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LATERAL IMPEDANCE OF SINGLE PILES IN INHOMOGENEOUS SOIL 

George Mylonakis Demetri Roumbas 
City University of New York City University of New York 
New York, NY-USA- 1003 1 New York, NY-USA- 1003 1 

ABSTRACT 

The flexural stiffness and damping (dynamic impedance) of a single vertical pile in an inhomogeneous soil deposit with continuously 
increasing stiffness with depth, is studied. An analytical formulation based on the Beam-on-Dynamic-Winkler-Foundation (BDWF) 
model is implemented. The model is used in conjunction with a virtual work approximation and pertinent shape functions for the 
deflected shape of a long flexible pile, which are analogous to those used in finite-element formulations. Explicit closed-form 
solutions are derived for: (1) the dynamic pile stiffness; and (2) the damping coefficient at the pile head. Both swaying and rocking 
vibrations are considered and all associated impedance coefficients (swaying, rocking, and cross swaying-rocking) are determined. 
Results from the method are found to be in good agreement with earlier solutions, while new results are developed. The errors 
resulting from the use of an “equivalent” homogeneous profile with average properties are discussed. 
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INTRODUCTION 

The assumption of constant soil stiffness with depth is hardly 
the case in actual soil profiles. The increase in overburden 
stresses with depth combined with stress-induced non- 
linearities close to the foundation usually result to a profile 
whose stiffness increases with depth. Unfortunately, there is a 
general lack of solutions for embedded foundations in 
inhomogeneous media. With reference to laterally-loaded 
piles, solutions to the problem have been published by 
Banerjee & Davis (1978), Poulos & Davis (1980), Randolph 
(198 l), and El-Marsafawi et al (1992), using numerical finite- 
and boundary-element formulations. Analytical solutions 
using Winkler models have also been derived by Hetenyi 
(1946), Barber (1953), and Franklin & Scott (1979). All the 
latter solutions refer to the case of a soil modulus that 
increases proportionally with depth. The scope of this paper is 
to extend the Winkler formulations to more general classes of 
inhomogeneous media for which no exact analytical solutions 
are presently available. 

The problem studied is shown in Fig. (la): a long laterally- 
loaded pile embedded in a soil profile whose stiffness 
increases monotonically with depth. The pile is considered a 
linearly visco-elastic solid cylindrical beam of diameter d, 
Young’s modulus E,, and linear hysteretic damping p,. The 

pile is assumed to be long and flexible, therefore not 
deforming over its entire length, but only up to a certain depth 
L, . which is known as the “active” pile length (Randolph 
1981). The soil is modeled as a linear viscoelastic material of 
Young’s modulus E,, Poisson’s ratio v,, mass density p,, and 
linear hysteretic damping j3,. Pile-soil interaction is modeled 

E,(z) 1 Es, 

1 
-0 
. 
N 

4 

Fig. I (a) Problem considered. (b) Variation of soil 
stiffness with depth. 
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through a bed of independent Winkler springs and dashpots, 
uniformly distributed along the pile. 

SOIL DESCRIPTION 

The type of soil inhomogeneity considered in this paper is (see 
Fig lb): 

E,(z) = E,,[a+(l-a):] 
where E,, denotes the soil Young’s modulus at the depth of 
one pile diameter from the surface (i.e., at z = d), while a, n 
are dimensionless parameters. As evident from Eqn (l), a 
stands for the ratio 

I/n 

<I (2) 

in which E,, denotes the Young’s modulus at the soil surface 
(z = 0). Equation (1) can be used to describe several different 
types of soil inhomogeneity. For instance, with a = 0, Eqn (1) 
describes a profile with zero modulus at the surface. Also, 
with n = 1, a linear variation in E, is obtained. Furthermore, 
setting either a = 1 or n = 0, the dependence of E, on depth is 
eliminated, which corresponds to a homogeneous profile. 
Each case will be examined in the sequel. It is noted that 
because of their small variation with depth as compared to that 
in Young’s modulus, the mass density, material damping, and 
Poisson’s ratio of the soil are assumed to be constant with 
depth. 

With reference to the modulus of the Winkler springs, given 
that k is approximately proportional to E, (Roesset 1980; 
Dobry et al 1982; Gazetas et al 1992), it is postulated that k(z) 
follows the same variation with depth as E,(z), i.e., 

k(z) = kd[a+(l-a):] 

where k, denotes the value of k(z) at the depth of one pile 
diameter. k, and E,, can be related as 

k, -SE,, (3b) 

where 6 is a dimensionless coefficient which ranges between 
approximately 1 and 1.5 (Novak et al 1978; Roesset 1980; 
Scott 1981; Dobry et al 1982). 

