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INTRODUCTION 

In order to make possible better, more efficient equipment, a 

higher and higher rate of heat transfer has been the goal of engineers 

for nmny years. The need for heat transfer rates never thought of 25 

years ago has been brought about by the advent of modern high­

performance devices such as nuclear reactors and rocket motors. "A 

heat release of about 40,000 Btu/hr.cu.ft. is considered good practice 

in a modern boiler, but in a rocket or a nuclear reactor it may be 

1,000,000,000 Btu/hr.cu.ft." (1) This heat must be removed by transfer 

to a coolant or converted into work or the device will fail since in 

these devices the heat release is independent of the heat removal rate. 

When heat is applied to a container containing a fluid such as 

water, the fluid adjacent to the surface is heated and then replacred 

by the colde~ less dense fluid from the top of the container. In 

this manner, convection currents are created and heat is transferred 

to all parts of the fluid. This gravitational effect is called 

natural convection. If the surface temperature is greater than the 

saturation temperature of the fluid, bubbles of vapor fonn, and the 

convection current, and thereby, the heat transfer rate increases 

greatly due to the large difference between the density of the vapor 

and the fluid. This process, when the heating surface is hotter than 

the saturation temperature but the bulk fluid temperature is less than 

the saturation temperature, is called subcooled nucleate boiling or 

(1) All references are in bibliography. 
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local boiling. If the gravitational effect causing natural convection 

can be increased many times over and combined with the turbulent nature 

of forced convection, an increase in heat transfer should be realized. 

The multiplication of the gravity effect in natural convection 

can be achieved as done in a centrifuge, by causing the fluid to move 

in a curved path, thereby creating centripetal acceleration many times 

greater than gravitational acceleration. The resulting transport of the 

hot fluid from the heating surface and the replacement by the colder 

fluid should cause an increase in the heat transfer coefficient. 

The curved flow requir~d can be generated by forcing the water 

to flow in a helical path down a test section from which heat is 

transferred to the water. Fluid flow with combined axial and 

tangential components of vel~city is termed source vortex or simply 

vortex flow. 

It is the purpose of this. investigation (1) to design and build 

apparatus for the determination of the heat transfer film coefficient 

when using an induction heater to generate heat in the test section, 

(2) to check the accuracy of the measurements by determination of the 

film coefficients for linear flow, the values of which are quite well 

known and (3) to make preliminary evaluation of the effects of vortex 

flow on heat transfer. 



LITERATURE SURVEY 

Any of the various heat transfer tex tbooks provide background 

material on heat transfer to non-boiling I.-Tater flowing in tubes. 

McAiliuas (2) s~rizes the principle convective heat transfer correlation 

equations, and b . .;o recent books by Bonilla ( 3) and Krei th ( l) give much 

of the new information which has been found in recent years about 

boiling heat transfer. Rohsenow (4) gives an excellent discussion on 

all phases of boiling heat transfer. The theory behind and a descrip­

tion of the apparatus used at Argonne National Laboratory to measure 

straight flow ~~ter film coefficients is given by Rohde (5). 

Literature on heat transfer to water in vortex flo1.; is meager. 

Burnout of tubes with water boiling in vortex flow has been studied by . 

Ga~ill and Greene (6) (7). They report a maximum attained burnout 

heat flux of about 50 x 106 Btu/hr.sq.ft., which is several times 

larger than the usual value for linear flow. They used spiral ramp 

ar:1.d tangential slot vortex generators to produce the s-vlirl in small 

diruneter short tubes. 

Kreith (8) (9) has studied analytically and experimentally the 

effect of curvature on the film coefficient fo.r non-boiling heat 

transfer. The studies were made for flo1.-J" in curved channels with radii 

of an inch and a half and greater. He found a 25 to 601o increase in 

the Nussault number for a concave surface over that for a convex surface 

at the same fluid velocity. 

Krei th and Hargolis ( 10) have studied the heat transfer to swirling 

air and non-boiling water. The swirl was introduced by twisted strips 

and coiled wires in tubes of about one half inch and one ..inc:h in 
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diameter. They report nearly a fourfold increase in the Nussault number 

for s1-virl flow of water over that for linear flow at the same mass 

flow rate. 

