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ABSTRACT

Recurrent event data occurs in many disciplines such as actuarial science,

biomedical studies, sociology, and environment to name a few. It is therefore important

to develop models that describe the dynamic evolution of the event occurrences. One

major problem of interest to researchers with these types of data is models for the

distribution function of the time between events occurrences, especially in the presence

of covariates that play a major role in having a better understanding of time to events.

This work pertains to statistical inference of the regression parameter and the

baseline hazard function in a Cox-type model for recurrent events that accounts for

the effective age and time varying covariates. Estimators of the regression parameters

as well as baseline hazard function are obtained using the counting processes and

martingales machinery techniques. Asymptotic properties of the proposed estimators

and how they can be used to construct confidence intervals are investigated. The

results of the simulation studies assessing the performance of the estimators and an

application to a biomedical dataset illustrating the models are presented. The impact

of unit effective age is also assessed.

To check the validity of the models used, many decision rules are developed for

checking the validity of the various components of Cox-type model. Specifically, using

martingales residuals, we proposed test statistics for checking the link function and

the covariates functional form. Asymptotic properties of test statistics and simulation

studies are presented as well.

Key words: Recurrent events, Effective age, Martingale residuals, Goodness of

fit, Cox-model.
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1. INTRODUCTION

The processes which generate events repeatedly over time are referred to as

recurrent events and the data they provide are called recurrent event data. In some

settings, data may lie in a large number of processes generating a relatively small

number of recurrent events. These types of processes are often seen in health and

biomedical studies, where information is available on many individuals, each of whom

may experience clinical events repeatedly over time. Examples in medical field includes

occurrences of heart attacks, sickness leave from work, recurrence of cancer tumors,

epileptic seizures in neurology studies, and deteriorating episodes of visual acuity. In

actuarial science, examples include the filing of vehicle warranty claims, and property

insurance claims for policy holders. In other settings the recurrent event may be

available for a relatively small number of processes occurring with a large number of

recurrent events. Examples include analyzing processes for software fault detection and

removal, cracks in highways, and investigating the injuries incidence in manufacturing

plants.

1.1. THE DATA STRUCTURE

Consider a recurrent event data with n independent subjects monitored for the

occurrence of a recurrent event over a random time interval [0,τi], where τi, i = 1, 2, ..., n

are independent and identically distributed (i.i.d) having distribution function G(t) =

P{τi ≤ t}. For each ith subject, let {Sij, j = 1, 2, ...} be the calender times of event

occurrence, where 0 ≡ Si0 < Si1 < Si2 < ..., and {Tij = Sij − Sij−1, j = 1, 2, ...} is the

successive interoccurrence times, or gap times with a common absolutely continuous

distribution function F (t) = P{Tij ≤ t}. The renewal function associated with F (·) is

ρ(t) = ∑∞
k=1 F

∗k(t), where F ∗k(·) is the kth convolution of F (·) with itself. A renewal
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process is the situation in which a subject is completely restored to a similar state after

each event and is defined as a process in which the gap times Tij between consecutive

events are (i.i.d). The Tijs are to be assumed independent of τi. The censoring random

variable τi is noninformative about the Sijs. If Ki = max{k ∈ {0, 1, ...} : Sik ≤ τi} is

the total number of occurrences for unit i, then the observable data for n units is n

independent copies of D(s) = {D1(s),D2(s), ...,Dn(s)} where for i = 1, 2, ..., n

Di(τi) = {(Xi(s) : 0 ≤ s ≤ τi), Ki, τi, Ti1, Ti2, ..., TiKi , Ci,Ki+1}, (1.1)

where SiKi = ∑k
j=1 Tiji and Ci,Ki+1 = τi − SiKi is the right-censoring time variable for

Ti{Ki+1}. Note that since the right-censoring time variable is Ci,Ki+1 = τi −
∑k
j=1 Tij

then this censoring variable is dependently functionally of the Tijs, even though the

τi and the Tijs are independent. Furthermore, note that Ki is informative about

the distribution of the interoccurrence times. Thus, the data accrual scheme leads

to dependent and informative censoring. The process Xi(s) is a q-dimensional time

dependent covariates vector recorded every time an event occurs. For example, in

studies on the frequency of visits to hospital emergency clinics because of breathing

problems, air pollution measures, temperature, and humidity may be important

covariates. In actuarial science, covariates can be age, driving history, Zip code, etc.

An intervention is often performed after each event occurrence, such as replacing

or repairing failed components in a reliability system, or reducing or increasing physical

activity after a heart attack in a medical settings. These interventions will typically

impact the next occurrence of the event. Also, the inter-ocurrence times may be

affected by an unobserved random variable, Z, called a frailty. Frailty are unobservable

random variables that could inject an association between the inter-event times,

Immune system and driver aggressiveness are typical frailty. These frailties could
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make some subjects have more recurrences than others as a result. A pictorial

representation of recurrent events is given in Figure 1.1.

Figure 1.1. Pictorial representation of recurrent events

With respect to the interventions, in reliability systems for instance, inter-

ventions can be perfect repair (i.e. the system returns to the as-good-as-new state),

minimal repair (i.e. the system in the same condition as it was just before the failure,

so called as bad as old), or imperfect repair (i.e. the system returns to an intermediate

state between as bad as old and as good as new). In the case of a renewal process, no

intervention is performed.

Let the process N(s) denote the number of events that occurred on or before

calender time s and the baseline hazard function has the process ε(·) as its argument,

called the effective age process. This process models the impact of performed interven-

tions after each event occurrence. The perfect repair is modelled by ε(s) = s− SN(s−)

which means that the age of the component at time s equals s − SN(s−), the time

elapsed since the last event. Minimal repair is modelled by ε(s) = s, which means that

the age at any time s equals the calendar time s. Imperfect repair can be modelled by

ε(s) = ΓN(s−) + s − SN(s−) where 0 ≤ Γi ≤ Si is some measure of the effective age

of the component immediately after the ith event. In the BP model, Γi is defined
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indirectly by letting a failed component be given perfect repair with probability p,

and minimal repair with probability 1-p.

1.2. MODELS FOR RECURRENT EVENT DATA

There are various ways for modeling recurrent events. Some of them are

outlined here.

1.2.1. General Intensity-Based Models. One way to model recurrent

events data is via the intensity function. Intensity-based models, including modulated

Poisson and renewal processes are discussed by various authors in the field. The

Poisson process is the simplest example of a model with global time, where time is

measured from an initializing event. For the Poisson process, future occurrences of the

event are not influenced by past occurrences under the renewal assumption. For the

renewal process, the probability of an event only depends on the time elapsed since the

last event. In the point processes literature, extensive probabilistic developments and

many examples of applications have been discussed by Cox and Lewis [1], Cox and

Isham [2], Daley and Vere-Jones [3, 4], Lewis [5], and Snyder and Miller [6]. Fleming

and Harrington [7], and Andersen et al. [8] emphasized the dynamic route using

counting processes and martingale framework. Aalen et al. [9] provide interesting

discussion on intensity-based versus random effects modeling. Fosen et al. [10, 11] gives

an interesting perspective on internal covariates and the use of path analysis methods

to assess internal and external covariate effects. Cox [12] introduced semiparametric

modulated renewal models, and Aalen and Husebye [13], Follmann and Goldberg

[14], and Dabrowska et al. [15] emphasize renewal models. Anderson and Gill [16]

in an intensity based approach proposed asymptotic properties of the parameters in

Cox model with time varying covariates for single events whereas Peña et al. [17]

and Peña et al. [18] consider the same model and provide small sample properties



5

in the recurrent event context. Lawless [19], and Thall [20] consider semiparametric

and parametric methods for regression Poisson models. More general multiplicative

intensity-based models are considered by Gail et al. [21] and Prentice et al. [22].

1.2.2. Marginal Models. In some situations, it makes sense to regard the

variation between individuals as a nuisance and to use a marginal approach, where

one focuses on the effect of the fixed covariates averaged over the variation between

individuals. In fact, a marginal model ignores the dependence on the past in a process.

But ignoring the past entails some technical complications, and one will miss the

opportunity to understand the details of the underlying process. Marginal models has

been discussed by Lawless and Nadeau [23], Cook and Lawless [24], Lin et al. [25],

Scheike [26], Chiang et al. [27], and Martinussen and Scheike [28].

1.2.3. Dynamic Recurrent Event Models. Dynamic modeling of recur-

rent events is an approach that outlines the time evolution of the recurrent events.

The class of models in this case incorporates an effective age function encoding the

impact of interventions after each event occurrence, the impact of accumulating event

occurrences, the induced informative and dependent right censoring mechanism due to

the data-accrual scheme, and the effect of covariate processes. The class was proposed

by Peña and Hollander [29] and subsumes as special cases many of the recurrent event

models that have been considered in biostatistics, reliability, and in the social sciences.

Inferential based on this class were rigorously developed by Peña, Strawderman, and

Hollander with recurrent events, Paul and Kvam in reliability, and Peña, Slate, and

González on intensity based. Stocker and Peña [30] discussed the class of models under

a fully parametric specification. Adekpedjou and Stocker [31] proposed Cox-model

with more general effective age process that subsumes the one proposed here.
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1.3. AIMS OF DISSERTATION

In this dissertation, we follow the intensity based modeling approach. Namely,

let X be q-dimensional vector of covariates, β is regression parameter vector, λ0(s) is

unknown baseline hazard function, and Ri(s) is backward recurrence time. Consider

λi(s) = λ0(Ri(s))exp(β′Xi(s)), s ≥ 0.

This is a spacial case of the general class of models proposed by Peña and Hollander

[29]

λ(s|X) = λ0[E(s)]ρ[N(s−)]ψ[βtX(s)],

with E(s) = s− SN(s−), ρ(s) = 1, and ψ(·) = exp(·).

Our main aim is to develop methods using the counting process and martingale

machines for:

1. Deriving estimators of the hazard Λ0(s) and β.

2. Obtain their asymptotic properties.

3. Develop decision rules for checking the goodness of the underlying model.

4. Perform a simulation studies to assess our methods.

5. Apply the method to a reliability dataset.
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2. MATHEMATICAL PRELIMINARIES

Since the pioneering work of Aalen [32] counting processes and martingales

have become the critical tools for analyzing failure time data. In this chapter, we

discuss the mathematical prerequisites needed for analyzing these types of data. An

excellent overview is given in Anderson et al. [33] and Fleming and Harrington [7].

Assume that F is a σ− algebra, and P is a probability measure on Ω. Let T ⊂ R+.

T is usually taken to be the interval [0,τ) or [0,τ ], where τ =∞ is allowed.

Definition 2.1. A stochastic process is a time-indexed family of random variables

X = {X(t) : t ∈ T } on (Ω, F , P).

Definition 2.2. A stochastic process X is

• Integrable if supt∈T E|X(t)| <∞,

• Square integrable if supt∈T EX(t)2 <∞,

• Bounded if there exists a finite constant Γ such that

P {supt∈T |X(t)| < Γ} = 1.

Definition 2.3. A filtration F = {Ft : t ∈ T } on (Ω, F , P), is an increasing

right-continuous family of sub− σ − algebra of F . That is, Fs ⊆ Ft ⊆ F , for s ≤ t.

Definition 2.4. A stochastic process X = {X(t) : t ≥ 0} is adapted to a filtration

Ft if, ∀t ≥ 0, X(t) is Ft −measurable.

A stochastic process X is always adapted to its natural filtration Ft = σ{X(s) :

s ≤ t}, the smallest σ− algebra with respect to which all the variables {X(s) : s ≤ t}

are measurable.
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Definition 2.5. A stochastic process X is called cadlag if its sample paths {X(t, w) :

t ∈ T }, for almost all w, are right continuous with left hand limits.