Regarding the damping coefficient, it is known from earlier 
studies (Novak et al 1978; Gazetas & Dobry 1984) that c is 
approximately proportional to the shear wave velocity of the 
material (square root of E,). Accordingly, one may write 

which reveals a weaker dependence of c on depth. c,, stands 
for the dashpot modulus at depth z = d, which can be obtained 
from pertinent expressions available in the above references. 

MODEL DEVELOPMENT 

In harmonic flexural oscillations, the equation of motion of a 
uniform pile on a Winkler foundation is 

(5) 

where Y(z) = Y(z) exp[i ot] denotes the harmonic pile 
deflection, (EP IJ the pile flexural stiffness, m the pile mass 
per unit pile length, k(z) and c(z) the distributed springs and 
dashpots, w the cyclic vibrational frequency, t the time, and i 
the imaginary unity. 

In the case of a homogeneous soil (k, c = constant), the 
solution to Eqn (5) is elementary and can be found in 
textbooks (Scott 1981). The corresponding impedance 
coefficients in swaying, rocking, and cross-swaying rocking 
are, respectively, (Scott 1981; Pender 1993; Mylonakis & 
Gazetas 1999) 

&,h = 4 Ep $, A3 (64 

K,, = 2 Ep lp A (6b) 

Kh,. = 2 Ep ip 22 (6~) 

where 

(7) 

is a Winkler parameter (units = l/Length), which can be 
interpreted as a “wavenumber” controlling the attenuation of 
pile response with depth. 

Basis of the proposed approximate solution is that the 
unknown deflection function Y(z) in Eqn (5) can be replaced 
by a pair of approximate functions x(z) and 4(z). Of these two 

functions, x(z) represents the deflected shape of the pile 
caused by a unit imposed head displacement (under zero 
rotation), whereas $(z) is the deflected shape caused by a unit 
head rotation under zero displacement. For long piles, these 
functions can be approximated by the deflected shape of a 
long pile in homogeneous soil (Mylonakis 8c Gazetas 1999) 

(84 

and 
(4) 
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In the above equations, ,u is a shape parameter which, in 
homogeneous soil, is equal to the wavenumber /1 of Eqn (7). 
In non-homogeneous soil, ,u can be approximated by the mean 
value of R within the active length, L, , of the pile: 

(9) 

It is reminded here that L, is defined as the length beyond 
which the pile behaves as a semi-infinite beam that is, an 
increase in pile length does not lead to an increase in lateral 
stiffness at the pile head. Pertinent expressions for L, in 
various types of soil profiles are reported by Randolph (1981) 
and Gazetas ( 199 1). 

Replacing Y(z) in Eqn (1) with x(z), multiplying by 4(z) and 
integrating over the pile length, it can be shown (Roumbas 
2000) that the stiffness and damping coefficients atop the pile 
can be obtained through the virtual-work equations 

L L 

K, = EJ, 
s 

,yi”(z)~j”(z)dz + 
s 

k(z) ,yj(z),yj(z)dz (lOa) 

0 0 

WJ, L L 

cti =- 
w I 2P &“(Z)~j”(Z)c!Z +s 

w I k(z)Xi(z)Xj(zYz + 

0 0 

+ I c(z)Xi Cz)Xj tzJdz (lob) 
0 

which are analogous to energy approximations used in finite- 
element formulations. The two terms in the right-hand side of 
Eqn (1 Oa) stand for the contributions to the overall stiffness of 
the pile flexural stiffness and the soil stiffness, respectively. 
The contribution of pile inertia (i.e., m in Eqn 5) to the overall 
stiffness was found to be small and has been omitted from Eqn 
(10a). In the second equation, the first two terms stand for the 
contributions of material damping in the pile and the soil, 
respectively; the last term corresponds to the contribution of 
radiation damping in the soil. 

The subscripts i and j refer to the two vibrational modes (i.e., 
swaying and rocking). For instance, using x,(z) = xj(z)= x(z), 
the swaying impedance coefficients K,, and C,, are obtained. 
Similarly, with x,(z) =x,(z)= I$(z) the rocking impedance is 
obtained. With xi(z) =x(z) and xj(z) =4(z) generates the 
cross-swaying-rocking impedance. It is noted that, to derive 
the above equations it was implicitly assumed that x(z) and 
$(z) are real-valued functions. The validity of this 
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approximation has been demonstrated in earlier studies by 
Gazetas & Dobry (1984) and Mylonakis & Gazetas (1999). 