Several studies of curved fluid flow without heat transfer have 

been made particularly in connection with investigations of the Ranque­

Hilsch energy separation effect in compressible fluid flow. The latest 

include the analytical and experimental study of Lay (ll) and the 

analytical study of Deissler and Perlmutter (12). Treatments of 

curved incompressible fluid flow are those by Marshall (13), Wattendorf 

(1 4 ), Einstein and Li (15) and Eskinazi and Yeh (16). 



APPARATUS 

The apparatus constructed and used by the author was designed to 

pem1it detenmination of the heat transfer film coefficient for linear 

flow as a check on the feasibility of using the induction field as a 

heat source and to make preliminary evaluation of the effect of vortex 

flow on the film coefficient. The apparatus consisted of a tangential 

orifice vortex generator designed with removable plug for linear flow 

tests situated upstream from a steel pipe test section. The water used 

in the tests flowed out of the generator, through the test section, 

into a mixing chamber for temperature measurement, and then into a 

weighing tank. The coil from the 9600 cycle per second induction heater 

was located around the center portion of the test section. Figure 1 

shows a schematic diagr,am of the equipment and Figures 2, 3, and 4 are 

general views of the apparatus located in the Mechanical Engineering 

Laboratory. 

VORTEX GENERATOR 

Several different methods of generating the vortex flow were 

investigated. A twisted steel strip placed down the axis of the test 

section was considered initially. Since an induction field was to be 

used as a heat source and there would be heat generation in the strip 

proportional roughly to its volume, it was decided to investigate the 

tangential orifice type of vortex generator. Here the vortex is 

created by injecting the water perpendicular to the test section axis 

from several orifices tangent to the test section wall. 

Several generators were initially fabricated from polystyrene for 

ease of machining and to enable the characteristics of flow to be 
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FIGURE 2 

EXPERIMENTAL APPARATUS 
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FIGURE 3 

EXPERI11ENT.AL .APPARATUS 
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FIGURE 4 

COIL AND II'BULATED INLET FITI'ING, 
TEST SECTION AND MIXING CHAMBER 

9 
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observed. The stream was directed down horizontal glass tubing of 

lengths varying from 8 to 24 inches and then exhausted to the atmos-

phere. A considerable number of isothermal tests were made to ascertain 

the required orifice size, flow rate and tube length to produce a 

stable vortex of sufficient length. 

It was found that at low flow rates, a core of air extending 

several inches downstream from the generator formed on the tube axis. 

This core was extended periodically by pulsations of air traveling up 

the axis of the tube from the discharge end. As the flow increased 

the frequency of pulsations increased until at a certain flow rate, 

determined by the length of tube and size of orifices, the flow 

stabilized and the air core was continuous over the entire length of 

the tube. The air core water interface appeared much like a screw 

thread and had a pitch of about 3/4 inch. 

The generator used in the heat transfer tests was made from 1040 

steel according to the design given in Figure 5. This design is 

essentially the same ·as that of the initial polystyrene models. The 

plug at the inlet end was removed for the linear flow tests. 

TEST SECTION 

The final test section used was a piece of 1/4 inch steel pipe 

19 inches long. It was held in the vortex generator and in the mixing 

chamber by "a' ring seals and then the three portions drawn together 

with spring loaded tie rods. After installation of the test section 
..... _ 

thermocouples, it was covered with an inch of fiberglass insulation. 

Initially a length of stainless steel tubing supported between 

two pieces of glass was used for a test section, but because of the 

lower magnetic permeability of the stainless steel, this had to be 



1 -.u i 
Deep 

I ~~-· 

• 151 - - > -+---

Section A..A 

a lki.ll 

lll"l 

P:n I Deep . 

