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ABSTRACT

We begin an investigation of hybridizable discontinuous Galerkin (HDG) methods
for approximating the solution of Dirichlet boundary control problems for PDEs. These
problems can involve atypical variational formulations, and often have solutions with low
regularity on polyhedral domains. These issues can provide challenges for numerical
methods and the associated numerical analysis. In this thesis, we use an existing HDG
method for a Dirichlet boundary control problem for the Poisson equation, and obtain
optimal a priori error estimates for the control in the high regularity case. We also propose
a new HDG method to approximate the solution of a Dirichlet boundary control problem
governed by a linear elliptic convection diffusion PDE. Although there are many works
in the literature on Dirichlet boundary control problems for the Poisson equation, we are
not aware of any existing theoretical or numerical analysis works for convection diffusion
Dirichlet control problems. We obtain well-posedness and regularity results for the Dirichlet
control problem, and we prove optimal a priori error estimates in 2D for the control in both
the high regularity and low regularity cases. As far as the authors are aware, there are no
existing comparable results in the literature. Moreover, we present numerical experiments
to demonstrate the performance of the HDG methods and illustrate our numerical analysis

results.
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1. INTRODUCTION

Dirichlet boundary control has many applications in fluid flow problems and other
fields, and therefore the mathematical study of these control problems has become an
important area of research. Major theoretical and computational developments have been
made in the recent past; see, e.g., [13, 24, 25, 29, 30, 31, 36, 37, 38, 40, 58, 59, 61].
However, only in the last ten years have researchers developed thorough well-posedness,
regularity, and finite element error analysis results for elliptic PDEs; see [2, 11, 26, 49, 62]
and the references therein. One difficulty of Dirichlet boundary control problems is that
the Dirichlet boundary data does not directly enter a standard variational setting for the
PDE; instead, the state equation is understood in a very weak sense. Also, solutions of
the optimality system typically do not have high regularity on polyhedral domains; corners
cause the normal derivative of the adjoint state in the optimality condition to have limited
smoothness. Solutions with limited regularity can lead to complications for numerical
methods and numerical analysis.

To avoid the difficulties described above, researchers have considered other ap-
proaches including modified cost functionals [19, 35, 37, 55], approximating the Dirichlet
boundary condition with a Robin boundary condition [3, 5, 10, 41, 57], and weak boundary
penalization [14].

One way to approximate the solution of the original problem without penalization
and also avoid the variational difficulty is to use a mixed finite element method. Recently,

Gong and Yan [33] considered this approach and obtained

lu — upllgn = O(h'™17%)



when the control u belongs to H 1=1/5(T") and the lowest order Raviart-Thomas elements are
used for the computation.

As researchers continue to investigate Dirichlet boundary control problems of in-
creasingly complexity, it may become natural to utilize discontinuous Galerkin methods for
the spatial discretization of problems involving strong convection and discontinuities. We
have performed preliminary computations using an hybridizable discontinuous Galerkin
(HDG) method for an elliptic Dirichlet boundary control problem for the Stokes equations.
Our preliminary results for this problem indicate that the optimal control can indeed be dis-
continuous at the corners of the domain. Before we continue to investigate problems of such
complexity, we begin this line of research by considering an HDG method to approximate
the solution of a Dirichlet boundary control problem for the Poisson equation.

HDG methods were proposed by Cockburn et al. in [20] as an improvement of
tradition discontinuous Galerkin methods and have many applications; see, e.g., [12, 17,
21, 22, 23, 51, 52, 53, 54, 60]. The approximate scalar variable and flux are expressed
in an element-by-element fashion in terms of an approximate trace of the scalar variable
along the element boundary. Then, a unique value for the trace at inter-element boundaries
is obtained by enforcing flux continuity. This leads to a global equation system in terms
of the approximate boundary traces only. The high number of globally coupled degrees
of freedom is significantly reduced compared to other DG methods and standard mixed
methods.

In section 1 of the thesis, we approximate the solution of the Dirichlet boundary
control problem for the Poisson equation using an existing HDG method. This method uses
polynomials of degree k + 1 to approximate the state y and dual state z and polynomials of
degree k > 0 for the fluxes ¢ = —Vy and p = —Vz, respectively. Moreover, we also used
polynomials of degree k to approximate the numerical trace of the state and dual state on
the edges (or faces) of the spatial mesh, which are the only globally coupled unknowns. In

Section 2.3, and in Section 2.4 we prove an optimal superlinear rate of convergence for the



control in 2D under certain assumptions on the domain and y,. To give a specific example,
for a rectangular 2D domain and y; € H'(Q) N L®(Q), we obtain the following a priori
error bounds for the state y, adjoint state z, their fluxes ¢ = —Vy and p = —Vz, and the

optimal control u:

Iy = yllog = O, Iz = z4lloq = OR*7),

g = gnlloa = Oh'™). lIp = pallgq = O™,
and
lu — upllor = O(h¥*9),

for any € > 0. We demonstrate the performance of the HDG method with numerical
experiments in 2D and 3D in Section 2.5. Despite the large amount of existing work on
this problem, a similar convergence rate has only very recently been proved for one other
numerical method: a finite element method on a special class of meshes [2].

In the last two sections, we study the Dirichlet boundary control of convection
diffusion equations. Optimal control problems governed by convection diffusion equations
play an important role in many scientific and engineering problems [46]. Efficient and
accurate numerical methods are essential to successful applications of such optimal control
problems. There exist many contributions [4, 6, 7, 27, 39, 63] to numerical methods
and algorithms for this kind of problem. Despite this large amount of existing work on
numerical methods for convection diffusion optimal control problems and also Dirichlet
boundary control problems for the Poisson equation and other PDEs, we are not aware of
any existing work on the analysis and approximation of solutions for the for the convection
diffusion Dirichlet boundary control problem considered here. Work on this problem is
an important step towards the analysis and approximation of Dirichlet boundary control

problems for the Navier-Stokes equations and other fluids models.



However, it is not clear to the authors if existing HDG methods can guarantee the
superlinear convergence rate as we obtained in section 1 for elliptic convection diffusion
PDEs. Therefore, we devise a new HDG method in Section 3.3 using polynomials of degree
k + 1 to approximate the state y, dual state z, and the numerical traces. Moreover, we use
polynomials of degree k > O for the fluxes ¢ and p, respectively. In Section 3.4, we prove
the same superlinear rate of convergence as in section 1 for the control in 2D under certain
assumptions on the largest angle of the convex polygonal domain and the smoothness of the
desired state y,.

In section 3, we remove the assumptions required in section 2 on the convex polyg-
onal domain and the desired state y; and prove optimal convergence rates for the control.
Removing these assumptions on the domain and the desired state lower the regularity of the
solution of the optimality system; therefore, regular HDG error analysis techniques are not
applicable. We perform a nonstandard HDG error analysis based on techniques from [44]
to establish the low regularity convergence results.

We emphasize that this new HDG method may be of primary interest for boundary
control problems such as the one considered here. Existing HDG methods use order k
polynomials for the numerical traces, which are the only globally coupled unknowns. This
new HDG method uses order k + 1 polynomials for the numerical traces, and therefore
it has a higher computational cost compared to existing HDG methods. However, adding
one polynomial degree to the space for the numerical traces is the only way we have found
to guarantee the optimal convergence rate for the control. The authors are not aware of
any other application where this new HDG method will lead to an improved convergence
analysis over existing HDG methods.

This thesis consists of material from the three preprints [32, 42, 43]. Some minor
changes to the preprints have been made in this thesis in order to increase the readability of

the thesis; no fundamental changes to the preprints have been made in this thesis.



2. POISSON WITH HIGH REGULARITY

2.1. MODEL PROBLEM

In this Section, we consider the following elliptic Dirichlet boundary control problem

on a Lipschitz polyhedral domain Q c R?, d > 2, with boundary I' = 9Q :

. 1
minJ@), @) = 31y = yall 2 + Sl @1

where y > 0 and y is the solution of the Poisson equation with nonhomogeneous Dirichlet

boundary conditions

~Ay=f inQ, (2.2)

y=u onl. (2.3)

It is well known that the Dirichlet boundary control problem (2.1)-(2.3) is equivalent

to the optimality system

Ay =f in Q, (2.4a)
y=u onl, (2.4b)
-Az=y—y; inQ, (2.4¢)
z=0 onl, (2.4d)
u=y '8,z onT. (2.4e)

where n is the unit outer normal to I'.



2.2. BACKGROUND: THE OPTIMALITY SYSTEM AND REGULARITY

To begin, we review some fundamental results concerning the optimality system for
the control problem and the regularity of the solution in 2D polygonal domains.

Throughout the thesis we adopt the standard notation W7 (Q) for Sobolev spaces
on Q with norm || - |[;, 5,0 and seminorm | - |, . We denote wWm2(Q) by H"(Q) with
norm || - [lnq and seminorm | - |o. Also, Hy(Q) = {v € H'(Q) : v = 0 on 9Q}. We

denote the L2-inner products on L*(Q) and L*() by

v,w) = f vw Yv,w € LZ(Q),
Q

v, w) = fvw Yv,w e L2(I).
r
Define the space H(div; Q) as
H(div,Q) = {v € [L2(V)]AV -v € L*(Q)}.

To avoid the the variational difficulty we follow the strategy introduced by Wei
Gong and Ningning Yan [33] and consider a mixed formulation of the optimality system.
Introduce two flux variables ¢ = —Vy and p = —Vz. The mixed weak form of (2.4a)-(2.4e)

is

(q.r) = (3 V-r)+ur-n)=0, (2.5a)
(V-q.w) = (f,w), (2.5b)
(p,r)-(z,V-r)=0, (2.5¢)

(V-p,w) = (nw) = (ya,w), (2.5d)
(yu+p-né&) =0, (2.5¢)

for all (r,w, &) € H(div, Q) x L*(Q) x L*(T).



One of the main reasons that Dirichlet boundary control problem can be challenging
numerically is that the solution can have very low regularity, and this restricts the conver-
gence rates of finite element and DG methods. In order to prove a superlinear convergence
rate for the optimal control for the HDG method in 2.4, we assume the solution has the

following fractional Sobolev regularity:
ue H*(I'), yeH”(Q), zeH=(Q), qeH1(Q), pecH?Q), (2.6)

with

ra>1, ry>1, r;>2 rg>1/2, rp>1. 2.7)

We require ry > 1/2 in order to guarantee g has a well-defined trace on the boundary I'. We
note that it may be possible to use the techniques in [44] to lower the regularity requirement
on q. We leave this to be considered elsewhere.

For a 2D convex polygonal domain and f = 0, we use a recent regularity result of
Mateos and Neitzel [48] below to give conditions on the domain and y; to guarantee the
solution has the above regularity. For a higher dimensional convex polyhedral domain, the
regularity theory is much more complicated, and we do not attempt to provide conditions

to guarantee the above regularity in this work.

Theorem 1 ([48], Lemma 3 and Corollary 1) Suppose f = 0 and Q c R? is a bounded
convex domain with polygonal boundary I'. Let w € [r/3, ) be the largest interior angle
of I, and define pq, rq by

2
= 27/ max{w, 7/2)

) 29) € (2, 0],

and

rQ:1+ge(2,4].



If yg € LP(Q) N H'72(Q) for all p < po and r < rq, then the solution (u, y, z) satisfies

ue H 2T nw!=trr),
y e H1(Q) nwP(Q),

z € Hy(Q) N H (Q) N WP (Q)

for all

p <pq, r<min{3,ro}.
We also require the regularity for the flux variables ¢ = —Vy and p = —Vz.

Corollary 1 Under the assumptions of Theorem 1, the flux variables ¢ = —Vyandp = —Vz
satisfy

q € H"z(Q) N H(div,Q), pe€ H Q) n H(div, Q)
for all r < min{3, rq}.

Proof: We treat the optimal control u as known, and then (y, ¢) satisfy the weak mixed
formulation (2.52)-(2.5b). Since u € H'Y?(I'), the standard theory for this mixed problem
gives ¢ € H(div, Q). Taking r smooth and integrating by parts in (2.5a) gives ¢ = —Vy,
and therefore the fractional Sobolev regularity for g follows directly from Theorem 1. The
regularity for p follows similarly.

The regularity for the flux variable ¢ = —Vy is low; Theorem 1 only guarantees
g € H'e for some 0 < ry < 1. For the HDG approximation theory, we need the regularity
condition r, > 1/2. We can guarantee this condition by restricting the maximum interior

angle w. Specifically, if if y; has the required smoothness and w satisfies
w € [n/3,2n/3),

then rq € (5/2,4] and we are guaranteed ¢ € H'e for some rg > 1/2.



Also, when we restrict w € [n/3,27/3) as above, this guarantees u € H"* for some
1 < r, < 3/2 and furthermore the regularity assumption (2.6)-(2.7) is satisfied. For a
rectangular domain, we have pg = oo and rq = 3. Therefore if y; € H'(Q) N L™ (Q) we

are guaranteed the fractional Sobolev regularity
ru==-8& ry=2-¢ r;,=3-¢& r4=1l-¢g rp,=2-¢

for any € > 0.

2.3. HDG FORMULATION AND IMPLEMENTATION

A mixed method can avoid the variational difficulty by the introducing flux variables
g and p and the equation for the optimal control (2.5¢). However, these two additional
vector variables will increase the computational cost, even if the lowest order RT method is
used.

We introduce an HDG method for the optimality system (2.4) to take advantage of
the mixed formulation and also reduce the computational cost compared to standard mixed
methods. Specifically, we introduce the flux variables but eliminate them before we solve
the global equation; this significantly reduces the degrees of freedom.

Before we introduce the HDG method, we first set some notation. Let {7} be a
conforming quasi-uniform polyhedral mesh of Q. We denote by 97, the set {0K : K € 7j,}.
For an element K of the collection 7, let e = dK N I" denote the boundary face of K if the
d — 1 Lebesgue measure of e is non-zero. For two elements K™ and K~ of the collection
Tn, let e = 0K* N 0K~ denote the interior face between K* and K~ if the d — 1 Lebesgue

measure of e is non-zero. Let &} and 82 denote the set of interior and boundary faces,
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respectively. We denote by &, the union of &} and 82. We finally introduce

W,V = D (Vg & Paz = D, &Pk

KeT, KeTy

Let P (D) denote the set of polynomials of degree at most k on a domain D. We

introduce the discontinuous finite element spaces

Vi, :={v € [L2(Q)]? : vl € [PK(K)IL VK € Th), (2.8)
Wy, := {w € L>(Q) : wlx € P**1(K),VK € Tp), (2.9)
My = {pu € L*(ep) : ule € PXe), Ve € g5). (2.10)

The space W), is for scalar variables, while V/, is for flux variables and M}, is for boundary
trace variables. Note that the polynomial degree for the scalar variables is one order higher
than the polynomial degree for the other variables. Also, the boundary trace variables will
be used to eliminate the state and flux variables from the coupled global equations, thus
substantially reducing the number of degrees of freedom.

Let My, (0) and M}, (0) denote the spaces defined in the same way as M}, but with g,
replaced by &7 and 32 , respectively. Note that M}, consists of functions which are continuous
inside the faces (or edges) e € & and discontinuous at their borders. In addition, for any
function w € W), we use Vw to denote the piecewise gradient on each element K € 7. A
similar convention applies to the divergence operator V - r for all r € Vj,.

2.3.1. The HDG Formulation. To approximate the solution of the mixed weak
form (2.4a)-(2.4e) of the optimality system, the HDG method seeks approximate fluxes

qn, pn € Vi, states yp, 7, € Wy, interior element boundary traces y;;,zoh € M;(o), and



boundary control u, € My (09) satisfying

(gn 117, = s V- P07+ 1 R0 + (g 71 1) g0 = 0,

—(qn, Vwi)g, +{qn - n,w)ag; = (f, w17,

for all (ry,wy) € Vi, X Wy,

(Pn12)7;, = (2 V - 12)7; + (T 12 M)y o0 = 0,

—(pn, VW), +(Pn - B, w2)og, — (Y w2)7, = —(Ya, W2);5
for all (ry, wy) € Vi, X Wy,
Gn-n, p)yge0 =0,
for all u; € My (o),
P m p2)age0 = 0,
for all u, € Mjy(0), and
(up, ,U3>gfl +{y 'y m, /13>gg =0,

for all u3 € M;(0).

11

2.11a)

(2.11b)

(2.11¢)

(2.11d)

2.11e)

2.11f)

2.11g)
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The numerical traces on 07}, are defined as

gn-n=gqn n+h"(Pyy,—5)) ondT;\e, (2.11h)
gn-n=qp-n+h"(Pyy,—uy) on sg, (2.114)
Ph-n=py-n+h (Pyz—2;) ondT;\s), (2.11j)
ph-n=pn-n+h'Pyz, on 82, (2.11k)

where Pj; denotes the standard L?-orthogonal projection from L?(gj,) onto Mj. This
completes the formulation of the HDG method.

2.3.2. Implementation. To arrive at the HDG formulation we implement numeri-
cally, we insert (2.11h)-(2.11k) into (2.11a)-(2.11g), and find after some simple manipula-

tions that

(@h> P> Vi s Vo Zpp i) € Vi X Vi X Wy X Wy, X M (0) X M (0) X Mp,(9)

is the solution of the following weak formulation:

(i )7, = i V- 117 + Y P10 + (g P10 1) 0 = 0, (2.12a)
(Phs12)7;, = (2 V - 12) 7 + (2 12 - M0 = 0, (2.12b)

(V- g WDz, + B Paryn widog, = (h™' 5 widgq oo (2.12¢)
~(h up wi)go = (fiwng,  (2.12d)

(V- P w2)g; + W™ Payzi wo, = (W™ 2 wa)ggy o0 (2.12¢)

(Y w2)7, = —(Yas W2);, (2.12f)

(@h 1 1) g0 + CH s g o0 = T 1100 = O, (2.12¢)
i 1 120 + (BT 2 12gg o0 = (W 2 112) g9 = O (2.12h)

(un, p3) 0 + oy 'pn-m, H3)eo + 'z, p3)go =0, (2.12i)
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for all (ry, ra, wi, wa, 1, po, pu3) € Vi X Vi X Wy X Wy, X My (0) X My (0) X Mp(0).

Assume V) = span{cpi}i]Z‘l, W, = span{qﬁi}i]\fl, M, = span{t//,-};vjl, and M;? =
span{iy; i]\f‘] Ny Then
Ny Ni Ny N>
qn = Z%‘%‘, Ph= ijsaj, Yh = ZYj¢ja h = Z 2j9),
j=1 j=1 j=1 j=1
(2.13)

N3 N3 Ny
)7Z=Zajlﬁj, EZ=ZVJ¢’J‘, up = Z Biv;.
j:] J:]

j=1+N3

Substitute (2.13) into (2.12a)-(2.12i) and use the corresponding test functions to test (2.12a)-

(2.12i), respectively, to obtain the matrix equation

Aj 0 —-A> 0 Ag 0 Ag q 0

0 A 0 -A 0 Az 0 ||p 0

AT 0 A5 0 -Ap 0 -—Ap||vy by

0 Al -Ay  As 0 -Ap 0 [|3|=]-b |- (2.14)
AL 0 Al 0 Ap 0 0 ||D 0

0o Af 0 Al 0 Ay 0 |[[|3 0

0 v'4n 0 9y 1Az 0 0 Ay||u 0

Here, q, p, 1, 3,1, 3, ut are the coeflicient vectors for g, pn, i, Zh» 37;1’, ?Z’ uy, respectively, and

A = [(@j 03], A2 =[(¢), V- 0i)7; ], Az = [(Y), @i - n)7;], Ag = [(¢), di)7;],
As = (W Pudj, didor ), As = KW Wi uider ), A7 = [Kh™ W) 0o,

by =[(f, 971, b2 =1[ya d)7 1.

