MISSOURI

S&l

Library and

Learning Resources Scholars' Mine
Doctoral Dissertations Student Theses and Dissertations
Spring 2018

Adaptive dynamic programming with eligibility traces and
complexity reduction of high-dimensional systems

Seaar Jawad Kadhim Al-Dabooni

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

b Part of the Computer Engineering Commons
Department: Electrical and Computer Engineering

Recommended Citation

Al-Dabooni, Seaar Jawad Kadhim, "Adaptive dynamic programming with eligibility traces and complexity
reduction of high-dimensional systems" (2018). Doctoral Dissertations. 2657.
https://scholarsmine.mst.edu/doctoral_dissertations/2657

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2657&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2657&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/2657?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2657&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

ADAPTIVE DYNAMIC PROGRAMMING WITH ELIGIBILITY TRACES AND
COMPLEXITY REDUCTION OF HIGH-DIMENSIONAL SYSTEMS

by

SEAAR JAWAD KADHIM AL-DABOONI

A DISSERTATION
Presented to the Graduate Faculty of the
MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY
in
COMPUTER ENGINEERING
2018
Approved by
Dr. Donald C. Wunsch, Advisor
Dr. Jagannathan Sarangapani
Dr. R. Joe Stanley

Dr. Maciej Zawodniok
Dr. Cihan Dagli

Copyright 2018
SEAAR JAWAD KADHIM AL-DABOONI

All Rights Reserved

iii

PUBLICATION DISSERTATION OPTION

This dissertation has been prepared using the Publication Option. All papers are
formatted in the style used by the Missouri University of Science and Technology, which
are listed as follows:

Paper I: Pages 6 - 55; S. Al-Dabooni, and D. Wunsch, “Model Order Reduction
Based on Agglomerative Hierarchical Clustering,” accepted in IEEE Trans. Neural Netw.
and Learn. Syst., 2017.

Paper II: Pages 56 - 87; S. Al-Dabooni, and D. Wunsch, “Heuristic dynamic pro-
gramming for mobile robot path planning based on Dyna approach,” IEEE/INNS, Interna-
tional Joint Conference on Neural Networks (IJCNN), pp. 3723 - 3730, Jul. 2016.

Paper III: Pages 88 - 113; S. Al-Dabooni, and D. Wunsch, “Mobile Robot Control
Based on Hybrid Neuro-Fuzzy Value Gradient Reinforcement Learning,” IEEE/INNS,
International Joint Conference on Neural Networks (IICNN), pp. 2820-2827, May 2017.

The other papers are submitted to IEEE Trans. Neural Netw. and Learn. Syst.,
which are listed as follows: Paper IV: Pages 114 - 157; S. Al-Dabooni, and D. Wunsch,
“The Boundedness Conditions for Model-Free HDP(1).”

Paper V: Pages 158 - 208; S. Al-Dabooni, and D. Wunsch, “Online Model-Free
N-Step HDP with Stability Analysis.”

Paper VI: Pages 209 - 261; S. Al-Dabooni, and D. Wunsch, “An Improved N-Step
Value Gradient Learning Adaptive Dynamic Programming Algorithm for Online Learning,
with Convergence Proof and Case Studies.”

Paper VII: Pages 262 - 325; S. Al-Dabooni, and D. Wunsch, “Convergence Analysis

Proofs for Recurrent Neuro-Fuzzy Value-Gradient Learning with and without Actor.”

iv

ABSTRACT

This dissertation investigates the application of a variety of computational intelli-
gence techniques, particularly clustering and adaptive dynamic programming (ADP) designs
especially heuristic dynamic programming (HDP) and dual heuristic programming (DHP).
Moreover, a one-step temporal-difference (TD(0)) and n-step TD (TD(A)) with their gradi-
ents are utilized as learning algorithms to train and online-adapt the families of ADP. The
dissertation is organized into seven papers. The first paper demonstrates the robustness
of model order reduction (MOR) for simulating complex dynamical systems. Agglom-
erative hierarchical clustering based on performance evaluation is introduced for MOR.
This method computes the reduced order denominator of the transfer function by clustering
system poles in a hierarchical dendrogram. Several numerical examples of reducing tech-
niques are taken from the literature to compare with our work. In the second paper, a HDP
is combined with the Dyna algorithm for path planning. The third paper uses DHP with an
eligibility trace parameter (1) to track a reference trajectory under uncertainties for a non-
holonomic mobile robot by using a first-order Sugeno fuzzy neural network structure for the
critic and actor networks. In the fourth and fifth papers, a stability analysis for a model-free
action-dependent HDP(1) is demonstrated with batch- and online-implementation learning,
respectively. The sixth work combines two different gradient prediction levels of critic
networks. In this work, we provide a convergence proofs. The seventh paper develops a
two-hybrid recurrent fuzzy neural network structures for both critic and actor networks.
They use a novel n-step gradient temporal-difference (gradient of TD(A)) of an advanced
ADP algorithm called value-gradient learning (VGL(A)), and convergence proofs are given.
Furthermore, the seventh paper is the first to combine the single network adaptive critic

with VGL(1).

ACKNOWLEDGMENTS

Thanks to my God for helping me and giving me the blessings to complete this work.
I would like to thank my advisor, Dr. Donald C. Wunsch, for his continuous invaluable
support me. Dr. Wunsch has given me the most professional guidance throughout choosing
modern research topics, paper writing, technical presentations, and all required resources
for producing good works.

I would like to express my sincere gratitude to all my committee members, Dr.
Jagannathan Sarangapani, Dr. R. Joe Stanley, Dr. Maciej Zawodniok and Dr. Cihan Dagli,
for their valuable advice and recommendations, and for their precious time in examining
this dissertation. I am very grateful to the Higher Committee for Educational Development
(HCED) in Iraq for granting me a Ph.D. scholarship and financial support. I am very thankful
for my research group members in the Applied Computational Intelligence Laboratory
(ACIL) for their fruitful discussion. They are wonderful praters and helpers.

Big thanks to my father, my mother, my brothers, and my sisters with all their
nieces, nephews, and brothers-in-low for support, encouragement, and prayers throughout
my study. I would also thanks Hassanin Al-Dabooni, Dr. Suadad Al-Dabooni, Dr. Alaa
Al-Kinani, Seemaa Al-Dabooni, Dr. Hussein Shakarchi, and Dr. Turki Younis for their
orientation and support.

Last but not least, I would like to thank to my friends Shahin Korkis Adam, Majid
Hameed, Safaa Norri, Ahmed Adnan, Alaa Norri, Yassar Al-Tob, Wessam Al-Adbi, Yousif
Khanjer, Mustafa Muzael, Ethar Alkamil, Ali Albattat, and Safaa Aiad for all the supports

and encouragements.

vi

TABLE OF CONTENTS

Page
PUBLICATION DISSERTATION OPTION iii
ABSTRACT ... iv
ACKNOWLEDGMENTS . .. e A%
LIST OF ILLUSTRATIONS . . . oo Xiv
LIST OF TABLES e XXX
SECTION
1. INTRODUCTION. . .. e e 1
1.1. SYSTEMS WITH REDUCING COMPLEXITYccooiiiiiiiiiiiiinn... 1
1.2. ADVANCED ADAPTIVE DYNAMIC PROGRAMMING 1
1.3. RESEARCH CONTRIBUTIONS......cooiiiiiiiiiiii e 2
1.3.1. Model Order Reduction Based on Agglomerative Hierarchical Clus-
1) 0 1 11 2
1.3.2. Heuristic Dynamic Programming for Mobile Robot Path Planning
Based on Dyna Approach.............coooiiiiii i 3
1.3.3. Mobile Robot Control Based on Hybrid Neuro-Fuzzy Value Gradi-
ent Reinforcement Learning ... 3
1.3.4. The Boundedness Conditions for Model-Free HDP(A) 4
1.3.5. Online Model-Free N-Step HDP with Stability Analysis 4

1.3.6. An Improved N-Step Value Gradient Learning Adaptive Dynamic
Programming Algorithm for Online Learning, with Convergence
Proof and Case Studies ... 5

vii

1.3.7. Convergence Analysis Proofs for Recurrent Neuro-Fuzzy Value-
Gradient Learning with and without Actor 5

PAPER
I. MODEL ORDER REDUCTION BASED ON AGGLOMERATIVE HIERARCHI-
CAL CLUSTERING.t 6
ABS T RACT ... 6
1. INTRODUCTION ... e 7
2. PROBLEM STATEMENT ... 11
3. HIERARCHICAL CLUSTERING SYSTEM POLES ALGORITHM 11
3.1. Choice of Distance Measure............oovviiiiiiiiiiiiiiiniiaaaaan... 12
3.1.1 Hierarchical Cluster Poles Based on Euclidean-distance .. 12
3.1.2 Hierarchical Clustered Poles Basedon MSE 13
3.2. Determining Transfer Function Coefficients........................... 15
3.2.1 PAMethod ... 15
322 GAMethod........couuui 17
4. SIMULATION AND ANALYSIS RESULTS WITH NUMERICAL EX-
AMPLES .o 18
4.1. Comparative Studies From Published Literature 18
4.2. Case Study for Large Order System (Building Model Structure)..... 21
5. MODEL REDUCTION FOR A MULTIVARIABLE DYNAMIC MODEL
BY USING HC-PE ... e 26
6. CONCLUSION ... 41
APPENDICES
A. Stability guarantee for anew reducedmodel oL 47

B. Stability proof for a closed loop reduced system.................ccovvvveo..... 49

Tusha
Rectangle

C.

II.

I1I.

viii

Comparison table of HC-PE with other reduction methods, combining the Pade

approximation approach and GA. The best MSE results are shown in bold. 51
ACKNOWLEDGMENT ... 53
BIBLIOGRAPHY ... 53

HEURISTIC DYNAMIC PROGRAMMING FOR MOBILE ROBOT PATH PLAN-

NING BASED ON DYNA APPROACHt 56
ABSTRACT ... 56
1. INTRODUCTION ...ttt e 57
2. COLLISION-FREE NAVIGATIONcoiiiiiiiiiiiiiiicc i 59
2.1. Simulation of Mobile Robot Platform...................ooooooiiiiit. 59

2.2. Description of the Fuzzy Controller for Obstacle Avoidance 60

2.2.1 Distancecoouiuiiiii 61

2.2.2 ANGIE Lo 61

223 Angular Speed ... 61

3. FUNDAMENTAL REINFORCEMENT LEARNING PARAMETERS. 64
4. MOBILE ROBOT PATH PLANNING BASED ON DYNA-HDP 66
4.1. Architecture of The Dyna-HDP Systemooooiia. 66

4.2, k-max Certainty Methodoooiiiiiiiiiiiiiiiiiiiiiii 69

4.3. Knowledge Sharing for Distributed Mobile Robots 70

5. SIMULATION RESULTS AND ANALYSIS ...t 76
5.1. Applying Dyna-HDP in A New Environment (Building Map) 83

6. CONCLUSION ... e 85
BIBLIOGRAPHY ... 85

MOBILE ROBOT CONTROL BASED ON HYBRID NEURO-FUZZY VALUE
GRADIENT REINFORCEMENT LEARNING ..., 88

AB ST R ACT ..o 88
1. INTRODUCTIONo 89

ix

2. FUNDAMENTAL PRELIMINARIES. ... 90
2.1. Dynamic Modeling of the Mobile Robotooo0. 90

2.2. DP/RL Algorithmscooouuiii e 93

2.3, NN e 95

3. MOBILE ROBOT CONTROL BY FNN-BASED OF VGL(A)................ 96
3.1. VGL(A) Structure Learning by Using FNN......................... . 96

3.2. Mobile Robot Control Based on FNN-VGL(A).................c.c...... 98

3.2.1 Critic Network Training Algorithm......................... 99

322 Actor Network Training Algorithm 101

4. SIMULATION RESULTS ... 102
4.1. First Case (Effectivenessof A value)ooviiiiiiiin ... 102

4.2, Second Case (with/without Actor Network)ccooeeet 103

5. CONCLUSION ... 111
BIBLIOGRAPHY ... 111
IV. THE BOUNDEDNESS CONDITIONS FOR MODEL-FREE HDP(1)........... 114
ABST R ACT .. 114
1. INTRODUCTION ... e 115
2. STRUCTURE OF MODEL-FREE HDP(A)ccoiiiiiiiiiiiiiiiiiiiii 116
2.1. HDP(1) Learning Views ... 116

2.2. The Critic Neural Networkccoooiiiiiiiiiiiiiiiiiiiiiinn.. 121

2.3. The Actor Neural Networkcccooiiiiiiiiiiiiiiiiiiiiiinn.. 123

3. STABILITY ANALY SIS ..o 125
3.1. Lyapunov Approach........ ... i 125

320 Preliminariesoovviiiiiiiiiiiiiiii e 126

3.3. The Dynamical System Stability Analysiscccoevviiii.t. 129

4. SIMULATION RESULTS ... 133

4.1. Case I: Nonlinear System Problemooooiiia. 133

4.2. Case II: Inverted Pendulum ... 134

4.3. Case III: 3-D Maze Problem............cooooiiii i 142

5. CONCLUSION ... 153
BIBLIOGRAPHY ... 154
. ONLINE MODEL-FREE N-STEP HDP WITH STABILITY ANALYSIS. 158
ABST R ACT ..o 158
1. INTRODUCTION ... e 159
2. THE ONLINE MODEL-FREE NSHDP(A)cccoiiiiiiiiiiiiiiiiiiiia 162
2.1. NSHDP(A) Archit€Ctureovvvniiieiie e, 162

2.2. The One-Step Critic Network (CN(0))vvvvveeeiiiiiiiiii e 166

2.3. The N-Step Critic Network (CN(A)) «.oovvviiiiiiiiiiiiiiii e 168

2.4, Actor Network (AIN) ..o e 170

3. STABILITY ANALYSIS FOR NSHDP(A)ccoiiiiiiiiiiiiiiiiiiiaa 172
3.1. Basics of The Lyapunov Approach..............ccooeiiiiiinn... 173

3.2. NS 1101 078 103 1 174

3.3. The Stability Analyses for The Dynamical System.................... 178

4. SIMULATION STUDY ..ottt 182
4.1. First Case: Nonlinear System Problem 183

4.2. Second Case: Inverted Pendulumooooiiiiiiiiii 189

4.2.1 Description for The Inverted Pendulum Dynamic Model.. 189

4.2.2 Simulation Results ... 191

4.3. Third Case: 2-D Maze Problemooooiiiiiii i 196

S, CONCLUSION ... 204

BIBLIOGRAPHY ... e 204

Xi

VI. AN IMPROVED N-STEP VALUE GRADIENT LEARNING ADAPTIVE DY-
NAMIC PROGRAMMING ALGORITHM FOR ONLINE LEARNING, WITH

CONVERGENCE PROOF AND CASESTUDIES ... 209
ABSTRACT ..ottt 209
1. INTRODUCTION ...ttt e e 210
2. THE ONLINE NSVGL(1) STRUCTURE DESIGNcooiiiiinnnn... 214
2.1. Improved Leaning of Temporal Sequencesooeen 214
2.2. Improved Exploration\Exploitation Trade-off......................... 216
2.3. Memory EffiCienCy.........oovuiiiiiiiiiiiiiiiiiiiiiiiiiee 219
2.4. Improved Actor Network Trainingccoooiiiiiiiiiiiinn... 220
2.5. Faster Convergence Via Two-Critic Iteration 221
3. CONVERGENCE PROOF ... 221
3.1. One-step and n-step DT-HIB Equationsoooiieit 221
3.2. Derivation of Iteration NSVGL(A) Algorithm......................... 224
3.3. Convergence of Iterative NSVGL(A1) Algorithm....................... 225
4. NEURAL NETWORK ARCHITECTURE DESIGNooiiin.. 234
4. The One-Step Critic Network (G%(x, &0)) ovovvooviniininos 234
4.2. The n-step Critic Network (G4 (xg, @) coovvvviniiiiiiiiiiieenn, 236
4.3. Actor Network (A(xx, @a))) evvneeeneeinieieiieeieiieeeeen 237
S. SIMULATION STUDIES ...ttt e 239
5.1. Case I: Nonlinear System Problemoiil 240
5.2. Case II: Mobile Robot Dynamic Model................................ 245
6. CONCLUSION ... 255
BIBLIOGRAPHY ... e 256

VII. CONVERGENCE ANALYSIS PROOFS FOR RECURRENT NEURO-FUZZY
VALUE-GRADIENT LEARNING WITH AND WITHOUT ACTOR............ 262

AB ST R ACT .. 262

xii

INTRODUCTION ...t 263
THE ACTOR-CRITIC AND SINGLE-CRITIC OF VGL(1) ARCHITEC-
TURE DESIGNS .. 266
2.1. Adaptive Actor-Critic Approachcccooeiiiiiiiiinnn... 269
2.1.1 The n-step Critic Network...............oooiiiiiiiiin 269
2.1.2 The Actor Network 271
2.2. Single Adaptive n-step Critic Approachcoooeiin... 272
2.2.1 The n-step Optimal Control Equation 272
2.2.2 The n-step Critic Network ...t 272
NF STRUCTURES FOR VGL(A4) AND SNVGL(A1) APPROACHES......... 274
3.1. Recurrent Neuro-Fuzzy (RNF) Structureooooin 274
3.2. Takagi-Sugeno Recurrent Neuro-Fuzzy (TSRNF) Structure.......... 277
CONVERGENCE ANALYSIS OF THE VGL(1) AND SNVGL(1) AP-
PROACHES ... e 282
4.1. DT-HIB Equation for RYK)ccovmiiiiiiii i 282
4.2. Derivation of Iteration VGL(A) ..o 285
4.3. Convergence of Iterative VGL(A) Algorithm 286
COMPACTING THE NF-VGL(A1) AND NF-SNVGL(1) ITERATIVE AL-
GORITHM WITH RNF AND TSRNF STRUCTUREScoooieet. 292
5.1. The Value-Iteration-based NF-VGL(A)cooiiiiiiiiia ... 293
5.1.1 The n-step Critic Network................oi, 293
5.1.2 The Actor Network 294
5.2. The Value-Iteration-based NF-SNVGL(A)..........cccooviiiiii. ... 295
5.2.1 The n-step Critic Network ..., 295
5.2.2 The n-step Optimal Control ...t 295
SIMULATION STUDY ..ttt 296
6.1. The Nonlinear Dynamic Model of Mobile Robot 296

6.2. Simulation ReSUILSo.ouini 299

7. CONCLUSION ... 319
BIBLIOGRAPHY ... e 319
SECTION

2. SUMMARY AND CONCLUSIONS 326
2.1. MODEL ORDER REDUCTION BY CLUSTERING SYSTEM POLES..... 326

2.2. ADAPTIVE DYNAMIC PROGRAMMING WITHN-STEP PREDICTION
PARAMETER ... e 327
BIBLIOGRAPHY 329

LIST OF ILLUSTRATIONS

Figure

PAPER I

1

General diagram for using HC-PE to reduce high order models. Any system
model is built by deriving physical laws (physical modeling) or by observing
data (identification modeling). Some models are represented by partial differ-
ential equations (e.g. heat transfer equation), and other models are built by
ordinary differential equations (e.g. robotics). Finite difference techniques are
used to discretize partial differential equations to derive a numerical approx-
imation for ordinary differential equations [3]. In this work, we focus on the
models, which are built by using ordinary differential equations (G). In combi-
nation with PA or GA, HC-PE improves the evaluation for the reduced model
(G,) through selecting minimum MSEs of clusters made from poles. To find
the minimum MSE, all MSE values should be calculated for each level (order).
MSE is calculated between the original model and the reduced models which

is represented by the blue dashed line. ...

Three cases that should be considered while clustering poles using either
Euclidean-distance or MSE as the similarity. The first case is clustering real
and complex poles separately. The second case is applying a full-state feed-
back approach (pole placement method) in unstable systems. The third case is
retaining the poles in the imaginary axis and in the origin of the s-plane to the

reduced MOAEL. ...t

Flowchart for the HC-PE algorithm, which starts from n" order and calculates
the reduced model in ™ = n™ — 1 order, which becomes the base model (an
optimal simulated original model at #™ order) to calculate a next reduced model

n™ — 1 order and so on until reaching the 2" order.

The dendrogram for hierarchical cluster poles based on Euclidean distance for
G10(s) combined with the PA approach. It clearly has large error values in most

FEAUCHON OTAETS. ettt et e e e e e e e e

The dendrogram for hierarchical clusters poles based on the HC-PE-PA algo-
rithm for Go(s). Minimum error and stability in the levels are generated by
using this algorithm. Cutting is done at level two to generate the 2" order

reduced model for comparing [19] and [21]. ...

The Time Step response for step responses for original, [19] and [21], and

HC-PE-PA.

Xiv

Page

10

22

10

11

12

13

14
15

16

The dendrogram for hierarchical clustering of poles based on the HC-PE-PA
algorithm for Gg(s). Stability and fluent minimum error tracking level is
generated by using this algorithm. Level three was cut to generate a 3™ order
reduced model to compare with [19].

The time step responses for the original, [19] and HC-PE-PA.

Bode plot for step responses for the original, [19] and HC-PE-PA to show the
STy, ..

Cluster poles of the Los Angeles building model. The blue star, red circle,
and green diamond shape symbols describe the best six clusters (three clusters
in positive imaginary axis part with 3 mirror them in negative imaginary axis
part), which is obtained by applying the HC-PE technique. The new system
poles reduced model (six cluster centers) show as two big symbols (blue stars,
red circles, and green diamonds). ...

A comparison between random (mode 1) and semi-random (mode 2) initial
chromosomes in population for 3 independent runs. Bold blue and red curves
are a mean of mode 1 and mode 2, respectively, while thin blue and red curves
are represented upper and lower fitness values for 3runs.

The time step responses for the 48" order original building model and the
6™ order reduced models obtained via HC-PE-PA, HC-PE-GA, Hankel and
balanced truncation techniques. HC-PE has the best performance compared
with the other two approaches. MSE for HC-PE-PA, HC-PE-GA, Hankel and
balanced truncation are 1.758¢ — 09, 6.807¢ — 10, 3.089¢ —07, and 2.827¢ — 08,
TESPECHIVELY. ..ttt

The Bode plot frequency responses for the 48™ order original building model
and the 6" order reduced models obtained via HC-PE-PA, HC-PE-GA, Hankel
and balanced truncation techniques. HC-PE-PA has the best approximation
compared with the others, which is clear from the lowest frequency range until

Configuration model of triple link inverted pendulum.

The step response results after applying HC-PE-PA to reduce the model of the
triple link inverted pendulum to 3 order. (a) The cart displacement. (b) The
lower angle. (c) The middle angle. (d) The upper angle. The original 8 order
model reduces after applying RCG and LQRCG.coooiiiiiiiiiit.

The step response after applying HC-PE-PA and HC-PE-GA to reduce the model
of a triple link inverted pendulum to 3™ order. (a) The cart displacement. (b)
The lower angle. (c) The middle angle. (d) The upper angle. The original 8™
order model applies the LQRCG method. ...t

XV

23
23

24

27

28

29

35

37

17

18

19

20

21

The step response after applying HC-PE-PA and HC-PE-GA to reduce the model
of a triple link inverted pendulum to 3™ order after changing mass parameters.
(a) The cart displacement. (b) The lower angle. (c) The middle angle. (d) The
upper angle. The LQRCG method is applied to make the original 8 order

MOAEl StADIE. oo

Simulink model of LQRCG applied to the triple link inverted pendulum for
original 8" and 3" order reduced model after applying HC-PE for both Pade

approximation and GA control by PID control with a disturbance input.

The responses after applying the disturbance signal on the cart displacement
state for comparison among LQRCG, HC-PE-PA, and HC-PE-GA reduced

models.(a) The cart displacement.(b) The lower angle.

The responses after applying the disturbance signal on the first state (cart dis-
placement) to compare LQRCG, HC-PE-PA, and HC-PE-GA reduced models.
(a) The middle angle state. (b) The upper angle state. GA performs slightly
better for the transient response, but PA has acceptable transient and superior

steady state performance.oooiuiiiiiiiii

2-D simulation for a triple linked inverted pendulum model. (a), (b) and (c)
show the simulation for the HC-PE-PA reduced model starting from the 0

position to the final desired cart positions which are 4, 6 and 10, respectively. ...

PAPER II

1

Differential wheeled mobile robot platform. It forms as 180° field of view in
front by nine sensors with 22.5° separation angle to sense an object about 0.2

meter away from its body.

Distance fuzzy membership functions. These fuzzy set definitions are used for
input variable which are consisted from three triangular-shaped membership

functions (good, near, and far).

Angle fuzzy membership functions. These fuzzy set definitions are used for
input variable which are consisted from five triangular-shaped membership

functions (very negative, negative, zero, positive, and very positive).

Angular speed fuzzy membership functions. These fuzzy set definitions are
used for output variables for both left and right wheels which are consisted from
five triangular-shaped membership functions (backward, slow backward, stop,

slow forward, and forward).coi i

XVi

42

43

44

45

61

62

62

10

11

12

13

14

XVii

Block diagram for Dyna-HDP Path Planning. u! is the action vector at time ¢
for robot i which is consisted of three actions (turn left, turn right, and moving
forward) denoting as @'. s' is the input states vector for robot i at time ¢ which
are represented by the nine sensor readings S5 — S49, the relative different angle
(B4irr), and the relative distance (Dg). A reinforcement function (r) can get
from (2) for state sf and a;. All robots share the same virtual model to maximize
the value function J! for all agents at the same time. The backpropagation path
is shown by dashed lines for action and critic networks, and for updating the
rules for k-max Certainty.iiiiiiiiiiiii 66

A flow chart for k-max certainty selection procedure for agenti. A green dashed
line border represents the exploitation approach which has been triggered by
taking a greedy action among k-certainty rules (sensory-action pairs). The
exploration approach is represented by a blue dashed line border which is
selected action randomly among uncertainty rules (or trail). 71

Flowchart for implementation the multi-agents Dyna-HDP approach on maze
0 10] 0] 1) ' 75

a) The environment for testing the exploration/exploitation strategy which shows
the initial start position for this agent. b) The near-optimality trajectory from
the starting point to the target. c) The comparison between e—greedy and k-max
certainty by using Q-learning algorithm.coiiiiiiiiii, 77

The first case comparison the number of steps per episodes. This compares
among Dyna-HDP with other conventional algorithms, one step Q-learning,
Sarsa (4), and Dyna-Q, for one agent (no information sharing with the others). . 79

The second case results (the cooperation between two agents by sharing their ex-
periences by using the Dyna-HDP approach). Every agent has own experience
and tries to support the otherone.o 79

The Third case results (Cooperation among five agents by using the Dyna-HDP
APPIOACK). ottt 80

Five mobile robots are distributed in unknown environment surrounding by wall
in meter scale with many obstacles on it. The robots are distributed in random
start position and heading angle to achieve same task (reaching to target position). 80

The near optimality trajectories for the five mobile robots from start positions
to the same target position after applying the third case which is all agents share
their experiences with the same approach. ... 81

Comparison among all three cases by using Dyna-HDP for average learning.
In third case, the results are stable with the improvement in the learning speed
of distributed autonomous agents by sharing their experiences. 82

15

16

a) The trajectories for two agents to run Task 1 b) The trajectories for two agents
to run Task 2 c) The trajectories for one agent to run Task 3 d) The simulation
result for three tasks among Dyna-HDP. i

Path for mobile robot to implement the third task with a change in the environ-
ment by adding a new obstacle. FCOA gives the mobile robot the capability to
adapt with this changing.

PAPER III

1

Schematic diagram of FNN used in ADP. Premise (O'l.l, mf) and consequent

(c{j, ce c(ln+1)j) parameters are updated by using the backpropagation gradient

algorithm. The weights between the premise and hidden layers are always one.

Adaptation in VGL(A) for the mobile robot trajectory control tracking. In
general, forward pathways are represented by the solid lines while pathways
of backpropagation are shown by dashed lines, and the small solid black dots
represent a connection. The sequential environment is used in this work by
storing all states (velocity vectors) and actions (torque vectors) in forward
pathways. The TD-error between g; and g;, as in (11), is used for updating
critic network weights with applying (23) for g;. MUX box is used to feed
(23) as one thick dashed line by gathering the signals. The actor weights are
updated by applying (24). For robustness testing, various values of F and 7,
are injected into this dynamic model to examine the influences on 7(¢). The
robot pose trajectory (x., y., 8) is obtained by using the mobile robot kinematic
equation (7) with fourth order Runge-Kutta integration for the derivative of the
coordination and orientation of the robot. The Runge-Kutta integration also
uses to solve the dynamic model (8) within 0.01 sec for the sample time.

The actor and critic performance at 4 = 0. (a) Typical system trajectories for
both velocity states over time at last stable learning iteration. (b) The average of
MSE for both velocity states over iterations. (c) The average torques applying
to the left and right wheels over iterations.cccoiiiiiiiiiiiin.

The control performance at 4 = 0.9. (a) - (c) has same descriptions for (a) - (¢)
AS IN Fig. 3.

Comparison of the average performance at 4 = 0 and 4 = 0.9. (a) The MSE
for both velocity state errors. (b) Requirement torque values. (c) The function
value, which is calculated from (1).coiiiiiiii e

Critic/actor and critic/optimal-torque approaches set to follow a circular trajec-
tory at A = 0.9 with disturbances for NN and FNN. (a) The X-Y trajectories for
the Mobile TODOt. ... oo e

XVviii

84

85

97

100

105

106

108

Critic/actor and critic/optimal-torque approaches set to follow a circular trajec-
tory at 4 = 0.9 with disturbances for NN and FNN. (b) and the average of MSE
over iterations, respectively. (c) The absolute average values for the left and

right control torques Over iterations.uuuiiieeiiiiiiiiiineeeieeennnnnn.

Critic/actor and critic/optimal-torque approaches set to follow a circular trajec-
tory at 4 = 0.9 with disturbances for NN and FNN. (d) The value of the torques
over time for the last learning iteration for FNN. The cost-to-go value is shown

PAPER IV

1

Schematic for the adaptation of the novel model-free HDP(Q) structure design
according to (8). Forward pathways are represented by solid lines, while
backpropagation pathways are shown by dashed lines. The small solid black
dots represent a connection path. The initial target-values (v(¢)) are provided
by substituting 4 = 0 with (8), which is identical to the traditional HDP. The
TD-error between v(f — 1) and ¥(r — 1), as in (76), is used to update critic
network weights (84), which is represented by red dashed line. The actor
network weights are estimated by back-propagating the prediction error (blue
dashed line), which is equal to the value function (¥(r — 1)) through the critic

network, and updating the actor’s weights according to (28).......................

Schematic diagram of the critic network in HDP(1). As mentioned by Werbos
in [30], this structure is more general than a traditional three-layer feedforward
neural network by fully connecting all neurons. It models a variety of functional
forms [34]. We set all weights that connect input nodes with output nodes
to zero; therefore, it is similar to a three-layer feedforward neural network

~{h}

structure. @, ° represents a hidden weights, which connect the input layer with

the hidden layer. The output weights are indicated as LD;{.O}, which connect both
input and hidden layers with the output layer. s;(¢) is the kth hidden node input
of the critic network, and r(¢) is the corresponding output the hidden node.

Here, we only apply a hyperbolic tangent threshold function (¢(.)) to the hidden

8 (S 0 0 e

Schematic diagram of the actor network in HDP(1). We set all weights that
connect input nodes with output nodes to zero as well as the connected weights

between the outputs themselves. cf)c{lh} represents hidden weights which connect

the input layer with the hidden layer. The output weights are indicated as c?)c{,o},
which connect both input and hidden layers with the output layer. p;(¢) is the
kth hidden node input of the actor network, and g (¢) is the corresponding

output of the hidden node. Here, we only apply a hyperbolic tangent threshold

function (¢(.)) on the hidden neurons. ...,

Comparisons of system responses (the state vector trajectories and the action

sequence) with HDP(A = 0.95), and traditional HDP(1 = 0).

Xix

109

122

124

134

10

11
12

13
14

15
16

17

18

19

20

XX

Cost error over iteration and 30 time step critic and actor errors. The upper
figure shows the cost error over iterations, which clearly illustrates fast and
stable learning, while traditional HDP shows fluctuations during learning. The
critic and actor errors at the last learning iteration for HDP and HDP(A) are

shown in the middle and lower figures.o, 135
Learning weights for critic and actor networks for HDP and HDP(Q). 136
Configuration model of the cart-pole balancing system. 136

The value function and target value for the last trial without noise. The initial

angle O(1) 08 0. 10 . oo 138
Zoom-in between 80 to 220 time steps for Fig. (8).ccooviiiiiiiiiiiit. 138
Simulated results of balancing the inverted pendulum for control signal, 6(¢),

and x(7) when the system is free of noise; initial angle 6(7) is 0.1°. 139
Zoom-in between 400 to 520 time steps for Fig. (10).olL. 139
The value function and target value for the last trial when the system is free of

noise; initial angle 0(7) is 10°. 140
Zoom-in between 0 to 150 time steps for Fig. (12). ..ot 141
Simulated results of balancing the inverted pendulum for control signal, 6(¢),

and x(¢) when the system is free of noise; initial angle 6(¢) is 10°................. 141
Zoom-in between 0 to 100 time steps for for Fig. 14.......................o . 142

Simulated results of balancing the inverted pendulum for control signal, 6(¢),
and x(7) when the system has uniform 3% sensor noise; initial angle 6(¢) is 10°. 143

Simulated results of balancing the inverted pendulum for control signal, 6(¢),
and x(¢) when the system has uniform 3% sensor noise; initial angle 6(¢) is 10°. 143

The value function and target value for the last trial when the system has uniform
5% actuator noise; initial angle 6(¢) is 10°. ...t 144

Simulated results of balancing the inverted pendulum for control signal, 6(¢),
and x(¢) when the system has uniform 5% actuator noise; initial angle 6(¢) is 10°.144

Squared critic error (E,) for noise-free with 0.1° to initial angle, noise-free with
10° to initial angle, uniform 3% sensor noise, and uniform 5% actuator noise. .. 145

21

22

23

24

Diagram of 3-D maze (5 X 5 x 5) with obstacles. The dark blue cube (0, 0, 0)
represents the initial position. The green cube (4, 4,4) represents the target
position. 12 obstacles are located in (0, 3,0), (2,4, 1), (2,4,2), (2,3,2), (2,2,2),
(2,1,2), (4,0,0 — 4) and (3,0,4), which are represented by the red cubes.
Otherwise, the agent can move in free space. Three modes allow the agent
to receive reward/cost values. First, The agent will receive reward 1 when it
arrives to the target cube. Second, the agent will be punished by receiving
-0.001 if it hits obstacles or passes the boundary. Third, the agent will receive 0
value as a reward in a free space. At any position in the maze, the agent has to
select 1 action (direction) out of six actions in order to to move one step. The
six actions are forward, right, backward, left, up and down, which can be seen
in the figure as uy, uo, us, ug, us and ug, respectively. We sketch this figure by

using the isometric drawing tool [42].o

Mean-squared-error (MSE) learning curves for SARSA(0), Q(1 = 0.95), HDP(0)
and HDP(A = 0.95) for the 3-D maze navigation benchmark as shown in Fig.
20. The mean values from 20 independent runs are taken for all methods. The
shaded color represents the 20 runs, while the solid line represents the mean
for all 20 runs. The HDP(0.95) approach has the fastest learning with a lower

MSE compared to other approaches. ...

Summation of accumulative reward for every single episode of SARSA(0),
Q(4 = 0.95), HDP(0) and HDP(A = 0.95) approaches, which is applied in the
3-D maze navigation benchmark as shown in Fig. 20. The mean values from 20
independent runs are taken for all methods. The shaded color represents the 20
runs, while the solid line represents the mean for all 20 runs. The HDP(0.95)
approach reaches the largest accumulative reward compared to other methods.
Because e—greedy learning will reset the accumulative reward value every
episode, the accumulative reward values for Q(0.95), HDP(0) and HDP(0.95)

CONVETZE OVET EPISOACS. ettt ettt et et et e e e e e e

e—greedy learning curves for SARSA(0), Q(4 = 0.95), HDP(0) and HDP(A =
0.95) approaches for 3-D maze navigation benchmark as shown in Fig. 20.
These curves represent the number of steps per episode, where the agent returns
back to the start cube only when it reaches the target cube. The mean values
from 20 independent runs are taken for all methods. The shaded color represents
the 20 runs, while the solid line represents the mean for all 20 runs. HDP(0.95)
and HDP(0) have an almost identical number of steps over episodes, which are

less than those in both Q(0.95) and SARSA(0) methods.coovvvnnn...

XXi

150

152

153

PAPER V

1

Schematic diagram for the adaptation of an online model-free n-step ADHDP
(NSHDP(1)). This design uses two critic networks: the one-step critic network
(CN(0)) and the n-step critic network (CN(A)). The CN(0) produces a one-step-
return value function ($°(¢)) based on the ordinary temporal-difference (TD)
learning algorithm, while the CN(A1) produces the average of the n-step-return
value function (9%(z)) based on a TD(A) learning algorithm [27]. The TD(A)
learned from the average of the n-step-return backups, where A represents the
proportional average weight. A-return (R?) [16] is another name for the average
of the n-serp-return. The $4(¢) value is identical to R}, [29]. This design is
equivalent to the one-step TD backup (1=0). It focuses on the recent information
to predict the value function via CN(0). Online learning is another advantage of
this design, where it speeds up the tuning without requiring any initial backup
for 94(¢). Furthermore, this design is a model-free learning design that does
not require prior knowledge about a mathematics dynamic model. Despite
the bootstrapping eligibility trace parameters (1 and y) give the CN(A) the
ability to determine a depth (effecting via 1) and a width (effecting via vy)
from information during a sequence of events (i.e., the rewards in the backward
view of TD(Q), [21]). The CN(0) provides the value function that concentrates
on recent events. Therefore, the NSHDP(A1) design combines the details of
the current information (real-time data) with a sequence of predicted events.
This combination provides the optimal decisions [40] in the control/industry
field as well as [41] in the consumer/marketing field (correlation between real
time and history). The weights for CN(0) and CN(A) are updated according
to the TD(0) error (blue dashed line) and the TD(A) error (green dashed line),
respectively. The actor network (AN) that provides the action values is tuned
by two paths (backpropagating errors): one through the CN(0) path (¢%(¢)) and
the other through the CN(Q) path (e(¢)). This strategy assists AN training to
correlate and combine the fluid information from CN(A) and CN(0). These two
paths are filtered via a similar value of A, and they combine to produce a total
backpropagating actor error (red dashed line). ...

A schematic diagram of CN(0) in NSHDP(1). As mentioned by Werbos in
[38], this structure is more general than a traditional three-layer feed-forward
neural network that is fully connected among all neurons. It models a variety
of functional forms as demonstrated in [39]. All weights were set so that the
connection input nodes with the output nodes were zero. c?)(c){h} represents
hidden weights, which are connected to the input layer with the hidden layer.
The output weights are indicated as @8{0}, which connect both the input and
hidden layers with the output layer. ay(¢) is the kth hidden node input of the
critic network, and b (¢) is the corresponding output of the hidden node. A

hyperbolic tangent threshold function (¢(.)) is applied to the hidden neurons. ...

XXii

166

A schematic diagram of the average n-step learning critic network (CN(A)) in
NSHDP(1). The (f)f{h} represents the hidden weights which are connected to the
input layer through the hidden layer. The output weights are indicated as c?)f{(’},
which connect both the input and hidden layers with the output layer. ci(t) is
the kth hidden node input of the critic network, and di(z) is the corresponding
output to the hidden node. Here, only apply a hyperbolic tangent threshold

function (¢(.)) is applied to the hidden neurons.oeeeeLL.

A schematic diagram of the actor network (AN) in NSHDP(1). All of the
weights that connect input nodes with output nodes are set to zero, as well as
the connected weights between the outputs themselves. cbih} represents the
hidden weights which are connected the input layer with the hidden layer. The
output weights are indicated as c?)i"} , which connect both input and hidden layers
with the output layer. py(¢) is the kth hidden node input of the critic network,
and g (7) is the corresponding output to the hidden node. A hyperbolic tangent

threshold function (¢(.)) is applied in the hidden neurons.

Mean squared error comparisons over iterations among the NSHDP(1), the
GrHDP and the traditional ADHDP. NSHDP(A) has a faster learning speed
than the GrHDP and the ADHDP......... ..

Comparisons of system response trajectories, which are the two system states
and the actions for the NSHDP(A), GrHDP and ADHDP.

Comparisons for the value functions with their targets between the NSHDP(1)
and the GrHDP. The upper figure shows the value function and its target for
the GrHDP (see [7]), which is represented by a red dashed line in the upper
figure part of Fig. 8. The middle and upper figures show the value functions
of CN(0) and CN(A1) of the NSHDP(1) with their targets (the left sides of
Equations (10) and (11)), respectively. The solid green line in the lower part of
Fig. 8 represents the difference of the middle figure, while the dashed red line
represents the difference of the lower figure.

The squared critic errors. The upper figure shows the squared errors for critic
and reference networks in the GrHDP structure (see [7] Equations(4) and (5)).
The squared critic errors for NSHDP(A) for both critic networks (CN(0) and
CN(Q)) are illustrated in the middle and upper figures when 4 = 0.95 and
A = 0, respectively. The squared error for the reference network in the GrHDP
is represented by “Br. ... o

The upper figure shows the squared backpropagating actor error after passing
a critic network in the GrHDP. The middle and lower figures show BE(¢) and
BE(t) (see (29)) of the NSHDP(1) when A = 0.95 and A = 0, respectively.
The lower figure (NSHDP(0.95)) converges faster than the upper (GrHDP) and
middle (ADHDP) figuresccooiiiiiiii e

XXiii

168

171

184

185

186

187

10

11
12

13

14

15
16

17

18

19

20

XXiv

Learning weights for the NSHDP(1) and the GrHDP. The upper, middle and
lower figures in the first column show the learning weights during the time steps
for CN(0), CN(1) and AN in the NSHDP(1), respectively. The upper, middle
and lower figures of the second column show the learning weights during the

time steps for goal representation or the reference network (RN), critic network
and actor network of GrHDP..........o 189

The configuration schematic diagram of the inverted pendulum balancing system. 190

Simulated results of balancing the inverted pendulum for u(z), 6(¢), and x(¢)
when the system is free of noise. The initial angle 6() is 0.1°. 192

Zoom-in between 1000 to 1250 time steps for Fig. 12. ...l 192

The value functions and their targets without noise. The backpropagating actor
errors are Beg and Befl through CN(0) and CN(A), respectively. The initial
angle (1) iS 0.10. .o oo 193

Zoom-in between 1000 to 1250 time steps for Fig. 14. ...l 193

Simulated results of balancing the inverted pendulum to show u(t), 6(¢) and
x(t), when the system is injected with 3% uniform noise to the actuator and
sensor. The initial angle O(f) iS —12°. ... 194

The value functions and their target values with similar disturbances are in the
caption of Fig. 16 (upper and lower figures for CN(0) and CN(1), respectively).
The backpropagation actor errors through CN(0) (Beg) and CN(A) (Bej) are
shown in the lower figure. The initial angle 6(¢) is —12°.............ccoviiiin... 195

Simulated results of balancing the inverted pendulum to show u(t), 6(¢) and
x(t), when the system is injected with 3% uniform noise to the actuator and
sensor. The initial angle 6(7) is —12°. ..ot 195

The function values with errors with the initial angle 6(¢) is 12°. The actuator
and sensor disturbances are similar to what in the caption of Fig. 18............. 196

Diagram of a 2-D maze (7 x 7) with obstacles. The point(0,0) represents the
initial position. The point (6,6) represents the target position. Eleven obstacles
are located at (5,0), (6,0), (2,1), (5,2), (6,2), (2,3), (3,3), (6,3), (3,6), (0,6) and
(3,6), which are represented as red squares. Otherwise, the agent can move
in the free space. There are three modes where that the agent can receive
reward/cost values. First, the agent will a receive reward of 1 when it arrives
at the target. Second, the agent will be punished by receiving -0.001 if hits
obstacles or passes the bound. Third, the agent will receive a 0 value as a
reward in a free space. At any position in the maze, the agent has to select 1
action (direction) out of 4 actions in order to move one step. The 4 actions are
forward, right, backward and left, which can be seen in the figure as uy, uy, u3
and ug, TESPECHIVELY. ...oii 199

21

22

23

MSE Learning curves for the SARSA(0), Q(4 = 0.95), ADHDP and NSHDP(1 =
0.95) methods for a 2-D maze navigation benchmark as shown in Fig. 20. The
mean values from 20 independent runs are taken for all methods. The shaded
color represents the 20 runs, while the solid line represents the mean for all 20
runs. The NSHDP(0.95) method learns the fastest and has the MSE compared
to other methods.o

A summation of the accumulative reward for every single episode for the
SARSA(0), Q(1 = 0.95), ADHDP and NSHDP(A = 0.95) methods, which are
applied in a 2-D maze navigation benchmark as shown in Fig. 20. The mean
values from 20 independent runs are taken for all methods. The shaded color
represents the 20 runs, while the solid line represents the mean for all 20 runs.
The NSHDP(0.95) method has the largest accumulative reward compared to
the other methods in the exploration moving mode. Because the e—greedy de-
ceasing rate learning will reset the accumulative reward value at every episode,
the accumulative reward values for the Q(0.95), ADHDP and NSHDP(0.95)
are CONVErgence OVET EPISOALS. ...ooviiiiii ittt

e—greedy learning curves for the SARSA(0), Q(1 = 0.95), ADHDP and
NSHDP(A = 0.95) methods for a 2-D maze navigation benchmark as shown in
Fig. 20. These curves represent the number of steps per episode, where the
agent returns to the starting point only when it reaches the target cube. The
mean values from 20 independent runs are taken for all methods. The shaded
color represents the 20 runs, while the solid line represents the mean for all
20 runs. The NSHDP(0.95) and the ADHDP have a nearly similar number of
steps over episodes, which are less than both the Q(0.95) and the SARSA(0). ...

PAPER VI

1

Schematic diagram for the adaptation of a novel online n-step value gradient
learning (NSVGL(1)). Two critic networks and one actor network are used in
NSVGL(A1). A combination of two critic networks is presented to speed up
the tuning for online learning without needing the initial backup value function
and eligibility trace parameters. The weights for the one-step critic network
(G°(x, @°)) and the n-step critic network (G*(xx, @7)) are updated according
to gradient of TD(0) error (blue dashed line) and gradient of TD(A) error (green
dashed line), respectively. The actor network (A(xk, c?)a)) is tuned by two
paths (backpropagating errors): one through G° (xks c?)g) path (€0) and the other
through (G4 (xy, @) path (e}). This strategy can correlate and combine the
information from the two critic networks. These two paths are filtered via the
same values of A, and they are added together to produce a total backpropagating
actor error (red dashed 1ine).ooiiiiiiiiii e

General feed-forward neural network, which is used in the one-step critic net-
work, the n-step critic network, and the actor network in NSVGL(A).

XXV

203

203

234

10

11

The mean-squared-error (MSE) comparisons over iteration among NSVGL(A =
0.99), NSVGL(4 = 0.5) and the DHP approaches. The mean values from 10
independent runs are taken for all methods. The shaded region represents 10
runs, while the solid line represents the mean for all 10 runs. NSVGL(1)

provides a faster learning speed than DHP.l

The control input during iteration for NSVGL(A = 0.99), NSVGL(A = 0.5) and
the DHP. The mean values from 10 independent runs are taken for all methods.
The shaded region represents the 10 runs, while the solid line represents the

mean for all 10 FUNS. ..ottt e e e e

The state trajectories for the x1 state during iteration for NSVGL(1 = 0.99),
NSVGL(A = 0.5) and the DHP. The mean values from 10 independent runs are
taken for all methods. The shaded region represents the 10 runs, while the solid

line represents the mean for all 10 runs. NSVGL(A) improves faster than DHP. .

The state trajectories for the x2 state during iteration for NSVGL(4 = 0.99),
NSVGL(A = 0.5) and the DHP. The mean values from 10 independent runs are
taken for all methods. The shaded region represents the 10 runs, while the solid

line represents the mean for all 10 runs. NSVGL(A) improves faster than DHP. .

The average gradient trajectories of the value functions for the first system state
in NSVGL(A = 0.99. The gradient of the cost functions (g?(xl ©) and gf(xl k))

converge to the optimal value function. ...l

The average gradient of the second cost function trajectories for the both critic
networks in the NSVGL(A = 0.99) approaches. The convergence of the gradient

of the value functions for the second system state (g?(ka) and glfl(x2k)) to the

optimal cost function is clearly shown starting from iteration number 200.

The average mean-squared-error for two velocity states during iterations among
NSVGL(A = 0.99), NSVGL(1 = 0.5) and the DHP. The mean values from 10
independent runs are taken for all methods. The shaded region represents the
10 runs, while the solid line represents the mean for all 10 runs. NSVGL(A)

illustrates faster learning than DHP.

The first control input (left torque) during iterations among NSVGL(A = 0.99),
NSVGL(A = 0.5), and the DHP. The mean values from 10 independent runs
are taken for all methods. The shaded region represents the 10 runs, while the

solid line represents the mean for all 10 runs. ...t

The second control input (right torque) during iterations among NSVGL(A =
0.99), NSVGL(A = 0.5), and the DHP. The mean values from 10 independent
runs are taken for all methods. The shaded region represents the 10 runs, while

the solid line represents the mean forall 10runs.oollL.

XXVi

. 241

. 242

242

243

. 244

. 248

. 249

. 250

12

13

14

15

XXVii

Comparisons of state trajectory for the first state (linear velocity) during iter-
ations for NSVGL(1 = 0.99), NSVGL(A = 0.5), and DHP approaches. The
mean values from 10 independent runs are taken for all methods. The shaded
region represents the 10 runs, while the solid line represents the mean for all
10 runs. NSVGL(A) has better performance than DHP, whereas it is faster
improved during iteration.iiiiiiiiiiiiiiii e

Comparisons of the state trajectories for the second state (angular velocity) for
NSVGL(4 = 0.99), NSVGL(4 = 0.5), and DHP. The mean values from 10
independent runs are taken for all methods. The shaded region represents the
10 runs, while the solid line represents the mean for all 10 runs. NSVGL(A)
learns faster than DHP.

The average gradient of the first state of value function trajectories for both
critic networks in the NSVGL(A = 0.99). The gradient of the value functions
(g?(xlk) and gl./1 (x1g)) are converged to the optimal cost function.

The average gradient of the second state of the value function trajectories for
both critic networks for NSVGL(1 =0.99). ...,

PAPER VII

1

A schematic diagram for the adaptation of actor-critic VGL(A). The weights
for the critic network (G'(x(k), @.)) are updated according to the gradient of the
TD(A) error (black dashed line). The actor network (A(x(k), c?)a)) is tuned by
backpropagating the actor error (e,) through G(x(k), @) network (red dashed
5315

A schematic diagram for the adaptation of a single n-step critic network of
VGL(A)(SNVGL(A)). The weights for the critic network (G(x(k), d¢)) are
updated according to the gradient of the TD(A) error (black dashed line). The
general n-step optimal control equation (14) (or (73) for Affine systems with
the quadratic form of a utility function) is used to generate an optimal control

A structure for RNF that uses both actor and critic networks for VGL(A) and
NSVGL(A1). RNF consists of three layers. The first layer is the premise layer,
which has premise parameters (W x;,;, Onxm, @nxm). The second layer is the
rule layer, which has m" rule nodes. The third layer is the consequent/output
layer, which has consequent parameters (w xn). The premise and consequent
parameters are trained by using a backpropagation gradient algorithm. To
simplify the appearance of this diagram, the number of inputs, MFs and outputs
are represented by n = 3, m = 2 and p = 2, respectively.

251

252

253

253

270

278

10

11

12

13

14

XXViii

A structure for TSRNF that uses VGL(A) and NSVGL(A). TSRNF consists
of five layers. The first layer represents the premise layer, which has premise
parameters (Myx,, O uxm, Ouxm). The second layer is the rule layer, which has
m" rule nodes. The third layer is the normalization layer to normalize the output
values coming from the rule layer. The fourth layer is the consequent layer,
which has consequent parameters (ag; (n+1)). The fifth layer is the output layer
to obtain the final output signal. The premise and consequent parameters are
trained by using a backpropagation gradient algorithm. The number of inputs,
MFs and outputs are represented by n = 3, m = 2 and p = 2, respectively. 283

Average of MSEs for the two states for comparisons RNF-VGL(A = 0) and RNF-
VGL(A = 0.98) with an impact on disturbances and frictions. Five independent
runs are taken. The shaded region represents the runs, while the solid line

represents the mean of runs. RNF-VGL(1 = 0.98) allows for faster learning
than RNF-VGL(A = 0). . ..o 301

Initial and final learned Gaussian membership functions (GMFs) for both input
states (linear and angular velocities) to the critic network in RNF-VGL(0). 301

Initial and final learned GMFs for both linear and angular velocity input states
to the actor network in RNF-VGL(0). ...ttt i 302

Deviation of the recurrent parameters (@) for both input velocity states from the
initialized values of the critic network of RNF-VGL(0) during all of the total
training steps, which is 12000 iteration with 100 time steps each. 303

Deviation of the recurrent parameters (8) for both input velocity states from the
initialized values of the actor network of RNF-VGL(0) during the total training
]] 01 304

Initial and final learned GMFs for both linear and angular velocity input states
to the actor network in RNF-VGL(A). ..o i 305

Initial and final learned GMFs for both input states to the actor network in
RNF-VGL(A). e e 305

Deviation of 6 for both input velocity states from the initialized values of the
critic network of RNF-VGL(A) during all the total training steps.................. 306

Deviation of 6 for both input velocity states from the initialized values of the
actor network of RNF-VGL(A) during the total training steps. 307

Average of MSEs for the two states for comparisons: RNF-VGL(1) and RNF-
SNVGL(AQ) with o = 0.001. Five independent runs are taken. The shaded
region represents the runs, while the solid line represents the mean of the runs.
RNF-SNVGL(Q) learns faster a faster learning than RNF-VGL(A). 309

15

16

17

18

19

20

21

The X-Y circle trajectories for RNF-VGL(A1) and RNF-SNVGL(A) with o =
0.001. The mean of five independent runs is shown. RNF-SNVGL(A) is faster,
but RNF-VGL(A1) performs better and improves with long training iterations.

The average of the right and left input torques for the dynamic mobile robot
for RNF-VGL(4) and RNF-SNVGL(A1) with o = 0.001. The shaded region
represents the runs, while the solid line represents the mean of the runs.

The average gradient of the two input velocity states of the value function
trajectories for the critic network in both RNF-VGL(A) and RNF-SNVGL(A). ...

The average of the MSEs for comparing the two states of TSRNF-VGL(A) and
TSRNF-SNVGL(1) with o = 0.001. Five independent runs are taken. The

shaded region represents the runs, while the solid line represents the mean of
the runs. TSRNF-SNVGL(A) learns faster than TSRNF-VGL(A).

The X-Y circle trajectories for TSRNF-VGL(A1) and TSRNF-SNVGL(A1) with
o = 0.001. The mean of five independent runs is shown. TSRNF-SNVGL(Q)
learns faster, but TSRNF-VGL(A) perfoms better ad improves with long training
L) 1 0 1

The average of the right and left input torques to the dynamic mobile robot for
TSRNF-VGL(A1) and TSRNF-SNVGL(A1) with o = 0.001. The shaded region
represents the runs, while the solid line represents the mean of the runs...........

The average gradient of the two input velocity states of the value function

XXixX

. 310

311

312

314

315

trajectories for the critic network in both TSRNF-VGL(A) and TSRNF-SNVGL(1).317

XXX

LIST OF TABLES

Table Page
PAPER I

1 GA operations selection approach...............oiiiiiiiiii i 18
2 Poles values for unstable and stable for triple link inverted pendulum model..... 33
3 List of abbreviations and symbols........... ... 46
PAPER II

1 Right side controller rules matriXoooiiiiiiiii i 63
2 Left side controller rules matriX ... 63
PAPER III

1 Parameters of the dynamic mobile robot..................oiiiiiiiiii, 103
PAPER IV

1 Performance evaluation of HDP(A1) learning controller when balancing the
inverted pendulum dynamic system. The second and third columns depict the
average number of trials it took to learn to balance the pole for 1000 time steps
for HDP and HDP(A) approaches, respectively. The average is based on 100
successful runs at 1000 iterations each. * actuators are subjected to noise; #
sensors are subjected t0 NOISEuuuuuuunn e 146

PAPER V

1 Performance evaluation of the NSHDP(A) learning controller when balancing
the inverted pendulum dynamic system. The third and fourth columns depict
the average number of trials it took to learn to balance the pole for 100 time
steps for the GRHDP and the NSHDP(1), respectively. The average is taken
over 100 successful runs for 5 iterations each. * actuators are subjected to noise;
sensors are subjected t0 NOISE.ovireeie e 197

PAPER VI

1 Parameters of the dynamic mobile robot.................ooiiiiiiiiiii 255

PAPER VII

1

The values for af. af depend on i and ¢. The rows for the last column (i = n)
increase by one with each ¢ and replicate each m. The rows for the column with
i = n — 1 increase by one each with each ¢ = m and republicate each m? and so

Parameters of the dynamic mobile robot.
o is various random values to test the dynamic model performance in different

g (o1 510) 1 1 I

MSE values for RNF-VGL (A1) and RNF-SNVGL/(A) with and without 6 recurrent
parameters at various noise levels (different o values). All-iteration (All Iter)
is the average of 12000 MSE, while final-iteration (Final Iter) is the MSE at the

last iteration (12000th). ...ttt i

MSE values for TSRNF-VGL(A1) and TSRNF-SNVGL(A) with and without 6
recurrent parameters at various noise levels (different o values). All-iteration
(All Iter) is the average of 12000 MSE, while final-iteration (Final Iter) is the

MSE at the last iteration (12000th).cooiiiiiiiii i

XXXi

. 313

. 318

SECTION

1. INTRODUCTION

1.1. SYSTEMS WITH REDUCING COMPLEXITY

Because there are numerous physical systems have high order mathematical models
in real world, these systems require a massive of a computational complexity to address,
solve and simulate. Many algorithms are used to make these systems less complicated,
while retaining the properties of the original system. These algorithms have a capability of
simulating affordable prototypes with fast and reliable responses. Model order reduction
(MOR) is applied in many fields, such as computational biology, mechanics, fluid dynamics,
circuit design, and control systems. In this dissertation, the reduction focuses on control
area, which analyzes the characteristics and features of dynamic systems to reduce their
complexity while keeping their properties as possible as illustrated in the first paper in the

paper section of this dissertation.

1.2. ADVANCED ADAPTIVE DYNAMIC PROGRAMMING

Adaptive dynamic programming (ADP) is a powerful tool that allows an agent to
learn by interacting with its environment to obtain an optimal control policy. The ADP
technique uses a heuristic method to overcome a nonlinearity behavior system that generates
a difficulty to solve the Hamilton-Jacobi-Bellman equation instead of the Riccati equation.
The ADP technique allows agents to select an optimal action to minimize their long-term
cost value by solving the Bellman equation. A heuristic dynamic programming, a dual
heuristic programming and a globalized dual heuristic programming are three fundamental

categorizes for ADP technique. These categorizes consist of three approximation function

networks, which are actor, critic and model networks that provide decision making, eval-
uation, and prediction, respectively. Because a model network, which predicts the future
system state, is included within these categorize, the ADP categorizes as a model-based
ADP design. If the action-dependent (AD) expression is used in the ADP, then the critic
network has the state and the action inputs. A model-free ADP design has been presented
for online learning, which is not required the model network. Many applications have used
the ADP techniques. A temporal-difference (TD) with eligibility trace parameter is a more
advanced learning algorithm than the traditional TD that combines basic TD learning with
an eligibility traces technique to further accelerate learning. The ADP technique is used to
train an actor network to give optimal actions based on minimizing a value function that is
produced from a critic network. In this dissertation, all networks are approximated by using
a multilayer perceptron neural network, and hybrid neuro-fuzzy networks. We investigate
in ADP with advanced TD learning and new novel structures that make system more robust,
fast and stable during training as presented in the second paper until seventh paper in paper

section of this dissertation.

1.3. RESEARCH CONTRIBUTIONS

This dissertation deals with the use of reducing complexity of models and applying
feature forward and backward views of eligibility trace procedures with ADP in various
benchmarks tasks. In concrete, we describe each paper’s contribution as follows:

1.3.1. Model Order Reduction Based on Agglomerative Hierarchical Cluster-
ing. The main contribution in this work is provided a model order Reduction (MOR)
technique that gives any required order of reduced model with a minimum MSE value.
Instead of neglecting some poles like traditional methods, our approach engages all prop-
erties of the original system by using agglomerative hierarchical clustering of system poles
depending on a performance evaluation. Therefore, the method will be called HC-PE.

HC-PE is effective for converting original high order ordinary differential equations to low

order equations. HC-PE with PA or GA takes the output response(s), and it calculates the
MSE between the original model and the reduced model. It uses an improved modified pole
clustering center in every selected pole-cluster. The pole-clusters for the original system
are selected by using a performance evaluation method as a similarity criteria in agglom-
erative hierarchical clustering. This gives a major advantage in minimizing error between
the reduced and original models. Optimizing is achieved by the pole-clusters taking the
minimum MSE among all pole-clusters on a certain level in the hierarchy dendrogram. The
hierarchy starts from the bottom (n™ order original system), merging pairs or more pole
clusters at each move up until the 2" order. HC-PE deals with denominator parameters
of ordinary differential equations (transfer function) for the reduced order model while PA
or GA addresses the numerator parameters. By combining these two parts, we get the
best performance behavior. In other words, in addition to the optimal best minimum error,
HC-PE with PA (or GA) still retains stability and robustness for the reduced model

1.3.2. Heuristic Dynamic Programming for Mobile Robot Path Planning Based
on Dyna Approach. The main contribution in this work is provided a combination be-
tween direct heuristic dynamic programming (HDP) and Dyna planning (Dyna-HDP). This
combination provides the fast online free-model learning comparing with other traditional
reinforcement learning algorithms (one step Q-learning, SARSA, Q(1), SARSA(1), and
Dyna-Q). Whereas, this work compares these algorithms with Dyna-HDP for control of a
differential-drive wheeled mobile robot navigation problem in an unknown two-dimensional
indoor environment. A Second contribution in this work is merge a fuzzy Logic Controller
(FLC) with Dyna-HDP to provide a collision-free navigation path for instead of staring
from initial position similar a regular reinforcement learning algorithms.

1.3.3. Mobile Robot Control Based on Hybrid Neuro-Fuzzy Value Gradient
Reinforcement Learning. The main contribution in this work is used a combination of
eligibility trace parameter in dual heuristic dynamic programming with a first-order Sugeno

fuzzy neural network structure. This combination is used with both critic and actor networks.

This approach is used to track a reference trajectory under uncertainties by computing the
optimal left and right torque values for a nonholonomic mobile robot. The impacts of
unmodeled bounded disturbances with various friction values is handled with a significant
enhancement of the robot’s capability to absorb unstructured disturbance signals and friction
effects. Because of affine dynamic model for nonholonomic mobile robot, we use a critic
only to calculate a optimal control signal to reduce a computational complexity with faster
responses without needs an neural network identifier for system.

1.3.4. The Boundedness Conditions for Model-Free HDP(1). This work over-
comes the drawback of using eligibility-trace storage in backward view property. Thus,
simplicity and performance is the first contribution of this work. The second contribution
is providing a stability proof to determine what suitable learning parameters (4, v and
critic/actor learning rates) should be used during training. Under certain conditions, we
use the Lyapunov theory to prove stability for the specific case of HDP(1). We extend the
stability of model-free learning only for the one-step (1 = 0) HDP(0) approach into HDP
with a general A parameter.

1.3.5. Online Model-Free N-Step HDP with Stability Analysis. A simple in-
terpretation and good performance are two well-known properties attached with TD(A)
approach (eligibility trace temporal difference learning). But this approach suffers from
using an additional memory variable associated with each state to store the eligibility trace
parameter; therefore, a high computational complexity is adjoined with. Our previous work
(previous paper) solved this problem but for batch-implementation learning at least for first
epoch. The work is designed is used for online-implementation learning. Thus, our structure
in this work has memory efficient since it overcomes the drawback of using eligibility-trace
storage and online learning. The online learning aspect with low computational is the first
contribution for this work. The second contribution is that it provided stability proofs to
present what a suitable learning parameters (A, v and critic/actor learning rates) should be

during training.

1.3.6. An Improved N-Step Value Gradient Learning Adaptive Dynamic Pro-
gramming Algorithm for Online Learning, with Convergence Proof and Case Studies.
The fundamental contributions of this paper are as follows: First, The theoretical foundation
analysis for NSVGL(A) architecture is presented designing how the agent receives better
information about the control action than traditional DHP. Memory efficiency is provided
by NSVGL(A) via online learning in contest with online VGL(A) that uses a matrix for
eligibility trace parameters to store every signal state trajectory. Second, a theoretical con-
vergence analysis is provided for the NSVGL(Q) structure. Gradients of the one-step and
n-step value functions are learned. We demonstrate that both gradients are monotonically
nondecreasing and converges to their optimal values. These contributions are verified by
simulation in two case studies with provindig a Pseudocode of NSVGL(Q).

1.3.7. Convergence Analysis Proofs for Recurrent Neuro-Fuzzy Value-Gradi-
ent Learning with and without Actor. The main contribution in this work are: First,
the theoretical foundation analysis for n-step adaptive actor-critic approach of VGL(A) ar-
chitecture with NF (NF-VGL(Q)) is presented that illustrate how the agent receives better
information about the control action than traditional DHP. Second, the single adaptive
n-step critic approach of VGL(1) (SNVGL(Q)) is derived to created a pioneer architec-
ture of SNVGL(A). SNVGL(Q) uses NF structures (NF-SNVGL(A)) to compare with first
contribution. Third, a theoretical convergence analysis is provided for the VGL(A) and
SNVGL(A) architectures by using iterative ADP algorithm. We demonstrate that gradient
are monotonically nondecreasing and converges to optimal values. Final, these advantages
of VGL(A) and SNVGL(A) with and without recurrent feedback parameters are verified by

simulation with high-nonlinear dynamic model case study with various uncertainties.

PAPER

I. MODEL ORDER REDUCTION BASED ON AGGLOMERATIVE
HIERARCHICAL CLUSTERING

S. Al-Dabooni and Donald C. Wunsch
Department of Electrical & Computer Engineering
Missouri University of Science and Technology
Rolla, Missouri 65409—-0050
Tel: 573-202-0445; 573-341-4521 Email: sjamw3 @mst.edu; dwunsch@mst.edu

ABSTRACT

This paper presents an improved method for reducing high-order dynamical system models
viaclustering. Agglomerative hierarchical clustering based on performance evaluation (HC-
PE) is introduced for model order reduction (MOR). This method computes the reduced
order denominator of the transfer function model by clustering system poles in a hierarchical
dendrogram. The base layer represents an n'™ order system, which is used to calculate each
successive layer to reduce the model order until finally reaching a second order system. HC-
PE uses a mean squared error (MSE) in every reduced order, which includes a modified pole
placement process. The coefficients for the numerator of the reduced model are calculated
by using the Pade approximation (PA) or alternatively a genetic algorithm (GA). Several
numerical examples of reducing techniques are taken from the literature to compare with
HC-PE. Two classes of results are shown in this work. The first sets are single-input single-
output (SISO) models that range from simple models to 48™ order systems. The second
sets of experiments are with a multi-input multi-output (MIMO) model. We demonstrate

the best performance for HC-PE through minimum MSEs compared with other methods.

Furthermore, the robustness of HC-PE combined with PA or GA is confirmed by evaluating
the 3" order reduced model for the triple link inverted pendulum model by adding a
disturbance impulse signal and by changing model parameters. HC-PE with PA slightly
outperforms its performance with GA, but both approaches are attractive alternatives to
other published methods.

Keywords: Hierarchical clustering (HC), model order reduction (MOR), Pade approxima-
tion (PA), genetic algorithm (GA), triple link inverted pendulum, linear quadratic regulator

(LQR), pole replacement.

1. INTRODUCTION

Numerous physical systems have high order mathematical models. Schilders [1]
shows many examples for systems that require high complexity computations to address and
simulate them. Many algorithms for MOR are used to make these systems less complicated,
while retaining the properties of the original system. These algorithms are capable of
simulating affordable prototypes with fast and reliable responses. MOR is applied in many
fields, such as computational biology, mechanics, fluid dynamics, circuit design, and control
systems. This work focuses on MOR for control, which analyzes the characteristics and
features of dynamic system models to reduce their complexity while keeping their properties
as possible. Sandberg et al. [2] showed a variety of MOR algorithms. In this work,
a new method for reducing high order system models is presented. Many system model
descriptions exist in the literature [3]-[5], such as state space representation and transfer
function representation. The roots of the denominator of a transfer function (characteristic
polynomial of a system) generate frequency values, which are called poles, while the roots
of the numerator are called zeros. A zero-pole representation is a description of a system in

terms of the poles and zeros. A high order original system model (G(s)), which is formed

by its zero-pole representation is given as follows:

(s =Zy)s=Zy-1)...(s = Zo)(s = Z1)

G(s) =K , (1

(s = pu)(s = pu-1) ... (s = p2)(s = p1)
where K is the gain of the system, s is the Laplace complex variable, Z; (i = 1,2,...,v)
are zeros of the system, and p; (i = 1,2,...,n) are its poles. In most transfer functions,

the degree of the numerator is less than the degree of the denominator (v < n), which
is called strictly proper [4] . A strictly proper transfer function can easily transfer to a
state space representation. In this paper, we use a hierarchical clustering technique for
clustering the poles to reduce the order of any original model to an r order reduced
model (G,(s)). Therefore, this method takes all original system characteristics by testing
all system poles. It is not like traditional methods such as model truncation (Gramians
and Hankel singular values) via singular value decomposition [6] , [7] . For instance,
the Hankel approach deals with state energy by balancing controllability and observability
Gramians to satisfy the Lyapunov equation, and the final state space sorts states according
to their energy. There are many reduction techniques in the literature for both time and
frequency domains of discrete and continuous linear systems. Sinha and Pal [8] show
reduced order modeling based on freely collected clustering of the zeros and poles by
calculating the inverse distance measure in the time domain. Pal [9] demonstrates that the
reduced order model retains stability by using the PA. Neeraj and Anirudha [10] use fuzzy
C-means clustering of system poles to reduce a higher order interval discrete system using
the minimum Euclidean distance as a similarity criterion. Reduction in the continuous time
domain is discussed by Vishwakarma and Prasad [11] ; they address the original model with
state space matrices and modify Hankel matrices consisting of time-moment and Markov
parameter elements to less complex matrices through the minimal realization technique.
Singh et al. [12] present model order reduction in discrete frequency domain through

mixing Chebyshev polynomials and the pole clustering method. Beyene [13] used inverse

distance measure for pole-clustering and rational-interpolation techniques in frequency and
time domain simulations. The main contribution in this work is provided a MOR technique
that gives any required order of reduced model with a minimum MSE value. Instead of
neglecting some poles like traditional methods, our approach engages all properties of the
original system by using agglomerative hierarchical clustering of system poles depending on
a performance evaluation. Therefore, the method will be called HC-PE. HC-PE is effective
for converting original high order ordinary differential equations to low order equations as
shown in Fig. 1. HC-PE with PA or GA takes the output response(s), and it calculates the
MSE between the original model and the reduced model. It uses an improved modified
pole clustering center in every selected pole-cluster. The pole-clusters for the original
system are selected by using a performance evaluation method as a similarity criteria in
agglomerative hierarchical clustering. This gives a major advantage in minimizing error
between the reduced and original models. Optimizing is achieved by the pole-clusters taking
the minimum MSE among all pole-clusters on a certain level in the hierarchy dendrogram.
The hierarchy starts from the bottom (n" order original system), merging pairs or more pole
clusters at each move up until the 2"¢ order. HC-PE deals with denominator parameters
of ordinary differential equations (transfer function) for the reduced order model, while
PA or GA addresses the numerator parameters. By combining these two parts, we get
the best performance behavior. In other words, in addition to the optimal best minimum
error, HC-PE with PA (or GA) still retains stability and robustness for the reduced model as
presented in Appendix A . We demonstrate this by comparing it with several examples of
other methods. All abbreviations and symbols used in the paper are summarized in Table
3. The remaining sections are organized as follows: The problem statement is in Section 2.
HC-PE, PA, and GA are described in Section 4. Simulation results with numerical examples
are in Section 4. The response outputs for the reduced multivariable model of a triple link
inverted pendulum controlled by proportional-integral-derivative (PID) controller tuning

by GA are shown in Section 5. The conclusion is in Section 6.

10

| Sistem iPhisical Pn'nciﬁles or Data Collectioni |
= i |

1
|
: Modeling

) !
Ordinary Differential I_
Equations forthe 1=====~~ = Partial Differential

original system ‘: Discretization L= Equations

I ! T (Msp) t

Figure 1. General diagram for using HC-PE to reduce high order models. Any system model
is built by deriving physical laws (physical modeling) or by observing data (identification
modeling). Some models are represented by partial differential equations (e.g. heat transfer
equation), and other models are built by ordinary differential equations (e.g. robotics).
Finite difference techniques are used to discretize partial differential equations to derive a
numerical approximation for ordinary differential equations [3]. In this work, we focus on
the models, which are built by using ordinary differential equations (G). In combination
with PA or GA, HC-PE improves the evaluation for the reduced model (G,) through selecting
minimum MSEs of clusters made from poles. To find the minimum MSE, all MSE values
should be calculated for each level (order). MSE is calculated between the original model
and the reduced models which is represented by the blue dashed line.

11

2. PROBLEM STATEMENT

This work uses HC-PE and PA (or GA) to obtain the coefficients for a reduced order
model. A continuous linear time invariant n'" order model’s, transfer function representation
is

n—1 n-2
ap—18 +a,—s +...+a15s+q
bus" + by_1 8"V + by_os"2 + ...+ bis+ by

)

G(s) =

where all coefficients are known. Because of the strictly proper transfer function as in (1),
we start the degree of the numerator’s order from n — 1. Then, the HC-PE approach reduces

the n'™ order model (2) to an ™ order of G,(s):

Cro18 V4 cpias™2

dos" +d_1s"V+das" 2+ .. +dis+dy

+...+C15+

Gi(s) = 3

where all coefficients are unknown. HC-PE is used to find the best coefficients that contain
the most significant features of the high order model to retain the best time and frequency
responses. HC-PE progresses by computing a next reduced model until reaching second
order. Specifically, a new G,_;(s) is calculated by finding all unknown coefficients. The
HC-PE algorithm considers a new base model (an optimal model of r order) to calculate
the next reduced model of ¥ — 1 order and so on, until reaching the 2" order. This procedure
is significantly affected by computational complexity, which requires simple, near-optimal,

and fast selection of clustered poles in stages as shown in the following sections.

3. HIERARCHICAL CLUSTERING SYSTEM POLES ALGORITHM

Hierarchical clustering algorithms organize data into levels according to a proximity
matrix; the results of hierarchical clustering are often depicted by a binary tree [14]. Many
techniques [15]-[17] determine similarity measures by calculating the distance between data
objects. In HC-PE, the MSE of a step response between the reduced model and the original

model is the similarity measurement. For comparison purposes, a traditional similarity

12

measure (Euclidean-distance) in hierarchical clustering pole is discussed. There are three
cases to be considered during clustering poles by using either the Euclidean-distance or
the MSE as a similarity measure: clustering real and complex poles separately, applying
a full-state feedback approach (pole placement method) in unstable systems, and retaining
the poles in the imaginary axis and in the origin of the s-plane. Fig. 2 depicts these
considerations. In two hierarchical pole clustering approaches, the pole index labels, which
are mentioned in the binary tree diagram, are sorted in ascending order.

3.1. Choice of Distance Measure.

3.1.1. Hierarchical Cluster Poles Based on Euclidean-distance. The original
system poles are taken in a general agglomerative clustering algorithm procedure as in
[14], [15]. Collecting pole clustering [8], [12], are used to calculated a center for each
cluster. Improvements are then chosen for theses clusters [19]. This algorithm consists
of the following steps: First determine a distance between each pair of poles based on
Euclidean-distance. Second, iteratively group points into a binary hierarchical tree (using
single linkage clustering, see [15]). Third, cut the hierarchical tree depending on the
demanded order of the reduced model. Fourth, improve the modified pole clustering based
on the most dominant pole in this cluster. More descriptions for the third and fourth steps

are given by

1. Follow ascending order for absolute value of the poles in the cluster (real poles
(p1, p2s - - -, p1) or complex conjugate poles (p; £ Iy, p2 £ Iy, . . ., pm % Iy) With |p1] <
|p2| < ... < |pn| , where h is [for real poles and & is m for complex poles. The

imaginary parts are ordered according to real part.

