular weight 

and hydrogen bond donor were the second and third significant predictors for the plant 

uptake and translocation as functions of compound properties. The t-statistics value for 

MW and HBD was 1.86 and 1.61, respectively, as illustrated in Table 3. The results of this 

study were in line with the findings of previous studies trying to determine the importance 

of physicochemical predictors. Using a desirability function indicated that Log Kow, MW, 

and HBD are the three important predictors in the modeling of plant uptake and 

translocation of organic contaminants [2]. Based on the results of our regression methods, 

the Log Kow is eight times more governing than MW as a predictor. The MW is also three 

times more important than HBD. The results of the stepwise and forward regression 

methods show that the RB is the fourth most effective predictor. In a recently published 

paper, Millar et al. [1] used a desirability model for plant uptake of pharmaceutical and 

personal care products. They found that the number of rotatable bonds is another important 
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predictor. The findings of this study indicate that RB is a predictor with almost the same 

importance as HBD in the modeling of plant uptake and translocation of contaminants. 

 

3.3. SIMULTANEOUS IMPACTS OF COMPOUND PROPERTIES 

The results of fuzzy logic for examining the interaction between compound 

properties improved our understanding of plant uptake and translocation problems. 

Previous studies introduced a bell-shape relationship between Log Kow and TSCF [2]. The 

most readily translocated compounds were relatively hydrophobic compounds with Log 

Kow between 1 and 4. The MW and TSCF had a bell-shape relationship, and the MW was 

less 350 Da for the most trans-locatable compounds. Fig. 5 demonstrates the relationship 

between both Log Kow and MW with TSCF using an adaptive neuro-fuzzy inference 

system. The results of our study also confirm that generally there are bell-shape 

relationships between both Log Kow and MW with TSCF. However, the interaction 

between Log Kow and MW is important and affects the translocation of compounds. It was 

observed that for the MW less than 120 Da, the relationship between Log Kow and TSCF is 

sigmoidal instead of bell-shape. For the MW from 150 to 400 Da, the relationship between 

Log Kow and TSCF is bell-shape with high possibility of translocation. For the MW higher 

than 400 Da, the relationship between Log Kow and TSCF is still bell-shape with lower 

possibility of translocation for compounds. The results of this study indicated that for the 

Log Kow less than 1, the relation between MW and TSCF is sigmoidal instead of bell-shape. 

The compounds have a high tendency for translocation in plants when the MW is less than 

120 Da and Log Kow less than 1. Previous studies have reported the translocation of 

hydrophilic compounds in addition to the moderately hydrophilic compounds [37, 77]. The 
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zones (MW vs. Log Kow) with high possibility of uptake and translocation have been 

determined using oval shapes in Fig. 4. The first zone includes the Log Kow from 1 to 3, 

and MW from 150 to 400 Da (hydrophobic compounds). The second zone includes Log 

Kow values less than 1, and MW less than 120 Da (hydrophilic compounds). The findings 

of previous studies using the desirability function show a sigmoidal relationship between 

the hydrogen bond donor and TSCF. The desirability function demonstrated that 

compounds with HBD equal or less than 5 have a higher possibility for uptake and 

translocation [1, 2]. Fig. 5 demonstrates the relationship between both Log Kow and HBD 

with TSCF using an adaptive network fuzzy inference system. In a good agreement with 

the results of previous studies, the Log Kow has a bell-shape, and HBD has a sigmoidal 

relationship with TSCF. The zones (HBD vs. Log Kow) with high possibility of uptake and 

translocation have been determined using oval shapes in Fig. 6. The results show that 

compounds with 5 or less HDB have a high potential for uptake and translocation. The 

compounds with 1 or 2 HBD have the highest capacity for uptake and translocation in 

plants. 

The desirability function also demonstrated that there is a sigmoidal relationship 

between rotatable bonds and TSCF. The desirability function showed that compounds with 

7 or less RB are more likely to be translocated in plants. The results of our study using 

fuzzy logic conform the sigmoidal relationship between RB and TSCF (Fig. 6). It was 

observed that compounds with 15 or less RB are more likely to be translocated by plants. 

Moreover, for this range of RB, the compounds with Log Kow less than zero have a higher 

possibility of translocation than compounds with Log Kow higher than 4. The value of RB 

for high possibility of translocation from this study is a little different from the findings of 
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desirability functions. Although our database is the most comprehensive database ever used 

for modeling of plant uptake and translocation of environmental contaminants, there are 

limited number of compounds with RB higher than 15. Thus, with increase in the number 

of published data for all chemical compounds, the accuracy of modeling approaches 

increases accordingly. The zones (RB vs. Log Kow) with a high possibility of uptake and 

translocation are shown using oval shapes in Fig. 6. 