Definition 2.6. A collection M = {M(t) : t ≥ 0} is an F -martingale if M is an

F -cadlag adapted process and satisfies

E|M(t)| <∞ for all t ∈ T (integrablility);

E(M(t)|Fs) = M(s) a.s. for all s < t (martingale property).

The process is submartingale if (2) is replaced by

E(M(t)|Fs) ≥M(s) a.s. for all s < t.

The process is supermartingale if (2) is replaced by

E(M(t)|Fs) ≤M(s) a.s. for all s < t.

Definition 2.7. Let F be a filtration on (Ω, F , P). The σ− algebra on [0,∞)× Ω

generated by all sets of the form:

1. [0]× A, A ∈ F0,

2. (a, b]× A, 0 ≤ a < b <∞, A ∈ Fa

is called the predictable σ− algebra for F , where F0 is the information at time 0.

Definition 2.8. A stochastic process X is called predictable if, as a function of

(t, w) ∈ T × Ω, it is measurable with respect to the σ− algebra on T × Ω generated

by the left-continuous adapted processes.

Lemma 2.1. Let F be a filtration, and X a left-continuous real-valued process adapted

to F . Then X is predictable.

Proposition 2.2. Let X be a Ft-predictable process. Then X(t) is Ft- measurable,

for any t > 0.
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Theorem 2.3 (Doob-Meyer Decomposition). Let M be a right-continuous nonnega-

tive submartingale with respect to F , then there exists a right-continuous martingale

M and an increasing right-continuous predictable process A such that E{A(t)} <∞

and

M (t) = M(t)− A(t) a.s.

is a right-continuous F -martingale.

Corollary 2.4. Let {N(t) : t ≥ 0} be a counting process F-adapted and right-

continuous with E{N(t) < ∞} for any t. Then, there exists a unique increasing

right-continuous F -predictable process A such that A(0) = 0 a.s., E{N(t)} <∞ for

any t, and

M(t) = N(t)− A(t), t ≥ 0

is a right-continuous F -martingale.

If M is a martingale with E{M2(t)} < ∞ for any t ≥ 0, Jensen’s inequality

indicates that M2(t) is a submartingale. Therefore, the square of a local square

integrable martingale is a local submartingale and furthermore has a nondecreasing

compensator.

Corollary 2.5. Let M be a F - cadlag martingale, and E{M2(t)} <∞. Then, there

exists a unique increasing right-continuous predictable process 〈M,M〉, called the

predictable variation process of M, such that 〈M,M〉(0) = 0, a.s., E〈M,M〉(t) <∞

for each t, and {M2(t)− 〈M,M〉(t) : t ≥ 0} is a right-continuous martingale.

Stochastic integrals with respect to the observations path are needed to solve

the problems of inference for continuous time stochastic processes. The forming of

the integral of one stochastic process with respect to another is considered. This will

be a pathwise operation. For given w ∈ Ω, one forms an ordinary Lebesgue-Stieltjes
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integral over the interval [0,t], see Chung [34]. The next theorem establishes that

L =
∫ t

0 H(u)dM(u) is martingale for all t where H is a bounded predicatable process.

L exists as a Lebesgue-Stieltjes integral for all paths of H and M.

Theorem 2.6. Let N be a counting process, and F = {Ft : t ≥ 0} be a right-

continuous filtration such that

• M = N-A is an F -martingale, where A = {A(t) : t ≥ 0} is an increasing

F -predictable process with A(0) = 0;

• H is a bounded F -predictable process.

Then the process L given by

L =
∫ t

0 H(u)dM(u)

is an F -martingale.

Theorem 2.7. Suppose M is a finite variation local square integrable martingale, H

is a predictable process, [ M ] is optional variation process, and
∫
H2d[M ] is locally

integrable or
∫
H2d〈M〉 is locally finite. Then

∫
HdM is a local square integrable

martingale, and it’s predictable and variation processes of stochastic integrals are given

by

[
∫
HdM ](t) =

∫
H2d[M ],

〈
∫
HdM〉(t) =

∫
H2d〈M〉.

Likelihood representations for general counting process models are first in-

troduced by Jacod [35] [36]. The likelihood function can be written by using a

product-integral notation π, which is a continuous version of the simple product Π.

The martingale central limit theorem has been used for proving asymptotic properties

for counting estimators, that arise in the models for failure time data.
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Theorem 2.8 (Rebolledo’s Martingale Central Limit Theorem). Let T0 ⊆ T and

consider the conditions

〈M(n)〉(t) P−→ V(t) for all t ∈ T as n→∞,

[M (n)](t) P−→ V(t) for all t ∈ T as n→∞,

〈M(n)
ε,h〉(t)

P−→ 0 for all t ∈ T , h and ε > 0 as n→∞.

Then, as n→∞

(M(n)(t1), ...,M(n)(tk)) D−→ (M(∞)(t1), ...,M(∞)(tk))(t1, ..., tk) ∈ T0

Furthermore, if T0 is dense in T and contains τ ; τ ∈ T , then the same conditions

imply

M(n) D−→M(∞) in (D(T ))k as n→∞,

and 〈M(n)〉 converges uniformly on compact subsets of T , in probability, to V.

The next theorem pertains to the asymptotic properties of martingale transform

that usually arise in the modeling and analysis of failure time data. Let T be a

compact subset of R. For i = 1, ..., n and (s, t) ∈ T 2, let Hi(s, t) be p-dimensional

vector-valued processes on (Ω, F , P) with Hij(·, ·) bounded, and for each t ∈ T , the

process {Hi(s, t) : s ∈ T } is F -predictable. Let

W(s, t) = 1√
n

n∑
i=1

∫ t

0
Hi(s, w)Mi(s, dw), (s, t) ∈ T 2
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be the integral-transformed processes which arise in recurrent event and renewal

process models and introduce for later use

W(n)(s, t) = 1√
n

n∑
i=1

∫ t

0
H(n)
i (s, w)M (n)

i (s, dw);

V(n)(s, t) = 1
n

n∑
i=1

∫ t

0
[H(n)

i (s, w)]⊗2Y
(n)
i (s, w)λ(w)dw.

Theorem 2.9 (Peña et al. [37]). Fix an s ∈ T . Suppose the following conditions are

satisfied for t, t1, t2 ∈ [0, t∗] where t∗ ∈ T :

1. The processes {Hi(v, w) : 0 ≤ v ≤ s; 0 ≤ w ≤ t∗} are left-continuous in (v,

w), and there exists a deterministic function h(v, w) on [0, s]× [0, t∗] which is

continuous in (v, w) and bounded such that

max
1≤i≤n

sup
0≤w≤t∗

|Hi(s, w)− h(s, w)| p−→ 0;

2. For each s ∈ T , infw∈[0,t∗]y(s, w) > 0 where y(s, w) = E[Y1(s, w)];

3. The matrix function

Σ(s, t) =
∫ t

0
h(s, w)⊗2y(s, w)λ(w)dw

is such that for each t1, t2 ∈ [0, t∗] with t1 < t2, 0 < det{Σ(s, t2)−Σ(s, t1)} <∞;

and for each t, as n→∞, ‖V(n)(s, t)−Σ(s, t)‖ p−→ 0.

Then, as n → ∞, the sequence of processes {W(n)(s, t) : t ∈ [0, t∗], n = 1, 2, ...}

converges weakly on the Skorohod space D [0, t∗] to the Gaussian process {W(∞)(s, t) :

t ∈ [0, t∗]} with zero mean function and covariance matrix function given by

Cov{W(∞)(s, t1),W(∞)(s, t2)} =

Σ(s, t1) Σ(s, t1)

Σ(s, t1) Σ(s, t2)

 , for t1 ≤ t2.
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The continuous mapping theorem and Slutsky theorem will be used in the

sequel.

Theorem 2.10 (The Continuous Mapping Theorem ). Let h : D 7→ E be continuous

at all points in D0 ⊂ D, where D and E are metric spaces. Suppose that Pn ⇒ P in D

and P (P ∈ D0) = 1. Then h(Pn)⇒ h(P ) in E.

Theorem 2.11 (Slutsky Theorem). Let Xn ⇒ X and Yn
p−→ c constant as n → ∞.

Then

1. XnYn ⇒ cX, and

2. XnYn ⇒ X + c.

Anderson and Gill [16] state that pointwise convergence of random concave

functions implies uniform convergence on compact subspaces.

Theorem 2.12. Let E be an open convex subset of Rp and let F1, F2, ..., be a sequence

of random concave functions on E such that ∀x ∈ E, Fn(x) p−→ f(x) as n→∞ where

f is some real function on E. Then f is also concave and all compact A ⊂ E,

sup
t
|Fn(x)− f(x)| p−→ 0 as n→∞.

Corollary 2.13 (Anderson and Gill [16]). Suppose f(x) has a unique maximum at

x̂ ∈ E. Let X̂n maximizes Fn(x). Then X̂n
p−→ x̂ as n→∞.
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3. MODELING AND ANALYSIS OF RECURRENT EVENTS

Denote by (Ω,F ,P) the common probability space on which all random

entities are defined. We consider a study with n independent subjects are each under

observation over a random time interval [0,τi], where τi are i.i.d. right-censoring

random variables with distribution function G(t) = P{τi ≤ t}. For the ith subject, let

{Sij, j = 1, 2, ...} be the calender times of event occurrence, where 0 ≡ Si0 < Si1 <

Si2 < ..., and Tij = Sij − Sij−1 be i.i.d nonnegative random variables representing the

successive interoccurrence times, or gap times, of the recurrent event of interest, with

a common absolutely continuous distribution function F(t) = P{Tij ≤ t}. The renewal

function associated with F is ρ(t) = ∑∞
k=1 F

∗k(t), where F ∗k is the kth convolution

of F with itself. We assume that Tij and τi are independent. For the ith subject,

the random variable Ki = max{k ∈ {0, 1, ...} : Sik ≤ τi} is the number of event

occurrences observed over [0,τi] and {Xi(s) : 0 ≤ s ≤ τi} is q-dimensional covariate

process. Let Ci,Ki+1 = τi − SiKi is the right-censoring time variable for Ti,Ki+1. The

observable entities for the ith subject are

Di(τi) = {(Xi(s) : 0 ≤ s ≤ τi), Ki, τi, Ti1, Ti2, ..., TiKi , Ci,Ki+1}, (3.1)

Based on the data in (3.1), we define the calender time processes. For the ith

subject, the process Ni(s) represents the number of events that occurs on or before

calender time s; while Yi(s) represents the at-risk process, with

Ni(s) =
∞∑
j=1

I{Sij ≤ (s ∧ τi) : s ≥ 0},

Yi(s) = I{τi ≥ s : s ≥ 0}.
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Suppose F = {Fs : s ≥ 0} is the natural filtration generated by {(Ni(s), Yi(s),Xi(s)) :

s ≥ 0, i = 0, 1, .., n}. Hence F is the smallest σ−field for which Xi(s) and Ni(s) are

adapted cadlag processes. Moreover, because Xi(s) and Yi(s) are predictable, the

filtration Fs is defined by

Fs = F0 ∨ σ{(Ni(v), Yi(v+),Xi(v)) : s ≥ v, i = 0, 1, .., n},

where F0 represents the σ-field containing all information and events supposed to be

fixed at time 0 and Fs represents the σ-field containing all information and events

which have occurred up to and including time s, is right-continuous.

Let the observables for n subjects be D(s∗) = (D1(s∗), ...,Dn(s∗)), where Di, i =

1, ..., n are independent copies of Di and s∗ ≥ max1≤i≤nτi. Define the backward

recurrence time process for each i, which is the elapsed time since the last event

occurrence, by Ri(s) = s− SiNi(s−). The process Ri = {Ri(s) : s ≥ 0} is F-adapted

and left-continuous, and hence F-predictable. We shall consider Cox-type model.