2. Estimate a new cluster-pole center. If / poles are real, then the center is

k=1

OGN

13

If m poles are complex then the center is

m

Pciilc—(Z(lpH)) l(i(|lk|)) , 5)

where p€ is a cluster-center for m real parts of complex poles, and /€ is a cluster-center

for m imaginary parts of complex poles.

3. Compute the improved pole cluster center as:

-1
1/,-1 -1
R-:—(—+) =12k (6)
/ (2 Ip1l - IRj-1])

where R; is g¢ for real poles, R; is p© for real parts of complex poles and R; is I for

imaginary parts of complex poles.

3.1.2. Hierarchical Clustered Poles Based on MSE. The pole clusters for the
original system in the HC-PE algorithm are selected by using a performance evaluation
method. This method gives a major advantage for reducing error between the reduced and
original models, which takes an optimal pole cluster for the original system in any reduced
order. The optimality for selecting the pole clusters comes from taking the minimum
MSE among all pole clusters in appropriate levels of the hierarchical dendrogram. The n
order original model is located in the bottom of the hierarchical dendrogram. The HC-PE
algorithm starts calculating the reduced model of # order (n" — 1), which becomes the base
model (an optimal simulated original model of # order) for the next level. The next reduced
model ™ — 1 order is calculated according to the base model and so on until reaching the 2"
order. HC-PE uses the improved modified pole clustering center in every selected cluster.
Fig. 3 depicts a flowchart for HC-PE. It starts by clustering the pair of poles. The clustered
poles are in ascending order of individual absolute values whether the poles are real or
complex. The center for this cluster is estimated by (4) and (5) for real and complex poles,

respectively. Improving the cluster center is done by taking an average inverse distance with

14

Pole-Zero Map
I [

i X !
251 S-plane ||
Case3 T §
20 el L~ : b's u
ST i Pole
= 15 o :z .: s \\ 0ero N
I ~ ; [¢]
— 8 i N Rl i
8] LN ~ & 0%
> ~q 2
< - .:\“) ‘)- -
- B AT T S S - S I
@ o r et il SR o L Keesrsnanannsnensannnsni s Xesrarassesisanes —
= ‘% oF v, v . x
) ni l:’7l' ll,l‘-l‘nxux n |
: >33 4
E < P NI
1w-Case 1 %o ¥ I
as’ | o h
A5 o] | A= ————— - -
ko J -
20 - T Case 2 .
[
| | ! \ | \ \ |

5 0
Real Axis [Hz]

Figure 2. Three cases that should be considered while clustering poles using either
Euclidean-distance or MSE as the similarity. The first case is clustering real and com-
plex poles separately. The second case is applying a full-state feedback approach (pole
placement method) in unstable systems. The third case is retaining the poles in the imagi-
nary axis and in the origin of the s-plane to the reduced model.

the most dominant pole in this cluster. The most dominant pole is the nearest real pole or
real part of the complex pole to the imaginary axis of s-plane. This procedure! is repeated
twice if the poles are complex conjugates. In other words, the real pole center is improved
directly by using (6), while the complex conjugate pole center is improved also by using (6)
with a real part and imaginary part separately. When the improved center for this cluster is
found (j=h+1), the MSE is calculated for this cluster and then repeated with other clusters
in the same level of order in the hierarchy until all cluster options (z=n-1) are completed.
The new reduced order model is selected based on the minimum MSE among all MSEs for
z clusters as follows:

z _ : z J
Ncluster _argmlnMSE(szl Mcluster)’ (7

IThe time complexity of sorting operation (e.g. merge sort method) for n poles is O(nlog(n)), and of
calculating improved cluster center for both real and complex conjugate poles is O(n).

15

where z is the number of cluster poles at certain levels in the binary tree, MZ Iuster 1S @
MSE for j cluster. Equation (7) is used with a single-input single-output (SISO) models.
This new reduced model becomes the base model to calculate the next reduced model.
Appendix A illustrates that a new improved center cluster poles have negative bounded
values; therefore the new reduced model is asymptotically stable (or marginally stable if
some poles are located on the imaginary axis).

3.2. Determining Transfer Function Coefficients. Whereas the reduced model
has denominator polynomial coefficients obtained from hierarchical cluster poles, coeffi-
cients for the numerator are determined by using PA or GA as follows:

3.2.1. PA Method. As in D. Xue et al. [4], expand the original system G(s) in a

Taylor series around s = 0 as follows:

o) = (1), ®)
i=0

where T; is defined as:

1d'G
1, -1 4C06) ©)
il ds
This model can be equivalently obtained from state space matrices as follows:
G(s) = C(sI - A)'B + D, (10)

where A € R™" is the state matrix; B € R is the input matrix, C € R " is the output
matrix, D € R™# the direct transition (or feedthrough) matrix, n is the number of system
states (i.e., it represents an n'" order differential equation), 7 is the number of system inputs,
and 7 is the number of system outputs. The time moment, 7; can be also calculated by

using A and C matrices as follows:

T.=-CA™ VB i=12... . (11)

1

I I

Creating MSE |
<
Matrix a
———=-- 1 (New order/level
1 z=1 1 loop)
(New cluster loop) === ==1
v

Begin with remaining group or

Sort real poles: |p, < |p2] ... < |pnl;
h=1 orm

Estimate
pole cluster
center

i
1
Yes I
i
i
i

Improved pole cluster center based on the most
dominant pole in cluster by using equation (6)

Calculating and storing MSE (equation (15))
between original model and reduced model for

16

Figure 3. Flowchart for the HC-PE algorithm, which starts from n'" order and calculates the
reduced model in r" = n'™ — 1 order, which becomes the base model (an optimal simulated
original model at »™ order) to calculate a next reduced model n™ — 1 order and so on until

reaching the 2" order.

17

Singh et al. [19] present another expansion for G(s) in a Taylor series around s = oo (the

high frequencies) :

G(s) = i (6,-s_(i+l)), (12)
i=0

where ¢ is a Markov parameter. The Markov parameter is calculated by using state space

matrices [4]

0o =CB + D,
| (13)
0; =CA'B,i = 1,2,...,00.
The coeflicients of the reduced order numerator are evaluated [9]
co = doTp; c1 =doTy +diTO; ... coe1 =doTy—1 +d1Ty—2 + ...+ doy_1Tp;
(14)
Cr-p = d,éﬁ_l + dr_l(S,B -2+ ...+ dk—,B+15O; ey Cro1 = d,éo,

where « is the number of time moment parameters, and S is the number of Markov
parameters. From (14), the coefficients of the numerator are known; therefore all coefficients
required to represent a reduced order model are known. Kalaiselvi and Pratheep [20] expand
PA method by using a Kharitonov theorem. In this paper, we use a=r (the required order of
the reduced model) and S=0 for all testing models except for the building model of Section
4.B. The reason for selecting a=r and =0 is that selections give the best performance as
illustrated in [19]. Therefore, we use also these selections in a triple link inverted pendulum
benchmark study case in Section 5. For the building model, a PA method was not used in
the literature to reduce this model; therefore, we use a fair distribution into a and g values
by selecting a==r/2.

3.2.2. GA Method. A GA is used to calculate the numerator polynomial coeffi-
cients for the reduced model for comparison with PA. MSE is used as a fitness function for
the step response of the original and reduced model as:

1 Y

MSE == 3 (G(s)i = G (s):) (15)

i=1

18

Table 1. GA operations selection approach

GA Properties Description
Number of Population | 20 chromosomes for each generation
Selection Operator Roulette
Crossover Operator Stochastic uniform
Mutation Operator Uniform (uniform random flipping)
Termination GA no improvement for 100 generations

where V is the number of samples with 0.001 sec as a sample time during 10 sec. Table 1

illustrates the GA operators used in this paper.

4. SIMULATION AND ANALYSIS RESULTS WITH NUMERICAL EXAMPLES

4.1. Comparative Studies From Published Literature. Several high order model
examples are taken from the literature in order to compare and test the effectiveness of HC-

PE. From [19] and [21], the original 10 pole model is given as

Nio(s)
Dio(s)’

Gio(s) = (16)

where Njo(s)=5.407¢19, and Dyo(s) = s'© + 1800s° +1.37¢6s® + 5.76e8s” + 1.45¢115% +
2.27e13s5 +2.14e15s* + 1.15¢17s> + 3.13¢18s> + 3.24¢19s + 5.407¢19. The dendrogram
after applying hierarchical clustering of poles based on the Euclidean-distance combined
with the PA approach is shown in Fig. 4. According to MSE values, the system is unstable
for 6, 71 and 8™ order reduction when cutting in these levels. The error becomes large
in 3™, 4% and 5. Fig. 5 illustrates the dendrogram after applying the HC-PE algorithm
combined with the PA approach (HC-PE-PA). Minimum error and stability in all order
reduced models are generated by using the HC-PE algorithm, which helps to select any

level (order of reduced model) is needed. For instance, in comparing [19] and [21], a ond

19

order reduced model was found; the dendrogram at the 2™ level is cut as shown in Fig. 5.

The 2™ order reduced model from [19] is given as

_ =50.3465 + 432.4174
© $24209.0177s +432.4174°

Gr(s) (17)

which has MSE = 2.05¢ — 04 for a 10 sec of step input. The 2" order reduced model from

[21] is given as:
—28.3902s5 + 647.6004
52 +359.999s + 647.6019°

G,(s) = (18)

which has MSE= 1.53¢ — 04 for a same input. The 2" order reduced model from HC-PE-PA

is:
—2.0549s + 37.3859
52 +20.3682s + 37.3857

G,(s) = (19)

which has M SE=7.48e —06 for same input. Therefore, HC-PE-PA has the best performance
compared with [19] and [21]. Fig. 6 shows a comparison of the step responses for the
original, [19], [21], and HC-PE-PA. A second example is taken from [19]. The original

another high order model with eight poles is given

(20)

where Ng(s) = 1857 + 514s% + 59825 + 36380s* + 12266453 + 22208853 + 1857605+40320,
and Dg(s) = s® + 3657 + 5465 +4536s° + 22449s* + 6728453 + 11812453 + 1095845 +
40320. This system demonstrates another limitation of using Euclidean-distance to cluster
the poles because the Euclidean-distances among all poles in (20) have the same value. In
contrast, Fig. 7 shows MSE levels with stability in all orders of the reduced model that is

generated by using the HC-PE-PA approach. The 3™ reduced model from [19] is given as:

Gols) = 15.565% + 62.64s + 18.43 21
T 3 +10.1652 +27.8s + 18.43°

20

MSE System Euclidean
Value Order Distance
8.692-06 |- 2| 80k
Large
Overshoot 70k
and
- .~:;‘;" Unstable
~ 0.0012% Systemss L 601
0.2166| % at 54+
373.557 % 5| 501
3.16e+06 1 & 6 451
7.26e210L 7t a0t
*1.7%e+14 | 8L 301
9.06e-07 | 5+ 20+
34 5 6 7 1 9 8 2 poles

Figure 4. The dendrogram for hierarchical cluster poles based on Euclidean distance for
G10(s) combined with the PA approach. It clearly has large error values in most reduction
orders.

which has MSE = 7.98e — 04 for 10 sec step input. The 3™ order reduced model from the
HE-PE-PA algorithm is:
17.645% + 49.77s + 14.1

G = , (22)
) = 30012+ 23125 + 141

which has MSE = 3.96e¢ — 06 with same input. Therefore, HC-PE-PA has the best
performance compared to [19]. Fig. 8 and Fig. 9 show a comparison to [19], and
HC-PE-PA in the step responses and Bode diagram, respectively.

A comparison with other works from the literature is illustrated in Appendix C,
which shows that HC-PE combined with GA (HC-PE-GA) and and PA (HC-PE-PA) has

the best performance.

21

System MSE

Order Value

2 | 7.487€-06 [rm mm e o o o o e
3 L 1.627e-07 |

4 | 7.883e-09 |

5 1.192e-10}

6 L 2.504e-12 |

7 | 6.002e-15 |

8 | 5.176e-16 |

9 1.92e-16

E— 0

1 10 8 7 5 4 6 9 3 2
Poles

Figure 5. The dendrogram for hierarchical clusters poles based on the HC-PE-PA algorithm
for G1o(s). Minimum error and stability in the levels are generated by using this algorithm.
Cutting is done at level two to generate the 2"¢ order reduced model for comparing [19] and
[21].

4.2. Case Study for Large Order System (Building Model Structure). Another
numerical example is presented to examine HC-PE performance. A building model (Los
Angeles University Hospital) is reduced by using HC-PE-PA and HC-PE-GA, and the results
are compared with two other familiar reduction techniques (Hankel and balanced trunca-
tion). The structure building model and reduction techniques are described by Antoulas
[22], and by P. V. Dooren and Y. Chahlaoui [22]. The model of building consists of 8
floors each having 3 degrees of freedom, which are displacement in x axis, displacement
in y axis, and rotation around y axis. A second-order differential equation system of 24
variables generates 48" order in its state space representation. The transfer function for
this system is obtained after applying the state space representation for building model (10).
The SISO building model consists of a first variable (first state) for the input of the model.

The derivative of the first variable (25" state) is the output.

22

I I | [
1.4 === 10" Order Original System m
= = 2™ QOrder ROM for [21]
—— 2™ 0Order ROM for [19] (o =2, 4=0) n
====2™ Order ROM for HC-PE-PA (a =2, 5=0)

1.2

0.8

Af

Amplitude

0.2 T
S,
o . ,
' .
;0 B pid Tl
. H P
: : e BORS
_6‘2 : 18 185 18 198 2 208 -4
| ot Time [sec]
] S S,
‘\
0 1\\ 2 3 4 5 6 T 8 =] 10
Time [sec]
\\
™,
ﬂ |
0.15 2
7
e
) Pl
0.1
’
) P
’
0.05 ’ /J/' /
Vid ’ﬁ /
N /
g o /_4'-‘/.7‘"
-
2 AN PPt /
o LR o TP
£ 008 vy /
| \V /]
) \ / ,
0.15 /
02

0 002 004 006 008 01 012 014 016 0.18
Time [sec]

Figure 6. The Time Step response for step responses for original, [19] and [21], and
HC-PE-PA.

23

System MSE

Order Value

2 0.002 |

3 b 4.9040-06 | = == e e s s e e e e e
4 r 2.652e-06 -

5 2.399e-06 |-

6 1.435e-08 |

7 7.778-12}

7
Poles

Figure 7. The dendrogram for hierarchical clustering of poles based on the HC-PE-PA
algorithm for Gg(s). Stability and fluent minimum error tracking level is generated by using
this algorithm. Level three was cut to generate a 3" order reduced model to compare with

[19].

 E— I x x

8™ Order Original System

= = 3" Order ROM (e =3, 3 =0) for HC-PE-PA
====3" Order ROM (e =3, 3 =0) for [19]

Al

L3
=
=
= T CET S =
£ Tarie Gt %
< \+_ | RN
YOCLTT
- e SR
' ,_/ g ~.
. == 'f 7 \\\ T \‘\
osf- £.| :f / T G . .
Ay ~ ~
- I ! ™ AY
i N
A ~N]
o | s e aa e)
o 1 2 3 4 5 6 7 8 9 1«

Time [sec]

Figure 8. The time step responses for the original, [19] and HC-PE-PA.

LA B 5 1 B B B R B P P S

8" Order Original System
op ||~ 3" Order ROM (a =3, & =0)for HC-PE-PA
—-—-3" Order ROM {a =3, 3 =0)for [19)

Magnitude (dB)
S

30 AR W
45 T

107

=10

.
[I——
EERE H

Magnitude {dB)
)

Frequency (Hz)

24

Figure 9. Bode plot for step responses for the original, [19] and HC-PE-PA to show the

stability.

25

We reduced the building model to 6™ order. Fig. 10 shows the clustered poles
of the building model. After applying the HC-PE technique to get the 6™ order model,
there are six clusters distributed as three clusters in the positive imaginary axis with three
other poles mirrored in the negative imaginary axis. The cluster centers (new system
poles for the reduced model) are shown as the two big blue stars, two red circles, and two
green diamonds. In this case study, we illustrate the GA’s processing by showing a fitness
values during generations. We select a 6" order reduced model (level number six). Each
chromosome in this level has six genes (six numerator coefficients) with 20 chromosomes
for population, and other operations for the GA are presented in Table 1. In this test, we
terminate the GA processing if the number of generations reaches 10000, regardless of the
average change in the fitness value or number of generations without improvement. We run
GA with two modes. The first mode is random initial population by selecting random real
values for genes in all chromosomes. The second mode is semi-random initial population by
selecting random real values for genes in 19 chromosomes. Chromosome number 20, which
has six values (genes) is replicated from PA coefficients. Fig. 11 demonstrates a comparison
between a random and semi-random initial population for 3 independent runs. The semi-
random initial population reaches the optimal fitness value around 3300 generations, while
requiring 7100 generations for the random initial population. A step signal for the first
variable (a motion in the first coordinate) of the building structure is applied to the 61
order reduced model to obtain the output of the building structure (derivative of the first
coordinate motion). Fig. 12 shows the comparison of 20 seconds time step responses for the
48™ order original building model and the 6" order reduced models, which are obtained by
HC-PE-PA, HC-PE-GA, Hankel and balanced truncation techniques. Appendix C describes
the MSEs and the 6™ order transfer function reduced models for HC-PE-PA, HC-PE-GA,
Hankel and balanced truncation. Fig. 13 shows the Bode plot for frequency response of
the reduced systems of the building model. HC-PE-PA is the best approximation compared

with the others. From the lowest frequency range until 0.5Hz (rad/s), both Hankel and

26

balanced truncation techniques are far from the original model. HC-PE-GA starts close to
1

the model at 0.02Hz. The HC-PE needs r (n® — n) to build all (n — 1) of the reduced

models (levels of the hierarchy dendrogram). Brute-force (exhaustive) search needs the

second kind of Stirling method, which is
1 ¢ ()
1 ().
ey

clusters to create only the r" reduced model as in [15]. Therefore, HC-PE is a large
improvement over the Brute-force method. For instance, HC-PE-GA finds 18424 clusters
in order to generate a hierarchy dendrogram for the 48" order building model, while the

brute-force method needs 6.2893 - 10%4.

5. MODEL REDUCTION FOR A MULTIVARIABLE DYNAMIC MODEL BY US-
ING HC-PE

HC-PE is also applied to the reduction of a linear time invariant multi-input multi-
output (MIMO) system. We present two methods. The first method selects the optimal new

pole-cluster like a generalized form of equation (7):
4 — . i 7 7 k
leuster - argmlnMSE(U?ZI Ul]?/l=1 Ui:] Mcluster(i,j))’ (24)

where 71 is the number of model inputs, and 7z is the number of model outputs. The
optimal clustering is obtained by comparing among z clusters for all inputs and outputs by
taking k clusters in input i and output j, and doing the same procedure for input i with
output j + 1 until /2 and repeating with i + 1 until i. This approach calculates the MSE
in a horizontal direction, while the other approach takes a vertical direction by calculating
MSE for fixed k at all 7 inputs and 72 outputs and repeating with k + 1 until z. These
methods retain the important characteristics of high order models such as the steady state

value (minimum MSE value) and stability, which is demonstrated by reducing the triple

27

100 | —— ——————

: : : : : # Clusters 1 and 2
: : l ® Clusters 3 and 4 [
® Clusters5 and B

.......... e 4 ety

20 2 0
. AR A
.
. D fl
. L) .

- ... EEERI, R e IR AR e EEEREETE R I -
.

. Y 1
. Y A
. N

GO R e e e s N TP, e "
: - : : : 0
. . - gae®

Iraginary Axis [Hz]

1 A
. -4 =34 -3 25 -2 -1.5 '.-"- 0.5 u

*
&
16 T T T T T T T TR T T
MERR"'S ’ o
LU OO SO OO SOTSUUONE SO SOROPRRN SO ________ A
" :
e B b e e B
L : :
@ : 3
g ‘ ‘
<L : : '
= U [REERERRRS
£ : :
g S
£ : : :
Bleesie bt s .‘_
.
AQpi IS TRTEIS SO Spees T
. *i i

I i I I 1 I i
03 034 033 032 03 03 029 028 D 026
Real Axis [Hz]

Figure 10. Cluster poles of the Los Angeles building model. The blue star, red circle,
and green diamond shape symbols describe the best six clusters (three clusters in positive
imaginary axis part with 3 mirror them in negative imaginary axis part), which is obtained
by applying the HC-PE technique. The new system poles reduced model (six cluster centers)
show as two big symbols (blue stars, red circles, and green diamonds).

28

1072

—— Mode 1: Copying PA Coefficients in one Chromosome with 19 other by random selection | -
= Mode 2: Random Selection All 20 Initial Chromosomes

10-10

10-11
1000 2000 3000 4000 5000 6000 7000 8000 2000 10000

Generations

Figure 11. A comparison between random (mode 1) and semi-random (mode 2) initial
chromosomes in population for 3 independent runs. Bold blue and red curves are a mean
of mode 1 and mode 2, respectively, while thin blue and red curves are represented upper
and lower fitness values for 3 runs.

29

Comparison of The Step Responses for 48t Order
< Building Structure Maodel and 6" Order Reduced Madels

¥ 10

48" Order Qriginal System
— = =" Order reduced by HC-PE-PA,
""""" BM Order reduced by HC-PE-GA

ol R
: : — & Order reduced by Hankel Technigue
| F\ j.'..T."Eth Order reduced hy Elalanced Truncation Teu:hmque
pARY .£'.£*..-'F* e
E l !‘,‘_'J_."_If_ \f‘._--.----..---—lu—-u-.—u—u—u—u-
o . = -
£ M
o5+ : SV U UL UL CLIIIIE SEISIII LIt i
T P S STRPTITS NN 4
15 1 1 I‘"- 1 1 1 | l 1
0 2 20

Amplitude

1 1 i
4 44 8 54 B
Time [sec]

Figure 12. The time step responses for the 48" order original building model and the 6™
order reduced models obtained via HC-PE-PA, HC-PE-GA, Hankel and balanced truncation
techniques. HC-PE has the best performance compared with the other two approaches. MSE
for HC-PE-PA, HC-PE-GA, Hankel and balanced truncation are 1.758¢ — 09, 6.807¢ — 10,

3.089¢ — 07, and 2.827e — 08, respectively.

30

-50

o
=
o -100
=
=
C
o
=

-130 Full Order |

— — — HC-PE-PA&,
) ! ' R HC-PE-GA | ||
1080 T T — *——*Hankel -
— - — -Balanced
T20F
% T Em T s T Es A — —
= —
w3601
1)
L]
=
Obarre it

360 & 1 1 1 H

Frequency [(Hz)

Figure 13. The Bode plot frequency responses for the 48" order original building model and
the 6 order reduced models obtained via HC-PE-PA, HC-PE-GA, Hankel and balanced
truncation techniques. HC-PE-PA has the best approximation compared with the others,
which is clear from the lowest frequency range until 0.5Hz.

linked inverted pendulum model with one input (72 = 1) and four outputs (72 = 4) by using
HC-PE-PA and HC-PE-GA. The inverted pendulum is one of the most publicized problems
in control systems that can be modeled as a rocket before launch, walking robots, flexible
space structures, or many others [23]. It is used as a benchmark for testing in many control
algorithms as in [23]-[26]. A main point in this section is examining the effectiveness of
HC-PE on the MIMO reduced model and also testing the robustness for this model after
changing model parameters and after applying an external disturbance signal on it. The
8 order dynamic model for the triple link inverted pendulum is taken as the benchmark
[27], [28]. This model is a multivariable, highly nonlinear, unstable system. The Lagrange
method is used to derive this model, which consists of three links (lower, middle, and upper
pendulums) mounted vertically on a movable cart on a straight line rail. Fig. 14 shows
the schematic representation for the triple link inverted pendulum. An external action force

(u) is applied displacing the cart (x) which changes the lower, middle, and upper pendulum

31

angles (81, 6>, and 63) with respect to the vertical line. The state space representation for

this model (single input, u, and four outputs: x, 61, 6, and 63) is:

X =AX + Bu,
(25)
Y =CX + Du
where
0 1. 0
A =) B = ’
E'H E7'G, E 'k
ayp ay as msl;3
ai b arLy m3Lyl3
E = ,
ap axly by m3Laol3
msls mszLils mszlols Js3 + mgl%

0 O 0 0 1
0 aig O 0 0
H = s h() - ’
0 0 ayg 0 0
0 0 0 m3l3g 0
—fo 0 0 0
0 -—-fi- 0
G. - h-f 5 ,
0 L —hL-B S
0 0 /3 -5
1 00 0O0O0O0OO
01 00O0O0O0OO
C= ,
001 0O0O0O0O
0 00T1TO0OO0OO

32

1. is the 4 x 4 identity matrix, and D = [0]. Also, ag = mg + m; + mp + m3, a; = myl; +
myli+m3Li,ay = mplo+msly, by = J1 + mll% + mle2 + m3Lf and by = Jp + mzl% + m3L§.
All coeficients are given in [27], which are defined as: my is the cart mass, m, is the th
pendulum bar mass, fj is the is the friction factor of cart and track L, is the t pendulum
bar length, J; is the v pendulum bar rotary inertia, and Jristhe £ t friction factor of the
™ pendulum bar, where £ = 1,2, or 3, and g is the constant gravity force. Because the
system has four positive poles (eigenvalues), as shown in the first column of Table 2, it is
unstable. In order to apply the HC-PE approach, the system should become stable by using
full state feedback or the pole placement method. Pole placement is employed to place the
close-loop poles to arbitrary predetermined desired locations in the s-plane by multiplying
the system states with a feedback negative control gain matrix (K) to make a new input

vector to the system. A final stable state model can be obtained as:

X =(A - BK)X. (26)

The pole placement approach does not apply for uncontrollable systems. The rank of the
controllability matrix of the triple link inverted pendulum model [B AB ... A’B]
is eight, which is equal to the rank of the state matrix; therefore, it is controllable. The
second column in Table 2 shows new poles, selected randomly, and denoted randomly
controlled gains (RCG). The control gains for these poles are K= [0.2160, 42.5108, -
214.8757, 171.2896, -0.8791, 0.0141, -5.1804, and 7.8343].

The 3™ order reduced models after applying HC-PE-PA for the generated poles by

using RCG on the stable triple link inverted pendulum for x, 6, 6,, and 65 states are:

GX(s) 3.778s% — 15.53s + 25.69 27
s) = s
g 53 +5.725% + 10.19s + 5.55

_2.618s% +0.006302s — 3.267¢1°

G(s) = (28)
s3 +5.7252 + 10.19s + 5.55

b

33

Table 2. Poles values for unstable and stable for triple link inverted pendulum model

Poles for unstable system \ Random stable Poles \ Poles for stable system (LQR))

1.0502 - i27.2130 ~12.5674 —1.0525 — i27.2129
1.0502 +i27.2130 ~11.0345 ~12.3133
11.0345 —6.0272 ~11.3567
~12.5674 —4.2304 —5.5813
4.2304 ~2.7213 —4.7042
—6.0272 —1.9248 —1.3665 +i0.0567
—1.9248 ~1.0502 ~1.3665 — i0.0567
Go(s) = 2.617s% + 0.007252s — 6.389¢1° (29)

53 +5.7252 +10.19s + 5.55

G%(s) 2.617s% + 0.008255s — 6.8369¢~ 16 (30)
r(8) = .
53 +5.72s2 + 10.19s + 5.55

The original model is completely observable because the rank of the observability matrix
[C CA ... CA’]" is eight, which is equal to rank of the state matrix, so the LQR
approach can be employed to obtain the optimal pole placements. This optimality comes
from finding the optimal K by balancing the control effect and system errors. LQR Control
Gains (LQRCG) are derived from minimization of a quadratic performance index or cost

function (J)

J= /) (XTQX + uTRu)dt, 31)
0

where the state-cost matrix Q is positive, semi-definite and symmetric, the index matrix R

is symmetric and positive definite, and K is calculated by

K =R'B'P, (32)

34

where the positive definite symmetric matrix P is obtained from the solution of the matrix

algebraic Riccati equation [29] as follows:

ATP+PA-PBR'BTP+Q=0. (33)

The stability proof for the closed loop system in LQR is in [29]. The initial value is R = 1
(one input control signal), while Q is equal to CTC with multiplying 2 with Q(1, 1) to
accelerate the cart displacement response. The third column in Table 2 shows the new
optimal poles by using the LQR approach to make the system stable. The control gains
for these poles are K = [1.4142,-43.4921, 6.3479,52.7879, 1.4597, —1.1102, 5.2459, and
5.0146]. The 3™ order reduced models after applying HC-PE-PA for these poles (LQRCG)

on the stable triple link inverted pendulum for for x, 81, 8>, and 65 states are:

G (s) ~0.07967s% — 1.137s + 4.67 (34)
S) = .
: 53 +6.97452 + 11.79s + 6.604

0.4762s% + 0.001146s — 3.972¢716
$3 4+ 6.97452 + 11.79s + 6.604

0.4762s% + 0.001318s — 4.28¢716
s34+ 6.974s2 + 11.79s + 6.604

2 _ -16
Gf3(s) _ 0.4763s° + 0.001501s — 9.352¢ . 37)
s34+ 6.974s%2 + 11.79s + 6.604

G (s) = (35)

b

G%(s) = (36)

b

Fig. 15 (a), (b), (¢), and (d) shows the LQRCG and RCG results for the step response after
applying HC-PE-PA to reduce the final model of the triple link inverted pendulum to 3™
order for x, 01, 85, and 63, respectively.

Applying HC-PE-PA for optimal pole placement by using LQR not only achieves
the best performance in control effect, but also gives a minimum MSE value. The
MSE value calculated by (14) is 0.0051 for RCG and 7.64e — 05 for LQRCG. For
these reasons, the LQRCG reduced model is implemented with GA instead of PA with

the same operation as in Table 1. The numerators for the reduced model after apply-

35

fo

Figure 14. Configuration model of triple link inverted pendulum.

ing GA are —0.2228s% — 1.1893s + 4.4673 for x, 0.3862s + 0.1195s — 0.0009 for 6,
0.3702s% + 0.1082s — 0.0009 for 65, and 0.3628s> + 0.1014s — 0.0008 for 5. Fig.
16 (a), (b), (c), and (d) show the LQRCG results for the step response after applying
HC-PE-GA to reduce the final model of the triple link inverted pendulum into 3™ or-
der for for x, 6y, 6>, and 63, respectively. GA has the best performance when com-
paring with the PA approach for this desired input, where the MSE is 0.7646e — 04
for PA and 0.6102e¢ — 04 for GA. We examine the performance of HC-PE when the
internal parameters of the triple link inverted pendulum are changed. We change the
cart mass by adding an extra 2 kg, and we change the bar masses by adding 1 kg to
every bar mass. By using LQRCG, the control gains for a new model after chang-
ing parameters are K = [—1.4142, —1234.2483,3014.6404, —2117.8318, —29.4697,4.2548,
93.6118, —34.8808]. The 3" order reduced models after applying HC-PE-PA for x, 6, 65,

and 63, are:

GX(s) = —0.02914s% + 0.1897s — 0.3561 (38)
T 53+ 5.37352 4+ 5.379s + 0.5036

36

—0.03635% — 4.753¢ 175 — 1.895¢718
$3+5.37352 + 5.379s + 0.5036

—0.0363s% —2.98¢7 175 — 1.464¢718
$3 +5.373s2 + 5.379s + 0.5036

- 2 -17 _ -18
Gf3(s) _ 0.0363s + 5.883e™"'s — 2.019e ‘ @1
s34+ 5.37352 + 5.379s + 0.5036

GI(s) = (39)

9

G%(s) = (40)

9

The numerators for the reduced model after applying HC-PE-GA are —0.02976s52+0.18965—
0.3561 for x, —0.0291s% — 0.0012s +0.00008 for 61, —0.03165% —0.00107s + 0.0001 for 65,
and —0.02408s% — 0.0009s — 0.00006 for 63. Fig. 17 (a), (b), (c), and (d) show the 3™ order
reduced model results for the positive step response after changing the mass parameters.
Despite of large values for K variables to compensate the increasing in the model masses,
a slow displacement response as shown in Fig. 17 (a). Because of these changes, low
frequencies of pendulum bars and small magnitude angle values occur, as shown in Fig.
17 (b)-(c). Therefore, we increase the response time to 20 sec to display the required time
to make angels reach zero. GA has the best performance compared to the PA for this time
interval, where the MSE is 4.6199¢ — 07 for PA and 3.66812¢ — 07 for GA. But for long time
response, the PA has better steady state performance. For instance, if the response time is
2000 sec, the MSE is 4.6233e — 09 for PA and 2.5877e — 08 for GA. This also happened
when we change lengths of the pendulum bars. We add 0.3, 1.5, and 0.2 to the lengths
of lower, middle, and upper pendulum bars, respectively. For 20 sec of a time response,
the MSE is 1.4007e — 06 for PA and 8.1173e — 07 for GA. If for 2000 sec, the MSE is
1.4996¢ — 08 for PA and 5.2091e — 07 for GA.

As shown in Fig. 15 (a), Fig. 16 (a), and Fig. 17 (a), the desired cart position is
one, but the response does not follow the reference signal because the full-state feedback
approach does not compare the output with the desired signal. To address this, we can
calculate a feedforward scaling factor for certain desired input signals, but we use a PID
controller to handle different situations. The optimal gains for the PID are obtained by

using a GA for the step response of the desired cart position. These gains are given in the

Desired Cart Position
—8™M Orders Original System with Using RCG

8" Order Original System with Using LQRCG

-3 Order ROM by HC-PE-PA at (o =3, B =0) with Using RCG

—— -3 Order ROM by HC-PE-PA at (o =3, B =0) with Using LORCG

[n] 1 2 3 4 5 6 7 =] 9 10
Time [sec]
(a)
The Lower Angle(8,) State
0.35

& [rad]

— — =g Orders Original System with Using RCG

3% Order ROM by HC-PE-PA at (o =3, B =0) with Using RCG
&t Order Original System with Using LARCG

—— -3 Order ROM by HC-PE-PA _at (o =3, B =0) with Using LQRCG

Time [sec]

The Middle Angle (8,) State

— — —a!" Orders Original System with Using RCG

3" Order ROM by HC-PE-PA at (e =3, B =0) with Using RCG
&M Order Original System with Using LQRCG

—-—-3" Order ROM by HC-PE-PA at (o =3, B =0) with Using LQRCG

8 [rad]

Time [sec]

(c)

The Upper Angle (8,) State

— ——g% Orders Original System with Using RCG
------- 3" Order ROM by HC-PE-PA at (e =3, B =0) with Using RCG
8" Order Original System with Using LQRCG

& [rad]

——-3' Order ROM by HC-PE-PA at (o =3, B =0) with Using LQRCG

Time [sec]

(d)

37

Figure 15. The step response results after applying HC-PE-PA to reduce the model of the
triple link inverted pendulum to 3" order. (a) The cart displacement. (b) The lower angle.
(c) The middle angle. (d) The upper angle. The original 8" order model reduces after

applying RCG and LQRCG.

—+—-Desired Carn Position
—=—=g" Order Qriginal System
3" Order ROM by HC-PE-PA at (o =3, B =0) ||
3" Order ROM by HC-PE-GA,

¥[m|

Time [sec]

(a)

The Lower Angle (9,) State

— — —8™ Order Original System

--------- 3'Y Order ROM by HC-PE-PA at (o =3, B =0) [
3 Order ROM by HO-PE-GA

g [rad]

0.02 i ; i i i i i i i
o 1 2 3 4) G 7 g 9 10
Time [sec]
The Middle Angle (&,) State
0.06

— — —&!" Qrder Original System
3 Order ROM by HC-PE-PA at (o =3, B =0)
3™ Order ROM by HC-PE-GA,

B, [rad]

Time [sec]

(c)

lhe Upper Angle (63) State

— — =g Qrder Qriginal System

39 Ordrr ROM hy HO-PF-PA at (=3, f =) [
39 Order ROM by HC-PE-GA

8 [rad]

Time [secl

Figure 16. The step response after applying HC-PE-PA and HC-PE-GA to reduce the model
of a triple link inverted pendulum to 3™ order. (a) The cart displacement. (b) The lower

angle. (c) The middle angle. (d) The upper angle. The original 8" order model applies the
LQRCG method.

1.2

39

The Displacment Step Response (x) State

— +—-Desired Cart Position
— — —gth

Order for Original System

3% Order ROM by HC-PE-PA at (o =3, B =0) with LQRCG
C-PE-GA with LQRCG

E
=
7
: V4
H /"
S
o2 : : : : : S5 T oF o ws s
o 2 4 B 8 10 12 14 16 18 20
Time [sec]
(a)
x 107 The Lower Angle Link (8,) State
=] T
— — — 8" Order for Original System
""""" 3 Order ROM by HC-PE-PA at (. =3. B =0) with LQRCG []
3" Order ROM by HC-PE-GA with LQRCG
3
B
= 2
P
ET S-S - S
o
g ; ; :
2 i H H i i i i H i
o 2 4 B 8 10 12 14 16 18 20
Time [sec]
(b)
107 The Middle Angle Link (8,) State
=] T
— — —g" Order for Original System
F e 3 Order ROM by HC-PE-PA at (o =3, B =0) with LARCG
5 3" Order ROM by HC-PE-GA with LQRCG
a H : H : R
_ 3 S N S S A
B
B P S S S-S
1 Sy E
] SRR SRRTREE SRRSSRIS ST FOSESTTE TEPEs i
1 ;i i H i H i i H i
o 2 4 =1 8 10 12 14 16 18 20
Time [sec]
(c)
% 10° The Upper Angle Link (6,) State
=] T T T
— — —g" Order for Original System
""""" 34 Order ROM by HC-PE-PA at (o =3, B =0) with LOQRCG |
3" Order ROM by HC-PE-GA with LQRCG
a4 A T . R . FRR [IS i
= : i o b
= : : :
a5 i : i
1 H H i i H H H i i
[u] 2 4 6 8 10 12 14 16 18 20
Time [sec]
(d)

Figure 17. The step response after applying HC-PE-PA and HC-PE-GA to reduce the model

of a triple link inverted

pendulum to 3™ order after changing mass parameters. (a) The

cart displacement. (b) The lower angle. (c) The middle angle. (d) The upper angle. The
LQRCG method is applied to make the original 8" order model stable.

40

PID transfer function:
(s) =K, + K, ! +K N
uc(s) = K, i— a7 42
Y 1+N- “2
S

where K, is proportional gain, K; is integral gain, K, is derivative gain, and N is the
first-order derivative filter gain (for reducing noise and distortions). The fitness function
is implemented to minimize the MSE between the actual and desired cart position. The
final optimal values for these gains are K, = 2.0652, K; = 1.2518, K; = 1.6676, and
N = 172.6118. Fig. 18 illustrates a Simulink model for the original 8 order model after
applying LQRCG and reduced models (PA and GA). We tune PID gains for one model
(the original model) and then apply the same controller with other reduced models. This
PID controller has two main advantages: first, it can adapt with various reference signals
(desired cart positions); for instance, Fig. 19 (a) and (b) show a new cart displacement
position (x = 3) and 6, respectively. Second, the PID controller can compensate the values
for Q and R elements instead of using a trial and error method. The control input signal
to the original and reduced model is bounded inside the range [—5,5]. An impulse signal
at the 18" sec with a one sec pulse width has been added as the disturbance input to the
models (original and reduced), as shown in Fig. 18. Fig. 20 (a) and (b) show the results
for 8, and 63, respectively. The best performance for a reduced order model is provided
by HC-PE-GA. For the experiments, the step signals for the cart displacements of 1 and 3
were inserted. The MSE was evaluated over the subsequent 40 sec using equation (15). The
MSE values for HC-PE-PA are 0.00466 and 0.0350 for 1 and 3 displacement, respectively.
For HC-PE-GA, they are 0.00491 and 0.03616 for 1 and 3 displacement, respectively.
However, the response for the reduced triple linked inverted pendulum dynamic system
model by using HC-PE-GA is better than using HC-PE-PA. The overall average errors for
x, 01, 02, and 03 in the 3" order reduced model are 0.0124 for HC-PE-GA and 0.0128
for HC-PE-PA. This best performance for GA is achieved by applying the same input and
tuning the reduced model numerator coefficients. The reduced model using HC-PE-PA is

better than using HC-PE-GA for a different reference input, as shown in the zoomed-in

41

portion of Fig. 20 (b). The overall average error for the reduced model for 3 displacement is
0.0888 for HC-PE-PA and 0.0913 for HC-PE-GA. This error increases in direct proportion
with the time that the pendulum cart is forced into large displacements. Fig. 21 (a), (b) and
(c) depict a 2-dimensional simulation for the reduced model by using HC-PE-PA technique
to move a cart from the O position to the final desired cart positions, which are 4, 6 and
10. Optimal control gains for a closed loop reduced system model can also be applied. In
other words, K, is optimal control gain vector (K, € R"¥!), which is only used to control on
a r'" reduced model. Asymptotic stability is easily verified for the reduced model with its

optimal controller, as proven in Appendix B.

6. CONCLUSION

This work demonstrates that the HC-PE algorithm has superior performance in
different situations when compared to other order reduction methods. The pole clusters for
the original system in the HC-PE algorithm are selected by using a performance evaluation
method for similarity criteria of agglomerative hierarchical cluster analysis. This method
gives a major advantage for reducing error. Optimizing the pole clusters is achieved by
taking the minimum MSE among all pole clusters at an appropriate level in the hierarchical
dendrogram. The HC-PE algorithm is considered a lower level in the hierarchy as the base
model, which is an optimal original model at r® order, and calculates a next reduced r — 1
order, continuing until reaching the 2"® order reduced model. This procedure makes simple,
near-optimal, and fast selections of cluster poles in stages. We demonstrate the robustness

of the reduced model after applying various examples in SISO and MIMO cases.

42

s

A To Workspaced
Link angle3{theta3) thetad
To Workspace5

Saturation1

PIDController

Original System To Workspace2

desired_signal1

ToWorkspace

Link angle1 (theta1) thetal_GA
> i To Workspace?
er
Link angle2{thetaZ) theta? GA
L To Workspaces
Saturation2 Link angle3(thetad) thetad GA
PID Controller '
To Workspaced
To Workspaces
mpi sroo con Reduced Model
Impulse singal Gain HCPE-GA)
at 18 sec with 1 sec width

theta1_PA

To Workspace 11

ToWorkspace12

Saturation3
PID Controller

ToWorkspacel3

Reduced Model ToWorkspace10
HCPE-PA)

Clock To Workspacel

Figure 18. Simulink model of LQRCG applied to the triple link inverted pendulum for
original 8" and 3 order reduced model after applying HC-PE for both Pade approximation
and GA control by PID control with a disturbance input.

4 T T T T T T T
=
""""""""" Desired Cart Position 1
1 Lg ———g" Orders Qriginal Systerﬁ_. -
3% Order ROM by Using H(fs‘_F'E-F'A at (oo =3, p =0)
L] ¥ —-—-3 Order ROM by Using HC-RE-GA T
by 5 10 15 20 25 % 30 35 40
B Time [sec]

L4

04 o0s 06 07 09 1 18 1.9 2 2II 2 ﬁ 2;
Time [sec] Time [sec]
(a)
The Lower Angle(8,) State
03 . —===8" Orders QOriginal System T
] — =39 Order ROM by Using HC-PE-PA at (@=3,p=0)| :
D254k 39 Order ROM by Using HC-PE-GA 1
H - - > -
1.
|
1
L
I

8 [rad]

Time [sec]

(b)

Figure 19. The responses after applying the disturbance signal on the cart displacement

state for comparison among LQRCG, HC-PE-PA, and HC-PE-GA reduced models.(a) The
cart displacement.(b) The lower angle.

43

44

———g'" Orders Original System
0250 ------ .| = = -3 Order ROM by Using HC-PE-PA at (o =3, B =0) |...|
3% Order ROM by Using HC-PE-GA

& [rad]

i i i H i
[u] 5 10 15 20 25 30 35 40

Time [sec]
(a)
The Upper Angle (83) State
0.3

T T T
Orders Original System
"l —— -3 Order ROM by Using HC-PE-PA at (o =3, R =0) [|
39 Order ROM by Using HC-PE-GA

__—Blh

& [rad]

i R i H i £
o 5 10 15 20 25 30 & 35 40
Time [sec] 3

=
S
=3
af
b
s
39 301 302 303 304 305 396 397 308399 40
Time [sec] i
107 A 4
sz
saf
sl
=
£ =
sal
s2f
63|
967 esers aeses Jesees Jscee Seses | 40
Time [sec)

Figure 20. The responses after applying the disturbance signal on the first state (cart
displacement) to compare LQRCG, HC-PE-PA, and HC-PE-GA reduced models. (a) The
middle angle state. (b) The upper angle state. GA performs slightly better for the transient
response, but PA has acceptable transient and superior steady state performance.

45

T
oottty

20 2 4 & &8 N0 1 u
(@)

L4777 71
0

2 0 2 4 & 8 N 2 u
(b)

K ENNEEEEE .
{
(c)

Figure 21. 2-D simulation for a triple linked inverted pendulum model. (a), (b) and (c)
show the simulation for the HC-PE-PA reduced model starting from the O position to the
final desired cart positions which are 4, 6 and 10, respectively.

46

Table 3. List of abbreviations and symbols

Acronyms and Symbols |

Description

HC-PE Agglomerative hierarchical clustering based on performance evaluation
MOR Model order reduction
MSE Mean squared error
PA and GA Pade approximation and Genetic algorithm
G The ordinary differential equations for the original model.
n The order of an original model
G, The reduced model
r The order of reduced model
u The vector of the system’s input (action force)
X The vector of the state variables
v The number of zeros in an original model
PID Proportional-integral-derivative controller.
s The Laplace complex variable
)i The I™ real pole
pmtIm The m'P complex conjugate pole.
g€ and p€ il The center of cluster for real and complex pole.
Rj The jlh improved pole cluster center.
k4 The number of clusters in same level of dendrogram
: The optimal cluster among all z clusters
cluster
LQR Linear quadratic regulator
T; The i™ time moment of the system
A The state matrix
B The input matrix
C The output matrix
D The feed through matrix
o Markov parameter
a The number of time moment parameters
B The number of Markov parameters
Ny (s) The numerator polynomial of k = n or r order system
Dy (s) The denominator polynomial of the kK = n or r order system
HC-PE-PA The HC-PE algorithm combined with the PA approach
HC-PE-GA The HC-PE algorithm combined with the GA approach
61, 6, and 03 The lower, middle, and upper pendulum angles, respectively
X The displacement of the inverted pendulum
my Cart mass
my, The v pendulum bar mass
L, The v pendulum bar length
Jy The v pendulum bar rotary inertia
g The constant gravity force
K The control gain matrix
RCG Random control gains
LQRCG LQR control gains
J The cost function
[9) The state-cost matrix
KP Ki,K4and N Proportional, derivative, integral and first-order derivative filter gains, respectively
n The number of model inputs
m The number of model outputs
h The number of real or complex
poles in one cluster

Appendix A.

Stability guarantee for a new reduced model

sjamw3
Text Box
 Stability guarantee for a new reduced model

sjamw3
Text Box
 Appendix A.

sjamw3
Rectangle

48

We prove that a generated pole, which is calculated by using HC-PE technique is
always located in the left half of the complex plane. Therefore, the new reduced model is
always stable.

Assumption A. Let the three consideration cases (Fig. 2) be satisfied, and the original
model is fragmented into z clusters by using HC-PE algorithm to create a z order reduced
model. Let R be the number of poles in an H cluster, where H is an arbitrary selected
cluster in z clusters. Let [}, is a new pole, which is an improved generated center pole of H
cluster.

Lemma A. Let assumption 1 hold. Then, improved center poles have a negative real parts,
which are always located in the left half of the complex plane.

Lemma A Proof. After applying HC-PA to obtain a center pole of H cluster as in equation

(4) and first term of equation (5), the new center pole is a negative real number denoted
|

1
as Cj,, which is given by C;, = —R Zle (|P_k|) ,where py is the k™ pole in H cluster.
For improving C}, value, equation (6) is applied R times as shown in Fig. 3. The final
28|p1lICy|

improved center pole of H cluster is given by I}, = where p; is the

Ipil + 2R = DICEI
most dominant pole in H cluster. [}, is always a negative real number, which is located in
the left half of the complex plane. A similar procedure is applied on other clusters among
the z clusters to produce 7™ order reduced model. Il.z, wherei = 1,2, ..., z, are poles for Zth

order reduced model. Therefore, a new generated reduced model is asymptotic stable (or

marginally stable if the original model has poles on the imaginary axis).

sjamw3
Text Box
48

Appendix B.

Stability Proof for a closed loop reduced system

sjamw3
Rectangle

sjamw3
Text Box
 Appendix B.

sjamw3
Text Box
 Stability Proof for a closed loop reduced system

50

To assess stability, we show all reduced models by using HC-PE have a Hurwitz
matrix for its dynamics matrix, i.e., all eigenvalues or system real poles are in the left
half s-plane. Therefore, LQR can be applied on the reduced model itself, which guarantee
stability as follows:

Assumption B. Let X, = A,x, + B,u be a controllable reduced system model in a state
space domain by using HC-PE, where x, is the reduced system state vector, A, € R"™" is
the reduced state matrix, B, € R"™ " is the reduced input matrix, u is the input vector, r
is the number of reduced system states (i.e., it represents an r reduced order differential
equation),7 is the number of model inputs.

Lemma B. Let assumption 1 hold. Then the reduced model system is asymptotic stable.
Lemma B Proof. The closed loop system X, = (A, — B, K})x,, where K, is optimal control
gain for the reduced model that can be found in same way for original model [29] as in
(32). A nominated Lyapunov function is V, = x! P,x,, where P, is symmetric and positive

definite. The time derivative of V, is given as:

V,:fchPrxr+x,TPrfch
=x"TA, — B.K,|' P TPTA — B.K (1)
—Xr[r r r] rxr+xr r[r r r]xr

=x"|(P,A, + ATP. — P.B,R"'B'P. + 0,) - O, - B.R"'B' P, |x,,

where Q, is the state-cost matrix for reduced model that is positive, semi-definite and
symmetric, and R, the index matrix for reduced model that is symmetric and positive
definite. Applying (33), which is similar to a Riccati equation solution with reduced model
(r order instead of n), we get

V, =x'| = Q, - B,R"'B'P,|x,. (2)

r

Thus O, Ry, R, I and P, are larger than zero (symmetric and positive definite), then V. <0:;

therefore the closed loop is asymptotically stable.

Appendix C.

Comparison table of HC-PE with other reduction methods, combining the Pade

approximation approach and GA. The best MSE results are shown in bold

sjamw3
Inserted Text
TABLE 4 FOR COMPARISON OF HC-PE WITH OTHER REDUCTION
METHODS, COMBINING THE PADE APPROXIMATION APPROACH AND
GA. THE BEST MSE RESULTS ARE SHOWN IN BOLD.

sjamw3
Rectangle

sjamw3
Text Box
 Appendix C.

sjamw3
Text Box
Comparison table of HC-PE with other reduction methods, combining the Pade approximation approach and GA. The best MSE results are shown in bold

52

Reducing
Reduction Models Reduced Model MSE
Models and References
—2.05495 +37.3859
PA Gr(s) = # 7.44240-06 1oth o 2nd
HCPE 52 +20.36825 +37.3857
2.00525 +37.3766
GA Gr(§)= 55— — —— 7.2551e-06 Order
52 +20.36825 +37.3857
—50.3465 +432.4174
[21] Gr(§)= 57— 2.0506e-04 Reducting
52 +209.01775+432.4174
—28.39025 + 647.6004
[19] Gr(§)= 57————"—"— 1.5278e-04 [21] and [19]
52 +359.9995 + 647.6019
2)
17.6452 +49.775+14.1
PA Gr(s) = # 3.9653e-06 gth 4 3rd
HCPE $3+10.0152 +23.125+ 14.1
17.747652 +49.69025 + 14.1074
GA Gr(s)= 3 7 1.2062e-06 Order Reduction,
$3+10.0152 +23.125 + 14.1
15.565% +62.645+18.43
[19] Gr(§)= 5 7.9863¢-04 9]
s3 +10.1652 +27.85+18.43
21.35+7.035
PA Gr(s) = m 0.0021
. s +9s+7.
HC-PE gth , ond
22.07745+7.0731
GA Gr(s)= ————— 0.0015
52 +95+7.035
Order
24.114295+8
[21] Gr(§)= —5—— 0.0048
s2+95+8
Reductions,
7.09085 + 1.9906
[30] Gr(s)= T2 e, 0.0269
§¢+35+2
[21] and
11.3909s +4.4357
31 Gr(§)= 5——""""—"— 0.0059
52 +4.21225+4.4357
30]-132]
. 17.98565 + 500
[32] Gr(§)= 5——"-""— 0.1457
52 +13.245715 + 500
9.2425+23.379
PA Gr(s) = in 0.0249 4th ond
HCPE 52 +2.6775+2.3379
9.7157s +23.01
GA Gr(§)= 5—— 0.0225 Order Redcution,
52 +2.677s +2.3379
9.2365 + 23.366
133 Gr(s)= I —— 0.025 [21] and [33]
52 +2.6775+2.3366
. 16.975% +58.315% +254.15+136.8 th th
PA Gr(s) = 0.0402 8" to 4" 4th
. 5% +3.92353 +20.1352 +21.855 +6.129
HC-PE
15.57553 +56.44852 + 255.0175 + 136.642
GA Gr(s)= 0.0372 Order Reduction,
54 +3.92353 +20.1352 +21.855 + 6.129
19.82453 +30.254952 +757.28455 + 1436.5
[19] Gr (s)= 0.8546 [19]
54 +10.2853 +26.5652 + 143.85 + 64.37
0.009455 +0.01055% + 115753 +0.629352 +27.565 + 1.04¢ — 08
PA Gr(s)= 1.7581e-09
6 +1.74255 +245.154 +267.753 + 1.23e0452 + 66285 + 1.739¢05
HC-PE 48th ¢ 6th
0.007655 +0.00985% + 1.1153 +0.631252 +27.875+0.1508
GA Gr(s)= 6.8066e-10
6 +1.74255 +245.154 +267.753 + 1.23e0452 + 66285 + 1.739¢05
Order Reduction,
0.004755 +0.03595% +3.21753 +16.2752 +329.15 - 1238
Hankel Gr(s) = Z 3.0895e-07
56 425935 + 681.25% + 112053 + 1.0280552 +9.1704s + 2.232¢06
122]
0.004657 +0.03595% +3.21753 +16.2752 +329.15 - 1238
Gr(s)= 2.8268e-08

Balanced Truncation

6 +3.50650 +783.654 + 161153 +1.261€0552 + 1.141e04s +2.925¢06

sjamw3
Rectangle

sjamw3
Text Box
52

sjamw3
Rectangle

53

ACKNOWLEDGMENT

The authors would like to thank P. V. Dooren and Y. Chahlaoui for sending the
benchmarking data for original models. Support of the Mary K. Finley endowment and the

Intelligent Systems Center is gratefully acknowledged.

BIBLIOGRAPHY

[1] W. Schilders, “Introduction to model order reduction,” Theory, Research Aspects and
Applications, vol. 13, pp. 3-32, 2008.

[2] P. Trnka, C. Sturk, H. Sandberg, V. Havlena, and J. Rehor, “Structured model order
reduction of parallel models in feedback,” IEEE Trans. Control Syst. Technol., vol. 21,
no. 3, pp. 739-752, May 2013.

[3] N. A. Gershenfeld, The Nature of Mathematical Modeling, Cambridge University Press,
Mathematics, 1999.

[4] D. Xue, Y. chen, and D. P. Atherton, Linear feedback control analysis and design
with Matlab, Society for Industrial and Applied Mathematics, Advances in Design and
Control, Jan. 2007.

[5] K. J. Astrom and R. M. Murray. Feedback systems: an introduction for scientists and
engineers, Princeton University Press, Apr. 2010.

[6] I. Kale, J. Gryka, G. D. Cain, and B. Beliczynski, “FIR filter order reduction: balanced
model truncation and Hankel-norm optimal approximation,” IEEE Proc. Vision, Image
and Signal Processing, vol. 141, no. 3, pp. 168-174, Jun. 1994.

[7] W. Wang, G. N. Paraschos, and M. N. Vouvakis, “Fast frequency sweep of FEM models
via the balanced truncation proper orthogonal decomposition,” IEEE trans. Antennas
and Propagation, vol. 59, no. 11, pp. 4142-4154, Oct. 2011.

[8] A. K. Sinha and J. Pal, “Simulation based reduced order modelling using a clustering
technique,” Computers and Electrical Engineering, vol. 16, no. 3, pp. 159-169, Jan.
1990.

[9] J. Pal, “Improved Pade approximants using stability equation method,” IEEE Proc.
Electronics Letters, vol. 19, no. 11, pp. 426-427, May 1983.

[10] N. Gupta and A. Narain, “Reduction of discrete interval systems through fuzzy-
C means clustering with dominant pole retention,” Australian Control Conference
(AUCC), pp. 348-353, Nov. 2015.

sjamw3
Text Box
 BIBLIOGRAPHY

54

[11] C.B. Vishwakarma and R. Prasad, “Time domain model order reduction using Hankel
matrix approach,” Journal Franklin Institute, vol. 351, no. 6, pp. 3445-3456, Jun. 2014.

[12] V. P. Singh, P. Chaubey, and D. Chandra, “Model order reduction of continuous time
systems using pole clustering and chebyshev polynomials,” IEEE Proc., Engineering
and Systems Conference, pp. 1-4, Mar. 2012.

[13] W.T.Beyene, “Pole-Clustering and Rational-Interpolation Techniques for Simplifying
Distributed Systems,” IEEE trans. Circuits and syst. Fund. Theory and App., vol. 46,
no. 12, pp. 1468-1472, Dec. 1999.

[14] R. Xu and D. Wunsch, “Survey of clustering algorithms,” IEEE Trans Neural Netw.,
vol. 16, no. 3, pp. 645-678, May 2005.

[15] R. Xu and D. Wunsch, Clustering, Wiley-IEEE Press, Oct. 2008.

[16] A. Mirzaei, and M. Rahmati, “A novel hierarchical-clustering-combination scheme
based on fuzzy-similarity relations,” IEEE Trans. Fuzzy Syst., vol. 18, no.1, pp. 27-39,
Feb. 2010.

[17] A. Proietti, L. Liparulo, and M. Panella, “2D hierarchical fuzzy clustering using
kernel-based membership functions,” IEEE Electronics Letters, vol. 52, no.3, pp. 193-
195, Feb. 2016.

[18] L. Zheng and T. Li, “Semi-supervised Hierarchical Clustering,” IEEE Proc. Interna-
tional Conference on Data Mining, pp. 982-991, Dec. 2011.

[19] J. Singh, C. B. Vishwakarma, and K. Chattterjee, “Biased reduction method by com-
bining improved modified pole clustering and improved Pade approximations,” Applied
Mathematical Modeling, vol. 40, pp. 1418-1426, Jan. 2016.

[20] P.Kalaiselvi and V. G. Pratheep, “Analysis of interval system using model order reduc-
tion,” IEEE Proc. International Conference on Innovations in Information, Embedded
and Communication Systems (ICIIECS), pp. 1-6, Mar. 2015.

[21] G. Parmar, S. Mukher, and R. Prasad, “System reduction using factor division al-
gorithm and eigen spectrum analysis,” Applied Mathematical Modeling, vol. 31, pp.
2542-2552, 2007.

[22] A. C Antoulas, D. Sorensen, and S. Gugercin, “A survey of model reduction methods
for large-scale systems,” Contemporary Mathematics, vol. 280, pp. 193-219, Oct. 2001.

[23] Y. Chahlaoui and P. V. Dooren, “Benchmark Examples for Model Reduction of Linear
Time-Invariant Dynamical Systems,” Springer Proceedings of a Workshop Dimension
Reduction of Large-Scale Systems, vol. 45, pp. 379-392, Oct. 2003.

[24] M. Ghanavati, V. J. Majd, and M. Ghanavati, “Control of inverted pendulum system
by using a new robust model predictive Control Strategy,” IEEE Conference on Control
and Communications Systems, vol. 12, pp. 33-38, Sep. 2011.

55

[25] S. Jung, H. Cho, and T. C. Hsia, “Neural network control for position tracking of a
two-axis inverted pendulum system: experimental studies,” IEEE Trans Neural Netw.,
vol. 18, no. 4, pp. 1042-1048, Jul. 2007.

[26] L. B. Prasad, B. Tyagi, and H. O. Gupta, “Optimal control of nonlinear inverted pen-
dulum dynamical system with disturbance Input using PID controller and LQR,” IEEE
International Conference on Control System, Computing and Engineering (ICCSCE),
vol. 12, pp. 540-545, Nov. 2011.

[27] M. Juneja and S. K. Nagar, “Comparative study of model order reduction using combi-
nation of PSO with conventional reduction techniques,” IEEE International Conference
on Industrial Instrumentation and Control (ICIC), pp. 406-411, May 2015.

[28] S. Sehgal and S. Tiwari, “LQR control for stabilizing triple link Inverted pendulum
system,” IEEE International Conference on Power, Control and Embedded Systems,
pp- 1-5, Dec. 2012.

[29] Alok Sinha, Linear Systems: Optimal and Robust Control, CRC. Press, 2007.

[30] A. K. Mittal, R. Prasad, and S. P. Sharma, “Reduction of linear dynamic systems using
an error minimization technique,” Journal of Institution of Engineers (IE), vol. 84, pp.
201-206, Mar. 2004.

[31] S. Mukherjee, Satakshi, and R.C. Mittal, “Model order reduction using response
matching technique,” Journal Franklin Institute, vol. 342, pp. 503-519, Aug. 2005.

[32] R. Prasad and J. Pal, “Stable reduction of linear systems by continued fractions”
Journal of Institution of Engineers (IE), vol. 72, pp. 113-116, Oct. 1991.

[33] 1. D. Smith and T. N. Lucas, “Least-squares moment matching reduction methods”
Electronics Letters, vol. 31, no. 11, pp. 929-930, May 1995.

56

II. HEURISTIC DYNAMIC PROGRAMMING FOR MOBILE ROBOT PATH
PLANNING BASED ON DYNA APPROACH

S. Al-Dabooni and Donald C. Wunsch
Department of Electrical & Computer Engineering
Missouri University of Science and Technology
Rolla, Missouri 65409—-0050
Tel: 573-202-0445; 573-341-4521 Email: sjamw3 @mst.edu; dwunsch@mst.edu

ABSTRACT

This paper presents a direct heuristic dynamic programming based on Dyna planning
(Dyna-HDP) for online model learning in the Markov decision process (MDP). This novel
technique is composed of HDP policy learning to construct the Dyna agent for speeding
up the learning time. We evaluate Dyna-HDP on a differential-drive wheeled mobile robot
navigation problem in a 2D maze. The simulation is introduced to compare Dyna-HDP
with other traditional reinforcement learning algorithms, namely one step Q-learning, Sarsa
(1), and Dyna-Q, under the same benchmark conditions. We demonstrate that our method
has a faster near-optimal path than other algorithms with high stability. In addition, we also
confirm that the Dyna-HDP method can be applied in a multi-robot path planning problem.
The virtual common environment model is learned from sharing the robots’ experiences
which significantly reduces the learning time.
Keywords: Heuristic dynamic programming (HDP), Q-learning, Sarsa algorithm, Dyna

learning, mobile robot, maze navigation, path planning.

57

1. INTRODUCTION

Exact path planning plays an important condition in the navigation of autonomous
mobile robots. It enables robots to track an optimal collision-free path from the starting point
to the target without colliding into obstacles. There are two categories for mobile robot path
planning: One is a global path planning (off-line) based on a priori complete information
about the environment (e.g., field testing) and the other is local path planning (on-line)
based on sensory information in uncertain environments where the size, shape and location
of obstacles are unknown. There are several Reinforcement Learning (RL) algorithms used
to solve mobile robot path planning problems. Q-learning has been frequently used [1] - [3].
The agent is evaluated by the value function for a given state. The finite MDP, occurs when
the states and actions space are finite [4]. According to Bellman’s optimality principle [5],
the optimal strategy is obtained by building an optimal policy for a subproblem, which can
be traced backward to previous solutions and can build on the optimal policies established
by other subproblems until entire process is covered. The Bellman’s optimality equation
can be written as [6]

J'(s,a) = Py, (RS, +y max J*(s',a)] (D
ae

where J*(s, a) is the value function of the current state s; P, is the transition probability to
move to the next state s” after carrying out an action, a, which belongs to a set of all possible
actions A, Rfs, transition reward from s to s’, and 7y is the discount factor. In addition to
Q-learning, temporal difference (TD) learning is used to solve Bellman’s equation in the
Markov decision process (MDP). More sophisticated approaches such as Dyna-Q [7] and
TD (A1) [8] have been employed to improve the convergence speed for solving Bellman’s
principal of optimality problems. Another approach for solving Bellman’s equation has
been adaptive dynamic programming (ADP), which finds the optimal control policy over
time. The idea is to use a function approximation structure such as neural networks to

approximate the value function [9]. ADP has three fundamental approaches: Heuristic

58

dynamic programming (HDP), dual heuristic programming, and globalized dual heuristic
programming [10] - [12], which consists of three neural networks (actor, critic, and model
networks) which provide decision making, evaluation, and prediction, respectively. If ADP
has only actor and critic networks, then it is referred to as action dependent ADP [10], [11],
[13]. Action dependent ADP with online learning [14] is mixed between adaptive critic
designs and Q-learning by online updating of the value function with policy. Improving
online ADP learning is done by adding dual critic networks for HDP designs [15], [16]
and for DHP designs [17]. ADP can be applied in many applications. In [18], the authors
prove that dual heuristic programming can control the operation of a turbo-generator more
efficiently than HDP. The dual heuristic programming approach can also improve power
performance in collective robotic search problem as shown in [19]. In [20], HDP controls
on motion planning for wheeled mobile robot to escape from sharp corners. This work
presents a new vision of HDP which is used in path planning based on Dyna algorithm; we
refer on it as Dyna-HDP, which is used to obtain the value function of intelligent mobile
robot navigation. Although the planning process is computationally intensive and time
consuming, the total project completion should also count equal time spend in acting,
model learning, and direct RL processes, which require little computation. In this work,
we also apply this novel technique with multi-robots. They are employed to share their
experiences by distributing the value functions among them. There are three points to
consider when arranging for mobile robot navigation in an unknown environment [21]: 1)
the mathematical model of the environment is generally unavailable, 2) sensory data are
uncertain and imprecise due to noise, and 3) real time operation is essential; therefore, a
fuzzy logic controller (FLC) is used in this work to prevent a robot from colliding against
any facing obstacle (or other robots). The FLC is an attempt to reduce the training time
needed. Moreover, FLC can make sure that a robot is able to move away from the trapping
situations while moving towards the target. We use FLC as in [22] with changing in

inputs and output function variables to adapt with our problem to deal with RL. In many

59

RL algorithms, an e-greedy method and Boltzmann selection method are often used as
action selection algorithms, but designers are required to adjust the value of € (or 7 in
the case of a Boltzmann selection) by trial and error in order to realize a good balance
between exploration and exploitation. There are dozens of researchers trying to solve this
balance such as [23] - [25]. For instance in [24], the authors define two types of agents:
an exploitation agent and another agent for exploration, and these agents can communicate
in order to combine their experiences. The remaining sections are organized as follows:
Section 2 presents a collision-free navigation. The fundamental RL algorithms are showed
in Section 4. Mobile robot path planning based on Dyna-HDP is demonstrated in Section

4. The simulation results and conclusion are presented in Section 5 and 6, respectively.

2. COLLISION-FREE NAVIGATION

2.1. Simulation of Mobile Robot Platform. Our simulated platform for a mobile
robot consists of nine infrared sensors, which are mounted on the exterior of the robot’s body
as shown in Fig. 1. It forms an 180° field of view in front of the robot with 22.5° separation
angle between every two neighboring sensors. The distance measurement sensor between
the mobile robot and the obstacles is labeled as (S;; — Sg9). The simulation is designed
with two driving wheels independently operated, left and right wheels, with one front caster
wheel to support the robot. The robot can sense a solid object about 20 centimeters away
from its body. The size of the robot’s body frame is 14 cm for both of width and length as
shown in Fig. 1. This independent drive system not only gives the mobile robot capability
to move in a straight line, and perform turns, but this system also allows the robot to have a
zero turning radius. This allows mobile robot to turn directly around from its center without

backward motion. A Matlab application was taken as the mobile robot platform.

60

Front Wheel

20cm

Left Wheel DU
14cm

Figure 1. Differential wheeled mobile robot platform. It forms as 180° field of view in front
by nine sensors with 22.5° separation angle to sense an object about 0.2 meter away from
its body.

2.2. Description of the Fuzzy Controller for Obstacle Avoidance. The FLC is
applied to realize a mobile robot motion in an unknown environment with obstacles. It helps
to reduce training time by giving the ability to select suitable actions near to objectives.
Inputs into this fuzzy controller for obstacles avoidance (FCOA) are the outputs from the
sensors after a triangular calculation for left sensor group S4; — Sgs, and right sensor group
S4s5 — Sqo to obtain: The left distance which is the lowest distance between mobile robot
and left obstacle, the left angle which is the angle between heading angle of the robot and
left obstacle, the right distance which is the lowest distance between mobile robot and right
obstacle, and the right angle which is the angle between heading angle of the robot and
right obstacle. The outputs of the FCOA are right and left wheels angular speed, W, and
W, respectively. The following membership functions for inputs (distance and angle) and

outputs (angular speeds) are:

61

L LI
Mear Far

= = =
e =] (=2
T T T
1 1 1

Degree of membership

=
ha
T
1

L L i L i i i i i
0 002 004 006 008 01 012 014 016 018 02
Distance[m)]

Figure 2. Distance fuzzy membership functions. These fuzzy set definitions are used
for input variable which are consisted from three triangular-shaped membership functions
(good, near, and far).

2.2.1. Distance. The distance membership functions represent robot conditions
which are good, near, and far from the obstacle as shown in Fig. 2.

2.2.2. Angle. The angle membership functions shown in Fig. 3 represent angle
conditions which are very negative, negative, zero, positive, and very positive.

2.2.3. Angular Speed. The left and right wheel angular speed membership func-
tions shown in Fig. 4 as five triangular wheel speed conditions for both wheels which are
backward, slow backward, stop, slow forward, and forward. All input variables of member-
ship functions are used in both right and left sides. The next step illustrates the appropriate
fuzzy logic rules. Two rule schemes were set up as follows: Right side control rules and
left side control rules. Table I illustrates the matrix of rules for right side controller rules,
while left side controller rules are illustrated in Table 1. The distance input is located on the
vertical column, and the angle input is located on the horizontal row. Based on the fuzzified

values of the inputs, the controller selects the appropriate angular speed conditions listed in

62

m
T T T T T T T T T
; VeryMegative Megative Zero Positive VeryPositive
0.8
e
=
2
= 08
[5
az
g
h=]
= 04
=
a
(=1
0.2
]
L 1 L 1 1 1 1 1 1
-80 -60 =40 =20 0 20 40 G0 80
Angle[deg]

Figure 3. Angle fuzzy membership functions. These fuzzy set definitions are used for
input variable which are consisted from five triangular-shaped membership functions (very
negative, negative, zero, positive, and very positive).

Ball:lc Slll:leaa:i--:I St:)p éloanrw;rd Fcl\-rward

Degree of membership

=20 -15 -10 -5 0 5 10 15 20
WheelSpeed[rad/sec]

Figure 4. Angular speed fuzzy membership functions. These fuzzy set definitions are
used for output variables for both left and right wheels which are consisted from five
triangular-shaped membership functions (backward, slow backward, stop, slow forward,
and forward).

Table 1. Right side controller rules matrix

Angle
very negative | negative Zero positive very positive
good | RF, LSF RF, LSF | RSF, LF | RSB, LSF | RSB, LSF
Distance | near | RSF, LSB RSF, LSB | RF,LF | RSB, LSF | RSB, LSF
far RSF, LSB RSF,LSB | RF, LSF | RSF,LF | RSF, LF
Table 2. Left side controller rules matrix
Angular Speed - . Angle — —
very negative | negative Zero positive very positive
good | RSF, LSB RSF, LSB | RF, LSF | RSF,LF | RSF, LF
Distance | near | RSF, LSB RSF, LSB | RF,LF | RSB, LSF | RSB, LSF
far RF, LSF RF, LSF | RS, LSF | RSB, LSF | RSB, LSF

the matrix (RSF a is right wheel slow forward, LSB is a left wheel slow backward, RF=right
wheel forward, LSF is a left wheel slow forward, LF is a left wheel forward, RSB is a right
wheel slow back, RS is a right wheel slow). The right side controller rules are used when
distance from any obstacle on the right side of mobile robot is less than left side distance of
obstacle and vice versa for left side controller rules.

In order to use right side control rules table, let assuming the distance measurement
of an obstacle in the right side is less than in the left, and angle input variable is negative
and distance input variable is near then the angular speed for the right wheel is slow forward
(RSF) and the angular speed for the left wheel is slow backward (LSB) which is indicated
that in a shadow box. In this work, there are two avoidance strategies. The first one is
updating an environment model. The agent tries to avoid the new obstacles with increasing
its experience. This strategy helps the agent to identify the environment model by using

RL. Another avoidance strategy happens if the distance between two or more agents is

64

less than the distance measurement sensors by comparing with other agents position. This
strategy requires no updating experience for sensing agents while avoiding other agents

(with/without obstacles avoidance).

3. FUNDAMENTAL REINFORCEMENT LEARNING PARAMETERS

An online learning technique for RL depends on trial and error through repeated
interaction between an agent and environment. The agent receives the state of the environ-
ment via its sensors, and it tries to maximize the reward by selecting a correct action which
depends on a reinforcement signal. The mobile robot’s current position (x, y.) is detected
by using an odometer sensor like an encoder with no slipping or sliding assumed. A target
position (x,, ye) is given. Dy is the distance between the current position and the target.0y; ¢ 1
is a difference angle between the robot’s heading angle (6,) and the goal angle (6,). In other
words, 6, is the angle between the robot’s moving direction and a line connecting the target
with the mobile robot. The goal of RL is to teach the mobile robot to align 6, with 6,, or
in other words, to minimize 64;s¢. The captured states in this work are represented by the
sensor readings (S5 — Sq9), the relative different angle 647, and the relative distance Dy).
In order to minimize the size of learning space, we quantify the previous inputs into limited
variables. The sensor readings take two values, O if the obstacle is far away from current
robot position, or 1 if it is near. The target distance variable is quantified into five values
with respect to the distance between the robot and target (very far, far, middle, near, and very
near). Finally, the different angle is quantified into six parts graduating from good reward
into punishment as follows: 0° —+15°, +£15° —+30°,£30° — £45°, +45° — +60°,£60° — £75°
, and £75° — £90°. A lookup-table is used to learn the states. However, if there are too
many states, an approximated function can handle this problem [3], [26]. Three actions
(aj,i = 1,2,3) are used in this work which are: move 0.1 meter forward(a;), turn 45°

in clockwise direction (a;), and turn 45° in counter clockwise direction (a3). RL selects

65

an optimal behavior to get the optimal path for mobile robot based on previous learning
of the experienced series actions. The numerical reward (or punishment) returned from
the environment. The aim of this work is to arrive at the goal in the shortest time with
collision-free motion planning. In this work, Sy5 — Sq9, 04irr, and D, are used to design
a suitable reward or reinforcement signal from the environment. A reinforcement function

(r;) at state (s;) after doing action (a;) is designed as follows:

- Z,-gzl CiSai + CaDg + Cobyiry if s; # Goal
= (2)

2ri_1 if s;, = Goal

where, C;, Cg,and Cy are small values used for balancing the weight parameters with sensor
reading variables, which are the relative different angle and the relative distance, respec-
tively. These values reflect the level of influence for each variable on mobile robot learning.
Because FCOA is used in our work, the robot continues navigating in the environment with-
out termination until reaching to target position which makes collecting the data flexible
fast, and easy. The three actions generated from FCOA compare the angular speed for left

W; and right W, wheels as follows:

ap if |W, - W| < B

Action = g, elseif W, < W, 3)

a3 otherwise

where, (8 is the small tolerance value; the robot goes forward if the difference between left
and right wheels less than S, otherwise it should be turned into left or right depending on
a larger side of angular velocity of wheel than the other. We use two most popular RL

algorithms (Q-learning and Sarsa) as in [4] to compare with our approach.