I 

I 
i ~ Deep- \ lf _.,_ -+ A 

1 -,_ \ 
\ 

\I~ 

\ 
1-I -_-.. 58 Drill 

- --r 
I 

t 
I _t_ 

I 

I ,, 

t l' l ~ 1- . ,.. i 

! ' I ~A : 
k---- 1 .~-~. 
I . 

I / 
/ 

- . 
I 

I j \ 1 --->4- 1 . 
8' I ~ I , 

Section B-B ' . 
B 

1 --
iO I ---,~ ~ -'- -

l ~ ~ 

D .700 

11 



discarded. The reasons for this are given below. 

SURFACE TEMPERATURE HEASURE11ENT 

12 

The measurement of the surface temperature of the test section 

posed an extremely complex problem due to the presence of the induction 

field. Thermocouple wires when placed in the induction field tend to 

heat up independent of the heating of the test section. If the wires 

attain a temperature greater than the temperature of the test section, 

the temperature recorded will be in error, but if the test section 

reaches a higher temperature than the adjacent thermocouple wires, 

the thennocouple output should be a true indication of the temperature 

provided that any stray currents which might effect the reading of the 

potentiometer are eliminated. 

Because of the low magnetic permeability of the stainless steel 

test s-ection originally used, a large magnetic flux had to be used and 

this caused the iron wire of the iron-constantan thermocouple wires to 

attain a temperature greater than the one attempting to be measured. 

When a mild steel test section was used, the ratio of the heating in 

the thermocouple wires to the heating in the test section was reduced 

and the couple output was a true indication of the temperature. 

The outputs of the 24 gauge iron-constantan thermocouples were 

measured by a 16 point automatic recorder. Initially there was consid­

erable oscillation of the recorder when heat was applied with the 

induction field. This effect was eliminated by connecting a 2 m£d cap­

acitor across the thermocouple input of the recorder, by grounding the 

iron side of the thennocouple and by grounding the test section. 

It wa.s found that the method of application of the thennocouples 

to the test section surface was critical mainly because of the consis-
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tency of readings from one to another under isothermal conditions. The 

most reliable method found and the one used was to apply the thermocouple 

with a small amount of silver solder. The 16 thermocouples were located 

at one inch intervals as shown in Figure 6. After silver soldering, 

the test section was covered with a layer of high temperature glass 

tape; the thermocouple wires were wrapped around the circumference of 

the test section several times and then additional layers of glass 

tape applied. 

\-lATER TEMPERATORE 1:-ffiASUREHENT 

The process water temperature was measured at the inlet and outlet 

of the test section by calibrated 24 gauge iron-constantan thermocouples 

imbedded in the bottom of two thermocouple wells. The construction of 

these wells is shown in Figure 7. The inlet temperature was measured in 

the fitting supplying the vortex generator, and the outlet temperature 

vms measured in the outlet mixing chamber. Both the outlet and inlet 

fittings were covered with several inches of insulation to reduce heat 

loss. The thennocouple output vJ'as measured with a portable precision 

potentiometer. 

PRESSURE MEASUREMENT 

The inlet water pressure was measured with a new Bourdon tube type 

pressure gauge. A new 0 to 60 psi gauge was used on the pressure tap 

of the vortex generator to obtain an idea of the test section wall 

pressure. 

PR08ESS 1r'lATER 

The water used was supplied from the Missouri School of Hines 

power plant ' and had been processed by a ltme-soda ash hot process 

water s.oftener. The water was oondensate returning from the heating 



\ ' \ \ \ \\ 
\:~_ ) d 0 



I 

I 

~~ 

i Black Iron 
·Plpe Plus 

d- . Oitpper fldle 7 

I 
su.v Solde . ··j 
'l'o PlUc ·.. . 

SUver Solder 
Slntt InC:had1"' 
'thtwocc.ple 
.Jacti..a ···: 

....... 
\J1 



system and had a PH of 7.5 to 8.0. 

PillfP AND FLOVf l•ffiASUREHENT 
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A three cylinder reciprocating pump with a capacity of 4.2 gallon 

per minute at 1000 psi was used to supply the required pressure for the 

vortex generator. A surge tank fabricated from a section of 2 1/2 

inch pipe was used to reduce pressure variations. The normal system 

pressure was sufficient for the linear flo1.,r tests. Flow was measured 

by the use of a weigh tank and stop watch. A recording flowmeter was 

also available for estimates of the flow. 