Using a counting process formulation, our model is that
{
Ni(s), i = 1, 2, ..., n

}
are

univariate counting process, having intensity process with respect to Fs

λi(s) = λ0(Ri(s))exp(β′Xi(s)), s ≥ 0, i = 1, ..., n

where λ0(·) is the baseline hazard function whose argument is backward recurrence

time process and β = (β1, β2, ..., βq)
′ is a q-dimensional vector of unknown regression

coefficients. Note that since the backward recurrence time process is the perfect

repair effective age process, then the proposed model becomes a special case of that

in Adekpedjou and Stocker [31]. Stocker and Peña [30] developed a general class of

parametric models for recurrent event data.
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From stochastic integration theory, the compensator process of Ni(s) is Ai =

{Ai(s;β) : s ≥ 0}, with

Ai(s;β) =
∫ s

0
Yi(v)λ0(Ri(v))exp(β′Xi(v))dv.

The martingale process with respect to the natural filtration F is Mi = {Mi(s;β) :

s ≥ 0} with Mi(s;β) = Ni(s) − Ai(s;β) being a square integrable martingale with

respect to the filtration Fs, with the predictable quadratic covariation process given

by

〈Mi,Mi〉(s) = Ai(s).

where the backward recurrence time process Ri(s) = s− SNi(s−). So that the

compensator of the counting process Ni(s) is

Ai(s;β) =
∫ s

0
Yi(v)λ0(Ri(v))exp(β′Xi(v))dv.

Observe that Ri(s) is random in Ai(s;β), then direct applications of calender time

counting process can not be applied. Instead, the techniques accounting simultaneously

for calender time and gap time will be employed to set of the random argument.

Extending an idea of Sellke [38] and Gill [39], Peña et al.[40] introduced a doubly-

indexed process

Zi(s, t) = I{Ri(s) ≤ t}, i = 1, 2, ..., n. (3.2)

This process indicates whether, at calender time s, at most t time units have elapsed

since the last event occurrence. To extend the development of the doubly-indexed

process, we form the partition 0 = s0 < s1 < ... < ski < ski+1 = τi, and
(
Sij−1, Sij

]
⊆
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(
sj−1, sj

]
, for each i, j = 1, 2, .., ki+1. Let

Qi(s, t) =
ki+1∑
j=1

I{s− Sij−1 ≤ t} = I{Rij(s) ≤ t}, i = 1, 2, ..., n, (3.3)

The process Qi is used to obtain the doubly-indexed process via integral transformation.

For each i,

Ni(s, t) =
∫ s

0
Qi(v, t)dNi(v),

Ai(s, t;β) =
∫ s

0
Zi(v, t)Ai(dv;β),

Mi(s, t;β) =
∫ s

0
Zi(v, t)Mi(dv;β) = Ni(s, t)− Ai(s, t;β).

(3.4)

For a fixed t, the process Mi(., t;β) is a zero-mean square integrable martingale.

However, for a fixed s, the process Mi(s, .;β) is not a square integrable martingale,

but in spite of that, it also has a zero-mean. The process Ni(s, t) represents the

number of inter events for the ith subject that occurred over [0, s] with interoccurence

times at most t.

Proposition 3.1. For each i = 1, ..., n, Ai(s, t;β) =
∫ t

0 Yi(s, w;β)λ0(w)dw, where

Yi(s, t;β) =
Ni((s∧τi)−)∑

j=1
exp(β′Xi(t+ Sij−1))I(Tij ≥ t)

+ exp(β′Xi(t+ SiNi((s∧τi)−)))I((s ∧ τi)− SiNi((s∧τi)−) ≥ t)

is for each t ∈ T an F−predicatble process. Furthermore, for each(s, t) ∈ T 2,

Yi(s, w;β) ≤ Ni(s−) + 1, thus E{Yi(s, w;β)} <∞.

Proof.

Ai(s, t;β) =
∫ (s∧τi)

0
Yi(v)Zi(v, t)λ0(Ri(v))exp(β′Xi(v))dv
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=
∫ (s∧τi)

0
I{τi ≥ v}Zi(v, t)λ0(Ri(v))exp(β′Xi(v))dv

=
Ni((s∧τi)−)∑

j=1

∫ Sij

Sij−1
I{Ri(v) ≤ t}λ0(Ri(v))exp(β′Xi(v))dv

+
∫ (s∧τi)

SiNi((s∧τi)−)

I{Ri(v) ≤ t}λ0(Ri(v))exp(β′Xi(v))dv

Let w = Ri(v) = v − SiNi(v−) so that dw = dv

with this substitution,

if v = Sij−1, w = 0,

if v = Sij, w = Tij

and

if v = SiNi((s∧τi)−) , w = 0,

if v = (s ∧ τi), w = Ri(s ∧ τi)

Thus,

Ai(s, t;β) =
Ni((s∧τi)−)∑

j=1

∫ Tij

0
I{w ≤ t}λ0(w)exp(β′Xi(w + Sij−1))dw

+
∫ (s∧τi)

SiNi((s∧τi)−)

I{w ≤ t}λ0(w)exp(β′Xi(w + SiNi((s∧τi)−)))dw

=
∫ t

0

{Ni((s∧τi)−)∑
j=1

I{Tij ≥ w}exp(β′Xi(w + Sij−1))

+ I{Ri(s ∧ τi) ≥ w}exp(β′Xi(w + SiNi((s∧τi)−)))
}
λ0(w)dw

=
∫ t

0
Yi(s, w;β)Λ0(dw).
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The process Yi(s, t;β) is the generalized at-risk process and it keeps track of

the number of gap times that exceed t by calender time s. Furthermore, for each fixed

t, the s-indexed process Yi(., t;β) is left- continuous, and hence F−predictable. As a

consequence, for each fixed t,

Mi(·, t;β) = Ni(·, t)−
∫ t

0
Yi(·, w;β)Λ0(dw) (3.5)

is a square integrable martingale with respect to Fs.

3.1. METHOD OF MOMENT ESTIMATORS

To derive the estimator of Λ0, we use the alternative martingale form in (3.5).

Let S(0)(s, t;β) = 1
n

∑n
i=1 Yi(s, t;β) and J(s, t;β) = I{S(0)(s, t;β) > 0}, then

∫ t

0

J(s, w;β)
S(0)(s, t;β)M(s, dw) =

∫ t

0

J(s, w;β)
S(0)(s, w;β)N(s, dw)

−
∫ t

0
J(s, w;β)Λ0(dw),

(3.6)

and

∫ t

0

J(s, w;β)
S(0)(s, w;β)M(s, dw) =

n∑
i=1

∫ t

0

J(s, w;β)
S(0)(s, w;β)Mi(s, dw)

=
n∑
i=1

∫ s

0

J(s, Ri(v);β)
S(0)(s, Ri(v);β)Mi(dv, t).

Furthermore, since Mi(., t;β) is a square integrable martingale with respect to Fs,

it follows from stochastic integration theory that
∫ t

0
J(s,w;β)
S(0)(s,w;β)Mi(s, dw) is a square

integrable martingale and

E

{∫ t

0

J(s, w;β)
S(0)(s, w;β)Mi(s, dw)

}
= 0. (3.7)
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Consequently, the moment identity can be shown as follows:

E

{∫ t

0

J(s, w;β)
S(0)(s, w;β)M(s, dw)

}
= 1
n

n∑
i=1

∫ t

0

J(s, w;β)
S(0)(s, w;β)Mi(s, dw).

Thus, it follows from (3.6), (3.7) that for a given value of β over [0, s], the Nelson-Aalen

estimator of Λ0 is given by

Λ̃0(s, t;β) = 1
n

∫ t

0

J(s, w;β)
S(0)(s, w;β)N(s, dw). (3.8)

It follows that the survivor function associated with Λ0(.) is defined by F̄ (t) =

exp{−Λ0(t)}. The estimator of the survivor function sometimes known as the product-

limit estimator of F̄ (t), is obtained as

˜̄F0(s, t;β) =
t

R
w=0

(1− Λ̃0(s, dw;β)). (3.9)

Note that Λ̃0 is not set an estimator, since β is unknown. For the case when β is

unknown, the estimator of the baseline survivor function can be evaluated from the

estimated regression coefficients β. The next section will discuss developing the profile

likelihood for β from which the estimator of β is obtained.

3.2. ESTIMATION OF βββ

Our aim in this section is to derive likelihood function for estimating β. This

can be done in two steps. One first obtain the full likelihood as we have two unknowns

Λ̃0 and β. Since we have an expression for Λ0 as a function of β, one can just maximize

L(·; Λ0(·),β) with respect to Λ̃0 to obtain the partial likelihood which can later be

used to estimate β. To that end, the profile likelihood function for β is obtained by
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inserting Λ̃0 into the partial likelihood function which in turn can be maximized to

give β̂.

Following Jacod [36], the full likelihood process is:

L(s∗, t;β) =
{

n∏
i=1

s∗

R
v=0

[
Yi(v)λ0(Ri(v))exp(β′Xi(v))

]dNi(v)Zi(v,t)}

× exp
[
−

n∑
i=1

∫ s∗

0
Yi(v)Zi(v, t)λ0(Ri(v))exp(β′Xi(v))dv

]
,

(3.10)

where s∗ = max τi. Let s∗ = t∗ ≥ max τi, we get

L(s∗, t∗;β) =
{

n∏
i=1

t∗

R
v=0

[
Yi(v)λ0(Ri(v))exp(β′Xi(v))

]dNi(v)Zi(v,t∗)}

×
{
exp

[
−

n∑
i=1

∫ t∗

0
Yi(s∗, w;β)Λ0(dw)

]}

=
{

n∏
i=1

t∗

R
v=0

[
Yi(v)λ0(Ri(v))exp(β′Xi(v))

]dNi(v)Zi(v,t∗)}

× exp
[
−
∫ t∗

0
nS(0)(s∗, w;β)Λ0(dw)

]
.

(3.11)

In (3.11), we may then replace the differentials of dNi(w) and dΛ0(w) by the increments

∆Ni(w) and ∆Λ0(w); the integral
∫
Yi(w)dΛ0(w) becomes the sum ∑∆Λ0(w). For

fixed value of β, maximization of (3.11) with respect to ∆Λ0(t) leads to

∆Λ̃0(s∗, t∗;β) = ∆N(s∗, t∗))
nS(0)(s∗, t∗;β) . (3.12)

Thus, for fixed value of β, Λ̃0(s∗, t∗;β) can be estimated by the Nelson-Aalen estimator

given by (3.8). Inserting (3.8) into (3.11), we obtain the following profile likelihood
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Lp(s∗, t∗;β):

Lp(s∗, t∗;β) =
n∏
i=1

s∗

R
v=0

[
Yi(v)Λ̂0(s∗,∆Ri(v);β)exp(β′Xi(v))

]∆Ni(v)Zi(v,t∗)

×exp{−N(s∗, t∗)}

∝
n∏
i=1

s∗

R
v=0

[
Yi(v)Λ̂0(s∗,∆Ri(v);β)exp(β′Xi(v))

]∆Ni(v)Zi(v,t∗)

∝
n∏
i=1

s∗

R
v=0

Yi(v)
{
N(s∗,∆Ri(v)))
S0(s∗, Ri(v);β)

}
exp(β′Xi(v))

∆Ni(v)Zi(v,t∗)

,

Since Yi(v) and N(s,∆Ri(v))) are independent of β, then the partial likelihood profile

can be written in the form

Lp(s∗, t∗;β) =
n∏
i=1

Ni((s∗∧τi)−)∏
j=1

[
exp(β′Xi(Sij))
S0(s∗, Ri(Sij);β)

]∆Ni(Sij)Zi(Sij ,t∗)

. (3.13)

Therefore, we can estimate β from (3.13), or equivalently from the log-partial likelihood

profile takes the form

lp(s∗, t∗;β) =
n∑
i=1

∫ s∗

0

[
β
′Xi(v)− log S0(s, Ri(v);β)

]
Zi(v, t∗)dNi(v)

=
n∑
i=1

∫ s∗

0

[
β
′Xi(v)− log S0(s∗, Ri(v);β)

]
Ni(dv, t∗).