66

Dyna-leP Path Planning “ U, (s, a)m
for Agent i

St41 at ; v
-1 Plant (Robot+ t | :
z7 e Environment) Je(s, “’l |

Model Planning
Learmng Update
Dyna_HDP Path Planning <:‘/f\ Common
for Other Agents Virtual Model

Figure 5. Block diagram for Dyna-HDP Path Planning. u! is the action vector at time ¢
for robot i which is consisted of three actions (turn left, turn right, and moving forward)
denoting as a'. s! is the input states vector for robot i at time ¢ which are represented by the
nine sensor readings Sy5 — Sq9, the relative different angle (647 7), and the relative distance
(Dg). A reinforcement function (r) can get from (2) for state sf and a;. All robots share
the same virtual model to maximize the value function J! for all agents at the same time.
The backpropagation path is shown by dashed lines for action and critic networks, and for
updating the rules for k-max certainty.

4. MOBILE ROBOT PATH PLANNING BASED ON DYNA-HDP

The main block diagram for the featured Dyna-HDP path planning method for is
illustrated in Fig. 5, which is showed the details for agent i with other blocks for multi-robot.
This section will describe all aspects of this method based on the following subsections.

4.1. Architecture of The Dyna-HDP System. Dyna-Q learning algorithm is an
integration of direct RL and a planning method strategy. The planning method takes model

as an input to updating according to Q value learning as follows: Q;(s,a;) = Q:(s, a;) +

67

a|re +ymaxgeayvi (Q,+ 1(s, ai)) - 0(s, ai)], where s, is current state, aﬁ is current action, «
is learning rate, and vy is discount factor. While in Dyna-HDP method, the updating model
happens by value function (J;), which directly comes from critic neural network. The Dyna
algorithm is the integration of direct RL and planning methods. The planning method takes
model as an input. The model produces a prediction of the resultant next state and next
reward if it is given a state and an action; therefore, it is used to mimic the environment and
produce simulated experience. A real experience is generated by using direct RL method
to improve the policy and the value function while improving the model as well. The
transition probability in (1) can only take the value of 1 or O (whether directly applicable to
the selected action or not); therefore, we can be rewriting the Bellman’s optimality equation
as:

J(s,a) = max [r(s, a)+yJ (s, a)] 4)

The optimal control 7*(s) should satisfy:

n*(s) = arg max [r(s, a)+yJ(s, a)]. (35)

HDP consists of blocks called the action network and critic network. It also uses online
learning for the neural networks [14]. The action network is used to generate a control signal
which is evaluated by the critic network. The multilayer perceptron structure is employed
for action and critic neural networks. In this work, one hidden layer is used to construct both
networks. The critic network is used to approximate the optimal cost function is defined as

in (4). The temporal difference (prediction error) for the critic network is defined as

0 = Jio1 = (e +vJh). (6)

68

Therefore, the objective function to be minimized in the critic network is
B = 12 @)
t = E t-

The gradient-based adaptation for the weights update rule in the critic network can be given

by
Wi =W+ Aw. (8)
OES
AWE = ff[- 6wtf]')
OES |9Ef oy, (10)
owe | aJ, Owe

where {; is the learning rate of the critic network at time t, which decreases with time
until a certain small value, and (wy) is the weight vector in the critic network. In order to
approximate the optimal control signal as in (5), the action network adapts indirectly. The
error between the desired ultimate objected (U,) and the approximate value function (J;) is
backpropagated through critic network. The desired ultimate objective value sets to straight
distance value from initial position of the mobile robot to the target, which maximizes the

total reward. The error function of an action network can be defined as

/.lt:Jt—Uc (11)

Therefore, the objective function in the action network is

E® =0.5u>. (12)

69

The weight updating in the action network is similar to the critic network. The gradient-

based adaptation for the weights update rule in the action network can be given by

wi | =wi + awf. (13)
OE*
AwS = 5;1[- aw’a]' (14)
t
IES

= 15
owy d0J; Ouf owy (1)

(9Eta 8.], 8“[]

where £} is the learning rate of the action network at time t, which is also decreasing with
time until certain small value, and wy' is the weight vector in the action network.

4.2. k-max Certainty Method. The main purpose of this work is to give the agent
ability to increase the optimum policy efficiency within a minimum number of trials. The
efficiency and minimum trials can be obtained by balancing the properties of exploration
intensive strategy (non-greedy) and exploitation intensive strategy (greedy). A large body of
research addresses related problems such as [23] - [25]. The exploration intensive strategy
needs numerous trials for increasing the optimality because it tries to collect all experiences.
The k-certainty exploration method [25] tries to identify the environment precisely with
the least number of trials. The k-certainty exploration method selects all sensory-action
pairs (rules) uniformly which increases the guarantee for efficient identification of the
environment. The drawback for this method is not influenced by positions of rewards.
This paper presents a modification which is called k-max certainty. The k-max certainty is
combined the k-certainty exploration method and exploitation method through decreasing &
greedy value method. Fig. 6 depicts a flow chart for a k-max certainty method. The k-max
certainty method starts with a full exploration by setting a € greedy value with a high value
and then decreases overtime by a small ratio (g). The rule that has been selected k times is
called a k-certainty rule; otherwise, a new rule becomes a part of a k-uncertainty rules. In

the exploration part, if there are any k-uncertainty rules connected with the current state,

70

an action is selected randomly among these uncertainty rules. If all rules belonged to the
current state have been taken, the action would be selected to transfer to another state which
own k-uncertainty rules. In other words, let say, there are four states connected with the
current state, three of them have k-uncertainty rules, then a random action would be selected
from these three states. These process called a k-uncertainty trail which is controlled by
flag signs in each state. These flags are also used to avoid repeatedly selecting of k-certain
rules that make returning case to the current state (k-certain looped). All sensing states have
raised flags except k-uncertainty rules with down flags. If the current state does not have any
k-uncertainty rules, the exploitation case has been triggered by taking a greedy action among
k-certainty rules. Any selected action among k-certainty rules for agent i is mentioned as
follows: 71(s') = arg maxgea] as shown in Fig. 6.

Ji(s,a), where Acen = u' = [a}, db, d}

cen

The identification environment level is directed proportionally with the k value. The k value
is set to one with increasing by one if no any uncertain rule (or trail) belongs to this state,
otherwise it resets to one. In case that the greedy value allows to go to the exploitation part
directly, the agent selects an action as follows: 7(s’) = arg maxuea J! (s, a), where A = u'.
The k-max certainty will become idle if the robot senses any objects (obstacles or robots)
and the FCOA will apply two avoidance strategies as motioned in Section 2.

4.3. Knowledge Sharing for Distributed Mobile Robots. One of the most ef-
fective RL methods to integrate online planning is Dyna [27]. It uses real experience to
learn a model of a certain environment. In this work, we assign an architecture for sharing
information between all agents to learn the model which decreases learning time. As in
Fig. 5, the common virtual model takes the states and actions from all robots to predict the
next states and rewards. All robots share the same task, which means they try to reach to
the specific target position. In this work, we use two worlds (actual and planning worlds)
for updating value function. In order to avoid excessive time spent in the planning process
which is inherently computationally intensive, the requirement time to complete this process

should equal the time steps spent in: The acting, common model learning, and the direct RL

71

set stomaxvalue.0 <e <1
set £ to uniform random value, 0 < £F < 1

| Exploration No Ifsihas k-
uncertamty
rule

" 4 L 4

Exploitation
v

“(3%}= U{:l aed Ii(s'a)

f kek=1
! Down the flags in k- ! . :
uncertainty In?lafulﬁ states) a(s) = {-1 asd_c«_m!Jk‘* a)
! v
Select the one of rules that can transfer to the
' state whose flag is down at random.
E ”("D = aed mr trail
_______________________________________ b}«

¥

E=€*E
set £ to uniform random value,0 < F < 1
v

r Leaming Actual and Imaginary Worlds

Figure 6. A flow chart for k-max certainty selection procedure for agent i. A green
dashed line border represents the exploitation approach which has been triggered by taking
a greedy action among k-certainty rules (sensory-action pairs). The exploration approach
is represented by a blue dashed line border which is selected action randomly among
uncertainty rules (or trail).

72

process which requires little computation. In other words, the implementation time between
the actual world (with common model learning) and planning world becomes equal. Both
worlds have separated acting and learning approaches. In the acting approach, the mobile
robot connects with other robots to decide what action should be selected. This decision is
made on the basis of k-max certainty selection approach (exploitation part) if the robot does
not sense any objects. After running this action in the actual world, the robot moves from its
current real state to next real state. During this movement, the planning world starts to plan
by selecting an action based on k-max certainty sharing information with other remaining
robots in random common model state. The model for certain agent is same as the common
model. During real movement for them, all agents learn and update the common model
simultaneously. This learning is happened by updating the value functions as in (17). More
specifically, let M; € Mg is the mobile robot i, where Mg = M), M,,, M denotes of set
of f mobile robots. In certain state, let M; has a plan to select a best action. M; inquires
part of robots or whole group Mg to identify this state. The other robots (or perhaps only
one other robot) announce the set of value functions with various actions applying in same

state. M; decides to select an action according to maximum value functions as follows:
n(s') = arg max (max U{_l J(s,a),1<j< f) (16)
ac -

The certain state could be a real current state in the actual world or a random common
model state in the planning world. In the learning approach, both worlds learn directly after
taking a decision for selecting a suitable action. The learning approach for both worlds is

done based on Bellman’s optimal policy equation as follows:

Ji(s,a) = ri(s, a) + ymax U{zl (max J/ (s, a)), (17)

a€Acer

73

where f is the total number of mobile robots; ri(s, a) is the instant reward for robot i
(1 < i < f) between current state (s) and next state (s”) during currying out action (a);
max Uj.c:l (.) is the maximum value among all robots; max,ea,,, JI(s’, a) is the maximum
value function for robot j in the next state among all certainty actions (A..,), which are
performed in this state by various other robots. The new sensory action pair updating
value function shares with all other robots; therefore, all robots eventually reach the optimal
policy with a short limit time. If M; detects any objects, it will use the FCOA with two
avoidance strategies as follows: M; updates its experiences by using (17) if the objects
are only obstacles, otherwise M; tries to only avoid these objects without any updating
whereas the objects are robots with/without obstacles. In order to implement Dyna-HDP,
N possible states is taken for a deterministic and finite MDP maze environment. Therefore,

Bellman’s optimality equation can be written as

N
J*(s,a) = arg max [r(s, a)+y Z sJ* (s, a’)], (18)
acA =
Where J*(s, a) is the maximum total reward after taken an action a at state s. We introduce

the entire flowchart for Dyna-HDP with multi-agents with K-Max-certainty method in Fig.

7. The implementation steps can be described as follows:

1. Start with an initial state position in the environment, which is the nine sensor readings,

the relative difference angle, and the relative distance.

2. Obtain the action vector from action network, which consists of three actions (turn

left, turn right, and moving forward).

3. Use the K-Max-certainty technique to select one action, balancing between exploita-
tion and exploration as in Fig. 9. Select one optimal action maximum of the value
function as (17) after comparing each agent’s generated action with other agents in

same state.

74

4. Obtain a new state from the environment after applying the optimal action and update

the inputs for the critic network to obtain the new local value function.
5. Compere the value local function with other agents as (18).

6. Check if the agent moves near to any object? If yes, the fuzzy controller fuzzy
controller for obstacle avoidance (FCOA) generates angular velocities for left and
right wheels to avoid the object by selecting a new action (3); the action network
updates as assigned punishment according to the reinforcement function (2) while
updating the k-Max-certainty strategy; if no, agent moves to another step on the same

trail.

7. Check if the agent reaches the target position? If yes, the procedure turns to another
trial, while assigning the reward and loading the initial state in the start position; if

no, the agent moves to another step with same trail.
8. Share virtual model with all agents to maximize the value function.

9. Terminate the entire learning process if the comment value function table in the virtual
model remain unchanged. In other words, the value function table for all agents are

same.

In other word as shown in Fig. 7, the agent i starts at its initial state in the environment.
According to mobile robot sensors, the initial state for agent i (sf)) represents the nine
sensor readings, the relative angle difference, and the relative distance at initial time. The
action vector (ui) consists of three actions (turn left, turn right, and moving forward). k-max
certainty technique selects one action (ai), conforming to the balancing between exploitation
and exploration as in Fig. 5. Agenti compares its generated action with other f — 1 agents
in same related state to take which one gives a maximum of the value function as in (17).
After Agent i applies an optimal action, it obtains the new state from the plant and update

the inputs for the critic network, obtains the new value function (J/(s,a)). According to

75

Agent 4 Dyna-HDP Path Planning

F 9

(Another Trial)
Starting
Agent

¢ (Tnitial state vector)
%,, (Another state vector) ¢

&

|
|
|
|
|
|
|
|
|
|
|
' Sty (Anotherstate veto)
| —
|
|
|
|
|
|
|
|
|
|
|
|

u (Action vector)

=

a? (Action direction)

1(s¢) (Best ation for Agent i)

lem

s (State vector)

Sensor

Figure 7. Flowchart for implementation the multi-agents Dyna-HDP approach on maze
problem.

76

(18), agent i updates its local value table. Checking the agent’s movement, if it is near to any
obstacle, the fuzzy controller FCOA generates angular velocities for left and right wheels
(W, W,) to avoid the object by selecting a new action (3). At the same time, the action
network updates as assigned punishment according to the reinforcement function (2) while
updating the k-max-certainty strategy. If the agent is far away from any obstacle, it moves
to another step with same trail. When the agent reaches to the target position, the procedure
turns to another trial with assigning the reward and load the initial state in the start position,
otherwise, it moves to another step with same trail. All agents share the same virtual model
to maximize the value function J! for all agents at the same time. The process is terminated

if the common value function table in the virtual model remain unchanged.

5. SIMULATION RESULTS AND ANALYSIS

In this section, we apply Dyna-HDP to learn the distribution of autonomous mobile
robots on an unknown environment. Walls surround this environment, with many obstacles
distributing on it. But before testing Dyna-HDP approach, we test k-max certainty approach
with traditional e—greedy method in a simple environment as shown in Fig. 8 a. A final
optimal trajectory (collision-free path) presents in Fig. 8 b from starting point (0.2 for both
x-y axis with 0° for the orientation angle) to a target position. This final optimal collision-
free trajectory is obtained after 120 episodes by using tradition Q-learning algorithm. Fig.
8 c demonstrates that k-max certainty has better performance than e—greedy. The x-axis
in Fig. 8 c gives the statistics of the learning periods (episodes), and the y-axis means the
number of steps for each episode. k-max certainty can reach to the stable running (finding
the optimal and safe path) after 72 episodes while 102 episodes for e—greedy. Furthermore,
a number of steps over 120 episodes for k-max certainty is 3.5213e+04 for k-max certainty
approach and 7.6606e+04 for e—greedy (54.033% improvement). We consider three cases

for testing our approach (Dyna-HDP) at the same complex environment. In the first case,

77

1

04

02

]

1 4
2 0 02 04 06 08 1 12 18 16 18 32 0 02 00 06 08 1 12 14 16 18

a b

Average for Four Runs of Traditional Q-leaming Algorthm
for Egraedy and k-max cartainty

Annu L) T 1 1 1
— — Q-Learning with E-gready
ET 1] IR eoecanens e —— Q-Learning with k-max certainty |
. /] ! i i :
B 2600 H{1 oo} ; .
E. 2000] |-II-]--]E------ | : -
ﬁ& 150“ J"[-ll'-f} -!l-llﬂ}El --j‘ll- e é ¥ L]] =
1000 | I--l---,ir--!lﬁl-tﬁ-- ‘[-.,‘L : -
AR i”‘\i LAWY
500 - "-‘U*‘.\' ,'-I!"“-!‘."“ﬂ’"t':‘ﬂ.ﬂ\ \,"“" : _
. . 1' ALY YUY
0 20 40 (1] B0 100 120
Episodas

Figure 8. a) The environment for testing the exploration/exploitation strategy which shows
the initial start position for this agent. b) The near-optimality trajectory from the starting
point to the target. c) The comparison between e—greedy and k-max certainty by using
Q-learning algorithm.

78

we compare Dyna-HDP as discussed in Section IV with other conventional algorithms, one
step Q-learning, Sarsa (4), and Dyna-Q, for one agent (without sharing any information
with other agents and all algorithms use k-max certainty approach). The initial start position
for this agent is 0.2 for both x-y axis with 45°A¥ for the heading angle. Fig. 9 illustrates
the simulation results for this case. Dyna-HDP obtains a quicker near-optimality path than
one step Q-learning, Sarsa (1), and Dyna-Q with more stability through a small value
of changing in the step number per each episode. Dyna-HDP improves about 47.667%
(3.5555e + 05 out of 6.7940¢ + 05) of number of steps compared with Dyna-Q algorithm;
moreover, Dyna-Q learning algorithm needs around of 192 episodes to reach to the near-
optimal path, while 145 episodes in Dyna-HDP (the near-optimality path length for this
case needs 107 steps). The stability comes from a sample mean of a number of steps
over a number of episodes and diversity for this sample. The sample mean for Dyna-Q
learning algorithm from 50 to 150 episodes is 3.2048e+03 steps while 1.1553e+03 steps
for Dyna-HDP. In a second case, two agents share their experiences by using Dyna-HDP
approach as shown in Fig. 10. Every agent has its own experience and tries to support
the other. This support is carried out by sharing information from high rate experience to
low rate at certain state. For instance, agents M; has more experience in certain state (or
sensory information) than M; in same state; therefore, M; learns M; about this state and
vice versa for learner-teacher interaction with other states. In the third case, all agents share
their experiences with the same approach. Fig. 11 shows the results for third cases. In these
figures (second and third cases), the results are stable with the improvement in the learning
speed of distributed autonomous agents by sharing their experiences. The environment,
which is used in three cases are shown in Fig. 12 with two (agent 1 and agent 2) and five
mobile robots for first and second case, respectively. The robots are distributed in random
start positions and the heading angles (orientations) to achieve a same task (reaching a
specific target area). Fig. 13 demonstrates the near-optimal trajectories for five agents from

start positions to target after applying the third case. Fig. 14 shows all cases together

79

] ; : : : — — Q-Leaming
2 L K : : Sarsa-Leaming | |
=23 " . .) T
u ' H H : H
@ ' . : : :
(=9 " . .
g j fomemerososd frosmmoenes n
= H H
@ ot el
250 300
Episodes
x 10" Case 1: Average for Four Runs of Dyna-Q and Dyna-HDP Leaming

3 T T T T T
= : T e e e T — Dyna-Q
2 5 bt e . Dyna-HDP ||
o v - T
u ' wowe H
= : — :
E=13 " .
o 1HiRE e Fomeeee b N O .. ol N by e “ i R R R RS RS R R AREEEEREEEE -—
o . '
n '

(V] L

0 250 300

Figure 9. The first case comparison the number of steps per episodes. This compares
among Dyna-HDP with other conventional algorithms, one step Q-learning, Sarsa (1), and
Dyna-Q, for one agent (no information sharing with the others).

18000 T T T r
: : : — — Agent1
16000 R S RERGEEERD RRERRS Agent2 H
14000 H-----------d-mmmmmnes e drmmemmnes e o -
= 12000 ------------ ------------ ---------- -
S : : : :
o 10000 fHi---------i-emmmenn- decmmmmeies ERREEEEEEEEE fesesmsieiens Bessiesnes -
'-'-' : : : :
5 : : : ;
o 8000 FpH---------femmmme e frmmmmmnennd femnmmneeeees R -
= ! : ! : !
7T | R SRR R T s R g
4000 H -Hp------- R o demeneenaans deresassneas bessenmanes -
2000 T dunnmmnnnnas drenmnnnaaas denmmnnnnaas anennmnnes .
0 i | .l-_w_-«: —— P
100 150 200 250 300
Episodes

Figure 10. The second case results (the cooperation between two agents by sharing their
experiences by using the Dyna-HDP approach). Every agent has own experience and tries
to support the other one.

80

15000 — ; . — -
i : ; : ' — — Agent1
b Agent2
R R LA et St it St wiaeiiie St B IR EELS Agent3
b = - = - Agent4
L e —s—— Agent5
10000 £ 00 . ol
- :
‘S E 2500t '
s i] '
Lﬁ_ - Eﬂﬂ?-- E
'6 150 :
a i :
w e '
(=™ :
o S0
@ 5000 Ff--- ‘ S A—
e Epacdes

0 - .5 100 150 200 250 7300
Episodes

Figure 11. The Third case results (Cooperation among five agents by using the Dyna-HDP
approach).

0 0.5 1 1.5 2 2.5 3 3.5 4

Figure 12. Five mobile robots are distributed in unknown environment surrounding by wall
in meter scale with many obstacles on it. The robots are distributed in random start position
and heading angle to achieve same task (reaching to target position).

81

0 05 1 15 2 25 3 35 4

Figure 13. The near optimality trajectories for the five mobile robots from start positions
to the same target position after applying the third case which is all agents share their
experiences with the same approach.

to demonstrate quality improvement due to cooperation among agents. The x-axis in all
three cases gives episodes, and the y-axis means the number of steps for each episode. In
this simulation, we scale the inputs to the action network to be in [0, 1], and we set four
independent runs (300 episodes for each run). Because each episode will be terminated
when the robot reaches the target position area, the numbers of steps are not necessarily
same. The final results take the average steps/episodic among all runs as shown in Fig.
14. For fair comparison, we used same parameters, which are required in traditional RL
algorithms (one step Q-learning, Sarsa (1), Dyna-Q) and Dyna-HDP. The basic parameters,
which are used for this comparison are set as follows: the learning rate (@ = 0.1), the
discount rate (y = 0.95), the decay-rate parameter for eligibility traces (4 = 0.9) for Sarsa
(A) learning algorithm, the staring decay-rate parameter for greedy selection (¢ = 1), the
ratio value for reduction £=0.99, which is used to decrease the greedy probability value by

€ = & * € after each episode until reaching to minimum value (€ = 0.05); k=2 for k-max

82

wi
10000 -~~~ mol.|.. :
2 8000 {1x
- o ;
5 | & i
j= 1
o 6000k gl \ il
- l : i
N 111 IR S A .
50 100 150 200 2%
| | Frnaay A

=
=
T
o

Episodes

.r r ! ! '
H | H : — — Case 1
1000 — - =-Case 2

Case 3]

tamam
remmw
ey

L]
s
[

Figure 14. Comparison among all three cases by using Dyna-HDP for average learning. In
third case, the results are stable with the improvement in the learning speed of distributed

autonomous agents by sharing their experiences.

83

certainly selection action criteria, and let N=5 (N is the number of planning steps in the
planning world which is the same the transition time between any two states in the actual
world). For HDP parameters, the initial learning parameters are set as: ;=0.005 for critic
network and ¢{'=0.003 for action network. Both learning rates are decreased via dividing
by 3 for every 30 episodes. The stopping criteria for the action and critic networks are 20,
30 respectively; the training for either network will be terminated if the error drops under
le4 or if the number of iterations meets the stopping threshold. The number of neurons in
the hidden layer is n.=12 for critic network and n,=10 for action network.

5.1. Applying Dyna-HDP in A New Environment (Building Map). In the previ-
ous environment testing, every agent has own experience and also tries to learn dependently
to achieve a single task. We implemented the Dyna-HDP learning method with another
environment as shown in Fig. 15 with same previous procedures. The new environment
has three tasks (targets). Two agents, M; and M,, share to complete the first task to fine
the near-optimal trajectory as shown in Fig. 15 a while M3 and M, share to implement
the second task as shown in Fig. 15 b, and the last simple task gives to single agent (Ms)
as shown in Fig. 15 c. Fig. 15 d illustrates the simulation results for cooperative agents
to run own specific task. Because of the FCOA, the agent can avoid any new obstacles
encountered. We run the mobile robot in the same last task with an extra obstacle. We put
a new obstacle in the agent’s way in order to check the ability of this controller to adapt.
Fig. 16 demonstrates the capability of the mobile robot to complete the task successfully.
The mobile robot moves toward the goal point as main task; if the mobile robot senses an

obstacle by 9 sensors, it will immediately use the FCOA to avoid this collision.

84

2 10 Task 1:Dyna HOP Leaming Two sharing Agents

a4 : T

& i : = = Agent1

3 frosmesasseses e jreeee Agent2

2 i i

% 0 50 100 150
Episodes

i] Task 2:Dyna HDP Leaming Two shanng Agants

L.§ _____________________ P [——agens |

i :' | Agend

-4 i i

- 50 100 150

Episodes
<10 Task 3:Dyna HOP Leaming one sharing Agent

0 A A .ﬁ:. A

100 150

F--

Steps per Episode
an
L =]
=

Episodes

c d

Figure 15. a) The trajectories for two agents to run Task 1 b) The trajectories for two agents
to run Task 2 c) The trajectories for one agent to run Task 3 d) The simulation result for
three tasks among Dyna-HDP.

85

Figure 16. Path for mobile robot to implement the third task with a change in the environment
by adding a new obstacle. FCOA gives the mobile robot the capability to adapt with this
changing.

6. CONCLUSION

This paper has presented a novel technique, Dyna-HDP, using ADP for the online
planning and learning algorithm in combination with the Dyna method. The performance
of Dyna-HDP was excellent during navigation of a mobile robot compared to one step
Q-learning, Sarsa (1), and Dyna-Q. This paper has also demonstrated that Dyna-HDP in
multi-robots cooperative navigation has a significant advantage to enhance the efficiency of
the virtual common environment model. The simulation has confirmed how this group of

cooperative robots decreases their individual navigation time.

BIBLIOGRAPHY

[1] A. Konar, I. G. Chakraborty, S. J. Singh, L. C. Jain, and A. K. Nagar, “A determin-
istic improved g-learning for path planning of a mobile robot,” IEEE Transactions on
Systems, Man, and Cybernetics: Systems, vol.43, no.5, pp.1141 - 1153, Sept. 2013.

sjamw3
Text Box
 BIBLIOGRAPHY

86

[2] H. Xiao, L. Liao, and F. Zhou, “Mobile robot path planning based on Q-ANN,” Pro-
ceedings of the IEEE International Conference on Automation and Logistics, pp. 2650
- 2654, Aug. 2007.

[3] G. Yang, E. Chen, and C. An, “Mobile robot navigation using neural Q-learning,” Pro-
ceedings of the IEEE International Conference on Machine Learning and Cybernetics,

vol.1, pp. 48 - 52, Aug. 2004.

[4] R. S. Sutton, and A. Barto, Reinforcement Learning: An Introduction, Cambridge,
U.K.: Cambridge Univ. Press, 1998.

[5] R. Bellman, Dynamic Programming. Princeton, NJ, USA: Princeton Univ. Press, 1957.

[6] F.L.Lewis, D. Vrabie, and V. L. Syrmos, Optimal Control. New York, NY, USA: Wiley,
2012.

[7] R. S. Sutton, “Integrated architectures for learning, planning, and reactingbased on
approximating dynamic programming,” Proc. 7th Int. Conf. Mach. Learn, pp. 216 -
224, 1990.

[8] R. S. Sutton, “Learning to predict by the methods of temporal differences,” Mach.
Learn, vol. 3, no. 1, pp. 9 - 44, 1988.

[9] D. Liu, and H. Zhang, “A Neural Dynamic Programming approach For Learning
Control Of Failure Avoidance Problems,” International Journal Of Intelligent Control
And Systems, vol. 10, No. 1, 21 - 32, Mar. 2005.

[10] D. Prokhorov, and D. C. Wunsch, “Adaptive critic designs,” IEEE Transactions on
Neural Networks, vol. 8, pp. 997 - 1007, Sept. 1997.

[11] J. Si, A. G. Barto, and W. B. Powell, and D. Wunsch, Handbook of Learning and
Approximate Dynamic Programming, New York, NY, USA: Wiley, 2004.

[12] P. J. Werbos, “Approximate dynamic programming for real-time control and neural
modeling,” Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches
(Chapter 13), Edited by D. A. White and D. A. Sofge, New York, NY: Van Nostrand
Reinhold, 1992.

[13] D. V. Prokhorov, R. A. Santiago, and D. C. Wunsch, “Adaptive critic designs: A case
study for neurocontrol,” Neural Networks, vol. 8, pp. 1367 - 1372, 1995.

[14] J. Si, and Y. Wang, “Online learning control by association and reinforcement,” IEEE
Trans. Neural Netw., vol. 12, no. 2, pp. 264 - 276, Mar. 2001.

[15] H. He, Z. Ni, and J. Fu, “A three-network architecture for on-line learning and opti-
mization based on adaptive dynamic programming,” Neurocomputing, vol. 78, no. 1,
pp- 3 - 13, Feb. 2012.

[16] X.Fanga, D.Zhenga, H. He, and Z. Nib, “Data-driven heuristic dynamic programming
with virtual reality”, vol. 166, pp. 244 - 255, Oct. 2015.

87

[17] Z. Ni, H. He, D. Zhao, X. Xu, and D. V. Prokhorov, “GrDHP: A General Utility
Function Representation for Dual Heuristic Dynamic Programming,” IEEE transactions
on neural networks and learning systems, vol. 26, no. 3, pp. 614 - 627, mar. 2015.

[18] G. K. Venayagamoorthy, R. G. Harley, and D. C. Wunsch, “Dual heuristic program-
ming excitation neurocontrol for generators in a multimachine power system,” IEEE
Trans. Ind. Appl., vol. 39, no. 2, pp. 382 - 394, Mar. 2003.

[19] N. Zhang, and D. C. Wunsch, “A Comparison of Dual Heuristic Programming (DHP)
and Neural Network Based Stochastic Optimization Approach on Collective Robotic
Search Problem,” Proceedings Neural Networks of the IEEE, vol.1, pp. 248 - 253, Jul.
2003.

[20] C. Lian, and X. Xu, “Motion Planning of Wheeled Mobile Robots Based on Heuristic
Dynamic Programming,” IEEE Proceeding of the 11th World Congress on Intelligent
Control and Automation Shenyang, pp. 576 - 580, Jul. 2014.

[21] X. Yang, M. Moallem, and R. V. Patel, “A layered goal-oriented fuzzy motion plan-
ning strategy for mobile robot navigation,” IEEE Transactions on Systems, Man, and
Cybernetics, vol. 35, no. 6, pp. 1214 - 1224, Dec. 2005.

[22] S. Pawlikowski, “Development of a Fuzzy Logic Speed and Steering Control System
For an Autonomous Vehicle,” Master thesis, University of Cincinnati, Department of
Mechanical Engineering, Jan. 1999.

[23] O. Caelen, and G. Bontempi, “Improving the exploration strategy in bandit algo-
rithms,” International Conference on Learning and Intelligent Optimization, pp 56 -
68, 2008.

[24] T.Tateyama, S. Kawata, and Y. Shimomura, “Parallel Reinforcement Learning Systems
Using Exploration Agents and Dyna-Q Algorithm,” SICE Annual Conference, pp. 2774
- 2778, Sep. 2007.

[25] K. Miyazaki, M. Yamamura, and S. Kobayashi, “K certainty exploration method:
an action selector to identify the environment in reinforcement learning,” Artificial
Intelligence, vol. 91, no.l, pp. 155 - 171, 1997.

[26] Y. Zhang, and M. Feng, “Application of reinforcement learning based on artificial
neural network to robot soccer,” Journal of Harbin Institute of Technology, vol.36
,no.7, pp. 859 - 861, Jul. 2004.

[27] K. Ito, and Y. Imoto, “A study of reinforcement learning with knowledge sharing for
distributed autonomous system,” Proceedings 2003 IEEE International Symposium on
Computational Intelligence in Robotics and Automation, vol. 3, pp. 1120 - 1125, Jul.
2003.

88

III. MOBILE ROBOT CONTROL BASED ON HYBRID NEURO-FUZZY VALUE
GRADIENT REINFORCEMENT LEARNING

S. Al-Dabooni and Donald C. Wunsch
Department of Electrical & Computer Engineering
Missouri University of Science and Technology
Rolla, Missouri 65409—-0050
Tel: 573-202-0445; 573-341-4521 Email: sjamw3 @mst.edu; dwunsch@mst.edu

ABSTRACT

This paper uses value gradient learning (VGL) to track a reference trajectory under uncer-
tainties, by computing the optimal left and right torque values for a nonholonomic mobile
robot. VGL is a high-performance algorithm in adaptive dynamic programming (ADP).
Here, it is used as a critic function after fitting a first-order Sugeno fuzzy neural network
(FNN) structure to critic and actor networks. Moreover, this work handles the impacts of
unmodeled bounded disturbances with various friction values. The simulation is introduced
to compare two approaches. The first uses an actor network that confirms the ability of the
mobile robot dynamic model to follow a desired trajectory. This approach demonstrates
a significant enhancement of the robot’s capability to absorb unstructured disturbance sig-
nals and friction effects. The second type of results use a critic-optimal-control approach,
calculating the optimal control signal for the affine dynamic model of the robot. This
completely removes the actor network to exploit reduced computational complexity with
faster responses. The simulation is introduced to compare both cases.

Keywords: Nonholonomic dynamic mobile robot, fuzzy neural network, Adaptive Dy-

namic Programming(ADP).

89

1. INTRODUCTION

A nonholonomic mobile robot kinematic model is one where the state depends
on the taken path. It is one of the most well-known benchmarks in the literature. This
paper considers a two-wheeled dynamic, nonholonomic model. There are three classes of
mobile robot navigation [1]: tracking a reference trajectory, following a path, and point
stabilization. In this work, the tracking a reference trajectory is considered. To simplify the
nonholonomic tracking problem, the magnitude of disturbances is taken as a small value,
or, in many studies, it is ignored. In this article, we track a reference trajectory with various
values of disturbance to emulate a real robot. Fuzzy logic handles these uncertainties at
various levels [2]. This work uses a FNN design for the actor and critic networks. In ADP,
the optimal control problems are solved, which allows agents to select an optimal action to

minimize a long-term cost value through solving Bellman’s equation [3] and [4]:
J(x) = QY UG u(x)), (1)
k=t

where (.) is the expectation symbol, J(x;) is an value function (cost-to-go value) for a
state vector (x € R") at time step t, v € [0, 1] is a constant discount factor, U(xg, ux) is an
instantaneous utility cost function at time step k for x after applying a certain action vector

u € R™, and F is a final time (independent actions). Equation (1) can be rewritten as

J(x;) = (U(xk, u(xy)) + yJI(x141)), (2

where J¥+! is an optimal value function for the next state (x;4+1), which can be obtained
according to the environment model function (f(x;, u#;)). Reinforcement learning (RL) and
ADP are used to train the actor network to give the optimal actions based on minimizing the
cost-to-go value that is produced from the critic network. The actor function approximator

(A(x;, wg)) is denoted for the actor network with w, parameters. This function produces

90

u; after feeding it by the input system state at time ¢ (x;), while ¥#(x;, w.) is the function
approximator for the critic network with w, parameters, which produces a cost-to-go value
for x;. After full training of these networks, the optimal action values are obtained from the

actor network as:

uf = arg min(U(x, u(x) + Y9(Crre 00)). 3

ADP has three fundamental approaches: heuristic dynamic programming (HDP), dual
heuristic programming (DHP), and globalized dual heuristic programming [5] and [6],
which consists of three approximation function networks (actor, critic, and model networks)
that provide decision making, evaluation, and prediction, respectively. If the approach has
only actor and critic networks, it is referred to as action-dependent (AD), resulting in the
terminology ADHDP for HDP and ADDHP for DHP. In [7] and [8], the authors implemented
an online learning value function for ADHDP and ADDHP, respectively. Improving online
ADP learning is done by adding dual critic networks for HDP and DHP [9] - [11]. Many
applications have used ADP techniques seen in [12] - [15]. Fairbank and Alonso [16],
inspired by TD(A) approaches [17], extended DHP by including a bootstrapping parameter
(4). They called it a value gradient learning (VGL) with A for eligibility traces. In this
work, we use VGL(A) with FNN to control a nonholonomic mobile robot to follow any
given reference trajectory. The remaining sections are organized as follows: Section 2
presents fundamental preliminaries for dynamic mobile robots, ADP, and FNN. The mobile
robot control by FNN-based VGL(A) is presented in Section 2. The simulation results and

conclusion are presented in Section 4 and Section 5, respectively.

2. FUNDAMENTAL PRELIMINARIES

2.1. Dynamic Modeling of the Mobile Robot. A differential-drive mobile robot
contains two independently driven wheels mounted on the left and right of its chassis

at the same axis, and a castor wheel (free rotating wheel) at the front for balancing the

91

mobile robot. An inertial Cartesian frame represents the position of the mobile robot, while
q = [xe Ve 6]" is the set of coordinates for the center of mass of the robot and the robot
orientation with respect to the Cartesian frame. The two independent driving wheels are
provided with the necessary torque for generating a left angular velocity (w;) and a right
angular velocity (wg), which in turn generate a linear velocity (v;) and angular velocity (v;)
for the mobile robot as follows:

Vi 0.57 -0.57| |wg

2 2)Mt

V2

where 7 is wheel radius and b is half of the robot width. The different forces for the mobile
robot mechanical motion are considered in the literature for the dynamic model but not the
kinematic model. The kinematic model is considered only for the motion. As stated in
[18] - [20], the dynamic model of the mobile robot has 77 dimensional configuration space,

which subjects to r constraints as described by

M(q)j + C(q,4)d + F(¢) + G(q) + 14 = B(q)u + A" (¢q)¥, (5)

with A(g)g = 0 as a constrained kinematic wheel, where ¢ € R” is coordinate vector,
M(g) € R™" is a is a symmetric positive definite inertia matrix, C(g, §) € R™" is the
centripetal and Coriolis matrix, F(§) € R" is a surface friction force vector, G(g) € R”"
is a gravity vector, 7; € R" is a bounded unknown disturbance, B(g) € R™" is a input
transformation matrix, u € R™" is the input torque vector, A(g) € R is the full rank matrix
associated with constraints, and ¥ € R” the Lagrange multiplier (constraint forces) vector.
In this case study, There are two control inputs, which are a left torque (77) and a right
torque (7g). Since the system does not change in vertical position and has a constant value

for potential energy, G(g) is set to zero. The viscous and coulomb frictions are commonly

92

used to represent the effecting of the fraction model by the following description [21]

Jw) = fiw + fL(w), (6)

where w is the angular relative velocity between the contact bodies, f, > 0 is the viscous
parameter, and f, > 0 is the coulomb parameter, and I'(.) is a sigmoid function. In order
to reduce the dynamic model as in (5) from 7 to m = 7ii — r with riding the Lagrange
multiplier out, equation (5) is pre-multiplied by spanning the linear independent null space
of the A(q)¢ matrix, which is denoted as Jacobian matrix of S.(¢) € R™™. In this case, a

kinematic equation is given as follows:

q = Sc(Q)V, (7)
where
Xe cos(0) —dsin(0)
Vi
g =1v.|> Sc(q@)=|sin(@) dcos(®) |- V=)
. V2
0 0 1

and d is a center of gravity. The final elegant affine dynamic model is obtained by substituting

the kinematic equation (77), its derivative (§ = S.(¢)v +S.(¢)v), and (75) into (76) to obtain
b= =M(g)" (Vg q + F(g) + 7) + (9)'7, ®)

where M(q) is an invertible matrix, which is defined

Ib
_ mr + 2¥ 0
M(q) = 7 2 :
0 mrd?® + Iy + 212, — — 4m,,d>

YY ’72

93

0 —dvy(mr — 2m,,) TR
Se(q) = R e
dvo(mp — 2m,,) 0 TL

_ 1| fvr+wo) + £o(A(wR) + Alwy))
F(g) =- , and
" 1bfy(wr = wr) + bE(A(WR) — A(wr))

0.5 -0.57| | %

T=Br= F 7 (A(.) is a sigmoid function).

2 2)L™
All mobile robot dynamic mode parameters will be defined in the simulation results section
in Table 1. The unknown disturbance 7, is bounded as ||7;||. The variables of 7; and 7 are
unknown disturbances impacting on the left and the right wheels, respectively.
2.2. DP/RL Algorithms. This section describes a simple view for the development
stages for ADP/RL approaches. Throughout this work, all defined vectors are columns,

and all time step subscribed on variables is summarized by subscripting them on the

\7()('[, WC)7 Al = A(X[, Wa)aﬁ = f(xl" ul)’ Ut =

first function variable; for instance: 7,
U(xpuy) = Ulxy, Al(x,w)), and g1 = &(f(xp, us), w.). Backpropagation through time
(BPTT) by Werbos [23] is the first stage used in adaptive/optimal control. For any given
trajectory, this approach efficiently finds an optimal controller by combining the BPTT with
gradient descent parameters. The update for this approach is done as a partial derivative
for the value function as in (2) with respect to the approximation parameters for the control
function. Another stage in ADP/RL algorithms uses the critic function to determine the
optimal policy [5], [6], [23],[24]. The HDP algorithm is connected by the critic network to
the action network through the model function. Because the TD algorithm by Sutton [17]
has less complexity and more accurate than conventional prediction learning methods, we
use it to update the critic weights. The minimizing TD-error between the approximate-value

function (¥;(x, w.)) and target-value (¥,) is used for updating citric weights. The weights

94

for the actor network are updated for « learning rate as follows:

o,

Wq = Wq — a@a)a’)
where —— is given as follows:
Wq
(9\71‘ aAt (9Ut (?f, 8V,+1) 6\7“_1
= . 10
s 8a)a(ou " ou ox 7w, (10)

Equation (10) is used also to update the actor network for the DHP algorithm, which is
equivalent to equation (10) from [5], unlike HDP with single output. The way to update
the action weights in HDP (or ADHDP) is by fixing the model and critic weights and then
applying g—‘;i (i.e., a constant) as the backpropagated error signal. There are two different
ways to implement the critic network for DHP scheme [16]: the scalar-critic function, which

the outputs from critic network represent as the partial derivatives of the value function with

respect to the vector of system state () and the vector-critic function, which the outputs

o,
represents by g (identical to 8_) where g is the approximate-value gradient function. The
X
critic network weights in DHP are updated by minimizing the TD-error between g and

target-gradient value (g) as follows:

F
0% _ .
Y (For- (= 20), (an
where g; is given as
_ oU; . O0f;\ 0A;(0U; . 0f;
= 12
8 = (0 7’8t+1a) Ix (on ?’gt+la) (12)
03

This TD-error is equivalent to equations (6) and (7) from [5]; the Jacobian matrix oo

can use either the vector-critic function, which is called as a DHP style critic, or a scalar-

critic function (5) which is called a GDHP style critic, where GDHP comes from

95

globalized DHP. The GDHP uses the function value and its derivatives by combining both
HDP and DHP. The ADP methods discussed thus far rely on differentiated models of
acceptable accuracy. This accurate model function that interacts with the learner might not
be available a priori. Si and Wang [7] do not use any model function, preferring real-time
learning during interacting with the environment. Their approach is roughly like ADHDP,
but with a model-free. Instead of using a model, they store the previous value function and
combine with the current. ADHDP uses two inputs for the critic network [x;, u,]”, unlike
model-based, which use only the x;. VGL(A) is a further step in ADP/RL fields introduced
by Fairbank and Alonso [16]. VGL(A) extends DHP by including a bootstrapping parameter
(). It is similar to Sutton [17] by extending TD(0) to TD(A), but with the DHP approach
(VGL(0) is equivalent to traditional DHP). In this work, the FNN is applied in the VGL(1)
approach to control mobile robot motion in noisy ambiance.

2.3. FNN. Since the FNN approach combines the advantages for fuzzy and pure
neural methods, it has become a popular research topic [25]-[27]. The FNN is composed
of five layers (Fuzzification / premise, firing strength, normalization, defuzzification /
consequent, and output) with nodes for each one as in [27] and [28]. The corresponding [th
if-then rule from the fuzzy logic system with multi-outputs can be written as follows:
Rulel:IF xi=A, AND..AND x, THEN f/=3L,(chxi+c). where
All. represents the fuzzy linguistic variable for /' rule, i = 1,2...n (n is number of inputs

to the system, which is equaled to the number of mobile robot dynamic states); and fjl €

Vij) € R™ is the 7" output from the system and V(Jj) is the output universe of discourse.

l

L C(ln+1)j e R for " rule, j = 1,2...m (m is number

The consequent parameters are ¢
of outputs from the system, which is equaled to the number of input torques to the mobile
robot model). In this work, we used backpropagation gradient to update both premise

and consequent parameters. Further detail about the structure FNN for VGL(A1) will be

discussed in the next section.

96

3. MOBILE ROBOT CONTROL BY FNN-BASED OF VGL(1)

In this section, a novel simple first-order Sugeno FNN structure is designed to adapt
with the critic and actor networks for controlling the robot trajectory.

3.1. VGL(A) Structure Learning by Using FNN. Fig. 1 shows a new structure
for FNN by converting the single output structure of FNN [27] into m outputs with only
three layers (premise, hidden, and consequent layers). Instead of connecting weights as a
conventional neural network, the premise (O'il, mf) parameters for the Gaussian membership

function and consequent (cij,. parameter coeflicients for a first order linear

!
c 5 Clur)))

function are used. The Gaussian membership function corresponding to the linguistic label

of the input variable is given as follows:

1 /X — m; 2
2 (o!) (13)
ﬂAf ('xl) =e€ t s
where the premise parameters (o7 € U;, m! > 0) are the mean and variance parameters at

I'" rule in i’ h input fuzzy set (u 41(xi)), where U; € R" is the input universes of discourse.

The approximation function for forward pass can be expressed as follows:

i=1 i l (14)
(li)
sl = S(pl) =e 2 ,
R Sl
g =) sn=Hisp)== (15)
=1 q
R
vi=) fin, (16)

=1

wherei = 1,2...n,1=1,2...R (R is the number of rules), and j = 1,2...m. The partial

97

Premise Layer Hidden Layer Consequent Layer

Figure 1. Schematic diagram of FNN used in ADP. Premise (O'l.l, mf) and consequent

(cij, cees cfn +1)j) parameters are updated by using the backpropagation gradient algorithm.

The weights between the premise and hidden layers are always one.

derivatives of the total output (y) with respect to ci}. and Cén+1)j for [rule are given as
follows: 5
_)l; - thl,
(9c1j
(17)
ay hi
l b
ac(n+1)j

while partial derivatives of the y with respect to O'l.l and mll for [rule are given as follows:

0 noo L=k (i —mD)
3_,:,:4 :ijz(o ’ (18)

= ql (O.il)z

dsigma’ = Iq (O‘l.l)3

i

m ol C_ mh)2
6y Zfl(l h)sl(xl m,) , (19)

98

where y is the sum of squared m errors. Palit et al. [29] presented the details about the
backpropagation output signals and chain rules for multi-input multi-output neuro-fuzzy
network. A partial derivative of the y with respect to the inputs x; (the i"" state) for I rule is

required for implementing the VGL(A1) approach, which is given as follows:

!
2wl Zfz(l—h)s (i = mi), 20)

(o2

8 ,
2 is yielded from the FNN structure by the propagated back output signal to the
Xi

consequence fuzzy part (first term of (20)) and to the premise fuzzy part (second term of

where

(20)).

3.2. Mobile Robot Control Based on FNN-VGL(1). The structure of FNN shown
in Fig. 1 is similar to the multi-inputs multi-output conventional neural network; therefore,
we assume the premise parameters for the Gaussian membership function as the first layer
weights, while the last layer weights are the consequent parameter coefficients for first order
linear equations. The weights between the premise and consequent layers are always one.
The FNN is applied for both critic and actor networks, which can be calculated for the
forward pass as in (14) - (16). The total weights for critic and actor networks are denoted as
w. and w,, respectively. Finding an optimal actor network makes the mobile robot follows
a continuous differentiated desired trajectory with minimum torque values. This situation
subjects the influences of unstructured disturbance signals (7,;) and surface frictions (F).
Asin (7) and (8), the mobile robot has two states: v; and v,. These two states are denoted as
column vector v; at t. These states are entered into the actor and critic networks, as shown
in Fig. 2. The two outputs of the actor are a right torque (7g) and left torque (77), which are
denoted as column vector 7; at . The two approximate-value gradient functions at ¢ from the

ov av
actor network are equal to (9_l for v; state and 8—t for v, state. Since the DHP style critic

Vi V2
o, o,
isused, — and — are denoted as g,, and g,,, respectively. In other words, the input state
Vi 1%}

for both critic and actor networks is x = [x1, x2]7, which is equivalent to v; = [v{(¢), v2(£)]”,

99

while the output values for the FNN (y = [y1, y2]7) are &, = [8,,)(¢), &,(t)]* for the critic
network and 7, = [rg(¢), 7.(t)]" for the actor network. We define a quadratic utility cost

function as follows:

U(v,7) = (v = va) Qv = va) + 7/ RTy, 21

where 0 = Q7 > 0 e R™, R =R" >0 e R™™ and vs = [v41, va2]", which has a constant
value for all finite horizon time. v, is a desired linear velocity, and v, is a desired angular
velocity for # = 0 to F' — 1 where the cost function at the final step (+ = F) is only equal
to the first term of (21). The main objective of this cost function is minimizing the error
between actual and desired velocities and minimizing the torque energy signals near to zero
values. The diagonal matrix elements in the weighing matrices (Q) and (R) determine the
value of minimizing the trajectory tracking and the energy, respectively.

3.2.1. Critic Network Training Algorithm. A new definition for ¥;, which is

identical to A-Return as in [28], is presented as follows:

B) = U+ y (A5 (0) + (1= D7). (22)

Equation (22) is related to Q-learning(4) and Sarsa(A) that plays an important role in the
learning algorithm of RL. Fairbank and Alonso [16] have derived and adapted the VGL(A)
algorithm from (22), which has improved efficiency of learning control problems. The value
learning as in (22) for HDP(A) should supplement a stochastic exploration (a randomization
of trajectory starting points, or policy) for learning in a deterministic environment to reach
into a local optimization. In VGL (or DHP) methods, a single trajectory needs to obtain a
local optimization without requiring any exploration approach. The sequential environment
is used in this work by storing all vector states and vector actions in the forward pathway.
The backward pathway is used to update the critic network from the final storing state until
the first one. Equation (11) is used to update the critic network weights for the VGL(1) by

minimizing the TD-error between g,(v, w.) and g;, as shown in Fig. 2, whereas g; is defined

100

— — EXG)
F ta q(®) = |¥.(D
A | 6(t)
se@ 4 [q
Dynamic Model Vppq = i A
of The Mobile Greq = %
Yt ol Robot (Eq(8)) Critic |» v
of. Joci8f. Jov
|1._:’ o4, | fe/ ik fe/)

Eq (23)

:
Sl
i
[T
[
e
|
|
4
i
2l
S —
=]
52

i

=Y
[+

I
1]
g

Figure 2. Adaptation in VGL(A) for the mobile robot trajectory control tracking. In general,
forward pathways are represented by the solid lines while pathways of backpropagation are
shown by dashed lines, and the small solid black dots represent a connection. The sequential
environment is used in this work by storing all states (velocity vectors) and actions (torque
vectors) in forward pathways. The TD-error between g; and g;, as in (11), is used for
updating critic network weights with applying (23) for g,. MUX box is used to feed (23) as
one thick dashed line by gathering the signals. The actor weights are updated by applying
(24). For robustness testing, various values of F and 7, are injected into this dynamic model
to examine the influences on 7(¢). The robot pose trajectory (x., y., 6) is obtained by using
the mobile robot kinematic equation (7) with fourth order Runge-Kutta integration for the
derivative of the coordination and orientation of the robot. The Runge-Kutta integration
also uses to solve the dynamic model (8) within 0.01 sec for the sample time.

101

as follows:

i of Of A, oU, dU, dA,
=y ==+ L \K 23
' y(0v+878v) +(8v+87' av)’ 23)

where K = Ag;+1 + (1 — 2)g;41. All the partial derivative terms in (11) and (23) exist. The

0A 03
partial derivative terms related to FNN are —- and 8
ov 0w,

by using (20) to replace the FNNs’ output vector (y) with 7 and the FNNs’ input vector (x)

0A
. The term 8—’ is implemented
v

98
ow,
critics’ weights are premise and consequent parameters, and replacing the FNNs’ output

with v. The term is implemented by using (17)-(19) with taking into account that the

vector (y) with the value-gradient functions.
3.2.2. Actor Network Training Algorithm. As shown in Fig. 2, the actors’

weights are updated by applying &,(v, w.) instead of ¥(v, w.) in (9), and the recursion

0g;

expanding of A(w,) = 5 is defined as follows

a

0A; (0U; _ 0f;
Mwa) =)y o= (S + g SE).
. . A; . Ar
The terms in (24), which are related to FNN, are and g,.1. The term is imple-
Wq Wq

mented by using (17)-(19) with taking into account that the actors’ weights are premise
and consequent parameters and replacing the FNN’s output vector (y) by 7, while the g;+1
term is the outputs from FNN at 7 + 1. Because the form for this dynamic system is an
affine system with the quadratic utility cost function, the actor network can be omitted. As
described by Dierks er al. [30], the optimal torque signal at time step t4 (7,"), which is
equivalent to the right side of (3), can be derived. To calculate the optimal torque in the

VGL(1) approach, we subject the gradient of HamiltonAASJacobidAASBellman to zero as

follows:
0_’1 . avaQvt + TtTRTf 76/1(‘7;1 + (1 - /l)f}z*ﬂ)
Zr =0, 25
3‘1’, n‘}'}n (87’; " 07—[) ()
. _ZR‘l(Gle)Ta(VZ] + (- (26)
t 2 (9‘1'; aVH_l ’

102

o= -LR (#10)'B) (g, + (1 - 08, @7)

where g | and g7 | are the optimal target- and approximator-value gradient, respectively.
The actor network, in this case, is always fully trained to generate the optimal torque vector.
Case study number two in the simulation results section will demonstrate that this method

has the faster response comparing with the actor/critic method

4. SIMULATION RESULTS

Two case studies are presented in this section to demonstrate the performance of
the mobile robot behavior with VGL(A) technique. In both cases, we build a simulation
for the mobile robot dynamic model to represent (8). Table 1 presents the parameters
that are used to implement the model. The common parameters used in both two cases
are: The adaptive learning rate for critic and actor networks starting at 8 = 10{ — 6) and
a = 100 — 4), respectively, and these values decrease after each 10th iteration according
to B(ora) = B(ora) * 0.999 when they exceed 800 iterations. The number of maximum
iterations is set to 10000. The sample time, which is used the fourth order Runge-Kutta
integration to solve the robot dynamic model, is set to 0.01 sec. The discount factor (y) is
set to 0.95. The initial weights for premise and consequent parameters are set within the
range of [-5 5] with R = 240. The average of three successful trails is recorded. The average
expression is represented the average for all generated data in one iteration for the error,
approximate or target-value gradient, and control torque singles; for instance, the error or
the mean square error (MSE) for v; at certain iterations is (Zth 10.5(vgl - v1())?)/T, where
T is the total number of sampling time, which is 100 for 1 sec.

4.1. First Case (Effectiveness of 1 value). This case shows the comparison for
state trajectories between 4 = 0 and A4 = 0.9. The initial system state values are assigned
to v(0) = [2 — 2]7, and the desired velocity vector is v4 = [00]” during 1 sec. The weight

matrices for reinforcement instantaneous signal (Q and R) are set to the identity matrices. In

103

Table 1. Parameters of the dynamic mobile robot

Symbol | Description | Value
mr The mass of chassis 10kg
My, The mass of each wheel 2kg

r The wheel radius 0.05m

b The half of the robot width 0.1m

d The center of gravity offset form rear axle 0.1m
III;Y The wheel moment of inertial lkg.m?
It The platform total moment of inertia Skg.m?
f The viscous friction coefficient 0.001N.m.s
fe The Coulomb friction coefficient 0.001N.m.s

this case, there is not any impact for the friction coefficients (f, = f. = 0) and unstructured
disturbances (f; = [00]7). Fig. 3 (a)-(c) show the control performance at A = 0. The
system trajectories for both velocity states over time are demonstrated in Fig. 3 (a). Fig.
3 (b) presents the average of MSE for both velocities over iterations. Fig. 3 (c) shows the
average torques for the left and right wheels over iterations, which are bounded to |3 x 107|.
Fig. 4 (a)-(c) show the performance at 4 = 0.9 for trajectory, the average of MSE, torque
signal values which are bounded to |0.5 x 1077|, respectively. Fig. 3 and Fig. 3 demonstrate
the effectiveness of bootstrapping parameter. For instance, the MSE for the mean of the
two states in the final iteration for 4 = 0 is 1.269¢e-04, while it is 2.765e-08 for 4 = 0.9.
Moreover, Fig. 3 and Fig. 4 demonstrate that a high value of 4 makes the system more
stable and fast learning. Fig. 5 (a)-(c) show the comparison performance between 4 = 0
and 4 = 0.9 in depth for the average of MSE, torques, and the value function as in (1),
respectively. The controller with 4 = 0.9 reaches to the near-optimal stable value function
(J = 7.2) around 450 iterations while the controller with A = 0 requires 2200 iterations.
4.2. Second Case (with/without Actor Network). The optimal torque vector is

used as in (27) instead of the actor network. The critic / optimal-torque approach is replaced

by a full training actor network. Because actor and critic networks (critic/actor approach) are

104

e e it e Sttt sttt Desired Trajectory i
————— Actual Linear Velocity
I e e e Femmmmm- 1| ————-— Actual Angualar Velocity [

Velocity states [m/sec|

25 T T T T T T T T
| HE bt MSE for Linear Velocity State
" H H — MSE for Angular Velocity State
i 0.06 H
ZH-----t------4 - T S S R R R bt bbb bl —
I:. 005 ,
. y
H 001 k
L e i ST S £ S —
[003 \
] 1y H
= 1 5
s 1 002 LY
3 \
1 777{;77 it 111} P R SN SN SO e S SO 1 e s M]
] AN
" 0
)
‘l
0.5 F----- E------d - 1500 2000 2500 3000 3500 4000 4600 B0OQT -~~~ - - - --f----- —
: i o
, i H 7
- i e H
o HEP St H 1 Bl 1 H H H
o 1000N 2000 3000 4000 SE00 6000 7000 8000 9000 10000
- e e . — = =Iferation
(b)
Average Torgue Control Signals per Trajectory without Disturbance at . =0
06 T T T T
; ————— Right Torque
05 —------F------ - e Left Torgue
[37) S S — - i e ——
0.3 bmmmmmcbo 1 S RPN SRR IR SR
= i
=H O2Z------f------ - | B e e e ST DI
= Rl 2l : :
Z 01F------b------ R o e et R
& ppas—— : :
Ll S 7
S~ 4 i :
I e et S e e e e e S
I, %5~) S s s
-0.3

i i i i
a 1000 2000 3000 4000 5000 6000 7OOO S000 9000 10000
Iteration

(c)

Figure 3. The actor and critic performance at 4 = 0. (a) Typical system trajectories for both
velocity states over time at last stable learning iteration. (b) The average of MSE for both

velocity states over iterations. (c) The average torques applying to the left and right wheels
over iterations.

105

2 Desired Trajectory i
Actual Linear Velocity
1.5 Actual Angualar Velocity [
1 o e
=3 H : H
= H H H
E OSoidee oo i et S R P i e n
2 - s : :
E O g g ' :
o 1 . .
= H :
R - e B Sty | AN Rt SRl S S 1 S St S S Sy i Il e i —
= :
= H
= i H
A Pl S -
-1.5 SR S s s s S o o s SN e e i —
2 - QLSS S SRR ""..'.’:'L—'."“ TR SR AR BAE - ————— ;_ ______ IL _____ |
0 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Tl sec
e e
MSEfor Two State Trajectories at 4. =0.9
0.25 T T T T I T
| —— MSE for Linear Velocity State
| H MSE for Angular Velocity State
5 H T T T
[J-2 e e i i ;
008 -b-mmrmom b
015 ----- é----"““"’ I S I e ’ """]
= Ll et R it SUEEEREEEEE
e 3y
0.1 [RS S L - —
005 F-4----3--- of e TR - —
li,‘ " Lon i 1000 1500 2000 2500
ETTT i~ H i H H H H
D L L L L L 1 L 1
o' «~ 1000 2000. ‘3000 4000 5000 6000 7OOO 8000 9000 10000
T Iteration
(b)
Average Torque Control Signals per Trajectory without Disturbance at 2. =0.9
-3 T T T T T T T T
i é : : : ————— Right Torque
02 ' H : : ' Left Torque
=
B
=
]
=
=]
]
0.3 ------ R | i
B I i H
04 1 | — 1 1
[} 1000 2000 3000 4000 5000 6000 7O0OOO 8000 S000 10000

It7ﬁion

Figure 4. The control performance at 4 = 0.9. (a) - (c) has same descriptions for (a) - (c)
as in Fig. 3.

106

25 T T I I I T I I I
— Average MSE for Two State Trajectories at A =0
_____ Average MSE for Two State Trajectories at A =09
Py I S S L T T T T T T]
006
0.05
[,
004
E— N
(i}
_ 003
I
o0z B S
001l -\-‘h.:‘e‘_._
S —
e ——— |
P
—— OO R60 1500 5000 5160 2260 2306 3100 2506 D600 2700 3800
*___:_ ~i Heration
(v}
o 1000 2000 3[’00 4000 5000 6000 Too00 8000 S000 10000
== Iteration
(@)

Comparison between Average Torque Control Signals
(Right and Left Torques) without Disturbance at A =0 and A =0.9
0.5 T T T T

: H Average Torque Control Signals at A =0
04f------ [N Fommmad =———— Avaerage Torque Control Signals at A =09

Torque[N.m| ()

o3 i i | i i i i i i
o 1000 2000 3000 4000 5S000 6000 7OOO SO000 9S000 10000
Iteration
(b)
Comparison between Average Total Cost-to-Go
Function Value at 2 =0 and A =0.9
160 T T T T T
Cost-to-Go Value at A =0
140 f------ toom--- tmmmmo tmmmmmm s Fomme T Cost-to-Go Value at 3. =0.9
w2of------ jommee- f-mmmnnd e fomnen fomeee- g-mmme- dommmeee fmeee fommma
] e i S R s S e
— F-70J| ' TSP | [dmmm e m ;_ | S [A, —]
60 | N-ioaiio I T T Lo S .
] i i i i
40 R it Rk Bl S E e bo----- Fo---- —
20 S S N —————_—_— Eoee- fooooo]
o 1 T 1 1 1 1 1 1 1
o 1000 2000 3000 4000 5000 6000 7VOOO SO000 S000 110000

Iteration

Figure 5. Comparison of the average performance at 1 = 0 and 4 = 0.9. (a) The MSE for
both velocity state errors. (b) Requirement torque values. (c¢) The function value, which is
calculated from (1).

107

simultaneously trained, interference between these networks may occur. We demonstrate
that the critic/optimal-torque approach is faster than the critic/actor approach to reach into
stable behavior, but it is absorbs less noises. Without the actor network, the difficulty of
unpredictable intervention can be skipped. This study case shows full circle trajectories
at 4 = 0.9 with disturbances. We use three layers multilayer perceptron neural network
(NN) with 85 neurons for hidden layer for comparing with FNN. The other requirement
learning parameters for NN can be found in [15]. Both FNN and NN have almost same
behavior with noise-free environment (f, = f. = 0 and 7; = [00]”) for both critic/actor
and critic/optimal-torque approaches. While NN becomes gradually worse response with
increasing the amplitude of the noise signals. Fig. 6 (a), Fig. 7 (b)-(c) and Fig. 8 (d)-(e)
demonstrate the performance for critic/actor and critic/optimal-torque approaches to follow
circle desired trajectory with a large impact of disturbances. The friction coefficients set to
fy = 0.2 and f, = 0.32, and the unstructured disturbance is bounded to ||74|| < 113.13 via
setting with +80 bounded random value for both 7; and 7. In this case study, the desired
velocity vector is vy = [3.5 6.5]". Fig. 6 (a) X-Y trajectories for the mobile robot for NN
and FNN, where the optimal torque for the FNN approach is the best performance. Fig. 7
(b) shows the average of MSE over iterations, which is 0.09 + 0.02 for the FNN actor/critic
approach and 2.6 + 0.0001 x 1073 for the FNN critic / optimal-torque approach, while for
the NN networks, the MSE’s are 0.4 + 0.3 and 0.08 + 0.09 an, respectively. Fig. 8 (c)
shows the absolute average values for the left and right control torques over iterations. In
the stable region of iterations, the torques are bounded 1.33 + 0.02 for the FNN critic/actor
approach and 1.45 + 0.1 for the FNN critic/optimal-torque approach. While for the NN
networks, the absolute average torques are 3.1 + 0.13 for critic / optimal-torque approach
and 2.4 + 0.17 for critic/actor approach. Fig. 8 (d) shows the FNN networks for right
and left torques over time in upper and lower figures, respectively, at the stable learning
iteration for both critic / actor and critic / optimal-torque approaches. Fig. 8 (e) shows the

value function for the FNN (1), which declines until iteration number around 300, where

108

12 | . ! ! ! !
E i ‘‘‘‘‘ :::.‘_. T ...-.:----..i-::-""h_ E i
RS JUP L0, v o e (I P U B
1 : - : ; TR :
! J’r' '-“f ' | ' ,_'.."\.‘»\ '
: o i m———————— PN
L e e B N
P X 4"‘ L O OB, S .'v' 3.
08------------ =7 "'""';,?"' """ h ::‘-" """"" R " f‘s'; """" A A bbbl
v A ‘,p I .:.;'-] ' "-:‘._,_-] Y '|I \]
v, M - - ! ' Sl " N
»' P ! | S N A
4 ;o : : s A |
—_— 1 1 ¥ o ' I ' . \ ' '.. Y
E 06[----------] L . TS emme e nanas heemeacannanas L /ChL i IR
-9"- I : ! (ﬂ I P .. l ' n 1 : H i
B g} H - Disired Trajectory R
= 3 £ 1 HEB
T 1 | # | —©— Actual NN Trajectory with Critic/Actor R
o 1 1 41 [T
S 04l R I Rt Actual NN Trajectory with CriticiOptimal-Torque | & f @ &
= VT T Actual FNN Trajectory with Critic/Actor D7
1 £} 175
'\ W W | — Aclual FNN Trajectory with CrilicOpiimal-Torque | § 7
PN : : i
1) (I R e menens P memmnnae R S -
- ' e, ! ' ' I '
! k! ! ! . !
' n : : :
: A ' : e r :
] N A P : B L.
! i E ! E !
02 i i i i i i
0.8 0.6 04 0.2 0 0.2 0.4 0.6

x-coordinate [m]

(a)

Figure 6. Critic/actor and critic/optimal-torque approaches set to follow a circular trajectory
at 4 = 0.9 with disturbances for NN and FNN. (a) The X-Y trajectories for the mobile robot.

it becomes stable and equal to 50 + 3 for the critic / optimal-torque approach, while it is
50 + 15 near iteration 800 for the critic/actor approach. While for the NN networks, the
stable value function are 90 + 19 near iteration 600, and 90 + 24 near iteration 850, for critic
/ optimal-torque and critic/actor approaches, respectively. ~ As shown in Fig. 7 (b) and
Fig. 8 (e) for FNN approach, critic/optimal-torque is faster and has better performance than
the critic/actor technique because it reaches into the stability of the optimal cost function
value with minimum MSE at iteration number 400, while the critic / actor technique needs

1200 to become stable. However, the critic / actor technique has better performance with

109

45 T T T T T T T T T
Average MSE for Two States with Critic/Actor for N
40 ————— Average MSE for Two States with Critic/Optimal-Torque for NN [+
——-—-= Average MSE for Two States with Crntic/Actor for FMNN
35 [wmeeeeeee Average MSE for Two States with Critic/Optimal-Torque for FNMN [
5 5
B N O A N A Pt
Sli][] 1000 12il)0 'IAi()O 1Sil][] Y e e o= —
Iteration H
o o o ' : : :
0~ JQao0e- “2000 3000 4000 5000 6000 7OOO 8000 9000 10000
lteration
(b)

Comparison of Absolute Average Torque Control Signals(Right and Left Torques)
with and without Actor at . =0.9 with Disturbance for NN and FMNMN
30 T T T T T T T

Average Torque Signals with Critic/Actor for MM
————— Avrerage Torque Signals with Crtic/Optimal-Torqgue for NN
25 - g--] =m————- Average Torque Signals with Critic/Actor for FININ
""""" Average Torque Signals with Critic/Optimal-Torgque for FINM

— 20 -4 ---

i3
H I i |
o e L
5;’ :. _—— - N -

4 inFeurridrmmaredirouverewas|)

—-r———'-—-'

o 1
0 ~ J000.- “2000 3000 4000 5000 6000 7000 8000 9000 10000
lteration
(c)

Figure 7. Critic/actor and critic/optimal-torque approaches set to follow a circular trajectory
at A = 0.9 with disturbances for NN and FNN. (b) and the average of MSE over iterations,
respectively. (c) The absolute average values for the left and right control torques over
iterations.

110

Comparison of Right Torque Control Signal with and without Actor
at A =0.9 with Disturbance for The Last Leaming lteration

---- R T e T T STl T i e Bkl
B 206 -c-oo i , H H _ H H H i
= H Right Torque for Critic/Actor Approach
x 2------ femmeen] m———— Right Torque for Critic/Optimal-Torque Approach |
2l H
Bﬂ 1.95 |===<= T L T et T T T TP S
1.9 i 1 i I i i i i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time[sec]
Comparison of Left Torque Control Signal with and without Actor at
A =0.9 with Disturbance for The Last Learning lteration
0 T T T T T T | T T
= Left Torque for Critic/Actor Approach
.._&." H | e Left Torgue for Critic/Optimal-Torque Approach
[T I SRRy i
= : :
= : : : : :
Y S fommm e fomme e i S e ettt
0 0.1 0.2 0.3 0.4 0.5 D.6 0.7 0.8 0.9 1
Time[sec]
(d)
Comparison Average of Total Cost-to-Go
Function Value (J) with and without Actor at A. =09 with Disturbance for NN and FNM
3500 T T T T T T T T T
: Cost-to-Go Value with Critic/Actor for NN
3000 —#------ L L N it Cost-to-Go Value with Critic/Optimal-Torque for NN
I Bttt Cost-to-Go Value with Critic/Actor for FNN
: N IECERLELE Cost-to-Go Value with Critic/Optimal-Torque for FNMN
2500 |—&}---

2000

H i i i A S —— M —
4 200 4l 60 WO 1000 1240 1400 1600 1800 20
by

—

i i " " ' "
' "
m:‘t_J . : PP g WY ") S i —— N
I —1

w 5 T T - 1 f 1
Y - J000. 2008~ 3000 4000 5000 6000 7000 8000~ __BDDD 10_006
lteration -——
(e)

Figure 8. Critic/actor and critic/optimal-torque approaches set to follow a circular trajectory
at 1 = 0.9 with disturbances for NN and FNN. (d) The value of the torques over time for
the last learning iteration for FNN. The cost-to-go value is shown in (e).

111

a noisy environment than the critic/optimal-torque. As shown in Fig. 7 (c¢) and Fig. 8 (d)
for FNN approach, critic/actor technique can absorb most unstructured disturbance signals

and friction effects to produce the relatively small amount of torque.

5. CONCLUSION

Tracking a reference trajectory for a mobile robot by using VGL(A) has been pre-
sented. In this work, a new structure of the FNN is used to fit the VGL algorithm with both
critic and actor networks. The effectiveness of the A value, and following trajectories with
disturbance impacts with optimal torques calculation are two case studies. The simulation of
the mobile robot can deal with the impacts of unmodeled bounded disturbances with various
friction parameter values. It successfully reaches the designated reference trajectory. The
critic / optimal-torque technique is faster and performs better than critic / actor technique
because it reaches into the stable value (the optimal cost function value and the minimum
MSE), but the critic / actor technique has better performance with a noisy environment.
The critic/actor technique can address the effects of most unstructured disturbance / friction

signals.

BIBLIOGRAPHY

[1] C. Samson, “Velocity and torque feedback control of a nonholonomic cart,” Advanced
Robot Control, pp. 125 - 151, Jan. 1991.

[2] S. Mitra, and Y. Hayashi, “Neuro-fuzzy rule generation: survey in soft computing
framework,” IEEE Trans. Neural Networks, vol. 11, no. 3, pp. 748 - 768, Aug. 2002.

[3] R. Bellman, Dynamic Programming. Princeton, NJ, USA: Princeton Univ. Press, 1957.

[4] F.L.Lewis, D. Vrabie, and V. L. Syrmos, Optimal Control. New York, NY, USA: Wiley,
2012.

[5] D. Prokhorov, and D. C. Wunsch, “Adaptive critic designs,” IEEE Trans. Neural Net-
works, vol. 8, pp. 997 AAS 1007, Sep. 1997.

sjamw3
Text Box
 BIBLIOGRAPHY

112

[6] P. J. Werbos, “Approximate dynamic programming for real-time control and neural
modeling,” Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches
(Chapter 13), Edited by D. A. White and D. A. Sofge, New York, NY: Van Nostrand
Reinhold, 1992.

[7] J.Si, and Y.-T. Wang, “Online learning control by association and reinforcement,” IEEE
Trans. Neural Networks, vol. 12, no. 2, pp. 264 - 276, Mar. 2001.

[8] Z. Ni, H. He, X. Zhong, and D. Prokhorov, ‘“Model-Free Dual Heuristic Dynamic
Programming,” IEEE Trans. Neural Networks, vol. 26, no. 8, pp. 1834 - 1839, Aug.
2015.

[9] H. He, Z. Ni, and J. Fu, “A three-network architecture for on-line learning and opti-
mization based on adaptive dynamic programming,” Neurocomputing, vol. 78, no. 1,
pp. 3 4AS 13, Fib. 2012.

[10] X.Fanga, D.Zhenga, H. He, and Z. Nib, “Data-driven heuristic dynamic programming
with virtual reality,” Neurocomputing, vol. 166, pp. 244 - 255, Oct. 2015.

[11] Z.Ni, H. He, D. Zhao, X. Xu, and D. V. Prokhorov, “GrDHP: A General Utility Func-
tion Representation for Dual Heuristic Dynamic Programming,” IEEE Trans. Neural
Networks, vol. 26, no. 3, pp 614 - 626, mar. 2015.

[12] G. K. Venayagamoorthy, R. G. Harley, and D. C. Wunsch, “Dual heuristic program-
ming excitation neurocontrol for generators in a multimachine power system,” /IEEE
Trans. Ind. Appl., vol. 39, no. 2, pp. 382 - 394, Mar. 2003.

[13] N. Zhang, and D. C. Wunsch, “A Comparison of Dual Heuristic Programming (DHP)
and Neural Network Based Stochastic Optimization Approach on Collective Robotic
Search Problem,” IEEE Trans. Neural Networks, vol.1, pp. 248 - 253, Jul. 2003.

[14] C. Lian, and X. Xu, “Motion Planning of Wheeled Mobile Robots Based on Heuristic
Dynamic Programming,” IEEE Proceeding on Intelligent Control and Automation
Shenyang, pp 576 - 580, July 2014.

[15] S. Al-Dabooni, and D. Wunsch, “Heuristic Dynamic Programming for Mobile Robot
Path Planning Based on Dyna Approach,” IEEE International Joint Conference on
Neural Networks (IJCNN), pp. 3723 - 3730, Jul. 2016.

[16] M. Fairbank, and E. Alonso, “Value-Gradient Learning,” IEEE International Joint
Conference on Neural Networks (IJCNN)), pp. 1 - 8, Jun. 2012.

[17] R. S. Sutton, “Learning to predict by the methods of temporal differences,” Machine
Learning, vol. 3, pp. 9 - 44, Aug. 1988.

[18] R. Fierro, and F. L. Lewis, “Control of a Nonholonomic Mobile Robot Using Neural
Networks,” IEEE Trans. Neural Networks, vol. 9, no. 4, pp. 589 - 600, Jul. 1998.

113

[19] W. S. Lin, L. H. Chang, and P. C. Yang, “Adaptive critic anti-slip control of wheeled
autonomous robot,” IET Control Theory and Applications, vol. 1 , no. 1, pp. 51 - 57,
Jan. 2007.

[20] T. Dierks, and S. Jagannathan, ‘“Neural Network Output Feedback Control of Robot
Formations,” IEEE Trans. on Systems, Man, and Cybernetics, vol. 40, no.2, pp. 383 -
399, Apr. 2010.