 

3.4. RESULTED CLUSTERS AND TSCF THRESHOLD ESTIMATION 

As discussed earlier, this paper presented the results from applying multiple 

machine learning algorithms and statistical tools on the comprehensive dataset.  Since the 

compiled dataset includes a considerable number of various compounds and plants, 

clustering algorithms were used to examine the chemical compounds and plants that have 

more distinct behavior than others.  

Hierarchical and partitional clustering have been applied. All the applied 

algorithms have isolated six samples sharing almost no variables with the remaining dataset 

(see cluster3 in Fig. 7). However, statistical metrics (see Section 2.6) and visual-evaluation 

select the most descriptive clusters. The selected clustering criteria was using k-means 

algorithm when k=3, as shown in Fig. 7 and Table 4.  

The k-means algorithm clustered the data into three distinct groups with different 

features. Cluster 3 was distinct from cluster 1 and cluster 2 in terms of chemical compounds 

and physicochemical properties. The compounds in cluster 3 have Log Kow values higher 

than 4, and an RB value of more than 21 to 32. The compounds in cluster 3 have shown a 

low capacity for uptake and translocation with TSCF values mainly less than 0.05. Such 



104 
 

 

compounds have a small capacity to cross the membrane of the plant roots and mainly 

accumulate in the root [7]. 

This paper also presented a statistical estimation for the optimum threshold for 

dividing the dataset into ‘’High’’ and ‘’Low’’ TSCF. The method divides the samples into 

two groups using different TSCF values and evaluates the resulting clusters using the 

internal validation indices discussed in Section 2.6. Majority voting was used to choose the 

optimum threshold. Both DB and CH selected a value of TSCF=0.6 as the best threshold 

to classify the given data into two classes, as illustrated in Table. 5. Therefore, we adopted 

this threshold to classify the given 300 data points into “High” and “Low” uptake and 

translocation.  

The graphical representation for the isolated groups is shown in Fig. 8. The x-y 

plane in Fig. 8 was formed from the 1st and the 2nd PCA while the altitude was formed from 

the TSCF values.  

The clusters analysis also showed interesting results for tomato, wheat, and corn as 

three plant species, which are used in many uptake experimental studies. Based on different 

thresholds of uptake considered in this study (0.4, 0.5, 0.6, 0.7, 0.8, and 0.9), the tomato 

and wheat mostly were in the group with higher uptake and translocation capacity than the 

considered limit. The corn almost in all cases was in the group with less uptake and 

translocation capacity than the considered limit. Therefore, it is recommended to start 

uptake studies with tomato, wheat, and then corn, if there is not enough data about the 

uptake capacity of a given compounds. 
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3.5. PLANT UPTAKE AND HUMAN HEALTH 

Many studies have demonstrated that wastewater treatment plants with 

conventional activated sludge systems do not remove many environmental contaminants 

such as pharmaceutical and personal care products. Additionally, water shortage in many 

regions all over the world has encouraged the use of reclaimed wastewater as a source for 

crops irrigation. The uptake and translocation of pharmaceutical and personal care products 

can be considered as a potential threat to human health. Lipinski et al., [59] studied the 

uptake of pharmaceuticals by human intestine. They indicated that an orally administrated 

compound is likely to be absorbed by human intestine if the compound has log Kow < 5, 

MW < 500 Da, HBD < 5 , and HBD <10. Several other studies investigated uptake of 

central nervous system drugs by blood brain barrier and developed similar rules [78]. The 

results of this study show that physicochemical properties for pharmaceuticals that pass 

plant roots membrane system are lower than Lipinski’s cutoffs for the human intestinal 

system, as presented in [2]. Thus, the pharmaceutical and personal care products that pass 

plant root membrane are likely to be absorbed by the human intestine.  

Environmental contaminants such as pharmaceutical and personal care products 

could be uptaken by plants and translocated to all parts of them, such as fruit. Humans may 

be at risk of long term low level exposure to many compounds through consumption of 

contaminated crops. For those compounds, even if the direct toxicological risk for human 

health is minimal through consumption of contaminated crops, they can still increase or 

decrease plant hormones or other endogenous plant compounds that can jeopardize human 

health [1]. 
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Giving antibiotics in animal food as supplements for promoting growth of food 

animals is common in husbandry. However, due to incomplete absorption of antibiotics in 

the animal gut, a part of antibiotics ends up in manure through excreting urine and feces 