(3.14)

The derivative of lp(s∗, t∗;β) with respect to β yields the vector of score statistics

U(β) = ∇βlp(s∗, t∗;β) = ∂
∂βj
lp(s∗, t∗;β) = U j(β), j = i, ..., q, where

U j(s∗, t∗;β) =
n∑
i=1

∫ s∗

0

∂

∂βj

[
β
′Xi(v)− log S0(s, Ri(v); β)

]
Ni(dv, t). (3.15)
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The score statistic can thus be written as

U(s∗, t∗;β) =
n∑
i=1

Ni(s∗−)∑
j=1

∫ Sij

Sij−1
∇β

[
β
′Xi(v)− log S0(s, Ri(v);β)

]
Ni(dv, t)

+
n∑
i=1

Ni(s∗−)∑
j=1

∫ s∗

SiNi(s∗−)

∇β
[
β
′Xi(v)− log S0(s, Ri(v);β)

]
Ni(dv, t).

(3.16)

The maximum partial likelihood estimator β̂ is a solution to the equationU(s∗, t∗;β) =

0. It is obvious that numerical techniques, such as the Newton-Raphson Method

can be applied to obtain the estimate β̂. The estimator of Λ0(t) based on the

observable realization over [0, s∗] is obtained by substituting β̂ for β in the expression

β. Accordingly,

Λ̂0(s∗, t∗; β̂) = 1
n


∫ t∗

0

J(s∗, w; β̂)
S(0)(s∗, w; β̂)

N(s∗, dw)

 , (3.17)

which is often called the Breslow estimator.

3.3. ASYMPTOTIC PROPERTIES

The asymptotic properties of the estimators β̂ and Λ̂ are discussed in this

section. To establish the asymptotic properties, we require some notation and regularity

conditions. Some important definitions are:

S(1)(s, t;β) = 1
n

n∑
i=1

Xi(t)Yi(s, t;β)

S(2)(s, t;β) = 1
n

n∑
i=1

X⊗2
i (t)Yi(s, t;β)

E(s, t;β) = S(1)(s, t;β)
S(0)(s, t;β)

V(s, t;β) = S(2)(s, t;β)
S(0)(s, t;β) − E(s, t;β)⊗2,

(3.18)
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where for a q− vector a, a⊗2 is the q × q matrix aa
′ . The expressions S(1)(s, t;β)

and S(2)(s, t;β) are the first and second-order partial derivatives, respectively, of

S(0)(s, t;β) with respect to β. Furthermore, the vector E(s, t;β) and the matrix

V(s, t;β) are the expectation and the covariance, respectively, of the covariate vector

Xi(t). In the proofs, we need the following regularity condition:

Condition 1. There exist a neighborhood B of β0 such that for all s ∈ [0, s∗],

t ∈ [0, t∗], (s, t) ∈ T 2,β ∈ B, and m = 1, 2:

(a) There exists a deterministic function s(0) : T ×B → R+ such that

sup
t∈T ;β∈B

|S(0)(s, t;β)− s(0)(s, t;β)| p−→ 0,

and with inf
t∈T

s(0)(s, t;β) > 0 and with Λ0(t) =
∫ t

0 λ0(w)dw <∞;

(b) There exists deterministic functions s(1) : T ×B → Rq and s(2) : T ×B → Rq×q

such that

sup
t∈T
|S(m)(s, t;β)− s(m)(s, t;β)| p−→ 0 n→∞;

(c) s(m)(s, .;β0) is bounded on T × B and is a continuous function of β ∈ B

uniformly in t ∈ T ;

(d) For t ∈ T and β ∈ B, s(0)(s, .;β0) is bounded;

(e) s(1)(s, t;β) = ∇βs(0)(s, t;β), s(2)(s, t;β) = ∇β∇β′s(0)(s, t;β);

(f) Σ(s, t) =
∫ t

0 v(s, w;β0)s(0)(s, w;β0)λ(w)dw is positive definite, where v =
s(2)(s,t;β0)
s(0)(s,t;β0) − e⊗2(s, t;β0) and e = s(1)(s,t;β0)

s(0)(s,t;β0) .

Before we proceed further, we need to extend Theorem 1 of Peña et al.[37].

For i = 1, ..., n, s ∈ [0, s∗], t ∈ [0, t∗], and (s, t) ∈ T 2, let Hi(s, t;β) be q-dimensional
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vector-valued processes on (Ω, F , P) with
{
Hi,k(., .; βi,k) : k = 1, .., q

}
bounded and

F -predictable. Let

W(s, t;β) = 1√
n

n∑
i=1

∫ t

0
Hi(s, w;β)Mi(s, dw;β),

V(s, t;β) =
n∑
i=1

∫ t

0
[Hi(s, w;β)]⊗2S

(0)
i (s, w;β)λ(w)dw.

be the integral-transformed processes.

Lemma 3.2. Suppose the following conditions are satisfied for t ∈ [0, t∗] where

t∗ ∈ T :

1. There exists a deterministic function h(v, w;β) on [0, s∗]× [0, t∗] which is con-

tinuous in (v, w) and bounded such that

max
1≤i≤n

sup
0≤w≤t∗

|Hi(s, w;β)− h(s, w;β)| p−→ 0;

2. The function

Σ̆(s, t;β) =
∫ t

0
h(s, w;β)⊗2s(0)(s, w;β)λ(w)dw

is such that for each t, as n→∞, ‖V(s, t;β)− Σ̆(s, t;β)‖ p−→ 0.

Then, as n → ∞, the processes {W(s, t;β) : t ∈ [0, t∗]} converges weakly on the

Skorohod space D [0, t∗] to the Gaussian process with zero mean function and covariance

function given by

Σ̆(s, t;β) =
∫ t

0
h(s, w;β)⊗2s(0)(s, w;β)λ(w)dw

Proof. The proof is the similar to the proof of Theorem 1 of Peña et al. [37].

We are now able to prove the following consistency theorems.
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3.3.1. Consistency of Estimators.

Theorem 3.3. Under Condition (1), there exists a unique solution β̂ to the equation

U(β) = 0 and β̂ p−→ β0 as n→∞.

Proof. For i = 1, ..., n and (s∗, t∗) ∈ T 2, consider the function D(s∗, t∗;β) given by

D(s∗, t∗;β) = 1
n

[
lp(s∗, t∗;β)− lp(s∗, t∗;β0)

]

= 1
n

n∑
i=1

∫ t∗

0

{
(β − β0)′Xi(s∗)− log S

(0)(s∗, w;β)
S(0)(s∗, w;β0)

}
Ni(s∗, dw).

(3.19)

where lp(s∗, t∗;β) is the log-profile likelihood given in (3.14). Now, we need to show

that D(s∗, t∗;β) is a concave function which converges pointwise in probability to

a concave function of β with a unique maximum at β = β0. Using the fact that

Mi(s∗, dw;β) = Ni(s∗, dw)− Yi(s∗, w;β)Λ0(dw), we have

D(s∗, t∗;β) = 1
n

n∑
i=1

∫ t∗

0

{
(β − β0)′Xi(s∗)− log S

(0)(s∗, w;β)
S(0)(s∗, w;β0)

}
Mi(s∗, dw;β)

+ 1
n

n∑
i=1

∫ t∗

0

{
(β − β0)′Xi(s∗)− log S

(0)(s∗, w;β)
S(0)(s∗, w;β0)

}
Yi(s∗, w;β)Λ0(dw), (3.20)

where the first term on the right-hand side of (3.20) is a local square integrable

martingale with predictable variation process

〈M,M〉(t∗) = 1
n2

n∑
i=1

∫ t∗

0

{
(β − β0)′Xi(s∗)

− log S
(0)(s∗, w;β)

S(0)(s∗, w;β0)

}2

Yi(s∗, w;β)Λ0(dw).
(3.21)

It follows from Lemma 3.2 and Condition 1 (a), (b), (c), and (d) that the first

term in (3.20) is op(1). Furthermore, the second term in(3.20) for β ∈ B converges in
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probability to some function

Υ(s∗, t∗;β) =
∫ t∗

0

[
(β − β0)′s(1)(s∗, w;β0)

− log
 s(0)(s∗, w;β)
s(0)(s∗, w;β0)

 s(0)(s∗, w;β0)
]
Λ0(dw). (3.22)

Thus, we have the result

D(s∗, t∗;β) p−→ Υ(s∗, t∗;β).

By Condition 1 (c)-(f), and assuming that we may interchange the order of

integration and differentiation in (3.20), we have for β ∈ B

∇βΥ(s∗, t∗;β) =
∫ t∗

0

(
e(s∗, w;β0)− e(s∗, w;β)

)
s(0)(s∗, w;β0)Λ0(dw), (3.23)

which is zero for β = β0. Moreover,

−∇β∇β′Υ(s∗, t∗;β) =
∫ t∗

0
v(s∗, w;β)s(0)(s∗, w;β0)Λ0(dw), (3.24)

which is negative semidefinite and concave. It follows from Condition 1 (c)-(f)

that the right side of (3.24) is positive definite for β = β0. Thus, D(s∗, t∗;β)

converges pointwise in probability to a concave function Υ(s∗, t∗;β) on B with a

unique maximum at β = β0. Therefore, D(s∗, t∗;β) is also concave and has a

maximum at β = β̂ when β̂ exists. Theorem 2.12 and Corollary 2.13 of Andersen and

Gill [41] imply that the maximizing values β̂ of D(s∗, t∗;β) converges in probability

to the maximizing value β0 of Υ(s∗, t∗;β).
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Theorem 3.4. Under Condition 1, Λ̂0(s∗, t∗;β) converges uniformly in probability to

Λ0(.) on [0, t∗], that is

sup
w∈[0,t]

|Λ̂0(s∗, w;β)− Λ0(w)| p−→ 0.

Proof. Let D [0, s∗] be the space of the cadlag function on [0, s∗] and endow this space

with the Skorohod metric. For D ∈ D [0, s∗], denote ‖D‖∞ = supv∈[0,s∗]
∣∣D(v)

∣∣ , let
G = D [0, s∗]2 × Rq

+, and define d : G × G 7→ Rq
+ with

d
(
[U1, U2, x], [V1, V2, y]

)
=
√
‖U1 − V1‖2

∞ + ‖U2 − V2‖2
∞ + |x− y|2.