[21] R. Kelly, J. Llamas, and R. Campa, “A measurement procedure for viscous and

coulomb friction,” IEEE Trans. on Instrumentation and Measurement, vol.49, no. 4,
pp- 857 - 861, Aug. 2000.

[22] P. J. Werbos, “Backpropagation through time: What it does and how to do it,” Pro-
ceedings of the IEEE, vol. 78, no. 10, pp. 1550 - 1560, 1990

[23] J. Si, A. G. Barto, and W. B. Powell, and D. Wunsch, Handbook of Learning and
Approximate Dynamic Programming. New York, NY, USA: Wiley, 2004.

[24] D. V. Prokhorov, R. A. Santiago, and D. C. Wunsch, “Adaptive critic designs: A case
study for neurocontrol,” Neural Networks, vol. 8, pp. 1367 - 1372, Dec. 1995.

[25] Y. Liu, Y. Lin, S. Wu, C. Chuang, and C. Lin, “Brain Dynamics in Predicting Driving
Fatigue Using a Recurrent Self-Evolving Fuzzy Neural Network,” IEEE Trans. Neural
Network, vol. 27, no. 2, pp. 347 - 360, Feb. 2016.

[26] X. Luo, Y. Lv, R. Li, and Y. Chen, “Web Service QoS Prediction Based on Adaptive
Dynamic Programming Using Fuzzy Neural Networks for Cloud Services,” IEEE Ac-
cess, Special Section on Challenges for Smart Worlds, vol. 3, pp. 2260 - 2269, Nov.
2015.

[27] F.Lin, P. Chou, C. Chen, and Y. Lin, “DSP-Based Cross-Coupled Synchronous Control
for Dual Linear Motors via Intelligent Complementary Sliding Mode Control,” /IEEE
Trans.Industrial Electronics, vol. 59, no. 2, pp. 1061 - 1073, Feb. 2012.

[28] R. S. Sutton, and A. Barto, Reinforcement Learning: An Introduction. Cambridge,
U.K.: Cambridge Univ. Press, 1998.

[29] A.K. Palit, G. Doeding, W. Anheier, and D. Popovic, “Backpropagation based training
algorithm for Takagi-Sugeno type MIMO neuro-fuzzy network to forecast electrical
load time series,” Proc. of Int. Conf. on FUZZ-IEEE, vol. 1, pp. 86 - 91, May 2002.

[30] T. Dierks, and S. Jagannathan, “Online Optimal Control of Affine Nonlinear Discrete-
Time Systems With Unknown Internal Dynamics by Using Time-Based Policy Update,”
IEEFE Trans. Neural Network, vol. 23 ;no. 7 , pp. 1118 - 1129, June 2012.

114

IV. THE BOUNDEDNESS CONDITIONS FOR MODEL-FREE HDP(1)

S. Al-Dabooni and Donald C. Wunsch
Department of Electrical & Computer Engineering
Missouri University of Science and Technology
Rolla, Missouri 65409—-0050
Tel: 573-202-0445; 573-341-4521 Email: sjamw3 @mst.edu; dwunsch@mst.edu

ABSTRACT

This paper provides stability analysis for a model-free action-dependent heuristic dynamic
programming (HDP) approach with an eligibility trace long-term prediction parameter (A1).
HDP(A) learns from more than one future reward. In this work, we prove its uniformly
ultimately bounded (UUB) property under certain conditions. Previous works present
a UUB proof for traditional HDP (HDP(1 = 0)), but we extend the proof with the A
parameter. By using Lyapunov stability, we demonstrate the boundedness of the estimated
error for the critic and actor neural networks as well as learning rate parameters. Three
case studies demonstrate the effectiveness of HDP(1). The trajectories of the internal
reinforcement signal nonlinear system are considered as the first case. We compare the
results with the performance of HDP. The second case study is a single link inverted
pendulum. We investigate the performance of the inverted pendulum by comparing HDP(1)
with regular HDP, with different levels of noise. The third case study is a 3-D maze
navigation benchmark, which is compared with SARSA, Q(1), HDP and HDP(1). All these
simulation results illustrate that HDP(1) has a competitive performance.

Keywords: Approximate dynamic programming (ADP), model-free, action dependent
(AD), heuristic dynamic programming (HDP), A-return, Lyapunov stability, uniformly

ultimately bounded (UUB).

115

1. INTRODUCTION

Adaptive dynamic programming (ADP) allows agents to select an optimal action

sequence by minimizing their long-term cost:

F
Jx() = O YU (k) u(k))), (1)
k=t

where (.) is the expectation, J(x(#)) is a value function (cost-to-go value) for a state vector
(x € R™) at time step ¢, y is a constant discount factor, and U(x(k), u(k)), denoted as U(k)
for short, is an instantaneous utility function at time step k for x after applying an action
vector u € R". F is the final time. Thereby solving Bellman’s equation [1], we can find
the predicted value fuction. As reviewed in [2], [3], ADP trains an actor network to give
optimal actions based on minimizing the cost-to-go value that is produced from a critic
network. Both networks are approximated by using a multilayer perceptron. A(x(¢), w,)
is the actor network with weights, w, that produces u(¢). The v(x(k), u(k),w.) is the
function approximator for the critic network with weights, w., which produces J(x(t)). ADP
has three fundamental categories: heuristic dynamic programming (HDP), dual heuristic
programming (DHP), and globalized DHP as shown in [2], [4]. Each category uses three
neural networks (actor, critic, and model) that provide decision making, evaluation, and
prediction, respectively. The action dependent (AD) method is another version of ADP with
no model that takes both states and actions as inputs to the critic. Throughout this work, we
use a model-free AD method with HDP. We remove the “AD” abbreviation for simplicity
and because model-free approaches are always AD. Our approach does not require a priori
information about the environment during learning. Online learning happens through
interacting with the environment. In [5], Si and Wang implemented an online learning
value function for HDP, while Ni ef al. [6] also implemented a model-free method with
DHP. Online ADP learning can be improved by adding another network to support the

critic network, which is shown in [7], [8] for HDP and [9] for DHP. Many applications have

116

used ADP. In [10], DHP controlled a turbo-generator more efficiently than HDP. Collective
robotic search problems were solved by using DHP [11]. Lian and Xu [12] applied HDP
to allow a mobile robot to escape from sharp corners. Al-Dabooni and Wunsch [13]
applied HDP with a Dyna algorithm [3] to obtain an optimal path by cooperating multi-
robot navigation. Inspired by the temporal-difference (TD) approach with an eligibility
trace long-term prediction parameter (4)in [14], Fairbank and Alonso [15] (see also [16])
introduced a new ADP algorithm that extends DHP by including a A parameter. They
called it value-gradient learning. We used value-gradient learning to track a reference
trajectory under uncertainties, by computing the optimal left and right torque values for
a nonholonomic mobile robot [17]. Simple interpretation and good performance are two
well-known properties attached with TD(A) as presented in [3], [13]-[24]. But these works
use an extra variable associated with each state, which increases computational complexity.
This paper overcomes the drawback of using eligibility-trace storage, improving simplicity
and performance. This paper also provides a stability proof to determine what suitable
learning parameters (4, y and critic/actor learning rates) should be used during training.
The general stability of ADP is an open problem [25]. Under certain conditions, we use
Lyapunov theory to prove stability for the general case of HDP(A1). Prior contributions [25],
[26] proved stability of model-free learning only for the one-step (4 = 0) HDP(0) case.
We explain the HDP(A) structure in Section 2. Section 3 presents a boundedness stability

analysis; Section 6 presents simulation results, and Section 7 is the Conclusion.

2. STRUCTURE OF MODEL-FREE HDP(1)

2.1. HDP(A) Learning Views. The general nonlinear system model is represented

as:

x(t+ 1) = f(x(t), u(t)), (2)

117

where x is the m-dimensional system state vector and « is the n-dimensional control vector.

HDP solves the recursive form of (1) [27]:
JX (1) = I‘n(iI)l{U(l‘ + 1) +yJ(t + 1)}, (3)
u(t

where J* denotes the optimal value function of (1), and the instantaneous cost (U(¢) € [0, 1])
is bounded. Equation (1) is solved by using a one-step TD, or equivalently HDP(0). As in
[3], the Bellman equation for a one-step-return Rt(l), two-step-return Rt(z), and n-step-return

R"™ are given as follows:

RY = U®@) +yJ(t + 1), 4)

RP =U®Wt) +yU(t + 1) + y2J(t +2), (5)
n
R =U@) +yUt+ 1)+ ...+ ¥ UGt +n—1)+y"J(t +n) = Z YU +K), (6)
k=0
where Rt(i) is an i-step-return value, which is a summation of the instantaneous costs from

t to i. An average of the n-step-return is a technique to achieve fair cost distribution. For

instance, the average calculation of a 4-step-return can be done via a half of 2-step-return

and half of a 4-step-return such that Rf\ e szt(z) + w4R§4), where wy» = 0.5, and
w4 = 0.5. The proportional weights (w;), i = 1,2..., are positive and sum to 1. The

A parameter represents the proportional weights. Therefore, we refer to A as a long-term
prediction parameter. For instance, w; = (1 — 1) to average a one-step-return (4 = 0), which
is equivalent to (4) (Rt(l) = szo); to average a two-step-return, R;4 v(12) _ a)lRt(l) + szEZ),
where w; = (1 — 1) and w, = 4, and so on. In Section 3 Theorem 2, we prove that A should

be within 0 < A < 1. This is in contrast to previous literature, which have different rules for

A value (included bounded from O to 1). The A-return (Rf) is another name for the average

118

of an n-step-return, which is defined in general as:
RY=(1-2) 2R, @)
n=1

For simplicity, we denote the n-step expression instead of the average of n-step-return. The
previous approach is called the forward view of a learning algorithm. Because each step
uses the knowledge of what will happen many steps later, the forward view is not directly
implementable. The backward view provides an extra variable associated with each state,
which is called an eligibility trace (e;(x)). An accumulating trace method by Sutton [14] is
a first technique that updates an e,(x) variable for every step as follows (i.e., Q(A)-learning
algorithm):

o) = yde,—1(x) if x#x() ®)

ydei—1(x)+1 if x=x(t),

where A here is used as a trace-decay parameter. Doya [28] derives continuous time
eligibility traces in more detail. Because the traces increase with repeated visits to a state
in accumulating traces, a truncating method is suggested by Sutton [24] to overcome the
accumulative behavior. HDP(1) does not use any eligibility trace parameters by re-deriving
the A-return as in (7), which is used to train the parameters for the approximate value
function. Fairbank [29] denotes the A-return at time ¢ (Rf) as a target-value (¥(¢)), which is
defined in (8). We rederive R associated with the y value to prove that R is equivalent to

v(t) as follows: By substituting (4) into (7) and assuming the v(¢) = J(¢), we obtain:

n

R'=(1- A)ian—‘([1 YUt + k)] +Y"D(r + n)).
n=1

k=

—- O

©)

=(1- /1)([i P 3 YU (t + k)] + i (1 + n)).
n=1 k=0 n=1

119

Expanding (6) yields

R} =(1 - /l)[/lo(y U®) + 2 (U@ + v U + 1) + 25 U0 + v U + 1)+

= (10)
y*U(t +2)) + +/l°"z yU(t+k)]+(1—/l)Z[/1” Ly (t + n)|.
=0
Further arranging for (10) results in
RY=(1- /l)[yOU(t)(/lo + A+ A% +y U+ DA+ A%)+
(11)

o+ yCU(+ oo)(a‘”)] +(1=-2) i [/l”'ly”f/(t + n)].
n=1

Simplifying the first term of (11), we obtain:
RE=Y [7”U(t OILE DY /1")] A=Y [/l”_ly"f)(t +n) (12)
n=0 k=n k=n n=1
With more rearranging and extraction (12), we obtain:

:Zy”U(t+n)[(/l” A A - (T e +/l°°)]+
n=0

o0 (13)
-2 [/l”’y"”f)(t tn+ 1)],

n=0

and therefore,
R = i |y (U m+ (1= Dyse+ s D) |
n=0
=U(t)+ Ay|U(+ 1)+ ﬂy(U(t +2)+ /ly(U(t +3)+...+
(14)

Ay (U(0) + (1 =)yJ(0)) + ...+ (1 = Dy J(t + 4)) +(1=2)y

J(t + 3)) + (1 =)yJ(+ 2)) + (1 =)yJ(+1),

120

where U(oo) = V(co), which is the instantaneous cost at the infinite horizon terminal state.

The final target-value according to (7) is

5(t) = R} = U(t) + dyv(t + 1) + (1 = Dyd(t + 1). (15)

Using (8), we construct the HDP(A1) schematic, which consists of two components,
the critic and actor, as shown in Fig. 1. The initial target (v(¢)) for the first trial is provided
by substituting 4 = 0 in (8), which is identical to the HDP(0) approach.

Many function approximators are used to implement ADP [10], [17], [31], [32].
For instance, a radial basis function neural network, [32], [33], is one option, but we keep
first-layer weights constant during training for both critic and actor networks; therefore, a
feedforward neural network is appropriate. Because of the elegant and extendable structure

of a fully connected neural network [30], we use it in the actor and critic networks.

x(t) ~
< M critie P2
Actor u(®)
Il y(1—-2)
v :
z™ : U@
x(t) <« 1 ,
System x(0) : /.,' i
$
— 2 BT
-1 4 @(.) =v(.) for
u(t—1D—» ' Critic Initial Iteration
x(t — 1)_? . _.] - - a_(tj L Because A = 0)
¥

Figure 1. Schematic for the adaptation of the novel model-free HDP(A) structure design
according to (8). Forward pathways are represented by solid lines, while backpropagation
pathways are shown by dashed lines. The small solid black dots represent a connection
path. The initial target-values (¥(¢)) are provided by substituting 4 = 0 with (8), which is
identical to the traditional HDP. The TD-error between v(t — 1) and v(¢ — 1), as in (76), is
used to update critic network weights (84), which is represented by red dashed line. The
actor network weights are estimated by back-propagating the prediction error (blue dashed
line), which is equal to the value function (¥(¢ — 1)) through the critic network, and updating
the actor’s weights according to (28).

121

2.2. The Critic Neural Network. The structure of the critic network is shown in
Fig. 2. A fully connected three-layer feed-forward neural network is used in this work. The
output is v(¢) that learns to approximate J(¢) as in (1). The inputs for the critic network are
the action values (u(t), u(¢), ..., uy(¢)) and the system states (x(z), x2(¢), . . ., X, (t)). hc is
the number of hidden neurons, m is the number of system states, and n is the number of
control action values.
oM

The hidden weights are indicated as , which can be represented in a (m +n) X h,

dimension matrix. The output weights are @50}, which can be represented in a A, X 1
dimension matrix.

The activation function for the hidden nodes is the hyperbolic tangent ¢(x) =

(1 —e™)/(1 + 7). The forward propagating output signal according to Fig. 1 and Fig. 2

is
m n
{h Y.
S)(t) = Z w£<ki)x(i)(f) + Z wi(,i}ﬁm)u(j)(t), k=12...,h, (16)
i=1 =
ruo(t) = ¢(say(), k= 1,2,..., he, (17)
he
(1) = Z O r (1), (13)
=1

where s5(;(t) is the kth hidden node input of the critic network, and r(;)(#) is the correspond-
ing output of the hidden node. The weights for hidden (wih}) and output (wio}) layers can

be implemented by back-propagating the prediction error of the critic network, which is

eo(t) = Ut) + Ayi() + (1 = Dyd(e) — (¢ — 1). (19)

The objective function for the critic network is to minimize E.(t) = O.S(ec(t))2 by

updating the value for the weights according to the gradient descent algorithm:

R
Oc(t + 1) =0c(1) + AD(t) = Dc(t) — E¢ 8@c(l), (20)

122

x(t) X (L) (1) Uy (1) | (t)

Figure 2. Schematic diagram of the critic network in HDP(A). As mentioned by Werbos in
[30], this structure is more general than a traditional three-layer feedforward neural network
by fully connecting all neurons. It models a variety of functional forms [34]. We set all
weights that connect input nodes with output nodes to zero; therefore, it is similar to a

three-layer feedforward neural network structure. (Dih} represents a hidden weights, which

connect the input layer with the hidden layer. The output weights are indicated as (DEO},
which connect both input and hidden layers with the output layer. s;(¢) is the kth hidden
node input of the critic network, and r(¢) is the corresponding output the hidden node.

Here, we only apply a hyperbolic tangent threshold function (¢(.)) to the hidden neurons.

and the chain propagation path can be represented as

JE1) _OEr) 99(r)

Ad(1) V() AD(1) @h
Then, the adaptation of the output weights is
et + 1) =0c(1) = Ly (1 = DpeOy A7) + y(1 = DD (belt) + U(1)— o)
O (t = Dee(t = DY,
where ¢, = [r1,72, ..., 7017, ®c = & and 9(r) = oI(¢)¢(t). Following [2], we chose

the hidden critic weights ((I)Eh}) initially at random and kept them constant while updating

the output critic weights (d)éo} = D).

123

2.3. The Actor Neural Network. The actor network is used to generate a near-
optimal policy. Fig. 4 illustrates the structure of the actor network, which is similar to
critic network structure but with multi-output. The system state is the input to this network
(x1(2), x2(), . . ., x,(2)), while the outputs are the actions (u1(t), uz(t), . . ., uy(t)). h, is the
number of hidden neurons, m is the number of system states, and n is the number of

control action values. The hidden weights are indicated as (f)i,h} , which can be represented

in a m X h, dimension matrix. The output weights are indicated as c?)io} , which can be
represented in a s, X n dimension matrix. The activation function for the hidden nodes
is the hyperbolic tangent. The activation function for the hidden nodes is the same as the

critic network. The forward propagating output signal according to Fig. 1 and Fig. 4 can

be expressed as follows:

Pio(t) = Z wc{z(},lc,}i)x(i)(f)’ k=12,...,hg (23)
i=1

g = dpuy (1), k=1,2,..., g (24)
ha

G = D W qu@, =12, (25)
k=1

where p((t) is the kth hidden node input of the actor network, and g()(¢) is the corre-
sponding output of the hidden node.

The actor network weights are adapted by back-propagating the prediction error of
the actor network (e, (t) = ¥(¢) — U.), where U, is the desired ultimate cost-to-go objective
value. As in [5], U, is set to “0,” corresponding to “success.” The objective function for

this network is to minimize E,(t) = 0.5 (ea(t))2 by updating the weights as follows:

UA)a(t + 1) :UA)a(t) + A(Da(t) = (Da(t) =ty glfa(t)
o, (1) lf (aEa(t) . 0v(1) . Ou(t))
Ca T35 800) dul) dda))

124

x4 (t) X (1) uy (£) u, (£)
Figure 3. Schematic diagram of the actor network in HDP(1). We set all weights that
connect input nodes with output nodes to zero as well as the connected weights between

the outputs themselves. c?)c{,h} represents hidden weights which connect the input layer with

the hidden layer. The output weights are indicated as c?);{lo}, which connect both input and
hidden layers with the output layer. py(¢) is the kth hidden node input of the actor network,
and gy(¢) is the corresponding output of the hidden node. Here, we only apply a hyperbolic

tangent threshold function (¢(.)) on the hidden neurons.

where

AN (t) :i Av(r) .5S(i)(f)‘ Or(1) 27)
i=1

au(k)(l‘) 8S(i)(t) 01’0)(1) 01/!(1()(1‘)’
where k = 1,2,...n. The final adaptation of the action network’s weights between the

hidden and output layers is

D(t + 1) =04(t) = Capa(D[OE (OCpp(D] [0 (D], (28)
where ¢ = (1,42 - - - qn, |17 G = &L, u(t) = OT(1)da(t), Cop(r) is a matrix of h.xn, and

the elements for this matrix are Cgp,, ,(f) = 0.5 (1 - ¢%(k) (t)) o (tywhere k = 1,2,... h,

wc(k, m+j)

and j = 1,2,...n. The actor’s hidden weights (d)c{zh}) are kept constant while its updating

output weights G = o) [2].

125

3. STABILITY ANALYSIS

This section discusses stability for the critic and actor networks by employing
Lyapunov functions.

3.1. Lyapunov Approach. Let w and w}, denote the optimal weights for the critic
and actor networks as follows: w; = argming, ||U(t) +y(Av(t) + (1 —)P(t)) — ¥(¢ — 1)|| and

wy, = argming, ||P(¢)||. The weight estimation error for both critic and actor networks is:

o) = o(t) — w*. (29)

A more general discrete time dynamic system for weight update rules in (84) and (28)
for critic and actor networks define a dynamic system of estimation errors for a general

nonlinear function (g(.)) as:

a1+ 1) = o(1) - g(@(1), &(r = 1), p(2), ¢z = 1)). (30)

Therefore, the stability properties of the system in (39) express the asymptotic behavior of

the estimation error of the weights (&(t)).

Definition 1. A discrete time dynamic system (39) solution is UUB & > 0, if and only if,
for all 6 > 0 and 7 > 0, there exists a positive number N = N(d, €) independent of 7y, such
that ||@(7)|| < e forall t > N + ty when ||@(¢)|| < 6.

Theorem 1 (A property for UUB). The discrete time dynamic system (39) has a Lyapunov
function L(@(t), t) such that for all @(fy) in a compact set K, L(@(t), t) is positive definite and
the first difference, AL(&(t),t) < O for ||@(¢)|| > &, for & > 0, such that e— neighborhood

of @(t) is contained in K. Thus, the dynamic system is UUB and the norm of the state is

126

bounded within a neighborhood of &.
According to Theorem 1, an appropriate function L is selected to determine the UUB
property for (39) subject to Assumptions C and A below.

3.2. Preliminaries. In this subsection, two lemmas will be presented, which are
used to prove the main theorem.

Assumptions C (for the critic). Let @ () be the optimal weights for the critic network:

w, =argming, |U(t) + y(Av(t) + (1 =)0(1)) — 9(z - 1]
@31

=argming, ||y Av(t) + y(1 = DO" (g:(1) + U) = &' (t = De(t = D
assuming @}() is bounded by some positive constant, i.e., [|w}|| < WM.
Lemma C. Let assumption C hold. Then the first difference of L.(t) = %tr(cbf(t)cbc(t)),

where tr is the trace of a matrix, is expressed as follows:

AL(1) < =BAIEMIP = BA(1 = LB GeD)IP) X () + W ¢c(r) + B~y A7(0)
+ AU - L = Deelt = DIP + 2185 @) + yA0(0) + U~ (32)
S0T@ = el = 1) = 30 gult = DI + 31~ DI
where £.(1) = @.(t)p.(1) is the approximation error of the critic network output and 8 =
y(1 = 2Q).
Lemma C Proof. The first discrete difference of the nominated Lyapunov function is given

as follows:

AL:(t) = %tr((I)CT(t + D@t + 1) = &L (1)@D(1)). (33)

c

By the updating rule of (38) and @ (¢ + 1) as in (84), we get:

Bt + 1) = = £efe(t) [y 9(0) + ooy (10(0) + V() = &7~ Doete =)| + »

|1 - €061 (0] @),

127

Assuming P = |1=£,£26.(081(0)| and @ = | yai(1) + oy (1e(t) + U D)= (1= et -
1)] , then by substituting P, Q, and (43) into (42), we get:

ML) = }(rr(caf (P P& = 1r(€BBLOPT 9007

Cc

(35)
- 1r(CBOSLOPO) + tr(f§ﬁ2Q¢Z<r>¢c(r>QT)),

A1) = ~BIEDIP = B2(1 = LB 912 €O
- 2ﬂtr((1 - é’cﬁzlltbc(t)llz)fc(t)QT) + L1902 (36)
1805 $elt) + ¥ A7(1) + U@ = &L = Vet = DIP.

By applying the Cauchy-Schwarz inequality, we get:

ALAD) < ~BEWI = B(1 = CBIeIR) X 16c(t) + @)+
YAB~'9(0) + B7IU() = B (1 = Deelr = DIP+

T 1 (37)
B0 ¢elr) + yA¥(t) + U() = 5 5Lt = Dot = 1)

«T

1
- 502 gl = D+ £ = DI

With further arrangement, we get (41).

Assumptions A (for the actor). Let @(¢) be the optimal weights for the actor network
bounded by a positive constant, i.e., [|w}] < w™*. Let &(t) = [@u(t) — Wi ¢a(t) =
@T(t)¢4(t) be the approximation error of the actor network output.

Lemma A. Let Assumption A hold. Then the first difference of L () = itr(a”)g(t)d)a (1))

is expressed as follows:

128

AL < é(- (1= LN OIPILCaOIP) X 0L 0P
(39)

+ [|€a(0)(Df (VCpp(EDI” + 4l1(0)]1* + 4||w§T¢c(t)||2),

where « is a weighting factor, which will be defined in (57).
Lemma A Proof. The asymptotic behavior of the estimation error of the actor weights
(@q4()) is analyzed by studying the stability of (39). The first discrete difference of the

nominated Lyaponov function is given as follows:

ALy(t) = alg tr (af(t + Ddg(r + 1) - (I)Z(t)(f)a(t)), (39)

By updating the rule of (38) and @,(f + 1) as in (28), we get:

Bult + 1) =341 ~ Lada DO OCor(0)] (01600 (40)

By substituting (54) into (53), we get:

ML) = — rr(- 2T Cop(0)| 0T (1) +
' (41
Eleu PO (OCor1)|* 1] <t>¢c(z>||2),
ML) = é(ncaf (08:(0) = £0OL (OCar O = 1€ DD~
@)

|5 (1)Cp(1)]* + fa|I¢a(l)||2IIchT(l)CBP(t)IIZII(DZ(I)%O)IIZ)-

129

By applying the Cauchy-Schwarz inequality, we obtain:

AL,0) < —[4IEWIP + 4l 6.1 + IO OCaOI-
(43)
10X O8I + lleaOIPIOT OCarOIP I)P |

With a simple arrangement, we get (52).

3.3. The Dynamical System Stability Analysis. The Lyapunov candidate function
is analyzed in this subsection to prove the bound of the system estimation error.
Theorem 2 (UUB for critic and actor network). Let assumptions C and assumptions A hold
with a bounded reinforcement signal. Let gradient descent be used to update the weight
of both citric and actor networks as (84) and (28), respectively. The errors between the
optimal weights for both networks (w, w}) and their estimates (. (t), ®,(¢)) are UUB, if

the following conditions are achieved:

1 1
L. < Ll < —
T y2(1 = D2 (0)]|2 “ T ga()]?
N 4 1
Y2(1-2)?% 2

(44)
O<y<l1l 0<a<l, «a

Theorem 2 Proof. The definition of a candidate of the Lyapunov function is given as

follows:

L(t) = L(1) + Lo(t) + L,(2), (45)

1 1
where L, (1) = =||&.(t — 1)]|?, and the first difference for it is given as AL, (1) = =(||€.(t)||*> -
P 2 P 2

|&.(t = D). The first difference of the Lyapunov function (60) is given as follows:

130

AL() < ~BAIEWIP = B(1 = LBIgeI) X 1E:0) + w0 @elr) + B~y i (0)+

BU) - BTGt = 1)t = DI +20|Bw? ¢elt) + yA5(1) + U(t)-

1f\T 1 T 2 1 2 1 ~T
SO =Dt = 1) = 307 9t = DIP + St = DIP + —(=0y 46)

a

PO + LDl DI IO (YCBPOIPIOL ()P + [1a(r)

T 1 1
AL WCa O + 4P + 4wy e OIP) + 36O = SNt = DI

1
To simplify, we add and subtract the extra term (x—||®” (£)p.(¢)||?||OT (t)Cpp(¢)]|?) into (63)
a

while extracting 8. The first difference of L(¢) can be rewritten as follows:

AL < ~(y2(1 =22 = % =) el =921 = 27 % (1= 61 = P01

X N6c(t) + 0 gelr) + X (A9 + U = &L = Dol = 1) P

y(1=24)
- = (16l @ OIPI6L OCsrOIP = ElloaIPIS Do OIPISL)
Cop()I?) + 2ly(1 = Ve, ¢ele) +y5(1) + UGr) - %ca?(r — Dge(t = 1)-
S0 et = DI+ e OCo O + e 6.0 - T ()
801 + 10T D91 OCar O

(47)

To guarantee that the second term in (47) is negative, the learning rate for the critic network
(€.) has to be (1 — £.7*(1 = 2)?||p(1)||*) > 0; therefore, the critic learning rate should obey

the condition:
1

0 ,
= 1= 260

(48)

where0 <y <1, 0<A<]1.

131

To guarantee the third term for (47) to be negative, the learning rate for the actor net-
work (€4) has to be ([|Of (eI 1O () Cpp (1)1 ~Lallpa(OINOE (OO IO () Cpp(1)II7) >

0; therefore, the actor learning rate should obey the condition:

1

{, < —. 49
NG 9

To guarantee that the first term in (47) is negative, the discount factor is chosen with

0 < y <1, and the weighting factor (@) is selected to satisfy:

4 1

a > m - E (50)
AL(t) can be rewritten as follows:
4 1
AL < =71 = 02 = = = SJI&OI? = 721 = 7 (1 = &y’ (1 = g (0)|?)
a
X l€0) + ;' ¢e) + ﬁ(ﬁ(r) +U@) = &L= et = D)IP .

- = (16l @ I 16T OCorOI = Lalloa PN Do)
2 @ChrIP) - ~ ol 6. + R

where R? is defined as the positive terms in (47), which is given as follows:

T 1 1 ,r
R? = 2|ly(1 = Dw; ¢.(1) +yA5(t) + U(t) - 3 De(t =1t = 1) = Ew: et = DI

1 4 . 1
+ E||fa(t)c?)cT(t)Czsuv(t)||2 +—llwe ¢l + EIIa%T(t)¢c(t)||2II(DZ(t)CBP(t)Ilz-
(52)

132

Simplifying, R? can be rewritten as:

R < 4(y20 = Pl 0O + ¥ 2250) + U(0) + 11670 ~ Dot - DI+
I, . 1 T
Zl0r @t = DIP) + ~ 116 (OCa O (1] a0 + |l peat)l?)+ (53)

4 1
-l geI* + E”(DCT(I)QSC(I)”2”@Z(I)CBP(I)“2,

by substituting the upper bounds for w. (w;: and ©.), w, (w};, and O,), ., ¢4, Cpp, and U(t) to
Wems Wams Dems Pams Cmy and Uy, respectively. Because all critic weights are upper-bounded
by w,n, the target-value (¥7(¢)) is also bounded according to (8), which is denoted as (V.p,);

therefore R? can be rewritten as follows:

4 _ 2 1
R < (47°(1 = 042+ =)0l 02, + V05 + Up + =0, Crdly + —wl

4 2 (54)
Cri‘/’%m + _w3m¢§m + _a)gmcr%zwgm¢§m = R}i
a 10
If (57) holds, then any
R

&I > = :
1 4 (55)

-2 -2

2«

where 0 < y <1, 0 < A < 1 as mentioned in (48), and « in (50), makes AL(t) < 0,
meaning that the errors between the optimal weights for both networks (w, w;) and their
estimates (@.(t), @,(t)) are UUB.

Corollary 1: From (57), the actor learning rate condition for HDP(Q) is similar to HDP,
because it is independent of A and y. In contrast, the critic learning rate for HDP(1) depends
on A and vy, which is different from HDP. Thus, to ensure that the critic and actor networks
are stable during learning, the A value should not be 1, and y should not be 0. As in [26],
where ||¢¢||> < he and [|¢,]|> < hq, the learning rates for citric and actor networks can be
set as

1 1
(. < —mM8M8M d ¢ < —. 56
S a-aem Mt S (56)

133

4. SIMULATION RESULTS

Three case studies are taken to verify the effectiveness of HDP(A1). The trajectories
of the internal reinforcement signal 2-D nonlinear system are considered as the first case.
We compare the results with the performance of traditional HDP. The second case study is a
single link inverted pendulum. We investigate the performance of the inverted pendulum by
comparing the HDP(1) approach with the HDP approach in different noise exposure effects.
The third case study is a 3-D maze navigation benchmark and comparing SARSA(0)' and
Q(1) [3] with HDP and HDP(Q).

4.1. CaseI: Nonlinear System Problem. Consider the following nonlinear system

derived from [35]:

x1(t + 1) = =sin(0.5x2(1)) 57

x2(t + 1) = —cos(1.4xx(1)) sin(0.9x (1)) + u(t),

where x(7) = [x1() x2(t)]" € R? is the state vector (m = 2), and u(r) € R! is the control
action (n = 1). The external instantaneous cost function is U(t) = x’ (£)x(t) + u’ (t)u(t). The
discount factor (y) is 0.9, and the eligibility trace long-term prediction parameter (1) is 0.95.
The number of hidden nodes (4.) is 7 for the critic network. The number of hidden nodes
in the actor network (4,) is 5; and the initial learning parameters are set as £, = £, = 0.01
for both the critic and actor networks. The training for either network will be terminated if
the error drops under 1076 or if the number of iterations meets the stopping threshold for
the internal cycle (30 iterations for the critic network and 40 iterations for actor network).
The initial weights for all networks are the same for fair comparison, which are randomly
chosen within [-0.3,0.3]. As mentioned before, we fix the hidden weights (W;{h}, Wc{,h})

and train the output weights (Wi"}, Wc{lo}). We compare HDP(1) and the traditional HDP

approaches with similar learning parameters. We choose the initial critic/actor weights in

'The SARSA (State-Action-Reward-State-Action) algorithm is used to find the series state-action pairs by
using one-step learning; therefore, we write it as SARSA(0).

134

State and Control values at Last lteration for
Model-Free HDFP(A) Monlinear System
H T T

0.3 T
= D2 — = =Action (U} with A=0
= E Action (u) with 2=0.95
Rl L T T T s e ath 2=0.95 1
= [l S N ——iee ______
0 i i i 1 1
[u] =1 10 15 20 25 30
Time Steps
0.5 T T T — . — .- State (3] with A=0 1
State (x,) with 2=0.95
><-F oF&R---- I-'__ A — . — . ._____
0s : : . ; .
[u] =1 10 15 20 25 30
Time Steps
0.6 T T T T T
0_4_,_\ ___________ SOUUT i | - State Gy with A=
- : : : State [x,) with A=0.95
e R s L L i _ ! H
. : :
D e e e —
0.z i i i i i
[u] =1 10 15 20 25 30

Time Steps

Figure 4. Comparisons of system responses (the state vector trajectories and the action
sequence) with HDP(A = 0.95), and traditional HDP(A = 0).

the HDP(A) approach similar to the initial critic/actor weights for the HDP approach. Fig. 6
illustrates the state trajectories and the control action sequence for 30 time steps. The results
are taken from the last training iteration (iteration number 2000). We set the initial state to
x(0) = [0.5 0.5]". HDP(Q) can drive the states to converge faster than traditional HDP.
Compared to HDP, the improvement according to a mean-square error technique is 29.54%.
The upper part of Fig. 8 shows the cost error over iterations, which clearly illustrates faster
learning. HDP(1) has smooth learning compared to the fluctuations appearing with HDP.
The critic and actor errors at the last learning iteration for the HDP and HDP(2) approaches
are shown at the middle and lower figures in Fig. 8. In the last iteration, Fig. 10 illustrates
the corresponding weight trajectories for both HDP and HDP(1) approaches, which shows
that the weights reached their optimal fixed values.

4.2. Case II: Inverted Pendulum. In this section, a cart-pole system has been
implemented as an unstable nonlinear system. The controller (actor network) is self-

learning because of no prior knowledge about the environment. The controller balances a

135

System Error Ower Iteration for hModel-Free HDP(A)
Contral on Monlinear System

0.1 T T T T T T T T T
: : : : — == Errar for HDPA) with A=0
5 0.05 lk -------- e -------- --------- _ Errc_lr for HE?IF'(?..) Wi-lh ?|.=D._95 H
B T et i h N e e e el e i e
o I I 1 1 1 1 1 1 1
u] 200 400 B0 800 1000 1200 1400 1600 1800 2000
lteration
Critc Error for Model-Free HDP{A)
w107 Control on Maonlinear System [-
5 T T T T o
Ay : o, with A=0.95
R s : —_—
F Fi : :
5 1 i i 1 1
u] 5 10 15 20 25 30
Tirme Steps
Actar Error for Model-Free HDF(A)
Contral on Monlinear System
=0 ! ! ! e
I, ea, with A=0.95
T O pe—— —_— : ————— —
20 1 1 | | 1
u] 5 10 15 20 25 30

Time Steps

Figure 5. Cost error over iteration and 30 time step critic and actor errors. The upper figure
shows the cost error over iterations, which clearly illustrates fast and stable learning, while
traditional HDP shows fluctuations during learning. The critic and actor errors at the last
learning iteration for HDP and HDP(A) are shown in the middle and lower figures.

pole mounted on a cart by moving the cart to the left or right. The actor network learns via
a reinforcement signal, which is either “—1 or “0” corresponding to a fallen or balanced

pole, respectively. As in [5], the cart pole system model as shown in Fig. 11 is given by:

. . . ﬂpé
gsiné + cos 0(— F —ml0°sinf + ,uCO'(x)) - —
j= mi (58)
1(4 mcosze)

3 m.+m

F +ml (92 sin 6 — & cos 0) - peo(X)
* M. +m ’

(59)

where g = 9.8[m/s?], the acceleration due to gravity; m. = 1.0[kg], the mass of the cart;
m = 0.1[kg], the mass of the pole; [= 0.5[m] the half-pole length; . = 0.0005, the
coeflicient of friction of the cart on the track; u, = 0.000002, the coeflicient of friction of

the pole on the cart; F = +10[N] the force applied to the cart’s center of mass; and o (.)

136

Leaming weights of the critc netwrak when 3=0 Leaming weights of the critc netwrak when A=095
04 :
— W f1) —W [l
0 —W2 ‘ — W
2 —W0) — W
£
g : W3 W
i — W % — W6l
S i L W O fes————————— e
) — 0
04 ; ! ; ; ; ‘ ! i : ;
1 om0 B 1 m 5 2 & A
Time Steps Time Steps
Learning weights of the actor netwrak when =0 Learning weights of the actor netwrak when =0
018 : 02
— Wl — W1
e —val Lo v
1 R — g - B A
: N Wi
E QA2 b b —WQ(E) E _Wa(S)
: | N S
DT bbb) : : :
008 ; | ; . i 02 ; ! ; . i
1 T | T T 0 5 M0 1A A A
Time Steps Time Steps

Figure 6. Learning weights for critic and actor networks for HDP and HDP(1).

F
- b .
- x ’xﬂ

Figure 7. Configuration model of the cart-pole balancing system.

137

is a sigmoid function. The fourth-order Runge-Kutta method is used to solve nonlinear
differential equations (73) and (74) with 0.02 s for the sample step. The pole-cart model has
four states: 6(t) is the angle of the pole with respect to the vertical axis, x(¢) is the position
of the cart, 6(t) is the angular velocity of the pole, and x(z) is the linear velocity for the
cart. In our simulation, a run has 60 consecutive trials. The run is considered successful
if the last trial has balanced the pole. The first trial starts with A = 0, while the remaining
trials are set with 4 = 0.95. Each successful trial has 1000 time steps to complete the
balancing task. The pole has fallen if it is beyond the range of [-12°,12°], and also if
the cart moves outside the range [-2.4,2.4] meter from the initial position. In spite of the
binary force F applied to the cart, the control signal (u(z)) provided to the critic network is
continuous. To stabilize this system, assign the critic and actor neural network parameters
to match the conditions of theorem 2. The discount factor (y) is 0.95; the number of hidden
nodes (A,.) is 20 for the critic network; the number of hidden nodes in the actor network
(hg) is 24; and the initial learning parameters are set as (£, = 0.001) for the critic network
and (£, = 0.003) for the action network. Both learning rates are decreased via dividing
by 3 every 30 time steps. The stopping criteria for the action and critic networks are 120
and 100, respectively; the training for either network will be terminated if the error drops
under 107° or if the number of iterations meets the stopping threshold. We apply HDP(1)
without any noise impact with small deviation in the initial pole-angle. In this test, we set
the initial states at @ = 0.1°, x = 0 [m], 8 = 0.5 [deg/s], and % = 0 [m/s]. Fig. 8 shows the
value function and the target-value for the last trial without noise. The output of the critic
network in HDP(Q) follows the target-value (8) as shown in the enlarged Fig. 9. From top
to bottom, Fig. 10 illustrates the forces applied to the center of the cart, the cart position,
and the angle trajectory for the cart pole. In the noise-free system, the angle oscillates
within limits +0.3495° as shown in Fig. 11. For more challenging and realistic behavior,
we have started with an initial deviation pole-angle, and we add random noise to the angle

state measurement and action network output sensor noise and actuator noise, respectively.

138

0.05 = , ! , ! ! . . .
i : i . 2 — — —%alue Funcitan
AN ——— Target Value

0.04 EEe

ooz

-0.02
-0.03

004 (SR

1005 i 1 1 1 1 i 1 1 1
0 100 200 300 400 S00 BOO YOO 800 900 1000
Time Steps

Figure 8. The value function and target value for the last trial without noise. The initial
angle 6(t) is 0.1°.

T I R Y T

TR HH 3
D_Dd_i.l I:l. : ll : |{ .. : i{ — = ="%3lue Funciton |4
sl ' EF AL A 'F.AL [——— Target Yalue
0.03 Hy 1B : [{
0.0z
oo 0.0
p——
%
L 0}
T
Y
s
m -0.01
0.02 gl 4
0.03)8
004} : } :
: : 1 !
1] 1 ! i 1 1 1
B0 100 120 140 160 180 200 220
Time Steps

Figure 9. Zoom-in between 80 to 220 time steps for Fig. (8).

139

= 0.01
=
=]
= :
&t 001 | i i] I 1 i i]
0 100 2040 Joa 400 oS00 G600 700 800 900 1000
Time Steps
§ 05
3
a0
[a:d "
3 s : ' ! L
— 0 100 2040 300 400 S00 GO0 700 800 900 1000
Time Steps
= x10°
_E' 1D T T T T T T T T T
[ak) N
= 5§ '
5 O FARE SR SRS RR SR R AR AR
= 5 i 1 1 i 1 i] 1 i
& 0 100 2040 Joa 400 oS00 G600 700 800 900 1000

Time Steps

Figure 10. Simulated results of balancing the inverted pendulum for control signal, 6(¢),
and x(¢) when the system is free of noise; initial angle 6(z) is 0.1°.

10
— T T T T T T
S5 '
£ oA\
z® i . i i i ;
400 420 440 460 430 500
Time Steps

Theta [Degrees]
00 00
E-N o Tl SR -

I = T00

bopoooe oo [y [orrr e G [EEERRRT.
400 420 440 460 430 500
Time Steps

Paosition [Meters]

Figure 11. Zoom-in between 400 to 520 time steps for Fig. (10).

140

Specifically, the sensor and actuator noises are 6(¢) = 6(t)+n and u(t) = u(t) + n, where n is
a uniformly distributed random variable. We assume that the initial angle has a disturbance
of & = 10° with respect to the vertical axis, with no change in the initial values. Fig. 12
show the value function and the target-value. The output of the critic network follows the
target-value as shown in Fig. 13, and it settles down after 450 iterations. The corresponding
system responses with forcing signal are shown in Fig. 14. Fig. 15 demonstrates how the
actor network in HDP(A) overcomes this large initial angle disruption during 15 iterations,

converging in 250 time steps.

0.3 !- T T T T T T T T

: - | ==="alue Funciton
D25 i e S SO b | e Target Value
02k L TR T]

A5t _

4(8), v(f)

0 100 200 300 400 SO0 BOD OO0 BOD 800 1000
Time Steps

Figure 12. The value function and target value for the last trial when the system is free of
noise; initial angle 6(¢) is 10°.

We examine the HDP(A) structure with another large disruption by adding 3%
uniform random sensor noise during 1000 time steps with 6 = 10° as the initial angle
derivation. Figs. 16 and 17 demonstrate how the system also successfully passes this

challenge by showing the cost values and system responses, respectively. +0.9536° is the

141

025 F ; T T R | —— | S | L
] 5 — — —“alue Funciton
:' : Target “alu

a1k L L i L e el L
20 a0 &0 80 100 120 140

Time Steps

Figure 13. Zoom-in between 0 to 150 time steps for Fig. (12).

- 005 I S S a—
=1 : : : : : : : : :
=

= :
o : : : : : : : :
<L ans | i i | | | i i |

o 100 200 300 400 S00 ABOO YOO 800 500 1000
Time Steps

20 ; ! ; g ! ; ! ! !

?
i)
e :
= B : : : ; - : : : :
E D ._._.I_.,.p:.n-n. L m.-.._.-..-...h-.—.-?.qnq..p:. v .-;.pq..nn..a..qlmtu...?_..-. - g
= : : : : :
2 o | i i | | | i i |
=] 100 200 300 400 500 BOO 70O 8O0 900 1000
Time Steps
m
E I:I5 T T T T T T T T T
% X . . X .
-E' D
= : : : :
E ns 1 1 1 1 i I I i I
o 0 100 200 300 400 500 BOO 70O 800 900 1000
Time Steps

Figure 14. Simulated results of balancing the inverted pendulum for control signal, 6(¢),
and x(¢z) when the system is free of noise; initial angle 6(¢) is 10°.

142

D.04FT
0.02f-

-0.02

Action ulf)
o]

]
]
=

10 pe

SRR R REREREEE RI.............:........l.........|..,._...._._.—-l-.--—-l

AQE e | ST SEETTIEE L L e P ;
0 10 20 a0 40 a0 B0 70 a0 90 100

Theta [Degrees]
[]
T

02F I ' :

Position [Meters]
[]

Time Steps

Figure 15. Zoom-in between 0 to 100 time steps for for Fig. 14.

limited oscillating angle after step number 280. For more a challenging test, we set a 5%
uniformly random actuator noise to occur during 1000 time steps with 8 = 10° initial angle
derivation. The system successfully passes this test as shown in Figs. 18 and 19 for the
cost values and system responses, respectively. The limited oscillating angle is bounded
by +£4.0215° after step number 200. For more detailed viewing of actual and target value
functions, Fig. 20 illustrates a squared critic error (E.) for all previous testing scenarios.
Table I summarizes the simulation results through 100 averaged runs for 1000 time steps
and 100 iterations. HDP(A) is 13.7% better than traditional HDP, reducing the average
number of iterations at various noise levels.

4.3. Case III: 3-D Maze Problem. Maze navigation has been proposed as an ADP
benchmark [37]-[40], but most of them have been 2-D. In this case, we compare HDP(A)
in the 3-D maze navigation benchmark with various alorithms: SARSA(0), Q(4) and HDP.
Sutton [3] presents an explanation about SARSA(0) and Q(4). In this case study, the

data that agent uses to learn is: 1) current state vector x(f) = [xy, X2, x3]7, where x|, x2

143

1.2 ! T ! ! ! ! T T T
: — — —%alue Funciton
Tho. S S e S L Target “alue
L ; _
0Bk P D i -
B | .
y : :
DB g ferreee TR RRRE: SRR ERNE N o
P BT ; : : : : :
Py B B aler e L 5
“a . N IR R BooAoaEny]
:,E_;Df-l 3y rv\.._l"'l i | "-!i*'llf',\fll f !",...'rl,f’! .rl.-
1 LFN (] R B B
02 .. | T . Bee ORI Rl . ! :l..l | I g o i i E
|:| .. -
02 i i i i i i

i 1 i
1] 100 200 300 400 500 /OO YOO 800 900 1000
Time Steps

Figure 16. Simulated results of balancing the inverted pendulum for control signal, 6(¢),
and x(#) when the system has uniform 3% sensor noise; initial angle 6(¢) is 10°.

= [0.05
=
g 0
E DDE 1 1 1 1 1 1 1 1 1
0 100 200 300 400 &S00 BOO 700 800 9S00 1000
Time Steps

o

ak}

E 1|:| T | EPE— T ! P ... T ! P | T |
o : L : : E : : i

E |:| _1,‘ . f e ,__.‘..I.J e ;‘p-\,,?,-m.up._....,fc ,..,’qx.h,.-',_._.,vv.fh.’..n g
g OE- % Jrreeens frreees Py T oo e e T |
= 0 100 200 300 400 &S00 BOO 700 800 9S00 1000

Time Steps

3

i

T] ! ; ; ' ! ! ! ! '

= . L . - : - . : :
SN S T T S e e - _]
b= : : : : : : : :

= OE-- IREREEEE EEREEERE [EEREERE IR IEEEREEEE P frre e IR e .
b

=]

o

I
a 100 200 300 400 500 BOO 700 800 900 1000
Time Steps

Figure 17. Simulated results of balancing the inverted pendulum for control signal, 6(¢),
and x(¢z) when the system has uniform 3% sensor noise; initial angle 6(¢) is 10°.

144

: : : : : : — — —“alue Funciton

—— Target “alue

0e 1 1] i 1 1 1 I i
1] 100 200 300 400 500 sOO YOO 300 900 1000
Time Steps

Figure 18. The value function and target value for the last trial when the system has uniform
5% actuator noise; initial angle 6(¢) is 10°.

= 01

=

5 0

E _D'] 1 | | | 1 | | |

a 100 200 300 400 500 BOO 700 800 900 1000

Time Steps

W

@

5w T T T T T T T SO

i |:|_.'.\..;T..E-.\.;‘..T’:‘...*.‘,p".'i"_i.v..ﬂ':-\ z‘\.,, \;-':w.r-m..,l-.w;..-.f..__ﬂ.-..h,“t

E _1|:|_..' II I I I I I I I -

= a 100 200 300 400 500 BOO 700 800 900 1000
Tirne Steps

o

"E DE T T T T T T T T T

E ol N i

=

E 0s T o ™ T =

é a 100 200 300 400 sS00 BOO 700 800S00 1000

Time Steps

Figure 19. Simulated results of balancing the inverted pendulum for control signal, 6(¢),
and x(7) when the system has uniform 5% actuator noise; initial angle 6(¢) is 10°.

145

10 Moise-Free (Inttial Angle is 6=0.17

0 i i i i : i i i i

0 100 200 300 400 400 600 700 600 %00 1000
Time Steps
A0 MNoise-Free {Intial Angle is 8=107)
El T T T T T T T T T
Oy
Ry

0 100 20 30 40 500 B0 700 GO0 900 1000
Time Steps

Unifarm 3% Senzar Noize (Initial Angle is 6=107

o R S SR N S R N
0 100 200 300 400 400 GOO 700 8OO 900 1000
Time Steps

Uniform &% Actuator Maise (Initial Angle 1= §=10°

] .
0 100 200 300 400 400 GOO 700 8OO 900 1000
Time Steps

Figure 20. Squared critic error (E,.) for noise-free with 0.1° to initial angle, noise-free with
10° to initial angle, uniform 3% sensor noise, and uniform 5% actuator noise.

146

Table 1. Performance evaluation of HDP(A) learning controller when balancing the inverted
pendulum dynamic system. The second and third columns depict the average number of
trials it took to learn to balance the pole for 1000 time steps for HDP and HDP(1) approaches,
respectively. The average is based on 100 successful runs at 1000 iterations each. * actuators

are subjected to noise; # sensors are subjected to noise

Noise Type HDP(1) | HDP

Uniform* 5% 13.85 | 13.36

Uniform™ 10% 13.93 | 15.63

Uniform® 5% 13.77 14.1

Uniform® 10% 57.38 | 63.86

Uniform™* 5% 19.35 | 21.28

Noise Free with 8° initial angle | 27.79 | 40.48

and x3 are the coordinate of x axis, y axis and z axis, respectively; 2) selected action
u(t) = [uy, up, uz, ua, us, ug)’, where uy, un, u3, us, us and ug are the direction of forward,
right, backward, left, up and down, respectively; 3) external reward U(¢t) = 1 if agent
reaches the target position, U(¢) = —0.001 if agent hits an obstacle or exceeds the board,
and U(r) = 0 if agent moves in free space. In the SARSA(0) algorithm, the agent takes an
action u;, where i = 1,2,...,6, to move from x(¢) to next state (x(¢)), and it gains U(r).
There are many strategies to select actions. If the agent always chooses the action with
the highest state-action pair value, it is a greedy strategy. An e—greedy strategy selects the
greedy action with probability of (1-€). Otherwise, the agent chooses a random action. In
this situation, one says that the agent is exploring the environment. for other strategies,
see [3], [13] and [36]. After learning trials are completed, the collected data is put in a
lookup-table (Q table). The Q table values of all state-action pairs can be updated in the

SARSA(O) algorithm by the Bellman formula:

O(x(11i(1)) = Q(x(r).) + £{U(1) + YQ(x(t + 1)) = Q) wp)). (60)

147

where x(¢) is state vector, € is the learning rate and u;, i = 1,2, .. ., 6, is a selected action (the
direction of movement). Q(A) is similar to SARSA except for two issues 1) the updating
occurs as in (60) but with a greedy action max,, e,) (Q(x(¢+1), u;) instead of Q (x(t+1), u;);
2) the eligibility trace is a temporary record to be stored. There are two main steps to update
eligibility traces for the Q table. The first step is setting all state action pairs to zero when a
non-greedy action is taken. Otherwise, they are declining by yA as described in (8). In the
second step, the eligibility trace is reset to one if it is identical to the current state-action pair.
Updating Q-learning by using only a critic network was presented in [41]. We also use only
a critic neural network to approximate the value function but for n-steps of the eligibility
trace. Algorithm 1 generates and updates a table of Q values according to state-action pairs
(step 2 in Algorithm 1) as well as generating greedy actions (u;(¢)) in step 3 of Algorithm
1. The same procedure is used to generate and update a Q table for the HDP by taking one
critic network. In contrast with the previous two case studies that required minimizing the
cost value, the agent has to maximize a reward in order to solve the maze problem. We
assume that an agent starts at an initial location in the cube environment, which is (0,0,0) as
shown in Fig. 20 with 12 obstacles included. The agent can learn online through interacting
with its environment to obtain an optimal collision-free path from the start point to the
target point, which is taken as (5,5,5). A declining e—greedy learning method is used in all
approaches, which is used to balance between exploration and exploitation [3], [13]. We
evaluate HDP(1) by comparing with other methods according to the Q reference values. the
Q reference evaluation method is presented in [43], [44]. The Q reference table is calculated
depending on the distance between the current state location and target location. All states
around a target are set to 1, while other states are assigned by finding 1/(L + W + D) for
each step, where L, W and D is the maximum number of possible state in length, width and

depth directions, respectively. In other words, Q references (Q,.r) can be calculated in 3-D

148

Algorithm 1 Critic(1)-Only Q-Learning for Maze Navigation

V(t) «— fo(x:(t), ®(1)), value function approximation
fe: the critic network
xc(t) = [x(2), u;]": input of critic network, where i = 1,2,...,6
@.(1): weights in critic network
* Step I:
— Q(x,u;) = 0 for all states and actions
— ¥(x,u;) = 0 for all states and actions
- t=0,T. = 107 with N, = 110 and C, = 0 are stopping learning critic network
parameters, goal = [5, 5, 5], and set all other learning parameters
» Step 2 (Policy evaluation) updating the Q-table by:
= D),) = U(e) + y (A5Ce(e + 1),) + (1= D3t + 1))
— while (E.(¢) > T,)or(C. < N,) do
- Oc(t) = O (1) + AD(1); equations (71) - (84)
- Y1) = fe(xe(1), (1))
= Dep(t) = v(x(2), u;) — 9(1)
- E0)=05(Dey0)
- C.=C.+1
— end while
O(x(t), u;j) = Q(x(¢),u;) + €D,,(t) (€ is a leaning rate)

» Step 3 (Policy improvement) updating content policy while taking the e-learning
strategy into a consideration:

— u; = argmaxy,eu(r) (Q(x(t), u;)
» Step 4:
- if x(7) = goal then
- stop and do other episode
- else
- x(t)=x(t+1)
- t=t+1
- go back to step 2 and continue
- end if

149

as follows:

1

’) :1_—
Qref(xl X2 X3) L+W+D

(L—x1+W—x2+D—x3—l). (61)

Equation (61) is calculated for the desired values of all cubes of the 3-D maze including
the obstacle cubes. But obstacles are used in our 3-D maze benchmark (Fig. 20); therefore,
we assign obstacle cubes as zero in Q,.y because the agent cannot enter to them to update
Orey. Greedy Q table values (Qgreeay) are used to calculate mean-square-error (MSE),
where Qgyeeay ((X(1)) = maxy, e, (Q(x(1), u;). MSE is obtained by

S,

Z (Qgreedy(i) — Ore f(i))z, (62)

i=

=

MSE =

| =

where S, is the number of states of the 3-D maze (L X W x D). The common general
parameters shared with all approaches are: learning rate for the Q table (£) is 0.01; y=0.95;
1=0.95 for Q(1) and HDP(1), and A=0 for SARSA(0) and HDP(0); e-greedy parameter
starts at 1 and decreases by € = € * 0.992 after each episode, stopping at € =0.05; we take
a 20-run (loop,) and each run has 300 consecutive episodes (episode loops); moreover, at
each episode the agent navigates in the maze until reaching the target. Certain learning
parameters are related only to the HDP(0) and HDP(A) approaches. Thus, the number of
neurons in the critic network (/4.) is 24; the initial learning parameters are set at (£, = 0.001)
for the critic network. The stopping criteria for the critic networks is 110; the training for
either network will be terminated if the error drops under 7, = 107> or if the number of
iterations meets the stopping threshold (N, = 110). Fig. 21 demonstrates that the MSE
of the HDP(0) and HDP(A) approaches drop faster than those with SARSA(0), and Q(1)

methods. HDP(A) can also converge faster than HDP(0) to achieve the best performance in

150

Figure 21. Diagram of 3-D maze (5 x 5 X 5) with obstacles. The dark blue cube (0, 0, 0)
represents the initial position. The green cube (4, 4, 4) represents the target position. 12
obstacles are located in (0, 3,0), (2,4, 1), (2,4,2), (2,3,2), (2,2,2), (2,1,2), (4,0,0 — 4) and
(3,0,4), which are represented by the red cubes. Otherwise, the agent can move in free
space. Three modes allow the agent to receive reward/cost values. First, The agent will
receive reward 1 when it arrives to the target cube. Second, the agent will be punished by
receiving -0.001 if it hits obstacles or passes the boundary. Third, the agent will receive O
value as a reward in a free space. At any position in the maze, the agent has to select 1 action
(direction) out of six actions in order to to move one step. The six actions are forward,
right, backward, left, up and down, which can be seen in the figure as u1, uo, u3, us, us and
ue, respectively. We sketch this figure by using the isometric drawing tool [42].

151

this test. Another test is related to the accumulative reward over episodes. The goal for this
test is to discover, which algorithm can calculate a maximum of accumulated rewards over

each episode fastest.

Performance evaluation by comparisan of
MSE (mean-square-errar) per episode far all approaches

3|:|_ _
: : : L | —— SARSA(D)
—— Q.95)
: : : . |T——HDP@ |
25 P S HDFI(DQE)

Surne of square errar

1 1 1 |]
o 50 100 150 200 250 300
Episode

Figure 22. Mean-squared-error (MSE) learning curves for SARSA(0), Q(4 = 0.95), HDP(0)
and HDP(A = 0.95) for the 3-D maze navigation benchmark as shown in Fig. 20. The mean
values from 20 independent runs are taken for all methods. The shaded color represents the
20 runs, while the solid line represents the mean for all 20 runs. The HDP(0.95) approach
has the fastest learning with a lower MSE compared to other approaches.

Fig. 22 illustrates that HDP(A1) approach has a large accumulated reward value
during exploration. Determination of the most likely exploration episodes is mostly done
between episode number O until 200, which is shown in detail in Fig. 23. Fig. 23 shows
the number of steps per episode over reducing the probability of exploration (via decreasing
of € value). Therefore, the Q(1), HDP(0) and HDP(A1) approaches converge together to
the optimal accumulative reward value after episode number 200 because of exploitation

navigation behavior, while SARSA(0) method needs more episodes to reach the optimal.

152

Ferformance evaluation by comparison of
the accumulated reward per episode far all approaches

2|:| e e R EEEEREREE T R R EEEEEE R LR -
: : : .| ——SARSAD) |:
18_ GI:DEE:I :
z z ; | —roroy |
15 HDF‘(DEIE]

i Jtl Al
“ ,411 ﬁ'rlbl }M'Fhfi‘ ”mum,i -w’ 4_

Accurmulated reweard

Lkl ! 1 1 1
o a0 100 150 200 250 300
Episode

Figure 23. Summation of accumulative reward for every single episode of SARSA(0),
Q(4 = 0.95), HDP(0) and HDP(A = 0.95) approaches, which is applied in the 3-D maze
navigation benchmark as shown in Fig. 20. The mean values from 20 independent runs are
taken for all methods. The shaded color represents the 20 runs, while the solid line represents
the mean for all 20 runs. The HDP(0.95) approach reaches the largest accumulative reward
compared to other methods. Because e—greedy learning will reset the accumulative reward
value every episode, the accumulative reward values for Q(0.95), HDP(0) and HDP(0.95)
converge over episodes.

153

Ferformance evaluation by comparing
of the number of time steps per episode for all approaches

900|— EOURSPRTTT :
=0 — SARSAM) |

800 - ol —omos |
—HOPD) |

HDP[D.85) |:

; =3
R e . -]
Vil i
i i i 1

Steps per episode

1
100 150 200 250 300
Episode

Figure 24. e—greedy learning curves for SARSA(0), Q(1 = 0.95), HDP(0) and HDP(1 =
0.95) approaches for 3-D maze navigation benchmark as shown in Fig. 20. These curves
represent the number of steps per episode, where the agent returns back to the start cube
only when it reaches the target cube. The mean values from 20 independent runs are taken
for all methods. The shaded color represents the 20 runs, while the solid line represents
the mean for all 20 runs. HDP(0.95) and HDP(0) have an almost identical number of steps
over episodes, which are less than those in both Q(0.95) and SARSA(0) methods.

5. CONCLUSION

This work shows stability proofs for model-free HDP with arbitrary values of the
eligibility trace long-term prediction parameter (1). Previous works on HDP only apply
when A = 0. By using Lyapunov theory under reasonable conditions, we extend the stability
proof for the HDP(1) approach, proving that the weights and network outputs for both
critic and actor networks are UUB. We examine the HDP(1) approach with three simulation
studies. With these results, we have made a step forward to improve the learning efficiency,
computational complexity and robustness performance for ADP algorithms using eligibility

traces.

154

BIBLIOGRAPHY

[1] R. Bellman, Dynamic Programming, Princeton, NJ, USA: Princeton Univ. Press, 1957.

[2] D. Prokhorov, and D. C. Wunsch, “Adaptive critic designs,” IEEE Trans. Neural Netw.
and Learn Syst., vol. 8, no. 5, pp. 997-1007, Sep. 1997.

[3] R. S. Sutton, and A. Barto, Reinforcement Learning: An Introduction, Cambridge,
U.K.: Cambridge Univ. MIT Press, Mar. 1998.

[4] P. J. Werbos, Approximate dynamic programming for real-time control and neural
modeling, Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches,
1992.

[5] J. Si, and Y. Wang, “Online learning control by association and reinforcement,” IEEE
Trans. Neural Netw. and Learn Syst., vol. 12, no. 2, pp. 264-276, Mar. 2001.

[6] Z. Ni, H. He, X. Zhong, and D. Prokhorov, “Model-Free dual heuristic dynamic
programming,” IEEE Trans. Neural Netw. and Learn Syst., vol. 26, no. 8, pp. 1834-
1839, Aug. 2015.

[7] H. He, Z. Ni, and J. Fu, “A three-network architecture for on-line learning and opti-
mization based on adaptive dynamic programming,” Neurocomputing, vol. 78, no. 1,
pp- 3-13, Feb. 2012.

[8] X.Fanga, D.Zhenga, H. He, and Z. Nib, “Data-driven heuristic dynamic programming
with virtual reality,” Neurocomputing, vol. 166, pp. 244-255, Oct. 2015.

[9] Z.Ni, H. He, D. Zhao, X. Xu, and D. V. Prokhorov, “GrDHP: A general utility function
representation for dual heuristic dynamic programming,” IEEE Trans. Neural Netw. and
Learn Syst., vol. 26, no. 3, pp 614-626, Mar. 2015.

[10] G. K. Venayagamoorthy, R. G. Harley, and D. C. Wunsch, “Dual heuristic program-
ming excitation neurocontrol for generators in a multimachine power system,” /EEE
Trans. Applications Industry, vol. 39, no. 2, pp. 382-394, Mar. 2003.

[11] N.Zhang, and D. C. Wunsch, “A Comparison of Dual Heuristic Programming (DHP)
and neural network based stochastic optimization approach on collective robotic search
problem,” IEEE Trans. Neural Netw. and Learn Syst., vol. 1, pp. 248-253, Jul. 2003.

[12] C. Lian, and X. Xu, “Motion planning of wheeled mobile robots based on heuristic dy-
namic programming,” IEEE Proc. World Congress Intelligent Control and Automation
(WCICA), pp 576-580, Jul. 2014.

[13] S. Al-Dabooni, and D. Wunsch, “Heuristic dynamic programming for mobile robot
path planning based on Dyna approach,” IEEE/INNS, International Joint Conference
on Neural Networks (IJCNN), pp. 3723-3730, Jul. 2016.

sjamw3
Text Box
 BIBLIOGRAPHY

155

[14] R. S. Sutton, “Learning to predict by the methods of temporal differences,” Machine
Learning, vol. 3, no. 1, pp. 9-44, Aug. 1988.

[15] M. Fairbank, and E. Alonso, “Value-Gradient Learning,” IEEE/INNS, International
Joint Conference on Neural Networks (IJCNN), pp. 1-8, Jun. 2012.

[16] M. Fairbank, D. Prokhorov, and E. Alonso, “Approximating Optimal Control with
Value Gradient Learning,” Chapter 7 in Reinforcement Learning and Approximate
Dynamic Programming for Feedback Control, New York, NY, USA: John Wiley and
Sons, pp. 142-161, Jan. 2013.

[17] S. Al-Dabooni, and D. Wunsch, “Mobile Robot Control Based on Hybrid Neuro-Fuzzy
Value Gradient Reinforcement Learning,” IEEE/INNS, International Joint Conference
on Neural Networks (IJCNN), pp. 2820-2827, May 2017.

[18] X. Bai, D. Zhao, and J. Yi. “ADHDP (1) strategies based coordinated ramps metering
with queuing consideration,” IEEE Symposium on Adaptive Dynamic Programming
and Reinforcement Learning (ADPRL), pp. 22-27, May 20009.

[19] T. Li, D. Zhao, and J. Yi. “Heuristic dynamic programming strategy with eligibility
traces,” IEEE American Control Conference, pp. 4535-4540, Jun. 2008.

[20] X.Bai, D. Zhao, and J. Yi, “Ramp Metering Based on on-line ADHDP(A) controller,”
IEEE/INNS, International Joint Conference on Neural Networks (IJCNN), pp. 1847-
1852, Jul. 2008.

[21] X. Bai, D. Zhao, and J. Yi, “Coordinated multiple ramps metering based on neuro-
fuzzy adaptive dynamic programming,” IEEE/INNS, International Joint Conference on
Neural Networks (IJCNN), pp. 241-248, Jul. 2009.

[22] H. Seijen, A. R. Mahmood, P. M. Pilarski, M. C. Machado, and R. S. Sutton, “True On-
line Temporal-Difference Learning,” Journal of Machine Learning Research (JMLR),
vol. 145, no. 17, pp. 1-40, Jan. 2016.

[23] R.S. Sutton, A. R. Mahmood, and M. White, “An Emphatic Approach to the Problem
of Off-policy Temporal-Difference Learning,” Journal of Machine Learning Research
(JMLR), vol. 73, no. 17, pp. 1-29, Jan. 2016.

[24] H. Seijen, and R. S. Sutton, “True Online TD(A),” Proceedings of the 31°" International
Conference on Machine Learning, pp. 692-700, Jan. 2014.

[25] Y. Sokolov, R. Kozma, L. D. Werbos, and P. J. Werbos, “Complete stability analysis
of a heuristic approximate dynamic programming control design,” Automatica, vol. 59,
pp- 9-18, Sep. 2015.

[26] F.Liu,J. Sun, J. Si, W. Guo, and S. Mei, “A boundedness result for the direct heuristic
dynamic programming,” Neural Networks, vol. 32, pp. 229-235, Aug. 2012.

156

[27] F. L. Lewis, D. Vrabie, and V. L. Syrmos, Optimal Control. NewYork, NY, USA:
Wiley, Mar. 2012.

[28] K.Doya, “Reinforcement learning in continuous time and space,” Neural Computation,
vol. 12, no. 1, pp. 219-245, Jan. 2000.

[29] M. Fairbank, “Reinforcement learning by value gradients,” eprintarXiv:0803.3539,
Mar. 2008.

[30] P. J. Werbos, “Backpropagation through time: What it does and how to do it,” Pro-
ceedings of the IEEE, vol. 78, no. 10, pp. 1550-1560, Oct. 1990.

[31] Y. Zhu, D. Zhao , and D. Liu, “Convergence analysis and application of fuzzy-HDP
for nonlinear discrete-time HIB systems,” Neurocomputing, vol. 149, pp. 124-131, Feb.
2015.

[32] C. Yang, Y. Jiang, Z. Li, W. He, and C. Su, “Neural control of bimanual robots with
guaranteed global stability and motion precision,” IEEE Trans. Industrial Informatics,
vol. 13, no. 3, pp. 1162-1171, Jun. 2017.

[33] C. Yang, X. Wang, L. Cheng, and H. Ma, “Neural-learning-based telerobot control
with guaranteed performance,” IEEE Trans. Cybernetics, vol. PP, no. 99, pp. 1-12, Jun.
2016.

[34] G. Zhang, M. Y. Hu, B. E. Patuwo, and D. C. Indro, “Artificial neural networks in
bankruptcy prediction: General framework and cross-validation analysis,” European
Journal of Operational Research, vol. 116, no. 1, pp. 16-32, Jul. 1999.

[35] D.Liu, and D. Wang, “Optimal Control of Unknown Nonlinear Discrete-Time Systems
Using the Iterative Globalized Dual Heuristic Programming Algorithm,” Chapter 3
in Reinforcement Learning and Approximate Dynamic Programming for Feedback
Control, New York, NY, USA: John Wiley and Sons, pp. 52-77, Jan. 2013.

[36] C.Chen, D.Dong, H. Li, J. Chu, and T. Tarn, “Fidelity-Based Probabilistic Q-Learning
for Control of Quantum Systems,” IEEE Trans. Neural Netw. and Learn Syst., vol. 5,
no. 10, pp. 920-933, May 2014.

[37] P. J. Werbos, and X. Pang, “Generalized maze navigation: SRN critics solve what
feedforward or Hebbian nets cannot,” IEEE Proc. Conf. Systems, Man and Cybernetics
(SMC) , pp. 1764-1769, Oct. 1996.

[38] D. Wunsch, “The Cellular Simultaneous Recurrent Network Adaptive Critic Design
for the Generalized Maze Problem Has a Simple Closed-Form Solution,” IEEE/INNS,
International Joint Conference on Neural Networks (IJCNN), pp. 79-82, Jul. 2000.

[39] R. Ilin, R. Kozma, and P. J. Werbos,“Beyond Feedforward Models Trained by Back-
propagation: A Practical Training Tool for a More Efficient Universal Approximator,”
IEEE Trans. Neural Netw., vol. 19, no. 6, pp. 929-937, Jun. 2008.

157

[40] N. Zheng, and P. Mazumder, “Hardware-Friendly Actor-Critic Reinforcement Learn-
ing Through Modulation of Spike-Timing-Dependent Plasticity,” IEEE Trans. on Com-
puters, vol. 66, no. 2, pp. 299-311, Feb. 2017.

[41] B. Luo, D. Liu, T Huang, and D. Wang, “Model-Free Optimal Tracking Control via
Critic-Only Q-Learning,” IEEE Trans. Neural Netw. and Learn Syst., vol. 27, no. 5, pp.
2134-2144, Oct. 2016.

[42] The National Council of Teachers of Mathematics (NCTM):
https://illuminations.nctm.org

[43] R. Ilin, R. Kozma, and P. Werbos, “Beyond feedforward models trained by backprop-
agation: A practical training tool for a more efficient universal approximator,” IEEE
Trans. Neural Netw. and Learn Syst., vol. 19, no. 6, pp. 929-937, Jan. 2008.

[44] Z. Ni, H. He, J. Wen, and X. Xu, 4AiGoal Representation Heuristic Dynamic Pro-
gramming on Maze Navigation," IEEE Trans. Neural Netw. and Learn Syst., vol. 24,
no. 12, pp. 2038-2050, Dec. 2013.

158

V. ONLINE MODEL-FREE N-STEP HDP WITH STABILITY ANALYSIS.

S. Al-Dabooni and Donald C. Wunsch
Department of Electrical & Computer Engineering
Missouri University of Science and Technology
Rolla, Missouri 65409—-0050
Tel: 573-202-0445; 573-341-4521 Email: sjamw3 @mst.edu; dwunsch@mst.edu

ABSTRACT

Since a backward view learning of eligibility traces requires pre-episode updating (off-line
tuning), this paper presents a novel adaptive dynamic programming (ADP) architecture with
a forward view learning that is useful for online updating. Three neural networks are used
with this architecture: the critic network with one-step temporal-difterence (TD) learning
(TD(0)), a critic network with n-step TD learning (TD(A)) and a action network. This design
is called the online model-free n-step action-dependent heuristic dynamic programming
(NSHDP(1)). NSHDP(1) has low computational costs and is memory efficient because
it uses direct implementation without storing the trajectory for every state. The design
architecture and their relative learning algorithms are illustrated in detail. Furthermore,
stability is proved for NSHDP(A) under certain conditions by using Lyapunov analysis to
obtain the uniformly ultimately bounded (UUB) property. Moreover, a complex nonlinear
system, an inverted pendulum and a 2-D maze problem are three simulation benchmarks
that are used to examine NSHDP(1) performance as it compares with other ADP methods.
Keywords: Approximate dynamic programming (ADP), action dependent heuristic dy-
namic programming (ADHDP), A-return, Lyapunov stability, uniformly ultimately bounded

(UUB).

159

1. INTRODUCTION

Because of the behavior of a nonlinear system, solving the Hamilton-Jacobi-Bellman
(HJB) equation instead of the Riccati equation is very hard. Adaptive/approximate dynamic
programming (ADP) is used to overcome this challenge via heuristic techniques with an
approximate solution of the HIB equation [1]. ADP has three fundamental families [2]
and [3]: heuristic dynamic programming (HDP), dual heuristic programming (DHP) and
globalized DHP. Each of them consists of three neural networks: actor, critic and model that
provide decision making, evaluation and prediction, respectively. If the action-dependent
(AD) is used in ADP (ADHDP for HDP and ADDHP for DHP), the critic network has
state-action pair input. In [5], Si and Wang implemented the online learning ADHDP, while
the online learning of ADDHP is introduced by Ni ef al. [6]. Online ADP learning is also
improved by Haibo He via adding dual critic networks for ADHDP as in [7], [8] and for
ADDHP as in [9]. Many applications have used the ADP techniques. Venayagamoorthy
ea al. in [10] used DHP to control the operation of a turbo-generator that has a better
performance than HDP. Collective robotic search problems are solved with DHP by N.
Zhang and D. Wunsch [11]. Lian and Xu [12] applied HDP to allow a mobile robot to escape
from sharp corners. Al-Dabooni and Wunsch [13] applied ADHDP to the Dyna algorithm to
obtain an optimal path by cooperating multi-robot navigation in an unknown environment.
Similar to [13], Volodymyr Mnih et al. [14] presented asynchronous actor networks in single
multi-core CPU (threads) but with a common critic network in another thread, and they
called it asynchronous deep reinforcement learning. The asynchronous deep reinforcement
learning is applied in various state-of-the-art forms in the Atari domain, but the most
important one is StarCraft II [15]. A temporal-difference (TD) with A parameter is a more
advanced learning algorithm than traditional TD learning. Sutton in [16], [17] illustrated a
combination between basic TD learning with eligibility traces further accelerating learning.