The remaining matrices Ag — A4 are constructed by extracting the corresponding
rows and columns from A3, Ag, and A7. In the actual computation, to save memory we do

not assemble the large matrix in equation (2.14).
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Equation (2.14) can be rewritten as

Bl Bz B3 o 0
-Bl By Bs|| B |=]|0b| (2.15)
Bs B7 Bg|| vy 0

where @ = [q;p], B = [1;3], ¥ = [1;3;ul, b = [b1; —b>], and {B,-}igz1 are the corresponding
blocks of the coefficient matrix in (2.14).

Due to the discontinuous nature of the approximation spaces Vj, and Wp, the first
two equations of (2.15) can be used to eliminate both @ and B in an element-by-element

fashion. As a consequence, we can write system (2.15) as

ol I el (2.16)

B G, H» b

and
Bea + B7ﬁ + Bg’}/ =0. 2.17)

We provide details on the element-by-element construction of G, G, and Hy, H> in [43].

Next, we eliminate both @ and S to obtain a reduced globally coupled equation for y only:
Ky =F, (2.18)
where
K =B¢Gy; + B;G, + B3 and F = BgH| + B7H>.

Once 7y is available, both @ and B can be recovered from (2.16).
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Remark 1 For HDG methods, the standard approach is to first compute the local solver
independently on each element and then assemble the global system. The process we
follow here is to first assemble the global system and then reduce its dimension by simple

block-diagonal algebraic operations. The two approaches are equivalent.

Equation (2.16) says we can express the approximate the scalar state variable and
corresponding fluxes in terms of the approximate traces on the element boundaries. The
global equation (2.18) only involves the approximate traces. Therefore, the high number of
globally coupled degrees of freedom in the HDG method is significantly reduced. This is

one excellent feature of HDG methods.

2.4. ERROR ANALYSIS

Next, we provide a convergence analysis of the above HDG method for the Dirichlet
boundary control problem. Throughout this section, we assume € is a bounded convex
polyhedral domain and we also assume the regularity condition (2.6)-(2.7) is satisfied. For
the 2D case, recall Section 2.2 provides conditions on Q and y; guaranteeing the required
regularity.

2.4.1. Main Result. First, we present the following main theoretical result of this

work. Recall we assume the fractional Sobolev regularity exponents satisfy

ra>1, ry>1 r;>2 rg>1/2, rp>1

Theorem 2 For

sy =min{ry, k +2}, s, =min{r,, k + 2}, s4 = min{rg, k + 1}, s, = min{r,, k + 1},
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we have

= wnllgo S B2 PN, 0+ B2 Nzl + A0 2 llgl, 0 + 72 Iyl 0,
Iy = yall S BP 2l 0 + 72 izl 0+ B2 NIl 0+ H5 72 IVl 0
g = gnllg, S EP Pl 0 + B Nzl + B0 liglls, 0 + 75 1yl 0
1P = pallyy, S P72l 0 + B2 zllgq + 22 liglly, 0 + B2 Iyl 0

L1 3 l o1
Iz = zllg, S B2 plly, 0+ h 77 2l 0+ 2 llgl, 0+ B2 Il 0
Using the regularity results for the 2D case presented in Section 2.2, we obtain the
following result.

Corollary 2 Supposed =2, f =0, and k = 1. Let w € [n/3,21/3) be the largest interior

angle of T', and define pq, ro by

2
= 2~ 7/ max{w, 7/2)

Pa €@ o), ro=1+=¢c(5/24).
w

If yg € LP(Q) N H2(Q) for all p < pa and r < rq, then for any r < min{3, rq} we have

= unll o S hr_%(llpllyr—l(g) + 1zl @ + gl gr-2) + IV la-10)
Iy = yullg; < hr_%(”p”H"l(Q) + 1zl @) + gl gr—2@) + Iy la-10)
lg - qnlly; S hr_z(llpllm—l(g) + zllgr @) + 1gllgr2) + IVl gr-10)s
lp = pullg, < hr_%(”p”H’—l(Q) + 1zl @ + gl g2y + IV la-10)

_3
lz = zall, S 2P g1 + 1zllar @) + 1l a2y + 1Yl Er-1@)-

Note that min{3, rq} is always greater than 5/2, which guarantees a superlinear convergence
rate for all variables except g. Also, if Q is a rectangle (i.e., w = n/2) and y; € H Q) n
L™ (Q), then rq = 3 and we obtain an 0(h3/ 2-8) convergence rate for u, y, z, and p, and an

O(h'~#?) convergence rate for g for any & > 0.
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2.4.2. Preliminary Material. Before we prove the main result, we discuss L?
projections, an HDG operator 4, and the well-posedness of the HDG equations.
We first define the standard L? projections IT : [L2 ()] - V), 1T : L2(Q) —» Wy,

and Py : L*(gj,) — M, which satisfy

(q,r)x = (¢, Pk, Vr € [P(K)]Y,
(IMu, w)x = (u, w)k, Yw € Pri1(K), (2.19)

<PMm7 ﬂ)e = <m, ﬂ)e, v# € 7)k(e)-

In the analysis, we use the following classical results:

lg - Hgll; < Chllglly, 0. NIy =Tyl < CA¥ IIyll,, o (2.20a)
o— L _1
ly = Myllgy, < "2yl o lg-n—Tlg nllyy < Ch* 77 liql, o,  (2.20b)

_1
wllagg, < Ch™2 |Iwllg;, Yw € Wp, (2.20c)

where 54 and s, are defined in Theorem 2. We have the same projection error bounds for
p and z.

To shorten lengthy equations, we define the HDG operator & as follows:

B G Y Y3 T1, W1, 1) (2.21)
=(qnr)7 — On V- -rig + .1 - ) agi\e?
— (qn YW, +{qn - 1+ b~ Pyyn, widor;

— ('S WD ages = (@ - 1+ BT (Payh = T H1)gg o0 (2.22)
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By the definition of 4, we can rewrite the HDG formulation of the optimality system (2.11)

as follows: find (qh,ph, Yhs Zho )72, ZZ, uh) eVyxXVyxW,x W, X Mh(O) X Mh(o) X Mh((’))

such that
B (Gns Yns Y3 71> W15 1) = —(up, 11 - 1 = h_1w1>8£ + (fy w175, (2.23a)
BPhs 2 25372 W2, 12) = (Vi = Yas W2) 50 (2.23b)
y Ypn-n+h'Pyzp, M3>82 = —(up, #3)82, (2.23c)

for all (I‘l, ro, Wi, wa, Ui, U, /.13) S Vh X Vh X Wi, X Wy X Mh(O) X Mh(O) X Mh(a)
Next, we present a basic property of the operator % and show the HDG equations

(2.23) have a unique solution.

Lemma 1 For any (v, wp, up) € Vi X Wy X My, we have

BV Whs 13 Vi Wi ) = Vi V)7 + (B (Prwi = pan)s Pywy — ﬂh)aqz\gg

+ (h_lprh, PMWh>82'
Proof: By the definition of Z in (2.22), we have

HB(Vhs Whs s Vs Why L)
= WiV — Wi Vvp)g + (up, v - n)g(rh\sg = (Vi Vi),
+p - n A+ B Pywi wiyag, — b Wh)g7i\e0
—(n - m+ B (Pywi — ), Hida g
= Vv, + (0 Pygwi wiYag, — Ch™' Wh)a7;\e0
— (™ Py — ), Hh)a)\e0

= O vi)g; + Ch™ (Pawn — s Prawi = Hi)ggied + (h™' Pyywp, Pywp)eo.

Proposition 1 There exists a unique solution of the HDG equations (2.23).
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Proof: Since the system (2.23) is finite dimensional, we only need to prove the uniqueness.
Therefore, we assume y; = f = 0 and we show the system (2.23) only has the trivial
solution.

First, by the definition of %, we have

B(Gh Y V3 P> =2 —23) + B(Pis 2> 23 =G> Y1 )
= (@n P07 = Ow V- Pi)gy, + Vo Pr - Mg e0 + (€1 VZn)T,
= {gn -+ W Pyyi zido, + ChT' 57 2hdgg 0
+{qn-n+h (Pyyn— ?Z)iﬂ)aqz\gg - P a7 + @ V- qn7,
{2 qn - M agined = Pis VYR +(Ph -1+ R Pyzi, yios;

7 T et = P+ B (Parzh = T T a0

Integrating by parts and using the properties of Py in (2.19) gives
%(qhﬂ )’h, y\Z;Ph, —Zhs _/Z\oh) + %(ph’ Zhs /Z\Oha _qh9 yha 5]\](1)) = 0

Next, take (r1, wi, (1) = (Pns —2n, —23,) (ra, wa, p2) = (=qn, yn, ¥3,), and pz = —yuy,

in the HDG equations (2.23a), (2.23b), and (2.23c), respectively, and sum to obtain

o ¥z + ¥ llunll g = .

This implies y, = 0 and u;, = 0 since y > 0.
Next, taking (r1, wi, 1) = (qn Y, y;) and (r2, wo, pi2) = (P> 2, 23) in Lemma 1
gives g, = pp = 0,y =0, Pyyz;, = O on 82, and Pyz, — 27, = 0 on 8771\82. Also, since

Zn =0on 82 we have

Pyzn—zn = 0. (2.24)
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7}

Substituting (2.24) into (2.11c¢), and remembering again 7, = 0 on & s We get

_(Zh’v : r2)‘7;l + <PMZh, ry - n>a7z =0.
Use the property of Py in (2.19), integrate by parts, and take r, = Vz; to obtain
(Vzn, Vzp)g; = 0.

Thus, z; is constant on each K € 7}, and also z;, = Pz, = 7, on 07),. Since 7, = 0 on 82
and single valued on each face, we have z;, = 0 on each K € 7, and therefore also EZ =0.

2.4.3. Proof of Main Result. To prove the main result, we follow a similar strategy
taken by Gong and Yan [33], see also [18, 45, 50], and introduce an auxiliary problem with
the approximate control uj, in (2.23a) replaced by a projection of the exact optimal control.
We first bound the error between the solutions of the auxiliary problem and the mixed weak
form (2.4a)-(2.4e) of the optimality system. The we bound the error between the solutions
of the auxiliary problem and the HDG problem (2.23). A simple application of the triangle
inequality then gives a bound on the error between the solutions of the HDG problem and
then mixed form of the optimality system.

The precise form of the auxiliary problem is given as follows: find (g (u),

(), yn(w), zn (), ¥ (1), (1)) € Vi X Vi x Wi, x Wy, X My (0) X Mj(0) such that

B(qn(w), yn(w), T )i r1, wi, i) = ~(Payury - n = W' wi)go + (fiw)g,  (2.252)

B(prw), zn (W), 7, (u); 1o, wa, 42) = (Yyp(u) = ya, w2)g; - (2.25b)

for all (7‘1,1’2,W1,W2, /,tl,ﬂg) eEVy XV X W, x W, X Mh(O) X Mh(O).
We split the proof of the main result, Theorem 2, in 7 steps. We begin by bounding
the error between the solutions of the auxiliary problem and the mixed form (2.4a)-(2.4e)

of the optimality system. We split the errors in the variables using the L? projections. In
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steps 1-3, we focus on the primary variables, i.e., the state y and the flux ¢, and we use the

following notation:

61 = q-1lg, 82 =Ilq — qn(w),
6 =y —1Ily, g, = My — yu(w),
_ - (2.26)
6" =y — Puy, &), = Pyy = yn(w),
81 =67 n+h"' Py, g =l n+h\(Pys) - &),

0

where y;,(u) = y7(u) on &9 and yj,(u) = Pyu on 82. Note that this implies si =0on&}.

Step 1: The error equation for part 1 of the auxiliary problem (2.25a)

Lemma 2 We have
Bl e, €3 r1 w1 1) = ~B1WaT, + (G111 g 00 (2.27)
Proof: By the definition of the operator & in (2.22), we have

B q, Iy, Pyy;ri,wi, (1)
= (g, r))g; = ALy, V- ri)g; + Py y, 11 - My, oo
— (g, Vwy)g; + (Xq - n + h™' Py Ty, wi)os;

— (h—lPMy, W1>6771\82 —(Ilq-n - h_lPM6y, 'u1>6771\82'
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By properties of the L? projections (2.19), we have

F(Mg, Iy, Pyuy;ri, wi, 1) = (§: 117, = (0, V- PO + 0,11 Mg, 00
— (g, Vwi)g; +(q - n,wi)ag; — (61 - n,wi)ag;
+ (™ PuTLy, wiar, = (h™' Pary, widag o0
=g -1 1) g0 + (07 - 1, 1Yo 00

+ <h_1PM5y7 /"1>37'h\82~

Note that the exact state y and exact flux q satisfy

(q’rl)(]ﬁ - (%V ’ rl)ﬁl + <y,"1 : n>6‘7;l\gz = —(u,r1 : n>82’
—(q, Vw17, +{q - n,w1)sq, = (f, w7,

(q - n, ,U1>a7;l\8;?l =0,

for all (ry,wy, u1) € Vi, X Wy, X My(0). Then we have

B(Mg, Ly, Pyy; ri, wi, ) = = (11 - W0 + (f,w1)g; = (67 - 1, 1o,
+ (W Py Ty, widag, — (h™' Puyry, WDoT\e?

(0T g eo + (H P 6 Y

Subtract part 1 of the auxiliary problem (2.25a) from the above equality to obtain the result:

Bl ), €,r1, Wi, 1) = — (P, h_lwl)gg — (67 - n, wi)a;
+ (™ PyTLy, widog, = (h™' Pagy, widgq oo
07 1, i)y e + T PMEY Dgg o0

=— (61, wpag; + (01, M1>a7,;\82-
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Step 2: Estimate for SZ We first provide a key inequality which was proven in [56].

Lemma 3 We have

_1 v _1 v
IVl llgi + h2lle) - &3 llag S Nlslllgs + B2 IPue), — &) llag;.-

Lemma 4 We have

2 —~
-1 2 2 2 25,2 2
il + 5 1Puey = 357, < W2 llalfeq + B2 15 g -

Proof: First, since 8“; =0on 82, the basic property of Z in Lemma 1 gives
y. y -1 Y2
%(sz, &), € EZ’ &), €)= (sg, 82)7;1 +h™ ||Pys, - 82”6%.
Then, taking (r, w1, 1) = (g], &), &) in (2.27) in Lemma 2 gives

-1 yi2
(el eDg + ' ||Pye, - sillm

—(61, &) — €)o7

_ B _
—(69 - n, slyl - 8%>37; —h™ {8, PMsfl - 8%)37;1

IA

- » _
161575 lley, = e4llozs + 11167 log; | Prey, = &, llag,

1/2 -1/2 y -1 y
<h' 691157 7 / ey — &) llagp + h™ 167 log; || Pue), — €107 -

h

By Young’s inequality and Lemma 3, we obtain

2 -1 2 2 -1 2
il + h~ IPuey, = epll5q S R ll6% 57 + H 1167154,

2 2 255-2 |1 4112
Sh gl o+ i q -

(2.28)
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Step 3: Estimate for si by a duality argument Next, we introduce the dual problem

for any given ® in L*(Q) :
®+VY¥ =0 in Q,
V-®=0 in Q, (2.29)
Y=0 onl.

Since the domain Q2 is convex, we have the following regularity estimate
1Pl 510 + I¥]H2) < ClIBllq - (2.30)

Before we estimate az we introduce the following notation, which is similar to the

earlier notation in (2.26):
P =®-Nd, ¥ =¥-I¥, 6 =¥-PyV (2.31)
By the regularity estimate (2.30), we have the following bounds:

P 1
16%17 < AlBllg,  16% 15 < POl 116F o < h211O]l7;. (2.32)

h Y

Lemma 5 We have

eyl S e gl + ™ 1Yllpq- (2.33)

Proof: Consider the dual problem (2.29) and let ® = az. In the definition (2.22) of

B, take (r1, wy, up) to be (-IPD, [TV¥, Py,¥) and use ¥ = 0 on 8‘2 to obtain

B(e}, &), €, MO, I, Py'¥) = = (], @), + (£}, V - M®)7; — (e}, L@ - n)y;

- (8Z’ VIIV¥)g, + (&1, [I¥)sq;, — (€1, PuP)o7;,. (2.34)
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Next, it is easy to verify that

(e, V - D)7, = (&), [I® - n)y7; — (Ve,, ID)7;
= (e, TI® - n)y7; — (V&), D)7,
= (e}, 6% - nYg; + (£, V- ®)g;

{0} 2
= &), 6% - mgq; + lle) 1% .

Similarly,

—(e], VII¥)g, = (&l - n, IT¥)gq;, + (V - €], 1¥)s;
= —(l - n,I¥)g7;, + (V- &, ¥)g;
= —(&] - n,1IW)a7; + (&} - n, Vag, — (], V¥)g;

= (&l - n, (P - 1)o7, — (51, V).
Then equation (2.34) becomes

B, ), &) ~TID, T, Py, )
= —(e], @), — (£, 6% - mYag; + lle} 1. — (£}, ND® - n)yg,

+ (el - n, Py¥Y — W)y, — (], V), + (&1, 1P a7, — (€1, Pu¥)o7; -
The facts ® + V¥ = 0, (SZ, D - n)y7, =0, and (g1, Pu'¥)sg, = (€1, P)ag;, imply

Bl &), &) ~TD, TIY, Py¥)

y @ 2 -1 y ¥
= —(&) — &, 6% - nYoq, + ll&)ll7. — K™ (Pye) — £7.6% Yo7,
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On the other hand, equation (2.27) in Lemma 2 gives
Bl €, 8 ~NO, Y, Py¥) = — (61, [1¥)yg; + (61, Py'¥) o7&
Moreover,

@1, Pugg0
= (67 n + W™ Py &’ Pu'¥) o o0
={(q-n, PMT)@'];,\S? —(Ilq - n, PM\P>67ZL\£2 + (W Py, PMT>6‘7E\82
= ~(lq - 1, ¥)yg 0 + (h™ Py6”, Wy oo
=(q 1, W) g0 — (g -1, Py o + (h'Py e, Plaze?
= (81, Wggpe0

= (61, VYo7,

where we have used (q - n, PM\P>877,\8;’, =0,(q - n, ‘P>a7;\e;? = 0 since ¢ € H(div, Q) and
Y =0on 82.

Comparing the above two equalities gives

2 y @ -1 y ¥ S 4
eyl = (e, = &), 6% - mhag, + B~ (Puye), — €,,6 oz, + (61,6 )
y @ -1 y ¥

= (sz - SZ’ 0 -n)sy, +h (PMsz - SZ, 0 a7,

— (8% -n+h'Pys, s

MO, T
_1 v L. ® -1 y L
S h2le) — &) llogy - h216% oz + h 2 11Pue) — &)llag; - h=2116% lla;
p —1y <y p
+ 167, - 167 llag; + A 1167 lag; - 1107 lla;

1
S (R Igllga g + B 1Iyllp o)l g

As a consequence of Lemma 4 and Lemma 5, a simple application of the triangle

inequality gives optimal convergence rates for ||q — g5 (u)ll7, and ||y — y,(u)ll7;:
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Lemma 6

lg = gn@llz; < 116%0g; + etz S P ligllaq + > ylpqs (2.35a)
h

Iy = ya@llg, < 16"l + el S H ' ligllgaq + 2 Iyl - (2.35b)

Step 4: The error equation for part 2 of the auxiliary problem (2.25b) We continue
to bound the error between the solutions of the auxiliary problem and the mixed form
(2.4a)-(2.4e) of the optimality system. In steps 4-5, we focus on the dual variables, i.e., the
state z and the flux p. We split the errors in the variables using the L? projections, and we

use the following notation.