Define

Q ≡ Qn =


(
N(s∗, w)

n
, S(0)(s∗, w; β̂)

)
; β̂

 ,
where Q ∈ G , and

Q0 =


(∫ t

0
s(0)(s∗, w;β0)λ0(w)dw, s(0)(s∗, w;β0)

)
;β0)

 .
We can show that for any sequence of elements of G × G , Qn converges to Q0,

d(Qn, Q0) p−→ 0. Therefore, it follows from Lemma 3.2 that
{
M(s∗, t;β0)/

√
n : t ∈ [0, t∗]

}
converges weakly to a Gaussian process, thus

∣∣∣N(s∗,w)
n
−
∫ t

0 s
(0)(s∗, w;β0)λ0(w)dw

∣∣∣
= op(1). By Condition 1 (a) and the consistency of β̂, we have

d



(
N(s∗, w)

n
, S(0)(s∗, w; β̂)

)
; β̂

 ,

(∫ t

0
s(0)(s∗, w;β0)Λ0(dw), s(0)(s∗, w;β0)

)
;β0)


 p−→ 0.
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Now, we recall first that

Λ̂0(s∗, t; β̂) = 1
n


∫ t

0

J(s∗, w; β̂)
S(0)(s∗, w; β̂)

N(s∗, dw)

 . (3.25)

Let H : G 7→ D [0, t∗] which maps Q into Λ̂0(s∗, t; β̂). Then, we have H(Qn) =

Λ̂0(s∗, t; β̂) and H(Q0) = Λ0(t). If we could show that the mapping H is continuous,

the consistency of Λ̂ will follow by the continuous mapping theorem and the fact that

d(Qn, Q0) p−→ 0. To show continuity of this mapping, we have

|H(Qn)−H(Q0)| =
∫ t

0

∣∣∣∣∣∣
N(s∗,dw)

n

S(0)(s∗, w; β̂)
− Λ0(dw)

∣∣∣∣∣∣
≤
∫ t

0

∣∣∣∣∣∣
N(s∗,dw)

n

S(0)(s∗, w; β̂)
− N(s∗, dw)
ns(0)(s∗, w;β0)

∣∣∣∣∣∣
+
∫ t

0

∣∣∣∣∣ N(s∗, dw)
ns(0)(s∗, w;β0) − Λ0(dw)

∣∣∣∣∣
=
∫ t

0

∣∣∣∣∣∣ 1
S(0)(s∗, w; β̂)

− 1
s(0)(s∗, w;β0)

∣∣∣∣∣∣ N(s∗, dw)
n

+
∫ t

0

∣∣∣∣∣N(s∗, dw)
n

− s(0)(s∗, w;β0)Λ0(dw)
∣∣∣∣∣ 1
s(0)(s∗, w;β0) .

(3.26)

Since N(s∗, w) is a non-decreasing non-negative process in w and s(0)(s∗, w;β0) is a

non-increasing process in w, it follows that the first term in (3.26) is bounded above

by  sup
w∈[0,t∗]

∣∣∣∣∣∣ 1
S(0)(s∗, w; β̂)

− 1
s(0)(s∗, w;β0)

∣∣∣∣∣∣
 N(s∗, t∗)

n
. (3.27)

It follows from Condition 1 that

sup
w∈[0,t∗]

∣∣∣∣∣∣ 1
S(0)(s∗, w; β̂)

− 1
s(0)(s∗, w;β0)

∣∣∣∣∣∣ = op(1) (3.28)
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and N(s∗,t∗)
n

= Op(1), it follows that the first term is asymptotically negligible. The

second term is bounded above by

 sup
w∈[0,t∗]

∣∣∣∣∣N(s∗, dw)
n

− s(0)(s∗, w;β0)Λ0(dw)
∣∣∣∣∣
 1
s(0)(s∗, t∗;β0) , (3.29)

which is op(1). This is because by the results in ,
{
M(s∗, t)/

√
n : t ∈ [0,∞]

}
converges

weakly to a Gaussian process, implying

 sup
w∈[0,t∗]

∣∣∣∣∣N(s∗, dw)
n

− s(0)(s∗, w;β0)Λ0(dw)
∣∣∣∣∣
 = op(1);

whereas by Condition 1 (a) and (c) we have 1
s(0)(s∗,t∗;β0) = Op(1).

3.3.2. Large Sample Distributional Properties. In this section, we de-

rive the asymptotic Gaussianity for the partial likelihood score vector. The results

are then used to establish the asymptotic normality of β̂ and the weak convergence of{
Wn(s∗, t) : t ∈ T ;n = 1, 2, ...

}
, given by

Wn(s∗, t) =
√
n
[
Λ̂0(s∗, t; β̂)− Λ0(t)

]
.

To prove the limiting distributional properties of β̂ and Wn(s∗, t), we will define the

process {Ξ(s∗, t;β0) : t ∈ T } where

Ξ(s∗, t;β0) =
∫ t

0
J(s∗, w;β0) S

(1)(s∗, w;β0)
S(0)(s∗, w;β0)2N(s∗, dw),

and the process

ϑ(s∗, t) =
√
n
[
Λ̂(s∗, t; β̂)− Λ0(t)

]
+
√
n(β̂ − β0)′Ξ(s∗, t;β0),
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Also, let the gradient of lp(·, ·;β) be given by

U̇(s∗, t;β) = ∇β{
1
n
lp(s∗, t;β)}

= ∇β

 1
n

n∑
i=1

∫ t

0

[
β
′Xi(s∗)− log S0(s∗, w;β)

]
Ni(s∗, dw)


= 1
n

n∑
i=1

∫ t∗

0

{
Xi(s∗)−

S(1)(s∗, w;β)
S(0)(s∗, w;β)

}
Ni(s∗, dw),

and, the second partial derivative of lp(·, ·;β) given by

Ü(s∗, t;β) = ∇β∇β′{
1
n
lp(s∗, t;β)} = ∇β{U̇(s∗, t;β)}

= ∇β
{

1
n

n∑
i=1

∫ t∗

0

{
Xi(s∗)−

S(1)(s∗, w;β)
S(0)(s∗, w;β)

}
Ni(s∗, dw)

}

= −1
n

n∑
i=1

∫ t∗

0

S(2)(s∗, w;β)
S(0)(s∗, w;β) −

S(1)(s∗, w;β)
S(0)(s∗, w;β)

⊗2
Ni(s∗, dw)

= −1
n

n∑
i=1

∫ t∗

0
V(s∗, w;β)Ni(s∗, dw).

The next lemma gives the in-probability limit of Ü(s∗, t∗;β)

Lemma 3.5. Under Condition 1,

Ü(s∗, t∗;β) =

−
n∑
i=1

∫ t∗

0
V(s∗, w;β)S(0)(s∗, w;β)Λ0(dw) + op(1)

p−→ −Σ(s∗, t∗).
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Proof. Straightforward calculations show that

Ü(s∗, t∗;β) = −1
n

n∑
i=1

∫ t∗

0
V(s∗, w;β)Ni(s∗, dw)

= −1
n

n∑
i=1

∫ t∗

0
V(s∗, w;β)[Mi(s∗, dw) + Yi(s∗, w;β)Λ0(dw)]

= −1
n

n∑
i=1

∫ t∗

0
V(s∗, w;β)Mi(s∗, dw)

+
∫ t∗

0
V(s∗, w;β)S(0)(s∗, w; β̂)Λ0(dw).

(3.30)

By Condition 1, the second term in (3.30) converges in probability to Σ(s∗, t∗).

Furthermore, by Lemma 3.2, we have that the process

 1√
n

n∑
i=1

∫ t

0
V(s∗, w;β)Mi(s∗, dw) : t ∈ [0, t∗]


converges weakly to a Gaussian process W (s∗, t) with zero mean function and covari-

ance function

Cov(W (s∗, t1),W (s∗, t2)) =
∫ t1∧t2

0
v(s∗, w;β0)s(0)(s∗, w;β0)Λ0(dw)

for t1, t2 ∈ [0, t∗]. As a result,

sup
t∈[0,t∗]

∣∣∣∣∣∣ 1√
n

n∑
i=1

∫ t

0
V(s∗, w;β)Mi(s∗, dw)

∣∣∣∣∣∣
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converges weakly to sup
t∈[0,t∗]

|W (s∗, t)|, which is Op(1). It follows that

sup
t∈[0,t∗]

∣∣∣∣∣∣ 1n
n∑
i=1

∫ t

0
V(s∗, w;β)Mi(s∗, dw)

∣∣∣∣∣∣
= 1√

n
sup
t∈[0,t∗]

∣∣∣∣∣∣ 1√
n

n∑
i=1

∫ t

0
V(s∗, w;β)Mi(s∗, dw)

∣∣∣∣∣∣
= op(1).

Theorem 3.6. Under Condition 1, we have the representations

√
n(β̂ − β0) = Σ(s∗, t∗)−1× 1√

n

n∑
i=1

∫ t∗

0
[Xi(s∗)−E(s∗, w;β0)]Mi(s∗, dw)

+ op(1). (3.31)

Proof. By first-order Taylor expansion of U̇(s∗, t∗; β̂) around β0, we obtain

U̇(s∗, t∗; β̂) = U̇(s∗, t∗; β̂) + (β̂ − β0)Ü(s∗, t∗; β̃),

where β̃ is on the line segment between β̂ and β0. Since U̇(s∗, t∗; β̂) = 0, we have

√
n(β̂ − β0) = [

√
nU̇(s∗, t∗;β0)][−Ü(s∗, t∗; β̃)]−1,

Using the consistency of β̂ and by Lemma 3.5, we may write

[−Ü(s∗, t∗; β̃)]−1 = [Σ(s∗, t∗)]−1 + op(1). (3.32)
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Furthermore, it is seen that

√
nU̇(s∗, t∗;β0) = 1√

n

n∑
i=1

∫ t∗

0
[Xi(s∗)− E(s∗, w;β0)]Mi(s∗, dw),

which, combined with (3.32), gives the representation for
√
n(β̂ − β0).

Theorem 3.7. Assume Condition 1 holds. Then
√
n(β̂ − β0) and the processes

ϑ(s∗, t∗) = 1√
n

∫ t∗

0

J(s∗, w; β̂)
S(0)(s∗, w;β0)M(s∗, dw) + op(1),

are asymptotically independent.

Proof. By introducing

√
n
[
Λ̂0(s∗, t∗; β̂)− Λ0(t∗)

]
=
√
n
[
Λ̂0(s∗, t∗; β̂)− Λ∗(s∗, t∗; β̂)

]
+
√
n
[
Λ∗(s∗, t∗; β̂)− Λ0(t∗)

]
,

(3.33)

where Λ∗(s∗, t∗;β0) =
∫ t∗
0 J(s∗, w;β0)Λ0(dw). the second term in(3.33) can be written

as
√
n
[
Λ∗(s∗, t∗; β̂)− Λ0(t∗)

]
=
√
n
∫ t∗

0
I{S0(s∗, w;β0) = 0}Λ0(dw)

Since Λ0 =
∫ t∗

0 λ0(w)dw <∞ and inf
t∈T

s(0)(s∗, t∗;β) > 0 by Condition 1 (a) and (c), it

follows that

sup
w∈[0,t∗]

|Λ∗(s∗, w; β̂)− Λ0(dw)| = op(1). (3.34)
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The first-order Taylor expansion of the first term yields

√
n

[
Λ̂0(s∗, t∗; β̂)− Λ∗(s∗, t∗; β̂)

]
=

√
n
∫ t∗

0

 J(s∗, w; β̂)
nS(0)(s∗, w; β̂)

N(s∗, dw)− J(s∗, w; β̂)Λ0(dw)


= 1√
n

∫ t∗

0
J(s∗, w; β̂)

 1
S(0)(s∗, w; β̂)

− (β̂ − β0)′ S
(1)(s∗, w; β̂)

S(0)(s∗, w; β̂)2

N(s∗, dw)

−
√
n
∫ t∗

0
J(s∗, w; β̂)Λ0(dw)

= 1√
n

∫ t∗

0

J(s∗, w; β̂)
S(0)(s∗, w; β̂)

[
N(s∗, dw)− nS(0)(s∗, w; β̂)Λ0(dw)

]

− 1√
n

∫ t∗

0
(β̂ − β0)′ S

(1)(s∗, w; β̂)
S(0)(s∗, w; β̂)2

N(s∗, dw)

= 1√
n

∫ t∗

0

J(s∗, w; β̂)
S(0)(s∗, w; β̂)

M(s∗, dw)

− 1√
n

∫ t∗

0
(β̂ − β0)′ S

(1)(s∗, w; β̂)
S(0)(s∗, w; β̂)2

N(s∗, dw).