INDUCTION HEATER 

A Westinghouse 30 kilowatt multipurpose induction heater was used 

to heat the test section. It is a motor-generator type heater with a 

9600 cps output at voltages up to 800 volts. The induction coil was 

made from 3/8 inch copper tubing, and was two inches in diameter, 9 

inches long and consisted of 15 turns. A close-up of the coil and 

the test section is shown in Figure 8. 
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FIGURE 8 

INDUCTION COIL AND TEST SECTION 
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NOTATION 

Description Units 

Surface area of heat flow sq ft 

~·Jater flow area sq ft 

Specific heat of water Btu/lb op 

Diameter ft 

Acceleration of gravity ft/sec2 

Mass velocity lb/hr sq ft 

Film coefficient of heat transfer Btujhr sq ft op 

Thermal conductivity 

Effective length of test section 

lv!a.ss 

Pressure 

Heat transfer rate 

Heat flux 

Radius 

Test section I:Jall temperature 

ltJater film temperature drop 

vJater tempe r ature 

Temperatur e rise across test 
section 

Hater velocity 

Heated volume of test section 

Hass flov.r rate of water 

Circulation constant 

Fluid weight density 

Fluid viscosity 

Btu/hr ft op 

ft 

slug 

lb/sq ft 

Btu/hr 

Btu/hr sq ft 

ft 

oF 

oF 

oF 

oF 

ft/sec 

cu ft 

lb/hr 

sq ft/sec 

lb/cu ft 

lp/ft hr 



Subscripts 

a 

ax 

b 

e 

L 

ow 

t 

v 

w 

1 

2 

water - aircore interface 

axial 

bulk fluid 

effective 

linear flow 

test section outside wall 

tangential 

vortex 

inside wall of test section 

inlet water 

outlet water 
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CALCULATIONS 

The water inlet temperature was determined by the measured 

millivolt output of the inlet thermocouple taking into account the 

reference junction temperature as measured with a mercury thermometer. 

Conversion tables put out by Leeds and Northrup (17) were used for this. 

The temperature rise across the test section was found from the differ­

ence between the inlet and outlet thermocouple readings in millivolts 

divided by 0.0295 mv/°F the conversion factor for iron-constantan 

thermocouples. The bulk fluid temperature is then 

(1) 

The rate of fluid flow was found simply from the weight of fluid 

collected divided by the time required for collection. 

The heat transfer rate is given by 

q = C W 6 T (2) 

where the specific heat was taken as 1.0 Btu/lb °F. 

To determine the area across which the heat is transferred, it was 

assumed that the entire heat input 1.vas generated unifonnly over an 

effective length of test section. Since the temperature of the outside 

wall of the test section is proportional to the heat generated in the 

wall, the effective length for heat transfer was determined from a 

plot of this temperature as measured by the 16 surface temperature 

ther.mocouples. These temperatures were plotted versus the thermocouple 

position as shown in Figure 9. The area between this curve and a 

straight line indicating the process water temperature was found with a 

planimeter and then this divided by the temperature difference between 





22 

the outside 1vall and the fluid at the midpoint of the test section to 

give the effective, uniformly heated length. Since for each of the 

two types of flow, linear and vortex, the effective lengths calculated 

were all grouped quite closely, a single mean effective length was 

used for each flow type. The lengths used were 9.05 inches for linear 

flow and 8.71 inches for vortex flow. The maximum deviation from these 

averages Was in each case less than 3%. The difference between the 

lengths for the two types of flow will be discussed later. 

The effective heat transfer surface area is then given by 

The heat flux was found from the heat transferred, given by equation 

(2) divided by this effective surface area. 

The test section outside wall temperature was taken as the 

( 3) 

average of the temperatures indicated by thermocouples 6 through 12 

which were located in the center portion of the test section and all 

gave fairly consistent readings for a particular test run. The 

deviation from the average is shown by the surface temperatures plotted 

in Figure 9. 