[79]. Using manure as a source of plant nutrients and organic matter to improve soil quality 

has increased the exposure of plant roots to antibiotics. Many patients do not fully use 

antibiotics prescribed by their doctors because they get better before finishing them. This 

has led to more and more antibiotics ending up in the environment due to lack of suitable 

disposal methods. Amoxicillin, erythromycin, levofloxacin, norfloxacin and tetracycline 

are examples of reported antibiotics found in the environment. According to their 

physicochemical properties and considering the findings of this study, they all have a high 

possibility of uptake and translocation by plants. Along with improper use of antibiotics by 

humans, chronic exposure to antibiotics through consumption of contaminated fruits and 

vegetables should be investigated for its possible contribution to enhanced antimicrobial 

resistance as a global problem threat. 

 

3.6. BROADER IMPACTS AND CONTRIBUTION OF THIS WORK 

An improved understanding of emerging and fugitive contaminants in plants 

provides benefits across a number of disciplines. The transport of organic compounds 

across biological membranes is an area of interest in mammalian systems. The ability of 

drugs to cross biological membranes (intestinal membrane, and blood brain barrier) is an 

important issue for drug development. The absorption efficiency of newly invented drugs 

is tested on expensive laboratory mice before human use. Thus, replacing mice in drug 

development with plants is interesting since it has financial benefits, and also saves the 
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lives of mice. Our study is a base for application of plants in drug development since it 

indicates that the compounds crossing plant roots membrane can also cross the intestinal 

membrane and be absorbed by humans. As explained in previous sections, the similarities 

of mass transfer in biological barriers and plant roots also shed light on the human exposure 

to contaminants in the environment. The findings of this paper motivate further study of 

the human health risks associated with production of  new chemicals.   

The development in biological sciences has led us to believe that organisms may 

be optimally designed or are evolved to optimize their tasks [80]. The cardiovascular 

system for example works so optimally that blood circulates through a network of vessels 

(arteries) throughout the body to provide individual cells with oxygen and nutrients and to 

dispose metabolic wastes (veins). Similarly, the transport of water and nutrients in plants 

through xylem and phloem has allowed growth in height and colonization of diverse 

habitats [81]. Despite many studies on the cardiovascular system [82, 83], it is still 

challenging. Modeling it improves our understanding of physiology and the interactions 

among the driving factors. Murray [83] introduced a theory for optimal cardiovascular 

design that solves for and predicts the sizes of blood vessels. McCulloh et al. [84] indicated 

that these conduits conform to Murray’s law under some assumptions by measuring plant 

xylem. Due to the possible similarities between xylem and phloem in plants with the 

cardiovascular system, modeling of water and nutrient transport in plants via xylem and 

phloem improves our understanding of blood transport in the cardiovascular system. A 

model can be developed for plants, which can improve understanding of the cardiovascular 

system by:  
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1. Utilizing high and rapid screening methods to monitor transport of compounds in 

xylem and phloem, and generate data for model building.  

2. Applying machine learning techniques 

3. Considering mechanisms involved in transport of compounds, using generated 

data. 

Vascular plants develop an extensive subsurface root system and an expansive 

aerial network of leaves with a tremendous surface area [85]. Plants have been used as 

indicators of their surrounding environments for millennia. That can be traced back to 

Roman times when willow and poplar stands indicated the presence of a shallow 

groundwater table and a good location for placement of drinking wells [86]. Prediction of 

translocatable compounds using machine learning opens the road for using plants as 

biosensors of subsurface contamination, termed as phytoforensics introduced by Burken et 

al. [85], to delineate contaminants from past and present. Finding the concentrations of 

contaminants in trees enabled us to sustainably delineate plumes at numerous sites, 

allowing more effective remediation strategies at lower cost. This study also impacts 

phytoremediation as a low cost technique to remove contaminants from soils, sediments, 

surface water and groundwater using plants [87, 88]. Predicting the capacity of compounds 

for uptake and translocation by plants gives useful information regarding the applicability 

and efficiency of phytoremediation in contaminated sites.  

The number of emerging and fugitive contaminants in the environment threating 

human health is increasing. For many of these environmental contaminants there is no data 

available. Thus, studies were performed to find the possible exposure of human to new 

emerging contaminants through uptake and translocation by plants. Such experimental 
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studies require a lot of time and money. The introduced model in this research is a tool to 

approximate the uptake and translocation capacity of new contaminants by plants before 

conducting any research. In fact, the model can direct the efforts of researchers to work on 

contaminants, which are more probable to jeopardize human health. 