It follows by the consistency of β̂ and Condition 1 (a),(b),and (c) that

√
n
[
Λ̂0(s∗, t∗; β̂)− Λ∗(s∗, t∗; β̂)

]
= 1√

n

∫ t∗

0

J(s∗, w; β̂)
S(0)(s∗, w; β̂)

M(s∗, dw)

+op(1).
(3.35)

Thus, the representation for ϑ(s∗, t) follows from (3.33) and (3.34). We may rewrite

the established representations as follows:


√
n(β̂ − β0)

ϑ(s∗, t∗)

 =

[Σ(s∗, t∗)]−1 0

0 I



× 1√
n

∫ t∗

0


∑n
i=1[Xi(s∗)− E(s∗, w;β)]Mi(s∗, dw)

J(s∗,w;β̂)
S(0)(s∗,w;β0)M(s∗, dw)

 .
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By Theorem 3.6 and Slutaky’s theorem, it follow that


√
n(β̂ − β0)

ϑ(s∗, t∗)

 d−→

W1

W2

 =

[Σ(s∗, t∗)]−1 0

0 I


Z1(s∗, t∗)

Z2(s∗, t∗)

 , (3.36)

where Z =

Z1(s∗, t∗)

Z2(s∗, t∗)

 is a (q+p)-dimensional zero mean multivariate normal random

vector with covariance matrix

Cov(Z,Z) =
∫ min(t1,t2)

0

v(s∗, w;β) 0

0 1
s(0)(s∗,w;β0)2

 s(0)(s∗, w;β0)Λ0(dw) (3.37)

for t1, t2 ∈ [0, t∗]. Consequently, we establish that
√
n(β̂ − β0) and ϑ(s∗, t∗) are

asymptotically independent.

The following two corollaries of Theorem 3.6 are immediate consequences of

the preceding discussion.

Corollary 3.8. Under the conditions of Theorem 3.6, as n→∞,

√
n(β̂ − β0) d−→ N (0, [Σ(s∗, t∗)]−1)

Proof. Immediate from Theorem 3.6. It follows from (3.36) and (3.37) that

√
n(β̂ − β0) d−→ N (0, [Σ(s∗, t∗)−1]′Σ(s∗, t∗)Σ(s∗, t∗)−1).

Corollary 3.9. Under the same conditions as in Theorem 3.6, as n→∞, the process

Wn(s∗, t∗) =
√
n
[
Λ̂0(s∗, ·;β)− Λ0(·)

]
converges weakly on the Skorohod space D [0, t∗]
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to a p-variate Gaussian process with mean zero and covariance function

ϕ(s∗, t1, t2) =
∫ min(t1,t2)

0

Λ0(dw)
s(0)(s∗, w;β0) + ξ(s∗, t1)′ [Σ(s∗, t∗)]−1ξ(s∗, t2),

for t1, t2 ∈ [0, t∗] and with ξ(s∗, t1) =
∫ t1

0 e(s∗, w;β0)Λ0(dw).

Proof. From the results of Theorem 3.7, it follows that
{
Wn(s∗, t∗) : t∗ ∈ T

}
, converges

weakly on D [0, t∗] to the zero-mean Gaussian process W∞(s∗, t∗) with

W∞(s∗, t∗) = Z2(s∗, t∗) + ξ(s∗, t1)′W1(s∗, t∗),

and its covariance function is

ϕ(s∗, t1, t2) =
∫ min(t1,t2)

0

Λ0(dw)
s(0)(s∗, w;β0) + ξ(s∗, t1)′ [Σ(s∗, t∗)]−1ξ(s∗, t2),

for t1, t2 ∈ [0, t∗].

This completes the proof of the corollary.

3.4. SIMULATION STUDY

Simulation study is carried out to assess the large sample performance of the

proposed approach in Section 3.2 and 3.3. The goals of these studies are: (i) to

examine the effect of sample size on the properties of the estimators; (ii) to examine

the bias, standard deviation, and root-mean-square-error of the estimators; (iii) to

compare asymptotic to large sample results with the simulated results. It is interesting

to compare the performance of the proposed approach with one designed for the

analysis of recurrent event data. In order to accomplish this, another simulation study

is conducted under the setup described in Cook and Lawless [24]. The Cook and

Lawless (CL) model, an extension of the Cox proportional hazards model with time
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varying covariates, is a semiparametric analysis of the intensity of the recurrent event.

For comparison, we also fit Cook and Lawless model using the function coxph in R.

3.4.1. Simulation Design. In the study, the interoccurrence times Tij are

generated from the Weibull distribution with the hazard function αηtα−1eβ
′Xi(t) and

also the censoring variables τi from uniform distribution over the interval (0, 360). For

covariates, we consider a two-dimensional covariate vector (X1, X1) with X1 having

a standard normal distribution, and X2 having Bernoulli distribution with success

probability of 0.5. The true values of regression coefficient vector (β1, β2) is set to be

(1, -1). The results given below are based on sample size n that varies in the set {30,

50, 80, 200} with 1000 replications. The Weibull shape parameter α is set to be 0.5

and 0.8, and parameter η with η ∈ {0.1, 0.5, .8, 1}. The results include the averages

of the point estimates β̂ (Mean), and the sample standard deviations of the point

estimate (SSD).

3.4.2. Discussion of Simulation Results. To find the maximum likelihood

estimator of β, we need to maximize the log-liklihood profile in (3.14) with respect

to β. This is done using mle2 function in R and which is based on the Nelder-Mead

method. We show in tables below estimates of β that are based on the proposed model

and Cook and Lawless model, which are given in the output from R function coxph.

Tables 3.1 - 3.3 summarize the mean values, bias, and standard errors of the estimators

of β1 and β2 for different values of α, η, and sample size n. The numerical results

indicate that the proposed methods work well. The tables show that as the sample size

increases, the performance of the estimators of β improved, with the biases decreasing

and the standard errors also decreasing. The impact of changing Weibull parameters

in the context of the accuracy and precision of the estimators can be observed because

of the interplay between these parameters leads to differing observed number of event

occurrences. Upon examining the mean number of events observed per unit µEv, we

notice that when α < 0.5 and η < 1, the latter leading to a DFR Weibull baseline
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distribution, there tends to be a smaller number of observed events; whereas when

α > 0.5, the latter leading to a IFR Weibull baseline distribution, then there tends to

be a larger number of observed events than the average of approximately 10 events

per unit. Figures 3.1-3.6 show an interplay between the nature of the baseline hazard

rate function (IFR/DFR) and the behavior of β̂. We observed that as the sample

size increases, the β̂s exhibit negative bias. Moreover, both the standard errors and

RMSEs of β̂ decrease steady.

Figures 3.7-3.9 present the simulation results on estimation of the cumulative

hazard function Λ based on the simulated data generated under the Weibull distribution

with α = 0.1, 0.5 and η = 0.1, 0.9. The results given below are based on sample size

n varies in the set {30, 50, 80, 200} and the vector (β1, β2) is set to be (1, -1) with

1000 replications. The results include the estimated bias (Bias) and the root mean

square error (RMSE) for equally spaced values of t in the set [0,200] by increments

of 20. The graphs shown below demonstrate the shapes of various values of α and η.

It can be seen that as the time increases, the Λ̂ exhibits positive bias and a steady

increase in RMSE and SE. The shape of graphs in each case appears to be the same.
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Table 3.1. Maximum likelihood estimates for β = (1,−1)

Proposed model Cook-Lawless model

α η n µEv β̂1 β̂2 β̂1 β̂2

0.5 0.5 30 5.16 1.0316 -1.0247 0.5024 -0.5064

50 5.21 1.0212 -1.0201 0.5057 -0.4780

80 5.15 0.9856 -0.9871 0.4869 -0.4805

200 5.16 0.9951 -0.9896 0.4710 -0.4821

0.5 0.8 30 8.88 1.0276 -1.0214 0.5948 -0.5735

50 8.80 0.9821 -0.9863 0.5544 -0.5086

80 8.61 0.9899 -0.9885 0.5269 -0.5436

200 8.74 0.9960 -0.9924 0.5194 -0.5391

0.5 1 30 11.4 1.0149 -1.0157 0.5182 -0.5846

50 11.4 0.9866 -0.9857 0.5835 -0.5792

80 11.4 0.9930 -0.9953 0.5860 -0.5731

200 11.4 0.9971 -0.9935 0.5548 -0.5763

0.8 0.5 30 17.6 0.9870 -0.9854 0.6682 -0.6496

50 17.2 0.9892 -0.9871 0.6825 -0.6542

80 17.7 0.9968 -0.9985 0.6550 -0.6247

200 11.4 0.9982 -0.9987 0.6148 -0.6463
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Table 3.2. Bias, RMSE and standard errors for β̂1

Proposed model Cook-Lawless model

α η n Bias RMSE σ̂β̂1
Bias RMSE σ̂β̂1

0.5 0.5 30 0.0109 0.0668 0.0804 -0.496 0.5423 0.0932

50 -0.0029 0.0655 0.0406 -0.495 0.5247 0.0694

80 -0.0044 0.0628 0.0211 -0.514 0.5316 0.0536

200 -0.0077 0.0622 0.0062 -0.529 0.5368 0.0332

0.5 0.8 30 0.0103 0.0598 0.0393 -0.406 0.4698 0.0699

50 0.0046 0.0577 0.0147 -0.446 0.4799 0.0514

80 -0.0066 0.0526 0.0084 -0.474 0.4904 0.0401

200 -0.0187 0.0525 0.0031 -0.481 0.4876 0.0244

0.5 1 30 0.0140 0.0547 0.0244 -0.411 0.4649 0.0595

50 0.0029 0.0511 0.0108 -0.417 0.4568 0.0445

80 -0.0058 0.0464 0.0054 -0.414 0.4375 0.0347

200 -0.0221 0.0478 0.0015 -0.446 0.4536 0.0209

0.8 0.5 30 0.0019 0.0429 0.0117 -0.232 0.2775 0.0489

50 -0.0091 0.0400 0.0043 -0.218 0.2713 0.0369

80 -0.0165 0.0372 0.0034 -0.245 0.2744 0.0277

200 -0.0229 0.0370 0.0008 -0.285 0.2976 0.0166
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Table 3.3. Bias, RMSE and standard errors for β̂2

Proposed model Cook-Lawless model

α η n Bias RMSE σ̂β̂2
Bias RMSE σ̂β̂2

0.5 0.5 30 0.0090 0.0705 0.0804 -0.494 0.6065 0.0932

50 -0.0038 0.0697 0.0406 -0.522 0.5782 0.0694

80 -0.0041 0.0673 0.0211 -0.520 0.5517 0.0536

200 -0.0047 0.0685 0.0062 -0.518 0.5318 0.0332

0.5 0.8 30 0.0067 0.0620 0.0393 -0.427 0.5458 0.0699

50 0.0007 0.0603 0.0147 -0.431 0.4943 0.0514

80 -0.0043 0.0565 0.0084 -0.457 0.5090 0.0401

200 -0.0152 0.0556 0.0031 -0.461 0.4777 0.0244

0.5 1 30 0.0107 0.0561 0.0244 -0.418 0.5338 0.0595

50 0.0038 0.0545 0.0108 -0.391 0.4709 0.0445

80 -0.0047 0.0508 0.0054 -0.427 0.4746 0.0347

200 -0.0205 0.0503 0.0015 -0.424 0.4464 0.0209

0.8 0.5 30 -0.0013 0.0450 0.0117 -0.251 0.3651 0.0489

50 -0.0082 0.0438 0.0043 -0.246 0.3236 0.0369

80 -0.0165 0.0384 0.0034 -0.276 0.3252 0.0277

200 -0.0223 0.0398 0.0008 -0.254 0.2785 0.0166
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3.5. APPLICATION TO REAL DATA

3.5.1. Data Description and Model Assumptions. To illustrate the

model, we examine the data set of failure times for the hydraulic subsystems of

load-haul-dump (LHD) machines that is given in Kumar [42]. Kumar [42] state that

these machines are used “to pick up ore or waste rock from the mining points and for

dumping it into trucks or ore passes” and that preliminary studies indicate that the

engine and hydraulics are “the two most critical subsystems.” Additional investigation

of the hydraulic subsystems was carried out by Kumar [42] due to the fact that they

were in a developmental phase. They analyzed two years of maintenance data for

these subsystems using a power law process model.