6F = p -Tp, eh =Tp - pp(u),
6¢=z-1lz &), =z — zp(w),

A ’ (2.36)
6° =z - Puz, &, = Puz —zp(u),

8> =67 -n+ h'Pyoc.

0

where 7;(u) = Z},(u) on & and Z;,(u) = 0 on 8(2. Note that this implies 82}: =0on &}.

The derivation of the error equation for part 2 of the auxiliary problem (2.25b)
is similar to the analysis for part 1 of the auxiliary problem in step 1 in 2.4.3; the only
difference is there is one more term (y — y,(u), w2)g; in the right hand side. Therefore, we

state the result and omit the proof.

Lemma 7 We have

B(eh, 87, 8772, W, H2) = (62, W2y + (8 H2) g0 + (v = v wa)y. (237

Step 5: Estimate for eZ and &; Before we estimate eZ, we give the following discrete

Poincaré inequality from [56].
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Lemma 8 Since 8% =0on ‘92’ we have
_1 =
leplln S Vel + h™2lle;, — &, llo7; - (2.38)

Lemma 9 We have

p -1 7 _ o2
b, + B2 1Pus;, - &3 llos
-1 1 |
SAEPpllgq+ P lizllgq + AT lgllsaq+h™ Iyllya-

-1 1 ,
leplln S AP Npllwa+ 7 lzllga+ 2 llgllao + 2™ IYllpq -

Proof: First, we note the key inequality in Lemma 3 is valid with (z, p, Z) in place of

(v, q,9). This gives
-1 z _1 z
IVei Il + b2 lej, — &;llog, S llepllg, + h™ 211 Pue;, — &; llag;.
which we use below. Next, since sg =0on 82, the basic property of Z in Lemma 1 gives
P 2 2 P2 2 (PP -1 z Z2
B(ey, &.8,8),€,€,) = (&), 8,)7 + h™ |1Pug;, — &l
Then taking (ry, wa, pp) = (SZ , sz, si) in (2.37) in Lemma 7 gives
'

- 72
(85,85)7;14-]1 |Pue;, — &, ll57

~(82, &5 — Yo7 + (v — yn(w), &),

~(67 - m, &5 = &3)a7, — h™(6%, Pus), — £3)a7, + (v = yu(w), £})s;

IA

p 7z _ oz -1y 52 7 _ o7
167 Ly 5, — &5l + 1™ 6% o || Paas, — &),

+ 1y = ya@) iz €1l



Hence

-1 N2
(e, &0)7 + 7 |1Pye;, — &5 |5

1/2 -1/2 7 . -1 , 3
< B2 (8P|l gr 7P NES = E5llag + h 2165 g7y h2 ||PMs;—s;\|M
+ 11y = yn@ll7; l&; NI,
< B2 0162y (12117, + B2 Pues, = €5 lla)
= AT, \N& p 117 MEp = EplloT,
1 1 =
-5 Z -5 Z Z
+ 07206 o 172 ||Pues, — &5,
_1 G
+ Clly = ynllg, (I1Ve; N7, + h™2lle; = &;lla;)
< B2 (167 gz (€8l + h™21IPues = &5 lla)
= Th 1 Th Mep w107,
1 1 =
=31 52 -3 7 _ o2
+ W26 o2 || Pare, = &5

_1 7
+ Clly = yo@)lig; (l&} I, + ™2 1|1 Pue;, = &5 lla;)-
Applying Young’s inequality and Lemma 6 gives

-1 712
(e, ey, + b~ | Pue;, - & ll57

S 6P 5 + h 65 + llynGw) = ylia-

2 2 25,22 1112 254+2 | 112 25, 1112
SEplig + h 7 Nzlleg + A7 gl g + A7 vl g -

This gives

€2 llg; + h™2 11 Pyl — & llags

SHP pllgg+ h < zlen + B gllag + B 1Yllq.
&3l < IVELllg; + h 21l — & llag;

S N6l + h 2| Pus’ — &llas

-1 1
ShPplpg+ 17 llzlleq + 297 llgllao+ A% IVl g -

29
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As a consequence, a simple application of the triangle inequality gives optimal

convergence rates for ||p — pn(u)|lg; and ||z — z, () |7 :

Lemma 10

1P = Pr@)lig; < 167 lg; + lle} lig;
-1 1 )
S Plwa+h Nzllea+ 1 lgllua + 5> IVllpq.  (2.39)
Iz = za@llg, < 116% N7 + eyl

SEPIplwg+h " zlleo+ 2 gllag + 2 Iylpg.  (239b)

Step 6: Estimate for ||u — Mhllgg and ||y = yallg;

Next, we bound the error between the solutions of the auxiliary problem and the
HDG problem (2.23). We use these error bounds and the error bounds in Lemma 6, Lemma
9, and Lemma 10 to obtain the main result.

For the remaining steps, we denote

Cg=qn) —qn &y =yn) —yn L5 =Yn(u) = p

p =pr) —pn $o=znW) =z =20 (W) = Zp,

where yj, = Y7 on &7, y, = uj, on s‘Z, Zn =7, oneg), and 7, = 0 on 82. This gives {z = 0 on

e,
Subtracting the auxiliary problem and the HDG problem gives the following error
equations

B Ly G wi ) = ~(Pytt = vy -1 = h™wi)o, (2.40a)

B(Lp, {z Lz, wo, t2) = (Ly, w275 (2.40D)

for all (I’],I‘Q,Wl,WQ, /11,/12) eV XV X W, x W, X Mh(O) X Mh(O).



Lemma 11 We have

2 -1 2
e = unllZ + ¥~ o]
=+ y " pa) -+ y T T Paz (). u = up)go

—{up + y_lph -n+ y_lh_lPMzh, u— ”h>ef-
Proof: First, we have

ety pu() oy T Py 2 (10,4 = unYo
—up+y 'ph-n+y  hT Pyzpu - U)o

=l =unllZy + v~ - 1+ B Pyt = un) .
As in the proof of Lemma 1, it can be shown that
@(gq, gy’ é/y’ é/p’ _gz’ _{Z) + '@(glh gz’ élfa _gq’ é/y’ KY) =0.

One the other hand, we have

ﬂ(fq’ é/ya {3}‘3 é/p’ _gz’ _gf) + ﬁ(é/p’ é/z’ {Z? _é/q’ é/y’ 537)

= (9 &), = (Paau = &p -1+ 1L, 0

= (9 &) = =, Lp -+ W Pyl 0.

Comparing the above two equalities gives

(s &) = =, Lp -+ W™ Py o) .
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Theorem 3 We have

-1 _3 1 _1
lu—unllgo S B2 MIplly, 0 + 572 zlls 0 + 12 liglls, 0 + 272 Iyl 0

1 _3 1 _1
Iy = yullg, S AP 2plls, 0+ 172zl + B2 Iglls, 0 + A2 Il q-

Sp»

Proof: Sinceu+y~'p-n=0on&l andu, +y'py-n+y 'h"'Pyzy =0on el

we have

_ 2 _ 14—
e = a2 + v~ |G|l = @+ v paG) -+ y T T Py i), = )0
h h h
= (v~ () = p) -+ T Py 2 (), u = )

S Upa@) = Pllag + ™ 1Puzull0) e = unllo

Next, since z;,(u) = z = 0 on 82 we have

lpn() — pllgg; < llpa(u) —Mpllyg, + I1p — pllsg;

< -4 51

S h 2 llpa(u) —Hpllg + P72 |Iplle o
_1 _3 1

S hrTe Iplls, o+ R ||zl + AT lqlls,.0
sl

+ho 2 Iyl -
||PMZh(”)||82 = |Pymzn(u) — Pyllz + Pyllz — Pyz + Pyz — Eh(u)llgg
.7 _
< ([Pue, Shllgg + [Tz legg)

< (I1Pys = & llgg + Mz = zllag;)-
Lemma 9 and properties of the L? projection gives

_1 _3 1 _1
lu—unllyo S H?72 MIplly, 0 + 572 lizlls 0 + 22 liglls, 0 + B> 72 Iyl 0 -

Sp»



Moreover, we have

_1 _3 L _1
|6l S e iplly, 0+ 2572 Mzl + 107 gl 0 + B 0

Then, by the triangle inequality and Lemma 6 we obtain

1
Iy = yullg < P2 ipll

Sp»

Step 7: Estimates for ||q — qxll7;, lIp — pally, and |1z — zxll7;

Lemma 12 We have

-1 -2 -1
I2all,, S B Pl 0 + 7 Nzl 0 + 10 lglls, 0+ B Il 0.
_1 _3 1 _1
1ol < B2 1Pl 0+ B llzl0 + B0 gl 0+ 7572 Y l,q.

_1 _3 1 _1
12l < 2 Iplly, 0 + H 73 2l 0 + 1572 llgll,, 0 + B2 I3l 0

Proof: By Lemma 1 and the error equation (2.40a), we have

@(fq, {y’ {573 gq’ gy, {57)

= (g L)7 + W' (Puly = &5). Prudy = &5 gt + <h™ Prady, Puly) o

= Pyt = &g - m = 8y =~ —up g = h Pydy),

-1
S M =unllg ([¢q,0 + B |Pus] o)
h h

S 2 = wnllg (6ol + 772 [Py, 00

o
€h

which gives

< Wt
2 —_
I2all,, <572l = unll,

-1 -2 sy—1
S Pl 0+ 1 Izl + B gl 0+ h 7 IVl o

_3 1 _1
0+ 1 2l + B gl 0+ 172 Il 0.

33
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Next, we estimate {,. By Lemma 1, the error equation (2.40b), and since {7z = 0 on

82, we have

B(Lps Lo L5 8p L0 02
= (ps Ep)7; + (™ (Pudz = 82 Puls = Eagp e + W' Pua ey P2 o
= ({p: Lp)gy + (W (Pl = &), Pude = (o,
= (4 {7
<&, el
Sl Vel + a2 - Zllom)

Sy, Qepll + m21PwE: = o).

where we used the discrete Poincaré inequality in Lemma 8 and also Lemma 3. This implies

165l + B2 1Puc. = Zellom

-1 _3 1 _1
ShP 2 plly, 0+ h 72 Nzl + 12 gl 0 + 2V T2 VI 0 -
The discrete Poincaré inequality in Lemma 8 also gives

_1
1l S NIVl + A2 N4z = Sllom,
-1
S Wl + 2Py d: = Sl

_1 _3 1 1
S hrT2 ||P||s,,,g +h= 72 zlls0 + hatz ||¢I||sq,g +hT2 ||y||sy,g-

The above lemma along with the triangle inequality, Lemma 6, and Lemma 10

complete the proof of the main result:
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Theorem 4 We have

-1 -2 1
lg = qnlly; S H°P7 1Iplls,0+ A" Nzl + 1 liglls,0 + 77 Iyl q;
-1 _3 1 -1
lp = pullg, S HP7 2Pl 0+ 172 Nzl 0+ B2 gl 0 + 2V 72 VI .

-1 _3 41 -1
Iz =zl S AP 2Pl 0+ 172 Nzl + B2 gl 0 + AV 72 IVl q-

2.5. NUMERICAL EXPERIMENTS

For our numerical experiments, we test problems similar to the examples considered
in [33]; see also [11, 49, 55]. We chose k = 1 for all computations; i.e., quadratic
polynomials are used for the scalar variables, and linear polynomials are used for the flux
variables and the boundary trace variables.

We begin with a 2D example on a square domain Q = [0, 1/4] x [0, 1/4] C R2. The

largest interior angle is w = /2, and so rq = 3 and pg = oo. The data is chosen as
=0, ya=x*>+y»)* and y =1,

where s = 1075, Then ya € H'(Q) N L®(Q), and Corollary 2 in Section 2.4 gives the

convergence rates

Iy = yallog = OR>7%), iz = znlloq = O(R1>79),

lg = qnlloa = O™, lIp = pullog = O™,
and

lu — upllor = O(K**7%).
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Since we do not have an explicit expression for the exact solution, we solved the
problem numerically for a triangulation with 262144 elements, i.e., & = 2~'2v2 and com-
pared this reference solution against other solutions computed on meshes with larger 4. The
numerical results are shown in Table 2.1. The convergence rates observed for ||g — g llg0
and |lu — uy|lor are in agreement with our theoretical results, while the convergence rates
for |lp — prllog> Iy — yullog, and ||z — zalloq are higher than our theoretical results. A
similar phenomena can be observed in [33, 49, 55].

Table 2.1. Error of control u, state y, adjoint state z, and their fluxes ¢ and p

h/N2 -4 1273 276 277 2-8
g — qnlloq | 4.1343e-02 | 2.1025e-02 | 1.0677e-02 | 5.3865¢-03 | 2.6959¢-03
order _ 0.9756 0.9776 0.9871 0.9986
1P — pillog | 1.3463e-03 | 3.8638e-04 | 1.0849e-04 | 2.9862e-05 | 8.0969¢-06
order _ 1.8009 1.8325 1.8612 1.8828
Iy — yalloo | 5-4609e-04 | 1.3647e-04 | 3.4763e-05 | 8.8037e-06 | 2.2236e-06
order _ 2.0005 1.9730 1.9814 1.9852
1z - zalloo | 1.9671e-05 | 2.6887¢-06 | 3.7026e-07 | 5.0372¢-08 | 6.7767e-09
order _ 2.8711 2.8603 2.8778 2.8940
llu—upllor | 7.3053e-03 | 2.6902e-03 | 9.7764e-04 | 3.5178¢-04 | 1.2569¢-04
order _ 1.4412 1.4603 1.4746 1.4849

For illustration, we plots the states of y and the boundary control u. The low
regularity of the primary flux ¢ is apparent for this example due to the corner singularities.
For illustration, we plot the state y, adjoint state z, and their fluxes ¢ and p in Figure 2.1
and the control was plotted in Figure 2.2. The 2D regularity result in Section 2.2 indicate
that the primary flux ¢ can have low regularity. In this example, it does indeed appear that
q has singularities at the corners of the domain. These figures can be compared to similar
plotsin [11, 55].

Next, we consider a 3D extension of the 2D example above. The domain is a cube

Q=10,1/32] x[0,1/32] x [0, 1/32], and the data is chosen as

=0 ya=(x*+y*+2z5)* and y=1,
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Figure 2.1. The primary state yj, the primary flux g, the dual state zj, and the dual flux
P for the 2D example

where s = —1/4 + 1075, so that vi € H 1(Q). In this case, we did not attempt to determine
the regularity of the control and other variables; we simply present the numerical results
here.

As in the 2D example above, we do not have an explicit expression for the exact
solution. Therefore, we solved the problem numerically for a triangulation with 196608
tetrahedrons, i.e., 7 = 27124/3 and compared this reference solution against other solutions
computed on meshes with larger 4. The numerical results are shown in Table 2.2. The

observed convergence rates for all variables are similar to the results for the 2D example

above.



Figure 2.2. The optimal control u;, for the 2D example

Table 2.2. Error of control u, state y, adjoint state z, and their fluxes ¢ and p

h/V3

2—6

2—7

2—8

2—9

llg - Qh”o,g

9.2640e-03

5.2580e-03

2.7462e-03

1.2475e-03

order

0.81712

0.93706

1.1384

lp — pallog

3.5425e-05

1.2283e-05

3.8463e-06

1.1022e-06

order

1.5281

1.6751

1.8032

ly — )’h”(),Q

1.6040e-05

4.5070e-06

1.2191e-06

2.9781e-07

order

1.8314

1.8864

2.0333

Iz = zulloo

7.8545e-08

1.3058e-08

2.0042e-09

2.8775e-10

order

2.5886

2.7039

2.8001

lu — upllor

4.5932e-04

1.8934e-04

7.1955e-05

2.4123e-05

order

1.2785

1.3958

1.5767

38
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3. CONVECTION DIFFUSION WITH HIGH REGULARITY

3.1. MODEL PROBLEM

In this section, we consider the following Dirichlet boundary control problem. Let
Q c R? (d > 2) be a Lipschitz polyhedral domain with boundary I' = Q. The goal is to

find the optimal control # € L?(T") that minimizes the cost function

1 2 Y2
J(I/l) = 5”)’ - yd”Lz(Q) + Ellu”LZ(r)’ Y > 05 (31)
subject to the elliptic convection diffusion equation

-Ay+B-Vy=f inQ,

(3.2)
y=u ondQ,
where f € L?(Q) and the vector field B satisfies
V.-g<O0. (3.3)

We make other smoothness assumptions on S for our analysis.



40

Formally, the optimal control u € L?(T") and the optimal state y € L?(Q) minimizing

the cost functional satisfy the optimality system

-Ay+pB-Vy=f in Q, (3.4a)
y=1u on 0Q), (3.4b)
-Az-V-(Bz)=y—ys inQ (3.4¢)
z=0 on 0Q), (3.4d)
Vz-n—-—yu=0 on 0Q. (3.4e)

3.2. ANALYSIS OF THE DIRICHLET CONTROL PROBLEM

To begin, we set notation and prove some fundamental results concerning the opti-
mality system for the control problem in the 2D case.

Duality between H 1(Q)* and H'(Q) will be denoted (¢, 1o, while duality between
H™¢() and H*(T") for 0 < & < 1/2 will be denoted [u, v]r.

Throughout this section, we consider Q a polygonal domain, not necessarily convex,
and denote w its biggest interior angle. Notice that 1/2 < w/w < 1 for nonconvex domains
and 1 < m/w < 3 for convex domains. Furthermore, we assume in this section B satisfies

the following conditions:

BelL®(]Y V-BeL ), V-B<0 foranyQ,andalso s

VV-B e [L*()]? if Qis convex.

Moreover, we assume the forcing f is identically zero in this section. If this is not the case,

then a simple change of variable as in [1, pg. 3623] can be used to eliminate the forcing.
3.2.1. Study of the State Equation. Notice that for data u € L*(I"), we cannot

expect to have a variational solution of the state equation (3.2). Therefore, we need a suitable

concept of solution that makes the control-to-state operator continuous and that coincides
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with the variational solution for regular data. Moreover, since HDG is based on a mixed
formulation, it is also important to see how this concept of very weak solution extends to
mixed formulations.

To define the concept of a very weak solution, we first introduce the adjoint problem

and recall its regularity properties.

Lemma 13 For every g € L*(Q) there exists a unique Zg € H(; (Q) NH Q) forallt <2

witht < 1 + n/w such that
—Azg =V -(Bzg) =gin€, zo=0o0nT. (3.6)

Moreover, 0z, € H*(I') for all s < 1/2 such that s < m/w — 1/2.
If, further, g € H' (Q) for some 0 < t* < 1, then Zg € HOI(Q) N H' (Q) for all
t <2+t witht < min{3,1 + n/w} and 0z, € H*(I') for all s < 1/2 +t* such that

s <min{3/2, 7/w — 1/2}.

Proof: Existence and uniqueness of the solution is standard. The regularity of B implies
that V- (Bzg) € L?(Q), and hence 74 € H'(Q) forall t <2 suchthatt < 1 + n/w. For the
regularity of the normal derivative in the case s < 1/2, apply [1, Corollary 2.3] and trace
theory in [34]. For s = 1/2, apply [9, Lemma (A2)].