 

4. CONCLUSIONS 

 

The introduction of mathematical relationships relating compound properties to the 

possibility of compounds uptake and translocation in plants has received considerable 

attention since 1974. The previous studies introduced one dimensional relationships to 

relate Log Kow to TSCF. However, these relationships are limited to specific compounds 

and plant species, and are inaccurate in some cases. To the best of our knowledge, this 

study is the first utilizing machine learning algorithms (i.e. NN, Fuzzy logic and 

unsupervised learning) to predict TSCF and examine the interaction between compound 

properties. The NN predicted the TSCF with high accuracy using physicochemical 

properties of compounds, and also offered insight to the impact and interactions of the 

different parameters. Log Kow, molecular weight, hydrogen bond donor, and rotatable 

bonds were proved to be the most important compound properties in governing uptake of 

organic molecules. The findings of this study indicate that Log Kow is the most significant 

property, molecular weight is the second most important, and hydrogen bond donor and 

rotatable bonds are two properties with similar level of importance. The results of fuzzy 

logic indicated that interaction between compound properties is an important factor to 

consider. The Log Kow and molecular weight had both bell-shape and sigmoidal 
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relationships with TSCF, not just a bell-shape one. Clustering algorithms also revealed 

previously undiscovered structures in the dataset. The findings of this study shows the 

importance of hydrophilic compounds in addition to the moderately hydrophobic 

compounds. This study has also provided an estimation based on statistical evaluation 

metrics for the TSCF threshold. The impacts of plant uptake and translocation of 

environmental contaminants on human health should be considered seriously, since the 

cutoffs for compounds passing plant roots membrane are lower than cutoffs for drugs 

absorbed by the human intestinal system. 
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Table 1. Characteristics of measured parameters used in the NN modeling process. 

Input variable Min-Max Output parameter Min-Max 

Log Kow -2.19–6.75 TSCF 0.001-1.16 

MW (g/mol) 32–616.4   

HBD  0–6   

HBA  0–16   

RB  0–36   

PSA (A2) 0–196.2   
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Table 2. Results of the MLPANN models with different architectures. 

Number of 

neurons 
R MSE 

5 0.75458 0.0460 

10 0.73438 0.0486 

15 0.78087 0.0412 

20 0.78375 0.0405 

30 0.73693 0.0481 

40 0.78842 0.0377 

50 0.79107 0.0372 

60 0.78723 0.0379 

 

 

 

Table 3. Results of compounds sensitivity analysis. 

Selection method Log Kow MW HBD RB 

Stepwise P-value 0.001 0.044 0.107 0.258 

t-statistics 6.368 1.861 1.617 1.133 

Forward P-value 0.001 0.045 0.109 0.258 

t-statistics 6.364 1.855 1.614 1.133 

 

 

 

 

Table 4. Evaluation for clusters resulted from using different clustering algorithms. 

Algorithms k-means k-medoids Hierarchical Clustering 

# of clusters K= 2 3 4 2 3 4 2 3 4 

Davies-Bouldin 0.5495 0.8625 1.1012 1.0383 1.0860 0.8226 0.5495 0.9588 0.9007 

Silhouette  0.8712 0.5299 0.4925 0.4382 0.4309 0.4814 0.8712 0.4682 0.4702 

Calinski-Harabasz 82.454 176.490 145.003 159.145 161.318 161.334 82.454 144.869 129.087 

 

 

 

 

Table 5. Evaluation for clusters resulted from choosing different TSCF threshold using 

internal validation indices. 
TSCF threshold 0.4 0.5 0.6 0.7 0.8 0.9 

Silhouette 0.046639 0.021414 0.019997 -0.035096 -0.065708 -0.093345 

Davies-Bouldin 4.0954 4.7232 3.7488 4.2451 5.2696 6.978 

Calinski-

Harabasz 
12.096 8.7088 12.357 7.844 3.5053 1.2195 
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Figure 1. Regression plots of the MLPANN model for training, validation, testing, and all 

datasets. 
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 Figure 2. Performance of the training, testing, and validation model (a), and residual of 

the MLPANN models (b). 
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Figure 3. Results of intelligent MLPANN model for predicting TSCF based on training, 

validation, testing, and all dataset. 
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Figure 4. Relationship between Log Kow and MW with TSCF using adaptive network 

fuzzy inference system. 
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Figure 5. Relationship between Log Kow and HBD with TSCF using adaptive network 

fuzzy inference system.  
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Figure 6. Relationship between Log Kow and RB with TSCF using adaptive network 

fuzzy inference system.  
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Figure 7. Resulting clusters from using k-means algorithm to generate 3 clusters (k=3), 

note that clusters 3 is very distant from the other data samples which clustered as one 

cluster when k=2. 
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Figure 8. Three dimensional representation of the data used in the clustering. 
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SECTION 

 

2. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

 

2.1. SUMMARY OF RESEARCH WORK  

This dissertation aims to study the effect of using improvised and novel machine-

learning techniques in two areas of applications: smart grid (demand side management) 

and biomedical data analysis.  