The data set consists of the failure times (in hours), excluding repair or down

times, of six different machines. The machines are categorized based on their age

with the first two being old, the next two being medium old, and the last two being

new machines. To account for the differences in ages of the machines, we define

an age covariate vector X as follows: X = (0, 0) represents old age; X = (1, 0)

represents medium old age; and X = (0, 1) represents new machines. Since censoring

information was not provided by Kumar [42], we set τi = Si,Ki for all i. Information

regarding the types of repairs performed was not given by Kumar [42]. In practice,

this often leads to the researcher having to choose between “always perfect repair”

(Ei(s) = s− Si,N†i (s−)) or “always minimal repair” (Ei(s) = s) effective age processes.

For illustration purposes, we present the analyses for both choices and later discuss

the appropriateness of these selections.

3.5.2. Analysis Results. Parameter estimates along with their associated

standard errors and 95% confidence intervals are presented in Table 3.4. The main

difference in the parameter estimates for the two different models is for β1. In both

models, the 95% confidence intervals indicate that the parameters associated with
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Table 3.4. Estimates of β1 and β2; the standard errors of the parameter estimates
denoted as σ̂(β̂i); and 95% confidence intervals (CI) for β1 and β2. We
assume that the interventions result in either an “always perfect repair” or
“always minimal repair.”

Always Perfect Repair Always Minimal Repair

i β̂i σ̂(β̂i) 95% CI β̂i σ̂(β̂i) 95% CI

1 -0.0384 0.1996 (-.4296, .3528) -0.1572 0.2094 (-.5676, .2532)

2 -0.0471 0.2054 (-.4497, .3555) -0.0543 0.2051 (-.4563, .3477)

age are not statistically significant. Additionally, likelihood ratio tests of the null

hypothesis, H0 : β1 = β2 = 0, were performed to assess if there were statistically

significant differences in the survival of the subsystems by age of the machines. These

tests result in p-values of .9711 and .7523 for the “always perfect repair” and “always

minimal repair” models respectively; indicating a lack of evidence to conclude that

survival differs by age. 3.4 presents estimates of the survivor functions by age for each

model using the expression given by

ˆ̄F0(t|β̂1, β̂2)exp(β̂1X1+β̂2X2).

These also indicate that survival does not differ by age in either model.
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.
Figure 3.1. Graph of standard errors for the estimator of β1 for different values of n,

α and η
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.
Figure 3.2. Graph of standard errors for the estimator of β2 for different values of n,

α and η
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.
Figure 3.3. Biases in the estimator of β1 for different values of n, α and η
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.
Figure 3.4. Biases in the estimator of β2 for different values of n, α and η
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.
Figure 3.5. RMSE for the estimator of β1 for different values of n, α and η
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.
Figure 3.6. RMSE for the estimator of β2 for different values of n, α and η
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(a) α = 0.1 and η = 0.9

(b) α = 0.5 and η = 0.1

(c) α = 0.5 and η = 0.5

Figure 3.7. Graph of standard errors for the estimator of Λ0 for different values of n,
α and η
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(a) α = 0.1 and η = 0.9

(b) α = 0.5 and η = 0.1

(c) α = 0.5 and η = 0.5

Figure 3.8. Graph of bias for Λ̂ for different values of n, α and η
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(a) α = 0.1 and η = 0.9

(b) α = 0.5 and η = 0.1

(c) α = 0.5 and η = 0.5

Figure 3.9. Graph of RMSE for Λ̂ for different values of n, α and η
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4. MODEL CHECKING

In the first part of this work, we have assumed that the time to failure as a

function of the covariates follows the Cox’s model λ(s|x) = λ0(Ei(s)) exp(βtxi(s)) for

recurrent event. This model assume the link function between the hazard function

at time s is link to the baseline hazard function via an exponential link function

exp(β′xi(s)). More, it assumes that the form of the covariates in the exponential is

linear, and that the model is proportional hazards. At least one of these assumptions

can fail. And, if any of the assumption does not hold, that can lead to inaccurate

estimators thereby inaccurate inferential properties. Worst, wrong conclusions will be

drawn from that data leading to devastating consequences, especially in biomedical

studies where the model is often applied. To avoid such detrimental consequences,

appropriate model checking procedures need to be developed to check models accuracy

before being applied to any given dataset.

To that end, many techniques have been proposed to deal with the issue. Those

techniques can be graphical, and a good reference summarizing various graphical

techniques is Liu [43], and Wei [44]. Others include Margaret Sullivan Pepe and

Jian Wen Cai [45], and Gill and Schumacher [46]. The graphical technique is used to

check the global validation. Specific decision rules for checking any of the assumption

are also provided in the literature. For instance, to check the functional forms of

the covariates, Parzen and Lipsitz [47] proposed a global goodness of fit test that

follows a chi-square distribution. Lin, Wei, and Ying [43, 48, 49] proposed various

procedures for checking all the assumptions of the model based on martingale residuals.

Martingales are similar to models errors in regression. Specifically, for the single event

for instance, and if the Cox model is assumed, let N(s) be the number of events

occurrences by time s. The compensator of N(s) is A(s) =
∫ s

0 Y (u)λ0(u) exp(β′x)du
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making M(s) = N(s) − A(s) a zero-mean martingale with respect to the filtration

Fs = σ{N(u), Y (u), u ≤ s}. If β̂ is the regression parameter estimator obtained via

partial likelihood, the martingale residuals, n of them, are defined by, for unit i

M̂i(s) = Ni(s)−
∫ s

0
Y (u)λ0(u|β̂) exp(β̂′x)du,

i = 1, ..., n, where the estimator of the baseline hazard function is given by

λ0(u|β̂) =
∫ s

0

dN̄(u)∑n
i=1 Yi(u) exp(β̂′x).

The martingale residuals are interpreted as the difference at time s between the

observed number of events and the expected number of events which is estimated by

the estimated cumulative hazard given by

Â(s) =
∫ s

0
Y (u)λ0(u|β̂) exp(β̂′x)du.

Moreover, their properties are similar to those of regression models. That is, if the

Cox’s model is valid, then ∑
i M̂i(s) ≈ 0 and are uncorrelated. The martingales

residuals can be transformed to develop test statistics for checking the validity of all

the assumptions of the Cox models thereby assessing models departure, cf. Schoenfeld

[50], Barlow and Prentice [51].

4.1. GRAPHICAL METHODS

Informal graphical procedures such as martingale residual plots are useful tools

for checking the fit of the regression model for recurrent event data. To illustrate

how the plots of the residual processes can be used to check the proposed model, we
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consider the residual processes for individual counting processes,that is

Mij(s, t) = Nij(s, t)−
∫ t

0
Yij(s, w)ψ(β′Xij)Λ0(dw), j = 1, 2, ..., i = 1, ..., n. (4.1)

In general, we shall consider the cumulative intensity process of the form

Λij(s, t;β) =
∫ t

0
Yij(s, w)ψ(β′Xij)Λ0(dw), (4.2)

and it may be estimated by

Λij(s, t; β̂) =
∫ t

0
Yij(s, w)ψ(β̂′Xij)Λ0(dw), (4.3)

For the link function ψ(β̂′Xij), we have η̂ij = β̂
′Xij(t) = g(Λij(s, t; β̂)) = g(Λij).

Now, let Zij be a linearized form of the link function applied to the data

Zij(t) = g(Λij) + (Nij(s, t)− Λij(s, t; β̂))g′(Λij)

= η̂ij(t) +Mij(s, t; β̂) dη̂ij
dΛij

.
(4.4)

It follows by (4.4) that the aggregated process Zij(t) is given by

Z(t) =
∑

j,i
Zij(t) =

∑
j,i

(
η̂ij(t) +Mij(s, t; β̂)dη̂ij(t)

dΛij

)
(4.5)

4.1.1. Checking the Link Function. A plot of the points (t, η̂(t), Z(t))

provides an informal check for the appropriateness of link function. If the link function

is appropriate the plot should be approximately plane.

4.1.2. Checking the Covariates Functional Form. the partial residual

plot is a useful and important a graphical technique for checking the covariates
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functional form. The partial residual is defined by

R(t) = Z(t)− η̂ij(t) + γ̂x(t), (4.6)

where γ̂ the parameter estimate for x(t). Thus a plot of R versus t and x(t) should

be roughly plane if the the covariates functional form is appropriate.

4.2. TESTS BASED ON MARTINGALES RESIDUALS

In classical linear models residuals are often useful when assessing goodness of

fit of a given model. Assume that Y is integrable, so that

m(x) = E(Y |X = x) x ∈ Rd

is the regression function of Y on X. In the problem of interest assumes m is a member

of a parametric family of link functions defined on the real line

M = {m(., θ) : θ ∈ Θ ⊂ Rp}

and given independent observations (Xi, Yi) , 1 ≤ i ≤ n such that the errors

εi = Yi −m(β′X, θ), 1 ≤ i ≤ n, (4.7)

are independent, identically distributed r.v.’s with

E(ε|X) = 0 = E(ε|β′X) x ∈ Rd.
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It is then of interest to know whether m belongs toM or not; that is, by a test for

H0 : m(x) = m(β′

0x, θ0), for someβ0 ∈ Rd and θ0 ∈ Θ ⊂ Rp.

To begin with, pose we want to check whether the proposed Cox-model is adequate.

Introduce the

λi(s) = λ0(Ri(s))exp(β′Xi(s)), s ≥ 0, i = 1, ..., n

where λ0(.) is the baseline hazard function and β is a q-dimensional vector of unknown

regression coefficients, which under the model assumption is equal to λi(s, θ) for a

certain value of the parameter. Residuals can be defined via the basic counting process

decomposition where

Mi(., t;β) = Ni(., t)−
∫ t

0
Yi(., w;β)Λ0(dw) i = 1, ..., n (4.8)

are local square integrable martingale with respect to Fs. Inserting the estimated

parameter values into the compensator, we get the martingale residual process

M̂i(s, t) = Ni(s, t)−
∫ t

0
Yi(s, w; β̂)Λ̂0(dw), (4.9)

where the estimated baseline cumulative hazard function is given by the Breslow

estimator

Λ̂0(s, t; β̂) = 1
n


∫ t

0

J(s, w; β̂)
S(0)(s, w; β̂)

N(s, dw)

 . (4.10)

The martingale residual process is constructed based on calender and gap times which

differs from the martingale residual process considered by Lin et al. [25]. Numerous

techniques have been proposed for checking the adequacy of Cox model. In his

original paper, Cox [52] proposed dummy time-varying covariates for model checking.
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Key [53], Cox [54], and Kalbfeisch and Prentice [55, 56] proposed various graphical

methods for checking the Cox model, but they are all subjective. Lin and Wei [57]

extended the work of White [58] on an information matrix type of test. Lin et al. [48]

proposed model checking based on cumulative sums of martingale-based residuals. Lin

et al. [25] proposed a test for model checking for recurrent events whose asymptotic

distribution can be approximated by a weighted sum of zero-mean Gaussian processes.

Furthermore, it behaves like martingale type residuals. Huang et al. [59] proposed a

model checking method for recurrent events, but the argument in Cox-model does not

account for time elapsed.

To construct proper tests for checking the functional form of the covariates and the

link function. In particular, we shall consider statistics of Kolmogorov-Smirnov type.