To demonstrate the use of Eqns (lo), the pile stiffness 
coefficients in a soil profile whose Young’s modulus increases 
linearly with depth (n =l) are obtained in closed form: 

K,,=E,/$+ 
3k,,[(l-a)+2upd] 

8p2d 
(114 

Khh=Eplpp2+ 
k,,[3(1-a)+4a/fd] 

16p3 d 
(1 Ic) 

in which 

Note that with a + 1, the above expressions duly reduce to 
those in Eqns (7). 

Equivalent Homogeneous Profile 
To determine pile impedances in an inhomogeneous soil, 
engineers often replace the actual profile with an “equivalent” 
homogeneous soil with average properties. In the realm of the 
present analysis, this can be done by replacing the 
wavenumber k in Eqns (6) with the average wavenumber u of 
Eqn (9), i.e., 

Kh/h”’ =4 E, lp p3 (12a) 

(12b) 

K;;) = 2 E, I, ,u2 (12c) 

where the superscript (h) stands for “homogeneous”. 

To develop insight into the solution, it appears useful to 
express Eqns (10) in terms of the solution for the equivalent 
homogeneous profile. Accordingly, the pile stiffness Kj can 
be written as 

K, = xii KJh) (13) 

as where x,, is a dimensionless coefficient defined as the ratio 
of Eqns (10) and (12). Apart form its obvious usefulness in 
normalizing pile stiffness, Eqn (13) has some additional 
advantages over Eqns (10): First, the performance of the 
equivalent homogeneous soil approximation can be readily 
assessed (i.e., by examining how close xa is to 1). Second, 
potential errors arising from the use of the simplified Winkler 

3 



model could be reduced using the above normalization. In 
other words, since Eqns (10) and (12) may involve systematic 
modeling errors arising from the use of the Winkler 
assumption, their ratio (x,,) would, in principle, be less 
sensitive to these errors. Support to this argument comes from 
the fact that x,~ is much less dependent to the value of the 
Winkler coefficient 6 than Eqns ( 10) and ( 12) (Roumbas 
2000). 

With reference to the damping coefficient, it is instructive to 
replace C, in Eqn (lob) with the dimensionless factor 

WCq 
Dii=T (14) 

which expresses the ratio of the imaginary and real part of the 
impedance, and is analogous to the damping coefficient of a 
single-degree-of-freedom oscillator. From this expression, a 
second dimensionless coefficient, &, , can be defined 

(15) 

which relates pile damping in the (actual) inhomogeneous 
profile and in the (substitute) homogeneous profile. 

RESULTS 

With reference to a linear variation in soil Young’s modulus 
(n = l), Fig 2 presents the three dimensionless stiffness 
coefficients x,~ as functions of the inhomogeneity factor a. 
The analytical solutions in Eqns (11) are compared against 
results from an exact numerical Winkler solution using the 
computer program DAP (Mylonakis 1996). It is seen that the 
rocking coefficient xrr is very close to 1 for all values of a and 

Q/F,,, which confirms the validity of the “equivalent 
homogeneous soil” approximation in that response mode. In 
contrast, in swaying vibrations xhh is very sensitive to the 
value of a and decreases quickly with increasing 
inhomogeneity. This indicates that swaying stiffness is not 
controlled by the average soil properties within the active pile 
length (about 10 pile diameters), but instead by the soil 
stiffness within the first few pile diameters from the surface. 
An intermediate behavior is observed with the cross-swaying- 
rocking coefficient. The dashed line in the second graph of 
Fig 2 represents the approximation: 

Xhr = 0.35 Xhh + O.&j x” (16) 

where 

xl-r = 1 (17) 

which reveals a stronger dependence of xhr on the rocking 
stiffness. The above expressions were found to tit the results 
reasonably well in all cases examined, and are recommended 
for quick approximate estimations of pile stiffness. 

Xhh 0.75 

Xhr0.75 

Xn 0.75 

linearly increasing 

0.50 
1.00 0.75 0.50 0.25 0.00 

inhomogeneity factor a 

Fig 2. Normalized pile stiffness coefficients for a “linear” 
soil profile (n = I. S= 1.2). 

Xhh 0.75 

0.50 - - Numerical solution (D 

0.3 

Cl= 

A 0 Analytical solution (Eqns 11 8 18) 

0.0 0.5 1.0 1.5 2.0 

inhomogeneity exponent n 

Fig 3. Normalized pile stiffness coefficients as function of n 
anda; (Ep/Esd = 10.000; 6= 1.2) 
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Figure 3 presents results for the normalized stiffness 
coefficient K,, as functions of both n and a. For a = 0, the 
corresponding analytical solution is (Roumbas 2000) 

n+l 

K,,,, = E, I, p3 + k,, d X 

x T(n + 1) 2-(I+“) + 2-3”+n)‘2 sin (184 
where lJ ) denotes the Gamma function; p is given by 