Since the reference junctions for the test section thermocouples 

were located outside of the recording instrument, the indicated 

average had to be corrected for the difference between the temperature 

of the actual reference junction and the somewhat higher temperature of 

the compensating junction in the recorder. The correction was deter­

mined by comparing the water temperature and the wall temperature under 

isothermal conditions and by actually comparing the temperatures of the 

true reference junction and the compensating junction in the recorder. 
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Both methods gave corrections which agreed within 2°F of each other 

and whose values varied from 3 to 9 degrees depending on the length 

of time the recorder had been operating. 

The temperature drop through the test section wall was calculated 

from a slinplified form of the heat conduction equation through a 

cylindrical wall with uniform internal heat generation and no heat loss 

through the outside wall. The equation, 

ln (4) 

is the same as that used by Gambill and Greene (8). The volume of 

heated material was based on the effective length of heat transfer 

found above. The thermal conductivity used was for the average of the 

inside and outside wall temperatures and was taken from Tebo (18). 

The temperature drop across the water film 

was then used in 

h 

to find the film coefficient. 

g/A 
~t 

The mass velocity was found from 

(5) 

(6) 

(7) 

For linear flow the area of flo\..r was simply the cross sectional area 

of the inside of the test section. For vortex flow the flov.r area was 

the area of the test section less the area of the central air column, 

and is given by 

(8) 
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The ratio Da/Dw was measured during the preliminary tests using glass 

tubing and the value of 0.5 was assumed to hold for the steel test 

section. This value is somewhat less than that quoted by Gambill and 

Greene (8) and Marshall (14) of 0.7, but considering the length of 

tube used in the present tests the value of 0.5 seems to be in order. 

The velocity of fluid flow down the tube in feet per second was 

found from 

V = G 
_3..;..6_0_0 -;o-- (9) 

The results of these various calculations for the linear flow 

tests and for the vortex flow tests are given in Tables 1 and 2. 

An estimate of the tangential component of velocity in the vortex 

flow can be obtained from the measured pressure at the test section 

wall. The following analysis is similar to that given by Marshall (14). 

A force balance in the radial direction for fluid flowing in a 

curved path gives 

dr 

In frictionless flow the torque applied to the fluid is zero, or 

therefore, 

Torque = d(rn Vt r) 

d t 

r = .Jl. /Vt 

where 12 is the circulation constant. 

0 

Substituting equation (12) in equation (10) and integrating 

(10) 

(11) 

(12) 

between the test section wall and the water - air core interface gives 

Pw- Pa = --~-
2 g 

2 2) (Vta - Vtw (13) 



Since from Equation (12) 

it can be shown that 

vtw 
= fri,Pw. 

-2 Da 

- Pa 

- l 

Vtw 
Vta 

l/2 
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(14) 

(15) 

The true velocity in vortex flow then is the vector sum of the 

axial and tangential components, 

Vv = (Vax2 + Vtw2) l/2 

The ratio of the centripetal acceleration to gravitational 

acceleration or the number of gee's is 

gee Vtw2 

g rw 

Using for the pressure at the test section wall half of that 

(16) 

(17) 

measured at the vortex generator, and using the value of 0.5 given 

above for the ratio Da/Dw, values of the tangential velocity, the 

true vortex velocity and the number of gee's were calculated for 

several of the vortex test runs. These results are listed in Table 3. 