We consider the time-varying covariates, the maximum likihood estimators, and the

hypothesis

H0 : F (K;β) = F0(K;β) for someβ ∈ Rp,

where K is a martingale residual process . The martingale residual process is then

K = Kn(t, u) = Kn(s, t, u;β) = n−
1
2

n∑
i=1

I(β′Xi(s) ≤ u)Mi(s, t). (4.11)

The tests based on a certain marked empirical or partial sum processes have

been discussed by An and Cheng [60], Stute [61], Stute, González Manteiga and

Presedo Quindimil [62], Stute, Thies and Zhu [62], Stute and Zhu [63]. We shall show

in Section 2 that the proposed martingale residual processes converges in distribution

to a certain zero-mean Gaussian process.
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4.3. DISTRIBUTION OF TESTS STATISTICS

This section provides limit distribution results for the two classes of stochastic

processes described in section 1. It is assumed that the parameter is unspecified. We

consider an approach based on estimates β̂ for β. Put

K̂n(t, u) = Kn(s, t;u, β̂) = n−
1
2

n∑
i=1

I(β̂′Xi(s) ≤ u)M̂i(s, t)

= n−
1
2

n∑
i=1

I(β̂′Xi(s) ≤ u)Ni(s, t)−
∫ t

0

I(β̂′Xi(s) ≤ u)Yi(s, w; β̂)
nS(0)(s, w; β̂)

N(s, dw)

(4.12)

In order to study the asymptotic distribution of K̂n(t, u), we shall assume that

Condition 1 (a-f) are fulfilled. We shall also throw in the following

Assumption g: There exists a deterministic function y : T × B → R+ which is

continuous in (s,t) and bounded and such that

max
1≤i≤n

sup
t∈T ;β∈B

|Yi(s, t;β)
n

− y(s, t;β)| p−→ 0,

Assumption h: Under H0, that is λ(x) = λ(β′
0x), for some β0 ∈ Rd, we have

√
n(β̂ − β0) = Σ(s, t)−1× 1√

n

n∑
i=1

∫ t

0
[Xi(s)− E(s, w;β0)]Mi(s, dw)

+ op(1),
(4.13)

where Σ(s, t) is given by part f of Condition 1.

Theorem 4.1. Under H0, assume that the assumptions a-h are satisfied, we have

Kn −→d K in the Skorohod space D[−∞,∞],
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where K is a zero-mean Gaussian process with covariance function

n
1
2

n∑
i=1

∫ t

0
I(β′

0Xi(s) ≤ u) yi(s, w;β0)Λ0(dw)

−


n∑
i=1

∫ t

0
I(β′

0Xi(s) ≤ u)Xi(s)yi(s, w;β0)Λ0(dw)


′

Σ(s, t)−1

× n
1
2

n∑
i=1

∫ t

0
[Xi(s)− e(s, w;β0)]⊗2yi(s, w;β0)Λ0(dw).

(4.14)

Proof. Taylor-expanding Kn(t, u;β) around β0 gives,

Kn(t, u) = Kn(s, t;u,β) = n−
1
2

n∑
i=1

I(β′

0Xi(s) ≤ u)Mi(s, t)

− (β − β0)′
n−

1
2

n∑
i=1

∫ t

0
I(β∗′Xi(s) ≤ u)Xi(s)Yi(s, w;β∗)Λ0(dw),

(4.15)

where β∗ is on the line segment between β and β0. Insert β = β̂ to get

Kn(t, u) = n−
1
2

n∑
i=1

I(β′

0Xi(s) ≤ u)Mi(s, t)

− n−
1
2 (β̂ − β0)′

n∑
i=1

∫ t

0
I(β∗′Xi(s) ≤ u)XiYi(s, w;β∗)Λ0(dw). (4.16)

By Assumption h, it follow that

Kn(t, u) = n−
1
2

n∑
i=1

I(β′

0Xi(s) ≤ u)Mi(s, t)

− n−
1
2


n∑
i=1

∫ t

0
I(β∗′Xi(s) ≤ u)Xi(s)Yi(s, w;β∗)Λ0(dw)


′

Σ(s, t)−1

× n−1
n∑
i=1

∫ t

0
[Xi(s)− E(s, w;β0)]Mi(s, dw),

(4.17)
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for any β∗ such that β∗ p−→ β0, we note that

Kn(t, u) = n−
1
2

n∑
i=1

I(β′

0Xi(s) ≤ u)Mi(s, t)

− n−
1
2


n∑
i=1

∫ t

0
I(β′

0Xi(s) ≤ u)Xi(s)Yi(s, w;β0)Λ0(dw)


′

Σ(s, t)−1

× n−1
n∑
i=1

∫ t

0
[Xi(s)− E(s, w;β0)]Mi(s, dw).

(4.18)

The predictable variation process of this martingale is

〈Kn(t, u)〉 = n−
1
2

n∑
i=1

∫ t

0
I(β′

0Xi(s) ≤ u)Yi(s, w;β0)Λ0(dw)

− n−
1
2


n∑
i=1

∫ t

0
I(β′

0Xi(s) ≤ u)Xi(s)Yi(s, w;β0)Λ0(dw)


′

Σ(s, t)−1

× n−1
n∑
i=1

∫ t

0
[Xi(s)− E(s, w;β0)]⊗2Yi(s, w;β0)Λ0(dw).

(4.19)

It now follows from assumptions a-g and Lemma 3.2 that Kn converges weakly

on Skorohod’s space to a zero-mean Gaussian process with covariance function

n
1
2

n∑
i=1

∫ t

0
I(β′

0Xi(s) ≤ u)yi(s, w;β0)Λ0(dw)

−


n∑
i=1

∫ t

0
I(β′

0Xi(s) ≤ u)Xiyi(s, w;β0)Λ0(dw)


′

Σ(s, t)−1

× n
1
2

n∑
i=1

∫ t

0
[Xi(s)− e(s, w;β0)]⊗2yi(s, w;β0)Λ0(dw).

(4.20)

Proposition 4.2. Under H0, assume that the assumptions a-h are satisfied, we have

K̂n(t, u) = Kn(t, u)− n− 1
2

n∑
i=1

∫ t

0

I(β0Xi(s) ≤ u)Yi(s, w;β0)
nS(0)(s, w;β0) Mi(s, dw). (4.21)
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Proof.

K̂n(t, u) = K̂n(s, t;u, β̂) = n−
1
2

n∑
i=1

I(β̂′Xi(s) ≤ u)M̂i(s, t)

= n−
1
2

n∑
i=1

[
I(β̂′Xi(s) ≤ u)Ni(s, t)−

∫ t

0
I(β̂′Xi(s) ≤ u)Yi(s, w; β̂)Λ̂0(dw)

]

= n−
1
2

n∑
i=1

[
I(β̂′Xi(s) ≤ u)Ni(s, t)−

∫ t

0

I(β̂′Xi(s) ≤ u)Yi(s, w; β̂)
nS(0)(s, w; β̂)

N(s, dw)
]

= n−
1
2

n∑
i=1

[
I(β̂′Xi(s) ≤ u)Ni(s, t)−

∫ t

0

I(β̂′Xi(s) ≤ u)Yi(s, w; β̂)
nS(0)(s, w; β̂)

N(s, dw)
]

− n−
1
2

n∑
i=1

∫ t

0
I(β̂′Xi(s) ≤ u)Yi(s, w; β̂)Λ0(dw)

+ n−
1
2

n∑
i=1

∫ t

0
I(β̂′Xi(s) ≤ u)Yi(s, w; β̂)Λ0(dw).

= n−
1
2

n∑
i=1

[
I(β̂′Xi(s) ≤ u)Mi(s, t; β̂)

−
∫ t

0

I(β̂′Xi(s) ≤ u)Yi(s, w; β̂)
nS(0)(s, w; β̂)

Mi(s, dw; β̂)
]
.

It follows by the consistency of β̂ that

= n−
1
2

n∑
i=1

[
I(β′

0Xi(s) ≤ u)Mi(s, t;β0)

−
∫ t

0

I(β′

0Xi(s) ≤ u)Yi(s, w;β0)
nS(0)(s, w;β0) Mi(s, dw;β0)

]
.

Theorem 4.3. Under H0, assume that the assumptions a-h are satisfied, we have

K̂n −→d K
? in the Skorohod space D[−∞,∞],

where K? is a zero-mean Gaussian process with covariance function
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n
1
2

n∑
i=1

∫ t

0
I(β′0Xi(s) ≤ u) yi(s, w|β0)Λ0(dw)

−


n∑
i=1

∫ t

0
I(β′0Xi(s) ≤ u)Xiyi(s, w|β0)Λ0(dw)


′

Σ(s, t)−1

× n
1
2

n∑
i=1

∫ t

0
[Xi(s)− e(s, w|β0]⊗2yi(s, w|β0)Λ0(dw)

+
I(β′0Xi(s) ≤ u)yi(s, w|β0)

ns(0)(s, w|β0)

⊗2

s(0)(s, w|β0)Λ0(dw).

(4.22)

Proof. The proof of this Theorem follows directly from Theorem (4.3), Lemma (3.2),

Condition (1), and Theorem (4.1).

4.4. KOLMOGOROV-SMIRNOV TEST

In this section, we shall discuss the procedure which permit us to detect the

cause of departure from the GLM, including wrong choice of link function or functional

form. The test can be constructed as a Kolmogorov-Smirnov test statistic based on

function of the process K̂n(t, u; β̂) given by:

T (n) = sup
u∈R,
t≥0

|K̂n(t, u; β̂)| (4.23)

Observe that the KS test is based on the estimated parameters which makes the

asymptotic distribution of this test process has complicated structure subsequently

does not allow computation of the critical values. Therefore, p-value can be obtained

by simulation, as follows:

• Generate recurrent event data, that is, with β0;

• Obtain the m.l.e’s β̂;
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• By repeating M times, generate K∗(t, u; β̂) and find T ∗ = sup
u∈R,
t≥0

|K∗(t, u; β̂)|;

• Estimate the probability that T ∗ exceeds the observed value t(n).

4.5. SIMULATION STUDY

4.5.1. Simulation Design. The simulation study was conducted to assess

the performance of the proposed methodology. In the study, the model has the log

link. For covariates, we consider a three-dimensional covariate vector (X1, X2, , X3)

with X1 ∼ N(0, 1), X2 ∼ Ber(0.5), and X3 ∼ N(0, 3). The true values of regression

coefficient vector (β1, β2, β3) is set to be (1, -1,2). We consider the interoccurrence

times Tij is the Weibull distribution with shape parameter α = 0.5 and parameter

η = 0.1, and also the censoring variables τi from uniform distribution over the interval

(0, 360]. The results given below are based on sample size n that varies in the set {80,

200} with 10K replications. The alternative links were:

logit link:

ψ(x(t)) = exp(β1x1(t) + β2x2(t) + β3x3(t))
1 + exp(β1x1(t) + β2x2(t) + β3x3(t))

logNL link:

ψ(x(t)) = exp(β1x1(t) + β2x2(t) + β3x
2
3(t)).

4.5.2. Discussion of Simulation Results. In Figures 4.1 - 4.3, we see that

the proposed graphical method is consistent for all scenarios. Following the KS test

statistic, Table 4.1 reports on the proportion of times the null hypothesis was rejected

for α = 0.01 and 0.05.
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The residual from a fit of x1(t)

The residual from a fit of x2(t)

The residual from a fit of x2(t)

Figure 4.1. Plot of partial residuals for the functional form x1(t)− x2(t) + 2x2
3(t)
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Figure 4.2. Plot of residuals for the log link function
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Figure 4.3. Plot of residuals for the logit link function
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Table 4.1. Percentages of times H0 was rejected

n α Log Logit LogNL

80 0.05 3.1% 98.7% 96.6%

0.01 1.5% 99.2% 97.8%

200 0.05 2.4% 98.7% 96.6%

0.01 0.8% 100% 98.8%
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