Inspired by [16], Fairbank and Alonso [18], [19] introduced new ADP algorithms that

160

extend DHP by including a bootstrapping parameter (A1) for eligibility traces. They called it
value-gradient learning (VGL(1)). The VGL(A) is used to track a reference trajectory under
uncertainties to control a nonholonomic mobile robot [20]. As reviewed in [2], ADP trains
the actor (controller) network to give optimal actions by minimizing the value function that is
produced from the critic network. Both networks are approximated by using a feedforward
artificial neural network of multilayer perceptron. The paper denotes the actor network
with w, parameters as AN(x, w,), or only AN for simplicity, which produces an action
vector (u). This work uses two critic networks. The first critic network is learned by using
a one-step TD learning error. The function approximator for the one-step critic network
with w? parameters is CN(x, u, w?), or CN(0) for simplicity. The second critic network is
learned by using an average of the n-step TD learning error. The function approximator for
the average of the n-step critic network with w? parameters is AN(x, u, w?), or CN() for
simplicity. A simple interpretation and good performance are two well-known properties
of TD(A) as presented in [16], [17], [21] - [28]. But these works used an additional
memory variable associated with each state to store the eligibility traces; therefore, they
suffer from high computational complexity. In [29], Al-Dabooni and D. Wunsch solved this
problem, but that was for batch-implementation learning. The NSHDP(Q) design is used
for online-implementation learning. Thus, the NSHDP(A) structure is memory efficient
since it overcome the drawbacks of using eligibility-trace storage and online learning. The
online learning aspect with low computational cost is the first contribution for this work.
The second contribution is that it provides stability proofs for NSHDP(A) architecture. The
general stability of ADP is an open problem [30]. The stability of the one-step model-free
ADHDP is introduced by Feng Liu et al. [31] and Yury Sokolov et al. [30]. Haibo He et al.
[32] provided UUB proofs for critic/reference neural networks and a fuzzy logic controller.

This work expands the stability of model free learning from one-step (4 = 0) ADHDP(0)

161

One-step
Critic Network
(CN(0)

°(t-1)

Bel(t) i
Actor Network‘ | Be; (1) U <": U(t)

[
A o -
& L pA(t —
u(t) ¥ oAt =1)
S < > n-step T
(O 07 ystem o Critic Network H
@ X0 NGy i
e, 1ol
e E el(t)
e
~~d
Parameters Tuning Paths:
One-step Critic Network Path: =—===meecmmmm e >
n-step (Eligibility Traces) Critic Network Path: mee—ev >

Actor Network Path:

>
>
Backpropagation Calculation Error Signals:

One-step Critic Network Error (TD (0) Error):e2(t) = (y8°(t) + U(®)) — (3°(¢ — 1)): EX(¢) = %(eg([))z L AR(E) = £~ Zw((?)]
:

nstep Critic Network Error (TD (1) Exron):e2(6) = (yA03(6) + y(1 -)9°() + l/(t)) — (At - 1): B2 = E(e; (t))z: AWA(E) = £~

aEk(®)
i)

. 0(8) — 59(8) — U - eA(6) = BA(E) — U.: EOCE) = (2 EAE) = (A A% () — — _) 9BR(0) °) , ;9B He)
Actor Network Error: ¢9(¢) = 9°(¢) — U, e2(t) = 92(8) Uz EQ(D) =2(e20)", E2®) =2(3(0)) 8%, (®) = £, [(1- D) A L+t 0,

Figure 1. Schematic diagram for the adaptation of an online model-free n-step ADHDP
(NSHDP(1)). This design uses two critic networks: the one-step critic network (CN(0))
and the n-step critic network (CN(2)). The CN(0) produces a one-step-return value function
(#°(1)) based on the ordinary temporal-difference (TD) learning algorithm, while the CN(1)
produces the average of the n-step-return value function (9(z)) based on a TD(Q) learning
algorithm [27]. The TD(A) learned from the average of the n-step-return backups, where
A represents the proportional average weight. A-return (R}') [16] is another name for
the average of the n-serp-return. The $%(¢) value is identical to R}, [29]. This design is
equivalent to the one-step TD backup (1=0). It focuses on the recent information to predict
the value function via CN(0). Online learning is another advantage of this design, where it
speeds up the tuning without requiring any initial backup for $4(¢). Furthermore, this design
is a model-free learning design that does not require prior knowledge about a mathematics
dynamic model. Despite the bootstrapping eligibility trace parameters (A and y) give the
CN(Q) the ability to determine a depth (effecting via 1) and a width (effecting via y) from
information during a sequence of events (i.e., the rewards in the backward view of TD(Q),
[21]). The CN(0) provides the value function that concentrates on recent events. Therefore,
the NSHDP(1) design combines the details of the current information (real-time data) with
a sequence of predicted events. This combination provides the optimal decisions [40] in the
control/industry field as well as [41] in the consumer/marketing field (correlation between
real time and history). The weights for CN(0) and CN(A) are updated according to the
TD(0) error (blue dashed line) and the TD(A) error (green dashed line), respectively. The
actor network (AN) that provides the action values is tuned by two paths (backpropagating
errors): one through the CN(0) path (€2(¢)) and the other through the CN(1) path (el(r)).
This strategy assists AN training to correlate and combine the fluid information from CN(A)
and CN(0). These two paths are filtered via a similar value of A, and they combine to
produce a total backpropagating actor error (red dashed line).

162

to ADHDP with A. Section 2 shows the NSHDP(1) structure. The remaining sections are
organized as follows: Section 3 presents the UUB stability analysis for CN(0), CN(A1) and

AN, Section 6 illustrates the simulation results, and Section 7 is the Conclusion.

2. THE ONLINE MODEL-FREE NSHDP(1)

2.1. NSHDP(2) Architecture. The ADP technique allows agents to select optimal

actions to minimize their long-term cost, which is given [33]:
J(x() = U (x(k), uk), (1)
k=t

where J(x(t)) is the value function (long-term cost) of the state vector (x € R™) at time step
t. vy denotes the discount factor, and U(x(k), u(k)) = U(k) is called the utility function at
time step k for x after applying the action vector u € R". The TD learning with an eligibility
traces parameter (1) helps fill the gaps between the sequence of predicted events and the
training data [17], [27], [28]. This work combines the TD(A) learning technique with the
model-free ADHDP. It uses two critical networks to criticize and learn the actor network.
Haibo He et al. introduced dual-critic with ADHDP, which is called the goal representation
HDP (GrHDP) [7], [34]. GrHDP used the one-step TD learning for both critic networks.
In contrast, this paper uses the one-step TD for learning a first critic network, while the
second critic is learned by using n-step TD learning. Fig. 1 illustrates the main architecture
for this paper’s approach, which is the online model-free n-step ADHDP (NSHDP(1)), and
the “AD” abbreviation is removed for simplicity. This design not only accomplished the
GrHDP function, but it also applied the advantages of TD(A1) learning technique (good
fast performance, low computational cost and simple interpretation). The details of all the
blocks are explained in this section. The general discrete-time nonlinear system model is

represented as:

x(t+ 1) = f(x(r),u@®)), (2)

163

where x is the m-dimensional system state vector and « is the n-dimensional control vector.

NSHDP(Q) is used to solve the Bellman equation [4], [35]
JO=U@t+1D)+vyJ(t+1), (3)
to satisfy the optimal performance discrete-time HJB equation [1]:
J(t) = rLrtl(it?{U(t + 1)+ yJ (1 + 1)}, 4)

where J* denotes the optimal value function and the instantaneous cost (the utility function)
should be bounded (U(t) € [0,1]). Equation (3) is called a one-step TD that learns
the critic and actor in traditional ADHDP(0)2. As in [21], the Bellman equation for a
one-step-return (total discounted future reward depending on one-step TD error) is given as
R,(l) = U(t)+yJ(t+1), and for a two-step-return is given as Rt(z) = U()+yU(t+1)+y2J(t+2),

while for an n-step-return (Rl(")) is given as follows:

n

R =U@) +yUt+ 1) +...+y" Ut +n—-1)+y"J(t +n) = Z YU+ k), (5)

k=t

where R,(i) is the i-step-return value, which is the summation of instantaneous costs from ¢
toi. An average of the n-step return is a technique to achieve the fair cost value distribution.
For instance, the average calculation of the four-step return can be done via half of the
two-step return and half of the four-step return such that R;‘ @ - sz,(Z) + w4Rt(4), where
wy; = 0.5 and wg = 0.5 are the proportional weights. The proportional weights (w;),
i =1,2..., are positive and add up 1. A A parameter represents these proportional weights.
For instance, w; = (1 — A) for an average of one-step return(R,(l)); for an average of two-step

A

return, R, 12 _ wlRt(l) + szt(z), where w; = (1 — A) and wr = A; and so on. Section 3

shows a stability proof for selecting A to fit with NSHDP(A1), which should be 0 < 1 < 1

2the zero denotes a one-step learning (4=0)

164

rather than 0 < A < 1, which is used frequently with the regular TD(1) reinforcement
learning algorithms (i.g. Q(A)-learning). The A-return is another name for the average of

the n-step-return, which is defined in general as:
R'=(1-2) Z AIR™, (6)
n=1

For simplicity, the average of the n-step-return is henceforth denoted as the n-step expression.
The previous method is called the forward view of the TD(A) learning algorithm. Since
each step uses the knowledge of what will happen many steps later, the forward view is
not directly implementable. The backward view provides an extra variable associated with
each state, which is called an eligibility trace. NSHDP(1) does not use any eligibility trace
parameters by redriving the A-return as in (5), which is used to train the parameters of the
approximate value function (critic network). By substituting (5) into (5), the following is

obtained 3:

RY=(1- A)iﬂ”‘l([niykwt + k)] + (1 +n)).
e . (7)
= (1 —a)([Zﬂ—l YUt + k)] >y +n)).
0 n=1

n=1 k=

Expanding and re-arranging (6) yield

RY=U®t) + Ay

Ut+1)+ /ly(U(t +2)+ /ly(U(t +3)+ ...+ Ay(U(0) + (1 =)y

J(©0)) + ..+ (1=)yl + 4)) + (1=)yd(t + 3)) + (1= Dyd(e + 2))+ ®)

(I =yJ(+1),

3The detail derived is presented in [29]

165

where v(c0) = U(co). Then, the target-value according to (8) is given as follows:

vi)=U(@t)+yav(t+ 1) +y(1=D)J(+ 1), 9)

where v(¢) in (8) is identical to Rﬂ. The NSHDP(1) design uses a A-return value as a target
value to train the weights in the critic neural network as an approximation function for the
n-step value function. We called this network the n-step critic network (CN(1)). CN(Q)
uses P2(t) as the approximated output symbol. The other critic network provides $2(z).
#0(¢) is an approximated function value for J(¢) in (3), which is similar to Rt(l). For this
reason, the other critic network is called a one-step critic network (CN(4 = 0) or CN(0)).

Therefore, the Bellman equations for the one- and n-step TD learning are given as:

p0(t) =U@) + vyt + 1), (10)

and

A1) =U®@) + y0Mr + 1) + y(1 =)9 + 1), (11)

respectively. The online free-model design for NSHDP(A1) was inspired from [5] and [37].
Both the previous (¢ — 1) step and the current (¢) step are stored. Similar to [5], the delayed
errors for the one- and n-step critic networks are adopted, as well as the actor network,
and they use the gradient descent technique to update the weights in all the networks over
time steps. Since structure of a fully connected neural network structure by Werbos [38]
is so elegant and extendable, it is used in the all three networks (AN, CN(0), and CN(1))
as a universal function approximator. All the weights that connect the input nodes with the
output nodes were set to zero; therefore, it is similar to the traditional three-layer feedforward
neural network structure. However, this structure might be useful for models that require
direct connections between the input and output nodes without passing through the hidden

layers.

166

Sl(t) Sm(t) ul(t) un(t) : ﬁo(t)

Figure 2. A schematic diagram of CN(0) in NSHDP(1). As mentioned by Werbos in [38],
this structure is more general than a traditional three-layer feed-forward neural network
that is fully connected among all neurons. It models a variety of functional forms as
demonstrated in [39]. All weights were set so that the connection input nodes with the

output nodes were zero. (D(C){h} represents hidden weights, which are connected to the input

layer with the hidden layer. The output weights are indicated as (DS{O} , which connect both

the input and hidden layers with the output layer. a;(¢) is the kth hidden node input of
the critic network, and by (#) is the corresponding output of the hidden node. A hyperbolic
tangent threshold function (¢(.)) is applied to the hidden neurons.

2.2. The One-Step Critic Network (CN(0)). The structure of the CN(0) consists
of a three-layer feed-forward neural network including one hidden layer neural network. As
shown in Fig. 2, the output of the CN(0) is $°(¢), which is an approximation value of J(r)
in (1). The inputs for the CN(0) are the system states (s(¢), s2(¢), . . ., 5;»(¢)) and the actions
(u1(2), ux(t), . . ., uy(1)). h? is the number of hidden neurons, m is the number of system

0{h}

states, and 1 is the number of actions. The hidden weights are indicated as @, which can

be represented in a ((m + 1) X hY) dimension matrix. The output weights are indicated as
cf)(c){o}, which can be represented in a (h(c) X 1) dimension matrix. The activation function for

the hidden nodes is the hyperbolic tangent threshold function (¢(x) = (1 — e ™) /(1 + e™)).

The forward propagating output signal according to Fig. 1 and Fig. 2 is

m n
~0{h ~0{h
ag(t) = D 0o a0+ Y dor, | ug(@), (12)
i=1 Jj=1

167

b (1) = plag)(1)), (13)

i
200 =) oy by (), (14)
k=1

where k = 1,2,..., h, agr(t) is the kth hidden node input of the CN(0) network, and b(y()
is the corresponding output in the hidden node. The weights for the hidden (c?)?{h}) and
output (@8{”}) layers are tuned by backpropagating the prediction error of the critic network,

which is given as follows:

e2(r) = U@t) + y9°(r) = 9°(r - 1). (15)

The objective function for the CN(0) is to minimize E2(r) = 0.5(e%(r))* by updating the

value for the weights according to the gradient descent algorithm:

AOE(t
B0t + 1) =000) + 200(0) = 60() - (29 (16)
AO(t)
and the chain propagation path can be represented as
OEX1) OEX1) 0%2(1) a7
00%(t) 092(t) 9d%(r)
Then, the adaptation of the CN(0) output weight is
~ ~ ~0T ~0T T
a0+ 1) =0l - ydln)|yol k0 + U0 - (=g - D], (18)

where ¢ = [b1, b, ..., bpl", @2 = &', and 9°(r) = & (1)¢2(r). Following [31], the

initial hidden weights (@8{’”) were chosen randomly and kept constant while the output

weights (621 = &0) were updated.

168

20 MO wO w0 i

Figure 3. A schematic diagram of the average n-step learning critic network (CN(1)) in

NSHDP(A). The (f)?{h} represents the hidden weights which are connected to the input layer

through the hidden layer. The output weights are indicated as @ﬁ{”}, which connect both

the input and hidden layers with the output layer. cx(#) is the kth hidden node input of the
critic network, and d(¢) is the corresponding output to the hidden node. Here, only apply
a hyperbolic tangent threshold function (¢(.)) is applied to the hidden neurons.

2.3. The N-Step Critic Network (CN(1)). Fig. 3 illustrates the structure for
CN(Q), which has a similar configuration to the CN(0), but with its own hidden and output
weights. The output of CN(Q), $(¢), learns to approximate Rf as in (8). The inputs for the
CN(Q) are the actions (u1(t), uz(t), . . ., uy(t)) and the system states (s1(z), s2(¢), . . ., S(2)).
hﬁ is the number of hidden neurons of the CN(A), m is the number of system states, and 1 is

{h}

the number of actions. The hidden weights are indicated by c?)? , which can be represented

in a ((m + n) x hY) dimension matrix. The output weights are indicated as c?)f{(’}, which
can be represented in a (hﬁ %X 1) dimension matrix. The activation function for the hidden

nodes is the hyperbolic tangent threshold function. The forward propagating output signal

according to Fig. 1 and Fig. 3 is expressed as follows:

m n
~A{h ~A{h
Ci(t) = Z O sy (1) + Z NI O) (19)
i=1 i=1

169

dii) (1) = Pl (1)), (20)

i

N A

P = > 05 qu), 1)
k=1

where k = 1,2, ..., hf, C(k)(t) is the kth hidden node input of the CN(4) network, and dy ()
is the corresponding output of the hidden node. The weights for the hidden (c?)f{h}) and
output ((Df{"}) layers are implemented by backpropagating the prediction error of the critic

network

1) = U(t) + y(m(t) +(1- A)ﬁo(t)) — (i —1). (22)

The objective function for the CN(AQ) is to minimize EX(f) = 0.5(el(¢))? by updating the

value for the weights according to the gradient descent algorithm:

AEA(t
O+ 1) =0(0) + o) = (1) — (4 22D, 23)
A1)
and the chain propagation path can be represented as
E/l E/l ad
OEX1) _OEM) 9%X(0). o
O (r) 9vi(r) dDX(1)
Then, the adaptation of the CN(A) output weights is
~ ~ T ~0T
Ol + 1) =01(1) - €Ay el yaal (k0 + (1 - VY g2 + UG- o3

ol 1=k - 1|
where ¢} = [di,da,....djl", &} = ®H, and 94(r) = & (1)¢X(r). As in CN(0), the
initial hidden layer weights (cf)f{h}) are kept constant while updating the output critic

A

weights (&1 = o).

170

2.4. Actor Network (AN). The AN generates near-optimal control actions (policy)
that are illustrated in Fig. 4. Werbos [38] suggests that there are extra weights connected
among the outputs themselves. This work sets extra weights equal to zero to become similar
to the outputs in a traditional multi-output feed-forward neural network. The system states
are the input to AN, which are represented by (s1(¢), s2(¢), . . ., s;(¢)), while the outputs are
the control actions (u(t), ux(t), . .., uy(t)). h, is the number of hidden neurons of the AN,
m is the number of system states, and n is the number of action values. The hidden weights

are indicated as cf)c{lh}, which can be represented in a (m X h,) dimension matrix. The output

weights are indicated as ch{f’}, which can be represented in a (h, X 1) dimension matrix.
The activation function for the hidden nodes is the hyperbolic tangent threshold function.

The forward propagating output signal according to Fig. 1 and Fig. 4 can be expressed as

follows: .
P =) O s @), k=12, h, (26)

i=1
g (1) = d(pa(@), k=12,..., h,, (27)

ha
ug(t) = Z 6026,}@61(@(1),
k=1 (28)
j=12...,n,

where p()() is the kth hidden node input of the AN network and g(t) is the corresponding
output of the hidden node. The actor network weights are adapted by combining the
backpropagating signals for errors of the actor network (e)(r) = $°(¢) — U, and el(¢) =
?4(t) — U,), where U, is the desired ultimate cost-to-go objective value. As in [5], U, is set

to “0,” corresponding to “success.” The objective function for this network is minimizing

the actor error, which is given as follows:

E(t) :0.5((1 — DE(1) + /lEj(t)) - 0.5(BE3(t) + BEj(z)), (29)

171

s1()

Sm (1) : 0, (0) ()

Figure 4. A schematic diagram of the actor network (AN) in NSHDP(X). All of the weights
that connect input nodes with output nodes are set to zero, as well as the connected weights
between the outputs themselves. cf)c{,h} represents the hidden weights which are connected
the input layer with the hidden layer. The output weights are indicated as c?)‘{l(’}, which
connect both input and hidden layers with the output layer. p; () is the kth hidden node
input of the critic network, and g (¢) is the corresponding output to the hidden node. A

hyperbolic tangent threshold function (¢(.)) is applied in the hidden neurons.

where EY = 622 and E! = e;}z. Updating the weight vector by applying the chain rule is

given as follows:

Bult + 1) =04(1) + £0u(1) = Gu(t) — £ 22

0y(1)

. 1 OEY(r) 90(t) du() OEN1) 9vi(1)
“"“(t)_ifa((l_ﬂ) 99%(1) Ou(t) D (1) " avA(t) Oult) (30)
Ou(r))

O,(t))

where .
95%1) _ < 990) dap(t) Obi(r)
6u(k)(t) _i:I (961@(1‘) ab(,')(l‘) (9u(k)(t)’ a1

2
A1) < M) Fep(t) dd(t)
6u(k)(t) P OC(,')(I) 6d(,-)(t) ﬁu(k)(t)’

172

The final adaptation of the action network’s weights between the hidden layer and the output

later is
Oult + 1) =04(1) = La| (1 = VgD (HNC [T ()20 +
(32)
.00 (HC [el D],
where ¢q = [q1, @2 - - -» qn, |Ts Ga = O, 4(t) = O (1)da(t), CO(r) is the feedback weighting
values for CN(0), and C*(¢) are the feedback weighting values for CN(1). C°(¢) is a matrix

of h‘c) X 11, and the elements for this matrix are

1
Co 0 = 5(1- (02, 0)%)all) o, (33)

where i = 1,2,...,h% and j = 1,2,...,n. Likewise CA(¢) is a matrix of h* x n, and the

elements for this matrix are

1
Clyo = 5(1- (08, 0)ai" o, (34)

where i = 1,2, .. .,hf and j = 1,2,...,n. Similar to the updated strategy of the critic
networks, hidden actor weights (cf)c{lh}) are kept at random constants while updating the output

{0} _
{o}

actor weights (@ wq). Werbos et at. [30] shows the details about backpropagating

signals and the gradient decent learning algorithm.

3. STABILITY ANALYSIS FOR NSHDP(1)

The Lyapunov function provides the UUB property for dynamical systems without
solving the state equations. This section discusses the stability for CN(0), CN(41) and AN

networks by using the Lyapunov function.

173

3.1. Basics of The Lyapunov Approach. Let ¥ and w! denote the optimal
weights for the one- and n-step critic networks, w}, is the optimal weight for the actor

network. the optimal weights for the three networks are defined as follows:

a)g* = argmingo||U(t) + yfzo(t) - \90(t -1, (35)
Wb = argming ||U(t) + y(w(r) +(1- /l)ﬁo(t)) - 1), (36)

and
W’ = argming || A94(1) + (1 =)9°(1)]]. (37)

The weight estimation error for all three networks (CN(0), CN(4) and AN networks) is:
o) = o(t) — w*. (33)

A more general discrete time dynamic system for weight update rules (equation
(18) and for the one-step critic network, (25) n-step critic network and (32) actor network)

defines a dynamic system of estimation errors for a general nonlinear function (®(.)) as

a(r+1) = (1) - (D(c?)(t), ot = 1), (1), bt — 1)). (39)

Therefore, the stability properties of the system in (39) express the asymptotic behavior of
the estimation error of the weights (&(¢)).

Definition 1. cf [31] Within a bounded positive value (¢ > 0), a discrete time dynamic
system (39) solution is UUB, if and only if for any 6 > 0 and ¢y > 0, there exists a positive
number N = N(6,) independent of 7y, such that ||@(¢)|| < & for all t > N + ty when
@) < 6.

Theorem 1. The discrete time dynamic system (39) has a Lyapunov function L(&(t)) such

that for all @(zg) in a compact set K, L(@(t)) is positive definite and the first difference,

174

AL(&(t)) < O for ||@(2)|| > &, where & > 0, such that - neighborhood of @(¢) is contained
in K. Thus, the dynamic system is UUB and the norm of the state is bounded within a
neighborhood of €.
According to Theorem 1, an appropriate function L is selected to determine the UUB
property for (39) subject to Assumptions CY, C* and A below.

3.2. Assumptions. The main theorem are proven according to three lemmas as
follows:

Assumptions C°. Let w¥ (7) be the optimal weights for CN(0):

wg* :argmind)glleg(t)ll
(40)
. ~0T ~0T
=argming||U(1) + y&) ()g2(1) = &Y (1 = D2t = D).
Assume it is bounded by a positive constant (i.e., [|w? (¢)|| < w?max) where ||.|| represents

2-norm.
Lemma C°. Let Assumption C®hold. Then, the first difference of Lo1) = t,iotr (cDQT (t)d)g(t))

for CN(0) is expressed as follows:

AL2(t) < IO =721 = PO x 1€20) + w? 620) + ¥~ ()~
Y1 (= 062 = DIP + 2y 620 + U0 - 367 (- Dl 1) @D
— ¥ 6= DI+ S - DI,
where £0(t) = (c?)(c)(t) - wg*)¢g(t) = ©2(1)¢°(t), which is the approximation error of the
CN(0) output.

Lemma C° Proof. The first discrete difference of the nominated Lyapunov function is

given as follows:

ALY() = f—{)rr((,agT (t + 1) +1) - LDST(t)cDS(t)). (42)

c

175
By updating rule (38) and @(t + 1) as in (18), the following is obtained:

a2+ 1) =000 -yl (767 00 + [yo? 90 + U@ -6 (- 1)

43)
a2 -1]")

By assuming P° = [- (2¢%(1)¢Y (1)], and 0° = [yw?" ¢2(1)+U(1) - (1 - g2t~ 1)]
and substituting P°, 0° and (43) into (42) yields

2120) = ~ir([a 0P~ y0% 0| [a0 - ye0” |-
le (44)
Rt).

Applying the Cauchy-Schwarz inequality obtains

AL < =V IEOIP = 72 (1 = €y 10 I IEXOIP - 2(1 = U2 IP)

ly&OINQ°I + &I 2°N.

(45)

With further arrangement (41) is acquired.

Assumptions C4. Let w/! (1) be the optimal weight for CN(1), which is defined as follows:

A

* . . AT ~0oT
w, =argmin ||e£(t)|| = argming ||U(1) + 7/lwf (t)qﬁf(t) +y(1 - /l)wg (1)

. (46)
¢2(t) — OF (t — Dl =).

Assume it is bounded by a positive constant (i.e., |w! ()| < w}).

Cmax

Lemma C*. Let Assumption C* hold. Then, the first difference of L(z) = ﬁtr(d)éﬂ (&A1)

for CN() is expressed as follows:

176

2/12 2/12
sLY0) < ~I=lEOIP - =1 = (Y2l 0IP) x X0 + 7' (1=)
o (0620) + i 9A0) + v U0 -y 0 (¢ - 1gte - DIP+
, 7)
2l 60+ U + (1 = 06l 0820 - 301"~ Dol - 1)-

I T 1
o @l = DIP + gk - DI,

where £1(t) = (OX(t) — w!)¢l (t) = @} (t)¢(t), which is the approximation error of the
CN(Q) output, and « is a weighting factor (@ > 0).

Lemma C? Proof. The first discrete difference of LA(¢) is

ALy (1) =

;A tr(@d (t + Dot + 1) — oF @)). (48)

Cc

By updating rule (38) and @(+ 1) as in (25), which yields

G+ 1) =620 - Ly a8k | U@ +yaa! 08y (1 - Dal (0620~

9)
&~ ata-|

By assuming Pt o= [I - 9228 (0)¢Y (1)] and Q1 = [U(1) + y(1 — DAY (1)¢2(1) +
yiw® qSC (t)— & (t—1)¢(t — 1)] and substituting P!, 0 and (49) into (48), the following

is obtained:

a0 = 21601 + (1 = el OPIEloR] - 2er(1 -y
22/1

=€ .
62 O12) + =<2 I U @) + (1 =)@ aw&n+w£¢ﬂn— (50)
@fO—D%O—DW-

177

By applying the Cauchy-Schwarz inequality, the AL2(t) becomes

1 A
AL = ~— Iy O - T (1= 21017 Iel 0 + v~ a7 U)

(1= 007 020 + vl 610 - of (1= Dk - D]IP+ =
® D

Ivded” 640 + 41 = 00 620) + U0 = 568 (= g - 1)-

I T 1
S0 @t = DIP + =gl - DI,

With further arrangement, (47) is reached.

Assumption A. Let @] be the optimal weight for AN, which is bounded by a positive
constant, i.e., [|w}] < w™*. Let &,(t) = [Du(t) — wi]T ¢u(t) = GL(¢)¢4(t), which is the
approximation error of the actor network output.

Lemma A. Let assumption A hold. Then, the first difference of L,(¢) = ﬁtr(d)g(t)d)a (1))is

1 T T T
AL(1) < 071(“ = D(4IEWI? + 410 2O + €0 (OCI = 16 (1)

SOI) + (I +dllol” $OI + 107 O - o (@)

GAOIR) + L1 = D@16 PO O + a1l)
o OCHIPIGY O8I + 5640 = DligaOI (167 ORI
lof Wt + 8¢ ODIPla OCHP + o et nIPlay ()

b

I + o (c®IPllad (e

where @ > 0, which is a weighting factor.
Lemma A Proof. As in (39), the asymptotic behavior of the estimation error of the actor
weight (@4(?)) is to be analyzed by studying the stability of (39). The first discrete difference

of L,(t) is given as follows:

AL(f) = — - tr(chT(t+ Dda(t + 1)—@5@)@@)). (53)

1ta

178

By updating rule (38) and @.(z + 1) as in (32), the following is obtained:

Balt + 1) =@a(t) - L, ((1 — 0606”0 (2] + Ao ()G (H)C
(54)

o (r>¢£<r>]T).
Substituting (54) into (53) yields

ALy (1) =

lf rr(= 264(1 = DELNBY (NC[DY (VUOT — 2L,264(1)

1ta

oF (OO O] + 262201 = Dllga() PO (1)¢2(t) -
(55)
[0 ()C o (O 0! 2] + €21 = a1 (1)

ClPR10Y ()21 + A2 | ga ()P l0) (OCHPNL (e,

By applying the Cauchy-Schwarz inequality, the following is obtained:

1 T T
- (fau = D& + 46l 201 + ol (|-

ALy(t) <

1ta

169 O20I) + Ead (4 + 4ol SO + eaal P

T I, .or 1
~ o)9O + 22201 = Dliga®IP(- S0 OS2I - 5

6 OCIP) (- 310 ekl - 316t OCH) + 60 - 42
gAY (COIPNAY (2N + 2% gL ()T

||wfr(z>¢£<r>||2).

With further arrangement, (52) is reached.

3.3. The Stability Analyses for The Dynamical System. The Lyapunov candidate
functions for all networks in NSHDP(A) are analyzed in this subsection to prove the bound
estimation errors.

Theorem 2 (UUB for CN(0), CN(4) and AN). Let Assumptions C%, C* and A hold with

a bounded reinforcement signal. Let gradient descent be used to update the weights of

179

both one-step and n-step critic networks as (18), (25), respectively. The gradient descent is
also used to update the weight of the actor network by using (32). The errors between the
optimal weights for all networks (w?', w!", w?) and their estimates (©%(¢), ®(t), G,(t)) are

UUB if the following conditions are met

1 1
Pt a1
Y2011 Ve LA
(1= D167 ORI + A s 1 7
t, < ¢ ¢ 5 ¢ ¢ ,0<A<1l, —<vy<l,
[¢a(OII*Y V2
where V¥ is described in (65), and the constraints on the weighting factors are
_ _ 9,22
(1 -1 -2y"2)’ (58)
A(1 =2y?)
and
-8(1-2)
< —. 59
M0 (39)

Theorem 2 Proof. The definition of the Lyapunov function for NSHDP(1) is given as

follows:

L(t) = L2(t) + LX(t) + La(t) + LY(t) + Ly (1), (60)

1 1
where LI(,)(I) = §||§c0(f —1)||?, and Lﬁ(t) =3 |€A(¢ — 1)]|?. The first difference for Lg(t) and

/1 o
L (¢) are given as

ALY = 3 (IO - 12 - DIF),)

and

a0 = 5 (1€ - igka - DIP), (62

180

respectively. The first difference of the Lyapunov function (60) is

292 4

N0z _ (YA 44 1\ a2 2
IO ~ (T == Ikl = v (1 -y

CUELOIR)IED +w? 920+ U0 =y 0 (0 - 1l - DI
232 T
YL (1= 2R NIl + w680+ 57 0 UGy + 47

AL(t) < —(72 — 4(1—_/l)

1 T
(1= 06 a6 =y 170 (= Dol = DIP = (1 = Dllaf! (1)
SO + Ao OO ~ LllsaOIPY) + 2yl 620 + UG)- 63)
S0 (= 0l = 1) - 502 6% - DIP + Zlyaw!” 6l + U+

y(1 =)&? (r)@(r)——w Y- Dt 1) - aﬂ oLt — 1)|I*+
(1-2)
aq

(#1620 + N0t (0C°IF) + - (4ot ol
+lelwal ct?),

where P is given as follows:

7 T 1
¥ = (1= D20 OC DI = 2l OCH PN = 320 =
(64)

12O + 10) (12 + 167 ()CIR),

which YV is equivalent to

¥ = (1= [0 OC I g0 = 2llof O Pl Oskn)]P-
1 T T T T
541 = (168 OeOIPIaY OstOIF + 16 O IPIal O+ ©5)
16 et OIP10Y O + 16l O IPIad et R).

To guarantee that the third and fourth terms of (63) are negative, the learning rate for the
one-step critic network (¢2) and the n-step critic network (¢4) have to be 1-y£2|¢°(¢)||> > 0

and 1 — y22204||¢2(1)||> > 0, respectively; similar procedure is taken to guarantee the fifth

181

term of (63). From the first and second terms of (63), the weighting factors are calculated.

The first difference of L(¢) can be rewritten as follows:

o A0=A) 1y 0.0 (YA 411 A2 2 2
AL(l)S—(Y —a—l—i)”fc(f)” —(T—Q—l—ﬁ)”é(l)” - (1—7

NI I + o 920+ U0 =y b (¢ - 1D - DIP-

,}/2/12

L2 (1= 2R8I 0 + of 6k +y™ U@ + 47! (66)
(1= 067 020 -y 170 (= Dl - DI - (- vllaY @
1

SO + Aol OsLOI - €¥) + T,

where I'? is defined as a positive term in (63), which is given as follows:

W 1 ~0T 1 T 2
I =2llyoy ¢o(0)+U) = 567 (1 = Dele = 1) = Sw ¢ =DIP+ =y

ol 90+ U + 71 - 00 080 - 301 (¢~ Db = 1) - 3!
(1-2)
aq

PO + ||§3(t)cb£7(t)c*||2).

(67)

T T A ST
020~ DIP + == (4o QI + 1200 OCIP) + (4l

With further simplifying, I'? can be rewritten as follows:

12 < 4(22llof” a0l + U7 + 710 (= Dt - DIl 92 - DI+
2 (2l S I + VP + 720 = 21 80P + 68 1)
0l - 1+ ot 6l - D) + 20 OC R (I + o) 69
$u01P) + 102 OCH (I a0 + o 0u0IP) + U ol

40 T
P2(0)|* + a—lnwﬁ oL (1)]1%.

182

The upper bounds for w? (w?" and @?), w! (w! and O}), w, (W: and &), ¢°, ¢2, ¢a, C°, C*
and U(t) are substituted to w2, w2, Wam> ¢2,r L., dam> CO, CA and U,,,, respectively. There-

fore, I'2 can be rewritten as follows:

2 41-2 2 1 4
r’< w2;¢8,2n(4y2 +1+ —72(1 -)%+ ()) + Wl gt (—)/2/12 + -+ —)+
a a

al cmycm

(69)
2D O b + e CE 2 = T2,
a1 (03]
If (57) holds, then any
0 1—‘m
NE: >
\/ C A1- 1 (70)
’y — — —
a1 2
or,
L
[,
Y222 41 1 (71)
a a; 2«

1
where 0 < 4 < 1, \/—_ < v < 1, @ is defined in (58), and a; is defined (59), making
2

AL(t) < 0, meaning that the estimated errors, which are the deference between w? , w{ ',

w? and their estimates (0%(¢), ®(t), ®4(t)) are UUB.

4. SIMULATION STUDY

The trajectories of the internal reinforcement signal 2-D nonlinear system are con-
sidered the first case study to verify the effectiveness of the NSHDP(A1). Here, the results
are compared with the performance of ADHDP and GrHDP. The second case study is a
single link inverted pendulum. The performance of the inverted pendulum is investigated
by comparing NSHDP(1) with GrHDP in different noise exposure effects. The third case
study is a 2-D maze benchmark. NSHDP(1) and ADHDP are also compared, along with

other reinforcement algorithms, which are SARSA(0)# and Q(1) [21].

4The SARSA (State-Action-Reward-State-Action) algorithm is used to find the series state-action pairs by
using one-step learning; therefore, it is written as SARSA(0).

183

4.1. First Case: Nonlinear System Problem. Consider the following nonlinear

system derived from [42]:

xi(t + 1) = —sin(0.5x1(¢) + u(r))
(72)

xo(t + 1) = =sin(x1(t) + 0.5x5(1)),

where x(7) = [x1(r) x2(t)]" € R?, is the state vector (m = 2), and u(¢) € R! is the control
action (n = 1).

The external instantaneous cost function is U(¢) = x7 (£)x(¢)+u” (t)u(t). The discount
factor (y) is 0.9, and A is 0.95. The number of hidden nodes in both critic networks is 7
(h% = ht = 7).

The number of hidden nodes for AN is also 5 (h, = 5), and the initial learning
parameters for all the networks are f? = 5? = 0.05 for both the CN(0) and the CN(A1), and
£, = 0.01 for the action network. The training for either network will be terminated if the
error drops under 107 or if the number of iterations meets the stopping threshold for the
internal cycle (40 iterations for both critic networks and 50 iterations for the actor network).

The initial weights for all the networks are randomly within [-0.3, 0.3]. As previ-

ously mentioned, the hidden weights (W(C){h}, Wf {h}, Wc{lh}) are fixed, and the output weights

W2l 0 519}y are trained. The NSHDP(A), GrHDP and ADHDP are compared with
similar learning parameters. An initial CN(0) in the NSHDP(1) is chosen that is similar
to the reference network in the GrHDP structure, and the initial CN(A) is the same as the
critic network in the GrHDP, while the ADHDP has one critic network that has an initial
weight that is similar to the CN(0) in the NSHDP(A1) with A = 0. The actor networks for
NSHDP(1), GrHDP and ADHDP have similar initial weights.

Fig. 5 shows that NSHDP(1) is more efficient because it learn faster than the

ADHDP and the GrHDP.

184

Fig. 5 shows also mean squared errors (MSEs) during iteration. Fig. 6 illustrates
the state trajectories and the control actions for 25 time steps.

The initial state is set to x(0) = [-0.5 0.5]7. The NSHDP(1) and the GrHDP are
derived from the system states to converge faster than the ADHDP. Compareding to the
ADHDP, the improvement (according to an MSE technique) is 5.12% for the NSHDP(Q),
while it is 3.506% for the GrHDP.

system Error Over lteration for Model-Free NSHOPTA)

. f||:|'3 to Control an Monlinear System
15 T T T T T T T T T
|;"----.._,..-_____-___:____Z_I__3 : : : :
1- T O O e e sy ol S e e e e S S
'
RN JEREPR SETTTRN . , i
‘L.% : : 5 : | === Error for GrHDF
N L Error far NSHDP () with A=0.95
TN) : N
a5k 4 é...'!"“.,l.*.h: SRR | Err':"jf':'r*ﬂ*DHDP i
N
. ""-1. : .
] kW :
E Tl T.'."f'.-.-.u,.,‘._;..l i
15k RTINS SRR L _
1 ...
7] A S R S S S S SR
0 1 2 3 4] b 7 g 5 10

' 4
lteration 10

Figure 5. Mean squared error comparisons over iterations among the NSHDP(1), the
GrHDP and the traditional ADHDP. NSHDP(A) has a faster learning speed than the GrHDP
and the ADHDP.

185

ﬂ . _ : === Action (4} for ADHDP
0 _?1?'.‘: SRR R R Action (u) far NSHDP(A)(A=0.95)
=t) \ ~N : : === Action (u) for GrHOP
S 0F N et e L e i e T T ——— -
g :
L opsl- Ve e i
01 | | I |
0 5 10 15 20 %
— — = State {x,) for ADHDP Time Steps
- — = State 1)) for ADHDP

State (x,) for NSHDP(R) (4=0.95)

] == - Sate (1) or GiHOP 05 ! State (x,) for NSHDP(R) (2=0.55)
: : = =« State (1) for GrHOP
.\Pu_‘-ur-n- ey — - . i 2
X‘_ \ .. DXCN D -r:--r--—:..-----;n-r-lu.-
10E ; ; X | 15 ; ; : !
0 &5 w15 W% 0 &5 TR
03 Time :Steps Y Time STeps
D2 02% ,,
N, \ . -)
01 \ SO S Ok \\ ;_,."z'...: o et
W o : N : Rl
D \! (_,uﬁ-*'-“"'u:‘»*;-;u-ﬂ. _E|2 \/ e
NI - : : r
0.1 L s . 04 i ; ;
1 2 3 4 A p, 3 4 5 B

Figure 6. Comparisons of system response trajectories, which are the two system states and
the actions for the NSHDP(A1), GrHDP and ADHDP.

The value functions and their targets for the NSHDP(1) and the GrHDP are shown
in Fig. 7. After three online learning time steps, the critic errors for CN(0) and CN(A) have
converged to its equilibrium value, which is clearly shown in the lowest figure of Fig. 8. The
GrHDP needs four time steps (as shown in the upper figures of Fig. 7 and Fig. 8). The critic
error for the NSHDP(A = 0) is shown in the middle figure in Fig. 8. Fig. 9 demonstrates
the squared backpropagation actor errors through critic networks for all methods (GrHDP,
ADHDP and NSHDP(A)). The corresponding weight trajectory for the NSHDP(A1) and the
GrHDP are shown in Fig. 10, which illustrate that the weights for both networks reach their

optimal fixed values.

186

far The Output from The CM for GrHDF and Its Target

0.5 ,)))
; § — = =y{t) for GrHOP
= nh N f Target Yalue of wit) for GrHDP
= D_:i.._,....‘k,...,‘.__ : . . i
S S : '
05 i j | j
0] 10 15 20 25
Time Steps
The Dutput from The CNJ) and Its Target
1 T)) T
T E— ,,,,,,,,,, === with A=095 |
N oL\ N Target Yalue of 4 with 1=EI.9.5. I
A A : j -
Y . . : .
05 i I 1 i
0 5 10 15 20 25
Time Steps
The Output from The Crtic Network(A) and Its Target
DE T T T I
=== with 4095
To0p e ~Target Value nf.nj' with A=0.95
05 | i j j
0] 10 15 20 25

Time Steps

Figure 7. Comparisons for the value functions with their targets between the NSHDP(1)
and the GrHDP. The upper figure shows the value function and its target for the GrHDP
(see [7]), which is represented by a red dashed line in the upper figure part of Fig. 8. The
middle and upper figures show the value functions of CN(0) and CN(A) of the NSHDP(Q)
with their targets (the left sides of Equations (10) and (11)), respectively. The solid green
line in the lower part of Fig. 8 represents the difference of the middle figure, while the
dashed red line represents the difference of the lower figure.

187

The Reference and Critic Errar netwarks for GrHDOP

0.2 ! T T T
: : : : Er
L : E : p | =7~ Ec
E‘\-D‘] \ —
LT:] : : :
D—-bq**-___l_ ______ .I. ______ I e
0] 10 14 20 25
Time Steps
Critic Errors for CN(D) and CHA) with =0
04 ! ! ! !
: Ec”
. : : : =
LDE Ec H
3 |
0 --""-....__i _______ I —— N — —
0 b 10 15 20 28
Time Steps
Critic Errors for CNID) and CN{A) with 2=0.95
0.2 ! T T T
; | | 2 £
. | 5 | B —
E-D‘]\ \ EI: H
I:I:] \ : : : :
\ é
] S —— [T —_ i
0 b 10 15 20 28

Time Steps

Figure 8. The squared critic errors. The upper figure shows the squared errors for critic
and reference networks in the GrHDP structure (see [7] Equations(4) and (5)). The squared
critic errors for NSHDP(A) for both critic networks (CN(0) and CN(A)) are illustrated in the
middle and upper figures when A4 = 0.95 and A = 0, respectively. The squared error for the
reference network in the GrHDP is represented by “Er”.

188

; 10" The Actor Error for GrHDP Approach
I T T
: —— EBa
. P T L T T T ST I R |
1o
O O N A S S]
|:| | | L
0 4 10 15 20 25

Time Steps

10" Actar Errars Through Critic Netwroks of CND) and CN{A) with =0
15 I T T T
| ——EBd
... EBa?I. I
0 i 10 15 20 Pl
Time Steps
(10" Actor Errors Through Critic Metwroks of CH{D) and CH(A) with =095
1.5 T T T T
| —EBd
T S S ST cah [
R R
10 15 20 2

Time Steps

Figure 9. The upper figure shows the squared backpropagating actor error after passing
a critic network in the GrHDP. The middle and lower figures show BEY(¢) and BEX(t)
(see (29)) of the NSHDP(1) when 4 = 0.95 and 4 = 0, respectively. The lower figure
(NSHDP(0.95)) converges faster than the upper (GrHDP) and middle (ADHDP) figures

189

Learning weights of the CN(0) when A=0.95 Leaagning weights of the Reference Network (RN] for GrHDP
_ —W_(1) e W, l1}
[=) 04 —
g —we oz /r W)
005 W, G) 5 02 W@
° —) 2 —_W)
£ . —W_(5) @ 0 Sﬂ —W(5)
g —W_) = 22 —W_,(6)
N‘ — W, 7 = —"0)
05 : : ' : 04 ' '
0 5 10 15 20 25 0 5 10 15 20 25
Time Steps Time Steps
Learning weights of the CN() when A=0.95 Learning weights of the CN for GrHDP
. . . : 04 : : : :
e W (1
- —W_(1) ol
= 02 o —_W_(2)
‘2-' J— T [2) zZ o
5 o 902 w_(3)
< 01 W (3) 5 X 0
5 — £ 5 — W
oo “ 5 [s —W_)
) —W_(5) o 0
2 01 == W,(6) 5 — ol
- ¢ —T
—_—W (7 o0
02 : : ' o 02 : ' ' ‘
0 5 10 15 20 25 0 5 10 15 20 25
Time Steps Time Steps
Learning weights of the AN when A=0.95 Learning weights of the AN for GrHDP)
: : : : 02 : : : :
—W (1) —W 1)
Z —W (2 Z —_—
Lo - < 01 e
<0 w3 ~ y e
8 —W 4 2 —
5 _walsy G ;
20 S —
041 01
0] 10 15 20 20 0 5 10 15 20 25
Time Steps Time Steps

Figure 10. Learning weights for the NSHDP(A) and the GrHDP. The upper, middle and
lower figures in the first column show the learning weights during the time steps for CN(0),
CN(2) and AN in the NSHDP(A), respectively. The upper, middle and lower figures of the
second column show the learning weights during the time steps for goal representation or
the reference network (RN), critic network and actor network of GrHDP.

4.2. Second Case: Inverted Pendulum.
4.2.1. Description for The Inverted Pendulum Dynamic Model. The inverted
pendulum dynamic model is simulated for the second case study. The NSHDP(Q) is self-

learning without prior knowledge of the system model. The actor network allows the cart to

190

be moved to the left or right in order to balance a pole (inverted pendulum) mounted on the
cart. A binary reinforcement signal is used to learn the actor network. the reinforcement
signal is either “-1” or “0” in correspondence to a fallen or balanced pole, respectively.

As in [5] and [29], the cart pole system model shown in Fig. 11 is given by

)

y(D)

A
1
[
[
I
L > x(1)

X(t)
F() — x(t)

o) v

Figure 11. The configuration schematic diagram of the inverted pendulum balancing system.

g sin(f) + cos(@)(— F — ml6?sin(0) + ,LtCO'()'c)) _ 0

s ml
o= l(é_l ~ mcosz(e)) ’ (73)
3 me +m
F + ml(6?sin(0) — 6 cos(8)) — puco(x)
e |

b

me +m
where g = 9.8[m/sec?], the acceleration due to gravity; m. = 1.0[kg], the mass of the
cart; m = 0.1[kg], the mass of the pole; [= 0.5[m], the half-pole length; u. = 0.0005, the
coefficient of friction of the cart on the track; u, = 0.000002, the coeflicient of friction of
the pole on the cart; F = +£10[N], the force applied to the cart’s center of mass; and o (.)

is a Sigmund function. The fourth-order Runge-Kutta method is used to solve nonlinear

191

differential equations (73) and (74) with 0.02 sec for the sample step. The inverted pendulum
model has four states: [x(t) () x(r) é(t)] , where x(¢) is the position of the cart, 6(¢)
is the angle of the pole with respect to the vertical axis, X(¢) is the linear velocity for the
cart, and () is the angular velocity of the pole.

4.2.2. Simulation Results. In this simulation, the NSHDP(A) and the GrHDP are
compared. This comparison focuses on various uniform random noise and initial pole
angles. The pole has fallen if it is beyond the range of (—12° 12°), and also, if the cart
moves outside the range (—2.4, 2.4 meter) its initial position. The control action (u(t)) is
a continuous signal, although the cart requires a binary value. The force (F= 10 [N]) is
applied on the cart if u(¢) > 0; otherwise, F= -10 [N]. Each run has 60 consecutive trials.
The run is considered successful if the last trial has balanced the pole. Each successful trial
has 2000 time steps to complete the balancing task. y is 0.9, and A is 0.95. The number
of hidden nodes is 22 for #° and A?. The number of hidden nodes for AN is 20 (h, = 20),
and the initial learning parameters are set to £2 = £ = 0.005 for both critic networks and
£, = 0.003 for the action network. The learning rates are decreased by dividing by 3 every
30 time steps. The training for either network is terminated if the error drops under 107 or
if the number of iterations meets the stopping threshold for the internal cycle (100 iterations
for both critic networks and 130 iterations for the actor network). The initial weights for
all networks are within [-0.3, 0.3] by fixing the hidden weights and training the output
weights. All figures are shown for the last iteration. Fig. 12 - Fig. 15 show the noise-free
system responses (states, action, and the cost-to-go values,) for the NSHDP(1) during 2000
time steps with an initial angle 6(¢) of 0.1°. The bottom figure of Fig. 14 and Fig. 15
show the backpropagating actor error through both CN(0) and CN(A1), which are defined as:

Be(1) = (1 — 2)e(t) and Bel(r) = Ael(t).

192

1 i i i i i i i i i
u] =200 400 500 800 1000 1200 1400 1600 1800 2000
Time Steps
1 T T T T T T T T T
-1 i | 1 i 1 i 1 1 i
o 200 400 s00 800 1000 1200 1400 1600 1800 2000
Time Steps
w10
1a T T T T T T T T T
. 5 .. S -
E
> g L4
5 i i i i i i i i i
u] =200 400 500 800 1000 1200 1400 1600 1800 2000

Time Steps

Figure 12. Simulated results of balancing the inverted pendulum for u(z), 6(¢), and x(r)
when the system is free of noise. The initial angle 6(¢) is 0.1°.

=
1 i ; I i
1000 1050 1100 1150 1200 1250
Tirme Steps
0.5 . ; . :
i~ : : :
;1 Iy : .
= o S . -~ r :
E ol N r N aria i e e N s
= ;. LR - N A L R W
ES] L* - Bl L : -
s w : :
0.5 i 1 1 i
Taoo 1050 1100 1150 1200 1250
Time Steps
w107
=1 T T T T
E gk A TV AR P A A A A B AR R
-
5 i 1 i i
1000 1050 1100 1150 1200 1250

Tirme Steps

Figure 13. Zoom-in between 1000 to 1250 time steps for Fig. 12.

193

w107 The cost-to-go value function with its target for CR{OY
P T T T T T {
é_,:/ T T T T : — — —“alue Funciton "))
=S o Target “alue Df\P(t)
T
o
?33 -1 L i L ! i i i i I

a 200 400 500 800 1000 1200 1400 1600 1800 2000

Tirme Steps

% 10'3 The cost-to-go walue function with its target for CH{A)
1 . . T T —
- T ! : : : = = —“alue Funcitan (V“(t))

T Target “alue of vl(t)

B ; i i i ; ; i i i
i] 200 400 |={u] ao0 1000 1200 1400 1600 1800 2000

Time Steps

Actor Backpropagation Errors Through CR{O) and CRI{A)

1 1 i i I
1000 1200 1400 1600 1500 2000

Time Steps

a QDiD 4DiD EiDiD EIDID
Figure 14. The value functions and their targets without noise. The backpropagating actor
errors are Beg and Be;,1 through CN(0) and CN(Q), respectively. The initial angle 6(z) is

0.1°.

H 10'3 — 7 T alue Funciton (\P(tj)
Fomn 1 : : " Target “alue van(t]l
D‘\-_/DS B .- . 5 - . - -
=
—= 0
=
P
= &
- 0.5
1 1 i i i
1000 1050 1100 1150 1200 1250
Ti St
10_4 fme eps — 7 T “alue Funciton (\f—'\(t))
= LI 1 Target “alue of\-l(t)
—_—
= N
2, o TITT bt 1t
—
Raanr-0 | DUNE | B
—
=1 : B :
_1D 1 i 1 1
1000 1050 1100 1150 1200 1250

Time Steps

1 i i i i
1000 1050 1100 1150 1200 1250
Time Steps

Figure 15. Zoom-in between 1000 to 1250 time steps for Fig. 14.

194

In order to simulate realistic behavior, the NSHDP(A1) was challenged with £12° as
the initial deviation of the pole angle. Furthermore, random noise was uniformly injected
into the actuator and sensor. Particularly, the sensor is 6(¢) = 6(¢) + n, while the actuator
noises are determined by u(f) = u(t) + . Fig. 16 illustrates the situation results for the
system responses (u(t), 6(¢), x(¢)) with disturbances: 1) 6(0) = —12°. 2) sensor-effected
noise is 3%. 3) actuator-effected noise is 3%. Fig. 17 shows the value functions (CN(0)
and CN(Q)) and backpropagating actor errors with similar disturbances in Fig. 16. Fig. 18
and Fig. 19 demonstrate the system responses, value functions and backpropagation actor

errors with the challenge of effecting sensor and actuator noises similar to Fig. 16 but with

0(0) = 12°

"o 200 400 600 800 1000 1200 1400 1600 1800 2000
Time Steps

10 T T T T T
o,

ot/ ™ wﬁvyww P wmw“;

o 200 400 600 800 1000 1200 1400 1600 1800 2000
Time Steps
o
— -0.5 n
E
= 4 |
15 1 1 1 1 1 1 1 1 1
o 200 400 600 800 1000 1200 1400 1600 1800 2000
Time Steps

Figure 16. Simulated results of balancing the inverted pendulum to show u(t), 6(¢) and x(¢),
when the system is injected with 3% uniform noise to the actuator and sensor. The initial

angle 6(¢) is —12°.

195

The cost-to-go value function with its target for CN(0} (= - ., .. Funciton WO
T T T T T T

Target Value of v'(t)

0(t),5°(2)

800 1000 1200 1400 1600 1800 2000

Time Steps

= = Value Funciton (v"{t)
Target Value of v*(t)

The cost-to-go value function with its target for CN(\)
T T T T T T

400 600 800 1000 1200 1400 1600 1800 2000
Time Steps
- - Be?
Actor Backpropagation Errors Through CN(0) and CN(A) Bei

1000 1400 1600

Time Steps

800 1200

Figure 17. The value functions and their target values with similar disturbances are in
the caption of Fig. 16 (upper and lower figures for CN(0) and CN(A), respectively). The
backpropagation actor errors through CN(0) (Beg) and CN(Q) (Beﬁ) are shown in the lower
figure. The initial angle 6(¢) is —12°.

1000
Time Steps

20 T T T T T T T T T
= 10K A
=% X LY) . -
= 0 —“\W %WMMNV' ""Wd‘\.,_.o“-ﬁ ey
10 | | | | | | | | |
o 200 400 600 8OO 1000 1200 1400 1600 1800 2000
Time Steps
1 T T T T T T T T T
= 05 S —~ : ™~ 7
EV/ \.
> o ¥ S = = -
B - e
05 | | | | | | | . |
o 200 400 600 BOO 1000 1200 1400 1600 1800 2000
Time Steps

Figure 18. Simulated results of balancing the inverted pendulum to show u(t), 6(¢) and x(z),
when the system is injected with 3% uniform noise to the actuator and sensor. The initial

angle 6(r) is —12°.

196

— The cost-to-go value function with its target for CN(0)|~ — Value Funciton)}
T T T T T T T T Target Value of v°(1)

= I . L S ———
~—= 0

G

= I I I I I L I I I

=0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time Steps
i o = = Value Funciton (v*{t}}
o ; . Th? cost-tclh-go vall.lle function \mthllts targtlat for CI\II[A]| Target Value of v*(t)

=4 | I I I | I I
B] 200 400 600 800 1000 1200 1400 1600 1800 2000
Time Steps
- Beg
Actor Backpropagation Errors Through CN(0) and CN{\) —_— Be:
0.05 T T T T T T T

| I I I 1 I 1 I
1] 200 400 600 800 1000 1200 1400 1600 1800 2000
Time Steps

Figure 19. The function values with errors with the initial angle 6(¢) is 12°. The actuator
and sensor disturbances are similar to what in the caption of Fig. 18

For further comparison, the NSHDP(A) is compared with the GrHDP as they are
examined under different noise/6 levels as shown in Table I. Table I summarizes the simula-
tion results through 100 averaged runs for 100 time steps and 10 iterations for each run. The
average number of iterations for all columns in Table 1 is 3.62 and 4.19 for the NSHDP(2)
and GrHDP, respectively. Therefore, the NSHDP(A1) improves by 13.48% more than the
GrHDP by reducing the average number of iterations at various noise levels.

4.3. Third Case: 2-D Maze Problem. Maze navigation has been proposed as
an ADP benchmark [44]-[47]. In this case, the NSHDP(A) is examined in a 2-D maze
navigation benchmark with various other approaches (e.g. SARSA(0), Q(1), ADHDP).
Sutton [21] presents a perfect explanation about SARSA(0) and Q(A). Briefly, the SARSA
algorithm is used to find the series state-action pairs by using one-step learning; therefore,
SARSA(0) is written. In this case study, the data that the agent uses to learn is: 1) current
state vector x(¢) = [x1(¢), x2(¢)]”, where x; and x, are the coordinates of the x axis and the
Ir

y axis, respectively; 2)selected action u(t) = [uy, up, u3, us]", where uy, up, u3 and uy are the

197

Table 1. Performance evaluation of the NSHDP(A) learning controller when balancing
the inverted pendulum dynamic system. The third and fourth columns depict the average
number of trials it took to learn to balance the pole for 100 time steps for the GRHDP and
the NSHDP(Q), respectively. The average is taken over 100 successful runs for 5 iterations

each. * actuators are subjected to noise; * sensors are subjected to noise
Noise Type | Initial Angle (6(0)°) | NSHDP(1) | GrHDP
Noise free 0.1° 2.44 3.33
Noise free 5° 342 3.95
Uniform* 5% 0.1° 3.04 3.37
Uniform™® 10% 0.1° 3.84 4.49
Uniform™ 5% 5° 2.99 4.1
Uniform™ 10% 5° 3.15 4.25
Uniform® 5% 0.1° 3.56 4.23
Uniform” 10% 0.1° 4.47 4.62
Uniform* 5% 5° 4.12 4.42
Uniform® 10% 5° 4.36 4.51
Uniform** 5% 0.1° 4.44 4.86

direction of forward, right, backward and left, respectively; 3) external reward U(¢) = 1 if
the agent reaches the target position, U(f) = —0.001 if the agent hits the obstacle or exceeds
the board and U(t) = 0 if the agent moves in a free space. In the SARSA(0) algorithm, the
agent takes an action u;, where i = 1,2, ...,4, to move from x(¢) to the next state (x(z + 1)),
and it gains U(¢). There are many strategies to select actions. If the agent always chooses
the action with the highest value of the value function (state-action pair value), it is a
greedy strategy. An e—greedy strategy selects the greedy action with a probability of (1-¢).
Otherwise, the agent chooses a random action. In a non-greedy action strategy, the robot
selects a random action that the agent is exploring inside the environment. There are other
strategies that can be found in the literature [13], [21] and [29]. After the learning trials have
been completed, the collected data is put in a lookup-table (Q table). The Q table values

of all of the state-action pairs can be updated in the SARSA(0) algorithm learning by the

198

Bellman formula: Q(x(¢), () = Q(x(7), u,-)+€(U(t) +yO(x(t+1), ur)— O(x(t), u,-)), where
x(¢) is the state vector, € is the learning rate and u;, i = 1,2, ..., 4, is the selected action (the
direction of movement). Q(A)-learning is similar to the SARSA-learning, except: 1) The
updating occurs as in SARSA-learning but with a greedy action max,,c,() (Q(x(r + 1), u;)
instead of Q(x(r + 1), u; and 2) the eligibility trace is a temporary record to be stored. There
are two main steps to update the eligibility traces for the Q table. The frist step involves
setting all state action pairs to zero when a non-greedy action is taken. Otherwise, they
are declining. Second, the eligibility trace is reset to one if it is identical with the current
state-action pair. Updating Q-learning by using only a critic network was presented by [40].
In this study case, only critic neural networks are used to approximate the value function for
the n-step as well as the one-step. Algorithm 1 is used to avoid solving discrete-time HJB
(4). Algorithm 1 generates and updates a table of Q values according to the state-action pairs
(step 2 in Algorithm 1). It also as generates greedy actions (i;(¢)) as in step 3 of Algorithm
1. The same procedure is used to generate and update the Q table for ADHDP by using one
critic network. In the previous two case studies, the cost value should minimize over time,
while here, the agent has to maximize a reward intake in order to solve the maze problem.
This paper assumes that an agent starts at an initial location in an environment, which is
(0,0) as shown in Fig. 20 with 11 obstacles included. The agent can learn through by online
techniques by through interacting with its environment to obtain an optimal collision-free
path from the starting point to the target point, which is taken (6,6). The declining e—greedy
learning method is used in all approaches as a way of balancing between exploration and
exploitation [13] and [21]. The NSHDP(1) method is evaluated by comparing it with
other methods according to Q reference value table. The Q reference evaluation method
is presented [49], et al., [50]. The Q reference table is calculated dependent on a distance
between the current state location and the target location. All states around the target are set
to 1, while the other states are assigned by droning 1/(L + W) for each step, where L and W

are the maximum number of possible states in the length and width directions, respectively.

199

|
v
—J

>

[y

-0.001

0
T Uy +—— T U

St — o0 -0.001 U .

v

Figure 20. Diagram of a 2-D maze (7 x 7) with obstacles. The point(0,0) represents the
initial position. The point (6,6) represents the target position. Eleven obstacles are located at
(5,0), (6,0), (2,1), (5,2), (6,2), (2,3), (3,3), (6,3), (3,6), (0,6) and (3,6), which are represented
as red squares. Otherwise, the agent can move in the free space. There are three modes
where that the agent can receive reward/cost values. First, the agent will a receive reward
of 1 when it arrives at the target. Second, the agent will be punished by receiving -0.001 if
hits obstacles or passes the bound. Third, the agent will receive a 0 value as a reward in a
free space. At any position in the maze, the agent has to select 1 action (direction) out of
4 actions in order to move one step. The 4 actions are forward, right, backward and left,
which can be seen in the figure as uy, u», u3 and uy, respectively.

200

The Q reference (Q,.r) is calculated as

Opes(x1,x2) =1 — (L—x1+W—x2—l). (75)

L+W

Equation (76) is calculated for the desired values of all of all squares of the 2-D maze,
including the obstacle square. However, obstacles are used in the 2-D maze benchmark
(Fig. 20); therefore, the obstacle square is assigned as zero in Q. r because the agent cannot
enter them to update Q.. Greedy Q table values (Qgrceqy) are used to calculate the MSE,
where Qg eeay((x(f)) = maxy, e, (Q(x(2), u;). The MSE is obtained

S,

Z (Qgreedy(i) — Ore f(i))z, (76)

i=

=

MSE =

| =

where S, is the number of states of the 2-D maze (L * W). The common general parameters
that are shared with all testing algorithms are: the learning rate for Q table (¢) is 0.01;
v=0.95; 1=0.95 for Q(1) and the NSHDP(1) and A=0 for SARSA(0) and the ADHDP;
e-greedy parameter starts at 1 and decreases by € = € * 0.99 after each episode and stops at
€ =0.05. There are 20 runs (run loop), and each run has 300 consecutive episodes (episode
loop); moreover, at each episode the agent navigates in the maze until reaching to the target
(time steps loop). The learning parameters related with only-critic ADHDP and NSHDP(A1)
are: the number of neurons in both critic networks (h = h!) is 24; the initial learning
parameters are set as (£2 = £4 = 0.001) for both critic networks. The stopping threshold for
both critic networks are 110 iterations; the training for either network will be terminated
if the error drops under T? = T = 1075 or if the number of iterations meets the stopping
threshold (N0 = 110 and N* = 110). Fig. 21 demonstrates that the MSE of the ADHDP
and the NSHDP(Q) has a faster dropping rate than those that used the SARSA(0) and Q(A)
methods. Those using the NSHDP(1) can also converge faster than the ADHDP to achieve

the best performance in this test. Both the ADHDP and the NSHDP(1) fuse together after

201

Algorithm 2 Markov-Critic Networks To Support Q-Learning in Maze Navigation

90(1) £ (xe (1), O (1)
0A(1) — [(xe (1), 0 1)
ch one-step critic network for value function approximation

f(’l n-step critic network for value function approximation
xe (1) = [x(2), ui]T: input of both critic networks, where i = 1,2, ..., 4
(2)2 (): weights in one-step critic network
(Z)zl(t) weights in n-step critic network
e Step 1:
— Q(x, u;) = 0 for all states and actions
— 94(x, uj) = 0 for all states and actions

-t=0, TL(,) = Tc’.l = 1073 with NB. = NL’.l = 110 are parameters for stopping learning for both critic networks, initial counters are Cg = 0and Cél =0,
goal = [6, 6], and set all other learning parameters

« Step 2 (Policy evaluation) updating the Q-table by:
= 0(x(r), up) = U(e) +y90(+ 1)
while (Eg (1) > Tg)or(C? < Ng) do
- @) = () + 26 (1); equations (84) - (18)
- 00 = LRxe). &20))
- DYy (1) = P00, uy) - 90(r)

- EYn= o.s(Dg,,(z))2

- A =cl+
— end while

(), ug) = Ut) + y(,W(r $ 1)+ (1=)90 + 1))

while (EA(¢) > T)or(CA < N2) do

- OXr) = O (1) + 2O (2); equations (23) - (25)
-) = felre), @2)

- D) = x(), u) - ()

- EA0=05(D4,, ()

- Cct=ct+1
— end while

Q(x(1), u) = Q(x(t), u;) + D2, (1)

« Step 3 (Policy improvement) updating content policy while taking the e-learning strategy into a consideration:

- ui = argmaxy cu(r)(Q(x(1). u;)
 Step 4:

- if x(¢) = goal then

- stop and do other episode

- else

- x(t) =x(t+1)

- t=t+1

- go back to step 2 and continue

- end if

202

SARSAD]
Q0.95)

HDP
MSHDPD.95)

M3E

1 I 1 1 I I
a 50 100 150 200 250 00
Espisode

Figure 21. MSE Learning curves for the SARSA(0), Q(1 = 0.95), ADHDP and NSHDP(A =
0.95) methods for a 2-D maze navigation benchmark as shown in Fig. 20. The mean values
from 20 independent runs are taken for all methods. The shaded color represents the 20
runs, while the solid line represents the mean for all 20 runs. The NSHDP(0.95) method
learns the fastest and has the MSE compared to other methods.

150 episodes to the sub-optimal values (near zero). Those using the SARSA(0) and Q(A1)
methods merge after 180 episodes, and they need more episodes for learning by increasing
the exploration mode (decreasing the rate of the € doping value). Another test is related with
accumulative rewards over episodes. The goal for this test is to discover which algorithm
can calculate the maximum accumulative rewards over each episode the fastest. Fig. 22
illustrates that the NSHDP(1) has a large accumulative reward value during the exploration
episodes. Most likely, the exploration episodes are mostly done between episode 0 and
100, as shown in detail in Fig. 23. Fig. 23 shows the number of steps per episodes over
reducing the probability of exploration (by decreasing the € rate value). Therefore, the
NSHDP(1) and the ADHDP converge together to reach the optimal accumulative reward
value after episode 100 because of the exploitation navigation behavior, while the Q(1) and

SARSA(0) methods need more exploration episodes to reach the optimal value.

203

SARSAD)
Q0.95)

HDP :
MSHDPM 951

Accurnulative reward

a 5ID 1DID 15ID 2DID 25ID BDI
Espizode

Figure 22. A summation of the accumulative reward for every single episode for the
SARSA(0), Q(4 = 0.95), ADHDP and NSHDP(1 = 0.95) methods, which are applied
in a 2-D maze navigation benchmark as shown in Fig. 20. The mean values from 20
independent runs are taken for all methods. The shaded color represents the 20 runs,
while the solid line represents the mean for all 20 runs. The NSHDP(0.95) method has the
largest accumulative reward compared to the other methods in the exploration moving mode.
Because the e—greedy deceasing rate learning will reset the accumulative reward value at
every episode, the accumulative reward values for the Q(0.95), ADHDP and NSHDP(0.95)
are convergence over episodes.

o000 : : : : SARSAD)
Lo b b p oD o5
S HOP
BOOf : : : : MSHDPD.95)

7O0 T :

Steps per episode

280 amn
Espisode
Figure 23. e—greedy learning curves for the SARSA(0), Q(1 = 0.95), ADHDP and
NSHDP(A = 0.95) methods for a 2-D maze navigation benchmark as shown in Fig. 20.
These curves represent the number of steps per episode, where the agent returns to the
starting point only when it reaches the target cube. The mean values from 20 independent
runs are taken for all methods. The shaded color represents the 20 runs, while the solid line
represents the mean for all 20 runs. The NSHDP(0.95) and the ADHDP have a nearly similar
number of steps over episodes, which are less than both the Q(0.95) and the SARSA(O0).

204

S. CONCLUSION

This paper presents a new ADP architecture (NSHDP(1)) that consists of one-step
critic, n-steps critic, and actor networks. NSHDP(A1) presents the combination between
TD(0) and TD(Q) via a structure of NSHDP(1). Good performance is demonstrated by
examining a simulation analysis on a nonlinear system and a inverted pendulum benchmark
problem in various circumstances, as well as solving a 2-D maze problem. Moreover, this
work proves all three networks’ stability by using a Lyapunov approach with reasonable
conditions. It also shows that the weights and network outputs for both critic networks, as
well as the actor network, are bounded. With these results, this paper has made steps to

improve ADP learning efficiency, robustness, and control performance.

BIBLIOGRAPHY

[1] X.Zhong,Z.Ni, and H. He, “A Theoretical Foundation of Goal Representation Heuristic
Dynamic Programming,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 12, pp.
2513 - 2525, Dec. 2016.

[2] D. Prokhorov, and D. C. Wunsch, “Adaptive critic designs,” IEEE Trans. Neural Netw.
and Learn Syst., vol. 8, no. 5, pp. 997-1007, Sep. 1997.

[3] P. J. Werbos, Approximate dynamic programming for real-time control and neural
modeling, Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches,
1992.

[4] R. Bellman, Dynamic Programming, Princeton, NJ, USA: Princeton Univ. Press, 1957.

[5] J. Si, and Y. Wang, “Online learning control by association and reinforcement,” IEEE
Trans. Neural Netw. and Learn Syst., vol. 12, no. 2, pp. 264-276, Mar. 2001.

[6] Z. Ni, H. He, X. Zhong, and D. Prokhorov, “Model-Free dual heuristic dynamic
programming,” [EEE Trans. Neural Netw. and Learn Syst., vol. 26, no. 8, pp. 1834-
1839, Aug. 2015.

[7] H. He, Z. Ni, and J. Fu, “A three-network architecture for on-line learning and opti-
mization based on adaptive dynamic programming,” Neurocomputing, vol. 78, no. 1,
pp- 3-13, Feb. 2012.

[8] X. Fanga, D. Zhenga, H. He, and Z. Nib, “Data-driven heuristic dynamic programming
with virtual reality,” Neurocomputing, vol. 166, pp. 244-255, Oct. 2015.

sjamw3
Text Box
 BIBLIOGRAPHY

205

[9] Z. Ni, H. He, D. Zhao, X. Xu, and D. V. Prokhorov, “GrDHP: A general utility function
representation for dual heuristic dynamic programming,” IEEE Trans. Neural Netw. and
Learn Syst., vol. 26, no. 3, pp 614-626, Mar. 2015.

[10] G. K. Venayagamoorthy, R. G. Harley, and D. C. Wunsch, “Dual heuristic program-
ming excitation neurocontrol for generators in a multimachine power system,” /IEEE
Trans. Applications Industry, vol. 39, no. 2, pp. 382-394, Mar. 2003.

[11] N.Zhang, and D. C. Wunsch, “A Comparison of Dual Heuristic Programming (DHP)
and neural network based stochastic optimization approach on collective robotic search
problem,” IEEE Trans. Neural Netw. and Learn Syst., vol. 1, pp. 248-253, Jul. 2003..

[12] C. Lian, and X. Xu, “Motion planning of wheeled mobile robots based on heuristic dy-
namic programming,” IEEE Proc. World Congress Intelligent Control and Automation
(WCICA), pp 576-580, Jul. 2014.

[13] S. Al-Dabooni, and D. Wunsch, “Heuristic dynamic programming for mobile robot
path planning based on Dyna approach,” IEEE/INNS, International Joint Conference
on Neural Networks (IJCNN), pp. 3723-3730, Jul. 2016.

[14] V. Mnih, A. P. Badia , M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K.
Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” International
Conference on Machine Learning, pp. 1928-1937, Jul. 2016.

[15] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets, M. Yeo, A.
Makhzani, H. KAijttler, J. Agapiou, J. Schrittwieser, and J. Quan, “StarCraft II: A New
Challenge for Reinforcement Learning,” arXiv preprint arXiv:1708.04782. Aug. 2017.

[16] R. S. Sutton, “Learning to predict by the methods of temporal differences,” Machine
Learning, vol. 3, no. 1, pp. 9-44, Aug. 1988.

[17] H.Seijen, A. R. Mahmood, P. M. Pilarski, M. C. Machado, and R. S. Sutton, “True On-
line Temporal-Difference Learning,” Journal of Machine Learning Research (JMLR),
vol. 145, no. 17, pp. 1-40, Jan. 2016.

[18] M. Fairbank, and E. Alonso, “Value-Gradient Learning,” IEEE/INNS, International
Joint Conference on Neural Networks (IJCNN), pp. 1-8, Jun. 2012.

[19] D.Liu, and D. Wang, “Optimal Control of Unknown Nonlinear Discrete-Time Systems
Using the Iterative Globalized Dual Heuristic Programming Algorithm,” Chapter 3
in Reinforcement Learning and Approximate Dynamic Programming for Feedback
Control, New York, NY, USA: John Wiley and Sons, pp. 52-77, Jan. 2013.

[20] S. Al-Dabooni, and D. Wunsch, “Mobile Robot Control Based on Hybrid Neuro-Fuzzy
Value Gradient Reinforcement Learning,” IEEE/INNS, International Joint Conference
on Neural Networks (IJCNN), pp. 2820-2827, May 2017.

[21] R. S. Sutton, and A. Barto, Reinforcement Learning: An Introduction, Cambridge,
U.K.: Cambridge Univ. MIT Press, Mar. 1998.

206

[22] X. Bai, D. Zhao, and J. Yi. “ADHDP (1) strategies based coordinated ramps metering
with queuing consideration,” IEEE Symposium on Adaptive Dynamic Programming
and Reinforcement Learning (ADPRL), pp. 22-27, May 2009.

[23] T. Li, D. Zhao, and J. Yi. “Heuristic dynamic programming strategy with eligibility
traces,” IEEE American Control Conference, pp. 4535-4540, Jun. 2008.

[24] K.Doya, “Reinforcement learning in continuous time and space,” Neural Computation,
vol. 12, no. 1, pp. 219-245, Jan. 2000.

[25] X.Bai, D. Zhao, and J. Yi, “Ramp Metering Based on on-line ADHDP(2) controller,”
IEEE/INNS, International Joint Conference on Neural Networks (IJCNN), pp. 1847-
1852, Jul. 2008.

[26] X. Bai, D. Zhao, and J. Yi, “Coordinated multiple ramps metering based on neuro-
fuzzy adaptive dynamic programming,” IEEE/INNS, International Joint Conference on
Neural Networks (IJCNN), pp. 241-248, Jul. 2009.

[27] R.S. Sutton, A. R. Mahmood, and M. White, “An Emphatic Approach to the Problem
of Off-policy Temporal-Difference Learning,” Journal of Machine Learning Research
(JMLR), vol. 73, no. 17, pp. 1-29, Jan. 2016.

[28] H. Seijen, and R. S. Sutton, “True Online TD(A),” Proceedings of the 31°" International
Conference on Machine Learning, pp. 692-700, Jan. 2014.

[29] S. Al-Dabooni, and D. Wunsch, “The Boundedness Conditions for Model-Free
HDP(2),” Under reviewing for IEEE Trans. Neural Netw. and Learn Syst.