For the extra regularity result, we use that z, € H'(Q) for all + < 2 such that
t<l+njw,V-Be€L®Q),and VV - B € [L*(Q)]? to obtain that V - (Bz,) € H" (Q).
Now we have that —Az, € H" (Q) and standard regularity results in [34] lead to z; €
H(; (Q)NH(Q) forallt <2 +¢* witht < min{3, 1 + n/w}. The normal trace then satisfies
that 0,z, € H,-";IHS(E’) for all s < 1/2 + ¢* such that s < min{3/2, 7/w — 1/2}, where I;
denotes side i of the boundary of Q. If 7/w < 1, then s < 1/2 and IT" H*(I;) = H*(T'). If

m/w > 1, we use that z; = 0 on I' as in [8, Section 4] to prove that d,z, = 0 on the corners

of the domain. This implies that 9,7, is continuous and hence it belongs to H*(I').
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Definition 1 Let € be a real number such that 0 < € < 1/2 and € < nj/w — 1/2. For

u € H4(T), we say that y € L*(Q) is a very weak solution of

-Ay+pB-Vy=0inQ, y=uonl 3.7)

if and only if

(v, &) + [, nzglr = 0, (3.8)

orall g € , Where z, is the unique solution of (3.0).
ll g € L*(Q), where z4 is th luti (3.6)

Remark 2 The definition is meaningful thanks to the regularity of the normal derivative of
Zg provided in 14. Eventually the case € = 1/2 must be discarded, but we keep it while we
can cope with it. For our problem we need only to consider the case € = 0. We include
the other cases for the sake of completeness and because the definition may be useful for

problems with control or state constraints; see e.g., [47, Section 6.2]

Lemma 14 Ler s be a real number such that —1/2 < s < 3/2and s > 1/2 — n/w. For

every u € H*(I'), there exists a unique very weak solution y € H'2+5(Q) of (3.7) and

Iy llzi2es ) < Cllullgsry.

Proof: The case s = —1/2 can only happen in a convex domain and we can use the classic
transposition method. The proof for —1/2 < s < 0 is as the the proof of Lemma 2.5 in [1].

For 1/2 < s < 3/2 we have that (3.7) has a unique variational solution y and that it
belongs to H**!/2(Q); see [1, Proof of Corollary 4.2]. Integration by parts shows that y is
also a very weak solution.

For 0 < s < 1/2 the result follows from interpolation.
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Next we do the same for the mixed formulation. From now on, we assume the
polygonal domain Q is convex so that 1 < n/w < 3. First we state an existence and
regularity result for the mixed formulation of the convection diffusion equation with regular

data.
Lemma 15 Forevery g € L?*(Q), there exists a unique pair (Zg, pg) € Hé (Q) x H(div, Q)

such that

(g 1) — (2, V-1r)a =0, (3.92)

(V- (pg = Bzg)wia = (& W), (3.9b)

for all (r,w) € H(div, Q) x L*(Q). Moreover, (z4,pg) € (H*(Q) N Hy(Q)) X [H' (Q)]%,

Onzg = pg-n € H'*(T) and
—Azg =V - (Bzg) =ginz,=00nT and p, = —Vz,. (3.10)

If, further, g € H" (Q) for some 0 < t* < 1, then (z¢, pg) € (H'(Q) N Hy(Q)) X [H™'(Q)]¢
forallt <2 +1t" witht <min{3,1 + n/w} and Opzy = p,-n € H¥(I') forall s < 1/2 +t*

such that s < min{3/2, n/w — 1/2}.

Notice that the notation z, is not contradictory. If z, is the solution of (3.6), then (z4, —Vz,)
is the solution of (3.9a)—(3.9b). Also, if (z,, p,) is the solution of (3.9a)—(3.9b), then z, is
the solution of (3.6). Therefore this lemma is a straightforward consequence of Lemma 13

Now we must drop the case € = 1/2.

Definition 2 Let € be a real number such that

0<e<l/2
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Foru e H™*(I'), we say that (y, q) € L*(Q) x [H' ( Q) isa very weak solution of

-Ay+B-Vy=0inQ, y=uinl, g =-Vy (3.11)

if and only if
[qar]Q_(y,V"')Q'*'[uar'n]l":0, (3123)
(g +By,pgla— YV B,z5)a =0, (3.12b)

for all (r,g) € [H'(Q)]? x L*(Q), and (z4,pg) € (H*(Q) N HY(Q)) X [H' (Q)]? is the
unique solution of (3.9a)—(3.9b).

Remark 3 For € = 1/2, the expression [u,r - nlr is meaningless even for r € [C™ ()14,

since n has jump derivatives, and hence r - n ¢ H'/?(I).

Theorem 5 For every u € H¢(I'), there exists a unique very weak solution (y,q) €
L*(Q) x [H (Q)*1? of (3.11). Moreover, (y, q) € H'/*72(Q) x [H'**4(Q)*1¢ and y is the

very weak solution of (3.7).

Proof: Let us first prove uniqueness of solution in the space L?(Q) x [H'(Q)*1¢. Take

u = 0and let (v, g) € L*>(Q) x [H'(€Q)*]¢ be functions satisfying:

[q’r]Q = (y’v : r)Qa (3133)

[q + By, pgla— (V- B.zg)a =0, (3.13b)

for all (r,g) € [H'(Q)]¢ x L*(Q). Consider g = y. From equation (3.9b) and taking into

account that p, = —Vz,, we have that

3V pya+ By.py)a—OV- B zy)a = (Y. (3.14)
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Take r = py in (3.13a). We obtain

lg.pyla = (y, & DPy)Q.

Substitute this in (3.13b)

(7 V-py)a+ By.py)a— V- B.zy)a=0. (3.15)

From (3.14) and (3.15), it is clear that y = 0. From (3.13a) we have that ¢ = 0 and

uniqueness is proved.

Existence is as follows. Take y € L*(Q) the unique very weak solution of (3.7) and

define ¢ € [H'(Q)*]¢ by

[Qi, r]Q = (ya axir)Q - [I/l, rni]l",

for all r € H'(Q), and n; is the i—th component of the vector n. Again, this is well defined
because we have made sure that £ < 1/2, and the functions in H?(I") now can have jump

discontinuities.

Corollary 3 Ifu € H'/?>*"(T) for some 0 < t* < 1, then (y,q) € H'™" (Q) x ([H" ()] N

H(div, Q)) and

(g, r)a— 0V -r)q+ur- -nyr=0, (3.16a)

(V-(g+By).w—-(OV-Bwqa=0, (3.16b)

for all (r,w) € H(div, Q) x L>(Q).

For the sake of completeness, we say that (y, q) is a very weak solution of the mixed

formulation (3.16a)—(3.16b) if it is a very weak solution of (3.11) in the sense of Lemma?2.



46

3.2.2. Study of the Control Problem. Now we are ready to study the control

problem. Let us first formulate it using the mixed formulation.

. 1 2 Y2
(P) u;?%?r) J(I/l) - 5”)’14 - yd”LZ(Q) + 5”””[}(1“)’

where (y., g.) € L*(Q) x [H'(€Q)*]? is the very weak solution of
(Qu»r)Q_()’u,V'r)Q+<u’r'n>F :0’ (3173.)
(V- (qu+ Byu)w)a— uV-B,wla=0, (3.17b)

for all (r,w) € H(div, Q) x L3(Q).

Theorem 6 Assume Q is convex. If y; € H' (Q) for some 0 < t* < 1, then problem (P)
has a unique solution @ € L*(T'). Moreover, for any s > 1/2 satisfying s < % +t* and

s < min{2, == %}, we have it € H*(T'),

(B.5.2) € [H1(Q)]Y x H**3(Q) x (H*+3(Q) N HL(Q)),

G € [H 2 ()4 n H(div, Q),

and 0,7 = p - n € H*(I') such that

(@, 1) -,V -r)o+r-n)yr=0, (3.18a)
(V-(§+By)wla-(GV-Bwh=0, (3.18b)
(P.r)a— (% V-r)=0, (3.18¢)

(V- (p = B2, w)a =V = ya- W), (3.18d)

(yii +p-nvyr=0, (3.18e)

for all (r,w,v) € H(div, Q) x L*>(Q) x L*(T).
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Proof: The functional J(u) is bounded from below and strictly convex, because thanks to
5 and 14, the control-to-state mapping is linear continuous. Using that it is also coercive,
existence of solution follows from the standard argument of taking a minimizing sequence.
Uniqueness of solution follows from the strict convexity.

Since the equation is linear, the functional is differentiable (it is C* indeed) and
a standard argument leads to the necessary optimality conditions (3.18a)—(3.18e), where
the first two equations must be understood in the very weak sense of Lemma 2. Since the
problem is strictly convex, these conditions are also sufficient, and therefore the optimality
system has a unique solution.

Let us study the regularity of the solution. We already have that j € L*(Q), so 15
leads in a first step to (Z,p) € (H*(Q) N Hy () X [H' ()], 8,72 = p - n € H'X(D).
Noticing that from (3.18e) we have that it = —y~!p - n, it is clear that the optimal control
satisfies i € H'/2(I'). From Lemma 14 we deduce y e H32(Q).

Using the just deduced regularity of y and bootstrapping the argument once, we

achieve the desired result.

3.3. HDG FORMULATION AND IMPLEMENTATION

Throughout this section, we assume €2 is a polyhedral domain, not necessarily

convex, with d > 2. We introduce the following discontinuous finite element spaces

V), :={v € [L2(Q)]? : vl € [PK(K)IL VK € Th), (3.19)
Wy, := {w € L>(Q) : w|x € P (K),VK € Tp), (3.20)
My = {u € L*(ep) : ple € P (e), Ve € &1} (3.21)

for the flux variables, scalar variables, and boundary trace variables, respectively.
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3.3.1. The HDG Formulation. To approximate the solution of the mixed weak
form (3.18a)-(3.18e) of the optimality system, the HDG method seeks approximate fluxes
qnpn € Vi, states yp, z, € Wy, interior element boundary traces }\Z,/Z\Z € M;(0), and

boundary control u, € My (0) satisfying

(@115 =~ OV - 1)+ T 1 - W0 + 1 10 = . (3.220)
—(qn + Byn Vw))g, — (V- Byn, w7, +{qn - B, w1)a7;

B - nup,wi)eo = (f, w7, (3.22b)

for all (ri,wy) € Vi, x Wy,

(i 12)7;, = (2 V- 1) + (T 12 )y o0 = 0, (3.22¢)
~(pr = Bzn, Vw2)g, +{pn - n,w2)a7, — (B - nZ), W2)a7i\e0

(Y w27, = —(ya, w2)g,  (3.22d)

for all (rp, wy) € Vi, X Wy,

(qn-n+p-ny, ﬂl)ar;,;\gg =0, (3.22¢)
for all u; € My (o),
<ﬁ/’l ‘- ﬁ : n/Z\Za /l2>671'1\82 = 07 (322f)

for all yp € My(0), and the optimality condition

(s ,u3>82 +{y i m, :“3>.9§ =0, (3.22g)

for all u3 € M;(0).
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The numerical traces on 07}, are defined as

Gn-n=qp-n+h n =3 + 11—y on 07, \&9, (3.22h)
Gn-n=qp-n+h (on—up) +71(n — up) on &2, (3.22i)
Pr-n=pp-n+h(zn-2)) + 1z - ) on 07, \&9, (3.22))
pron=pyp-n+hlz,+ 0z, on 82, (3.22k)

where 7 and 7, are stabilization functions defined on d7j,. This completes the formulation
of the HDG method.

To guarantee the stability for existing HDG methods, the stabilization functions 71
and 7, for the (uncoupled) convection diffusion equation and the dual problem are chosen

to satisfy

1
Bom mz-3pem

N | =

T =

on 07; see, e.g., [15, 16, 28, 56]. However, in our convergence analysis in Section 3.4
for the fully coupled optimality system we require the stabilization functions to be chosen
very specifically. These requirements on the stabilization functions arise naturally in our
analysis.

3.3.2. Implementation. For the HDG implementation, we proceed similarly to
our earlier work [43]. A fundamental aspect of the HDG method is the local solver, which
reduces the number of globally coupled unknowns. The standard approach is to implement
the local solver element-by-element independently and then assemble the global system. As
in [43], here we first assemble a large global system and then reduce the size of the system
using simple block-diagonal matrix operations. This process is equivalent to the standard

approach.
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Substitute (3.22h)-(3.22k) into (3.22a)-(3.22g) and perform some simple manipula-

tions to obtain

(> Pho Yis 2o Yo Zpo i) € Vi X Vi X Wiy X Wiy X My (0) X M, (0) X M,(9)

is the solution of the following weak formulation:

Gnr)75 — OV - rog + - nYgged + (71 )0 =0, (3.23a)
P 127, = (21 V - 12)7; + T 12 Mg 0 = 0, (3.23b)

(V- gnwi)z, = (Byn, Vwi)g, = (V- By, wi)g,

T+ 1)y wdar, + (B 1 =11 = BT widgg 0
H(Bn =1 = h D wi),o = (frw)z, (3.23¢)

(V- w2, — O w2, + (Bzn, VW), + {(h™ + 1) 20, wadag;

—((h_1 +n+p- n)’Z\Z, W2>57;\52 = =(Ya» W2)7;

(3.23d)
(@h 1 g e0 + (0 + T YR 11Dy 00
H(B-n—-1-hhHyY, HD a6t = O, (3.23e)
P 1, L2) a7 e0 + (™" + 1)z, H2) g5\ e0
~(B-n+n+hHZY, 12 gpe0 = O, (3.23f)
(Ph 1 13)g + ¥ s 13) g0 + (B + T2)2h, 3)59 = O, (3.23g)

for all (ry, ro, wi, wo, i1, po, u3) € Vi X Vi, X Wy, X Wy, X My, (0) X My, (0) X M (0).



51

For Vj, = span{g;}"',, Wy = span{¢;}">,, M = span{y;}\\",,and M = span{y}"} .

assume
N N N, Ny
qh:ZC[j(Pj, ph:ijSOj yh:Z)’j¢j Zh:ZZj¢j,
J=l =1 j=1 j=1
N.
Zajwj’ 20 Z’}/jwp up = 24 Biv;.

j=1+N3

(3.24)

Substitute (3.24) into (3.23a)-(3.23f) and use the corresponding test functions to test (3.23a)-

(3.23f), respectively, to obtain the matrix equation

Al 0 —Az 0 Azo 0 A21 q 0

0 A 0 -4 0 Ay 0 []|p 0
A0 A 0 Ap 0 Ax || by
0 A} -Ap A 0 Ay O 3= -b2 | (3.25)
Al 0 A 0 A O 0 ||D 0
0 A, 0 Ay 0 As 0 ||3 0

0 A26 0 A27 0 0 ’)/Azg u 0
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where q, p, 9, 3,1, 3, u are the coeflicient vectors for g, P, Y, Zhs ?Z, 'Z\Z, up, respectively, and

A1 = (@), pi)7 ], A = [(¢), V- @i)7; ], Az = [(¥), @i - 1)),
Aq = [(Bo), Vi), ], As = [(V - Boj, di)7; ], Ae = [(Bdj, Vi), ],
A7 = [ ¢, 0o ], Ag = (119, di)oT; ), Ag = [(129j, i)oT; ),

At = [(B - myj $idom ) Au = [(niws i), 1 Az = (71w, 1), )

A = [0 07) Aa=nwsvi),, ) Ais = [(0w00), 1
At = (B - nyjvi),, 1 A = (v vi),, 1
Alg=A7+Ag— Ay — As, Ajg = Ag + A7 + Ay,

by =[(f, 971, b2 =[(ya, 971

The remaining matrices are constructed by extracting the corresponding rows and columns
from linear combinations of A3 to Ay7.

Equation (3.25) can be rewritten as

B] Bz B3 o 0
—-BI By Bs|| B |=]|0b| (3.26)
Bs B7 Bg|| vy 0

where @ = [q;p], B = [1;3], ¥ = [1;3;ul, b = [b1; —b3], and {B; }f;:l are the corresponding
blocks of the coefficient matrix in (3.25).

As in Section one, we use the first two equations of (3.25) to solve for @ and B
using simple and efficient block-diagonal matrix computations. Eliminating & and 8 gives

a reduced globally coupled equation for y only:

Ky = F. (3.27)
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Note that the globally coupled system only involves the vector y, which contains the
coeflicients of the approximate boundary traces. Therefore, the number of globally coupled
degrees of freedom is much smaller than the total number of degrees of freedom for all
variables.

The details of the above procedure are similar to Section one. We only need to show

the following result.

Proposition 3.3.1 If min (7] — %ﬂ -n)|gx > 0 and min (7p + %ﬂ -n)|sx > 0 forany K €

T, then the matrices A1g and A9 in (3.25) are positive definite.

Proof: We only prove A;g is positive definite; a similar argument applies to Aj9. The matrix
A1g is positive definite if and only if xTAjgx > 0 for any x = [x1,x2,---,xn,] € RM2. For
X = Zj.vjl xj¢;, we have

xT Agx = (h7'x, x)ag + (T1%, X)o7 — (Bx, Vx)g — (V - Bx, X)7; .

Moreover,

(ﬂxa VX)'Th = (ﬁ : VX, x)‘ﬁl = (V : (ﬁX), x)ﬁ, - (V 'BX, X)7,’1

= (B - nx, x)o7;, — (Bx,Vx)7, — (V- Bx, x)7;,
which implies
1 1
(Bx,Vx)7, = §<,3 “RX, X)o7 — E(V - Bx, X)g; .
Therefore,
T -1 1 1
x Agx ={((h" +1 - 5,3 “R)X, X)oT, — E(V - Bx, x)g; >0,

by the assumption concerning 7; and the condition V- # < 0.
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3.4. ERROR ANALYSIS

Next, we provide a convergence analysis of the above HDG method for the Dirichlet
boundary control problem. We assume the solution of the optimality system has certain
regularity properties. In 2D, due to the theoretical results in Section 3.2, we can give simple
conditions that guarantee the unique solution has the necessary regularity. In 3D, we lack
the necessary regularity theory; however, our convergence results still apply if there exists
a unique solution of the optimality system with the required regularity.

We begin with a precise statement of our assumptions and the main convergence
result.

3.4.1. Assumptions and Main Result. Throughout this section, we assume € is a

bounded convex polyhedral domain. We assume throughout that B satisfies
BelCQV, V-BelL®Q), V-B<0, VV-Bel[l*()] (3.28)

Note that this condition is slightly stronger than the condition (3.5) made for the analysis in
3.2. Here, we assume f is continuous on Q, while before we assumed B e[L® (Q)14.

For our theoretical results, we choose the stabilization functions 71 and 7, to satisfy
(A1) 7, is piecewise constant on 97},.
(A2) 1=+ n.
(A3) Forany K € 7, min (1 + %ﬁ -n)lgx > 0.

We note that (A2) and (A3) imply

1
min (1 — =B -n)lgx >0 forany K € 7j,. (3.29)
2
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In our analysis, we use the conditions (A3) and (3.29) frequently and therefore we rarely
mention them explicitly. However, we use (A1) and (A2) less frequently, and therefore we
typically mention these conditions when we use them.

We also assume throughout that there exists a unique solution of the optimality

system (3.18a)—(3.18e) that satisfies
yeH™(Q), zeH=(QNH)Q), qelH* Q)] pelH?Q],  (3.30)

where

ry>1, r;>2 rg>1/2, r,>1 (3.3

This regularity condition ensures that the convergence rates in Theorem 7 below are positive
for all variables.

We note that we require ry > 1/2 (instead of r4 > 0) here in order to guarantee
g has a well-defined boundary trace in L>(I"). We use this property in our analysis. As
mentioned in the introduction, we relax this assumption in the second part of this work and
only require r4 > 0. Dealing with the very low regularity of ¢ requires entirely different
HDG analysis techniques than we use here.