In demand side management, a novel approach was implemented to solve the multi-

objective problem of minimizing the total cost of the power consumed, reducing the power 

demand during the peak period, and achieving customer satisfaction through controlling 

domestic electric water heaters. The novelty of the implemented approach lies in modeling 

the problem as Markov decision process, which opens the door for other researchers to 

adopt similar modelling in their studies, see for example the works of  Ruelens, Matoki, 

and Zang in 2015 and 2017.  The simulation results showed outstanding performance of 

using approximate dynamic programming in solving the described problem.   

The second part of this dissertation is dedicated to the use of clustering in 

biomedical data analysis. Due to the heterogeneity and complexity of clinical and 

biomedical data, clustering becomes one of the most effective techniques in exploring these 

datasets. In this dissertation, three studies were implemented, in which machine-learning 

and statistical techniques were combined to develop ensemble, robust and unified models 

for analyzing and sorting out the heterogeneity in the studied datasets. The model includes 

the use of a new k-dimensional subspace-clustering algorithm that was used for exploring 

the autism dataset. The results paved the way for further analysis and facilitated studying 
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etiology, diagnosis, treatment, and prognosis. The models is general and can be extended 

to other disorders that exhibit a diverse range of heterogeneity. Three different datasets 

were studied in this part: autism spectrum disorder, neuroimaging, and environmental 

contaminants datasets. The results showed the efficiency of the implemented approaches 

in revealing unique and meaningful clusters. These findings ranged from sorting out 

heterogeneity in cognitive and phenotypes of autism and neuroimaging datasets to 

specifying the compounds that are responsible for plants uptake and contaminants 

transportation from the environment to food, vegetation, and mammalians’ intestines.  

                   

2.2. CONCLUSIONS  

This section summarizes the conclusions from the studies implemented in this 

dissertation. In demand side management, this study demonstrated the following 

conclusions: 

 The Q-learning approach can at least save a family of four persons between 

$102, $393, and $453 annually if they are using a DEWH with 40, 70, and 

100 gallons, respectively. Even for the commercial product the ADP 

approaches provide excellent annual saving of ($394) for DEWH with 

larger heating element (36 kWh) and tank size of 120 gallons. The 

simulation showed that the Q-learning controller maintained the water 

temperature above 120 ◦F. 
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 The implemented ADP approaches do not depend on the technology used 

in manufacturing the domestic electric water heaters, but depend only on 

the grid load demand (i.e., instantaneous energy cost), the temperature of 

the output water, and the user profile.  

 The experiments results show that the use of machine-learning techniques 

can achieve substantial cost saving and environmental benefits. 

 There are commercial potentials for adopting the implemented approaches 

and using it in real life.  

In the area of biomedical-data analysis, this dissertation demonstrates the following 

conclusions: 

 Clustering and statistical analyses for biomedical datasets is essential and 

could reveal important facts and distill vital information that may lead to 

better treatment and/or early detection for specific neurological and mental 

diseases. 

 The implemented k-dimensional clustering approach showed efficiency in 

exploring complicated and heterogeneous datasets.  

 The implemented models are general, robust, and can be used to analyze 

various types of complicated and mixed datasets. 

 The experiments results show that sorting out the heterogeneity in autism 

and neuroimaging datasets may reveal significant measurements that could 

potentially serve as biomarkers for delineating clinically meaningful 

groups. 
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2.3. RECOMMENDATIONS  

Based on the objectives and scope of work of this study, the following aspects are 

recommended for future research: 

1. Further investigations are required to determine the efficiency of controlling 

electric water heaters using reinforcement learning techniques by building 

the model in hardware and using it in real life. 

2. Integrating the implemented demand-side management approaches into 

smart home control systems and internet of things, which will potentially 

lead to better demand management and more saving for customers. 

3. Applying more experiments using more reinforcement learning approaches 

(e.g. average reward and heuristic approaches) in solving unit commitment 

and day-ahead scheduling problem to get better evaluation and find more 

optimum approach. 

4. The k-dimensional subspace clustering is a new approach that needs to be 

investigated and evaluated efficiently by applying it to more datasets.  

5. The implemented unified learning approach has been used on 208 samples 

only, applying it on larger datasets is recommended to provide better 

insights for analyzing the biomarkers in aging datasets. 
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