[30] Y. Sokolov, R. Kozma, L. D. Werbos, and P. J. Werbos, “Complete stability analysis
of a heuristic approximate dynamic programming control design,” Automatica, vol. 59,
pp- 9-18, Sep. 2015.

[31] F. Liu, J. Sun, J. Si, W. Guo, and S. Mei, “A boundedness result for the direct heuristic
dynamic programming,” Neural Networks, vol. 32, pp. 229-235, Aug. 2012.

[32] Y. Tang, H. He, Z. Ni, X. Zhong, D. Zhao, and X. Xu, “Fuzzy-Based Goal Represen-
tation Adaptive Dynamic Programming,” IEEE Trans. on Fuzzy Sys., vol. 24, no. 5, pp.
1156 - 1176, Oct. 2016.

[33] F. Y. Wang, H. Zhang, and D. Liu, “Adaptive dynamic programming: An introduction,”
IEEE Computational Intelligence Magazine, vol. 4, no. 2, pp. 39-47, May 2009.

[34] H. He, Self-Adaptive Systems for Machine Intelligence. New York, NY, USA: Wiley,
2011.

[35] F. L. Lewis, D. Vrabie, and V. L. Syrmos, Optimal Control. NewYork, NY, USA:
Wiley, Mar. 2012.

[36] S. P. Singh, and R. S. Sutton, “Reinforcement learning with replacing eligibility
traces,” Machine Learning, vol. 22, no. 1, pp. 123 - 158, Mar. 1996.

207

[37] Z.Ni, H. He, J. Wen, and X. Xu, “Goal representation heuristic dynamic programming
on maze navigation,” IEEE Trans. Neural Netw. and Learn Syst., vol. 24, no. 12, pp.
2038 - 2050, Dec. 2013.

[38] P. J. Werbos, “Backpropagation through time: What it does and how to do it,” Pro-
ceedings of the IEEE, vol. 78, no. 10, pp. 1550-1560, Oct. 1990.

[39] G. Zhang, M. Y. Hu, B. E. Patuwo, and D. C. Indro, “Artificial neural networks in
bankruptcy prediction: General framework and cross-validation analysis,” European
Journal of Operational Research, vol. 116, no. 1, pp. 16-32, Jul. 1999.

[40] Y. Xjao, M. Wasei, P. Hu, P. Wieringa, and F. Dexter, “Dynamic Management of
Perioperative Processes: A Modeling and Visualization Paradigm,” International Fed-
eration of Automatic Control (IFAC), vol. 39, no. 3, pp. 647 - 652, Jan. 2006.

[41] K. L. Keller, and R. Staelin, “Effects of Quality and Quantity of Information on
Decision Effectiveness,” Journal of Consumer Research, vol. 14, no. 2, pp. 200 - 213,
Sep. 1987.

[42] X. Zhong, Z. Ni, and H. He, “A Theoretical Foundation of Goal Representation
Heuristic Dynamic Programming,” IEEE Trans. Neural Netw. and Learn Syst., vol. 27,
no. 12, pp. 2513 - 2525, Dec. 2016.

[43] C.Chen, D.Dong, H.Li,J. Chu, and T. Tarn, “Fidelity-Based Probabilistic Q-Learning
for Control of Quantum Systems,” IEEE Trans. Neural Netw. and Learn Syst., vol. 5,
no. 10, pp. 920-933, May 2014.

[44] P. J. Werbos, and X. Pang, “Generalized maze navigation: SRN critics solve what
feedforward or Hebbian nets cannot,” IEEE Proc. Conf. Systems, Man and Cybernetics
(SMC) , pp. 1764-1769, Oct. 1996.

[45] D. Wunsch, “The Cellular Simultaneous Recurrent Network Adaptive Critic Design
for the Generalized Maze Problem Has a Simple Closed-Form Solution,” IEEE/INNS,
International Joint Conference on Neural Networks (IJCNN), pp. 79-82, Jul. 2000.

[46] R. Ilin, R. Kozma, and P. J. Werbos,“Beyond Feedforward Models Trained by Back-
propagation: A Practical Training Tool for a More Efficient Universal Approximator,”
IEEE Trans. Neural Netw., vol. 19, no. 6, pp. 929-937, Jun. 2008.

[47] N.Zheng, and P. Mazumder, “Hardware-Friendly Actor-Critic Reinforcement Learn-
ing Through Modulation of Spike-Timing-Dependent Plasticity,” IEEE Trans. on Com-
puters, vol. 66, no. 2, pp. 299-311, Feb. 2017.

[48] B. Luo, D. Liu, T Huang, and D. Wang, “Model-Free Optimal Tracking Control via
Critic-Only Q-Learning,” IEEE Trans. Neural Netw. and Learn Syst., vol. 27, no. 5, pp.
2134-2144, Oct. 2016.

208

[49] R. Ilin, R. Kozma, and P. Werbos, “Beyond feedforward models trained by backprop-
agation: A practical training tool for a more efficient universal approximator,” IEEE
Trans. Neural Netw. and Learn Syst., vol. 19, no. 6, pp. 929-937, Jan. 2008.

[50] Z. Ni, H. He, J. Wen, and X. Xu, “Goal Representation Heuristic Dynamic Program-
ming on Maze Navigation,” IEEE Trans. Neural Netw. and Learn Syst., vol. 24, no. 12,
pp- 2038-2050, Dec. 2013.

209

VI. AN IMPROVED N-STEP VALUE GRADIENT LEARNING ADAPTIVE
DYNAMIC PROGRAMMING ALGORITHM FOR ONLINE LEARNING, WITH
CONVERGENCE PROOF AND CASE STUDIES

S. Al-Dabooni and Donald C. Wunsch
Department of Electrical & Computer Engineering
Missouri University of Science and Technology
Rolla, Missouri 65409—-0050
Tel: 573-202-0445; 573-341-4521 Email: sjamw3 @mst.edu; dwunsch@mst.edu

ABSTRACT

Adaptive dynamic programming (ADP) is the dominant approach to reinforcement learn-
ing because of its ability to respond to noise, uncertainty, time lags, disturbances, high
dimensionality and other challenges for control, optimization and decision problems. In
problems with complex dynamics and challenging state spaces, the dual heuristic program-
ming (DHP) algorithm has been shown theoretically and experimentally to perform well.
This was recently extended by an approach called value gradient learning (VGL). VGL was
inspired by a version of temporal difference (TD) learning that uses eligibility traces. The
eligibility traces create an exponential decay of older observations with a decay parameter
(4). This approach is known as TD(A) and its DHP extension is known as VGL(A1), where
VGL(0) is identical to DHP. VGL has presented convergence and other desirable properties,
but is primarily useful for batch learning. Online learning requires an eligibility-trace-
work-space matrix, the dimensions of which are x X w, where x is the dimensionality of
the input vector and w is the number of weights in the entire neural network. This is not
required for the batch learning version of VGL. Since online learning is desirable for many
applications, it is important to remove this computational and memory impediment. This

paper introduces a dual-critic version of VGL, called N-Step VGL (NSVGL) that does not

210

need the eligibility-trace-work-space matrix, thereby allowing online learning. This paper
includes convergence proofs for NSVGL and case studies that demonstrate its superior
performance.

Keywords: Adaptive dynamic programming (ADP), value-gradient learning (VGL), online

reinforcement learning, eligibility traces, convergence analysis, temporal differences (TD).

1. INTRODUCTION

Adaptive dynamic programming (ADP) is a powerful tool that allows an agent to
learn by interacting with its environment to obtain an optimal control policy [1] - [6]. It
is a heuristic to solve the Hamilton-Jacobi-Bellman (HJB) equation instead of the Riccati

equation [7] - [10]. ADP allows agents to select an action to minimize their long-term cost:
J) = AU (o), ()
k=i

where (.) is the expectation symbol, J(x;) is a value function (cost-to-go value or long-
term cost) for a state vector (x € R™) at initial time i, vy is a constant discount factor, and
U (xx, u(xy)) is an instantaneous utility function at time step & for x after applying an action
vector u € R". Heuristic dynamic programming (HDP), dual heuristic programming (DHP)
and globalized DHP (GDHP) are three fundamental categories for ADP [12] - [15]. These
use three approximation function networks, which are actor, critic and model networks that
provide decision making, evaluation and prediction, respectively. Because a model network,
which predicts the future system state, is included, these ADP categories are model-based
ADP [12] - [17]. If the action-dependent (AD) prefix is used (i.e., ADHDP for HDP and
ADDHP for DHP), the critic network has the state and the action inputs in these model-free

variants. In [18] - [22], model-free ADP designs were presented for online learning.

211

There are many applications have used ADP. In [23], DHP controlled a turbo-
generator more efficiently than HDP. Collective robotic search problems can be solved
with improved performance by using DHP as in [24]. Lian and Xu [25] applied HDP to
allow a mobile robot to escape from sharp corners. Al-Dabooni and Wunsch [26] applied
model-free ADHDP in the Dyna algorithm to obtain an optimal path by using multi-robot
navigation in an unknown environment. Other theoretical and practical works in ADP are
presented in [27] - [31].

Stability of ADP in the general case is an open problem [32]. Stability of the one-
step model-free ADHDP learning approach is introduced by Liu ef al. [33] and by Werbos
et al. [32] with critic/actor neural networks and by He et al. [34] with critic/reference
neural networks and a fuzzy logic controller. Al-Tamimi et al. in [35] demonstrate a
convergence analysis of value-iteration based on HDP for general discrete-time nonlinear
systems. Many other publications on the theoretical analysis and proofs for ADP are shown
in [36] - [40]. The GDHP convergence analysis proof and comparison with the HDP and
the DHP approaches is presented by Liu [41], [42].

Sutton et al. in [43] - [46] show the efficient performance of temporal difference
(TD) learning with eligibility trace long-predation parameter denoted by A. Inspired by
[43], Fairbank and Alonso [47], [48] introduced a new ADP algorithm to extend DHP by
including A. They called it value-gradient learning. The value-gradient learning approach
was used in [49] to track a reference trajectory under uncertainties by computing the
optimal left and right torques for a nonholonomic mobile robot. As reviewed in [12], the
ADP technique is used to train an actor network to give optimal actions based on minimizing
a value function that is produced from a critic network. Both networks are approximated
by using a multilayer perceptron.

In this paper, we present a novel ADP structure, which is called online n-step value-
gradient learning with a eligibility trace parameter (NSVGL(A1)). This design uses two

critic networks. The first critic network is called a one-step critic network, which is learned

212

based on the gradient of TD. The second critic network is called an n-step critic network,
which is learned based on the gradient of TD(A1). The one-step critic network provides a
gradient of the one-step value function with respect to system states, while the n-step critic
network provides a gradient of the n-step value function with respect to system states. The
NSVGL(1) uses one actor network that learns from both critic networks. In this work, we
also provide a theoretical analysis of convergence for the NSVGL(A1). The fundamental

contributions of this paper are summarized as follows:

1. The theoretical foundation analysis for NSVGL(A) architecture is presented designing
how the agent receives better information about the control action than traditional
DHP. Memory efficiency is provided by NSVGL(A) via online learning in contest
with online VGL(A) that uses a matrix for eligibility trace parameters to store every

signal state trajectory.

2. A theoretical convergence analysis is provided for the NSVGL(A) structure. Gradients
of the one-step and n-step value functions are learned. We demonstrate that both

gradients are monotonically nondecreasing and converges to their optimal values.

3. These advantages of NSVGL(Q) are verified by simulation in two case studies.

4. Pseudocode of NSVGL(A) is provided in this paper.

The schematic structure for NSVGL(A) is presented in Section 2. Section 3 provides a
convergence stability analysis for the NSVGL(A) design. The neural network architecture
design used in NSVGL(1) is presented in Section 4. The simulation results and the

conclusion are presented in Section 6 and Section 7, respectively.

213

n-Step 2
Critic Network, at 9" (1)
kt+1
G’ (esr)
One-Step
Critic Network, at
k+l x K
d One-Step
(1-1)|e Critic Network,
T VGL(0) = DHP
€q (X k) ~
e ()
Actor Network | i(x,) !
| GR)l | ’
! A
- " e (X
71 | & (k)/,
System : Step :
i B
I h * e — Critic Network,
X1 VGL(L)
p 77t ¢ ak P,
V'S
Parameters Tuning Paths:
One-step Critic Network Path: =====-memmmcmmmmmmee o »
n-step Critic Network Path: =-====-===ccmmmmmmaeeee >
Actor Network Path: >

Backpropagation Calculation Errors:
One-step Critie Network Ertor (Gradient of TD (0) Exmon):e2(xy) = 3°(x) = §°(1): 8 () = (22 +78°Cten) (L) <0 = 2226800)
step i Nework Eor (Grdientof D (0) Emor) () = 7°C5) ~ (1) 3°Ce) = (22), 479" o) (), £08 = 2200000,
Al
n-step Critic Network Error (Gradient of TD (1) Error): e (x;,) = §*(x) — §2 (%); (%) = (%)k +yK (%)k AW} = 02 [%]ef(xk).
Uy 9fk

ik +yK
On(x)

70 e . A(y) =
oaeen TV9 (1) ey @ () =

. D), (P0) 2k 9 2 Oy Of | OF dd)
where i = 29" (1) + (1= DG (). (Dx)k T ox + 0i(x) Oxp , and (nx)k T ox | OR(xy) oxy

~ DA(xy)
3 A = € 3\;:]ea(xk) >

Actor Network Error: e, (x,) = 2el(x) + (1= 2)el(x) ; e(xy) = e
k.

Figure 1. Schematic diagram for the adaptation of a novel online n-step value gradient
learning (NSVGL(1)). Two critic networks and one actor network are used in NSVGL(A).
A combination of two critic networks is presented to speed up the tuning for online learn-
ing without needing the initial backup value function and eligibility trace parameters.
The weights for the one-step critic network (Go(xk, c?)(c))) and the n-step critic network
(G* (xk, d)ﬁ)) are updated according to gradient of TD(0) error (blue dashed line) and gradi-
ent of TD(A) error (green dashed line), respectively. The actor network (A(xk, (f)a)) is tuned
by two paths (backpropagating errors): one through G°(xi, @?) path (e0) and the other
through (G4 (xy, @) path (e}). This strategy can correlate and combine the information
from the two critic networks. These two paths are filtered via the same values of A, and
they are added together to produce a total backpropagating actor error (red dashed line).

214

2. THE ONLINE NSVGL(1) STRUCTURE DESIGN

Fig. 1 is shown a main schematic diagram for the online NSVGL(A) structure. The
online NSVGL(A) approach has five fundamental advantages described in subsections II.
A-E:

2.1. Improved Leaning of Temporal Sequences. NSVGL(Q) fills the gaps be-
tween a sequence of predicted events and tuning data via TD(A) learning. TD(A) is a
fundamental contribution in reinforcement learning [44] - [46]. ADP is used to solve the

recursive form of the Bellman equation [11], [50]:

J*(x) = min{Uk+1 + yJ"(Xk41)}, (2

u(xy)

where J* denotes the optimal value fuction, and the instantaneous cost (U (x, u(xy)) = Uy)
is bounded. As in [52], the Bellman equations for one-step (total discounted future reward

depending on one-step TD error) and for two-steps are given as

R = J(x) = Ug +yJ (xga), (3)
and
R/({Z) = Uy + yUss1 + 72 (a1, 4)

while for n-steps, R](c") is given as follows:

n
RI(C”) =Us + YUis1 + oo + Y Wiinot + "I (Xpan) = Z YU)
i=k

where R,(:) denotes the actual return for the value function from k to i. An average of

an n-step-return is a technique for accelerating the optimization. For instance, a 4-step

average can be done via half of a two-step-return and a half of a four-step-return such that

RAVCH

i = cqul(cz) + a)4R(4) , where wy = 0.5 and w4 = 0.5. The proportional weights (w;),

215

i =1,2..., are positive and sum to 1, which is controlled by A, where A represents the

proportional weight for the actual return value function. For instance, w; = (1 — A) for a

(1),

one-step average return (4 = 0), which is equivalent to R, ’; for a two-steps average return,

k 9
R?V(l’z) =w IRI(:) + szf), where w = (1 — 1) and w; = 4; for a three-steps average return,
R?V(l’zﬁ) = a)lRl((l) + sz,((z) + w3R(3), where w; = (1= 1), wp = (1 -2)A, and w3 = A%. This

procedure continues until n-steps average return. [55] shows a stability proof for selecting A,
which should be 0 < A4 < 1 (in contrast to previous literature, which are included bounded
from O to 1). The A-return is another name for the average of the n-step-return, which is

defined in general as

Rl=(1- A)Z/l”‘lR,((”). (6)

n=1

By substituting (5) into (5), we obtain:

00 n—1)

R =(1- A)(WS DWLTHEDY ﬂn_lynf(ka))- (7)
n=1 i=0 n=1

Expanding and rearranging (6) yields:

R} :Zy”Uk+,,[(/l” + A) - (T +/l°°)] +(1 —/1)2
n=0 n=0 (8)

[/annH J(xk+n+1)] s

with ¥(o0) = U(co) (the final target-value at the infinite horizon terminal state). Then, the

target value is given as follows:

V(xk) = Uk + yA0(xpe1) + y(1 = DI (Xp41), 9)

216

(derived in [56]), where V(x;) in (8) is identical to Rﬁ. The Bellman equation for one-step

TD learning (TD(0)) with J = 0 is given as

200) =Ux + y9°(xp41), (10)

and for n-step TD learning5 (TD(1)) with $ = 9 and J = PO, it is given as

91 (x) =Up + y A0 (xisr) + y(1 = D% (x41), (11)

where $°(x;) and 94(xy) are function approximators for the one-step value function and

n-step value function, respectively.

2.2. Improved Exploration\Exploitation Trade-off. Fairbank and Alonso [47]
illustrate that the value function has to be learned over all immediately neighboring tra-
jectories in order to reach a locally-extremity optimal trajectory. Therefore, a stochastic
exploration (a randomization of trajectory starting points, or policy) should be supple-
mented with any value function approaches. A gradient of a value function handles this
requirement. In VGL, the Bellman equation is solved via a greedy policy, with few tra-
jectories (even a single one), instead of learning in all of the state space. Therefore, the
value function approaches have a high probability to fail without exploration, while the
gradient of a value function has perfect learning without any exploration, as well as fast
stable learning. Therefore, the second advantage of NSVGL(A) is that it uses the gradient
of both the one-step and n-step value functions. VGL has a critic network that estimates the
gradients of the one-step value function (J in (3)) with respect to the vector of the state (xi).
VGL(A) also has one critic network that estimates the derivatives of the n-step target-value
function (V(xy) in (8)) with respect to the state vector. In NSVGL(1), we combine two critic

networks (one-step and n-step critics). The gradient of the Bellman equation with respect

5We henceforth denote the average of the n-step by only n-step for simplicity

217

to the system states for the one-step critic is:

99°(x) _ OU (i Axa)) + ¥ 9°(f (xx, Ai)),) a2
8xk B 8xk ’

where [i(x;) is a control action vector, which is provided from the approximator actor
network A(xy, &,) with parameter vector &, and the general discrete-time nonlinear system

model is represented as

Xia1 = f (o A(xy)). (13)

For shorthand notation, we denote U(xy, fi(xy)) = Uy, A(xx, ©q) = A(xr) and f(xg, fi(xy)) =

fi. By applying the chain rules in Equation (12), 89°(x;)/dxy is given as

99°(xr) _(3Uk oU; az‘i(xk))+ 590(xz+1)(5fk 0 fx aA(xk)).

— 14
dxe \ox ' Oa(x) dxk dx \Oxp | OAG) Ox (9

The one-step critic network GO(xy, @) is a function approximator with parameter vector
@Y. GO(xy, @Y%) function network provides the estimated gradient of a one-step value
approximator function with respect to the system state vector (39°(x;)/0x;). There are two
different ways to implement the critic network for DHP [49]: a scalar critic method and
a vector critic method. The scalar critic method makes the output critic network equal to
A9%(xx)/dxy, while the vector critic method makes 99°(xy)/dxx equal to GO(xy, @Y) and
provides one-step gradient value function (§°(x;)). We use the vector critic method because
it is a smooth and stable vector output [47], [48], [S1]. In other words, the critic network
in the VGL scheme estimates the partial derivatives of the value function with respect to
the system’s state vector. In order to learn Go(xk, d)g), the left-hand side of (14) has to be a

target value g%(x¢) (a one-step target value), which is given as

DU

00 =(907) + 78

ODF
15
0DX)k’ (15)

0DX

218

where

(aDU) AU, AUy 0A(xp)

_ 16
oDX)~ axe T op(xy) Oxg (16)

and

(17)

(aDF) :afk+ dfc A(xy)
ODX)k Oxp Of(xx) Oxg ’

During each iteration, a one-step critic error (¢?) should be minimized, where € is given as

X(xr) =) — 8%xn), (18)

where §%(x;) is an estimated output vector from G°(x, ®0) network. The gradient of the

Bellman equation with respect to system states for the n-step critic network is

9 () _ 0
(9xk _axk

Uk + (004 fiw) + (1 - A)ﬁ()(fm))). (19)

Applying the chain rules to (9) yields

P (xx) :(aUk+ oUyx aA(xk))+ (/laf’/l(xkﬂ) afk+ dfc OA(xk)
Oxi O0f(xy) Oxi Oxpr1 " 0xp Of(xk) Ox

A0 (xe41) Ofc , Ofk aA(m)
Oxpr1 Oxp Of(xg) Oxp

6xk (20)

(I-2)

The n-step critic network G*(xy, %) is a function approximator with parameter vector
&}, The G (xy, &%) function network provides the estimated gradient of an n-step value
approximator function with respect to system state vector (99(x;)/dx;). During training,

the n-step critic error (egl) should be minimized, where eﬁ is given as

el () =g (xr) — 8 (xx), 1)

219

where g4(x;) is an estimated output vector from G*(x;, ®0) network, and g*(x;) is the

n-step target value, which is given (according to the vector critic method):

g (xx) =(8DU @2)

ODF
aDX)k'

)+ (g) + (1= 0we) (55w

2.3. Memory Efficiency. A directimplementation without the requirement to store
the trajectory is the third advantage of NSVGL(A). In other words, all the approximator
parameters for the one-step and n-step critic networks, as well as the actor network update
in a single forward pass of the trajectory. Therefore, higher memory efficiency is achieved
than the batch-mode method implementation. Furthermore, NSVGL(Q) has a forward view
property. The forward view is defined by Sutton [43], [52], which is a knowledge of far
future rewards for each state. Eligibility trace variables are suggested by Sutton [53] by
adding an extra memory variable associated with each state, tuning in backward iteration;
therefore, it is known as backward view. Many strategies shown in the literature use eligi-
bility trace method. For instance, incremental method provides an incremental mechanism
for approximating the forward view [43]. A replacing traces method that provides a solution
to the accumulating traces by truncating the valve of eligibility trace variably. [53]. Doya
[54] derives continuous time domain eligibility traces. Fairbank and Alonso [47] show that
the eligibility trace method has high computational complexity in online implementation,
which requires and consumes resources to carry out matrix-matrix multiplications over the
entire time for the whole trajectory. NSVGL(A) has no extra required variables for storing
eligibility traces for each state. NSVGL(A) is used only the bootstrapping eligibility trace
parameters (1 and) to learn the G*(xy, &) network directly via implementation of (22)

through minimizing a gradient-TD(A) error, which will be illustrated in Section 4.

220

2.4. Improved Actor Network Training. A procedure that is used in NSVGL(A)
to learn the actor network gives a fourth advantage. The actor network (controller) is used
to make a system learn to behave optimally. The optimal decision is obtained from a com-
bination between a quantity of current information (the details recent data) and a quality
of near history [60], [61]. The G*(x;, &%) network has the bootstrapping eligibility traces
parameters A and y that have the ability to determine a depth and a width of information. For
instance, Equation (4) has two future steps that are determined by the A value via A-return,
and y controls the amount of summation U value for each step. The G°(x;, c?)(c)) network
provides a gradient of value function that concentrates on recent events. Therefore, a com-
bination between G%(xy, ®?) and GA(xx, &) provide an optimal decision. The NSVGL(1)
design achieves this combination via learning the actor network. The actor network is tuned
by minimizing an actor error (e,(x;)) by summation of two backpropagating error paths:
one path through G°(x;, ®?) (¢2(x;)) and the other path through G*(xy, &%) (ef(x;)). These
two paths are filtered via a similar value of 1. A final actor error e,(x;) is calculated by

combination between one- and n-step actor errors as follows:

ea(xx) =Aet(xp) + (1 = el (xp), (23)
where
0(xp, &%) AU d fi
0 c » % A0
e (xi) = — = — + X —_— 24)
N TTE B T e IR T Yoy
and
DA (x, D2 oU . .)
ep(xx) = Lok 0c) ety (A8) + (1= DE%(xka)) L : (25)

dx) Al 9 (i)

The combination of the critic errors is also found in GDHP [41], [42] to minimize an actor
error, which is used to tune a critic network by integrating a critic error with respect to the

value function and its derivative.

221

GDHP uses a merging parameter to adjust how HDP and DHP combine in GDHP,
while our approach merges VGL (or DHP) and VGL(A) (or DHP(A)) to tune an actor net-

work. A merging parameter, A, is used to adjust flow information between VGL and VGL(1).

2.5. Faster Convergence Via Two-Critic Iteration. The fifth advantage is that
NSVGL(A) cooperates iterative learning between G°(xx, @0) and G*(xy, &) that can ac-
celerate learning rather than working individually. NSVGL(A) has an efficient convergence
process to obtain the optimal cost function quite rapidly. The following section proves that
NSVGL(A) converges both the cost function and control law sequences to their optimal

values.

3. CONVERGENCE PROOF

In this section, we present convergence proofs for the online value-iteration-based
NSVGL(A) to solve the value function and hence the optimal control policy for a nonlinear
discrete-time system.

3.1. One-step and n-step DT-HJB Equations. Consider an affine nonlinear discrete-

time dynamical system described by

Xir1 = f(xx) + g)u(xg), (26)

where k is a discrete time index, x € R™ is the state vector, u(x;) € R" is the control vector,
and both f(x;) and g(xy) are differential functions with an equilibrium state at x = 0 (e.g.,
f(0) = g(0) = 0). Assume that (26) is Lipschitz continuous and stable on a compact set

Qp € R™,

Definition 1 cf [35] and [42] (stabilization system): A nonlinear system is stable on

a compact set Qy € R, if a control input u(x;) € R" exists for all initial conditions xy € R™

222

such that the state x; — 0 as k — 0. The infinite-horizon cost function is given as
T = Dy UG), 27)
i=k

where the utility function (U) is chosen as the quadratic form, U(x;, u;) = x! Qx; + u! Ru;,
where Q = QT > 0 € R™ and R = RT > 0 € R™™". Then, the objective function
to minimize (39) is to find the admissible control action, which is given in the following

definition.

Definition 2: If u(x;) is continuous on a compact set Q, € R" with u(0) = 0, and
J(xy) is finite for Vxy € Q, then u(xy) is defined to be admissible with respect to (39). The

definition of the infinite horizon optimal cost function is
T(e) = inf o] Qi+ u R + 70" (x|, (28)
ue

where A is a set of all infinite horizon admissible control sequences of x;. According to
Bellman’s optimality principle, the optimal cost function in finite horizon that satisfies the

discrete time HIB (DT-HJP) is
J (xx) = muin {x,{ka + u{Ruk +)/J*(xk+1)}. (29)
For one-step TD learning (TD(0) learning method) with J = v0, (39) is written as
vO(xx) = xf Oxp + uf Rug +yv°(xesn). (30)
Then, the optimal value function for one-step TD learning is

0 (xx) = min {x,{ka + uiRuk + ')/VO*(X](+])}. 3D
Uy

223

The gradient of the right-hand side of (31) with represent to u; gives the optimal control

u*, which satisfies the first-order necessary condition

0 (x; Qxi + uy Ruy) (3xk+1)T 0" (xi+1))
+y

=0. 32
Ouy Ouy Oxr41 2
Thus,
. _ Y (x
w'(x) = —2R 1gT(Xk)M- (33)
2 O0xi41

For the n-step TD learning (TD(A) learning method) with # = v* (¥ in (8)) and J = v, (39)

can be written as
v) = 2] Qe + g Rug + 7y (v (xgean) + (1 = v (xga)). (34)
The optimal value function for the n-step TD learning is
v (xg) = n;in {x,{ka +ul Rug +y (v () + (1 - /l)vo*(xkﬁ))}. (35)

Because v (xy), v¥ (x¢) and J*(xx) represent the optimal value functions, Equations (31)
and (35) are equivalent. The gradient of the right-hand side of (35) with represent to uy

gives the optimal control u* as

0
0 :a—uk(xZka + M:Ruk) + y(

OXp+1)T (9_ (/lv/l*(xkﬂ) +(1- A)VO*(ka))' (36)

Our / Oxpq1

Therefore, u*(xy) for the n-step, which is equivalent to (33) because of v (x) = v (x) =

J*(xy) is given as

A* 0*
u*(xk):—zR_lgT(xk)(/l—av) (g 2 gy 9V Lxkert) (xk”)).
0Xp41 O0Xk41

> (37)

224

The optimal control policy with the n-step method is used to prove convergence of the
NSVGL(A) iteration algorithm.
3.2. Derivation of Iteration NSVGL(1) Algorithm. The initial values of one-step

and n-step cost functions are vg(.) = 0 and vg(.) = 0, respectively. These solve the initial

policy po by
Mo(xk) =arg muiﬂ {x;{ka + up Ruy +)’(/lvg(xku) +(1 - ﬁ)Vg(xku))}- (38)
Then, the iteration on the one-step value function is

Wixg) = muin {XZQXk + uj Ruy + 7v8(xk+1)},

(39)
=x; Qxk + 1 () Ruo(xe) + yvo(f (xx) + g(xic) o)),
and the iteration on the n-step value function is
vil(ae) = H;in {X;{ka + ug Ruy + 7(/1"3(361“1) +(1 - ﬂ)v8(xk+1))},
=X, UXk T Ho(Xk) Ko Xk) + Y| AV (J(Xk) + 8\ Xk)Ho(Xk
[0 + o) Rpto(n) + ¥ (W (£ () + gxopo(x))+ (40)
(1= Y 0) + gUxpo e
Fori =1,2,..., the action policy, y;, in the value iteration algorithm uses a greedy update
as follows:
piCex) =arg min {] Qxe + uf R + (v} (ri) + (1= D xien)) o @)
and the one-step value function, which is
V?H(xk) = min {x,{ka + uiRuk + '}/V?(Xk+1)},
" (42)

=x} Ox + paf (xR)R (i) + v (f (xie) + () pi(xi)),

225

as well as the n-step value function, which is

v () = muin {xlexk + uj Ruy + 7(/1\’{1(?%“) +(1 - /l)v?(xkﬂ))},
=x; Ox + 1] (xp)Rpi(xi) +y (/W,-A (f (xx) + g () pi(xx)+ (43)

(1= P + gLl)

where i is the iteration index of the action policy as well as the value functions (one-step and
n-step value functions), while k is the time index of state and control for system trajectories.
3.3. Convergence of Iterative NSVGL(1) Algorithm. The convergence proof de-
pends on the iterations of (42) to the optimal value function v? — J* and (43) to the optimal
value function vl.’l — J* as i — oo. We prove that both viﬂ and vl.O reach the optimal value
J*. Furthermore, we present the convergence of the iteration process of (41) to the optimal
control value (i.e., 4; — u* asi — o).
Lemma 1: Let v; be any arbitrary sequence of control policies, and y; be the control policy

sequence described in (41). Let ‘I‘io and ‘I’l.’l be

T (k) =x7 Qe + vl (xi)Rui(xg) + yY2(f (xx) + g(xi)vi(xi)), (44)

and

T (50 =x] Qe + ol (xORui(xn) + ¥ (A (F () + gxowi())+ s

(1= DT (o) + i)

respectively. vl.0 and vl.’l are defined as in (42) and (43), respectively. If vg = vg = 'I’g =
‘Y’g = 0, then V?H(Xk) < ‘Y’?H(xk) and vi{rl(xk) < Ti/l+1(xk)’ Vi.

Proof: Because u;(x;) minimizes the right-hand side of (42) with respect to the control y;,
and because vg = T(O) = 0, then by induction it follows that v?+ () < ‘I'g L (xx), Vi

Because y;(x;) minimizes the right-hand side of (43) with respect to the control y;, and be-

cause v§ = T3 = 0, then by induction it follows that v (xz) < T2 | (xz),Vi. []

226

Lemma 2: Let the one-step value function vl.O be defined as in (42). If the system is
controllable, then there is an upper bound Y1 such that 0 < vl.O < Y1, Vi. Similarly, set the
n-step value function vl.’l be defined as in (43). If the system is controllable, then there is an
upper bound Y2 such that 0 < vl.’l <Y2 Vi

Proof: First, similar to [42], we prove the one-step value function v?, which is defined as in
(42), has an upper bound Y1 such that 0 < v? < Y1, Vi as follows: Let ;(x) be a sequence
of admissible control policies, and vg(.) = Ag(.) = 0, where v? is defined and updated as in

(42) and A is defined and updated by

AL (x) =x] Oxi + & (0)RG (xx) + YA (i), (46)

where xx+1 = f(xx) + g(xx)li(xx). Because the DT-HIB equation develops backward

(i =i — 1) for the next time index (k = k + 1), then

A1) =x1, | Oxper + & (ks 1)REG -1 (X)) + YA (xe42), (47)

where xg2 = f(Xk41) + 8(Xk+1)i—1(Xk+1)-

Equation (46) expands with U(xy, £;i(xx)) = x,{ka + {l.T(xk)R{,-(xk) to be

A, (x) =UCxg, Gi(xe)) + YA (i)

=U(x, Gi(xx)) + y(U(ka’ Gio1(xk41)) + ')/A?_l(xk+2))
=U(xk, &i(xx)) +)’(U(Xk+1, Gio1(Xk11)) + Y(U(Xk+2,

Ga(xa) +)/A,-O_z(xk+3))) (48)

=U(xp, G(xx)) + YU (Xps1s Gi-1(Xps1)) + Y2 U(xp125

Gia(Xk42)) + ... + 'YiU(kari, Go(xk+i)) + 7i+1A8(xk+i+1),

227

where Ag(xkﬂur 1)=0 (because Ag(.) = 0). Therefore

ALy (k) =) Y Uk i (s)

7 (49)
= Z Y’ (XZ+jka+j + QT_j(xk+j)R§i—j (xk+j))-
=0
Taking lim;_,o, of (49), we obtain
i .
A?+1(xk) = lli)rg Z Y (x]{+jka+j + é}T_j(xk+j)R§i—j(xk+j)) . (50)

j=0

Because Definition 1 shows that ;(x;) is an admissible control policies and x; — 0 as

k — oo, there exists an upper bound Y1 such that
i .
Vi: AQ () < lim)y Ul o G i) = Y 1. (51)
Jj=0

Therefore, by using Lemma 1 with y;(x;) = j(xx) and ‘Y'?H(xk) = A?H(xk), we obtain

A

l' K

0< v?+1(xk) < A?H(xk) < Y1, Vi. Second, we will prove the n-step value function v
which is defined as in (43), has an upper bound Y such that 0 < vl./l < Y2, Vi as follows: Let
£i(xx) be a sequence of admissible control policy, and vJ(.) = vi(.) = AJ(.) = A}() = 0,
where v and v are defined and updated as in (42) and (43), respectively, while A? is

defined and updated as in (46), and Af is defined and updated by

AL () =x7 Qxp + & () REG () + y(AAf(ka) +(1- A)A?(xkﬂ)), (52)

where xi1 = f(xx) + g(xx)&i(xx). Because the DT-HIB equation develops backward for
the next time index and U(x, {;(xx)) = x,{ka + {I.T(xk)Rg-(xk), then equation (52) expands

to be

228

AL o) =U Gk, G0x) + ¥ | AN () + (1= DAY (xiea1) | = U, () +

v|A4

Uit Go1(re) + 7 [AL (eia2) + (1 = DAY () |+

(1= DAY i) || = Ulxrs G(xi)) + v [A Uk, Gm1 () +

Y [(U(Xk+2, Gima(xXk2)) + Y [AAL (xk43) + (1 = DAY, (xe43)]) +

b

(1= DAL (rir)| + (1 - A)A?(xk+1>)

=U(xk, &(xk)) + (YOU (xpets Gio1 (k1)) + YO U(Xpa2, G2 (xps2))+ (53)
(YA AL, (xk3) + (Y2 (1 = DAY, (xk43) + (y)y(1 = Q)

AY | (xkr2) + ¥ (1= DA (1),

=U(xk, &(xk)) + (YU (et Gio1 (xa11)) + (Y2 U (Xpw2, Gima(Xge2))+
oot (Y Ui o(xi4i)) + (YT A (xainn) + (y) y(1 = 2)
Ad(xxsir1) + (YO (1 = DAY xs) + ... + (Y)Y (1 = DAY (x142)

+ (1= DAY (xr1),

where Ag(xk+,-+1) =0, (because Ag(.) = O), and Ag(xk+l-+1) =0, (because A8(.) = 0).

Therefore,

(YA U(xsjs Gimj(Xk4))) (yay

i
Ay () =)
Jj=0

A?_j(xk+j+1)]~

i—1
UEPIDY
=0 (54)

229

According to (49), Equation (54) is rewritten as

i-1

+y(1-2))

J=0

i-j—-1
200y [(le(
=0 (55)

i

Al () =)

J=0

(V/I)j U(xk+ja évi—j(xk+j))

Xl Givj1-1(Xk11))]] :

Because Definition 1 demonstrates that {;(xx) is an admissible control policy and x; — 0

as k — oo, there exists an upper bound Y2 such that

i
Vi : A;l+1(xk) < lim (Z
1—00]:0
i-1

ya-2)

j=0

(y2)y (x1€+jka+j + {iT_j(xk+_j)Ré7—j(xk+j)) +

i—j-1

—J
2V

=0

):m.

Therefore, by using Lemma 1 with z;(x¢) = &(xx) and T (xx) = Al (xx), we obtain 0 <

['yl (x]ilekH + {i{j_l_l(xlwl) (56)

REi—j—i-1 (Xk+1))]

v () < AL () < Y2, Vi n

Lemma 3: If Lemma 2 holds, then both upper bounds (Y1 and Y?2) are equal, such
that lim;_eo AD(x¢) = limj o Al(xx) = Y1 =Y2 =Y.

Proof: LetU(.) = 1for V] (or, let U(.) be any constant value for the entire trajectory), then the
difference between (51) and (56) is zero, such that o = lim; A;l+l (xx)—lim; 00 A?+1 (xx) =

0, which is illustrated as follows:

i

i—1 i—j—1 i
o = lim (Z G [+7(1=D)) [(W D M) - lim (0%)
j=0 j=0 I= j=0
~im (1 —oA -y [1-d) (- mf]) . (1 - yi“) (57)
im0\ 1—=vy4 -y 1 -yAa 1-4 im0 | 1 —7y
1 —-vyA4 1

= - =0.
l—y—ydl+y22 1-vy

230

Theorem 1: Consider sequences for the action policy y;, the one-step value function vl.O
and the n-step value function vl./l defined as in (41), (42) and (43), respectively. Then, vl.O

and vl./l are non-decreasing sequences such that v? < VIQH and vl./l < vl.’l+1, Vi.

0

Proof: First, we will prove v, < Vo

i+1°

Define y; and v? from (41) and (42), respectively. A

new one-step value function I‘? is defined by

T2 (k) =xf Qi + p1f (xi) Rpi(xi) + YT (), (58)

where x+1 = f(xr) + g(xp)i(xx) and 1"8 = vg = (0. Mathematical induction illustrates that

I‘? < V?H as follows: Fori = 0, consider

W(xk) =xf Qxx + b (o) Rpto(xic) + yv(xes1), (59)

with vg(.) = Fg(.) = 0. Then,

VW(xk) = To(xe) = x1 Qxg + b (xx)Ruo(xx) > 0. (60)

Thus, Fg(xk) < v(l)(xk). A similar procedure is continuous, and assuming it reaches and

holds for i — 1, then I“?_](xk) < v?(xk). For i, considering that

v (o) =xp Qg + ! () Rptiee) + yv? (xeer), (61)
and
TP (xk) =x1 Oxp + 1l (x)Rui(xie) + yTP (Xie1)s (62)

we obtain

WG = TCe0) = (1 (i) = T2y (1)) 2 0. (63)

231

Then, I'?(x) < v2,, (x¢). Because of I(x) > v?(xy) according to Lemma 1 and T?(x;) <
v?H(xk), we obtain v?(xk) < v?+1(x’<)'
Second, we will prove vl.’l < Vi/l+1' Define y; and viﬂ from (41) and (43), respectively. A new

n-step value function Ff is defined by

T (k) =xf Qi+ pf (xi)Rpi(xe) + 7(/11",4(361&1) +(1 - /I)F?(Xkﬂ)), (64)
where x;+1 = f(xx) + g(xx)ui(xr). Mathematical induction illustrates that Fl.ﬂ < viﬂ+1 as
follows: Fori = 0,

vi(xe) =x7 T(xe)R vl 1—an (65)
1 () =x3 Oxp + g (xi)Rpo(xx) + v (Avg (xe+1) + (Wo(Xk+1))
with Fg = vg = Fg = vé = 0. Then,
vi(x) = Ty (xx) = xp Qx + pag (xx)Rpo(xie) > 0. (66)

Thus, F(’)l(xk) < vf(xk). A similar procedure is continuous, and assuming it reaches and
holds for i — 1, then Fl./l_l(xk) < vf(xk). We note that F?_l(xk) < v?(xk). Therefore, for i,

after considering that

v () =x] Qx + !l (o) Rpti (k) + (/1\/,4 (xis1) + (1= A (Xk+1)), (67)

and

T (x) =xp Ox + p1] (x)Rpi(xi) + V(JFiﬂ_l(xkn) +(1 - /l)rl-o_l(xku)), (68)

232

we obtain

v (ee) = T () =7’(/1V,-A(Xk+1) + (1= (1) = AT (xps1) — (1 =))

F?_l(ka)) > 0.

Then, Fl.ﬂ(xk) < vl.’l+1(xk). Because Ff(xk) > vl./l(xk) according to Lemma 1 and Fl.’l(xk) <

v (xx), we obtain v!(x) < v (xp). |

Theorem 2: The one-step value function (v?) and the n-step value function (vl./l) can be
defined as in (42) and (43), respectively, and le = vf = 0. Define lim;_, v?(xk) =0 ()
and lim; vf (xx) = v& (x¢) as the infinite limits of the one-step and n-step value functions.
With controllable system states, both vl.O and vl./l are limited by J*(xx), where J* is described
in (28). That is, v2 (x) = v&(xx) = J*.

Proof: First, let {;(x;) be a sequence of admissible control policies, and vg(.) = Hg(.) =0,

where v? is defined and updated as in (42) and Hi0+l is defined and updated by

HY (x) =x] Qxic + & () REG (xx) + yHY (x41). (70)

From the first part of Lemma 1 and Lemma 2, we have v?+ (k) < ngl(xk) <Yl,Vi. By
defining lim;_,c Hl.o(xk) = H?(x;), we obtain v2 (x;) < H2(xx) < Y1 for all admissible
control policy sequences. If {(x;) = u*(xx), and the first part of Lemma 2 is applied, we

obtain

Y1l =lim Z ()’j (X;ZQXk + QT_j(xk)R&—j(xk))), (71)
7=0

such that J*(x;) < Y1, where J* is described in (28). Therefore, from first part of Lemma 2
and v2 (x;) < H2(xx) < Y1, we obtain v (xx) < J*(xx). Because J*(xy) is the infimum of
the cost function that derives from all other admissible control sequences, we conclude that

J*(xx) < v2 (xx). This implies that J*(x) < v (xx) < J*(xx), and hence, v2 (xx) = J*(xx).

233

Second, let ;(xx) be a sequence of admissible control policies, and vg(.) = vg(.) = Hg(.) =
Hg(.) = 0, where vl.o and vf are defined and updated as in (42) and (43). Equation (70) is

0 2.
used to update H; , and H; :

H () =x] Qe + £ (ORG () + 7 (AH (reen) + (1= DH (). (72)

From the second part of both Lemma 1 and Lemma 2, we have Vi/l+ (k) < H: '/l+1(xk) <Y2,
Vi. By defining lim;_,q Hl./l(xk) = H!(xi), we obtain v (x;) < HL(xx) < Y2 for all
admissible control policy sequences. If {(x;) = u*(xx) with applying the second part of

Lemma 2, then

) (L ;0xkss + £ (o)RG5 (k)

i—1
+)/(1—/1)Z[

=0 (73)

j—1
(ydy [71 (x/{+1ka+l + {,-T_j_l_l(xk+l)Ré7—j—l-1(Xk+l))]])

=0

such that J*(x;) < Y2, where J* is described in (28). Therefore, from the second part of
Lemma 2 and v (x;) < H(xx) < Y2, we obtain v (x;) < J*(xz). Because J*(x;) is the
infimum of the cost function that derives from all other admissible control sequences, we
conclude that J*(x;) < v (x). This implies that J*(x;) < v&(xx) < J*(xx), and hence,
v&(xx) = J*(xx). According to Lemma 3 and by applying Z(x;) = u(x) in (51) and (56),

we conclude that v0 (x;) = v (xx) = J*(xp).

VY (xk)
According to Theorem 2, v?(xk) and vl./l(xk) — J*(x;)asi — oo. Because g?(xk) =
Xk
A 9vi!(xe) 0 1] : ;
and g7 (xx) = P we conclude that g/(xx) and g (xx) — g*(xx) as i — oo, where g
k

is an optimum of the value gradient function.

234

Figure 2. General feed-forward neural network, which is used in the one-step critic network,
the n-step critic network, and the actor network in NSVGL(A).

Corollary 1: The action policy y;, the one-step value function v? and the n-step
value function vf are defined as in (41), (42) and (43), respectively. If the system state
Xi is controllable, then the v? and vl.’l force the controller (actor network) to converge to
the optimal control u* as i — oo (i.e., lim; e pi(xx) = u*(x)). Similar conclusions can
apply with gradients of vf(xk) and v?(xk) with respect to x; (i.e., g?(xk) and gl./l(xk) reach

an optimal value gradient function as i — o).

4. NEURAL NETWORK ARCHITECTURE DESIGN

We use a feed-forward neural network, which is shown in Fig. 2, for all three
networks (G(C)(.), G(.), and A(.)) as universal function approximator, which is explained in
detail in the following subsections.

C

4.1. The One-Step Critic Network (Go(xk, c?)(c))) . The structure of G°(x, @?) is

shown in Fig. 2, where & represents a combination of hidden and output weights for the

one-step critic network. In Fig. 2, the inputs are the system state ([= [[1,.. ., Ip]T Xp =
[x1, ..., xn]7); the output is g°(x;), which is an approximation m dimension vector of a
gradient of the one-step value function (O = [Oy,...,0,4]" = §%x) = [87,...,8%1); h?
(= h,) represents the number of hidden neurons; the hidden weights are indicated as c?)?{h} (

= cf)){ch}), which can be represented in matrix form with (m X hg) dimension; and the output

235

weight matrix is indicated as wc{o} (= (I)){CO}) which can be represented in matrix form with
(h% x m) dimension. The activation function for the hidden nodes is the hyperbolic tangent
threshold function (¢(x) = (1 —e™*)/(1 + ¢™¥)). The forward propagating output signal is

expressed as:

8(x) =(@2) o[(0" xe), 4

where i is the iteration index and k is the time index. With quadratic form of the utility
function (U(xy, pi(xx)) = x Oxi + ! (x)Rpi(xr))) and (3) for the system state equation,

the one-step target value, which is defined in (15) in the general form, is given:

900) =5 (] 0t + T (50 Ri (x0) + 790 (e i (30)

o T
—'ua](Xk)) Ruti—1(xx) +ygY | (xps1)X (75)
Xk

(af(xk, Ai-1(xy)) N 0 f (xi, fli—1(xx)) DA, 1(xk))
O0xy a/Jl (xk) Oxx

—20x; + 2(

The weights for hidden (@8”’}) and output (c?)(c){o}) layers are tuned by backpropagating the

prediction error of the critic network, which is given as:

e (i) = g0 (xx) — 80(xp). (76)

The objective function for the Ggi(xk, @?) network is to minimize Eg. (xx) = 0.5 (e(c)l.(xk))2 by
updating the value for the weights (&?) according to the gradient descent algorithm inside

the local inner-loop, which is given by:

0 A0
AO{h} AO{h} 0 8Eci _ AO0{n} O 8Gct
Cl Cl + f 0{h} - w(;i O{h} Cl(xk)’
a(’?)ci awcz
OE? lep 7
~0 ~0 j ~0
0" = oy + £ Py i =0 O{Cl} eei(xe):
ci cz

where £0 is the one-step critic learning rate.

236

4.2. The n-step Critic Network (G*(xi, &{)). The structure of G*(xy, &F) is
shown in Fig. 2, where & represents a combination of hidden and output weights for
the n-step critic network. In Fig. 2, the inputs are the system state (I; = [[j, .. .,IP]T =
Xp = [x1,...,x,]"); the output is §*(xx), which is an approximation m dimension vector
of a gradient of the n-step value function (O = [0y, ..., Oq]T = () = [gf, L8N
ht (= h,) represents the number of hidden neurons; the hidden weights are indicated as

@8{’”’ (= c?)){ch}), which can be represented in matrix form with (m x hﬁ) dimension; and the

»4r (= oY), which can be represented in matrix form

output weights are indicated as @,
with (A} x m) dimension.
The activation function for the hidden nodes is the hyperbolic tangent threshold

function. The forward propagating output signal is expressed as follows:

g0 =) o (@2 ") xe), (78)

where i is the iteration index and k is the time index. With quadratic form of the utility
function and (3) for the system state equation, the one-step target value, which is defined in

(22) in the general form, is

gl (xx) = e (kuxk+.U, 1O)Rpi— 1(Xk)+7(/1VA(f(Xk,,Uz 1) + (1= 2)

P0(f (x, ,ai—l(xk)))), .
aﬂg—l(xk))TRﬂi—l(Xk) +y(/l§l.’l_l(f(xk, fi(x)) + (1=)
Xk

0 f (X, fli-1(xx)) N 8 f (xi, fi1(xx)) A 1(Xk))
dxk O f1i-1(xx) Ox

—20x; + 2(

8 (e i (v0))

237

The weights for hidden and output layers are tuned by back-propagating the prediction error

of the critic network, which is

el(xx) = gt (xx) — 87 (xx). (80)

. . . e . e e . P _ A 2
The objective function for n-step critic network is to minimize E’.(xx) = 0.5(ea.(xk)) by
updating the related critic weights (&%) according to the gradient descent algorithm inside

the local inner-loop, which is given by

OEA 8GA/1

~A{h} _ AA{h} A _ ~A{h} A

w,; =W + 5 9o ,\/1;;1} =W, + 5 8(1)?[{;1} cz(xk) (81)
aEﬂ oGL

~d{o} _ ~A{o} A _ A/l{ } A

wcio czO +£ T?o} = Wi ’ f /lfl} Cl(xk)
00 ci awcz

where ¢4 is the n-step critic learning rate.

4.3. Actor Network (A (xk, (I)a))). The main goal for an actor network is to generate
a near-optimal control policy. We also use the general multilayer perceptron neural network
to represent the structure of A(xy) = (xk, @4) as shown in Fig. 2, where ¢ represents
a combination of the hidden and output actor network weights. In Fig. 2, the inputs are
the system state (I = [[y, ..., Ip]T = x¢ = [x1,...,x%]"); the outputs are fi(xy), which is
an approximation n dimension vector of control actions (O = [Oy, ..., Oq]T = 8%x) =
[ag, ..., ,an]T); h, (= h,) represents the number of hidden neurons; the hidden weights
are indicated as wah} (= c?)){ch}) which can be represented in matrix form with (m X h,)
dimension; and the output weights are indicated as a){”} (= c?);{c”}), which can be represented
in matrix form with (4, X n) dimension. The activation function for the hidden nodes is the

hyperbolic tangent threshold function. The forward propagating output signal is expressed

as follows:

fio1(xg) = (wio})l 1¢((wih})l 1xk) (82)

238

As mentioned in (23), e,(x;) combines the actor error path through the one-step critic
network (eg(xk)) as in (13) and the actor error path through the n-step critic network
(eg(xk)) as in (25). With quadratic form of the utility function and (3) for the system state

equation, e,(xy) is

eati—1)(Xk) =A(2Rﬁi_1(xk> + y(ﬂgf_1<xk+1) +(1- A)ﬂg?_1<xk+1>)

0 f (xk» fAi-1(xx))
O fri—1(xx)

. A)(zRﬁ,-_l(xk) by gl (o 2L ﬁi‘“””).

0fi-1(xy)
(83)

The objective function for the A (xk, @)) network is to minimize eq4(i-1) by updating the actor
2
weights (&,) according to the gradient descent algorithm (with E,;_1y(xx) = (ea(i_l)(xk)))

inside the local inner-loop, which is given by

AAG_1)(xx)
~{h}y _ A{h} (i-D\Xk
Qyi-1) = Dagi-1) ~ awea(i—l)(xk),
A a(i-1) (84)
{0} ~{0} OA-1)(xx)

Wyiio1y = Do) ~ aaATea(i—l)(xk),
Wyi-1)

where £0 is the actor learning rate. If a system type is affine, as in (26), then a greedy action

can be calculated for a one-step critic network as follows:
i) = = SR g (x0g (i) (85)
and for n-step critic network as
TENE —%R‘lg%ck) A8 (i) + (1= DG (xis1) . (86)

and then used instead of estimated control actions from critic networks. (85) can also
be used as the one-step target control to train the one-step critic network similar to [41].

Likewise, (86) can be used as the n-step target control to train the one-step critic network

239

as follows:

0 0 .
Cai—1y(Xk) = Ky (Xk) = i1 (),

a(i-1) 1 .
enion(x) = i (o) = fici ().

The objective function for this network is minimizing the actor error, which is given by
Eqion(xy) = 0.5((1 ~ DEY,_ () + /lEj(l._l)(xk)), (88)

2 2
where Eg(l._l)(xk) = (eg(i_l)(xk)) and Ej(l._l)(xk) = (e:}(l._l)(xk)) . The actor weights are
updated by minimizing E,;_1)(xx) according to the gradient descent algorithm inside the

local inner-loop as follows:

~{h} _ A{h} faaEa(i—l)(xk) R 8A(i—1)(xk)

Cati=1) Tai-1) T Ty T ati-1) ~ La o) €a(i-1)(Xk):

a(i-1) a(i-1) (89)
J0) _ptor _p OFan () o) OAi—1)(xx)
Dati-1) T%a(i-1) T ta PG = Qa1 T awea(i—l)(xk)’

a(i-1) a(i-1)

where e,i_1)(xk) = (1 - /l)eg(i_l)(xk) + /leﬁ(l._l)(xk), which is similar to (23).

5. SIMULATION STUDIES

Two case studies are taken to verify and demonstrate the effectiveness of the
NSVGL(A) method. The trajectories of 2-D nonlinear system responses are considered as
the first case. The second case study is considered a two-wheeled dynamic, nonholonomic
mobile robot model. The theoretical analysis is provided for both cases to demonstrate the
performance index during learning. We compare the performance results for two cases with
DHP and NSVGL(A) with 4 = 0.5 and 4 = 0.99. For a fair comparison, we set similar

values of global parameters during ten independent runs.

240

5.1. CaselI: Nonlinear System Problem. Consider the following nonlinear system

derived from [62]:

x1im —sin(0.5x 1 + u(xy)
Xiyl = = , (90)
X241 —sin(xlk + 0.5x2k)

where x; = [x1; x2;]7 € R? is the state vector (m = 2), and u(xz) € R! is the control
action (n = 1). The external instantaneous cost function is chosen as U, = x,{ka +
T (xx)Ru(xy), where Q is 2-D identity matrix and R = 1. The discount factor (y) is 0.95.
The number of hidden nodes is 5, which is equal to h% and i for the one-step critic network
(G°(x, @°))) and the n-step critic network (G*(xy, ®?))), respectively. The number of
hidden nodes for actor network (A(xk, c?)a))) is also 5 (h,). Therefore, the structure of the
three-layer feed-forward neural network for the critic networks is 2-5-2 (two input nodes,
five hidden nodes, and two output nodes), and the structure for the actor network is 2-5-1.
The initial learning-rate parameters are set to £2 = £} = £, = 0.01 for all networks. The
training will be terminated if the error drops under 10~ or if the number of iterations meets
the stopping threshold for the internal cycle (20 iterations for both critic networks and 30
iterations for the actor network). The initial weights for all networks are randomly chosen
within [-0.3, 0.3] range. The initial state is xo = [1,1]7. We compare NSVGL(1) with
A =0.5and A = 0.99 and the traditional DHP for ten independent runs. Each run has 400
iterations to train ADP to control the system for 10 time steps. As demonstrated in Fig.
3, which is the mean squared error (MSE) values over iteration for ten runs, NSVGL(A) is
more efficient and faster than DHP. Fig. 4 - Fig. 6 illustrate the state trajectory curves and
the corresponding control action inputs for 10 time steps. We can see the improvement for

the system responses as it learns.

241

01571 -

= Tatal MSE for DHP { A=0)
=== Total MSE with 4=0.5
= Total MSE with A=0.99

4 6 8 10 12 14 16 18 20
lteratons

01 | | I I | | | |
0 50 100 150 200 250 300 350 400

lteratons

Figure 3. The mean-squared-error (MSE) comparisons over iteration among NSVGL(A =
0.99), NSVGL(A = 0.5) and the DHP approaches. The mean values from 10 independent
runs are taken for all methods. The shaded region represents 10 runs, while the solid line
represents the mean for all 10 runs. NSVGL(A) provides a faster learning speed than DHP.

The control inpul(ﬂ(xk])

The control inpul(ﬂ(xk])

0.15 1
(%, for DHP (A=0)
01 —— n(x,)with A=05
—i{x,) With 3=0.98
- s

The First Iteration

—— ji(x,} for DHP (3=0)
—— X, with A=05

Time Steps (k)

The Fifth Iteration

Time Steps (k)

oz
O\ — j1(x,}for DHP (3=0)
0.15 -3 N —— (5, with A=0.5
N —_ ith A=0.99
N — s, wi

The control inpul(;;(xk))

The control inpul(ﬂ(xk])

242

The Third Iteration

Time Steps (k)

»10°2 The Last lteration (400)
3 —
/,,”"’ () for DHP {1=0)
2 /’ —— {5 Jwith X=05
/ —1(x,) with 1=0.98
1 T
-
D/
—_
A \\——___;‘*‘___ﬁ/
2
0 1 2 3 a 5 8 7 8 9 10

Time Steps (k)

Figure 4. The control input during iteration for NSVGL(A = 0.99), NSVGL(A = 0.5) and
the DHP. The mean values from 10 independent runs are taken for all methods. The shaded
region represents the 10 runs, while the solid line represents the mean for all 10 runs.

The Frist State Trajectory (x1,)

The Frist State Trajectory (x1,)

05

14
3

o
o

S
s

o
N

El

)
Y]

The First lteration

x1, for DHP (A=0)
—x1lwi!h A=05

—x1, With A=099

Time Steps (k)

The Fifteenth Iteration

x1, for DHP (A=0)

_X1Kwim A=05
— 1, With 4=0.99
—_—
| | | | | | | | | |
) 1 2 3 4 5 6 7 8 9 10

Time Steps (k)

The Frist State Trajectory (x1 u)

The Frist State Trajectory (x1 k)

The Third lteration

x1, for DHP (A=0)
—x1k with A=05

—x1, with A=099

Time Steps (k)

The Last lteration

x1, for DHP (1=0)
X1K with A=0.5
=—x1, with 2=0.99

[} 1 2 3 4 5 6 7 8 9 10
Time Steps (k)

Figure 5. The state trajectories for the x1 state during iteration for NSVGL(4 = 0.99),
NSVGL(A = 0.5) and the DHP. The mean values from 10 independent runs are taken for
all methods. The shaded region represents the 10 runs, while the solid line represents the
mean for all 10 runs. NSVGL(A) improves faster than DHP.

The Second State Trajectory (xzk)

=
o

o

&
en

The First lteration

— 2, for DHP (3=0)
— 2, Wit =05
—2, Wit =099

The Second State Trajectory (x2k)

=
==
T

=4
=
T

=
=

=
(e
T

&
ha

=3
T

243

The Third Iteration

—x2, for DHP ()=0)
— 2, with)05
—2, Wit =098

4 5 6 7 8 9 10
Time Steps (k) Time Steps (k)
. The Fifteenth Iteration The Last lteration
¥ 2, or DHP (3] § —12, for HP (1=0)
> 08F —12, uith =05 - ; —i2, With)05
g —2, uith 3099 £ i —, with)08
o 06f L @ Lk X
g) :
= F .E !
[} L @
E 04 E 1
& &
T g2t T I
8 8 ’ Tino Sk)
i
b ol 8 -
o P S e =
£ -
= F
'0-2 1 1 1 1 1 L 1 1 1] '02 1 1 1 L Il Il 1 1 Il J
o 1 2 3 4 5 6 T & 9 1 o 1 2 3 4 5 6 1T 8 98
Time Steps (k) Time Steps (k)

Figure 6. The state trajectories for the x2 state during iteration for NSVGL(4 = 0.99),
NSVGL(A = 0.5) and the DHP. The mean values from 10 independent runs are taken for
all methods. The shaded region represents the 10 runs, while the solid line represents the
mean for all 10 runs. NSVGL(A) improves faster than DHP.

Fig. 7 and Fig. 8 demonstrate the convergence process of the gradient of the cost
functions during iterations for NSVGL(A = 0.99). The convergence of the gradient of the
cost functions (g?(xk) and gf(xk)) to the optimal cost function indicates the effectiveness

of NSVGL(1).

2 T T T T T T

_]
(]
. g’tx1,)| |
A

u?_, giix1,)
o |
=]
U -
b=
a
= _
@
&
m -
I
m -
B
i |
Jub]
L=
l_ -

D 1 1 1 1 1 1

0 50 100 150 200 250 350 400

Iteratons

244

Figure 7. The average gradient trajectories of the value functions for the first system state
in NSVGL(1 = 0.99. The gradient of the cost functions (g?(xl) and gl.’l(xlk)) converge

to the optimal value function.

2 T T T T T T
= _
2
1=
c P _
T —g %2}
— A
g e] [ka}]
[
= _
L1k}
2
E |
&
1]
E 4
o
= _
=
=]
5]
ik} |
W
2
02 1

D 1 1 1 1 1 1

1] 50 100 150 200 250 350 400

Iteratons

Figure 8. The average gradient of the second cost function trajectories for the both critic
networks in the NSVGL(A = 0.99) approaches. The convergence of the gradient of the value

functions for the second system state (gl.o(ka) and gl.ﬂ(ka)) to the optimal cost function is

clearly shown starting from iteration number 200.

245

5.2. Case II: Mobile Robot Dynamic Model. A differential-drive mobile robot
contains two independently driven wheels mounted on the left and right of its chassis at
the same axis, and a castor wheel (free rotating wheel) mounted at the front for balancing
the mobile robot. An inertial Cartesian frame represents the position of the mobile robot,
while ¢ = [x,, y., 8] is the set of coordinates for the center of mass of the robot and the
robot orientation with respect to the Cartesian frame.

Two independent driving wheels are provided with the necessary torque for gener-
ating a left angular velocity (wy,) and a right angular velocity (wg), which in turn generate
a linear velocity (v1) and angular velocity (1,) for the mobile robot as follows:

Vi 0.57 -0.57| |wpg

oD

r r >

V2 % - % wr

where 7 is wheel radius and b is half of the robot width. The different forces for the mobile
robot mechanical motion are considered in the literature for the dynamic model but not the
kinematic model. The kinematic model is considered only for the motion.

As stated in [49], [66] - [68], the dynamic model of the mobile robot has 7 dimen-

sional configuration space subjected to r constraints as described by

M(q)i + C(q.¢)g + F(q) + G(q) + 74 = B(q)u + AT(q)¥, (92)

with A(g)g = 0 as a constrained kinematic wheel, where ¢ € R" is coordinate vector,
M(q) € R™" is a is a symmetric positive definite inertia matrix, C(g, §) € R™" is the
centripetal and Coriolis matrix, F(§) € R" is a surface friction force vector, G(g) € R”
is a gravity vector, 7; € R” is a bounded unknown disturbance, B(g) € R™" is a input

transformation matrix, u € R" is the input torque vector, A(g) € R"" is the full rank matrix

246

associated with constraints, and ¥ € R’ is the Lagrange multiplier (constraint forces) vector.
In this case study, There are two control inputs, which are a left torque (77) and a right
torque (7g).

Since the system does not change in vertical position and has a constant value for
potential energy, G(g) is set to zero. Using Lagrange multipliers to reduce the dynamic
model from 7 to m = n — r, (76) is pre-multiplied by spanning the linear independent null
space of the A(g)g matrix, (which is denoted as the Jacobian matrix of S.(g) € R™™). In

this case, a kinematic equation is given as follows:

q = Sc(q)v. (93)
where
Xe cos(0) —dsin(0)
Vi
g =1v.|> Sc(q@)=|sin(@) dcos(®) |- V=)
. V2
0 0 1

and d is a center of gravity. The final affine dynamic model is obtained from the kinematic

equation (77) as fallows: By taking the derivative of (77)

G = Sc(q)v + Se(q)v- (94)

Substitute (75), (77) and (78) into (76) to obtain

b= —M(q)" (V(q, Qv+ F@) + T-d) + M(g) 7. (95)

247

M(q) is an invertible matrix:

Ib
_ my + 220 0
M(q) = r bZ ’
0 mrd® + Iy + 210, — — 4m,,d*
r
0 —d -2
S.(q) = va(mr ny,) ’ (96)
dvo(mp — 2m,,) 0
TRl - 1| AR +wr) + fo(A(wr) + A(wr))
Td = P F(CI) = ; >
L bfy(wg —wr) + bfe(A(wr) — A(wL))
and
_ 0.57 -0.57| |7x
T=Br=| : F , (A(.) is a sigmoid function). 97)
2% 2™

All mobile robot dynamic mode parameters are given in Table 2. We assume a noise-free
environment and therefore ignore unknown disturbances impacting the left and the right
wheels by setting 7, = 0 and 7 = 0, respectively. In this case study, the first state (x1;) and
the second state (x2;) are the linear velocity (v{) and the angular velocity (v;), respectively,
whereas x; = [x1; x2¢]7 € R? is the state vector (m = 2). The u(xy) = [tg 12]7 € R?
is the control action (n = 2). The external instantaneous cost function is chosen as
Uk = x,fok + u” (xz)Ru(xy), where Q and R are 2-D identity matrices. The discount factor
(y) is 0.95. The number of hidden nodes is 24, which is equal to 42 and % for the one-step
critic network (G°(xi, @2))) and the n-step critic network (G*(x, @?))), respectively. The
number of hidden nodes for the actor network (A(xk, c?)a))) is also 30 (h,). The initial
learning rate parameters are set to £2 = £2 = 0.0001 for the critic networks and £, = 0.001
for actor network. The training for each iteration of either network will be terminated if

the error drops under 107 or if the number of iterations meets the stopping threshold for

248

the internal cycle (30 iterations for actor and critic networks). The initial weights for all
networks are randomly chosen within [-0.3, 0.3] range. The initial state is xo = [0.5, O.S]T.
We compare NSVGL(A) with 4 = 0.5 and 4 = 0.99 and DHP for ten independent runs.
Each run has 5000 iterations to train the ADP algorithms to control the system for 100 time
steps. Fig. 9 illustrates the average MSE for the two velocity states during iterations for ten

runs. NSVGL(A) is more efficient and faster to learn than DHP.

16
m— Total MSE for DHP (A=0}
1.4 | Total MSE with A=0.5
= Total MSE with A=0.99
1.2
025 107
1t 02 45

MSE

MSE

20 40 60 80 100 120 05 i i L L Lw L L
Iteratons 4965 4970 4975 4980 4985 . 4990 4995
Iteratons E

_D4 1 1 1 1 1 1 1 | |]
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Iteratons

Figure 9. The average mean-squared-error for two velocity states during iterations among
NSVGL(41 = 0.99), NSVGL(A = 0.5) and the DHP. The mean values from 10 independent
runs are taken for all methods. The shaded region represents the 10 runs, while the solid
line represents the mean for all 10 runs. NSVGL(A) illustrates faster learning than DHP.

Fig. 10 - Fig. 13 illustrate the state trajectory curves and the corresponding control
action inputs for 100 time steps. We can see the improvement for system responses during

increasing the iterations.

02

-

249

() for DHP {A=0)
_#[xt)wiﬂ"l A=0.5
= pi(x) with A=0.99

The First lteration

0.2
D R =
07 I I I I |__|__|__|__|__|
0 10 20 30 40 50 60 70 BO 90 100
Time Steps (k)
The Sixtieth Iteration
0Zr

ujmﬁ

= ji{x,) for DHP (=0}
e 1%,) With A=0.5
04 F —;.L[xl‘]wiﬂ"l A=0.99
'Dﬁ | | | | | | | | | |
0 10 20 30 40 5 60 70 80 90 100
Time Steps (k)
The Last lteration
01
DIT_
= pi{x,} for DHP (=0}
01 —— (it A=0.5
o2k i,) with 4=0.99
_ua | | | | | | | | | |
0 10 20 30 40 5 60 70 80 90 100
Time Steps (k)

Figure 10. The first control input (left torque) during iterations among NSVGL(A = 0.99),

NSVGL(41 =

all methods.

0.5), and the DHP. The mean values from 10 independent runs are taken for
The shaded region represents the 10 runs, while the solid line represents the

mean for all 10 runs.

250

The First lteration |=#(x) for DHP (4=0)
04 —ji[xt)wiﬂ'l A=0.5
L = pi{x) with A=0.99

0.2 I —
._I _ —
ol ?
o
I ——
"D_El__ | | | | | | | | | |
0 10 20 30 40 50 60 70 8O 90 100
Time Steps (k)
The Sixtieth Iteration
06
|
— i) for DHP (1=0
04| pix) (A=0)
l — () With A=0.5
< 02% — () with X=0.99

0 10 20 30 40 50 60 70 B8O 90 100
Time Steps (k)

The Last lteration
01r

——hlx) for DHP (A=0)
0.05 e p(x Jith A=0.5
— () with A=0.99

005 | 1 1 1 1 1 1 1 ! 1 I
10 20 30 40 a0 60 70 80 90 100

Time Steps (k)

=

Figure 11. The second control input (right torque) during iterations among NSVGL(A =
0.99), NSVGL(A = 0.5), and the DHP. The mean values from 10 independent runs are taken
for all methods. The shaded region represents the 10 runs, while the solid line represents
the mean for all 10 runs.

251

—x1, for DHP (3=0)| The First Iteration
—x1, with A=0.5

0.7

0.6 | [===x1, with 1=099 L

0.3 I 1 L ! ! L L L 1 I
0 10 20 30 40 50 60 70 B0 90 100

Time Steps (k)

The Sixtieth lteration |~ *' 'or BHP (4=0)
057 _“: with 3=0.5

—x1, with A=0.99

'q.'1k
[}

05
0O 10 20 30 40 5 60 70 8 90 100

Time Steps (k)

The Last lteration

0-6 B oy «1‘ 7777777777777777777777777
04f i, for DHP (}=0)
- : —x1_ with 3=05
- 3 Kk
0.2 . —x1, with A=0.99
A AR Toos 101 h;‘:lm ‘s‘oliu:ko]}& Tes 0% 104
‘l\D | ’, | | , | , , I I I |
0~ 10 20 30 40 50 60 70 80 a0 100

Time Steps (k)

Figure 12. Comparisons of state trajectory for the first state (linear velocity) during iterations
for NSVGL(4 = 0.99), NSVGL(4 = 0.5), and DHP approaches. The mean values from
10 independent runs are taken for all methods. The shaded region represents the 10 runs,
while the solid line represents the mean for all 10 runs. NSVGL(Q) has better performance
than DHP, whereas it is faster improved during iteration.

v2k

v2k

067

0.4

0.2

02

252

_ﬂk for DHP (A=0) The First lteration
_ﬂt with A=05

— 2, with 1=0.99 |

10 20 30 40 50 60 70 BO 90 100
Time Steps (k)
The Sixtieth lteration
=32, for DHP (1=0)
_x.‘-".t with A=0.5
2, with A=0.99
1 1 1 1 1 1 | | l |
10 20 30 40 50 60 70 BO 90 100
Time Steps (k)
The Last lteration
2, for DHP (1=0)
¥ - — - —x2, with =05
‘ . 32, With 1=0.99
1 1 1 1 1 1 | | l]
10 20 30 40 50 60 70 80 90 100
Time Steps (k)

Figure 13. Comparisons of the state trajectories for the second state (angular velocity) for
NSVGL(1 = 0.99), NSVGL(A = 0.5), and DHP. The mean values from 10 independent
runs are taken for all methods. The shaded region represents the 10 runs, while the solid
line represents the mean for all 10 runs. NSVGL(A) learns faster than DHP.

253

Fig. 14 and Fig. 15 demonstrate the convergence of the gradient of the cost
functions during iterations for NSVGL(A = 0.99). The convergence of the gradient of the
cost functions (g?(xk) and gl.ﬂ (xx)) to the optimal cost function indicates the effectiveness

of the iterative NSVGL(A).

1 T T T T T T T T T

0.9 r 1

0.8 —g"x1,)| 1

A
e] (21}
0.7 =

0.6]

0.5]

0.4 -

0.3 | 1

0.2 .

The First State Gradient Cost Function

0 I I 1 1 1 1 1 I I
o 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Iteratons

Figure 14. The average gradient of the first state of value function trajectories for both
critic networks in the NSVGL(A = 0.99). The gradient of the value functions (g?(xlk) and
gl.’l(xlk)) are converged to the optimal cost function.

0.8 1 —g"x2,)| -
____QAHEJ

0.6]

0.5 .

0.4 .

0.3 | .

0.2 r]

The Second State Gradient Cost Function

0.1 .

o 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Iteratons

Figure 15. The average gradient of the second state of the value function trajectories for
both critic networks for NSVGL(A = 0.99).

254

Algorithm 3 Pseudocode of Online NSVGL(Q)

Initializing MaxEpisode parameter
Cnty = 0 % counter for Iteration (Episode)
while (Cnt; < MaxEpisode) do
Init. x9, W2, W, wa, TO, TA, N2, @, 69, €2, £4 and NO
Cnty. = 0 % step counter from x(0) until finial state x(F)
while (Cnty < F)do
A1) < Al Wa)
Xie+1 — f (X, filxg)
oU;. oUy
k> 3>
axy " Bplxg)
80Gar) & GOagr100)
8 rkan) = G g W)

i(.eUg = x,{ Oxy +uT (x)Rp(xy)

PO = 00xep.)

Cnt?. = 0 % counter for one-step critic network loop

while (Cntd < N9) || (EQ(xg) > TO) do

(U Uy \[OA(xy)

Dux () = (axk) * ((’)/J(xk))(Oxy)

_ (Ofk O 9A(xy)

Dpx (i) = (ﬁxk) + (ﬁﬁ(xk))(Ixy,)

8%(x) = Dy x (xg) +yDpx (xx) P°

el (x) = 8%0rt) - 8%0xx)

EQ(xy) = 0.5(ed. (1))

G (xp)

B2 () = & (xp) + 6’2(%9(”)

)69 ()
PO = ﬁo(xkﬂ)
cntd =cntd +1
end while
P =28 (o) + (1= 080 Cxxr1)
Cm(’,l = 0 % counter for n-step critic network loop
while (Cntd < N2) || (E2(xx) > TA) do

. A(xg)
Dyx(xy) = (g%) * (ail(il;\))(ag%)
Drx (xk) = (%) * (63({];1‘))(%):())

gt (xx) = Dy x (xg) +¥DF x (xg)P
e (xx) = g oxx) — 8 (xpe)
E2(xx) = 0.5(ed (xx))?
aGﬂ(xk))
A
P = 28 (rpep1) + (1= D% 11)
Cntd =Cntd +1
end while

Cntg = 0 % counter for the actor network loop
while (Cnty < Ng) || (Eaq(xg) > Tg) do
PO = §0(Xk+‘19)U o
0 _ k k 0
40 = (530005) 3300)
P= Agﬂx%) +(1- /l)g’g?kﬂ)
a _ k k yl
e“("k)‘(a*(xk))* (amxk))P
ealxy) = Aef (xp) + (1= Vel (k)
Ea(xg)=0.5 (eu (-’fk))z
OA(xy)
Idg

ad =t +ed(edon)

Jea e

ba =a§a—€a(

Cntg =Cntg + 1

end while
Cnty = Cnty +1
end while

Cnty =Cnty +1
end while

255

Table 1. Parameters of the dynamic mobile robot

Symbol Description Value
mr Mass of the chassis 10kg
Ny, The mass of each wheel 2kg

r The wheel radius 0.05m

b Half of the robot width 0.1m

d The center of gravity offset form the rear axle 0.1m
I)l,’y The wheel moment of inertial lkg.m?
Ir The platform total moment of inertia Skg.m?
5 The viscous friction coefficient 0.001N.m.s
e The Coulomb friction coeflicient 0.001N.m.s

6. CONCLUSION

This paper presents a new ADP architecture, which merges between one- and n-step
critic networks. The gradient of TD(0) error is used to learn the one-step critic network,
while the gradient of TD(A) error is used to learn the n-step critic notwork. The actor
network is tuned by using these two TD errors via two filtering paths with a similar A value.
In addition to the gradient of TD(A1) providing the fast convergence learning to a locally-
extreme optimal trajectory without exploration, this design provides direct implementation
(online-mode) without the trajectory storage as in batch-mode implementation. Moreover,
our design is more memory efficient by overcoming the drawback of using eligibility-trace
storage for system states in online-mode implementation, which requires high computational
complexity. Convergence proofs are provided for both gradients of one- and n-step value
functions with respect to system states. We apply neural networks to implement our

approach in two simulation case studies to verify the theoretical analyses in this work.