In the 2D case, simple conditions on the desired state y; and the domain € guarantee
that the solution has the above regularity; see Corollary 4 below. In the 3D case, we do not
have theory that gives simple conditions guaranteeing such solutions exist.

We now state our main convergence result.

Theorem 7 Let

sq = min{rg, k + 1}, sy = min{ry, k + 2}, (3.32)

sp = min{rp, k + 1}, s, = min{r, k + 2}.
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If the above assumptions hold, then

_1 _3 1 _1

= wnllgo S B2 PN, 0+ B2 Nzl + A0 2 llgl, 0 + 72 Iyl 0,
_1 _3 L _1

ly = yullg S BP 2 Pl 0+ 1573 2l + B0 gl 0 + h 2 Iy, 0.
_1 _3 o+ _1

1P = pally, < 12 Iplly 0 + B3 lzlly 0+ 752 llglly, 0+ 572 1Yl 00

_1 _3 1 o
Iz =zl S AP 2Pl 0+ 172 Nzl + B2 Iglls, 0 + AV 72 Il q-
If in addition k > 1, then

-1 -2 ~1
g = qnllg, S PP~ lIplly, 0+ 1< Nzl + A llglls, o+ A7 Iyl 0.

Now we specialize to the 2D case. For a convex polygonal domain €, let w denote its
largest interior angle. As mentioned before, w must satisfy 1 < n/w < 3,i.e.,w € [7/3, 7).
The limiting regularity condition is r4 > 1/2. Therefore, to guarantee the regularity

condition (3.30)-(3.31), by Theorem 6 we need two conditions:
l. tf/w—-1/2>1,ie.,w < 27/3, and
2. yq € H' (Q) for some t* € (1/2,1).

As mentioned earlier, we remove these restrictions in the second part of this work.

Applying Theorem 6 and the main theorem above gives the following result.
Corollary 4 Suppose d = 2, f = 0, and yq € H' (Q) for some t* € (1/2,1). Let
w € (r/3,2n/3) be the largest interior angle of I', and define rqo by

|
, U+ 5} € (1,3/2).

(3 1
ro = min{ —, — — —
@ 20w 2
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Then the regularity condition (3.30)-(3.31) is satisfied. Also, if k = 1, then for any r < rq

we have

i = unllyo S B Pl + 1zl + 19l a1 + 15,
Iy = yallz: S B Apllgrargy + 1zllgrang + 1llgin) + 151 enq),
g — gnll; S H2Apl g + 1zl grongy + 1@z + 19 Easg),
1P = pallg; S B AP grary + Izl grsnqy + 1l g2y + 1911 20):

lz = zally S hr(||P||Hr+l/2(Q) + zllgreny + 1qllgr-12Q) + IV rez@))-

Furthermore, if k = 0, then for any r € (1,rq) we have

e = unll o < R 2P0 + 1zl i) + 1g1r-1200) + 15 llar2):

Iy = vallg: S A 2PN + 1zllm2@y + 1l g1y + 19 granq),

h1/2

lp — pallg; S (Pl + 1zllg2@) + gl 12y + IV gr120))s

12
Iz = zallg, S AP + 1zllmz@) + 1z + 191 Eeeg)-

Theorem 6 givesu € H" (I'), and so the convergence rate for the control is optimal for k = 1.

Similarly, the convergence rate for the flux ¢ is optimal for £ = 1. The convergence rates

are suboptimal for the other variables when k = 1 and for all variables when k = 0.

Since rq € (1,3/2), when k = 1 this result guarantees a superlinear convergence

rate for all variables except ¢g. Also, if Q is a rectangle (i.e., w = n/2), yg € H I=£(Q), and

k =1, then rq = 3/2 — ¢ and therefore for any £ > 0 all variables except ¢ converge at the

rate O(h3/%7%), and g converges at the rate O(h'~%).

3.4.2. Preliminary Material. Next, we discuss L? projections, HDG operators %,

and %,, and the well-posedness of the HDG equations.
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We first define the standard L? projections II : [L2(Q)]4 - V), T : L2(Q) > Wy,

and Py : L*(gj,) — M, which satisfy

(Mg, r)x = (¢, 1)k, Vr € [Pe(K)]Y,
(ITy, w)k = (y, W)k, Yw € Pri1(K), (3.33)

<PMm’ ,u>e = <m7 #)e? VI,I € Pk-‘-] (6)

In the analysis, we use the following classical results:

lg - Mgl < A llgll,q. Iy —yllg S Ayl .q; (3.34a)
_1 _1
Iy =Iyllgq, S V72 Il llg-n—Tg-nllyg; S h72 gl q. (3.34b)

_1
wllog, S A2 lwllg,  Yw e W, (3.34¢)

We have the same projection error bounds for p and z.

We define the following HDG operators %, and %,.

Br( Q> Vi Y33 71, W1, 11)
= (qnr)7 — OV -r)g + G, )60
—(qn + Byn Vwi)g, = (V- Byn, wi)g,
+{gn -+ (7 1)y wDam + (B n = h = T)T) Wi gz 0
~{gn-n+ B0y + (7 + 1) = T Hgg o0 (3.35)
Br(Phs Thy Tpy3 T2, W2, 12)
= (P17 = (20 V- 12)g; + (T 12 Mg 00 = (P = Bz, Va)g,
+(pn-n+ (W + )z waday —((B-n+h™' + )7, W2) a6

~{pn-n =B nZp+ (7 +02)(2h = 2, k2gge0- (3.36)
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By the definition of %, and %,, we can rewrite the HDG formulation of the optimality
system (4.1), as follows: find (gp, Pr> Yis 2hs s Zps tn) € Vi X Ve X Wi X W, X My (0) X

Mj,(0) X My (0) such that

B1(qn, Y Y5371 Wi, 1) = (f, wi)g, — up, 11 'n>82

—((B-n—n"" = T)uy, W1) s (3.37a)
Br(Phy Th 233 72 W2, 2) = (Vi — Yds W2)755 (3.37b)
Yy pn-n+ 07+ 0z, H3)eo = —(Uns H3) g0, (3.37¢)

for all (rl, r, wi, wo, U1, U2, /.13) S Vh X Vh X Wi, X Wy, X Mh(o) X Mh(O) X Mh(a)
Next, we present a basic property of the operators Z; and %,, and show the HDG

equations (3.37) have a unique solution.

Lemma 16 For any (vi, wi, up) € Vi, X Wy, X My (0), we have

P\ (Vi Why U3 Vi, Why )
= (p )y (B + 1 - %ﬂ “n)(Wp = f1p), wp — llh>afrh\a;j
- %(V Bwn Wi+ ((h 41— %,B FR)Wh, W) g,
Bo(Vhs Wiy i3 Vs Whs K
= Wp )7 + (7 + 0+ %ﬂ ") (Wi = i) Wh = Hidgg;\ 0

1 _ 1
= 5 (V- Bwi wa)gy + (0" + 72 2B - )W, Wh) 0.
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Proof: We only prove the first identity; the second can be obtained by the same argument.

B\ (Vi Why [y Vs Wh o)
= vy, — Wi, Vo vp)g + {fp Vi - ">a7,;\82
= (Vi + Bwn, Vwp)g, — (V- Bwp, wi)g,
+vp o+ (W ) whwidag +((B-n— k™ =)y, Wh) o7\ e0
=+ B+ (B4 1) 00h = 1), B8 a7y e0
= Vi, vi)7, — (Bwin, Ywi)7, = (V- Bwp, w7,
+{(h™ "+ )W widag, +((B -1 —h™" = 11) Wh)og\e?

— (B nup+ (K + 1) (i — ), Hh) ggi\e2-

Moreover,

Bwn, Vwp)g, = (B - Vwp, wi)g, = (V- (Bwi), wr)7, = (V- Bwp, wp)g,

= (B - nwp, wi)az, = (Bwn, Vwi)g, = (V- Bwn, wh)7;,
which implies
Bwn, Vwp)g, = %(B CAWh Wh)aT — %(V  BWh W)
Then we obtain

B1(V s Why i3 Vi Wiy (1)
B 1
= (p )y (B + 1 - Eﬂ “n)(Wp = f1p), Wi — /‘lh>a7]'1\82

1 _ 1 1
= 5 (V- Bwnwi)z, +<(h L - B W Wh)go =SB - R lth: Bhdor -
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Since uj, is single-valued across the interfaces, we have

1
_§<ﬁ s R p, /»‘h)a'rh\gﬁ =0.

This completes the proof.
Next, we give a property of the HDG operators #| and %, that is critical to our

error analysis of the method.

Lemma 17 If (A2) holds, then

B1(Ghs > Y5s Phs =2 —23) + B2 (P> 20 25 =i Y1 V3,) = 0.

Proof: By the definition of % and %>,

B\ Q> Y Yys Phs —Zhs —2) + B2(Pis 2o 203 =G> Y1 )
=(qn P75 = OV -pr)7, + <V Ph - ”>07;\e§
+(qn + By V)7, + (V- Byn 217 — {qn - 1 + (K~ + 10) v 2ndor,
—((B-n-7 -k}, ) g7i\e?
+{gn-n+B-nyy+ (W + 1) On = I T amed
= (P g7 + 2V - g7 = (T @ Mg\ = (P = Bzw Vyn)T,
+(pp-n+ W+ )z yides —((B-n+ 1+ HZY, yh>arrh\82

~pn-n =B nZp+ (' + 1) (@h = ). T o060
Integration by parts gives

B Ghs Yo Y53 Phs =i —23) + B2(Pis Zhs 2 =i Y1 V7))

=((m+B-n—1)yn o7 +{(n+B-n— Tl)iz,?ﬁaq;l\gg.
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The proof is complete by assumption (A2).
Proposition 3.4.1 If(A2) holds, there exists a unique solution of the HDG equations (3.37).

Proof: Since the system (3.37) is finite dimensional, we only need to prove the uniqueness.
Therefore, we assume y; = f = 0 and we show the system (3.37) only has the trivial

solution.

FirSta take (r17 wi, /’l]) = (pha —Zhs _’Z\Z)’ (rz’ w2, /l2) = (_qh, Yhs 5;2), and w3 = —=yup

in the HDG equations (3.37a), (3.37b), and (3.37¢), respectively, by 17 and sum to obtain

%l(ql’b )’h, yZ,Ph, —Zhs _’Z\Z) + %Z(Ph’ Zhs ’Z\Z’ _Qh, Yh, 37;)1)
= iy + ¥ llunllZ,

=0.

This implies y, = u;, = 0 since y > 0.
Next, taking (r1, wi, u1) = (qn, Y1, y},) and (ra, wa, u2) = (pp, 21, 7;) in Lemma 30
gives g, =pp =0,y =0,z,=0o0n sz, and z;, —7) = Oon 5‘7;,\82. Also, since 7, = 0 on

82 we have

zn —zn = 0. (3.38)

3
> We get

Substituting (3.38) into (3.22¢), and remembering again z;, = 0 on &
—(zp, V - 12)7; +{2p, 12 - nYg7; = 0.

Integrate by parts, and take r, = Vz;, to obtain

(Vzn Vzp)g; = 0.
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Thus, zj, is constant on each K € 73, and also z;, = 7, on d7,. Since 7 = 0 on 82 and

single valued on each face, we have z;, = 0 on each K € 7}, and therefore also EZ =0.
3.4.3. Proof of Main Result. To prove the main result, we follow the strategy

of Section one and split the proof into seven steps. We consider the following auxiliary

problem: find

(qn(uw), pr(u), yn(u), zu(u), yy (), 2 () € Vi x Vi x Wy, x Wy, X Mp(0) x Mj(0)

such that

%I(Qh(u)» yh(u)9 yh(u);"l, wi, l'll) = (f9 Wl)'ﬁ, - <PMM, r: n)g;?
——«ﬂ-n-—h_l—TQPMqu>%, (3.39a)

Bo(pn(u), zn(w), Zn(U); r2, wa, p2) = (Yu () — ya, wa)g, (3.39b)

for all (ry, ra, wi, wo, i1, 2) € Vi X Viy X Wy, X Wy, X My (0) X Mp(0). We first bound the
error between the solutions of the auxiliary problem and the mixed form (3.18a) - (3.18d)

of the optimality system. We use the following notation:

61 = q - g, &l =g — qu(w),
6 =y —Tly, &), =1y — yp(u),

A " (3.40)
6" =y - Py, &), = Pyy = yn(w),

61=61-n+p-n8 +(h' +1)( - &),

where yj,(u) =y} (u) on & and y,(u) = Pyu on 82. Note that this implies 82 =0on 82.

Step 1: The error equation for part 1 of the auxiliary problem (3.39a)
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Lemma 18 We have

B (&), &), €, 11, w1, 1) = (B8, Ywi)g, + (V- B&”, wi)g,

= (81 W) + (O1, M- (3.41)

Proof: By the definition of the operator %, in (3.35), we have

(g, 11y, Pyy, ri, wi, p1)
= (g, ri)g; = A1y, V- ri)g; + (Pyy, 11 - M)y, .0
— (g + BIly, Vwy)7, = (V- Blly, wi)7,
+ (Mg -n+h' + )y, w)eq, + (B-n—h' - TPMY W1 gz

~(Mg-n+B-nPyy+(h~" + 1)Ly = Pyy), u1gqs2-
By properties of the L? projections (3.33), we have

%1 (l1q, 11y, Pyy, ri, wi, i)
=(q. )7 — (V- -rog +{nr- n)gr;;l\gg
- (g + By, Vwi)g, + (B, Vwi)g, — (V- By, wi)g;, + (V- B6”, wi)g;
+{q - m,w)o7, — (61 - m,widag, + (W™ + )Ty, widas;
+ By Widggeo = (B - 18" Wgqy e — (W™ + 1) Parys widgg oo
—{q - "’ﬂ1>a7;l\gg + (67 - n,m)arrh\gg —(B- "y,lll)aq;l\gg

+(B- ndim)amgg +((h + 1) (67 - 5y),ﬂl>a7;l\sﬁ-
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Note that the exact state y and exact flux g satisfy

(q.r)7, — 3 V-r)g, +{y,r1-n)yg =0,
—(q + By, Vwig, = (V- By, wig, +{(q + By) - n,wi)aq; = (f, w17,

((g +By) - n, /“L1>67;L\32 =0,

for all (ri, wy, u1) € Vi X Wy, X Mjy(0). Then we have

%1 (g, 11y, Pyy, ri, wi, p1)
= =m0 —(B-nuwi)o+ (f,w)g + (B8, Vwig;
+ (V- B, widg; = (69 - mywida, + (W™ + )Ty, wi)as;
— (B -1 W0 = (T + TPy W) g0 + (67 - 1 1)y o0

+(B - nd, ,uomz\gg +{(h '+ 1)(8Y = &), ﬂ1>a7;,\ag-

Subtract part 1 of the auxiliary problem (3.39a) from the above equality to obtain the result:

B\(e] €), 8,11, w1, (1)
= (B8, Vwi)g + (V- BS,wi)g — (61 - n,wi)ag,
+ (™" + 1)y, wi)az; — (B - n8”, widag — ((h™" + 11) Pyry, wi)as;

+ (0%, 1)y p0 + (B no’, HDg7\ed + (6" = o), HDgge

= (B8, Vwi)g; + (V- B8 wi)g; = (1. w1)ag; + (81, 1) s0-

Step 2: Estimate for SZ We begin with a key inequality that has been proved for an

existing HDG method in [56].

Lemma 19 We have

_1 y
Vel < llefll + Ch™2lle) — &) llag;-
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In the HDG method in [56], degree k polynomials are used for the space M}, instead
of degree k + 1 here. Increasing this degree does not lead to any change in the proof of the

above lemma; therefore, we omit the proof.

Lemma 20 We have
el + 17 ey = el < 12 gl + 12yl (3.42)
Proof: First, since 8 =0on 8 , the basic property of %) in Lemma 16 gives

_ 1 1 5 1 1
= (sz, sgm I+ 1= 5B m)2 (e = &)y + S 1=V - B2 eyl
Then, taking (r1, w1, u1) = (&1, &), &) in (3.41) in Lemma 18 gives

1 1
SNV B el

= (B, Ve + (V- B, ) — (81, €] — £))a; (3.43)

_ 1 1 5
(& )7 + I+ 71 = S - m)2 ey = g, +

=T +T, +Ts;.

For the terms 77 and 7>, simply applying Lemma 19 and Young’s inequality gives

1 —~
= (BS",Vey)g, < ClI&” Il + —||sz 5 + g1 = el
1 1
Ty = (V- B8, &)y < Cl"liz, + S 1=V - B)2 &}l

-~ = 1 -
2 2
= ~(@1. &)~ &)as < 4hll611l5g, + 2-l1E, = &)
Sum all the estimates for {T,-}l.3:1 to obtain

leflIZ + h~ e — Shllaq;l h181 157 + 16°117;

2, 2 25y-2 11112
Shglle g+ h 7 Iyliya-
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Step 3: Estimate for sz by a duality argument.

Next, we introduce the dual problem for any given ® in L?>(Q) :

O-V¥ =0 in Q,
V-®+V-(BY)=0 in Q, (3.44)
¥Y=0 on 0Q.

Since the domain Q2 is convex, we have the regularity estimate
@ll1,0 + I¥]l20 < Creg [1Bllq - (3.45)

Before we estimate ez, we introduce the following notation, which is similar to the

earlier notation in (3.40):
S*—@-No, '=v-nv, §'=v-P,V. (3.46)
Lemma 21 We have

1
eyl < P lIqllgan + B Iyl g -
h :
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Proof: Consider the dual problem (3.44) and let ® = —sz. Take (ri,wi, uy) =

(I, ITY, Py,¥) in (3.41) in Lemma 18, and since ¥ = 0 on 82, we have

B (s, &), 87 IO, TV, Py, )
(8 no)g - (sh V- -1®)g + <8 no - n)a?-\‘S
— (el + Be), VII®)g; — (V- B, TI¥) 7, + (el - n + (h7! + 1)), TTP)gg;
(B -n— " —1)e), TW)yg;
—(e! - n+B-ne) + (k" + 1)) - &), PuPhas;
= (&1, ®)7, — (6, V- @), + (67, V- 6P)g; — <g ® . nYsg; — (el + By, V),
+ (e + Be), V5 )y, — (V- Be), V)7, + (V- Be), 67 ),
— (& n+Bons, + (B +1)(El —e), 6% =6 Vg

y

Here we used (gz, ® - n)s7, = 0, which holds since €,

is single-valued function on interior

17}

Y _
edges and &, = 0 on &/.

Next, integration by parts gives

(€, V- 6%)7; = (£}, 6% mhaz; — (Ve 6%)7; = (e}, 67 - m)a,
(1, V6V = (el - n,6%) o7, — (V- 1,6V = (€T - n, 6% Yo, (3.47)

(Be}, V6" )y, = (B - ne), 6 Vog, — (V- B, 6 ) — (BVe), 67 ).
We have
B1(s, &), &) IO, 1Y, Py V)

2 y @ y y
= llg)ll7- + (&) — £,6% - n + B - ns" )y, — (V&) B6" ),

— (W +1)(e) —£7).6" =6 o



On the other hand, ¥ = 0 on 8(2 and (3.41) in 18 give

B1(s, &), &) IO, 1Y, Py W)

= (B6", VII®)g; + (V- B, TIW)g; + (81, 6% — 6 Yo
Comparing the above two equalities, we get

leylls. = ~(&) - £,6% - n+ B -ns" gy,
+(Vey, B6H)g, + (B8, VIIW)g, + (V - B67, TT¥);
(T e - )81, 6" = V)

=:R{+Ry+ R3+ R4+ R;s.