TABLE 1 - LINEAR FLCNJ" 

Run T1 T Tb tow tw 

op op op op op 

1 140.0 6.9 143 203 192 

2 139.5 12.6 146 248 228 

3 - 139.5 19.9 150 296 265 

4 143.5 15.5 151 297 259 

5 145.5 20.4 146 335 285 

6 145.5 9.8 150 247 223 

7 146.0 5.0 148 203 191 

8 147.5 3.7 150 200 187 

9 148.0 6.8 151 240 217 

10 148.0 14.0 155 315 266 

11 148.5 17.8 157 349 286 

12 148.0 6.0 1~1 221 203 

13 148.0 10.1 153 265 234 

14 148.0 13.7 155 305 263 

15 148.5 17.8 157 338 282 

16 148.5 4.8 151 207 194 

17 148.5 9.2 153 251 226 

18 143.5 6.1 147 216 197 

19 144.5 3.4 146 188 178 

20 144.5 3.5 146 185 177 

21 141.5 5.8 144 193 187 

22 142.0 11.3 148 237 225 

23 141.5 21.4 152 295 283 
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TABLE 1 - LINEAR FLGV[ (Continued) 

t w q/A h v 
Btu Btu 

op 1b/hr hr.sq.ft. hr. sq. ft • ° F ft/sec 

49 833 82,100 1680 5.50 

82 833 150,000 1830 5.50 

115 833 237,000 2060 5.52 

108 1300 288,000 2660 8.61 

139 1300 380,000 2730 8.58 

73 1300 181,000 2480 8.61 

43 1300 92,800 2140 8.59 

37 1850 97,500 2640 12.25 

66 1850 180,000 2730 12.25 

111 1850 369,500 3320 12.26 

129 1850 470,000 3640 12.27 

52 1640 140,100 2690 10.85 

81 1640 236,700 2920 10.85 

108 1640 321,000 2970 10.86 

125 1640 416,000 3330 10.87 . 

43 1470 101,000 2350 9.72 

73 1470 192,600 2640 9.72 

50 1660 144,000 2880 10.97 

32 1660 80,450 2510 10.97 

31 1230 61,500 1980 8.12 

43 590 48,800 1140 3.89 

77 590 95,200 1240 3.90 

131 590 180,000 1370 3.90 



TABLE 2 - VOl?rRX FLOtT 

Run T1 T Tb tow t w 
op op op op op 

1 142.5 4.7 145 178 168 

2 146.0 8.4 150 213 194 

3 144.5 13.3 151 253 223 

4 144.0 21.3 155 307 258 

5 144.5 4.5 146 183 171 

6 145.0 7.2 149 207 188 

7 144.5 11.1 150 241 211 

8 145.0 17.6 153 302 254 

9 148.0 4.6 150 196 183 

10 148.5 8.3 153 232 207 

11 159.5 8.6 164 237 211 

12 157.0 11.9 163 266 230 

13 155.0 15.8 163 305 257 

14 154.5 4.3 157 197 182 

15 152.0 7.6 156 228 201 

16 149.5 10.9 155 260 224 

17 148.5 16.3 157 323 264 

18 149.0 5.4 152 200 180 

19 148.5 7.9 152 236 206 

20 144.5 4.3 147 192 178 

21 146.0 9.6 151 248 217 

22 149.0 6.9 152 228 203 

23 151.0 13.4 158 301 252 

24 152.5 24.0 164 372 280 
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TABLE 2 - VORI'EX FLCNJ (Continued) 

t w q/A h vax 
Btu Btu 

op 1b/hr hr.sq.ft. hr. sq. ft. ° F ft/sec 

23 1170 81,700 3560 10.3 

44 1170 145,800 3310 10.3 

72 1170 231,000 3210 10.3 

103 1170 371,000 3600 10.3 

25 1390 92,900 3710 12.2 

39 1390 148,800 3810 12.2 

61 1390 229,500 3760 12.2 

101 1390 36 4 ,000 3600 12.2 

33 1550 105,800 3210 13.7 

54 1550 191,000 3540 13.7 

47 1550 197,500 4200 13.7 

67 1550 275,000 4110 13.7 

94 1550 364,000 3880 13.7 

25 1850 118,000 4720 16.3 

45 1850 208,500 4650 16.3 

69 1850 299,000 4330 16.3 

107 1850 447,000 4170 16.3 

28 1940 155,500 5530 17.0 

54 1940 227,500 421 0 17.0 

31 1650 105,400 3500 14.5 

66 1650 235,000 3560 14.5 

51 1860 190,000 3720 16.4 

9 4 1860 370,000 3940 16.4 

116 1860 664,000 5710 16.4 
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TABLE 3 - VORTEX FLOW VELOCITIES 