256

BIBLIOGRAPHY

[1] D. P. Bertsekas, “Approximate policy iteration: A survey and some new methods,” J.
Control Theory Appl., vol. 9, no. 3, pp. 310 - 335, Aug. 2011.

[2] F. L. Lewis, and D. Vrabie, ‘“Reinforcement learning and adaptive dynamic program-
ming for feedback control,” IEEE Circuits Syst. Mag., vol. 9, no. 3, pp. 32 - 50, Aug.
2009.

[3] R.Padhi, N. Unnikrishnan, X. Wang, and S. N. Balakrishnan, “A single network adaptive
critic (SNAC) architecture for optimal control synthesis for a class of nonlinear systems,”
Neural Netw., vol. 19, no. 10, pp. 1648 - 1660, Dec. 2006.

[4] B. Luo, D. Liu, T. Huang, and D.Wang, Member, “Model-Free Optimal Tracking
Control via Critic-Only Q-Learning,” Neural Netw., vol. 27, no. 10, pp. 2134 - 2144,
Oct. 2016.

[5] J. Fu, H. He, and X. Zhou, “Adaptive learning and control for MIMO system based on
adaptive dynamic programming,” IEEE Trans. Neural Netw., vol. 22, no. 7, pp. 1133 -
1148, Jul. 2011.

[6] Z.Ni, H. He, and J. Wen, “Adaptive learning in tracking control based on the dual critic
network design,” IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 6, pp. 913 - 928,
Jun. 2013.

[7] J. Si, A. G. Barto, W. B. Powell, and D. Wunsch, Eds., Handbook of Learning and
Approximate Dynamic Programming. Hoboken, NJ, USA: Wiley, 2004.

[8] F. L. Lewis, and D. Liu, Eds., Reinforcement Learning and Approximate Dynamic
Programming for Feedback Control. Hoboken, NJ, USA: Wiley, 2013.

[9] Q. Wei, and D. Liu, “Adaptive dynamic programming for optimal tracking control of
unknown nonlinear systems with application to coal gasification,” IEEE Trans. Autom.
Sci. Eng., vol. 11, no. 4, pp. 1020 - 1036, Oct. 2014.

[10] X. Zhong, Z. Ni, and H. He, “A Theoretical Foundation of Goal Representation
Heuristic Dynamic Programming,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no.
12, pp. 2513 - 2525, Dec. 2016.

[11] R. Bellman, Dynamic Programming. Princeton, NJ, USA: Princeton Univ. Press,
1957.

[12] D. Prokhorov, and D. C. Wunsch, “Adaptive critic designs,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 8, no. 8, pp. 997 - 1007, Sep. 1997.

[13] P. J. Werbos, “Approximate dynamic programming for real-time control and neural
modeling,” Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches
(Chapter 13), Edited by D. A. White and D. A. Sofge, New York, NY: Van Nostrand
Reinhold, 1992.

sjamw3
Text Box
 BIBLIOGRAPHY

257

[14] F.-Y. Wang, H. Zhang, and D. Liu, “Adaptive dynamic programming: An introduction,”
IEEE Comput. Intell. Mag., vol. 4, no. 2, pp. 39 - 47, May 2009.

[15] F. L. Lewis, and D. Vrabie, “Reinforcement learning and adaptive dynamic program-
ming for feedback control,” IEEE Circuits Syst. Mag., vol. 9, no. 3, pp. 32 - 50, Sep.
2009.

[16] S. Ray, G. K. Venayagamoorthy, B. Chaudhuri, and R. Majumder, “Comparison of
adaptive critic-based and classical wide-area controllers for power systems,” IEEE
Trans. Syst., Man, Cybern. B, Cybern., vol. 38, no. 4, pp. 1002 - 1007, Aug. 2008.

[17] H.Zhang, Y. Luo, and D. Liu, “Neural-network-based near-optimal control for a class
of discrete-time affine nonlinear systems with control constraints,” IEEE Trans. Neural
Netw., vol. 20, no. 9, pp. 1490 - 1503, Sep. 2009.

[18] J. Si, and Y. Wang, “Online learning control by association and reinforcement,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 12, no. 2, pp. 264 - 276, Mar. 2001.

[19] Z. Ni, H. He, X. Zhong, and D. Prokhorov, “Model-Free dual heuristic dynamic
programming,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 8, pp. 1834 - 1839,
Aug. 2015.

[20] H. He, Z. Ni, and J. Fu, “A three-network architecture for on-line learning and opti-
mization based on adaptive dynamic programming,” Neurocomputing, vol. 78, no. 1,
pp- 3 - 13, Feb. 2012.

[21] X.Fanga, D.Zhenga, H. He, and Z. Nib, “Data-driven heuristic dynamic programming
with virtual reality,” IEEE Trans. Neural Netw. Learn. Syst., vol. 166, no. 6, pp. 244 -
255, Oct. 2015.

[22] Z. Ni, H. He, D. Zhao, X. Xu, and D. V. Prokhorov, “GrDHP: A general utility
function representation for dual heuristic dynamic programming,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 26, no. 3, pp 614 - 626, Mar. 2015.

[23] G. K. Venayagamoorthy, R. G. Harley, and D. C. Wunsch, “Dual heuristic program-
ming excitation neurocontrol for generators in a multimachine power system,” IEEE
Trans. Indus. Applying, vol. 39, no. 2, pp. 382 - 394, Mar. 2003.

[24] N. Zhang, and D. C. Wunsch, “A Comparison of Dual Heuristic Programming (DHP)
and neural network based stochastic optimization approach on collective robotic search
problem,” IEEE Trans. Neural Netw. Learn. Syst., vol. 1, pp. 248 - 253, Jul. 2003.

[25] C. Lian, and X. Xu, “Motion planning of wheeled mobile robots based on heuristic
dynamic programming,” IEEE Proceeding of the World Congress on Intelligent Control
and Automation Shenyang, pp 576 - 580, Jul. 2014.

[26] S. Al-Dabooni, and D. Wunsch, “Heuristic dynamic programming for mobile robot
path planning based on Dyna approach,” IEEE, International Joint Conference on
Neural Networks (IJCNN), pp. 3723 - 3730, Jul. 2016.

258

[27] B. Xu, C. Yang, and Z. Shi, “Reinforcement learning output feedback NN control
using deterministic learning technique,” IEEE Trans. Neural Netw. Learn. Syst., vol.
25, no. 3, pp. 635 - 641, Mar. 2014.

[28] Q. Wei, and D. Liu, “Data-driven neuro-optimal temperature control of waterAASgas
shift reaction using stable iterative adaptive dynamic programming,” IEEE Trans. Ind.
Electron., vol. 61, no. 11, pp. 6399 - 6408, Nov. 2014.

[29] D. Liu, D. Wang, F.-Y. Wang, H. Li, and X. Yang, ‘“Neural-networkbased online
HJB solution for optimal robust guaranteed cost control of continuous-time uncertain
nonlinear systems,” IEEE Trans. Cybern., vol. 44, no. 12, pp. 2834 - 2847, Dec. 2014.

[30] H. He, Self-Adaptive Systems for Machine Intelligence. New York, NY, USA: Wiley,
2011.

[31] D. Liu, and Q. Wei, “Policy iteration adaptive dynamic programming algorithm for
discrete-time nonlinear systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no.
3, pp. 621 - 634, Mar. 2014.

[32] Y. Sokolov, R. Kozma, L. D. Werbos, and P. J. Werbos, “Complete stability analysis
of a heuristic approximate dynamic programming control design,” Automatica, vol. 59,
pp- 9 - 18, Sep. 2015.

[33] F. Liu, J. Sun, J. Si, W. Guo, and S. Mei, “A boundedness result for the direct heuristic
dynamic programming,” Neural Networks, vol. 32, pp. 229-235, Aug. 2012.

[34] Y. Tang, H. He, Z. Ni, X. Zhong, D. Zhao, and X. Xu, “Fuzzy-Based Goal Represen-
tation Adaptive Dynamic Programming,” IEEE Trans. on Fuzzy Sys., vol. 24, no. 5, pp.
1156 - 1176, Oct. 2016.

[35] A. Al-Tamimi, F. L. Lewis, and M. Abu-Khalaf, “Discrete-time nonlinear hjb solution
using approximate dynamic programming: convergence proof,” IEEE Trans. on Sys.,
Man, and Cyb., Part B, vol. 38, no. 4, pp. 943 - 949, Aug. 2008.

[36] D. Liu, and Q. Wei, “Finite-approximation-error-based optimal control approach for
discrete-time nonlinear systems,” IEEE Trans. Cybern., vol. 43, no. 2, pp. 779 - 789,
Apr. 2013.

[37] D. Liu, and Q. Wei, “Policy iteration adaptive dynamic programming algorithm for
discrete-time nonlinear systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no.
3, pp. 621 - 634, Mar. 2014.

[38] H.Zhang, Y. Luo, and D. Liu, “Neural-network-based near-optimal control for a class
of discrete-time affine nonlinear systems with control constraints,” IEEE Trans. Neural
Netw., vol. 20, no. 9, pp. 1490 - 1503, Sep. 2009.

[39] X.Zhong,Z.Ni, and H. He, “A theoretical foundation of goal representation heuristic
dynamic programming,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 12, pp.
2513 - 2525, Dec. 2016.

259

[40] Y. Yang, D. Wunsch, and Y. Yin, “Hamiltonian-driven adaptive dynamic programming
for continuous nonlinear dynamical systems,” IEEE Trans. Neural Netw. Learn. Syst.
vol. PP, no. 12, pp. 1 - 12, Feb. 2017 (to be published).

[41] D.Liu, D. Wang, D. Zhao, Q. Wei, and N. Jin, “Neural-network-based optimal control
for a class of unknown discrete-time nonlinear systems using globalized dual heuristic
programming,” IEEE Trans. Autom. Sci. Eng., vol. 9, no. 3, pp. 628 - 634, Jul. 2012.

[42] D. Liu, and D. Wang, “Optimal control of unknown nonlinear discretetime systems
using the iterative globalized dual heuristic programming algorithm,” in Reinforcement

Learning and Approximate Dynamic Programming for Feedback Control. New York,
NY, USA: Wiley, pp. 52 - 74, Jan. 2013,

[43] R. S. Sutton, “Learning to predict by the methods of temporal differences,” Machine
Learning, vol. 3, no. 1, pp. 9 - 44, Aug. 1988.

[44] H. Seijen, A. R. Mahmood, P. M. Pilarski, M. C. Machado, and R. S. Sutton, “True On-
line Temporal-Difference Learning,” Journal of Machine Learning Research (JMLR),
vol. 145, no. 17, pp. 1 - 40, Jan. 2016.

[45] R.S. Sutton, A. R. Mahmood, and M. White, “An Emphatic Approach to the Problem
of Off-policy Temporal-Difference Learning,” Journal of Machine Learning Research
(JMLR), vol. 73, no. 17 pp. 1 - 29, Jan. 2016.

[46] H. Seijen, and R. S. Sutton, “True Online TD(Q),” Proceedings of the 31 st Interna-
tional Conference on Machine Learning, pp. 692 - 700, Jan. 2014.

[47] M. Fairbank, and E. Alonso, “Value-Gradient Learning,” IEEE, International Joint
Conference on Neural Networks (IJCNN), pp. 1 - 8, Jun. 2012.

[48] F. L. Lewis, and D. Liu, Reinforcement Learning and Approximate Dynamic Pro-
gramming for Feedback Control, Chapter 7, John Wiley and Sons, Jan. 2013.

[49] S. Al-Dabooni, and D. Wunsch, “Mobile Robot Control Based on Hybrid Neuro-
Fuzzy Value Gradient Reinforcement Learning,” IEEE, International Joint Conference
on Neural Networks (IJCNN), pp. 2820 - 2827, May 2017.

[50] F. L. Lewis, D. Vrabie, and V. L. Syrmos, Optimal Control. NewYork, NY, USA:
Wiley, 2012.

[51] M. Fairbank, E. Alonso, and D. Prokhorov, “An Equivalence Between Adaptive Dy-

namic Programming With a Critic and Backpropagation Through Time,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 24, no. 12, pp. 2088 - 2100, Dec. 2013.

[52] R. S. Sutton, and A. Barto, Reinforcement Learning: An Introduction, Cambridge,
U.K.: Cambridge Univ. Press, 1998.

[53] S. P. Singh, and R. S. Sutton, “Reinforcement learning with replacing eligibility
traces,” Machine Learning, vol. 22, no. 1, pp. 123 - 158, Mar. 1996.

260

[54] K.Doya, “Reinforcement learning in continuous time and space,” Neural Computation,
vol. 12, no. 1, pp. 219 - 245, Jan. 2000.

[55] S. Al-Dabooni, and D. Wunsch, “Online Model-Free N-Step HDP with Stability
Analysis,” Under Preparing.

[56] S. Al-Dabooni, and D. Wunsch, “The Boundedness Conditions for Model-Free
HDP(A),” Under reviewing for IEEE Trans. Neural Netw. Learn. Syst.

[57] Z.Ni, H. He, J. Wen, and X. Xu, “Goal representation heuristic dynamic programming
on maze navigation,” IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 12, pp. 2038
- 2050, Dec. 2013.

[58] P. J. Werbos, “Backpropagation through time: What it does and how to do it,” Pro-
ceedings of the IEEE, vol. 78, no. 10, pp. 1550 - 1560, Oct. 1990.

[59] G. Zhang, M. Y. Hu, B. E. Patuwo, and D. C. Indro, “Artificial neural networks in
bankruptcy prediction: General framework and cross-validation analysis,” European
Journal of Operational Research, vol. 116, no. 1, pp. 16 - 32, Jul. 1999.

[60] Y. Xiao, M. Wasei, P. Hu, P. Wieringa, and F. Dexter, “Dynamic Management of
Perioperative Processes: A Modeling and Visualization Paradigm,” International Fed-
eration of Automatic Control (IFAC), vol. 39, no. 3, pp. 647 - 652, Jan. 2006.

[61] K. L. Keller, and R. Staelin, “Effects of Quality and Quantity of Information on
Decision Effectiveness,” Journal of Consumer Research, vol. 14, no. 2, pp. 200 - 213,
Sep. 1987.

[62] X. Zhong, Z. Ni, and H. He, “A Theoretical Foundation of Goal Representation
Heuristic Dynamic Programming,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no.
12, pp. 2513 - 2525, Dec. 2016.

[63] C. Chen, D. Dong, H. Li, J. Chu, and T. J. Tarn, “Fidelity-Based Probabilistic Q-
Learning for Control of Quantum Systems,” IEEE Trans. Neural Netw. Learn. Syst.,
vol.5, no. 10, pp. 920 - 933, May 2014.

[64] R.Ilin, R. Kozma, and P. Werbos, “Beyond feedforward models trained by backprop-
agation: A practical training tool for a more efficient universal approximator,” /IEEE
Trans. Neural Netw. Learn. Syst., vol. 19, no. 6, pp. 929 - 937, Jan. 2008.

[65] Z. Ni, H. He, J. Wen, and X. Xu, “Goal Representation Heuristic Dynamic Program-
ming on Maze Navigation,” IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 12, pp.
2038 - 2050, Dec. 2013.

[66] R. Fierro, and F. L. Lewis, “Control of a Nonholonomic Mobile Robot Using Neural
Networks,” IEEE Trans. Neural Networks, vol. 9, no. 4, pp. 589 - 600, July 1998.

[67] W. S. Lin, L. H. Chang, and P. C. Yang, “Adaptive critic anti-slip control of wheeled
autonomous robot,” IET Control Theory and Applications, vol. 1, no. 1, pp. 51 - 57,
Jan. 2007.

261

[68] T. Dierks, and S. Jagannathan, ‘“Neural Network Output Feedback Control of Robot
Formations,” IEEE Trans. on Sys, Man, and Cyb., vol. 40, no.2, pp. 383 - 399, Apr.
2010.

262

VII. CONVERGENCE ANALYSIS PROOFS FOR RECURRENT NEURO-FUZZY
VALUE-GRADIENT LEARNING WITH AND WITHOUT ACTOR

S. Al-Dabooni and Donald C. Wunsch
Department of Electrical & Computer Engineering
Missouri University of Science and Technology
Rolla, Missouri 65409—-0050
Tel: 573-202-0445; 573-341-4521 Email: sjamw3 @mst.edu; dwunsch@mst.edu

ABSTRACT

A gradient of the n-step temporal-difference (TD(A)) is utilized as a learning algorithm
to train an advanced Adaptive Dynamic programming (ADP) algorithm, which is called
value-gradient learning (VGL(A1)). The VGL(A) architecture with a single adaptive actor
network (SNVGL(A)) is derived and implemented to be compared with the regular VGL(A).
Moreover, a recurrent hybrid neuro-fuzzy (RNF) and a first-order Takagi-Sugeno RNF
(TSRNF) are two structures that are presented to build the critic and actor networks for
VGL(A) and the critic network for SNVGL(1). The fuzzy rules and the membership
functions’ (MFs) adjusted parameters are trained by a backpropagation gradient descent
technique. Furthermore, convergence theoretical analysis proofs are demonstrated based on
the iterative ADP strategy. A mobile robot simulation case study is presented with various
amount of uncertainties and frictions to verify the performance and the theoretical analysis.
Keywords: Adaptive dynamic programming (ADP), recurrent neuro-fuzzy, Takagi-Sugeno
neuro-fuzzy, eligibility traces, convergence analysis, mobile robot, single network adaptive

critic.

263

1. INTRODUCTION

Adaptive dynamic programming (ADP) is a useful mechanism tool for solving the
Hamilton-Jacobi-Bellman (HJB) equation instead of the Riccati equation [1] - [11].

Heuristic dynamic programming (HDP), dual heuristic programming (DHP) and
globalized DHP (GDHP) are three fundamental categories for ADP [11] - [14]. Three
approximation function networks are used to perform actor, critic and model networks that
provide decision making, evaluation and prediction, respectively. Since a model network
that predicts the future system state, is included, these ADP categories are model based ADP
[11] - [17]. If the action-dependent (AD) prefix is used (i.e., ADHDP for HDP and ADDHP
for DHP), the critic network has the state and the action inputs and model-free variants. In
[18] - [22], model-free ADP designs were presented for online learning. Asreviewedin [11],
the ADP technique is used to train an actor network to give optimal actions by minimizing
a value function that is produced from a critic network. Both networks are approximated by
using a multilayer perceptron. Many applications have used ADP. In [23], DHP controlled a
turbo-generator more efficient than HDP. Collective robotic search problems can be solved
with improved performance by using DHP as in [24]. Lian and Xu [25] applied HDP to
allow a mobile robot to escape from sharp corners. Maze navigation has been proposed as
an ADP benchmark [26]-[31], but most of mazes have been 2-D. Al-Dabooni and Wunsch
[32] use ADHDP(A) in the 3-D maze navigation benchmark. Also, the previous authers
[33] applied model-free ADHDP in the Dyna algorithm to obtain theoptimal path by using
multi-robot navigation in an unknown environment. Other theoretical and practical works
in ADP are presented in [34] - [38].

The stability of ADP in general cases is an open problem [39]. The stability of
the one-step model-free ADHDP learning approach is introduced by Liu ef al. [40] and
by Werbos et al. [39] with critic/actor neural networks and by He ef al. [41], [42] with

critic/reference neural networks and a fuzzy logic controller. The stability for an n-step

264

model-free ADHDP is presented in [32], [29]. Al-Tamimi ef al. in [43] demonstrates a
convergence analysis of value iteration based on HDP for general discrete-time nonlinear
systems. Many other publications regarding the theoretical analysis and proofs for ADP
are shown in [44] - [47]. The GDHP convergence analysis proof and its comparison with
the HDP and the DHP approaches is presented by Liu [48], [49]. Sutton et al. in [50] -
[54] show the efficient performance of temporal difference (TD) learning with an eligibility
trace long-predation parameter denoted by A.

Inspired by [50], Fairbank and Alonso [55] - [57] introduced a new ADP algorithm
to extend DHP by including A. They called it value-gradient learning (VGL(A1)). VGL(A)
was used in [58] to track a reference trajectory under uncertainties by computing the optimal
left and right torques for a nonholonomic mobile robot. Al-Dabooni and Wunsch in [59]
use on-line learning of VGL(A) without requiring an eligibility-trace-work-space matrix.

Other papers exist in the literature that use hybrid neuro fuzzy (NF) systems for ADP.
D. Zhao et al. in [60] explains how to use an NF with monotonic membership functions in the
first (premise/ antecedent) layer with regular connected weights in the output (consequent)
layer. They use ADHDP with a traditional feed-forward neural network for the critic
network and NF with an actor network for controlling the two benchmarks: a two-link
robot arm and cart-pole balancing. The authors in [60] illustrate how the systems become
steady and robust with uncertainties. S. Mohagheghi et al. in [61] and [62] use ADHDP
to control on a multi-machine power system via a static compensator. The authors use
an adaptive neuro-fuzzy inference system (ANFIS) in the actor network with a zero-order
Takagi-Sugeno fuzzy. Y. Zhu et al. in [63] also uses ADHDP mixed with an NF network for
control on a rotational inverted pendulum. Y. Tang et al. in [41] presents a new structure that
uses ADHDP and adds another network. The new structure is called a goal representation
HDP (GrHDP); therefore, GrHDP has three networks: actor, critic and goal networks. Both
critic and actor are represented by using a regular feedforward neural network, while the

actor network is built by using monotonic membership functions in the premise layer with

265

regular connected weights in the consequent layer. They test their structure with a cart-
pole plant, a ball-and-beam system and a multi-machine power system control. Model-free
GrHDP mixing with NF strucure is also presented in [64] by Y. Tang et al. It uses a damping
controller for superconducting magnetic energy storage. H. Zhang et al. in [65] shows how
a consensus problem of multiagent differential games is solved by using this paper and
an NF for the critic network. The authors implement the actor network and use a policy
iteration algorithm to find the optimal action sequence that provides uniformly ultimately
bounded proofs. The NF structure in a critic network without an actor network is also
shown by J. Zhang et al. in [66] by solving HJB. Using ANFIS with eligibility traces of
ADP is introduced in [67] by X. Bai et al. to solve a multiple ramps metering problem. The
authors use a backward view for eligibility traces with an ADHDP scheme. ANFIS is also
used with ADHDP for both critic and actor networks, which is presented by X. Luo et al.
in [68] to evaluate the quality of a wen service by providing ultimately uniformly bounded
stability proofs.

This paper uses the VGL(A) approach with various NF structures to summarize the

following fundamental contributions of this paper

1. A theoretical foundation analysis for an n-step adaptive actor-critic approach of
VGL(Q) architecture with NF (NF-VGL(1)) is presented that illustrates how the agent

receives better information from the control action than traditional DHP.

2. A single adaptive n-step critic approach of VGL(A1) (SNVGL(A)) is derived to create a
pioneer architecture of SNVGL(A). SNVGL(A) uses NF structures (NF-SNVGL(Q))

to compare with the first contribution.

3. One of the NF structure that uses in VGL(A) and SNVGL() is similar to [60], [63] -
[64] but with a different membership function (MF) and with a feedback loop in one

of the premise parameters as a recurrent network. The other NF structure is similar

266

to ANFIS as in [61], [62], [67], [68] but with a feedback loop in one of the premise
parameters to store history information. It uses backpropagation gradient descent

technique to train the fuzzy rules and MFs as well.

4. A theoretical convergence analysis proofs are provided for the VGL(A1) and SNVGL(1)
architectures by using an iterative ADP algorithm. This paper demonstrates that

gradients are monotonically nondecreasing and converge to optimal values.

5. These advantages of VGL(A4) and SNVGL(1) with and without recurrent feedback
parameters of NF structures are verified by simulation with a high-nonlinear dynamic

model case study with various uncertainties.

The schematic architectures for VGL(1) and SNVGL(A) are presented in Section
2. The NF structures are shown in Section 3. Section 4 provides a convergence stability
analysis for the VGL(1) and SNVGL(1) designs. Harmonizing an iterative algorithm for
VGL(A) and SNVGL(A) with NF structures is presented in Section 5. The simulation results

and the conclusion are presented in Section 6 and Section 7, respectively.

2. THE ACTOR-CRITIC AND SINGLE-CRITIC OF VGL(1) ARCHITECTURE
DESIGNS

ADP allows agents to select an action to minimize their long-term cost:
I = YU (x k), u(x()) (1)
k=i

where (.) is the expectation symbol, J(i) is a value function (cost-to-go value or long-
term cost) for a state vector (x € RP) at initial time i/, vy is a constant discount factor, and
U (x(k), u(x(k))) is an instantaneous utility cost function at time step k for x after applying
an action vector u € R9. NF-VGL(A) uses TD(A) learning that helps to fill the gaps between

predicted events and training parameters. [51] - [54] illustrate that TD(A) learning has

267

fundamental advantages in reinforcement learning. In this paper, a gradient of TD(A) is

used with ADP to solve the recursive form of the optimal Bellman equation [10], [69]:

T (k) = En(m) {U(x(k),u(x(k))) F oy (k + 1)),)
ulx(k

where J* denotes the optimal value function, and the instantaneous cost, U (.), is bounded.
For simplicity, we denote J*(k) = J*(x(k)), and J*(k + 1) = J*(x(k + 1)). x(k+1)isa

next state that is provided from discrete-time nonlinear system as follows:

x(k+ 1) = f(x(k), u(x(h)). (3)

As in [70], the Bellman equations for one-step (R(V(k)), two-step (R)(k)) until n-step
(R™(k)) are

J(k) =RD(k) = U(x(k), u(x(k))) +yJ(k +1),
=R (k) = U x(k), u(x(0))) + yU (x(k + D.u(x(k + 1))
+v2J(k +2),
4)
=RO(K) = U (x(k) u(x(h))+ yU (x(k + Dtk + 1))

+ ... +y"_1U(x(k +n—1),u(x(k+n- 1)))+

n

y'J(k + n) = Z

Jj=0

ij(x(k + j)u(x(k +j)))

where RO(k) = R® (x(k)), which is denoted as an actual return for the value function
from state time k to i. The average of an n-step-return is a technique for accelerating the

optimization [32], [52], [70]. The A-return, R*(k) = R*(x(k)), is another name for the

268

average of the n-step-return [70], which is defined in general as
RYk)=(1-2) Z TR (k). (5)

This paper’s authors’ previous work [32] shows a stability proof for selecting A, which
should be 0 < A < 1 by using TD(A) learning (in contrast to previous literature, which are

included bounded from O to 1). By substituting (4) into (5), authors obtain:

RU k) = (1-2) i A"—l(ni [y U(x(k 1), u(x(k + 1)))] + "Ik + n))
n=1

=0

:(1_/1)((/1” ln_l yU(X(kH)au(x(k”))])Jri

=

A J(k + n)

(6)
Expanding and rearranging (6) yields:
R(k) = i Ay U (s +), u(x(k + m))+
=
(1= Ay J(k+n+ 1)] :
:U(x(k), u(x(k))) + Ay U(x(k + 1), u(x(k + l)))+
(7)

/ly[U(x(k +2),u(x(k + 2))) + ﬂ'y[U(x(k +3),
u(x(k + 3))) +...+ /ly[U(x(oo), u(x(oo)))+
(1= D)yJ(eo)] +...+ (1= A)yJ(k + 4)] L (1=

yJk+3)|+(0-D)yJk+2)| +(1=AD)yJ(k+1),

269

where U (x(OO), u(x(OO))) = R*(c0), which is the instantaneous cost at the infinite horizon

terminal state. The final target-value according to (7) is

RMk) = U x(k), u(x(k))) + ARk + 1) + (1 = Ay (k + 1), ®)

(derived in [32]). A stochastic exploration should be supplemented with any value function
that approaches as shown by Fairbank and Alonso [55]. But in the VGL method, a gradient
of a value function handles this requirement via a greedy policy, with few trajectories,
instead of learning in all of the state space [55]. The FN-VGL(A) uses the gradient of the
n-step value function. The n-step value function, which is the output vector from critic
network G(x(k),) is a function approximator with parameter vector &.. G(x(k), d).
The function network provides the estimated gradient of the n-step value approximator
function with respect to the system state vector (0J(k)/dx(k)). There are two different
ways to implement [58]: The scalar critic method makes the output critic network equal
to dJ(k)/dx(k). The vector critic method takes a direct vector output from G(x(k), &.)
to provide the n-step gradient value function. This paper uses the vector critic method
because it provides a smooth and stable vector output [55], [57], [56], specifically. The
VGL(A) with two hybrid recurrent fuzzy neural network structures for both the critic and
actor networks. Furthermore, this work eliminates the actor network from NF-SNVGL(A)
structure by calculating the optimal control and co-state equations.

2.1. Adaptive Actor-Critic Approach. Fig. 1 shows a schematic diagram for the
NF-VGL(A) structure.

2.1.1. The n-step Critic Network. The critic network in the FN-VGL(A) scheme
estimates the partial derivatives of the value function with respect to the system’s state

vector. In order to learn a critic network, which is represented as G(x(k),), the left-hand

270

Neuro-Fuzzy
x(k+1) | Critic Network | (k +1)
" | (k1)
a \ S u-stepfpstate
Neuro-Fuzzy Actor ﬁ(x(k)) N\, —m Equation
l/, Network \\
i — o) #iet)
?ystem Neuro—Fuzzy‘
(k) itx(k)) | = f(k Critic Network
) 0 W E 0f(®)
"L . = 0i(x(k)
Parameters Tuning Paths: u (x(k),ﬂ(x(k)))
Neuro-Fuzzy Critic Network Path: - «e-eseeessmemeeneces > W
Neuro-Fuzzy Actor Network Path: - r-seeseseememensnees > Ay
Backpropagation Calculation Errors:
Neuro-Fuzzy Critic Network Error (Gradient of TD (1)-Error): e,(k) = g*(k) - §(k); g*(k) = (%) +y (%) K;
k k
B6(x(k)e)
1, = e
o (0am) rep T, dAG(R)G
Neuro-Fuzzy Actor Network Error: e, (k) =) +y [7 (x(k))] 1 A0, =4, Py e, (k)
o vy (00 L PEOA60) | ool WE0E0)
Note that k= A¢"(k+ 1) + (1 -1)g(k + 1), (DX)k a—— +[rm Ry , and

(y) =[3f_(k) NECRICCEN
Dx/y ox(k) OR(x(k)) dx(k)

Figure 1. A schematic diagram for the adaptation of actor-critic VGL(A). The weights for
the critic network (G(x(k), @c)) are updated according to the gradient of the TD(A) error
(black dashed line). The actor network (A (x(k), dq)) is tuned by backpropagating the actor
error (e,) through G(x(k), &) network (red dashed line).

271

side of (8) is derived with respect to the state vector for a target value of g*(k):

ORY(k) _ 0

7 _
) - P am

U(x(k), ,a(x(k))) AR+ D+ y(1= DIk + 1)}, ©9)

where ,a(x(k)) is a control action vector, which is provided from the approximating actor
network A(x(k), c?)a) with parameter vector @, (details about the actor network will be
presented in the next subsection). Applying the chain rules to (9) yields an n-step costate

equation, which is

U (xR, AxR)) [OA(x(K) @) 70U ((K) A(x(0))
$ ("):(5x() [53(0)] G)
Of (< a(x(k)) of (x(alx(k))
+yl4 + ~
(l 5x(k) op(x(k)) w0
aA(x(k), a)) r P f(x(k),,a(x(k)))
T(k)] g(k+1)+(1—/l)[0 +
P f(x(k), ,&(x(k))) aA(x(k), a)) r
GAl0) (k)] sl 1))'

As shown in Fig. 1, the n-step critic error (e.(k)) should be minimized during training by

following

ec(k) =g (k) — g(k), (11)

where g(k) is an estimated output vector that is provided from the G(x(k), @?) network.
2.1.2. The Actor Network. The actor is used to make a system learn to select an
optimal decision. The adaptive actor-critic approach has two separated networks (actor and

critic) as shown in Fig. 1. Asin [11], [55], [58], [59], the actor network function learns via
0J (k)
HA((0)

control equation. In this work, the actor network function learns via minimizing

minimizing to zero. Because using J value, it was called as a one-step optimal
AR (k)

0fi(x(k))

272

to zero (an n-step optimal control equation). Therefore the actor error e, is defined by

" :au(x(k), alx)) y[af(x(k), alx(k))]TK N
’ afi(x(k)) df(x(k)))
where
k=Agk+ 1)+ (1=)g(k +1). (13)

2.2. Single Adaptive n-step Critic Approach. Fig. 2 shows a schematic diagram
for a neuro-fuzzy single n-step adaptive critic network VGL(A1) (NF-SNVGL(A)) structure.
Because of the elimination of the actor network, the NF-SNVGL(A) has a low computational
load that comes from the simple structure.

2.2.1. The n-step Optimal Control Equation. The necessary condition for the

n-step optimal control equation is given by

o'y V(xR Alx(0) Y[W (x(")’ﬁ(x(k)))rk o (14)

of(x(k) — p(x(k) df(x(k))

2.2.2. The n-step Critic Network. The n-step costate equation is similar to (10)

with further arrangement, which becomes

o oU (x(k), 4(x(k) y[af(x(k), alx) TK)

ox(k) ox(k)

(15)

[aA(x(k), w)]T

ox(k)

oU(x(k). A(x(K))) af(x(h). Alxh))7
+y Kl
oa(x(k)) | 9p(x(k))])

where « is defined in (13). By using (14) in (15), the n-step costate equation is ¢

(16)

g'(k) =

aU(x(k), ,a(x(k))) P f(x(k), ﬁ(x(k))) T
ox(k) 7[Ox(k)] ")'

¢During training, the n-step critic network is tuned by minimizing e.(k) = g'(k) — (k) (see Fig. 2).

273

q(k+1
dU(x(k),ﬁ(x(k))) 0 (k) et i4) Neuro-Fuzzy

) | PO | ey Ciite Netwark [40+ 1)
: TS\ i

\ / £ o
" WS | [i
i(x(i) | nestep Optimal Control | (k) q
Fquation \l
1 e(k) A
7 y g+ 1)
\
?ystem Neuro-Fuzzy
1(k) — (k) filxk))) 2 fR) (k4 1) Critic Network OU(x(k).ﬁ(x(k)))
dx(k)
Parameters Tuning Paths:
Neuro-Fuzzy Critic Network Path; «r=ser-semsmemseeeeemes »
Backpropagation Calculation Error for only critic network:
) , s are o BEORK) | o
Neuro-Fuzzy Critic Network Error (Gradient of TD (A)-Error): e, (k) = g“(k) - §(k); g" (k) = TR [F(k)] k

1, = L) v = g4+ 0~ D)

o

Figure 2. A schematic diagram for the adaptation of a single n-step critic network of
VGL(A)(SNVGL(Q)). The weights for the critic network (G(x(k), @c)) are updated accord-
ing to the gradient of the TD(A) error (black dashed line). The general n-step optimal control
equation (14) (or (73) for Affine systems with the quadratic form of a utility function) is
used to generate an optimal control signal.

274

3. NF STRUCTURES FOR VGL(1) AND SNVGL(1) APPROACHES

3.1. Recurrent Neuro-Fuzzy (RNF) Structure. For simplicity, Fig. (3) illustrates
a structure for RNF for three inputs (n = 3), two outputs (p = 2) and two MFs (m = 2)
for each input. This structure is similar to [71] but with a “grid” input space partitioning,
which is used in many existing NF in ADP [61], [41], [64]. The grid-type partition divides
the input space according to the number of MFs for each input variable (see [72]). This

structure has three layers:

1. The first layer (premise layer) has premise parameters (Myx,, O nxm» @nxm), Where the
bold symbol is the matrix with n Xm dimension. This layer has Gaussian membership

functions (GMFs), which is denoted as Glf , represented by

xi(k) + O] (x;(k = 1))87 (k) = m/ (k)2
-) (17)

Ol.f(x,-(k)) =e O-if(k))
where i = 1,2,...,nand f = 1,2,...,m, x; is the i input variable, m;.f € U; is the
mean parameter that belong to the i input universe of discourse with the MF number
f (U; cR"), and o'l.f > 0 are the variance parameters at f MF for input i. As shown
in Fig. (3), the 0;.’(is a recurrent parameter for f MF in i input. Hlf works as memory in
the NF structure to store the past information and merge with the current information.

2. The second layer (rule layer) has m" rule nodes (grid-type partitioning), which applies
the AND operation in each rule node to yield a fired strength of a rule as follows:
n 4
me() = [] (0 (xith))), (18)

i=1

where ¢ = 1,2,...,m", and af is illustrated in Table 1.

275

Table 1. The values for af. af depend on i and ¢. The rows for the last column (i = n)
increase by one with each ¢ and replicate each m. The rows for the column withi = n — 1
increase by one each with each £ = m and republicate each m? and so on.

af

i

i 1\2\...\11—1\11
1 1 1 1 1
2 1 1 2
m-—1 1 1 1 m-—1
m 1 1 1 m
m+1 1 1 2 1
m+?2 1 1 2 2
l|: : :
2m -1 1 1 2 m-—1
2m 1 1 2 m
m" —m m m m 1
m'—-m+1|m m m 2
m"—1 m m m m-—1
m" m m m m

3. The third layer (consequent/output layer) has consequent parameters (@ pxn). This

layer proceeds the defuzzification operation by a linear combination of the consequent

parameters with firing strengths to yield the output fuzzy value as follows:

3

yj(k) =

where j = 1,2,...,p.

S
I

n

(wjt’ﬂ'f(k)),

(19)

Equations (17) - (19) illustrate the feedforward propagation of the signal, while the

backpropagation gradient algorithm with the chain rule is used as backward propagation

of the signal to train both the consequent and premise parameters. In both NF-VGL(A1) or

276

NF-SNVGL(A) structures, the partial derivatives of the outputs (y;, where j = 1,2,...,p),
with respect to the premise and consequent parameters, are required as well as the partial

derivatives of the outputs, with respect to the inputs (x;, where i = 1,2, ..., 1) as follows:

1. Tuning the consequent parameters (w psx,n):

9y;(k) _
dwje(k)

TTe, (20)

where j = 1,2,...,pand € = 1,2,...,m" (m" is the total number of the fuzzy rule).

2. Tuning The premise parameters (Myx;, O nxms Onxim):

090 _ (930 _oma) 90/ (x(k)
o/ (k) S\ k) 90/ (xi(k)) om! (k)
)4 n ¢
:Z(‘”ﬂ(")- n (ofr(x,-(k))).ZOif (x:(k)) 21
=1 r=1r#i

J
(x,-(k) + 07 (xik = 1))67 (k) - ml.f(k)))
(o (k))2 ’

where y(k) = 5.’:1 (yj(k)).

oy(k) < [dyi(k) aMlp(k)| <&
_ = (k). 21T, (k
80'l.f(k) ; Ol (k) ao'lf(k) ; (wjf() (k)
(xi(k) + 0/ (xi(k - 1))/ (k) = m/ (k))z) (22
| (O'if(k))3 |
where
Ol (k) OTL(k) 90! (u(K) {4 [f
_ - 07" (xi(k))).207 (xi(k)
dal (k) 80! (xi(k)) dc (k) :ll_L(()) i) (23)

—2T1,(k).

277

dy;(k) o1, (k)
Ol (k) 96/ (k)

b

ay(k) <
26! (k) _Z

Jj=1

=1
(xi(k) + 0! (xi(k =)6 (k) - m! (k)))
| (O'if(k))z |

3. The i, j element for the Jacobean matrix of the partial derivatives of the j output with

wje(k).211,0] (xi(k - 1)) (24)

respect to the i input is derived by
oy;(k) _3y,(k) _omak) 00/ (k) [@
dxi(k) Oe(k) 9o7 (x(k)) dx! (k) a
(xi(k) + 07 (xik = 1))67 (k) - m;"(k)))
(gl.f (k))2 '

(25)
210(k)

3.2. Takagi-Sugeno Recurrent Neuro-Fuzzy (TSRNF) Structure. Fig. (4) il-
lustrates a structure for TSRNF for three inputs (n = 3), two outputs (p = 2) and two MFs
(m = 2) for each input with a grid-type partition for the input space. This structure is similar
to [72] - [76], with except for the feedback premise recurrent parameters in the first layer,

where this structure has five layers:

1. The first layer (premise layer) has premise’s parameters, which is similar to the first

layer of RFN structure as follows:

xi(k) + O/ (xi(k = 1))6/ (k) —m/ (k))z

ol (k) (26)

Oif (xi(k)) = e

278

0{0;03 = m,

010303 = m3

010202 = =,

;05 = mg

070303 = m;

<

010303 = mg

#rules = mn =23

Figure 3. A structure for RNF that uses both actor and critic networks for VGL(A1) and
NSVGL(A1). RNF consists of three layers. The first layer is the premise layer, which has
premise parameters (M, O uxms @uxm)- The second layer is the rule layer, which has m"
rule nodes. The third layer is the consequent/output layer, which has consequent parameters
(Wpxmn). The premise and consequent parameters are trained by using a backpropagation
gradient algorithm. To simplify the appearance of this diagram, the number of inputs, MFs
and outputs are represented by n = 3, m = 2 and p = 2, respectively.

279

2. The second layer (rule layer) has m" rule nodes, which is also similar to the second

layer of the RFN structure as follows:

n

£
k) =] (oj’f (xl-(k))). @7
i=1
3. The third layer (normalization layer) is used to calculate the ratio of the ith rule node

output (ith rule’s firing strength) to get the sum of all the rules’ node outputs:

_ I, (k)
we(k) = —————,
", (1) (28)

where £ = 1,2,...,m",

mﬂ

4. The fourth layer (consequent/defuzzification layer) has consequent parameters (ap>< (n+1)?

where a), which is a 3-dimension matrix with pxm" X (n+ 1). This layer performs the
defuzzification operation by using a linear combination of the consequent parameters

as follows:
mn

L0 = Y (ab k) + el (29)

i=1

where £ = 1,2,...,m",and j = 1,2,...,p.

5. The fifth layer (output layer) calculates the summation of the normalized firing

strengths from the normalization layer with the outputs of the consequent layer:

n

¥ = Y (H{0ah) (30)

1

3

S
Il

where j = 1,2,...,p.

Equations (26) - (30) illustrate the feedforward propagation of the signal, while the
chain backpropagation gradient algorithm is used as a backward propagation of the signal

to train both the consequent and premise parameters. As previously mentioned, the NF-

280

VGL(A) and NF-SNVGL(Q) structures require the partial derivatives of the outputs with
respect to the premise parameters, consequent parameters and the inputs to adapt the critic

and actor approximation parameters as follows:

1. Tuning the consequent parameters (a;’;>< (n+1)):

dyjk) _dy;(k) Ok
da) affiaai | MO (1)

where i = 1,2,...,n, ¢ = 1,2,...,m", and j = 1,2,...,p. The free coefficients’
consequence parameters, which are not related with input variables, can be updated

by

ay(k) _ayk) Offk)
= = k). 32
oa (k) o (k) ddl, ., (k) @) 32)

2. Tuning the premise parameters (M xm, O nxms Onxm):

2

ay(k) _ Zp: dy;j(k) dive(k) oT1e(k)
om! (k) 4\ 9de(k) OTLe(k) gm/ (k)

=
] (z) || - o)
(z [mo)])

xi(k) + 0 (xi(k = 1))67 (k) = m! (k))
o)

(k) (33)

—

where y(k) = ?:1 ()’j(k))-

281

b

Ay(k) :Zp: dy;j(k) dav(k) 011,(k)
da (k) O@(k) 011 (k) gor (k)

Jj=1

e (z) || - et
ﬁ;(ff Y (z, [mw]) - .

(1409 + 0]tk ~)0/~ <k>)2)
(of (k))3 |

2

dy(k) _ 5 [0y(k) dae(k) OT1(k)
59{(]() = \9e(k) O (k) aeif(k)

(=,)| - Hi(k)) .
(275 o]

(x,-(k) + 0! (xik = 1))67 (k) = m/ (k))

(o (k))2

p

:_Z (fjf’(k).

Jj=1

(35)

0 (xi(k - 1))).

3. As illustrated in Fig. (4), the inputs (x;(k), i = 1,2,...,n) deal with the premise

and consequent layers. Therefore, the i, j element for input/output Jacobean matrix is
ay j(k) (p1)
dx;(k))
agating the output signal through the consequent fuzzy part, while the second path,
dyj(k)\ (2
(0 Xi(k))
fuzzy part as follows:

derived by combining two paths: the first path, (, derives from backprop-

, is derived from backpropagating the output signal through the premise

282

8y;(k) _(ay,(k))(”')) (ayJ-(k))(”” _ (ay](k) aff<’<>)(”"+

Axi(k) | dxi(k) dx;(k) 0 fjf(k) dx;(k)
(p2)
dyj(k) de(k) Oll(k) |- ¢ ¢
(ad)g(k) oMl (k) dxi(k) | (”f(k)afi(k))) (ff)
() || - Teh) (36)
. 211,(k)

i
(xi(k) + 0! (xi(k = 1))6/ (k) = m/ (k)))

o]

4. CONVERGENCE ANALYSIS OF THE VGL(1) AND SNVGL(1) APPROACHES

Because the VGL(1) and SNVGL(A) approaches use an n-step critic network, and
the n-step optimal control equation is spacial greedy case for the general optimal control
form, the following proofs perform with both approaches (VGL(A) and SNVGL(1)) as will
be demonstrated in Definition 2.

4.1. DT-HJB Equation for R'(k). The n-step TD leaning with R*(k) is given as

RY(k) =U (u(k), x(k)) + yAR (k + 1) + y(1 = D)J(k + 1), (37)

where J(k) is a function approximated for the value function at k (k is a discrete time index),

and consider an affine nonlinear discrete-time (DT) dynamic system described by

x(k + 1) =f(x(k)) + g(x(k))u(x(k)), (33)

x € RP is the state vector, u(x(k)) € R" is the control vector, and both f (x(k)) and g(x(k))
are differential functions with an equilibrium state at x = 0 (e.g., f(0) = g(0) = 0). It

should be assumed that (38) is Lipschitz continuous and stable on a compact set Qy € R”.

283

7 1K) x(k) x(k)

010305 = m,

1K)
1 010303 =,

01020} =

010305 =,

y1 (k)

010305 =75

010305 = 7

070303 = my
x3(k

010303 = mg

Ly fi8 —»@—»yz(k)

Figure 4. A structure for TSRNF that uses VGL(1) and NSVGL(A). TSRNF consists
of five layers. The first layer represents the premise layer, which has premise parameters
(M O nsams @) The second layer is the rule layer, which has m" rule nodes. The third
layer is the normalization layer to normalize the output values coming from the rule layer.
The fourth layer is the consequent layer, which has consequent parameters (a;?; (n+1)). The
fifth layer is the output layer to obtain the final output signal. The premise and consequent
parameters are trained by using a backpropagation gradient algorithm. The number of
inputs, MFs and outputs are represented by 1 = 3, m = 2 and p = 2, respectively.

284

Definition 1 cf [43] (stabilization system): A nonlinear system is stable on a compact
set Qo € R, if a control input u(x(k)) € RY exists for all initial conditions x(0) € R” such
that the state x(k) — 0 as k — oo.

The infinite-horizon cost function is given as
I = 3" YU (x), () (39)
i=k

where the utility function is chosen as the quadratic form, such as U(x(i),u(x(i))) =
xT(0)Qx(i) + u” (x(i)) Ru(x(i)), where Q = QT > 0 € R™ and R = R" > 0 € R™. Then,
the objective of the function to minimize (39) is to find the admissible control action, which

is given in the following definition.

Definition 2: If u(x(k)) is continuous on a compact set , € R? with u(0) = 0, and
J(k) is finite for ¥x(0) € Q, then u(x(k)) is defined to be admissible with respect to (39).

The definition of the infinite horizon optimal cost function is

J(k)= inf {xT(k)Qx(k) + " (x(k)) Ru(x(k)) + yJ*(k + 1)}, (40)
u(x(k))e@)
where © is a set of all infinite horizon admissible control lows. According to Bellman’s
optimality principle, the optimal cost function in a finite horizon that satisfies the DT-HJB
is

T (k) = Enin {xT(k)Qx(k) + 1" (x(k)) Ru(x(k)) + yJ*(k + 1))}. 1)
ul\x(k)

Then, the optimal value function for n-step TD learning is

RY (k) = min {xT(k)Qx(k) +u” (x(k))Ru(x(k)) + y(zRﬂ*(k + 1)+

(1=)T (k + 1))}.

285

The gradient on the right-hand side of (42) with respect to u(x(k)) gives the optimal control

u*, which satisfies the first-order necessary condition

0 T T ox(k + IN\T
0 =Gy o (020 + 4 (x(0) Ru(x(0)) + v(5 e O) -
0 It .
m(m (k+ 1)+ (1=)Jk + 1)).
Thus, u*(.) for the n-step is given as
. Yo7 ARV (k + 1) AJ*(k + 1)

The optimal control policy with the n-step method is used to prove the convergence of the
VGL(A) iteration algorithm and the SNVGL(A) iteration algorithm as well.

4.2. Derivation of Iteration VGL(1). The initial values of n-step cost functions
and their targets are Jy(.) = 0 and R(’)l(.) = 0, respectively. These solve the initial policy g
by

po(x(k)) =arg min {xT(k)Qx(k) + uT(x(k))Ru(x(k))+
ul\x(k) (45)

y(ueg(k S+ (1= Dok + 1))}.

Then, we update the RY(.) is updated according to the previous iteration of R*(.) and the

value function, J(.), to give

RMK) = Enin {xT(k)Qx(k) + 1" (x(k)) Ru(x(k)) + y(/le(k + D)+ (1-2)
ul\x(k)

Jo(k + 1))} = 3T ()Qx(k) + 1 (x(k)) Ruto (x(k)) + y[mg (Fl)+

gm0 (x(K)) + (1 = Do £ + g (x(k) o (x(K)))|

(46)

286

For I = 1,2, ..., the iteration values for u; and R;l are given as

ui((x(k))) =arg min {xT(k)Qx(k) +u” (x(k)) Ru(x(k)) +y
u(x(k)) (47)

(mf(k F 1)+ (1-)% + 1))},
and

Ry, (k) = min {xT(k)Qx(k) +u” (x(k)) Ru(x(k)) +y AR} (x(k + 1))+
ul\x(k)
y(1 =)k + 1)} (48)

=x" (k)Qx(k) + py (x(k)) Ruy (x(K)) + y AR} (k + 1) + y(1 = DIy (k + 1),

respectively, where [is the iteration index of the action policy as well as the value func-

tion and its target, while k is the time index of the state and the control for system trajectories.

4.3. Convergence of Iterative VGL(1) Algorithm. The proofs that show Rf to
the optimal valued function with / — oo leads to J; — J* with I — oo are presented.
Moreover, This paper proves that y; — u* as [— oo.

Lemma 1: Let v; be any arbitrary sequence of control policies, and y;(.) has already been

defined in (47). Let ¥} be

Wy (k) =xT (0Q:x(k) +] (x(k) Ry (x(K)) + y A%} f(K) + g (x(k)) o

1 (x(8)) + 71 = D1 (£0) + g (x(0) v (x(K)))

R} is defined in (48). If R} = ¥ = 0, then R}, , (k) < ¥}, (k), V1.

Proof: Because R}, | (k) minimizes the right-hand side of (48) with respect to 17 (x(k)), and
because Rg = ‘I’é = Jo = 0, then by induction it follows that R;l+1(k) < ‘Plﬂl(k),‘v’l i
Lemma 2: Let Rlﬂ(.) be defined as in (47); if the system is controllable, then there is an

upper bound of Y such that R}(.) < Y, V1.

287

Proof: Let &(x(k)) be a sequence of admissible control policies, and Jo(.) = R(’)l(.) =
Jo() = @é(.) = 0, where J ,f is defined and updated as in (48), and J; is defined and updated
by (To simplify, U(x(k), & (x(k))) is denoted as U(k, & (k)))

o (k) :U(x(k), g,(x(k))) + y(mf(k 1)+ (1=)Tk + 1)), (50)

where U(x(k), & (x(k))) = xT(k)Qx(k) + £F (x(k)) Ré[(x(k)). Equation (50) expands to be

OL (k) =U(k.& (k) +y || UKk + 1, &, (k + 1)) +7[/l

(1)

OL (k+2)+ (1= D (k + 2)] + (1=)ik + 1))

By expanding further, the following is obtained:

A

07, (k) =U(k, & (k) + v [A| Uk + 1, &-1((k + 1))+

y[U(k + 2,8 (k +2)) +y[A0L,(k +3) + (1 - 2)

9

Jia(k +3)] + (1= DI (k + 2)] + (1=)Tk + 1))

(52)
=U(k, & (k) + (yDU(k + 1, &1 (k + 1)) + (y2)?

Uk +2,&1-2(k +2)) + (A OF ,(k +3) + (y)*y
(1 = D)Jpa(k +3) + (yO)y(1 = D)1 (k+2) +y

(1= D)k + 1)

With further expanding, we obtain

288

@1 (k) =U(k, & (k) + (yOU(k + 1, &1 (k + 1)) + (y2)?
Uk +2,&-0(k+2)) + ...+ () Uk + L & (k + i)+
(YO™MOXk + I+ 1) + (YD) y(1 = D)Jo(k + 1 + 1)+ (53)
YOTyA =Dk + D+ ...+ (y)y(1 =)

J]_l(k + 2) +)/(1 - /I)J](k + 1),

where O3 (k + I + 1) = Jo(k + I + 1) = 0, because ©1(.) = Jo(.) = 0. Thus,

(YAYU(k + j, - (k + j))| +y(1 = 2)

M-

~

Il
— o
T

®?+1(k) =

(54)

T

(YA Ji_j(k +j + 1)

~.
Il
o
r

From (4) that J(v) = Y [yl Uv + Lu(v + 1))] withv = k + j + 1 and u(.) = £(.) at the

same iteration trajectory number (n = I — j), the ®f (k) is

~

1
+y(1=2)) |(yay

/ (55)

(YA Uk + j, &-j(k + j))

MN.

®;l+1(k) =

Il
- O

T

Il

o

~ .
|
~

»le(k +j+l+L&(k+j+1 +l))]

~
1l
(=}

Because Definition 1 shows that &; is an admissible control policies and x(k) — 0

as k — oo, there exists an upper bound of Y such that

289

G (57 (k +)Qx(k +)+

I

oY .
VI : 07, (x) Slli)rgo (Z;
j:

€ (el + D)RE (xtk +)) [+v(1 =)

I-1 I-j 56
Z (yay Z [yl(xT(k +j+1+0)0 (56)
=0 1=0

x(k+j+1+0)+& (x(k+j+1+D)RE(x(k +j+1 +l)))]]).

=Y.

According to Lemma 1, p;(x(k)) = &(x(k)) and ¢

1. ,(k) = @1, (k). Therefore, R}, (k) <

©7, (k) <Y, VI can be obtained.

Theorem 1: Consider u; and Rf as defined in (47), and (48), respectively. Then, Rf

is non-decreasing such that R;l <R} ,VI.

I+1°
Proof: Define u; and RIA from (47) and (48), respectively. A new n-step value function F,ﬂ

is defined by

T (k) =x"(k)Qx(k) + ub (x(k)) Ry (x(k)) + yATHk + 1) + y(1 = DJp(k + 1). (57

Mathematical induction illustrates that Ff < R?

: _ L) —
< Ry,, as follows: For I = 0, R{(k) =

xT(k)Qux(k)+ (x(k))Ruo(x(k))+y(/le(k+1)+(1—/1)J0(k+1)); with[) = Jo = R} = 0.
Then,

R} (k) = Td(k) = x" (k)Qx(k) +) (x(k)) Rpo (x(k)) = 0. (58)

290

Thus, Rf(k) > Fg(k). A similar procedure is used, and assuming it reaches and holds for

I — 1, then R;l(k) > Ff_l(k). For I, considering that

Ry, (k) =x" (k)Qux(k) + pf (x(k)) Ruy (x(k)) + y(/lRf(k + 1)+ (1=)Ji(k + 1)), (59)

and

U 0) =T (k)Qx(k) +] (x() Ryay (x()) + y (AT} 1k + 1)+ (1= Dia (K + 1),
(60)

the following is obtained:

R, (k) = T (k) =7(/1R}l(k + D)+ (1= D)J(k + 1))_ o
V(AF?_I(k + 1)+ (1=)i (k+ 1)).

With further rearranging and applying (4) so that J(v) = 3/, [le (v+Lu(v+1))] with

v =k+1andu(.) = u(.) at similar iteration trajectories, it can be determined that
RY, (k) - TA(k) :y(/l(RIA(k +1) =T (k+)+
(1=)it + 1) = Jya (ke + 1))),
:y(a(Rf(k T N 1))+ (62)
I
W= YU+ 1+ L+ 1+1))|-

=0

Y UG+ 1 L (k+ 1+ 1))])).

~

-1

l

Il
(=)

Because

1. R}k) > T+ (k)

291

2. 30 [le(k+1+l,,u1(k+1+l))] YU+ 141 (k+1+1)+ 215 [7 Uk +
1+l,yl(k+l+l))],

3. Uk+1+1, ,ul(k+1+l))—xT(k+l+l)Qx(k+l+l)+,u (k+1+DRuy(k+1+1),

then R}, (k) —I'}(k) > 0. Because R}, (k) > I'}(k) and I'}(k) > R;}(k) (Lemma 1), then
R} (k) = R} (k).

Theorem 2: Define lim;_o R} (k) = R4 (k) as the infinite limits of the n-step value func-
tions, where R;l is defined as in (48). With controllable system states and Rg(.) =Jo(.)=0

, R;l is limited by J*(k), where J* is described in (40). That is, R (k) =

Proof: let {;(x(k)) be an arbitrary sequence of admissible control policies, and let

()=Jo(.) = Aﬂ() = 0, where Rﬂ is defined and updated as in (48). A* 7.1 is updated by:

1+1(k) =xT(k)Qx(k) + {1 (x(k))R{I (x(k)) + y(

(63)
AXK+ 1)+ (1=)k + 1)).

From Lemma 1 and Lemma 2, it can be concluded that R;l+ (k) < A? (k) <Y, Vi
By defining lim;_,q, Af(k) = AL (k), and it can be obtained that R4 (k) < AL (k) <Y for
all admissible control policy sequences. If ¢ (x(k)) = u*(x(k)) with the results of Lemma

2, then
1

Y = lim (Z [(W’ (+ (k + DOk +)+ €] (x(k +)

j=0
I- I-j
R (x(k +)| +(1 -2 Z G Y [(&
=0 1=0 (64)

+j+1+D0x(k+j+1+1)+§ (x(k+]+1+l))

RE(x(k+j+1+ l)))]])

292

such that Y > J*(k), where J* is described in (40). Therefore, from Lemma 2 with
R (k) < AL(k) <Y, it is obtained that R: (k) < J*(k). Because J*(k) is the infimum
of the cost function that derives from all other admissible control sequences, this paper
concludes that J*(k) < R (k). This implies that J*(k) < R%(k) < J*(k), and hence,
R (k) = J*(k). Because R% (k) is the target value that is used to train the value function to

yield Jo(k), then J;(k) — J*(k) as [— oo.

IR} (k)
According to Theorem 2, R} (k) — J*(k) as I — co. Because gi(k) = (0 and
X
0Ji(k
gi(k) = (91—((k))’ it can be concluded that gf(k) and g;(k) — g*(k) as I — oo, where g* is
X

the gradient of the optimum value function.

Corollary 1: y;(x(k)) and R} are defined as in (47) and (48), respectively. If x(k) is
controllable, then the RIA forces the controller (neuro-fuzzy actor network) to converge to
u*(x(k)) as I — oo (i.e., limj_c0 p7(x(k)) = w*(x(k))). Similar conclusions can apply to
gradients of R;l(k) and J;(k) with respect to x(k) to yield g;l(k) and g;(k) with I — oo,

respectively.

5. COMPACTING THE NF-VGL(1) AND NF-SNVGL(1) ITERATIVE ALGORITHM
WITH RNF AND TSRNF STRUCTURES

In this section, the value iterative ADP algorithm based on NF-VGL(A1) and NF-

SNVGL(AQ) is performed. Let @, in G(x(k), c?)c) (see Fig. (1) and Fig. (2)) represent a

combination of premise and consequent parameters, which is denoted as c?)f,p } and cf)ic},

respectively. Because the inputs of the critic network in the VGL (or DHP) approach has
the same number of outputs, which is equal to the number of states (p), the inputs and
outputs for the RNF and TSRNF structures are equal to p (p = n = p). In other words,

ot = [m, o, 0] for both RNF and TSRNF structures. &, = [w] , for RNF, while
pxm

pXx3m
ol = [a] for TSRNF. Also, let &, in A(x(k),,) (see Fig. (1)) represents a
pxmPx(p+1)
~{

combination of c?)ip }and wac} for premise and consequent parameters, respectively. Because

293

the inputs of the actor network are equaled to p and the outputs are q (the number of control
signals), the inputs and outputs for the RNF and TSRNF structures are equal to p and q,

respectively. In other words, a){p b= [m, o, 0] X for both RNF and TSRNF structures
pX3m

(m=p). & = [a)] for RNF (p = p), while &' = for TSRNF (p = p).
qxm

]qxn1"><(p+1)
5.1. The Value-Iteration-based NF-VGL(1).

5.1.1. The n-step Critic Network. The forward propagation output signal for the

critic network is expressed for RNF as:

mP P
yitk) = Y fwse [][0F (o) H =1...,p, (65)
=1 i=1
and for TSRNF as:
1 Ly
yj(k) = Z [Z [“fz‘xi(k)] + ()X
T:pl [f 1 (xl(k))H =

ﬁ [Off (xi(k))”, (66)

Thus, g;(k) = [yi(k), y2(k),. .., yp(k)];, where [is the iteration index and k is the time
index. With the quadratic form of the utility function, U (x(k), n, (x(k))) = xT(x)Qx(k) +
uF (x(k)) Ry (x(k)) and (38) for the system state equation, the target value, which is defined

in (10) with the general U(.), is given by

x(k
%] Ruy1 (x(K)

Of (% =t (x()) O (x(0), 1 (x(0)))
ox(k) T 08 (x(0) (67)

0Ar_ (X(k)a UA)a) T
0xy

g (k) =20x(k) + 2[

+

(vagi, (ke + 1)+ y(1 = D@ra(k + 1)

294

01 (x(k). @)

where (25) is used to obtain 3 for RNF, while (36) is used for TSRNF. The
Xk

premise weight matrix (c?)ip }) and consequent weight matrix ((DEC}) are tuned by backprop-

agating the prediction error of the critic network, which is given as:

ec1(k) = gl (k) — g1(k). (68)

The objective function for the G/ (x(k), &.) network is to minimize E (k) = 0.5(ec1(k))2
by updating the value for the weights (@,) according to the gradient descent algorithm inside

the local inner-loop, which is given by:

(k) _ iy _, 3G .1 (x(k), dc)

~{p} _ ~{p}
U)Cl —(UCI +[C a@j?} - el c ad‘)i?} eCI(k)’ (69)
o e OE. (k) 3G (x(k),d
o =0 +te—17 = a7 - L. 2l = gesti
Ty Ty

where £, is the critic learning rate.

5.1.2. The Actor Network. The forward propagation output signal for the RNF
actor network is represented by (65), while (66) is the forward propagation equation for the
TSRNF actor network with j = 1, ..., q. Therefore, fi;— (x(k)) = [y1(k), y2(k), . .., yo(k)I}_,.

A target action vector is calculated with an n-step critic network as

af (k). fu-1 (x(0)))
dfir—1(x(k))

T
ear-1)(k) =2Rp;_1 (x(k)) +y] X (ﬂgf_l(k + 1)+

(70)

(1 =)A81-1(k + 1)).

295

The objective function for this network is minimizing the actor error, which is given by

using the gradient descent algorithm, which is obtained by

A1) (x(k), &)

~{p}
A0,y

S _ple OA 1) (x(k), D)
Wyr-1) T%9qq1-1) ~ ta ¢}

00
a(I-1)

~{pt _ AP}
Wo1-1) =Wq(1-1) " ta

ea(1-1)(Xx),

(71)

€a(1—1)(xk),

where ¢, is the actor learning rate.

5.2. The Value-Iteration-based NF-SNVGL(1).

5.2.1. The n-step Critic Network. The estimated output of the gradient value
function (g;(k) = [y1(k), y2(k), .. ., yp(k)]?) is obtained in a manner that is similar to (65)
and (66) by using RNF and TSRNF, respectively. The target value, which is defined in (16)

is represented with the quadratic form of the utility function by

T
(vAgi(k + D) +y(1 = D@k + 1),
(72)

8 (x(k), o1 (x(K)

7 —
g1(k) =20x(k) + D

The premise weight matrix (&"’) and consequent weight matrix (&) are tuned by back-
propagating the prediction error of the critic network as in (68) and (69).

5.2.2. The n-step Optimal Control. The optimal control equation, which is de-
fined in (14) with the quadratic form of the utility function and the affine type of state

equation, is given by

pi-1(x(k)) = - %R”gT (x(k) | Ag7_ (k + 1)+ (1 = V)gr-1(k + 1)). (73)

Then, the actor error is calculated by

eai-1y(k) = -1 (x(k)) = -1 (x(k)). (74)

296

The objective function for this network is minimizing the square of the actor error, which
2
is given by E,_1)(k) = 0.5(60(1_1)(k)) . The actor weights are updated by minimizing

E,(1-1)(k) according to the gradient descent algorithm as in (71).

6. SIMULATION STUDY

To examine this paper’ approaches, a complex nonlinear model is used, which is
a two-wheeled dynamic nonholonomic mobile robot model. The performance results of
VGL(A) are compared with DHP. Combining RNF and TSRNF structures with VGL() is
another test to show the robust structure appropriate for VGL(A). Furthermore, VGL(A) and
SNVGL(A) are evaluated with various ambient noises (unmodeled bounded disturbances
and left/right wheel friction). To demonstrate the effect of the recurrent parameter () in
both RNF and TSRNF structures, two tables are presented including mean-squared-errors
(MSESs). In this paper, MSE is calculated by taking the average of the utility function (U(.))
for two states during the iterations.

6.1. The Nonlinear Dynamic Model of Mobile Robot. A differential-drive mobile
robot contains two independently driven wheels mounted on the left and right of its chassis
at the same axis, and a castor wheel (free rotating wheel) mounted at the front for balancing
the mobile robot. An inertial Cartesian frame represents the position of the mobile robot,
while ¢ = [x., y., 8] is the set of coordinates for the center of mass of the robot and the
robot’s orientation with respect to the Cartesian frame. The two independent driving wheels
are provided with the necessary torque for generating a left angular velocity (wy) and a right
angular velocity (wg), which in turn generate a linear velocity (v1) and angular velocity (v;)
for the mobile robot as follows:

Vi 0.57 -0.57| |wg

(75)

r r ’

V2 E - % wr

297

where 7 is the wheel radius and b is half of the robot width. The different forces for the
mobile robot mechanical motion are considered in the literature for the dynamic model
but not the kinematic model. The kinematic model is only considered for the motion. As
stated in [58] and [77] - [79], the dynamic model of the mobile robot has 7z dimensional

configuration space subjected to r constraints as described by

M(q)i + C(q. ¢4 + F(¢) + G(q) + 74 = B(qu + AT(q)¥, (76)

with A(g)¢ = 0 as a constrained kinematic wheel, where g € R” is a coordinate vector,
M(g) € R™" is a is a symmetric positive definite inertia matrix, C(gq, §) € R™" is the
centripetal and Coriolis matrix, F(§) € R" is a surface friction force vector, G(g) € R”"
is a gravity vector, 7; € R" is a bounded unknown disturbance, B(g) € R™9 is an input
transformation matrix, u € RY is the input torque vector, A(g) € R"™" is the full rank matrix
associated with the constraints, and ¥ € R” is the Lagrange multiplier (constraint forces)
vector. In this case study, there are two control inputs, which are a left torque (1) and a
right torque (7g). Since the system does not change in vertical position and has a constant
value for the potential energy, G(q) is set to zero. Using Lagrange multipliers to reduce
the dynamic model from 7 to p = 77 — r, (76) is pre-multiplied by spanning the linear
independent null space of the A(q)¢ matrix, (which is denoted as the Jacobian matrix of

S.(q) € R™®). In this case, a kinematic equation is given as follows:

q = Sc(q)v, (77)
where
Xe cos(0) —dsin(9)
Vi
qg=1y.|» Sc(q@)=|sin() dcos(®) |- V= ,
V2

6 0 1

298

and d is the center of gravity. The final affine dynamic model is obtained from the kinematic

equation (77) as follows: By taking the derivative of (77)
G = Se(q)v + Sc(q)v. (78)
Substitute (75), (77) and (78) into (76) to obtain
v = =017 g) (Vg a + F(@) + Ta) + M (9)F. (79)

M(q) is an invertible matrix:

Ib

_ my +2-2- 0
M(Q) = r b2 >
0 mrd® + I + ZII;Yf_Z — 4m,,d*
0 —dvo(mp — 2m,,)
Selq) = T (80)
dvy(mr — 2m,,) 0
TRl - 1| Hwr+wr)+ fo(Alwgr) + A(wr))
Td = s F(Q) = E >
L bfy(wr —wr) + bfe(A(wg) — Alwr))
and
_ 0.57 -0.57| |7x
T=Br=| - 7 , (A(.) is a sigmoid function). (81)
2% 2™

All mobile robot dynamic parameters are defined in Table 2. A noisy environ-
ment was assumed and therefore unknown bounded frictions (f, and f.) and unstructured

disturbances for the left wheel (77) and the right wheel (7g) were added.

299

Table 2. Parameters of the dynamic mobile robot.
o is various random values to test the dynamic model performance in different frictions

Symbol Description Value
my Mass of the chassis 10[kg]
ny, The mass of each wheel 2[kg]
r The wheel radius 0.05[m]
b Half of the robot width 0.1[m]
d The center of gravity offset form the rear axle 0.1[m]
I;’Y The wheel moment of inertial 1[kg.m?]
I The platform total moment of inertia 5[kg.m?]
f The viscous friction coefficient 5 X o[N.m.s]
fe The Coulomb friction coefficient 8 X o[N.m.s]

6.2. Simulation Results. In this case study, the first state (x(k)) and the second
state (x2(k)) are the linear velocity (v;) and the angular velocity (v,), respectively, whereas
x(k) = v(k) = [x1(k) x2(k)]" = [vi(k) v2(k)]" € R? is the state vector (p = 2). The
p(x(k)) =[x 72]7 € R? is the control action (q = 2). The external instantaneous cost

function, which is also used for calculating the MSE for evaluation, is

U (k). 1(x(8)) = [x006) = xa0)] @ [x0) =~ xah)| + 47 (x00) Ru(xh). (82

where xg(k) = [xq1(k) x42(k)]T is a desired velocity state vector, which takes constant
values for all finite horizon time; x;; is a desired value of the linear velocity state for the
mobile robot, while x;, is the desired angular velocity state; Q and R are 2-D identity
matrices. In this work, xz(k) = [3 6.5]" for all time steps in order to make a circle
trajectory after applying the kinematic equation (77). The discount factor (y) is 0.95. The
number of MFs for each input for both critic and actor networks, which is used in both RNF
and TSRNF structures, is 12 (m = 12); therefore, the number of rules is m" = 122 = 144.

The initial learning rate parameters are set to {, = 0.001 for the critic networks and

300

£, = 0.001 for the actor network. The training for each iteration of either network will be
terminated if the error drops under 1076 or if the number of iterations meets the stopping
threshold for the internal cycle (30 iterations for actor and critic networks). The initial state
is x(0) =[5 5.

The first evaluation is the effectiveness of A value to show the comparison between
VGL(0) (or DHP) and VGL(A). The RNF structure is selected to perform the critic and
actor networks for five independent runs. Each run has 12000 iterations to train the ADP
algorithm for 100 time steps each. The friction coefficients are set to 5 for f, and 8 for f,.
Both f, and f, multiply by o. o is a parameter that multiplies by a random one digit value,
which is applied during each time step over the iterations. The unstructured disturbances
are set to 8 for 7 and 7, multiplying by o. In this study case, o is set to 0.001. Fig. 5
illustrates the average MSEs for the two velocity states during the iterations for five runs.
RNF-VGL(A = 0.98) is more efficient and faster to learn than RNF-VGL(A = 0). [59], [58],
[55] illustrated how A value performs better for VGL with lambda than DHP when using
the feed feedforward neural network. The input universes of discourse for the two velocity
states are presented in Fig. 6 and Fig. 7 for the critic network and the actor network,
respectively. Twelve GMFs (m = 12) are distributed between -20 and 30 for the input
universe of discourse. The initial recurrent parameters (€) for critic and actor networks
are randomly chosen within [-1.2, 1.2]. The initial output parameters, w for RNF and a
for TSRNF are randomly selected within [0.3 -0.3]. For one selected run, Fig. 6 - Fig.
13 show the initial and the finial learning distribution of GMFs, and they also show the
learning 6 during training. The initial distribution for GMFs for the two input velocity states
to the critic network in RNF-VGL(0) is illustrated in Fig. 6, and it also shows the GMFs
for the final shape after learning in the last iteration (12000th). Fig. 7 illustrates the initial
and final distribution for GMFs for the two input velocity states using the actor network in

RNF-VGL(0). Fig. 8 demonstrates the learning of twelve 6 recurrent parameters during all

301

50

MSE of RNF-VGL(O}
MSE of RNF-VGL(0.98)

40

 —

MSE

1200

0 200 400 600 800 1000

1 1 1]

G000 8000 10000 12000
Iteratons

2000 4000

Figure 5. Average of MSEs for the two states for comparisons RNF-VGL(4 = 0) and
RNF-VGL(A = 0.98) with an impact on disturbances and frictions. Five independent runs
are taken. The shaded region represents the runs, while the solid line represents the mean
of runs. RNF-VGL(A = 0.98) allows for faster learning than RNF-VGL(A = 0).

GMFs fnr The Li naar Veloclty In put State tn The Critic Network
0.1 ' Initial G} ™
i 1m
= 0.05 Final G,
&
n 1
-20 -15 -1[! -5 0 5 10 20 25 30

Linear Velocity Universes of Dls-c-:)ursa

GMFs fnr The Angular Uelnclly Input State to The Critic Network

. Initial G'”'“
LL
= 0.05 Final G'““‘
Q]

0

20 15 -10 n 5 15 30

Angular Velocity Unwerses of Dlscnursa

Figure 6. Initial and final learned Gaussian membership functions (GMFs) for both input
states (linear and angular velocities) to the critic network in RNF-VGL(0).

302

GMFs fur The Linear Uelncity Input State to The Actor Network

0.1
[42]
Ll
= 0.05
&
0 ’ -
-20 -15 -10 -5 'D 5 1'D 20 25 30
Linear Velocity Universes of Dlscnursa
o GMFs for The Angular Uelncity Input State tn The Actor Network
[42]
L.
= 005
&
0
-20 -15 -10 'D 5 10 15 20 25 30

Angular Velocity Universes of Discourse

Figure 7. Initial and final learned GMFs for both linear and angular velocity input states to
the actor network in RNF-VGL/(0).

of the total training steps (12000 iteration with 100 time steps) in the critic network for both
of the input states in RNF-VGL(0). Fig. 9 demonstrates learning 6 during the total training
steps for the actor network in RNF-VGL(0).