For the terms R; and R,, Lemma 19 and Lemma 20 give

L] b
R =—(g,—€,0° n+pB-ns" ),
1 y L@ 44
< h72le, — & llag;, h2 1167 - n+ B -né" |lag,
_1 vy 1)) ¥
< h72lg, — &, oz 1167 -n+ B - né* |l
_1 y ') N7
< Ch™2 g, — & llag 16 ll7; + 167 ll7;)
< C(h* M igllgaq + 2 Iyllp0)llel
= qll59.0 Ylisy 0 JALYA)
4 4
Ry = (Ve&,, B6V)g, < ClIVe, |z 167 |lg;

sq+1
< C(h ™ Iqllgaq + 2™ Iyllg o) llellg, -

69
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By a simple triangle inequality for terms R3 and R4, we have

Ry = (B8, VII¥)g, < C||6” |l IVITY ||,
< C116”|l7 (IV8 ¥ [l + IVPlig;)
< Cl18° llg (APl + 1P]Ie) < Cll6* lig; 1P ]l20
< C(* ! |Iqllq + 1 Iyl )] 7,
Ry = (V- B&". I¥)g; < Cl16° |l TP |I,
< Cl18° llg (16 ¥l + 1P ll;)
< C)18" |l (P[P laq + 1P ll2) < ClI6[I7 1Pl

1
< C(h' gl + h™ Iyl ) lle) lig;-
For the term Rs, we have

Rs = ((h"" +1)(e) —&)) +61,6F —6V)og
< C(h7I(e) = e llagy + 181 lag) 1Y = 6% llags

sq+1 )
< C(h* 7 Igllgaq + B 11yl o) lle,ll7; -

Finally, we complete the proof by summing the estimates for Ry to Rs.
As a consequence, a simple application of the triangle inequality gives optimal

convergence rates for ||g — g, (w)|l5; and ||y — yu(w)||7;:

Lemma 22

lg — gl < 1670l + llefllz < hllgllao+ > Iyllpa. (3.48a)

Iy =yl < 168° 17 + gyl S B ligllag + A Yllpq- (3.48b)
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Step 4: The error equation for part 2 of the auxiliary problem (3.39b). Next, we
focus on the dual variables, i.e., the state z and the flux p, and estimate the error between
the solutions of the auxiliary problem and the mixed form (3.18a) - (3.18d) of the optimality

system. Define

6’ = p -p, SZ =Ip — pr(u),
6 =z-1z &, =z — z;(u),

. " (3.49)
0° =z - Puz &, = Puz —7pu),

6 =0 n+B- 16+ W' +1)(6° - 5.
Lemma 23 We have

) _
B (&), €, €55 T2, W2, H2)

= (B&%, Vw2)g; = (82, w2dazy + (8, k2Yggreo + (v = ya( w2l (3.50)

The proof is similar to the proof of Lemma 23 and is omitted.
Step 5: Estimate for S‘Z Before we estimate S‘Z, we give the following discrete

Poincaré inequality from [56].

Lemma 24 We have

_1 a
leyllz < CUIVE Il + h™2lley, — &, lla)- (3.51)

Lemma 25 We have

p N
el + 57 1e;, = & llar,
-1 1
SE?Ppllgpa+ P Nzl + P lIgllaa+ h” 1yllga- (3.52a)

el < 77 Iplwa+ " zlle + B llglaa + B I¥loq.  (3:52b)
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Proof: First, we note the key inequality in Lemma 19 is valid with (z, p, 2) in place

of (y, ¢q,¥). This gives
IVeillgr < llebllg; + Ch™2|les, — &5 (3.53)
W Tn = 1€ R T h o :
which we use below. Next, since ai =0on 82, the basic property of %, in Lemma 16 gives
7 TP - ! 1 Voo L3R
2(8}1’ n h’gh’ h’ h) (8 )77,+||( +T2+§B'n) (8h_8h)”13'77,'
Then taking (r2, wa, p2) = (SZ , ‘92’ si) in Lemma (3.50) in Lemma 23 gives

_ 1 1 =
(e ep)z + 107+ 12+ 5B 1) (55, = &),

(B8, Vel — (82, & — £5)ag; + (v — yaw), £5)g;

T+ 1 + T;.

By the same argument as in Lemma 20, simply applying Lemma (3.53) and Young’s

inequality gives

1 1
T = (B5*, Vei)g, < IS, + 3 lleh 1, + 2l - 3135,

—~ _ - 1
3 2 4
T = (82 &}, = &1)om < 4hll6 I, + 2-llei, - 3135,

Finally, for the term 73, we have

T3 = (y = v, £3)g; < Ily = ya@)lig; 15 I
_1 7
< Clly = yu@llg; IV Nl + B2 6% = &2 llo)
_1 =
< Clly = yu@llg; (I8 Nl + h 21185 = &2 llags)

1 1 =
< Clly = ya@llz; + 7lepllz; + 77llef = &5l
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Summing 77 to 73 gives

_1 =
o e R

-1 sq+1
Sh?plpa+h™ lzllea+ ' lgllua +h> Iyl q-

Finally, (3.51), (3.52a), and (3.53) together imply (3.52b).
As a consequence, a simple application of the triangle inequality gives optimal

convergence rates for ||p — pn(u)|lg; and ||z — z,(w)|l7; :

Lemma 26 We have

Ip = pr@)llg, S HP Ipllwa+ 5 izlleq+ B Igllag + A Iyllpg,  (3.54a)

Iz = za@llz, S B2 Ipllp g+ B lzllea + B Igllug + B Iyllpq.  (3.54b)

Step 6: Estimate for |ju — Mh||gg and ||y — ynllg;

Next, we bound the error between the solutions of the auxiliary problem and the
HDG problem (3.37). We use these error bounds and the error bounds in Lemma 22,
Lemma 25, and Lemma 26 to obtain the main results.

For the remaining steps, we denote

$g=an) = qn, & =yn) = yn L5 =YW = Vi,

{p =ph) —pn Co=znW) =z Lz =7h(U) = Zp.

Subtracting the auxiliary problem and the HDG problem gives the following error equations

PB1(Lg> Ly v, wi, u1) = —(Pyu—up,ry-n+ (B -n— ht - Tl)W1>82, (3.55a)

Br(Lps {7 {7312, W2, H2) = (Ly, W25 (3.55b)
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Lemma 27 [f(Al) and (A2) hold, then

2 _
¥l =l + |5 = e+ pae) - m o+ hT ) + Tz (), 1 = ) 0
&y Tn h

-1
—{yup+pp-n+h zp+07pu-— Mh>£g-

Proof: First, we have

(yu+ pru) - n+ b 2, (u) + Tz (), u - uh>8;3 —(yup+pp-n+hlz, + Tz u— uh>52

=yl = unlZy +4&p -1+ 17 + DL —n) g
Next, 17 gives
23 (gq’ fy, éi; {p, -z _52) + %2(417’ NS _gq’ fy, 53?) =0.

On the other hand, since 1, is piecewise constant on 075, we have

%1 ((q, (y’ §§2§p, _gz’ _g'i) + %2(§p’ gz’ gf; _gq’ (y’ (57)
= ({3 )7 — Pyt —un L -+ (W' 411 = B )L,
= (L &7, = Pyt = un Gy -+ W71+ L) o

= (L )7 — = Gy - m+ L+ Tl

Comparing the above two equalities gives

Ly {)m = —un Gp - m+ 1 Lo+ T2Lo) 0.
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Theorem 8 We have

3
2

1 - 1 1
llu = unll oo Sl 0+ B2 lzlls 0 + 272 Mgl 0 + B2 Il -

Sq»

_1 _3 1 _1
Iy = yullg, S AP 2plls, 0+ 172zl + B2 Iglls, 0 + A2 Il q-

Sp,
14

Proof: Since yu+p -n =0o0n 52 and yu, + pp-n +h~ 'z, + »z, = 0on g, we

have

2 _
¥l =unly + |5 = e+ pae) - m o+ h7 2y ) + Tz ) = )y
&, T h

= ((Pi() = p) -+ b 2 () + 1oz (), 1~ up).
Next, since Z,(#) = z = 0 on 32 we have

Ilpn(w) = pllag;, < llpn(w) — Upllayg + [IMp = pllsg;

1 1
—_—— p Sn—=
Shzep], +rr lplle .

lzn@)llzo = llzn(u) =Tz + Pyz = Zp)llp0 = lleg, = & lla7; -
Some simple manipulations gives
1 1 -1 z
lu = wnlls + 15l S 02 |leh|| -+ 172 1l o + B e, — oz

By Lemma 25 and properties of the L? projection, we have

llu = unllco + ¢y i

_1 _3 1 1
ShEP 2 pllpo+ 72 1zlleq + A2 lqllan + Y72 Iyllpq-



Then, by the triangle inequality and Lemma 22 we obtain

_1 _3 1 1
ly = yullg, SEP 2 |Ipllgpg+ A2 lzlleo+ A2 Iqllan + A 72 Iyllpq -

Step 7: Estimates for ||p — pull7, l1z — zxlly; and |lq — qallg;

Lemma 28 We have

_1 _3 1 _1
|l < B E ol 0+ e H izla + B gl + B I g0

-1 _3 1 -1
182Nl < 2P 2 Ipllg, 0+ 72 llzlls0 + B2 gl 0 + RV 72 Il 0
Proof: By Lemma 16, the error equation (3.55b), and since {7 = 0 on az, we have

BoLps Lo (55 Lpr 02
= Gp G + (W 4124 3B &~ 82,6~ o
= &y, )7,
<&, 1l
Sl Vel + a2 - Zllom)

Sl Qiepliz + m7211 = o).

where we used the discrete Poincaré inequality in Lemma 24 and also Lemma 19

implies

2ol + 721122 = ¢los

1 -3 2 -1
S P, 0+ 1 2l + 1T gllg,a+ B0

76

. This
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The discrete Poincaré inequality in Lemma 24 also gives

-1
18Nl S WVl + h™2 1182 = Ellom,

-1 _3 1 -1
ShP2pll, 0+ B2 lzlls0 + 122 gl 0 + 272 VI 0 -
Lemma 29 If(Al) and k > 1 hold, then

-1 -2 —1
I2all,, < B MRl 0 + 7 Nzl 0 + 00 lgls, 0+ B Iylla-

Proof: By Lemma 16, the error equation (3.55a), and since 1 is piecewise constant on 97,

we have

B (Lgs e G5 L L 55)
= g L + 07 41 = 3B = 550,y = gt — (V- BE By
(T 1= 3B G
= ~(Pyu—up Lg -+ (B-n—h"" = 1))

= Pyt =, &g - = (B + 1)),

~(u=up, g n = (W' +12)Ly) 0
S = unllg (el + 7 o)

1 -3
S h7 = upll o (H(q“fz; +h Hgy”sﬁ)’
h

which gives

< 3
2 —_—
||§q||77’ S [|ue Mhllgz

-1 -2 -1
< EP T plly, 0+ B2 2l + B gl 0+ H 7 Iyl o
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The above lemma along with the triangle inequality, Lemma 22, and Lemma 26

complete the proof of the main result:

Theorem 3.4.2 We have

-1 _3 1 _1
lp = paully; S AP 2 plls, 0+ A2 Nzl + A 2 gl 0 + A2 Iyl 0.

_1 _3 1 _1
Iz = zllgy S B2 Uplly, 0 + B3 2l 0+ 002 llgll, 0 + B Iyl 0

If in addition k > 1, then

-1 -2 ~1
lg = gnlly; S 177 lIplls, 0+ A Nzl o+ B lIglls, o+ 127 Iyl q-

3.5. NUMERICAL EXPERIMENTS

We present numerical results for a 2D example problem on a square domain € =
[0, 1/8] %[0, 1/8]. For the results presented below, we chose 71 = 1 = 1 for the stabilization
functions. In other numerical experiments not reported here, we also chose 71 and 7 to
satisfy the conditions (A1)-(A3) and we obtained similar results.

The problem data is chosen as
f=0 ya= (2 +yD)% B=[L1], and y=1,

where s = —107>. Therefore y, has a singularity, but y; € H'7¢(Q) forall £ > 2 x 107>,
Since the largest interior angle is w = /2, we have rq = 3/2 — ¢ forall € > 2 X 1072,

An exact solution for this problem is not known, and therefore we compare the
approximate solutions computed using various values of /4 and areference solution computed

on a fine mesh with 524288 elements and 7 = 2712/2.



Table 3.1. 2D Example with k = 1: Errors for the control u, state y, adjoint state z, and the

fluxes g and p

h/N2 24 275 2-6 277 28
lg — qnlloq | 2.57e-2 | 1.32e-2 | 6.66e-3 | 3.35e-3 | 1.68e-3
order - 0.96 0.98 1.00 1.00
lp — pullog | 5.0le-4 | 1.57e-4 | 4.57e-5 | 1.29¢-5 | 3.55¢-6
order - 1.68 1.78 1.83 1.86
ly = yulloo | 2.00e-4 | 5.04e-5 | 1.29e-5 | 3.26e-6 | 8.21e-7
order - 1.99 1.99 1.98 1.99
lz = znlloq | 3.41e-6 | 5.20e-7 | 7.60e-8 | 1.08e-8 | 1.49¢-9
order - 2.71 2.77 2.82 2.85
lu — upllor | 2.40e-3 | 9.04e-4 | 3.27e-4 | 1.17e-4 | 4.18e-5
order - 1.41 1.47 1.48 1.49

For k = 1, Corollary 4 in Section 3.4 gives the convergence rates

ly = yalloq = O(RY/*7),

Iz = zalloq = O(RY/*7),

g = gulloa = Oh'™). lIp = pallgq = O™,

and
lu — upllor = O(R*7%).

Table 3.1 shows the computed errors for a variety of mesh sizes. The convergence rates
for the optimal control u and the flux g are precisely predicted by the convergence theory
presented here. The convergence rates for the other variables are higher than predicted by
the theory; this phenomenon has been observed numerically in other works on numerical
methods for boundary control problems [33, 49, 55].

For the case k = 0, Corollary 4 in Section 3.4 gives the convergence rates

ly = yilloq = O3, iz = zilloq = O, lIp = pillog = Oh'?),
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Table 3.2. 2D Example with k = 0: Errors for the control u, state y, adjoint state z, and the
fluxes g and p

and

h/N2 24 275 2-6 277 28
lg — qnlloq | 4.67e-2 | 3.27e-2 | 2.01e-2 | 1.18e-2 | 6.66¢-3
order - 0.51 0.70 0.76 0.82
lp — pullog | 1.61e-3 | 9.22e-4 | 4.81e-4 | 2.44e-4 | 1.22¢-4
order - 0.80 0.94 0.98 1.00
ly = yullog | 6-54e-4 | 2.77e-4 | 9.10e-5 | 2.83¢-5 | 8.80e-6
order - 1.24 1.60 1.68 1.69
Iz = znllon | 6.54e-5 | 1.82e-5 | 4.74e-6 | 1.20e-6 | 3.02e-7
order - 1.85 1.94 2.00 2.00
| — upllor | 5.88e-3 | 3.50e-3 | 1.92e-3 | 1.01le-3 | 5.21e-4
order - 0.75 0.87 0.92 0.96

llu — upllor = O(h'?).

As mentioned in Section 3.4, the convergence rates for k = 0 obtained in Corollary 4 are
suboptimal. Numerical results are reported in Table 3.2, and all convergence rates are
higher than predicted by the theory. Obtaining optimal convergence rates for the k = 0 case

is an interesting topic for future work.
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4. CONVECTION DIFFUSION WITH LOW REGULARITY

4.1. BACKGROUND: REGULARITY AND HDG FORMULATION

To begin, we briefly review the regularity results for the optimal control problem
and the new HDG method from Section 2.

4.1.1. Optimal Control Problem: Regularity. Theorem 6 in Section 2 implies
the regularity of the solution of the optimality system (3.18a)-(3.18e) depends on the desired
state y; and the domain Q. As is known, solutions to Dirichlet boundary control problems
can have low regularity; this causes difficulty for numerical analysis.

In Section 2, for the numerical analysis of the new HDG method we assumed Q is
convex, yg € H' (Q) for some t* € (1/2,1), and 7/3 < w < 27/3. These assumptions give
high regularity for the optimal control, i.e.,u € H"™(I') forsome r,, € (1,3/2). Furthermore,
the assumptions give g € H'¢(Q) with ry > 1/2, which guarantees ¢ has a well-defined
trace on the boundary I". We used this property in the HDG convergence analysis.

In this Section we again assume 2 is convex, but we remove the restrictions on the
desired state and the largest interior angle for the numerical analysis; i.e., we only require
t* €[0,1) and /3 < w < 7. In this case, the regularity of the optimal control can be low,
i.e.,u € H(I') for some r, € [1/2,1), and ¢ is no longer guaranteed to have a well-defined
L? boundary trace; however, the optimality system (3.18a)-(3.18¢) can be understood in a
standard weak sense.

4.1.2. The HDG Formulation. To approximate the solution of the mixed weak
form (3.18a)-(3.18e) of the optimality system, the HDG formulation considered here is
modified from Section 2 to avoid the estimation of g on the boundary. In the 2D case, recall
from Section 4.1.1 that ¢ is not guaranteed to have a well-defined L? boundary trace since

we consider a solution of the optimal control problem with low regularity.
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The HDG method seeks approximate fluxes g, py € Vj, states yp, 7, € W), interior

element boundary traces y7,7) € Mj(0), and boundary control u, € Mj,(9) satisfying

qnri)g, — nV-r)g + ()’FZ, r- ">67;l\sf +{up, ry - ">sf =0, (4.1a)
(V- qnwi)g, — (Byn Ywi)g, — (V- Byn, wi)g,
H + 1)y war; + (B -1 =71 = )T Wgq p0

HB-n—1 = h D wi = (frw)g,  (4.1b)

for all (ri,w;) € Vi, x Wy,

Pr 17, — @nV -1y +(2), 12 n)y;;l\gg =0, 4.1c)
(V- prwa)g, = n w2)g; + (Bzn, Vwa)g;

+H(h™" + )z waYag, — (W + 1+ B - )T, W2)agned = = (Vas W2), (4.1d)

for all (ry, ws) € Vi, X Wy,

(@n - 1 1Dggp0 + (071 + T YR g 00

HB-n =11 = B t)gge0 = O, (4.1¢)

for all u; € My (o),

(pn - n, :“2>6Th\sf, T «h_l +12)2n, 'u2>5771\‘92

~(B-n+ 1+ BT ) g0 = 0, (4.1f)

for all uy € My(0), and the optimality condition

(Pi+ 1. 13)g + ¥t 13)g0 + (B + T2)2h, 3}, = O, (4.1g)
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for all u3 € M;(0).
Here, 71 and 7, are stabilization functions defined on 97}, that satisfy the same

conditions as in Section 2 :

(A1) t is piecewise constant on 07},.

(A2) 1 =1+ n.

(A3) Forany K € 7, min (1, + %ﬁ -n)lgx > 0.

Conditions (A2) and (A3) imply
) |
min (71 — Qﬂ -n)|gx >0 forany K € 7y,. 4.2)

This completes the formulation of the HDG method.

Notice that formulation (4.1) is slightly different from formulation (3.4) in Section
2; specifically, equations (b) and (d) are modified. A straightforward computation shows
that both are equivalent; see, Section 3.2. Formulation (4.1) above allows us to achieve

error estimates in the low regularity case considered here.

4.2. ERROR ANALYSIS

As mentioned in Section 4.1.1, the regularity of ¢ can be low and therefore ¢ may
not have a L? boundary trace. The H (div, Q) regularity of q is critically important for the
numerical analysis.