It is seen that with either a = 1 or n = 0 (a homogeneous 

profile) xhh equals 1. With increasing n and decreasing a, 

(18b) 

however, xhh drops quickly and may reach values as low as 
0.5. The increasing trend observed beyond approximately n = 
1 can be explained by the fast increase, with increasing soil 
inhomogeneity, in Young’s modulus with depth below z = d. 
Comparison between analytical and numerical results shows 
good agreement. The plotted values correspond to EJE,, = 

Xhh 

_ Analytical Solution 
A Numerical Solution (DAP) 

0.00 0.25 0.50 0.75 1.00 

dimensionless frequency: a, = w d IV,, 

Fig 4. Normalized pile damping coefficients versus 

1 .oo 

5 hh 

0.75 

r 

frequency; (a = 0; 6 = I .2) 

0.50 L 
0.00 0.25 0.50 0.75 1.00 

inhomogeneity exponent n 

Fig 5. Normalized pile damping coefficient under static 
conditions; (EdE,d = 10,000; 6= 1.2) 

10000. However, as seen in Fig 2, pile-soil-stiffness contrast 
does not affect the results significantly, so the graph can be 
used, even if approximately, for other EJE,, values. It is also 
mentioned that the effect of frequency on pile stiffness is 
small and has been neglected in these graphs. This, however, 
is strictly applicable to single piles, since frequency effects 
can be important in pile groups (Kaynia & Kausel 1982). 

chh 
0.75 

chh 

0.75 

0.50 

[ EdESd=l 0.000 
I 

0.7 

0.3 

E~E,d=lOO.OOO a=0 
I 

0.00 0.25 0.50 0.75 1.00 

inhomogeneity exponent n 

Fig 6. Normalizedpile damping coefficient (a0 =0.3; 6=1.2). 

Results for the normalized damping coefficient 5ij are 
presented in Fig 4, referring to a soil profile with zero stiffness 
at the surface (a = 0). The results are plotted as function of the 
well-known dimensionless frequency a, = o d i V,, , V,, being 
the propagation velocity of shear waves at depth z = d. It can 
be seen that for a, greater than about 0.25, cij is practically 
frequency independent. It is also noted that k,j are almost 
identical in all vibrational modes (not shown), despite the 
large differences in the corresponding stiffnesses. As a first 
approximation, two different frequencies will be examined 
here: (i) a, = 0 (static conditions); (ii) a, = 0.3. 
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Figure 5 shows results for the swaying damping coefficient &, 
under static conditions (a, = 0). The other two coefficients are 
almost identical and are not shown. It is seen that &, is always 
smaller that 1 and tends to decrease with increasing n or 
decreasing CL. This indicates that a pile in an inhomogeneous 
profile possesses smaller damping than the same pile in a 
homogeneous profile with average properties. The reduction, 
however, is relatively small, being less than 25 percent even 
for strong soil inhomogeneity (n = 1; cL =O). Since pile-soil 
stiffness contrast is not important at static frequencies (see Fig 
4), only results for EdE,, = 10,000 are provided here. 

Corresponding results for a,, = 0.3 are shown in Figure 6. In 
this dynamic case, a decrease in &, with increasing pile-soil 
stiffness contrast is observed. The general trends are 
analogous to those in Fig 5. The two graphs can be used for 
approximate computations of pile damping in inhomogeneous 
soil profiles of the type described by Eqn (1). 

CONCLUSIONS 

An approximate analytical solution for estimating the lateral 
stiffness and damping of a dynamically-loaded pile in an 
inhomogeneous soil deposit was presented. The method is 
based on a dynamic Winkler model and a virtual-work scheme 
combined with a pair of approximate shape functions for pile 
deflections under imposed head displacements and rotations. 
The main conclusions glean from the study are: 

(1) 

(2) 

(3) 

(4) 

(5) 

The proposed analytical technique allows for closed-form 
solutions to be derived which provide useful insight on 
the physics of the problem. 

Results obtained with the proposed method are in good 
agreement with results from numerical solutions. 

The assumption of an equivalent homogeneous profile 
with average properties is realistic for the rocking 
stiffness, but may severely overestimate the swaying and 
cross-swaying-rocking stiffness. All three stiffness 
coefficients can be estimated with the help of Figure 3 
and Eqns (16) and (17). 

Damping in an inhomogeneous profile is always smaller 
than that in a homogeneous profile with average 
properties. The reduction in damping is practically the 
same in all vibrational modes 

At low “static” frequencies, the reduction in damping is 
relatively small and practically independent of the pile- 
soil stiffness contrast EdE,,. In the high frequency range, 
however, higher reductions in damping and some 
dependence on EdE,, are observed 
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