Run Vax Pw Vtw Vv Gee's h 
ft/sec 1b/sq in ft/sec ft/sec Btu/hr sq ft op 

2 10.3 10 15.9 19.0 530 3310 

7 12.2 14 18.8 22.4 740 3760 

10 13.7 17 20.7 24.8 900 3540 

11 13.7 17 20.7 24.8 900 4200 

15 16.3 21 23.0 28.2 1110 4650 

18 17.0 23 24.1 29.5 1220 5530 

19 17.0 23 24.1 29.5 1220 4210 

22 16.4 22 23.5 28.7 1160 3720 



DISCUSSION 

The discussion of the results of this investigation is in three 

sections. First, comparison of the linear flow results with standard 

correlations, second, analysis of the vortex flow results and third, a 

general evaluation of the investigation in view of the results. 

LINEAR FLOW 

The linear flow tests can be broken down into two groups, non-

boiling in which the inside wall temperature of the test section is 

below the saturation temperature of the liquid, and nucleate boiling 

tests where the wall temperature is greater than the saturation 

temperature of the fluid. 

One of the standard correlation equations for relating the non-

boiling film coefficient to the velocity of flow and the various fluid 

parameters is 

h D 
k 

= .023 (D G)• 8 ( C )• 4 

7fJ k 
(18) 

where all the fluid properties are evaluated at the bulk fluid temper-

ature. This may be simplified for water at moderate pressures and 

temperatures to give (2) 

.8 (D').2 h = 15 o ( 1 + • o 11 Tb) ( V) I (19) 

where D' is the tube diameter in inches. This equation was evaluated 

at 147°F, the approximate bulk fluid temperature for the non-boiling 

runs, and the results plotted on the graph with the exper~ental data 

in FigurelO. The exper~ental values all agree quite closely with the 

correlation equation. 

The results of boiling heat transfer tests are conventionally 

shown in a plot of the heat flux versus the film temperature difference. 
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The 12.3, 8.6 and 3.9 ft/sec runs are shown in this manner in Figure 11. 

A curve for each velocity is shown with a slope of one in the non­

boiling region and an increased slope in the boiling region. A typical 

curve as found by McAdams, et al (19) is also shown in the figure. 

This curve is for heat transfer to 1~ter at 60 psia, the bulk fluid 

temperature 50°F less than the saturation ternperaturer and a velocity 

of 12 ft/sec. Since in the present investigation the conditions of 

subcooling and pressure were different, this curve can only be used as 

an indication of the general trend of the results. 

It is observed that the value of the heat flux in the boiling 

region for this investigation does not increase with film temperature 

at a rate as large as that indicated by other investigations. This 

apparent discrepancy might partly be due to the insufficient data 

available in this region from which to draw an accurate conclusion. 

Also erroneous values for the surface temperature of the test section 

might be to blame. Since in the boiling region the heat input increases 

with respect to the temperature difference at a much greater rate 

than that in the non-boiling region, the increase in the induction 

field required to produce a given increase in surface temperature is 

greater in the boiling region than in the non-boiling region. This 

might then cause the temperature of the thennocouple wires to e x ceed 

the surface temperature of the test section and thereby causing the 

thermocouple reading to be larger than the actual temperature. This 

would cause the observed discrepancy between the results of this in­

vestigation and the results of others. 
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VORl'EX FLOw'/ 

As in linear flow the vortex data can be broken down into non­

boiling and boiling tests. For vortex flow the saturation temperature 

of the fluid is higher than that for linear flow because the vortex 

causes the test section wall pressure to increase over that for 

linear flow. 