We also require the family of meshes {7} is a conforming quasi-uniform triangula-
tion of Q. This assumption on the meshes is stronger than in Section 2; there we assumed
{71} is a conforming quasi-uniform polyhedral mesh. Therefore, the analysis in Section 2
allows for a more general family of meshes; however, the analysis here allows us to treat the
low regularity case.

We now state our main convergence result.
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Theorem 9 Let

sq = min{rg, k + 1}, sy = min{ry, k + 2}, @3)

sp = min{rp, k + 1}, s, = min{r,, k + 2}.

If the above assumptions hold and s4 € [0, 1], then

_1 _3 1 1

Hu—uukgﬁh%’ﬂmﬂwg+h% Huu%9+h%“|mu%g+hﬁznymﬂp
_1 _3 1 _1

Hy—yﬂhpih%zlmﬂ%g+h&ZHﬂ&Q+hM+HMH%Q+h”2Hﬂ@Q,
_1 _3 1 1

lp = pullg, S h°” ”mﬂmg+h%Zﬂﬂ%g+h%+”MH%g+h”2”ﬂ@g,

_1 _3 1 _1
Iz~ zllgy S B2 Uplly, 0 + B3 2l + 002 llgll, 0 + B il 0-

If in addition the inequalities in (3.31) are strict and k > 1, then

-1 522 : -1
lg = gnlly; S 177 lIplls, 0+ A" lzlls o+ B lIglls, 0+ 127 Iyl 0.

Remark 4 Note that we assume sq € [0, 1]. This is not a restriction since the case sq > 1

is treated in Section 2 on a more general family of meshes.

Specializing to the 2D case gives the following result:

Corollary 5 Suppose d =2, f =0, sq € [0,1], and y, € H" (Q) for some t* € [0,1). Let

/3 < w < 1 be the largest interior angle of I', and let r > 0 satisfy

1 1
r<rqg:=—+t"€[1/2,3/2), and r <rg:=min E,E—— € (1/2,3/2].
2 2w 2



If k =1, then

llu — Mh”g;? S hr(||p||H,+1/2(Q) + Izl greny + gl gr-12) + 1311 gr2Q))s
Iy = yulle. < B Ul + zllgran) + 1l g-zq) + 11 grarg)
lp — paullg; S hr(“P”HrH/Z(Q) + 1zl greny + gl g2y + 1Y are1200))»

Iz = znllg, S B Ul grarg) + Nzl grsng) + gl g2y + 1Y ge2@)-

If in addition r > 1/2, then

-1/2
g = gullg; S B PPl gy + 1zl grsniy + gl g2 + 19 llgrn))-

Furthermore, if k = 0 then

e = nll o < R 2Pl @) + 1zlli2g) + 11 r-1200) + 15 llrz@):
Iy = yullz; S V2PN + zllmz) + 1912y + 11 gran@),
1P = pully, S B2AIPNg ) + zllgz) + 112y + 11 s

Iz = zully, S 2PN + zllm2) + 1912 + 1 granq)-
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As in Section two, when k = 1 the convergence rates are optimal for the control and the flux

q and suboptimal for the other variables. When k = 0 the convergence rates for all variables

are suboptimal with one exception: If y; € L*(Q) only so that t* = 0, thenu € H 172(1)

only and the convergence rate for the control is optimal. Also, if r4 or rq is near 1/2, then

the convergence rate is nearly optimal for the control in the k = O case.

4.2.1. Preliminary Material I. We split the preliminary material required for the

proof into two parts. First, we give a brief overview of material closely related to the

preliminary material in Section 2: L? projections, HDG operators % and %,, and the

well-posedness of the HDG equations.
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As in Section 2, we use the standard L? projections II : [L2 Q)¢ - V,,, 1T :

L*(Q) — Wy, and Py : L?(&p,) — M, which satisfy

(Mg, r)k = (q. )k,  Vr € [Pr(K)]Y,
(Iy,w)x = Wk,  Yw € Pri1(K), (4.4)

<PMm’ ,u>e = <m7 #)e? VI,I € Pk-‘-] (6)

We have the following bounds:

lg —Hgllg; < A liqlly, q- Iy = Iyllg < B> Iyl (4.52)

1 1
Iy =Iyllgy, S V72 MIyllg0.  Iwllag, S A2 lIwllg,, Yw € W, (4.5b)

and similar projection error bounds for p and z.
In this Section, we do not use the same HDG formulation for the analysis that we

used in Section 2. We define the HDG operators %, and %, by

B1(qh, Y Y5371, W1, 1)
= (gn )7 = n V- r)g, + O 11 Mg o + (V- g wi)g,
— (Byn Vw1)g; — (V- Bypewg, + b~y + 1y widos;
+(B-n-h"" - TV Wi\ &2
~{gn-n+B -y, + 7 Gn =) + 1w = I Mg (46)
By (Phs Zhs T3 T2, W2, U2)
=Pnr)g — @V -r)g +z),r - n)gyrh\gg + (V- ppw2)
+ (Bzi Ywo)g, + (W' 2y + Tz wada;
—((B-n+h" + )7, W2) g\

~pn-n =B 0T+ h @ =T + 0@ = ) mdger- (4T)
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We emphasize that this is an equivalent definition to the one given in Section 2 that is more
appropriate to obtain error estimates in the low regularity case.

We rewrite the HDG formulation of the optimality system (4.1) in terms of the HDG
operators % and %,: find (qn, Ph» Yi> 21 37;1’, E"h up) € VpX Vi X Wy XWX My (0) X My (0) X

M}, (0) satisfying

B1(qn, Y, Y51 wi, 1) = (f, wi)g, — up, 11 )0

—{B-n=h" = T)upwi)e,  (4.8)
y Npw-n+h'z + 0z, H3)ea = —(Un, [13)co, (4.8¢)

for all (I‘l, r, wi, wp, U1, U2, ,u3) eV XV x W, x W, X Mh(o) X Mh(o) X Mh(a)

For the convenience of the reader, we recall three results proven in Section 2.

Lemma 30 For any (vy, wy, up) € Vi, X Wy, X My, we have

PB1(Vi, Whs 13 Vi Wh [h)
= vy, (W + 1 - %,B ") (Wi = ) Wh = Hidag;\ 0
— %(V Bwpwi)g + (B 1 - %ﬁ TR)Why Wh) e,
B2 (Vs Whs s Vi Wh [h)
= (p )y +{(W + 1+ %,3 ) (Wi = )y Wh = Hidgg;\ 0

1 _ 1
= 5 (V- Bwi wa)g; +{(h R 5B W wi)o.
Lemma 31 If (A2) holds, then
‘%l(qh’ .Vh, S;Z;Ph, —Zhs _’Z\Z) + %2(17}1, Zhs ’Z\.]i“ —Qh, yh’ S;Z) = 0

Proposition 2 If (A2) holds, there exists a unique solution of the HDG equations (4.8).
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4.2.2. Preliminary Material II. Next, we discuss preliminary material that is
directly related to the low regularity case considered in this Section: the interpolation
operators 10, T, hl, 7}, and their properties.

Recall we assume the primary flux g only satisfies ¢ € [H'¢ Q)14 n H(div, Q),
where rgy > 0. Therefore, the quantity ||g - n — Ilq - r|| 57 is not well defined and the HDG
analysis technique used in Section 2 is not applicable. We use analysis techniques from
[44] to avoid using the L? boundary trace of ¢. Let us introduce some notation first.

Define the H!-conforming piecewise linear finite element space W, by
Wi = {wi € Hy(Q) : wilx € P1(K), YK € Ty}

For any K € 73, let A1, Ao, ..., 4441 denote the standard barycentric coordinate functions

defined on the simplex K. Define

S(K) := S1(K) + $2(K) + -+ - + Sa+1(K), 4.9

where
Si(K) = (ﬂaj)span{ﬂajf Sy =k = o}, i=12. . .d+1.
J#i J J
Now we define the interpolations operators 7, o7 hl , Ip,. First, define mg : Lz(aK ) —
R by

1 1
mi(p) = = ) mfeu, (4.10)

ecoK
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where |e| denotes the d — 1 dimensional Hausdorff measure of e. Next, the interpolation

operator 7, hO s L (&) — W is defined as follows:

70 mg () if a is an interior node of 7y,
ua) =" Kewa
h

0 if a is a boundary node of 7y,

where w, := {K € 7}, : a is a vertex of K} and #w, denotes the number of elements in w,.
Next, the interpolation operator 7, hl on L2(Q) x L?(&y,) is defined elementwise as

follows: for each K,
I} w, g = Tg(w, ) = wi +wo,
where (w1, w2) € S(K) X (J]; 4;)Pk(K) is uniquely determined by

<W1’ m>e = <:u’ m>e,

(w2, M)k = (W —wy, n)g,

for all (m,n) € Pr(e) X Pr(K) and e € 0K.
Finally, for (w, ) € L*>(Q) x L?(g},), we define the third interpolation operator 7},

by
70 1 0 0
Lyw, ) =1 u+ 1, (w1, uu—1, .

It is straightforward to verify that 7;, and 7, hl have the following properties; see [44].

Lemma 32 For any (w, u) € L>(Q) x L*(&p,) and K € T, we have

Ln(w, ), n)g = (w, n)g, (4.11a)

In(w, ), m)sx = (p m)ak, (4.11b)
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for all (m,n) € Pr(e) X Pr(K) and e € K, and
Iz, (w. i < lwlig + n* |l llok. (4.12)
Moreover, if ulr = 0, we have
Th(w, p) € Hy(Q). (4.13)
In the next three lemmas, we assume (v, wp, up) € Vi X Wy, X M), satisfy
1)y — Wi, V-r)g +{up, r - n)sg, =0, 4.14)

for all r € Vj,.

We begin with a key inequality; see Section 2 Lemma 4.7 and also [56].

Lemma 33 If (v, wp, up) € Vi X Wy, X My, satisfy (4.14), then

1
IVwall < Ivallg, + B2 llws = pallog, - (4.15)

The next two results are similar to Lemma 3.4 and Lemma 3.6 in [44]. Here, we
have a different space M), (with polynomials of degree k + 1 instead of k) and we do not
have a variable diffusion coefficient. However, the proofs of the next two results are very

similar to the proofs in [44] and are omitted.

Lemma 34 If (v, wp, up) € Vi X Wy, X My, satisfy (4.14), then

_ _1
h! § lwp, — mg (ui)llk + h™2 § | n — mi (un) llox
KeTy, KeT,

1
S vallg, + A2 llwh = pnllag; - (4.16)
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Lemma 35 If (vi, wp, up) € Vi X Wy, X My, satisfy (4.14), then

1
VI, (wh, u)ll; S Nvallg, + 2 lwa = tallog;s (4.17a)

_ 1
W wh = iwin p)llg, S sl + B2 lwy = pallag; - (4.17b)

4.2.3. Proof of Main Result. Now we move to the proof of the error estimates. We
follow the strategy of Section 2 and split the proof into seven steps. In the first five steps
we use the rewriting of operators % and %, in an explicit way and the proofs are different
from the corresponding ones of Section 2. Steps 6 and 7 use the properties of % and %,
recalled in 30 and 31 and are very similar to Steps 6 and 7 in the high regularity case in
Section 2. We include these proofs here to make this Section self-contained.

We first bound the error between the solution of the mixed form (3.18a)-(3.18d) of

the optimality system and the solution
(qn (), pr(u), yu(u), 2, (w), y;, (), 7, (1)) € Vi X Vi X Wi X Wy, x M, (0) X My(0)

of the auxiliary problem

t%l(qh(u)’ )’h(u), %(Uﬁrl, Wi, :ul) = (f’ Wl)‘];, - <PMM’ Fi- n)g;?
—{((B-n-h"! = T1) Pygit, 1), (4.18a)

Bo(pn(u), zn(w), 7y W); 12, wa, fr2) = (Y () = Ya, w2)7; (4.18b)
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for all (ry, ro, wi, wo, u1, u2) € Vi X Viy X Wy, X Wy, X My (0) X My (0). As in Part I, we use

the notation

6! = q - lg, &gl =Tlgq — qu(w),
& =y—TI Y = Ty — yu(u)
y - Iy, &, = My — yu(w),
. ! (4.19)
6’ =y~ Py, &, = Pyy — yn(u),

61=B-n8 + ™ +1)( - &),

where yj,(u) = 7 (u) on & and y,(u) = Pyu on 8‘2. This definition gives 8% =0on 82.

Step 1: The error equation for part 1 of the auxiliary problem (4.18a)

Lemma 36 We have

Bi(&], €,,8), 71, W1, 1)
=—(V-6%,w)g —(Ilq - n,ll1>7;l\gg + (B, Vwi)g

+(V- B, widgy = (61, wdog, + (81, k1) g o0 (4.20)
Proof: Using the definition of %4, in (4.6) gives

%, (Ilq, 11y, Pyy, ri, wi, 1)
= (g, r)g; = ALy, V- ri)g; + (Pyy, 11 - Ry, .0
+ (V- 1g, wi)g, — (BIy, Vwi)g, — (V- BILy, wi)g,
(™ )y, widag, + (B 1= b~ = 1) Py, widgq o0

~(Mg - n+B-nPyy+(h" + 1)1y = Puy), f1) s, z0-



Using properties of the L? projections (4.4) gives

%1(Ilq, Iy, Pyy, ri, wi, ui)
= (g )7 = OV rO)7 + (011 Mgy 0
+(V-q,w)g = (V-0 w)g — (By, Vwig; + (B6”, Vwi)g;
— (V- By.wi)g, + (V- B&”, wi)g, + (W~ + 1)y, widas;
By W) g0 = (B Wggi 0 = (T + TPy w1 a0
— (g - 1 1) g0 = (B - 1Y, g0 + (B 1OV 1)y o0

(R TS = 0, i) g -

The exact state y and flux ¢ satisty

(@107 = O,V r)g + 1 m)gg 0 = = n>gg,
(V-q,wig, — (By, Vwi)g, — (V- By, wi),

+(B - ”y,W1>37,;\82 = —(B - nu, W1>g;9' + (f, Wi,
for all (r1,w;) € V, X Wj,. This gives

#1(lq, 11y, Pyy, ri, wi, u1)
=—(u,ry- n>gﬁ —(B- "M,W1>8g + (fow)g, — (V- 69, wi)g + (B, Vwi)g,
+ (V- B, wi)7; + ((h™" + 1)y, wiag;
— (B -1 W) ggp0 = (' 4 T)PUY W) o — (TLG - 1 1Dy

+ <ﬁ . n(‘ﬁ, /Jl>(97;,\82 + <(h_] + Tl)(dy - 5?)’ /’“)6‘7;1\53'
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Here we used (B - ny, 1i)y; & = 0, which holds since u; is a single-valued function on the
interior edges. Subtracting part 1 of the auxiliary problem (4.18a) from the above equality

gives the result:

%1(62, 8%, ei, ri, Wi, 11)
= —(V- 8%, wi)g + (B8, Yw)g + (V- B, wi)g:
+((h™ + )y, wiag, — (B - n8”, wiYag, = ((h™" + 1) Pary, widas
— (g 1, 1) g0 + B 1S, 1) g0 + (T + 1O = 6, 1)y o0
= —(V- 6%, wi)g, + (B8, Ywi)g, + (V- B6", wi)g,

= (g - 1, (1)ggc0 = (61, Wo, + (01, L)y e0-

Step 2: Estimate for SZ

Lemma 37 We have
_1 v _
ledllz +h™2lle, — &) llagy S h*ellqllaq + h> ! Iyl q - (4.21)

Proof: First, take (v, wy, up) = (‘9;11’ SZ, sg) in the key inequality in Lemma 33 to

obtain
_1 3
Vel S llefllg + h2lle, — & lla7, - (4.22)
Next, since SZ =0on 82, the energy identity for %, in 30 gives

9 vy 9.5 .Y
%(sh,sh,sh,sh,sh,sh)

- 1 1 5 1 1
= (o gy + 107 + 71 = 2B - )2 (8 = &l + S 1=V - B) 22317,



Take (ry, wy, u1) = (sZ, sz, si) in the error equation (4.20) in Lemma 36 to obtain

_ 1 1 5 1 1
(& e + 1™+ 7= 2 m)2(e) = el + S 1(=V - B)2 eyl
= _(V : 5q7 8%)7—}, - <Hq n, 8;:>(97;l
+ (B8, Ve))g + (V- B8, e))g; — (81, €] — €))ar

=T+ +T3+ 14

We rewrite the term 77 using the interpolation operator Zj,:

Ti = —(V-8%&))g — (g - n,&) s

= —(V-q.e)5 + (VMg &)y —(TUg - n,&))s7

= -(V-q.&) — Ii(e).e)7 — (V- . Lu(e) €))7
+(V-Tg,&) - (Mg - n,&)as;

= —(V-q.&, - Ii(e), &) + (@, VIi(E) ey
+(V-Mg,&) - (g - n,&));

= —(V-q.&, - Ti(s), &) + (64, VI(e), €))7
+ (g, VIi(s), ) + (V-Tg, &) — (Mg - n, &) )

= _(V - q, 83; - Ih(gi}l’ 8?,:))7;, + (6q’ VIh(SZ, 8%))72'
The last step holds since

(Mg, VIi(s), ))7 = Mg - 0, Li(e,, €)o7 — (V- g, L), €))7,

=(Mq - n &7 — (V- Mg, &),)7.
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This implies

Ty < IIV - glig s} - Tu(s)s e)llg; + 162151V T (e el
_1 3y _1 v
< h(llslllg, + 12 e = &) llag) + 1 llgllaallellly + k2 ls) - &) llag)

_1 3y
< Billgllaallellly + h2le - & llag)-

Note that we used s4 € [0, 1].

For the terms 7>, 73, and T4, apply (4.22) and Young’s inequality to obtain

1 1 5
T = (B, Vey)y, < CI&llz, + Zllsgliz, + 77 llej = 31157
, 1 1
Ty = (V- Bo’, )7, < CI&’lig, + S 1=V - B)2 ez

—~ —~ —~ 1 —~
2 2
Ty = ~@1.e) = &) < 4hll61155, + - lle) = &) 155

Summing the estimates for {T,-}?:1 gives the result.

Remark 5 In Section 2, we defined 51 =01-n+p- né’ + (W' + 11)(8 - 5?). It is

not meaningful to estimate ||61lla5; if we only assume rq > 0. In this Section, we have

—~

o= néY + (W' +19)(67 - 55), and we can estimate ||5\1||a7;l.

Step 3: Estimate for SZ by a duality argument

Next, for any © in L?(Q) we consider the dual problem

®-V¥=0 in Q,
V- ®+V-(B¥Y)=0 in Q (4.24)

¥Y=0 on 0Q.

Since the domain € is convex, we have the regularity estimate

@10 + I¥]l20 < Creg [1Bllq - (4.25)
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We use the following notation in the next proof for the estimate of SZZ
SP—@-Md, Y=v-Nv, '=v-P,V. (4.26)
Lemma 38 We have

1
eyl < A llgllgan + B IVllpo

Proof: Wetake ® = —¢, inthe dual problem (4.24) and (r1, wi, 1) = (II®, ITW, Py'¥)

0

s WE have

in the error equation (4.20) in Lemma 36. Since ¥ =0 on ¢

%1 (8 Hq) H‘P PMlP)

= (SZ, N®); - (s, V - T®)g; + (s, D - 1)o7 e
+ (V- el TIW)g, — (Be), VIT®)g; — (V- B, TIP)g; + (W~ + 11)&), TP)s;
+{((B-n ="' = 1)), TPy
—(&l n+B-ne + (K +1)() - €), PuPos;

= (8 (I))7— (8 V. (I))(];l + (8y V. 5(1))7;1 + <8%, 1o - n>a7ﬁ - (SZ, VT)%‘!
+ (&1 - n, W)z, — (Bey, Vg, + (Be), V6 '), — (V- Bey, ¥,
+ (V- Be), 6 )y, — (& n, Py Wyaz, — (B - ne;, 6" or,;

—((h (e - ), 8% = 6V )ag;.

Here we used (8 - n&), ¥)s7; = 0 and (B - ne}, Pyy®)y7, = 0. which both hold since & is

7]

a single-valued function on interior edges and si =0onegj.

By the same argument as in the proof of Lemma 37 for the term 77, we have

(), V- 5‘1’)7;l+<s N® - n)yg

= (&) - In(s), ),V - ®)g; — (VIu(e), 7),6%)g;.



Next, integration by parts gives

(Be), V6 ) = (B - ne), 6" Yo, — (V- B, 6" ) — (B~ Ve, 67 ).
h h

This implies

B (e, &), 80 IO, ITY, Py ¥)
= lle)li. + (B - n(e), —£,),6 a7, — (Ve,, 6™ ),
+ (&) = In(ey, &),V - ) — (VIu(e), €)), )

—(hNe) ) +11(e) — 7). 07 =6 Yo
Also, since ¥ = 0 on 82, the error equation (4.20) in Lemma 36 gives

Bi(e, 8, 87 IO, TTY, Py ¥)

= —(V- 69,11V —(Mq - n, Pyy¥)s.

+ (B8, VII¥)g + (V - B6*, I¥) — (61, TT¥ — Py, W)y
= —(V-q,II¥®)7 + (V-Mgq,¥)g — (g -n, ¥

+ (88", VIIW)s + (V- BS*, TI¥). — (61, IT¥ — Py W)as,
=(V-q.6")5 - (V-q, W) + (V-Tgq, V)7, — (Mg - n, V),

+ (B8”, VIIW)7 + (V- B&”, ITW)g; — (61, TTV¥ — Py W¥)oe;,
= (V-4,6")7, + (¢, V¥)g, - (g, V¥)g,

+ (B8, VIIW)7 + (V- B&”, ITW)g; — (61, TTV¥ — Py W)or,
=(V-q,6%) + (69,V6 )y + (BS?, VIIV)7;

+ (V- B8, TIW)g — (61, TI¥ — Py ¥)og;.
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The two equalities above give

leyllz. = —(B - n(s) — £),6" Yo, + (V&) BS" ), + (BS*, VIT¥),
+ (V- B TIW)g; + (B +11)(&) — &) + 61,67 = 6V)am
— (&)~ Ti(e}, £)), V- 6%)5 + (VIi(e), ), 6®);

+(V-q,6%)+ (69,95
9

= R;.
i=1
Bounds for R; to Rs have been obtained in Section two; we have
5
1 ,
DR S 0 lgllag + B Iyl )liE) I

i=1

For the terms Rs and R7, Lemma 35 and Lemma 37 give

Rs = —(g] — Ii(&), 8)), V - ®)g;
< &) - Tn(e), ez IV - Dllg;
< h(ef]l, + ) = £l - @i,
S B gl + B 1yllp0)lle) ]I,
Ry = (VIi(e),€)),6%)g;
< IVZi(e), el 16l
S hlet]l,. + 2 le) = exlam) 16% g,

1
S (W Iglla g+ 1Y 1Iyllp o)l g

99
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For Rg, we have

Ry < IV - qlig 6" g, < AWl

< el
Applying the triangle inequality for Rg gives
Ro < 162015 1V6% Il S B¢ ligllga ll€) I

Using s4 € [0, 1] and summing the estimates for Ry to Ry completes the proof.

The triangle inequality gives optimal convergence rates for ||q — gx(u)l|l7; and

|y = yn(@)ll7:

Lemma 39
g — gn@llz; < 16207 + lletllg < h*ligllun + B! Iyl .a- (4.27a)
Iy = ya@ iz, < 116%Ml7; + eyl S hiat! lgllgaq+h™ IYllpq- (4.27b)

Step 4: The error equation for part 2 of the auxiliary problem (4.18b)
Next, we estimate the error between the exact state z and flux p satisfying the mixed
form (3.18a)-(3.18d) of the optimality system and the solutions z;,(z) and pj(u) of the

auxiliary problem. Define

6F = p - Tp, eh =Tp - pp(w),
6 =z-1lz, &, =z — zp(u),

R R (4.28)
6° =z - Puz, &, = Puz —zp(u),

6= —B-n6* + (W™ + 1) (6% - &),

where 7;(u) = Z},(u) on & and Z;,(u) = 0 on 8(2. This gives &; = 0 on 82.



101

Lemma 40 We have

B (e, &5, €%, 12, wa, 12)
= _(V . 5P’ W2)7;_l - <Hp n, /J2>('j7;l\82 - (ﬂéz’ VWZ)(];,

+ (y = ya(), w2)7; — (82, wadar, + (82, H2) o750\ (4.29)

The proof is similar to the proof of Lemma 40 and is omitted.

Step 5: Estimate for S‘Z We use the following discrete Poincaré inequality to estimate

Lemma 41 We have
_1 =
el < CUIVe;llg + h™2lle; — &) llog;)- (4.30)
Lemma 42 We have

p N 3
b, + B2l = e3llom
-1 1
SEPpllga+ P llzllgza+ P llgllaa+ 22 llyllpqas (4.31a)

leill, < 77 Iplwa+ " zlle + B liglaa + h Ivlog.  431b)

Proof: First, take (v, wy, up) = (S‘Z, 82, si) in the key inequality in Lemma 33 to

get

_1 a
IVl S s llgs + B2 lles = &2 llag; (4.32)



Next, since si =0on 82, the energy identity for %, in Lemma 30 gives

P o2 o7 P 7 o2
%2(8h’8h’8h’8h’8h’8h)

_ 1 1 = 1 1
= (e, )7 + 17+ 2+ 2B - )2 (ef = 2Dl + S 1=V - B)2 el

Take (rp, wo, ) = (85 , 82, ai) in the error equation (4.29) in Lemma 40 to obtain

_ 1 1 - 1 1
(& e)m + I(h" + 1o+ B m)2 (8, = &)l + 5 1=V - B) &I,
= (V- 6P, &) — (p - n, & )ar;
— (B, Ved)g — (62, &5 — &)a7 + (v — ya(w), 5)g;

=T +T,+T5+1T4.
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By the same argument as in the proof of Lemma 37, apply (4.32) and Young’s inequality to

obtain

T = —(V- 6P, &) —(Mp - n,& Yo,
= (V- p.& — I(&5, &g + (0, VI (g5, £
= (V- 6P, & — Ii(ed, €9))g + (67, VIu(ei, €9))7,
< IV - Pl les, — TG, )l + 167 I IV (55, )
< CRIT - 071 + CUSPIE, + 2l + oles = &3
Ty = ~(B5°, Vel < CN°I, + gliehll, + ol 5l

- - - 1 1 -
Ts = ~(60, &}, = & )a7; < 8hll6allyy, + Sllepllz, + o-llef = &5
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For the term T4, we have

Ty = (y — yn), €))7, < ly — yn@)ll7; lle} I
_1 a
< Clly = yn)llg, (IVe, I, + h™2lle;, — &) llo7;)
_1 a
< Clly = ya)llz; (lep g, + h™2 €5, = &5 lla;)

1 1 =
< Clly = ya@llz; + gliehlly; + llef = &5l

Summing 77 to Ty gives (4.31a); then (4.30), (4.31a), and (4.32) together imply (4.31b).

The triangle inequality gives optimal convergence rates for ||[p — ps(u)lls; and

Iz = zn()ll7;:

Lemma 43

Ip = pr@)llg, S HP pllwa+ 5 izlleq+ B Igllag + A Iyllpg,  (4.332)

Iz = za@llg, S B2 Ipllp g + B lzllea + B0 Igllug + B Iyllpq.  (4.33b)

Step 6: Estimates for |lu — up|l o and ||y — yall;
h n
To obtain the main result, we estimate the error between the solution of the auxiliary

problem and the HDG discretized optimality system (4.8). Define

Cg=qn) = qn Ly =yn(W) = yn L5 =Yn(u) = Y

p =prW) —pn Lo=zn) =z =20 (U) = 2p,

where y, =y on &7, y, = uj, on sg, Zn =7, ong}, and 7, = 0 on S‘Z. This gives ¢z = 0 on

0

Sh.
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Subtracting the two problems gives the error equations

PBr(Lgs Ly L3P w1, 1) = —(Pyt —up vy -m+ (B-n—h' - TOW1)2, (4.34a)

PBr(Lps {7 {712, W2, 2) = (Ly, W25 (4.34b)

Lemma 44 [f (Al) and (A2) hold, then

2 _
vl =unlZ + ||| = e+ pa) - m+ B 2 @) + Tz (), 1 = ) o
€ Tn h

—(yup +pp-n+h g+ Tz u— Mh>82-

Proof: We have

(yu+puu) - n+h 2, (u) + 1224 (), u — uh),gz ~{yup+pp-n+h7 zy + Tazpu - uh>52

2 -1
:7’||u_uh||ga+<§p'n+h §Z+T2§Z’u_uh>gz'
h

Next, Lemma 31 gives

‘%1 ({q» {y, gi’ gp’ _fz’ _52) + %2({17’ gz’ gE; _gq’ {y, (y) =0.

Also, since 1, is piecewise constant on d7; we have

%1 (gq’ gy’ §§§§p, _gz’ _52) + %2({11’ gz’ g’i; _gq, {y’ gﬁ)
= ({y &)1 = Pyt —un Lp -+ (W' 471 = B )L
= (Ly &) = (Prau = Lp - 1+ BT+ 12l 0

= ({y )7 = —un Gp - m+ 1 L+ T2l 0.
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The above equalities yield
Ly &) = = Gp - m+ 1L+ L) 0.
Theorem 10 We have

_1 _3 1 -1
lu = unlleo S B2 Ul 0+ B izl q + B2 Dgl, 0+ 57 Iyl 0,

_1 _3 1 _1
Iy = yullg, S AP 2plls, 0+ 72 Nzl + 72 gl 0 + A2 Il q-

Proof: The optimality conditions yield yu+p-n = 0and yu,+pp-n+h='z,+1z), =

0 on 82. Therefore, the above lemma gives

2 _
¥l = wnly + |5 = v+ pa) - m+ B 20) + Tz () = )0
&, T h

= ((pn() = p) - 1+ h™ 2 (u0) + T2z (), 1 = up) o

Since 7;,(u) = z =0 on 82, we have

lpn(u) — pllgg; < llpn(u) — Upllyg, + Ip — plls;
_1 o 1
Shz|eh], +nrE lplle o,

||Zh(u)||82 = |lzp(u) =z + Iz — 2+ Pyz - Eh(u)llgg

< Il ~ 5l + M1z — 2ll0.
This implies

< =P sp—1
lu = unlls + 18yl S W72 |lep || + 172 1pllw

-1 z _3
+ 1 EE = & llag + 3 16l
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Lemma 42 and approximation properties of the L? projection give

e = unllyg + 12,

_1 _3 1 -1
ShP 2 plgp o+ h 72 zlleq + h 2 gl + A2 yllpq -

The triangle inequality and Lemma 39 yield

3

_1 4l 1
ly = yullg, SEP 2 |Ipllgpg+ A5 2 lzllzo+ A2 Igllan + A 72 Iyllpq -

Step 7: Estimates for ||p — pullg;, |z — zallg;, and |lq — gxll7;

Lemma 45 We have

_1 _3 1 _1
Ioll, < B2 PG, 0+ B Izl + 107 Nlglly, 0+ 157 (V10

1 3 1 oL
1¢:Nl7 S AP 2 Iplls, 0+ 172 Nzl + 972 Iglls, 0 + A2 Il q -

Proof: By the energy identity for %, in Lemma 30, the second error equation (4.34b), and

0

since {z = 0 on g, we have

Bl Lo (55 Lpr (02
= (G Gy + U7 44 5B )L~ £2). &~ Gom,
= Uy L),
<&, 1zl
Sl Vel + a2 - Zllom)

Sl Wl + h2112: = o).
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Here, for the last two inequalities we used the discrete Poincaré inequality in Lemma 41

and Lemma 33. This gives

_1
1o, + B¢z = &l

_1 _3 1 _1
ShP2pllg, 0+ h 2 Nzl + A2 gl 0 + A2 Iyl Q-
Using the discrete Poincaré inequality and Lemma 33 again yields

-1
18Nl S WVl + h™2 118z = Ellag,

S P plly, 0+ 17 2l + R gl 0+ h 77 Iyl 0
To obtain a positive convergence rate for ¢, we need
ry>1 r;>2 rg>0, rp>1 (4.35)
Lemma 46 If(Al), (4.35), and k > 1 hold, then

-1 s,—2 -1
I2all,, S P IR0 + 2 Nzl 0 + 00 llgls, 0 + B Iyl
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Proof: By the energy identity in Lemma 30, the first error equation (4.34a), and since 7 is

piecewise constant on d7;, we have

BrLy Lo G5 g £ )
= (g L + 07 471~ 5By = 5.6y = Gt — (V- B L)
(O 1= 3B MGGy
= ~(Pyu—un &g n+(B-n—h"' =1)y),0
= ~(Pytt = up, L -1 = (7 +12)4y) 0
= —~(u—up g n— (" + 1))
Sl =unllg (el o + 17 50

< = wnllgg (|, + 17 [0

This gives

< B3
Iall,, S 777 =l

sp—1 522 : sy=1
SEPT Pl + h T lzlls o + P llglls, 0+ AT Iyl -

The above lemma, the triangle inequality, Lemma 39, and Lemma 43 complete the

proof of the main result:

Theorem 11 We have

_1 _3 1 1
lp = pully, S h°” ”mﬂmg+h%Zﬂﬂ&g+h%+”MH%Q+h”ZHMMQ,

_1 _3 L _1
Iz = zllgy S B2 plly, 0 + B3 2l + 002 gl 0 + B Iyl 0
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If in addition (4.35) is satisfied and k > 1, then

-1 -2 -1
lg = gnlly; S 177 lIplls, 0+ A" Nzl + B lIglls, o+ 127 Iyl q-

4.3. NUMERICAL EXPERIMENTS

We present numerical results for a 2D example problem similar to examples from
[11, 33] with B = 0. We consider a square domain Q = [0, 1/8] %[0, 1/8] C R2, and choose

the problem data
f=0, ya=*+y)'3, B=[1,1], and y=1.

The largest interior angle is w = m/2, and therefore rq = 3/2. Also, wehave y; € H 113-2(Q))
for any & > 0, and therefore r; = 5/6 — ¢ for any € > 0. For this example, the value of r4
restricts the guaranteed regularity of the solution.

We do not have an exact solution for this problem; therefore, we generate numerical
convergence rates by computing errors between approximate solutions computed on differ-
ent meshes. Specifically, we compare approximate solutions computed on various meshes
with the approximate solution on a fine mesh with 524288 elements, i.e., & = 2~'2v2. For
all computations, we take 7, = 1 and 71 = 7 + B - n so that (A1)-(A3) are satisfied.

When k = 1, the guaranteed theoretical convergence rates are given by Corollary 5

in Section 4.2:

Iy = yullog = O(h09), 1z = znlloo = O(R*7),

lg = gulloq = O('*7), lp = pallog = OH°72),
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Table 4.1. 2D Example with k = 1: Errors for the control u, state y, adjoint state z, and the

fluxes g and p

h/N2 24 275 2-6 277 28
g — qnlloq | 1.45e-1 | 1.00e-1 | 7.41e-2 | 5.63e-2 | 4.30e-2
order - 0.53 0.44 0.40 0.39
lp — Pulloq | 2.67e-3 | 9.65e-4 | 3.55¢-4 | 1.35e-4 | 5.20e-5
order - 1.47 1.44 1.40 1.37
Iy = yalloq | 1.00e-3 | 3.32e-4 | 1.21e-4 | 4.60e-5 | 1.80e-5
order - 1.60 1.46 1.39 1.35
Iz = zalloq | 591e-5 | 1.21e-5 | 2.43e-6 | 4.84e-7 | 9.63e-8
order - 2.29 2.32 233 2.33
lu —upllor | 1.31e-2 | 6.38e-3 | 3.32¢-3 | 1.81e-3 | 1.00e-3
order - 1.03 0.94 0.88 0.85

and

lu — upllor = O(K/°7%).

Table 4.1 shows numerical results for this case. As in Section 2, the numerically observed

convergence rates in Table 4.2 match the theory for the control u and the primary flux ¢,

but are higher than the theoretical rates for the other variables. As mentioned in Section 2,

similar convergence behavior has been observed in other works [33, 43, 49, 55].

Next, for k = 0, Lemma 5 gives the suboptimal convergence rates

Iy = yalloa = Oh'?7), iz = zlloq = Oh'™), lIp = pillgq = Oh'/7),

and

lu — upllor = O(h'*7%).
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Table 4.2. 2D Example with k = 0: Errors for the control u, state y, adjoint state z, and the

fluxes g and p

h/N2 24 275 2-6 277 28
g — qnlloo | 2.22e-1 | 1.69e-1 | 1.22e-1 | 8.92e-2 | 6.56e-2
order - 0.39 0.47 0.46 0.44
lp — pullog | 8.60e-3 | 5.10e-3 | 2.75e-3 | 1.43e-3 | 7.31e-4
order - 0.75 0.90 0.94 0.97
ly = yullog | 2.96e-3 | 1.33e-3 | 4.91e-4 | 1.82¢-4 | 6.97e-5
order - 1.15 1.44 1.43 1.39
Iz = znllon | 3.82e-4 | 1.08e-4 | 2.89e-5 | 7.48e-6 | 1.90e-6
order - 1.82 1.91 1.95 1.97
llu — upllor | 2.83e-2 | 1.79e-2 | 1.07e-2 | 6.14e-3 | 3.47¢-3
order - 0.66 0.75 0.80 0.82

As in Section 2, we observe much larger numerical convergence rates for all variables.
Improving the analysis for the k = O case is again an interesting topic we leave to be

considered elsewhere.
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5. CONCLUSIONS

We proposed HDG methods to approximate the solution of optimal Dirichlet bound-
ary control problems for the Poisson and convection diffusion equations. For the Poisson
equation, we used an existing HDG method and obtained a superlinear rate of convergence
for the control in 2D under certain assumptions on the domain and the target state y;. We
also considered a Dirichlet boundary control problem for a convection diffusion equation
and made two contributions. First, for a polygonal domain we considered a very weak mixed
formulation of the PDE, and established well-posedness and regularity results for the PDE
and the optimal control problem. Next, we proposed a new HDG method to approximate
the solution of the optimality system and used established optimal superlinear convergence
rates for the control under certain assumptions on the domain and the desired state. Finally,
we removed the restrictions on the domain and the desired state and used very different
analysis techniques to prove optimal convergence rates for the control. As far as we are
aware, this is the first work to explore the analysis of this Dirichlet control problem and the
numerical analysis of a computational method for this problem. We presented numerical
results to demonstrate the performance of the method.

Our results indicate HDG methods have potential for solving more complex Dirichlet
boundary control problems. We plan to investigate HDG methods for Dirichlet boundary
control of other PDEs, including convection dominated diffusion problems and fluid flows.
These problems may involve solutions with large gradients or shocks, and it is natural to

consider HDG methods for such problems.
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