The non-boiling film coefficients are plotted verrus the axial 

velocity in Figure 12. The straight line shown indicates the values 

of the film coefficient to be expected for linear flow from equation 

(19) where D' is taken as the effective diameter give~ by four times 

the cross sectional flow area divided by the wetted perimeter of the 

test section. The majority of the experimental values found lie 20 

to 301o above the linear flow values at the same axial velocity. This 

is in the range of increase found by Kreith (8) (9) but is considerably 

less than that found by Kreith and }~rgolis (10). There is more 

scatter in the vortex results than in the linear flow results and is 

probably due to periodic variations in the nature of the vortex. 

The variation of the heat flux with film temperature difference is 

shown in Figure 13. For comparlmm with linear flow the :results of the 

12.3 ft/sea linear flow tests are also shown. There is a definite 

increase in the heat fltlX for vortex flow over that for linear flow 

at the same temperature difference and velocity. 

The film coefficient is shown versus the vector velocity of the 

vortex in Figure 14 along with the values expected from Equation (19). 

Here it appears that there is a decrease in the film coefficient for 

vortex flow when it is compared with the linear flow values at vel­

ocities corresponding to the vector velocity rather than the axial 
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velocity. This result does not seem reasonable and can be explained as 

follows. The vortex created by the generator used in the tests was 

observed initially in glass tubing. It showed a decaying tendency in 

the last several inches of the test section. It isrnasonable to assume 

that with the increased friction of the rough steel test section, the 

decay of the vortex would be even more pronounced. If this is true, then 

the tangential component of the vortex velocity is considerably less than 

that given in Table 3. The vector velocity would be closer to the 

axial velocity and the vortex film coefficients do show an increase over 

the linear flow values when compared on the basis of the axial velocity. 

The decrease in the effective heated length of the test section 

from linear flow to vortex flow mentioned earlier could be caused by the 

decay of the vortex. The vortex entering the heated portion of the 

test section would cause the temperatures on the inlet side to be 

decreased more than the temperatures further downstream and this would 

cause this apparent shortening of the effective length. 

Even if the decay of the vortex is not sufficient to account for 

the apparent lack of increase in the film coefficient due to curved 

flow, it must be realized that with the number of gee's attained the 

increase predicted from the dependence of the natural convection 

coefficient on the acceleration of gravity is quite small. The natural 

convection correlation equations depend on only the l/4 to 1/~ power of 

g. For the nExirnum number of gee's obtained in the present investigation 

this amounts to a 6 to ll fold increase in the natural convection 

coefficient to be added on the normal forced convection coefficient. 

Since the natural convection coefficients are only on the order of SO 

to 100 Btu/hr sq ft op, the maximum increase expected would only be 



4 0 

about 1000 Btu/hr sq ft °F. If the decay of the vortex is considered 

with this increase in the film coefficient then the~ults of the vortex 

tests seem reasonable. 

GENERAL EVALUATION 

The excellent agreement of the non-boiling linear flow results 

with the standard correlation equations indicates that the methods and 

apparatus used gave accurate values for the film coefficient. This shows 

that at least for the lower heating rates the problem of the measurement 

of the surface temperature with thermocouples in an induction field is 

not insurmountable. The possibly erroneous results obtained at high 

heating rates due to the heating of the thermocouple wires can 

probably be eliminated by further study and the use of thermocouple 

materials which are not ferromagnetic. 

The decay of the vortex can be solved by varying the design of the 

generator and by using a shorter test section. Also by mounting a test 

section between glass tubing, as originally attempted in this investi­

gation, 1-J"Ould eliminate the need for assuming that the heat was 

generated uniformily over an average length of test section. 

In many cases the tests did not cover a wide enough range of 

variables to permit a sufficiently accurate interpretation of the 

results. Changes in the apparatus to enable coverage of a wider range 

of velocity and heat flux would be desirable. 



CONCLUSIONS 

l. The agreement of the non-boiling linear flow film coefficients 

with standard correlation equation~ indicates the feasibility of 

using apparatus similar to that designed. 

2. The boiling results differ slightly from the eA~ected results 

probably because of surface temperature measurement problems at 

large heat flux. 

3. The vortex flow indicates that there is 20 to 301o increase in 

the film coefficient over that for linear flow of water at the 

same axial velocity. This area of the investigation requires 

further study. 
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