Fig. 10 - Fig. 13 is similar to Fig. 6 - Fig. 9 except for RNF-VGL(4). Obviously,
most GMFs in both critic and actor networks train within [-10, 10] of the universe of
discourse for both input states for RNF-VGL(0) and RNF-VGL(A) approaches. Furthermore,
most 6 parameters in RNF-VGL(A) reach stable values faster than they do in RNF-VGL(0)

The second evaluation is a comparison between the VGL(1) and SNVGL(A) ap-
proaches. The RNF structure is used for both approaches. The initial parameters for
the 0, w, a, the number of rules, impact of disturbances and frictions with o value, and
GNFs distribution are set similar to the previous test. Fig. 14 illustrates the average

MSEs for the two velocity states during the iterations for five runs using RNF-VGL(A) and

303

Recurrent Parameters for First State of The Critic Network

2 T

G
Total Training Steps

a8

10

12
«10°

Recurrent Parameters for Second State of The Critic Network

1.5

0 2 4 6 8 10 12
Total Training Steps x10°

Figure 8. Deviation of the recurrent parameters (@) for both input velocity states from the
initialized values of the critic network of RNF-VGL/(0) during all of the total training steps,
which is 12000 iteration with 100 time steps each.

304

Recurrent Parameters for First State of The Actor Network

Total Training Steps w102

Recurrent Parameters for Second State of The Actor Network

1.5

0 2 4 6 8 10 12
Total Training Steps w102

Figure 9. Deviation of the recurrent parameters (6) for both input velocity states from the
initialized values of the actor network of RNF-VGL(0) during the total training steps.

305

GMFs for The Linear ‘H’elnclty Input State to The Critic Network

S

.i, A‘
20 25 30

-20 -158 -10 -5 0 5
Linear Velocity Universes of Discourse

GMFs fnr The Angular Ueloclty Input State tn The Critic Network

" WA Tf Initial G ™
L.
= 0.05 “‘ Final G} ™
© 1
o ;/A L"‘ A) . .
=20 -15 -10 -h 0 5 15 20 25 30

Angular Velocity Unwarsas of Discourse

Figure 10. Initial and final learned GMFs for both linear and angular velocity input states

to the actor network in RNF-VGL(A).

GMFs fnr The Linear \feloclty Input State to The Actor Network

e, nz_ , e 2: / !‘ !"""‘f - :m

=20 -15 -10 -5
Linear WVelocity Universes of Discourse

15

=20 -15 -10 -5 ﬂ
Angular Velocity Unwarsas of Dlscnursa

Figure 11. Initial and final learned GMFs for both input states to the actor network in

RNF-VGL(1).

306

Recurrent Parameters for First State of The Critic Network

Total Training Steps 107

Recurrent Parameters for Second State of The Critic Network

0.4

—ﬂ_4 i Il i Il Il
] 2 4 G a8 10 12

Total Training Steps %10

Figure 12. Deviation of 6 for both input velocity states from the initialized values of the
critic network of RNF-VGL(A) during all the total training steps.

307

Recurrent Parameters for First State of The Actor Network

1.4
‘1_2"]
4
e 0B8] .
= 06 f .
o i
0 2 4 6 8 10 12

Total Training Steps w102

Recurrent Parameters for Second State of The Actor Network

0 2 4 G a8 10 12
Total Training Steps w102

Figure 13. Deviation of @ for both input velocity states from the initialized values of the
actor network of RNF-VGL(A) during the total training steps.

308

RNF-SNVGL(A1). RNF-SNVGL(A) is more efficient and faster to learn than RNF-VGL(Q).
However, RNF-SNVGL(A) is faster than RNF-VGL(A) at reaching a stable performance.
The stable MSE value starts at iteration number 45 for RNF-SNVGL(A), while for RNF-
SNVGL(AQ), the stable MSE ranging from iteration number 280 as demonstrated in Fig. 15.
The MSE value starting at iteration number 280 to 12000 using RNF-VGL(A) is smaller
than RNF-SNVGL(A) (as discussed in Table 3). Fig. 15 shows the circular trajectory
in the second, twentieth, three-hundredth, and 12000th iterations. Fig. 16 presents the
torques for the right and left mobile robot wheels during the iterations for RNF-VGL(A)
and RNF-SNVGL(Q) for five independent runs. As shown in the enlarged figures for both
torques, RNF-SNVGL(Q) reaches stability faster than RNF-VGL(A). Fig. 17 demonstrates
the convergence of the gradient of the cost functions during the iterations for the states of
RNF-VGL(1) and RNF-SNVGL(A) in one selected run. The convergence of the gradient of
the cost functions (gf(k) and g;(k)) to the optimal cost function indicates the effectiveness
of the iterative RNF-VGL(A) and RNF-SNVGL(Q).

For further comparison, the RNF-VGL(A1) and RNF-SNVGL(A1) are examined under
different noise levels as shown in Table 3. Table 3 summarizes the simulation results
of average MSEs through 12000 iterations with 100 time steps. Two types of MSEs are
presented in Table 3, which are all-iteration (All Iter) and final-iteration (Final Iter). The
all-iteration is the average of 12000 MSEs, while the final-iteration is the MSE at the last

iteration (12000th). MSEs for the final iteration values demonstrate that:

1. RNF-SNVGL(A) has a better performance than the RNF-VGL(A) in free or small
amounts of noise impact (0 = 0.0001) with and without 6§ parameters, but the

performance becomes worse when the noise is gradually increased.

2. RNF-VGL(A) with 8 parameters is more efficiency than without # parameters, with
an improvement of 21.178% in a decreasing percentage format of MSEs over all o

values.

309

50

MSE of RNF-SNVGL(0.98)
a0 | MSE of RNF-VGL(0.98)

30 j

MSE

20}

10

[} 50 100 150 200 250
lterations

_.1 D 1 1 1 1 1]
0 2000 4000 6000 8000 10000 12000

lterations

Figure 14. Average of MSEs for the two states for comparisons: RNF-VGL(1) and RNF-
SNVGL(A) with o = 0.001. Five independent runs are taken. The shaded region represents
the runs, while the solid line represents the mean of the runs. RNF-SNVGL(A) learns faster
a faster learning than RNF-VGL(Q).

3. RNF-SNVGL(1) with 6 parameters is more efficient than without 6 parameters, with
an improvement of 11.778% in a decreasing percentage format of MSEs over all o

values.

4. The overall improvement with 8 parameters for both RNF-VGL(A1) and RNF-SNVGL(Q)

is 15.421% in a decreasing percentage format of MSEs over all o values.

The MSEs for the all-iteration values show that RNF-SNVGL(A) requires fewer iterations
than RNF-SNVGL(A) to reach stable training when considering the first pointof the previous
point. The third evaluation is a comparison between the VGL(A) and SNVGL(Q) approaches
with a TSRNF structure. The initial parameters for the 8, w, a, the number of rules, impact
of disturbances and frictions with o value, and the GNFs distribution set is similar to the
previous test. Fig. 18 illustrates the average MSEs for the two velocity states during the

iterations for five runs for TSRNF-VGL(A) and TSRNF-SNVGL(1). TSRNF-SNVGL(A)

310

The X-Y Circle Trajectories for RNF-VGL{A=0.98)
and RNF-SNVGL{\=0.98) with 0.001 Random Impacting
of Disturbances and Frictions (Average of Five Runs)

————— Desired Trajectory
Actual Trajectory for RNF-SNVGL(0.98)
Actual Trajectory for RMF-VGL{0.98)

The Second Learning teration 15 The Twentieth Leaming lteration
NI .
1 =
ENS| E
& 2 D5
£ 1f £
B B
=] D ot
L os 2
0.5
D L
| | ! . 1 | !
-1 -0.5 0 0.5 1 -2 0 2 4
x-coordinate [m] x-coordinate [m]
The Three-Hundredth Learning lteration The Final (12000th) Learning teration
17 17
% 06| % 06|
£ =
B 047 B 047
Q =
§ 02y § o2;
0f or
027 ; ; T 027 . .
0.5 0 0.5 0.5 0 0.5
x-coordinate [m) x-coordinate [m)

Figure 15. The X-Y circle trajectories for RNF-VGL(A1) and RNF-SNVGL(A) with o =
0.001. The mean of five independent runs is shown. RNF-SNVGL(A) is faster, but RNF-
VGL(A) performs better and improves with long training iterations.

311

pix1(.)

— Actual Trajectory for RNF-SNVGL(0.98)
— Actual Trajectory for RNF-VGL(0.98)

1 1 1 1 1 1
2000 4000 6000 BOOO 10000 12000
Iterations

p2(.))

\ — Actual Trajectory for RNF-SNVGL(D.98)
. [Actual Trajectory for RNF-VGL(D.98)

1 * 1 1 [1]
2000 4000 6000 BODO 10000 12000
K Iterations

pix1(.))

1] 20 40 \"-_E-D 11} 100 120 140 160 180 200
' Iterations

p(x2(.))

100 120 140 160 180 200
Iterations

Figure 16. The average of the right and left input torques for the dynamic mobile robot for
RNF-VGL(A) and RNF-SNVGL(Q) with o = 0.001. The shaded region represents the runs,
while the solid line represents the mean of the runs.

312

— Actual Trajectory for RNF-SNVGL(0.98)
— Actual Trajectory for RNF-VGL(0.98)

p(x1(.))

1 1 1 1 1 1
2000 4000 6000 BOOO 10000 12000
Iterations

— Actual Trajectory for RNF-SNVGL(D.98)
Actual Trajectory for RNF-VGL(D.98)

p2(.))

1 L 1 1 1 L]
2000 % 4000 6000 8000 10000 12000
lterations

pix1(.))

D 20 40 "‘-‘_au BO 100 120 140 160 180 200
Iterations

p(x2(.))

100 120 140 160 180 200
Iterations

Figure 17. The average gradient of the two input velocity states of the value function
trajectories for the critic network in both RNF-VGL(A) and RNF-SNVGL(Q).

313

Table 3. MSE values for RNF-VGL(A) and RNF-SNVGL(1) with and without 6 recurrent
parameters at various noise levels (different o values). All-iteration (All Iter) is the average
of 12000 MSE, while final-iteration (Final Iter) is the MSE at the last iteration (12000th).

RNF Structure for Critic and Actor Networks

0 6=0

MSE RNE-VGL(1) RNE-SNVGL(1) RNE-VGL() RNE-SNVGL(Q)

All Iter | Final Iter | All Iter | Final Iter | All Iter | Final Iter | All Iter | Final Iter

0.0001 | 2.2758 | 0.0032 | 0.0056 | 0.0022 | 0.3578 | 0.0039 | 0.0051 | 0.0027

0.001 1.6735 | 0.0058 | 0.0193 | 0.0185 | 0.4052 | 0.0062 | 0.0196 | 0.0197

0.01 6.5847 | 0.0065 | 0.0220 | 0.0216 | 0.4206 | 0.0069 | 0.0216 | 0.0218

o 0.1 1.0404 | 0.0071 | 0.0270 | 0.0271 | 0.2484 | 0.0096 | 0.0213 | 0.0237

1 0.3749 | 0.0403 | 0.0468 | 0.0421 | 0.1685 | 0.0532 | 0.0562 | 0.0585

is more efficient and faster to learn than RNF-VGL(1). However, TSRNF-SNVGL(1) is
faster than TSRNF-VGL(1) at reaching a stable performance. The stable MSE value starts
at iteration number 25 for TSRNF-SNVGL(A), while for TSRNF-SNVGL(A), the stable
MSE starts at iteration number 45 as demonstrated in Fig. 19. Fig. 19 shows the circular
trajectory in the second, twentieth, three-hundredth, and 12000th iterations. Fig. 20 presents
the torques for the right and left mobile robot wheels during iterations for TSRNF-VGL(A)
and TSRNF-SNVGL() for five independent runs. As shown in enlarged figures for both
torques, the TSRNF-SNVGL(A) is faster than TSRNF-VGL(Q) to reach stable. Fig. 21
demonstrates the convergence of the gradient of the cost functions during iterations for the
two states of TSRNF-VGL (A1) and TSRNF-SNVGL(A) in one selected run. The convergence
of the gradient of the cost functions (glﬂ(k) and g;(k)) to the optimal cost function indicates
the effectiveness of the iterative TSRNF-VGL(A) and TSRNF-SNVGL(A).
TSRNF-VGL(A) and TSRNF-SNVGL(Q) are examined under different noise levels
as shown in Table 4 for the two types of MSEs (all-iteration and final-iteration). MSEs for

the final iteration values demonstrate that:

1. TSRNF-SNVGL(A)performs better than TSRNF-VGL(A) in a free or small amount
of noise impact (o = 0.0001) with and without 8 parameters, but the performance

become worse when the o value is increased gradually.

314

e | SE of TSRNF-SNVGL(0.98)
= NSE of TSRNF-VGL{0.98)

i
I
I
1
1. .
‘l o 5 10 15 20 25 30 35 40 45 50
| lterations
1

_2 | |] | | |
0 2000 4000 6000 8000 10000 12000

lterations

Figure 18. The average of the MSEs for comparing the two states of TSRNF-VGL(1) and
TSRNF-SNVGL(A1) with o = 0.001. Five independent runs are taken. The shaded region
represents the runs, while the solid line represents the mean of the runs. TSRNF-SNVGL(A)
learns faster than TSRNF-VGL(A).

315

The X-Y Circle Trajectories for TSRNF-VGL(A=0.98)
and TSRNF-NSVGL(A=0.98) with 0.001 Random Impacting
of Disturbances and Frictions (Average of Five Runs)

===== Desired Trajectory
e Actial Trajectory for TSRNF-NSVGL(0.98)
= Actual Trajectory for TSRNF-VGL(0.98)

The Second Learning lteration {5 The Twentieth Leaming lteration

E E 1
z b
g g
g L
i y
D b
-1 45 0 05 1 0.5 0 05
x-coordinate [m] x-coordinate [m]
The Three-Hundredth Leaming lteration The Final (12000th) Learning Ilteration
1 1 1 L
E E
B 2
205¢ 205
B =
= =
: !
0r 0
06 04 D2 0 02 04 06 04 D2 0 02 04
x-coordinate [m] x-coordinate [m]

Figure 19. The X-Y circle trajectories for TSRNF-VGL(1) and TSRNF-SNVGL(1) with
o0 = 0.001. The mean of five independent runs is shown. TSRNF-SNVGL(A) learns faster,
but TSRNF-VGL(A) perfoms better ad improves with long training iterations.

316

50
— Actual Trajectory for TSRNF-SNVGL(0.98)
- . Actual Trajectory for TSRNF-VGL(0.98)
.; D:\ 1\'\
= \
50 1 1 I 1 1 1
0o 2000 4000 6000 8000 10000 12000
lterations
20 :
= o -
X = Actual Trajectory for TSRNF-SNVGL(0.98)
= -20 X Actual Trajectory for TSRNF-VGL (D.98)
_40 1 1 1 1 1]
0 . 2000 4000 6000 800D 10000 12000
Iterations

p(x1(.))

p2(.))

30 40 a0 &0 0 80 90 100

Iterations

60 70 BO 90 100
lterations

Figure 20. The average of the right and left input torques to the dynamic mobile robot for
TSRNF-VGL(A1) and TSRNF-SNVGL(A1) with o = 0.001. The shaded region represents
the runs, while the solid line represents the mean of the runs.

The First State Gradient Cost Functions of

0 The TSRNF-VGL(0.98)
0.2

— gtx1 {‘})
041 gt
0

0 2000 4000 6000 8000 10000 12000
lterations

The Second State Gradient Cost Function of
The TSRNF-VGL(0.98)

0.3

0.2

0.1 — 0{!20)
— ()
D T T
0.1

0 2000 4000 6000 8OO0 10000 12000
Iterations

317

The First State Gradient Cost Function of
The TSRNF-SNVGL(0.98)

0.6
0.4 !
g, ()
02 —g%, ()
0

0 2000 4000 6000 8000 10000 12000
lterations

The Second State Gradient Cost Function of

0 The TSRNF-SNVGL(0.98)
o
e 0%,))
A
e 1 (X))
0.1 L
0

0 2000 4000 6000 8OO0 10000 12000
lterations

Figure 21. The average gradient of the two input velocity states of the value function
trajectories for the critic network in both TSRNF-VGL(A1) and TSRNF-SNVGL(A).

318

Table 4. MSE values for TSRNF-VGL(A) and TSRNF-SNVGL(1) with and without 6
recurrent parameters at various noise levels (different o values). All-iteration (All Iter) is
the average of 12000 MSE, while final-iteration (Final Iter) is the MSE at the last iteration
(12000th).

TSRNF Structure for Critic and Actor Networks

MSE 0 0=0

NE-VGL(2) TSRNF-SNVGL(1) | TSRNF-VGL(1) | TSRNE-SNVGL(1)

All Iter | Final Iter | All Iter | Final Iter | All Iter | Final Iter | All Iter | Final Iter

0.0001 | 0.0105 | 0.0025 | 0.0059 | 0.0012 | 0.0113 | 0.0028 | 0.0064 | 0.0015

0.001 | 0.0417 | 0.0051 | 0.0190 | 0.0184 | 0.0549 | 0.0064 | 0.0189 | 0.0184

0.01 0.0239 | 0.0053 | 0.0132 | 0.0126 | 0.0079 | 0.0072 | 0.0189 | 0.0183

o 0.1 0.0215 | 0.0073 | 0.0182 | 0.0177 | 0.0120 | 0.0073 | 0.0182 | 0.0178

1 0.0226 | 0.0093 | 0.0128 0.0124 | 0.0682 | 0.0093 | 0.0128 0.0125

2. TSRNF-VGL(A) with 8 parameters is more efficient than it is without € parameters,
with an improvement of 10.606% and a decreasing percentage of MSEs over all o

values.

3. TSRNF-SNVGL(A) with 6 parameters is more efficient than it is without parameters,
with an improvement of 9.051% and a decreasing percentage of MSEs over all o

values.

4. The overall improvement with 8 parameters for both TSRNF-VGL(A1) and TSRNF-

SNVGL(Q) is 9.556% with decreasing percentage of MSEs over all o values.

MSEs for the all-iteration values present with TSRNF-SNVGL(A) require fewer iterations
than those present with TSRNF-SNVGL(1) to reach stable training. Overall, the comparison

between RNF- for VGL(A) and SNVGL(A) and TSRNF- VGL(1) and SNVGL(A) are

1. With 6, TSRNF with both VGL(4) and SNVGL(A1) has a better performance than
RNF with 47.362% and decreasing percentage of MSEs for the final-iteration with

all o values.

319

2. Without 8, TSRNF with both VGL(A4) and SNVGL(Q) has a better performance than
RNF with 50.775% and a decreasing percentage of MSEs for the final-iteration with

all o values.

3. With and without 6, TSRNF with both VGL(A1) and SNVGL(A) has a better perfor-
mance improvement than RNF with 96.965% in a decreasing percentage format of

all-iteration MSE:s for all o values.

7. CONCLUSION

VGL(A) is the high-performance algorithm in ADP that is used in this work, which
is inspired by a gradient of TD(1). VGL(A) is implemented by using two networks (critic
and actor). This work derives and performs the VGL(A) architecture with a single adaptive
critic network (SNVGL(A)). The SNVGL(A) is compared with regular VGL(Q) to track a
reference trajectory of a simulation of a nonlinear dynamic model of a nonholonomic mobile
robot. Because a noisy environment is more realistic in the real world, the controller (actor
network in VGL(A) or optimal control equation in SNVGL(A)) is tuned under uncertainties
to compute the optimal right and left torques. Therefore, two-hybrid neuro-fuzzy structures
were used in both actor and critic networks (RNF and TSRNF). Moreover, convergence
proofs were proved to demonstrate the application of an ADP iteration algorithm with the

VGL(A1) and SNVGL(A) approaches.

BIBLIOGRAPHY

[1] D. P. Bertsekas, “Approximate policy iteration: A survey and some new methods,” J.
Control Theory Appl., vol. 9, no. 3, pp. 310 - 335, Aug. 2011.

[2] F. L. Lewis, and D. Vrabie, ‘“Reinforcement learning and adaptive dynamic program-
ming for feedback control,” IEEE Circuits Syst. Mag., vol. 9, no. 3, pp. 32 - 50, Aug.
2009.

sjamw3
Text Box
 BIBLIOGRAPHY

320

[3] R.Padhi, N. Unnikrishnan, X. Wang, and S. N. Balakrishnan, “A single network adaptive
critic (SNAC) architecture for optimal control synthesis for a class of nonlinear systems,”
Neural Netw., vol. 19, no. 10, pp. 1648 - 1660, Dec. 2006.

[4] B. Luo, D. Liu, T. Huang, and D.Wang, Member, “Model-Free Optimal Tracking
Control via Critic-Only Q-Learning,” Neural Netw., vol. 27, no. 10, pp. 2134 - 2144,
Oct. 2016.

[5] J. Fu, H. He, and X. Zhou, “Adaptive learning and control for MIMO system based on

adaptive dynamic programming,” IEEE Trans. Neural Netw., vol. 22, no. 7, pp. 1133 -
1148, Jul. 2011.

[6] Z.Ni, H. He, and J. Wen, “Adaptive learning in tracking control based on the dual critic
network design,” IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 6, pp. 913 - 928,
Jun. 2013.

[7] J. Si, A. G. Barto, W. B. Powell, and D. Wunsch, Eds., Handbook of Learning and
Approximate Dynamic Programming. Hoboken, NJ, USA: Wiley, 2004.

[8] F. L. Lewis, and D. Liu, Eds., Reinforcement Learning and Approximate Dynamic
Programming for Feedback Control. Hoboken, NJ, USA: Wiley, 2013.

[9] Q. Wei, and D. Liu, “Adaptive dynamic programming for optimal tracking control of
unknown nonlinear systems with application to coal gasification,” IEEE Trans. Autom.
Sci. Eng., vol. 11, no. 4, pp. 1020 - 1036, Oct. 2014.

[10] R. Bellman, Dynamic Programming. Princeton Univ. Press, NJ, USA, 1957.

[11] D.Prokhorov, and D. C. Wunsch, “Adaptive critic designs,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 8, no. 8, pp. 997 - 1007, Sep. 1997.

[12] P. J. Werbos, “Approximate dynamic programming for real-time control and neural
modeling,” Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches
(Chapter 13), Edited by D. A. White and D. A. Sofge, New York, NY: Van Nostrand
Reinhold, 1992.

[13] F.-Y. Wang, H. Zhang, and D. Liu, “Adaptive dynamic programming: An introduction,”
IEEE Comput. Intell. Mag., vol. 4, no. 2, pp. 39 - 47, May 2009.

[14] F. L. Lewis, and D. Vrabie, “Reinforcement learning and adaptive dynamic program-
ming for feedback control,” IEEE Circuits Syst. Mag., vol. 9, no. 3, pp. 32 - 50, Sep.
2009.

[15] S. Ray, G. K. Venayagamoorthy, B. Chaudhuri, and R. Majumder, “Comparison of
adaptive critic-based and classical wide-area controllers for power systems,” IEEE
Trans. Syst., Man, Cybern. B, Cybern., vol. 38, no. 4, pp. 1002 - 1007, Aug. 2008.

[16] P.J. Werbos, “Backpropagation through time: What it does and how to do it,” Pro-
ceedings of the IEEE, vol. 78, no. 10, pp. 1550 - 1560, Oct. 1990.

321

[17] H.Zhang, Y. Luo, and D. Liu, “Neural-network-based near-optimal control for a class
of discrete-time affine nonlinear systems with control constraints,” IEEE Trans. Neural
Netw., vol. 20, no. 9, pp. 1490 - 1503, Sep. 2009.

[18] J. Si, and Y. Wang, “Online learning control by association and reinforcement,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 12, no. 2, pp. 264 - 276, Mar. 2001.

[19] Z. Ni, H. He, X. Zhong, and D. Prokhorov, “Model-Free dual heuristic dynamic
programming,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 8, pp. 1834 - 1839,
Aug. 2015.

[20] H. He, Z. Ni, and J. Fu, “A three-network architecture for on-line learning and opti-
mization based on adaptive dynamic programming,” Neurocomputing, vol. 78, no. 1,
pp- 3 - 13, Feb. 2012.

[21] X.Fanga, D.Zhenga, H. He, and Z. Nib, “Data-driven heuristic dynamic programming
with virtual reality,” IEEE Trans. Neural Netw. Learn. Syst., vol. 166, no. 6, pp. 244 -
255, Oct. 2015.

[22] Z. Ni, H. He, D. Zhao, X. Xu, and D. V. Prokhorov, “GrDHP: A general utility
function representation for dual heuristic dynamic programming,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 26, no. 3, pp 614 - 626, Mar. 2015.

[23] G. K. Venayagamoorthy, R. G. Harley, and D. C. Wunsch, “Dual heuristic program-
ming excitation neurocontrol for generators in a multimachine power system,” IEEE
Trans. Indus. Applying, vol. 39, no. 2, pp. 382 - 394, Mar. 2003.

[24] N. Zhang, and D. C. Wunsch, “A Comparison of Dual Heuristic Programming (DHP)
and neural network based stochastic optimization approach on collective robotic search
problem,” IEEE Trans. Neural Netw. Learn. Syst., vol. 1, pp. 248 - 253, Jul. 2003.

[25] C. Lian, and X. Xu, “Motion planning of wheeled mobile robots based on heuristic
dynamic programming,” IEEE Proceeding of the World Congress on Intelligent Control
and Automation Shenyang, pp 576 - 580, Jul. 2014.

[26] P. J. Werbos, and X. Pang, “Generalized maze navigation: SRN critics solve what
feedforward or Hebbian nets cannot,” IEEE Proc. Conf. Systems, Man and Cybernetics
(SMC) , pp. 1764-1769, Oct. 1996.

[27] D. Wunsch, “The Cellular Simultaneous Recurrent Network Adaptive Critic Design
for the Generalized Maze Problem Has a Simple Closed-Form Solution,” IEEE/INNS,
International Joint Conference on Neural Networks (IJCNN), pp. 79-82, Jul. 2000.

[28] R. Ilin, R. Kozma, and P. J. Werbos,“Beyond Feedforward Models Trained by Back-
propagation: A Practical Training Tool for a More Efficient Universal Approximator,”
IEEE Trans. Neural Netw., vol. 19, no. 6, pp. 929-937, Jun. 2008.

[29] S. Al-Dabooni, and D. Wunsch, “Online Model-Free N-Step HDP with Stability
Analysis,” Under Preparing.

322

[30] Z.Ni, H. He, J. Wen, and X. Xu, “Goal representation heuristic dynamic programming
on maze navigation,” IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 12, pp. 2038
- 2050, Dec. 2013.

[31] N. Zheng, and P. Mazumder, “Hardware-Friendly Actor-Critic Reinforcement Learn-
ing Through Modulation of Spike-Timing-Dependent Plasticity,” IEEE Trans. on Com-
puters, vol. 66, no. 2, pp. 299-311, Feb. 2017.

[32] S. Al-Dabooni, and D. Wunsch, “The Boundedness Conditions for Model-Free
HDP(2),” Under reviewing for IEEE Trans. Neural Netw. Learn. Syst.

[33] S. Al-Dabooni, and D. Wunsch, “Heuristic dynamic programming for mobile robot
path planning based on Dyna approach,” IEEE, International Joint Conference on
Neural Networks (IJCNN), pp. 3723 - 3730, Jul. 2016.

[34] B. Xu, C. Yang, and Z. Shi, “Reinforcement learning output feedback NN control

using deterministic learning technique,” IEEE Trans. Neural Netw. Learn. Syst., vol.
25, no. 3, pp. 635 - 641, Mar. 2014.

[35] Q. Wei, and D. Liu, “Data-driven neuro-optimal temperature control of waterAASgas
shift reaction using stable iterative adaptive dynamic programming,” IEEE Trans. Ind.
Electron., vol. 61, no. 11, pp. 6399 - 6408, Nov. 2014.

[36] D. Liu, D. Wang, F.-Y. Wang, H. Li, and X. Yang, ‘“Neural-networkbased online
HJB solution for optimal robust guaranteed cost control of continuous-time uncertain
nonlinear systems,” IEEE Trans. Cybern., vol. 44, no. 12, pp. 2834 - 2847, Dec. 2014.

[37] H. He, Self-Adaptive Systems for Machine Intelligence. New York, NY, USA: Wiley,
2011.

[38] D. Liu, and Q. Wei, “Policy iteration adaptive dynamic programming algorithm for
discrete-time nonlinear systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no.
3, pp- 621 - 634, Mar. 2014.

[39] Y. Sokolov, R. Kozma, L. D. Werbos, and P. J. Werbos, “Complete stability analysis
of a heuristic approximate dynamic programming control design,” Automatica, vol. 59,
pp- 9 - 18, Sep. 2015.

[40] F.Liu,J. Sun, J. Si, W. Guo, and S. Mei, “A boundedness result for the direct heuristic
dynamic programming,” Neural Networks, vol. 32, pp. 229-235, Aug. 2012.

[41] Y. Tang, H. He, Z. Ni, X. Zhong, D. Zhao, and X. Xu, “Fuzzy-Based Goal Represen-
tation Adaptive Dynamic Programming,” IEEE Trans. on Fuzzy Sys., vol. 24, no. 5, pp.
1156 - 1176, Oct. 2016.

[42] X. Zhong, Z. Ni, and H. He, “A Theoretical Foundation of Goal Representation
Heuristic Dynamic Programming,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no.
12, pp. 2513 - 2525, Dec. 2016.

323

[43] A. Al-Tamimi, F. L. Lewis, and M. Abu-Khalaf, “Discrete-time nonlinear hjb solution
using approximate dynamic programming: convergence proof,” IEEE Trans. on Sys.,
Man, and Cyb., Part B, vol. 38, no. 4, pp. 943 - 949, Aug. 2008.

[44] D. Liu, and Q. Wei, “Finite-approximation-error-based optimal control approach for
discrete-time nonlinear systems,” IEEE Trans. Cybern., vol. 43, no. 2, pp. 779 - 789,
Apr. 2013.

[45] D. Liu, and Q. Wei, “Policy iteration adaptive dynamic programming algorithm for
discrete-time nonlinear systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no.
3, pp. 621 - 634, Mar. 2014.

[46] H.Zhang, Y. Luo, and D. Liu, “Neural-network-based near-optimal control for a class
of discrete-time affine nonlinear systems with control constraints,” IEEE Trans. Neural
Netw., vol. 20, no. 9, pp. 1490 - 1503, Sep. 2009.

[47] Y. Yang, D. Wunsch, and Y. Yin, “Hamiltonian-driven adaptive dynamic programming
for continuous nonlinear dynamical systems,” IEEE Trans. Neural Netw. Learn. Syst.
vol. PP, no. 12, pp. 1 - 12, Feb. 2017 (to be published).

[48] D. Liu, D. Wang, D. Zhao, Q. Wei, and N. Jin, “Neural-network-based optimal control
for a class of unknown discrete-time nonlinear systems using globalized dual heuristic
programming,” IEEE Trans. Autom. Sci. Eng., vol. 9, no. 3, pp. 628 - 634, Jul. 2012.

[49] D. Liu, and D. Wang, “Optimal control of unknown nonlinear discretetime systems
using the iterative globalized dual heuristic programming algorithm,” in Reinforcement
Learning and Approximate Dynamic Programming for Feedback Control. New York,
NY, USA: Wiley, pp. 52 - 74, Jan. 2013,

[50] R. S. Sutton, “Learning to predict by the methods of temporal differences,” Machine
Learning, vol. 3, no. 1, pp. 9 - 44, Aug. 1988.

[51] H. Seijen, A. R. Mahmood, P. M. Pilarski, M. C. Machado, and R. S. Sutton, “True On-
line Temporal-Difference Learning,” Journal of Machine Learning Research (JMLR),
vol. 145, no. 17, pp. 1 - 40, Jan. 2016.

[52] R.S. Sutton, A. R. Mahmood, and M. White, “An Emphatic Approach to the Problem
of Off-policy Temporal-Difference Learning,” Journal of Machine Learning Research
(JMLR), vol. 73, no. 17 pp. 1 - 29, Jan. 2016.

[53] S. P. Singh, and R. S. Sutton, “Reinforcement learning with replacing eligibility
traces,” Machine Learning, vol. 22, no. 1, pp. 123 - 158, Mar. 1996.

[54] H. Seijen, and R. S. Sutton, “True Online TD(A),” Proceedings International Confer-
ence on Machine Learning, pp. 692 - 700, Jan. 2014.

[55] M. Fairbank, and E. Alonso, “Value-Gradient Learning,” IEEE, International Joint
Conference on Neural Networks (IJCNN), pp. 1 - 8, Jun. 2012.

324

[56] M. Fairbank, E. Alonso, and D. Prokhorov, “An Equivalence Between Adaptive Dy-
namic Programming With a Critic and Backpropagation Through Time,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 24, no. 12, pp. 2088 - 2100, Dec. 2013.

[57] E. L. Lewis, and D. Liu, Reinforcement Learning and Approximate Dynamic Pro-
gramming for Feedback Control, Chapter 7, John Wiley and Sons, Jan. 2013.

[58] S. Al-Dabooni, and D. Wunsch, “Mobile Robot Control Based on Hybrid Neuro-
Fuzzy Value Gradient Reinforcement Learning,” IEEE, International Joint Conference
on Neural Networks (IJCNN), pp. 2820 - 2827, May 2017.

[59] S. Al-Dabooni, and D. Wunsch, “An Improved N-Step Value Gradient Learning Adap-
tive Dynamic Programming Algorithm for Online Learning, with Convergence Proof
and Case Studies”, Under review for IEEE Trans. Neural Netw. Learn. Syst.

[60] D. Zhao, Y. Zhu, and H. He, “Neural and fuzzy dynamic programming for under-
actuated systems,” IEEE/INNS, International Joint Conference on Neural Networks
(IJCNN), pp. 1 -7, Jun. 2012.

[61] S. Mohagheghi, G. K. Venayagamoorthy, and R. G. Harley, “Fully evolvable optimal
neurofuzzy controller using adaptive critic designs,” IEEE Trans. on fuzzy systems, vol.
16, no. 6, pp 1450 - 1461, Dec. 2008.

[62] S. Mohagheghi, G. K. Venayagamoorthy, and R. G. Harley, “Adaptive critic design
based neuro-fuzzy controller for a static compensator in a multimachine power system,”
IEEE Trans. on Power Systems, vol. 21, no. 4, pp 1450 - 1461, Nov. 2006.

[63] Y. Zhu, D. Zhao, and H. He, “Integration of fuzzy controller with adaptive dynamic
programming,” IEEE conference World Congress In Intelligent Control and Automation
(WCICA), pp. 310 - 315, Jul.2012.

[64] Y. Tang, C. Mu, and H. He, “SMES-based damping controller design using fuzzy-
GrHDP considering transmission delay,” IEEE Trans. on Applied Superconductivity,
vol. 26, no. 7, pp 1 - 6, Oct. 2016.

[65] H. Zhang, J. Zhang, G. H. Yang, and Y. Luo, “Leader-based optimal coordination
control for the consensus problem of multiagent differential games via fuzzy adaptive
dynamic programming,” IEEE Trans. on Fuzzy Systems, vol. 23, no. 1, pp 152 - 163,
Feb. 2015.

[66] J. L. Zhang, H G. zhang, L. U. Yan-Hong, and H. J. liang, “Nearly optimal control
scheme using adaptive dynamic programming based on generalized fuzzy hyperbolic
model,” Acta Automatica Sinica, vol. 39, no. 2, pp 142 - 1148 Feb. 2013.

[67] X.BaiX, D.ZhaoD, and]J. Yi, “Coordinated multiple ramps metering based on neuro-
fuzzy adaptive dynamic programming,” IEEE/INNS, International Joint Conference on
Neural Networks (IJCNN), pp. 241 - 248, Jun. 2009.

325

[68] X. Luo, Y. Lv, R. Li, and Y. Chen, “Web service QoS prediction based on adaptive
dynamic programming using fuzzy neural networks for cloud services,” IEEE Access,
vol. 3, pp 2260 - 2269, 2015.

[69] F. L. Lewis, D. Vrabie, and V. L. Syrmos, Optimal Control. NewYork, NY, USA:
Wiley, 2012.

[70] R. S. Sutton, and A. Barto,Reinforcement Learning: An Introduction, Cambridge,
U.K.: Cambridge Univ. Press, 1998.

[71] C. H. Lee, and C. C. Teng, “Identification and control of dynamic systems using
recurrent fuzzy neural networks,” IEEE Trans. on fuzzy systems, vol. 8, no. 4, pp. 349 -
366, Aug. 2000.

[72] J.-S. Jang, C.-T. Sun, and E. Mizutani, Neuro-fuzzy and soft computing: a com-
putational approach to learning and machine intelligence Upper Saddle River, NJ:
Prentice-Hall, 1997.

[73] M. Sugeno, G. Kang, “Structure identification of fuzzy model,” Fuzzy Sets Syst, vol.
28, pp.154AS$33, 1988.

[74] J.-S. Jang, “ANFIS: adaptive-network-based fuzzy inference system,” IEEE trans. on
systems, man, and cybernetics, vol. 23, no. 3, pp. 665-685, May 1993.

[75] J. W. Yeh, and S. F. Su, “Efficient approach for RLS type learning in TSK neural fuzzy
systems,” IEEE trans. on cybernetics, vol. 47, no. 9, pp. 2343-2352, Sep. 2017.

[76] J.-S. Wang, and C.-G. Lee, “Self-adaptive neuro-fuzzy inference systems for clas-
sification applications” IEEE Trans. on Fuzzy Sys, vol. 10, no. 2, pp. 790-802, Dec.
2002.

[77] R. Fierro, and F. L. Lewis, “Control of a Nonholonomic Mobile Robot Using Neural
Networks,” IEEE Trans. Neural Networks, vol. 9, no. 4, pp. 589 - 600, July 1998.

[78] W.S. Lin, L. H. Chang, and P. C. Yang, “Adaptive critic anti-slip control of wheeled
autonomous robot,” IET Control Theory and Applications, vol. 1, no. 1, pp. 51 - 57,
Jan. 2007.

[79] T. Dierks, and S. Jagannathan, “Neural Network Output Feedback Control of Robot
Formations,” IEEE Trans. on Sys, Man, and Cyb., vol. 40, no.2, pp. 383 - 399, Apr.
2010.

326

SECTION

2. SUMMARY AND CONCLUSIONS

2.1. MODEL ORDER REDUCTION BY CLUSTERING SYSTEM POLES

Two main subjects are investigated in this dissertation. First, the model order
reduction algorithms are used to make systems less complexity for addressing with retaining
the original system properties. Second, adaptive dynamic programming algorithm is used
in optimal control field to obtain an approximating solution for Hamilton-Jacobi-Bellman
equation by interacting with its environment to obtain an optimal control policy. In the
model order reduction part that is illustrated as the first paper in this dissertation, we create a
new novel algorithm that uses agglomeration hierarchical clustering based on performance
evaluation. Many advantages are demonstrated in this work that can be used with single-
input single-output large order models and multi-input multi-outputs large order models.
This method gives a major advantage for reducing error to produce a robust reduced simple
model that has response(s) similar to the original model. Optimizing the pole clusters is
achieved by taking the minimum MSE among all pole clusters at an appropriate level in the
hierarchical dendrogram. The agglomeration hierarchical clustering based on performance
evaluation algorithm is considered a lower level in the hierarchy as the base model. Our
reduction algorithm procedure are continued processing level by level until reaching to the
second order of reduced model (top level). We demonstrate the simplicity and robustness

of the reduced model after applying various cases.

327

2.2. ADAPTIVE DYNAMIC PROGRAMMING WITH N-STEP PREDICTION PA-
RAMETER

In adaptive dynamic programming part, heuristic dynamic programming is com-
bined with Dyna algorithm method, which is the second paper in this dissertation. This
combination gives a powerful tool for system responses with the robust results. This novel
technique is used for path planing of mobile robot in unknown environment fill with obsta-
cles. We obtain excellent performance by comparing with one step Q-learning, Sarsa (A1)
and Dyna-Q-learning algorithms. The multi-robots cooperative navigation are performed
that has a significant advantage to enhance the efficiency of the virtual common environment
model. A modern adaptive dynamic programming algorithm, which is the extension of dual
heuristic dynamic programming is used as a third paper in this dissertation. This paper is
used for racking a reference trajectory for a mobile robot with the impacts of unmodeled
bounded disturbances with various friction parameter values. Therefore, we use a hybrid
fuzzy neural network to deal with these noise affections in both citric and actor networks.
The combination structure address the effects of most unstructured disturbance / friction
signals. Model-free action dependence heuristic dynamic programming with n-step for
prediction cost values is illustrated as the fourth paper in this dissertation. The uniformly
ultimately bounded stability proofs with n-step are provided as a pioneer project in adap-
tive dynamic programming algorithm with testing the performance with three simulation
studies. The fifth paper is addressed what lamination in the fourth paper. Whereas the
forth paper should provided the value functions for first iteration (similar to policy iteration
algorithm by providing the initial policy). In the fifth paper presents the on-line learning for
model-free action dependence heuristic dynamic programming with n-step for prediction
cost by adding extra citric network. Good performance is demonstrated in the fifth paper for
this dissertation by examining a simulation analysis on a nonlinear system and a inverted
pendulum benchmark problem in various circumstances, as well as solving a 2-D maze

problem. The uniformly ultimately bounded stability proofs with on-line learning of n-step

328

prediction cost values are provided in the fifth paper. The sixth and seventh papers deal
with the gradient of TD(Q) for adaptive dynamic programming, which called value-gradient
learning. The batch-mode and direct on-line implementation is provided for the sixth and
seventh papers, respectively. The on-line design is more memory efficient by overcoming
the drawback of using eligibility-trace storage for system states in online-mode implemen-
tation. Both papers (sixth and seventh in the dissertation) are provided the convergence
proofs are provided for both gradients of one- and n-step value functions with respect to
system states. We apply neural networks, the recurrent hybrid neuro-fuzzy and a first-order
Takagi-Sugeno recurrent hybrid neuro-fuzzy to implement our approaches in for last two

paper in the dissertation to verify the theoretical analyses.

[1]

(2]

[9]

329

BIBLIOGRAPHY

W. Schilders, “Introduction to model order reduction,” Theory, Research Aspects and

Applications, vol. 13, pp. 3-32, 2008.

P. Trnka, C. Sturk, H. Sandberg, V. Havlena, and J. Rehor, “Structured model order
reduction of parallel models in feedback,” IEEE Trans. Control Syst. Technol., vol. 21,
no. 3, pp. 739-752, May 2013.

N. A. Gershenfeld, The Nature of Mathematical Modeling, Cambridge University Press,
Mathematics, 1999.

D. Xue, Y. chen, and D. P. Atherton, Linear feedback control analysis and design
with Matlab, Society for Industrial and Applied Mathematics, Advances in Design and
Control, Jan. 2007.

K. J. Astrom and R. M. Murray. Feedback systems: an introduction for scientists and
engineers, Princeton University Press, Apr. 2010.

I. Kale, J. Gryka, G. D. Cain, and B. Beliczynski, “FIR filter order reduction: balanced
model truncation and Hankel-norm optimal approximation,” IEEE Proc. Vision, Image
and Signal Processing, vol. 141, no. 3, pp. 168-174, Jun. 1994.

W. Wang, G. N. Paraschos, and M. N. Vouvakis, “Fast frequency sweep of FEM models
via the balanced truncation proper orthogonal decomposition,” IEEE trans. Antennas
and Propagation, vol. 59, no. 11, pp. 4142-4154, Oct. 2011.

A. K. Sinha and J. Pal, “Simulation based reduced order modelling using a clustering
technique,” Computers and Electrical Engineering, vol. 16, no. 3, pp. 159-169, Jan.
1990.

J. Pal, “Improved Pade approximants using stability equation method,” IEEE Proc.
Electronics Letters, vol. 19, no. 11, pp. 426-427, May 1983.

[10] N. Gupta and A. Narain, “Reduction of discrete interval systems through fuzzy-

C means clustering with dominant pole retention,” Australian Control Conference
(AUCC), pp. 348-353, Nov. 2015.

[11] C.B. Vishwakarma and R. Prasad, “Time domain model order reduction using Hankel

matrix approach,” Journal Franklin Institute, vol. 351, no. 6, pp. 3445-3456, Jun. 2014.

[12] V. P. Singh, P. Chaubey, and D. Chandra, “Model order reduction of continuous time

systems using pole clustering and chebyshev polynomials,” IEEE Proc., Engineering
and Systems Conference, pp. 1-4, Mar. 2012.

sjamw3
Text Box
 BIBLIOGRAPHY

330

[13] W.T.Beyene, “Pole-Clustering and Rational-Interpolation Techniques for Simplifying
Distributed Systems,” IEEE trans. Circuits and syst. Fund. Theory and App., vol. 46,
no. 12, pp. 1468-1472, Dec. 1999.

[14] R. Xu and D. Wunsch, “Survey of clustering algorithms,” IEEE Trans Neural Netw.,
vol. 16, no. 3, pp. 645-678, May 2005.

[15] R. Xu and D. Wunsch, Clustering, Wiley-IEEE Press, Oct. 2008.

[16] A. Mirzaei, and M. Rahmati, “A novel hierarchical-clustering-combination scheme
based on fuzzy-similarity relations,” IEEE Trans. Fuzzy Syst., vol. 18, no.1, pp. 27-39,
Feb. 2010.

[17] A. Proietti, L. Liparulo, and M. Panella, “2D hierarchical fuzzy clustering using
kernel-based membership functions,” IEEE Electronics Letters, vol. 52, no.3, pp. 193-
195, Feb. 2016.

[18] L. Zheng and T. Li, “Semi-supervised Hierarchical Clustering,” IEEE Proc. Interna-
tional Conference on Data Mining, pp. 982-991, Dec. 2011.

[19] J. Singh, C. B. Vishwakarma, and K. Chattterjee, “Biased reduction method by com-
bining improved modified pole clustering and improved Pade approximations,” Applied
Mathematical Modeling, vol. 40, pp. 1418-1426, Jan. 2016.

[20] P.Kalaiselvi and V. G. Pratheep, “Analysis of interval system using model order reduc-
tion,” IEEE Proc. International Conference on Innovations in Information, Embedded
and Communication Systems (ICIIECS), pp. 1-6, Mar. 2015.

[21] G. Parmar, S. Mukher, and R. Prasad, “System reduction using factor division al-
gorithm and eigen spectrum analysis,” Applied Mathematical Modeling, vol. 31, pp.
2542-2552, 2007.

[22] A. C Antoulas, D. Sorensen, and S. Gugercin, “A survey of model reduction methods
for large-scale systems,” Contemporary Mathematics, vol. 280, pp. 193-219, Oct. 2001.

[23] Y. Chahlaoui and P. V. Dooren, ‘“Benchmark Examples for Model Reduction of Linear
Time-Invariant Dynamical Systems,” Springer Proceedings of a Workshop Dimension
Reduction of Large-Scale Systems, vol. 45, pp. 379-392, Oct. 2003.

[24] M. Ghanavati, V. J. Majd, and M. Ghanavati, “Control of inverted pendulum system
by using a new robust model predictive Control Strategy,” IEEE Conference on Control
and Communications Systems, vol. 12, pp. 33-38, Sep. 2011.

[25] S. Jung, H. Cho, and T. C. Hsia, “Neural network control for position tracking of a
two-axis inverted pendulum system: experimental studies,” IEEE Trans Neural Netw.,
vol. 18, no. 4, pp. 1042-1048, Jul. 2007.

331

[26] L. B. Prasad, B. Tyagi, and H. O. Gupta, “Optimal control of nonlinear inverted pen-
dulum dynamical system with disturbance Input using PID controller and LQR,” I[EEE
International Conference on Control System, Computing and Engineering (ICCSCE),
vol. 12, pp. 540-545, Nov. 2011.

[27] M. Juneja and S. K. Nagar, “Comparative study of model order reduction using combi-
nation of PSO with conventional reduction techniques,” IEEE International Conference
on Industrial Instrumentation and Control (ICIC), pp. 406-411, May 2015.

[28] S. Sehgal and S. Tiwari, “LQR control for stabilizing triple link Inverted pendulum
system,” IEEE International Conference on Power, Control and Embedded Systems,
pp- 1-5, Dec. 2012.

[29] Alok Sinha, Linear Systems: Optimal and Robust Control, CRC. Press, 2007.

[30] A.K. Mittal, R. Prasad, and S. P. Sharma, “Reduction of linear dynamic systems using
an error minimization technique,” Journal of Institution of Engineers (IE), vol. 84, pp.
201-206, Mar. 2004.

[31] S. Mukherjee, Satakshi, and R.C. Mittal, “Model order reduction using response
matching technique,” Journal Franklin Institute, vol. 342, pp. 503-519, Aug. 2005.

[32] R. Prasad and J. Pal, “Stable reduction of linear systems by continued fractions”
Journal of Institution of Engineers (IE), vol. 72, pp. 113-116, Oct. 1991.

[33] 1. D. Smith and T. N. Lucas, “Least-squares moment matching reduction methods”
Electronics Letters, vol. 31, no. 11, pp. 929-930, May 1995.

[34] A. Konar, I. G. Chakraborty, S. J. Singh, L. C. Jain, and A. K. Nagar, “A determin-
istic improved g-learning for path planning of a mobile robot,” IEEE Transactions on
Systems, Man, and Cybernetics: Systems, vol.43, no.5, pp.1141 - 1153, Sept. 2013.

[35] H. Xiao, L. Liao, and F. Zhou, “Mobile robot path planning based on Q-ANN,”
Proceedings of the IEEE International Conference on Automation and Logistics, pp.
2650 - 2654, Aug. 2007.

[36] G. Yang, E. Chen, and C. An, “Mobile robot navigation using neural Q-learning,” Pro-
ceedings of the IEEE International Conference on Machine Learning and Cybernetics,
vol.1, pp. 48 - 52, Aug. 2004.

[37] R. S. Sutton, and A. Barto, Reinforcement Learning: An Introduction, Cambridge,
U.K.: Cambridge Univ. Press, 1998.

[38] R.Bellman, Dynamic Programming. Princeton, NJ, USA: Princeton Univ. Press, 1957.

[39] F. L. Lewis, D. Vrabie, and V. L. Syrmos, Optimal Control. NewYork, NY, USA:
Wiley, 2012.

332

[40] R. S. Sutton, “Integrated architectures for learning, planning, and reacting based on
approximating dynamic programming,” Proc. 7th Int. Conf. Mach. Learn, pp. 216 -
224, 1990.

[41] R. S. Sutton, “Learning to predict by the methods of temporal differences,” Mach.
Learn, vol. 3, no. 1, pp. 9 - 44, 1988.

[42] D. Liu, and H. Zhang, “A Neural Dynamic Programming approach For Learning
Control Of Failure Avoidance Problems,” International Journal Of Intelligent Control
And Systems, vol. 10, No. 1, 21 - 32, Mar. 2005.

[43] D. Prokhorov, and D. C. Wunsch, “Adaptive critic designs,” IEEE Transactions on
Neural Networks, vol. 8, pp. 997 - 1007, Sept. 1997.

[44] J. Si, A. G. Barto, and W. B. Powell, and D. Wunsch, Handbook of Learning and
Approximate Dynamic Programming, New York, NY, USA: Wiley, 2004.

[45] P. J. Werbos, “Approximate dynamic programming for real-time control and neural
modeling,” Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches
(Chapter 13), Edited by D. A. White and D. A. Sofge, New York, NY: Van Nostrand
Reinhold, 1992.

[46] D. V. Prokhorov, R. A. Santiago, and D. C. Wunsch, “Adaptive critic designs: A case
study for neurocontrol,” Neural Networks, vol. 8, pp. 1367 - 1372, 1995.

[47] J. Si, and Y. Wang, “Online learning control by association and reinforcement,” IEEE
Trans. Neural Netw., vol. 12, no. 2, pp. 264 - 276, Mar. 2001.

[48] H. He, Z. Ni, and J. Fu, “A three-network architecture for on-line learning and opti-
mization based on adaptive dynamic programming,” Neurocomputing, vol. 78, no. 1,
pp. 3 - 13, Feb. 2012.

[49] X.Fanga, D.Zhenga, H. He, and Z. Nib, “Data-driven heuristic dynamic programming
with virtual reality”, vol. 166, pp. 244 - 255, Oct. 2015.

[50] Z. Ni, H. He, D. Zhao, X. Xu, and D. V. Prokhorov, “GrDHP: A General Utility
Function Representation for Dual Heuristic Dynamic Programming,” IEEE transactions
on neural networks and learning systems, vol. 26, no. 3, pp. 614 - 627, mar. 2015.

[51] G. K. Venayagamoorthy, R. G. Harley, and D. C. Wunsch, “Dual heuristic program-
ming excitation neurocontrol for generators in a multimachine power system,” IEEE
Trans. Ind. Appl., vol. 39, no. 2, pp. 382 - 394, Mar. 2003.

[52] N. Zhang, and D. C. Wunsch, “A Comparison of Dual Heuristic Programming (DHP)
and Neural Network Based Stochastic Optimization Approach on Collective Robotic
Search Problem,” Proceedings Neural Networks of the IEEE, vol.1, pp. 248 - 253, Jul.
2003.

333

[53] C. Lian, and X. Xu, “Motion Planning of Wheeled Mobile Robots Based on Heuristic
Dynamic Programming,” IEEE Proceeding of the 11th World Congress on Intelligent
Control and Automation Shenyang, pp. 576 - 580, Jul. 2014.

[54] X. Yang, M. Moallem, and R. V. Patel, “A layered goal-oriented fuzzy motion plan-
ning strategy for mobile robot navigation,” IEEE Transactions on Systems, Man, and
Cybernetics, vol. 35, no. 6, pp. 1214 - 1224, Dec. 2005.

[55] S. Pawlikowski, “Development of a Fuzzy Logic Speed and Steering Control System
For an Autonomous Vehicle,” Master thesis, University of Cincinnati, Department of
Mechanical Engineering, Jan. 1999.

[56] O. Caelen, and G. Bontempi, “Improving the exploration strategy in bandit algo-

rithms,” International Conference on Learning and Intelligent Optimization, pp 56 -
68, 2008.

[57] T.Tateyama, S. Kawata, and Y. Shimomura, “Parallel Reinforcement Learning Systems
Using Exploration Agents and Dyna-Q Algorithm,” SICE Annual Conference, pp. 2774
- 2778, Sep. 2007.

[58] K. Miyazaki, M. Yamamura, and S. Kobayashi, “K certainty exploration method:
an action selector to identify the environment in reinforcement learning,” Artificial
Intelligence, vol. 91, no.l, pp. 155 - 171, 1997.

[59] Y. Zhang, and M. Feng, “Application of reinforcement learning based on artificial
neural network to robot soccer,” Journal of Harbin Institute of Technology, vol.36
,no.7, pp. 859 - 861, Jul. 2004.

[60] K. Ito, and Y. Imoto, “A study of reinforcement learning with knowledge sharing for
distributed autonomous system,” Proceedings 2003 IEEE International Symposium on
Computational Intelligence in Robotics and Automation, vol. 3, pp. 1120 - 1125, Jul.
2003.

[61] C.Samson, “Velocity and torque feedback control of a nonholonomic cart,” Advanced
Robot Control, pp. 125 - 151, Jan. 1991.

[62] S. Mitra, and Y. Hayashi, “Neuro-fuzzy rule generation: survey in soft computing
framework,” IEEE Trans. Neural Networks, vol. 11, no. 3, pp. 748 - 768, Aug. 2002.

[63] Z. Ni, H. He, X. Zhong, and D. Prokhorov, “Model-Free Dual Heuristic Dynamic
Programming,” IEEE Trans. Neural Networks, vol. 26, no. 8, pp. 1834 - 1839, Aug.
2015.

[64] S. Al-Dabooni, and D. Wunsch, “Heuristic Dynamic Programming for Mobile Robot
Path Planning Based on Dyna Approach,” IEEE International Joint Conference on
Neural Networks (IJCNN), pp. 3723 - 3730, Jul. 2016.

[65] M. Fairbank, and E. Alonso, “Value-Gradient Learning,” IEEE International Joint
Conference on Neural Networks (IJCNN)), pp. 1 - 8, Jun. 2012.

334

[66] R. Fierro, and F. L. Lewis, “Control of a Nonholonomic Mobile Robot Using Neural
Networks,” IEEE Trans. Neural Networks, vol. 9, no. 4, pp. 589 - 600, Jul. 1998.

[67] W. S. Lin, L. H. Chang, and P. C. Yang, “Adaptive critic anti-slip control of wheeled
autonomous robot,” IET Control Theory and Applications, vol. 1 , no. 1, pp. 51 - 57,
Jan. 2007.

[68] T. Dierks, and S. Jagannathan, ‘“Neural Network Output Feedback Control of Robot
Formations,” IEEE Trans. on Systems, Man, and Cybernetics, vol. 40, no.2, pp. 383 -
399, Apr. 2010.

[69] R. Kelly, J. Llamas, and R. Campa, “A measurement procedure for viscous and
coulomb friction,” IEEE Trans. on Instrumentation and Measurement, vol.49, no. 4,
pp- 857 - 861, Aug. 2000.

[70] P.J. Werbos, “Backpropagation through time: What it does and how to do it,” Pro-
ceedings of the IEEE, vol. 78, no. 10, pp. 1550 - 1560, 1990

[71] Y. Liu, Y. Lin, S. Wu, C. Chuang, and C. Lin, “Brain Dynamics in Predicting Driving
Fatigue Using a Recurrent Self-Evolving Fuzzy Neural Network,” IEEE Trans. Neural
Network, vol. 27, no. 2, pp. 347 - 360, Feb. 2016.

[72] X. Luo, Y. Lv, R. Li, and Y. Chen, “Web Service QoS Prediction Based on Adaptive
Dynamic Programming Using Fuzzy Neural Networks for Cloud Services,” IEEE Ac-
cess, Special Section on Challenges for Smart Worlds, vol. 3, pp. 2260 - 2269, Nov.
2015.

[73] F.Lin, P. Chou, C. Chen, and Y. Lin, “DSP-Based Cross-Coupled Synchronous Control
for Dual Linear Motors via Intelligent Complementary Sliding Mode Control,” I[EEE
Trans.Industrial Electronics, vol. 59, no. 2, pp. 1061 - 1073, Feb. 2012.

[74] A. K. Palit, G. Doeding, W. Anheier, and D. Popovic, “Backpropagation based training
algorithm for Takagi-Sugeno type MIMO neuro-fuzzy network to forecast electrical
load time series,” Proc. of Int. Conf. on FUZZ-IEEE, vol. 1, pp. 86 - 91, May 2002.

[75] T. Dierks, and S. Jagannathan, “Online Optimal Control of Affine Nonlinear Discrete-
Time Systems With Unknown Internal Dynamics by Using Time-Based Policy Update,”
IEEE Trans. Neural Network, vol. 23 ;no. 7 , pp. 1118 - 1129, June 2012.

[76] M. Fairbank, D. Prokhorov, and E. Alonso, “Approximating Optimal Control with
Value Gradient Learning,” Chapter 7 in Reinforcement Learning and Approximate
Dynamic Programming for Feedback Control, New York, NY, USA: John Wiley and
Sons, pp. 142-161, Jan. 2013.

[77] S. Al-Dabooni, and D. Wunsch, “Mobile Robot Control Based on Hybrid Neuro-Fuzzy
Value Gradient Reinforcement Learning,” IEEE/INNS, International Joint Conference
on Neural Networks (IJCNN), pp. 2820-2827, May 2017.

335

[78] X. Bai, D. Zhao, and J. Yi. “ADHDP (1) strategies based coordinated ramps metering
with queuing consideration,” IEEE Symposium on Adaptive Dynamic Programming
and Reinforcement Learning (ADPRL), pp. 22-27, May 2009.

[79] T. Li, D. Zhao, and J. Yi. “Heuristic dynamic programming strategy with eligibility
traces,” IEEE American Control Conference, pp. 4535-4540, Jun. 2008.

[80] X.Bai, D. Zhao, and J. Yi, “Ramp Metering Based on on-line ADHDP(2) controller,”
IEEE/INNS, International Joint Conference on Neural Networks (IJCNN), pp. 1847-
1852, Jul. 2008.

[81] X. Bai, D. Zhao, and J. Yi, “Coordinated multiple ramps metering based on neuro-
fuzzy adaptive dynamic programming,” IEEE/INNS, International Joint Conference on
Neural Networks (IJCNN), pp. 241-248, Jul. 2009.

[82] H. Seijen, A. R. Mahmood, P. M. Pilarski, M. C. Machado, and R. S. Sutton, “True On-
line Temporal-Difference Learning,” Journal of Machine Learning Research (JMLR),
vol. 145, no. 17, pp. 1-40, Jan. 2016.

[83] R.S. Sutton, A. R. Mahmood, and M. White, “An Emphatic Approach to the Problem
of Off-policy Temporal-Difference Learning,” Journal of Machine Learning Research
(JMLR), vol. 73, no. 17, pp. 1-29, Jan. 2016.

[84] H. Seijen, and R. S. Sutton, “True Online TD(A),” Proceedings of the 31°" International
Conference on Machine Learning, pp. 692-700, Jan. 2014.

[85] Y. Sokolov, R. Kozma, L. D. Werbos, and P. J. Werbos, “Complete stability analysis
of a heuristic approximate dynamic programming control design,” Automatica, vol. 59,
pp- 9-18, Sep. 2015.

[86] F. Liu, J. Sun, J. Si, W. Guo, and S. Mei, “A boundedness result for the direct heuristic
dynamic programming,” Neural Networks, vol. 32, pp. 229-235, Aug. 2012.

[87] K.Doya, “Reinforcement learning in continuous time and space,” Neural Computation,
vol. 12, no. 1, pp. 219-245, Jan. 2000.

[88] M. Fairbank, ‘“Reinforcement learning by value gradients,” eprintarXiv:0803.3539,
Mar. 2008.

[89] Y. Zhu, D. Zhao , and D. Liu, “Convergence analysis and application of fuzzy-HDP
for nonlinear discrete-time HIB systems,” Neurocomputing, vol. 149, pp. 124-131, Feb.
2015.

[90] C. Yang, Y. Jiang, Z. Li, W. He, and C. Su, “Neural control of bimanual robots with
guaranteed global stability and motion precision,” IEEE Trans. Industrial Informatics,
vol. 13, no. 3, pp. 1162-1171, Jun. 2017.

[91] C. Yang, X. Wang, L. Cheng, and H. Ma, “Neural-learning-based telerobot control
with guaranteed performance,” IEEE Trans. Cybernetics, vol. PP, no. 99, pp. 1-12, Jun.
2016.

336

[92] G. Zhang, M. Y. Hu, B. E. Patuwo, and D. C. Indro, “Artificial neural networks in
bankruptcy prediction: General framework and cross-validation analysis,” European
Journal of Operational Research, vol. 116, no. 1, pp. 16-32, Jul. 1999.

[93] D.Liu, and D. Wang, “Optimal Control of Unknown Nonlinear Discrete-Time Systems
Using the Iterative Globalized Dual Heuristic Programming Algorithm,” Chapter 3
in Reinforcement Learning and Approximate Dynamic Programming for Feedback
Control, New York, NY, USA: John Wiley and Sons, pp. 52-77, Jan. 2013.

[94] C.Chen, D.Dong, H.Li,J. Chu, and T. Tarn, “Fidelity-Based Probabilistic Q-Learning
for Control of Quantum Systems,” IEEE Trans. Neural Netw. and Learn Syst., vol. 5,
no. 10, pp. 920-933, May 2014.

[95] P. J. Werbos, and X. Pang, “Generalized maze navigation: SRN critics solve what
feedforward or Hebbian nets cannot,” IEEE Proc. Conf. Systems, Man and Cybernetics
(SMC) , pp. 1764-1769, Oct. 1996.

[96] D. Wunsch, “The Cellular Simultaneous Recurrent Network Adaptive Critic Design
for the Generalized Maze Problem Has a Simple Closed-Form Solution,” IEEE/INNS,
International Joint Conference on Neural Networks (IJCNN), pp. 79-82, Jul. 2000.

[97] R. Ilin, R. Kozma, and P. J. Werbos,“Beyond Feedforward Models Trained by Back-
propagation: A Practical Training Tool for a More Efficient Universal Approximator,”
IEEE Trans. Neural Netw., vol. 19, no. 6, pp. 929-937, Jun. 2008.

[98] N. Zheng, and P. Mazumder, “Hardware-Friendly Actor-Critic Reinforcement Learn-
ing Through Modulation of Spike-Timing-Dependent Plasticity,” IEEE Trans. on Com-
puters, vol. 66, no. 2, pp. 299-311, Feb. 2017.

[99] B. Luo, D. Liu, T Huang, and D. Wang, “Model-Free Optimal Tracking Control via
Critic-Only Q-Learning,” IEEE Trans. Neural Netw. and Learn Syst., vol. 27, no. 5, pp.
2134-2144, Oct. 2016.

[100] The National Council of Teachers of Mathematics (NCTM):
https://illuminations.nctm.org

[101] X. Zhong, Z. Ni, and H. He, “A Theoretical Foundation of Goal Representation
Heuristic Dynamic Programming,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no.
12, pp. 2513 - 2525, Dec. 2016.

[102] V. Mnih, A. P. Badia , M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K.
Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” International
Conference on Machine Learning, pp. 1928-1937, Jul. 2016.

[103] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets, M. Yeo, A.
Makhzani, H. KAijttler, J. Agapiou, J. Schrittwieser, and J. Quan, “StarCraft II: A New
Challenge for Reinforcement Learning,” arXiv preprint arXiv:1708.04782. Aug. 2017.

337

[104] S. Al-Dabooni, and D. Wunsch, “The Boundedness Conditions for Model-Free
HDP(2),” Under reviewing for IEEE Trans. Neural Netw. and Learn Syst.

[105] Y. Tang, H. He, Z. Ni, X. Zhong, D. Zhao, and X. Xu, “Fuzzy-Based Goal Repre-
sentation Adaptive Dynamic Programming,” IEEE Trans. on Fuzzy Sys., vol. 24, no. 5,
pp- 1156 - 1176, Oct. 2016.

[106] F. Y. Wang, H. Zhang, and D. Liu, “Adaptive dynamic programming: An intro-
duction,” IEEE Computational Intelligence Magazine, vol. 4, no. 2, pp. 39-47, May
2009.

[107] H. He, Self-Adaptive Systems for Machine Intelligence. New York, NY, USA: Wiley,
2011.

[108] S. P. Singh, and R. S. Sutton, “Reinforcement learning with replacing eligibility
traces,” Machine Learning, vol. 22, no. 1, pp. 123 - 158, Mar. 1996.

[109] Y. Xiao, M. Wasei, P. Hu, P. Wieringa, and F. Dexter, “Dynamic Management

of Perioperative Processes: A Modeling and Visualization Paradigm,” International
Federation of Automatic Control (IFAC), vol. 39, no. 3, pp. 647 - 652, Jan. 2006.

[110] K. L. Keller, and R. Staelin, “Effects of Quality and Quantity of Information on
Decision Effectiveness,” Journal of Consumer Research, vol. 14, no. 2, pp. 200 - 213,
Sep. 1987.

[111] D. P. Bertsekas, “Approximate policy iteration: A survey and some new methods,”
J. Control Theory Appl., vol. 9, no. 3, pp. 310 - 335, Aug. 2011.

[112] F.L.Lewis, and D. Vrabie, “Reinforcement learning and adaptive dynamic program-
ming for feedback control,” IEEE Circuits Syst. Mag., vol. 9, no. 3, pp. 32 - 50, Aug.
2009.

[113] R. Padhi, N. Unnikrishnan, X. Wang, and S. N. Balakrishnan, “A single network
adaptive critic (SNAC) architecture for optimal control synthesis for a class of nonlinear
systems,” Neural Netw., vol. 19, no. 10, pp. 1648 - 1660, Dec. 2006.

[114] J. Fu, H. He, and X. Zhou, “Adaptive learning and control for MIMO system based
on adaptive dynamic programming,” IEEE Trans. Neural Netw., vol. 22, no. 7, pp. 1133
- 1148, Jul. 2011.

[115] Z. Ni, H. He, and J. Wen, “Adaptive learning in tracking control based on the dual
critic network design,” IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 6, pp. 913 -
928, Jun. 2013.

[116] F. L. Lewis, and D. Liu, Eds., Reinforcement Learning and Approximate Dynamic
Programming for Feedback Control. Hoboken, NJ, USA: Wiley, 2013.

[117] Q. Wei, and D. Liu, “Adaptive dynamic programming for optimal tracking control of
unknown nonlinear systems with application to coal gasification,” IEEE Trans. Autom.
Sci. Eng., vol. 11, no. 4, pp. 1020 - 1036, Oct. 2014.

338

[118] S. Ray, G. K. Venayagamoorthy, B. Chaudhuri, and R. Majumder, “Comparison
of adaptive critic-based and classical wide-area controllers for power systems,” I[EEE
Trans. Syst., Man, Cybern. B, Cybern., vol. 38, no. 4, pp. 1002 - 1007, Aug. 2008.

[119] H. Zhang, Y. Luo, and D. Liu, “Neural-network-based near-optimal control for a
class of discrete-time affine nonlinear systems with control constraints,” IEEE Trans.
Neural Netw., vol. 20, no. 9, pp. 1490 - 1503, Sep. 2009.

[120] B. Xu, C. Yang, and Z. Shi, “Reinforcement learning output feedback NN control
using deterministic learning technique,” IEEE Trans. Neural Netw. Learn. Syst., vol.
25, no. 3, pp. 635 - 641, Mar. 2014.

[121] Q. Wei, and D. Liu, “Data-driven neuro-optimal temperature control of waterAASgas
shift reaction using stable iterative adaptive dynamic programming,” IEEE Trans. Ind.
Electron., vol. 61, no. 11, pp. 6399 - 6408, Nov. 2014.

[122] D. Liu, D. Wang, F.-Y. Wang, H. Li, and X. Yang, “Neural-network based online
HIJB solution for optimal robust guaranteed cost control of continuous-time uncertain
nonlinear systems,” IEEE Trans. Cybern., vol. 44, no. 12, pp. 2834 - 2847, Dec. 2014.

[123] D. Liu, and Q. Wei, “Policy iteration adaptive dynamic programming algorithm for
discrete-time nonlinear systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no.
3, pp. 621 - 634, Mar. 2014.

[124] A. Al-Tamimi, F. L. Lewis, and M. Abu-Khalaf, “Discrete-time nonlinear hjb solution
using approximate dynamic programming: convergence proof,” IEEE Trans. on Sys.,
Man, and Cyb., Part B, vol. 38, no. 4, pp. 943 - 949, Aug. 2008.

[125] D. Liu, and Q. Wei, “Finite-approximation-error-based optimal control approach for
discrete-time nonlinear systems,” IEEE Trans. Cybern., vol. 43, no. 2, pp. 779 - 789,
Apr. 2013.

[126] D. Liu, D. Wang, D. Zhao, Q. Wei, and N. Jin, “Neural-network-based optimal
control for a class of unknown discrete-time nonlinear systems using globalized dual
heuristic programming,” IEEE Trans. Autom. Sci. Eng., vol. 9, no. 3, pp. 628 - 634, Jul.
2012.

[127] F. L. Lewis, and D. Liu, Reinforcement Learning and Approximate Dynamic Pro-
gramming for Feedback Control, Chapter 7, John Wiley and Sons, Jan. 2013.

[128] S. Al-Dabooni, and D. Wunsch, “Online Model-Free N-Step HDP with Stability
Analysis,” Under Preparing.

[129] D. P. Bertsekas, “Approximate policy iteration: A survey and some new methods,”
J. Control Theory Appl., vol. 9, no. 3, pp. 310 - 335, Aug. 2011.

[130] Y. Yang, D. Wunsch, and Y. Yin, “Hamiltonian-driven adaptive dynamic program-
ming for continuous nonlinear dynamical systems,” IEEE Trans. Neural Netw. Learn.
Syst. vol. PP, no. 12, pp. 1 - 12, Feb. 2017 (to be published).

339

[131] M. Fairbank, E. Alonso, and D. Prokhorov, “An Equivalence Between Adaptive
Dynamic Programming With a Critic and Backpropagation Through Time,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 24, no. 12, pp. 2088 - 2100, Dec. 2013.

[132] S. Al-Dabooni, and D. Wunsch, “An Improved N-Step Value Gradient Learning

Adaptive Dynamic Programming Algorithm for Online Learning, with Convergence
Proof and Case Studies”, Under review for IEEE Trans. Neural Netw. Learn. Syst.

[133] D. Zhao, Y. Zhu, and H. He, “Neural and fuzzy dynamic programming for under-
actuated systems,” IEEE/INNS, International Joint Conference on Neural Networks
(IJCNN), pp. 1 -7, Jun. 2012.

[134] S. Mohagheghi, G. K. Venayagamoorthy, and R. G. Harley, “Fully evolvable optimal
neurofuzzy controller using adaptive critic designs,” IEEE Trans. on fuzzy systems, vol.
16, no. 6, pp 1450 - 1461, Dec. 2008.

[135] S. Mohagheghi, G. K. Venayagamoorthy, and R. G. Harley, “Adaptive critic design
based neuro-fuzzy controller for a static compensator in a multimachine power system,”
IEEE Trans. on Power Systems, vol. 21, no. 4, pp 1450 - 1461, Nov. 2006.

[136] Y. Zhu, D. Zhao, and H. He, “Integration of fuzzy controller with adaptive dynamic
programming,” IEEE conference World Congress In Intelligent Control and Automation
(WCICA), pp. 310 - 315, Jul.2012.

[137] Y. Tang, C. Mu, and H. He, “SMES-based damping controller design using fuzzy-
GrHDP considering transmission delay,” IEEE Trans. on Applied Superconductivity,
vol. 26, no. 7, pp 1 - 6, Oct. 2016.

[138] H. Zhang, J. Zhang, G. H. Yang, and Y. Luo, “Leader-based optimal coordination
control for the consensus problem of multiagent differential games via fuzzy adaptive
dynamic programming,” IEEE Trans. on Fuzzy Systems, vol. 23, no. 1, pp 152 - 163,
Feb. 2015.

[139] J. L. Zhang, H G. zhang, L. U. Yan-Hong, and H. J. liang, “Nearly optimal control
scheme using adaptive dynamic programming based on generalized fuzzy hyperbolic
model,” Acta Automatica Sinica, vol. 39, no. 2, pp 142 - 1148 Feb. 2013.

[140] C. H. Lee, and C. C. Teng, “Identification and control of dynamic systems using
recurrent fuzzy neural networks,” IEEE Trans. on fuzzy systems, vol. 8, no. 4, pp. 349 -
366, Aug. 2000.

[141] J.-S. Jang, C.-T. Sun, and E. Mizutani, Neuro-fuzzy and soft computing: a com-
putational approach to learning and machine intelligence Upper Saddle River, NJ:
Prentice-Hall, 1997.

[142] M. Sugeno, G. Kang, “Structure identification of fuzzy model,” Fuzzy Sets Syst, vol.
28, pp.154AS$33, 1988.

340

[143] J.-S.Jang, “ANFIS: adaptive-network-based fuzzy inference system,” IEEE trans. on
systems, man, and cybernetics, vol. 23, no. 3, pp. 665-685, May 1993.

[144] J. W. Yeh, and S. F. Su, “Efficient approach for RLS type learning in TSK neural
fuzzy systems,” IEEE trans. on cybernetics, vol. 47, no. 9, pp. 2343-2352, Sep. 2017.

[145] J.-S. Wang, and C.-G. Lee, “Self-adaptive neuro-fuzzy inference systems for clas-
sification applications” IEEE Trans. on Fuzzy Sys, vol. 10, no. 2, pp. 790-802, Dec.
2002.

341

VITA

Seaar Al-Dabooni received his B.S. degrees in Computer Engineering from Basrah
University, Basrah, Iraq, in 2004 with rank (1) out of (79) students. He received his
M.S. degrees in Computer Engineering from Basrah University, Basrah, Iraq, in 2009 with
rank (1) out of (9) students. He is a member of the Applied Computational Intelligence
Laboratory (ACIL) directed by Dr. Wunsch. During his Ph.D., he completed several project
that related with Model Order Reduction Reinforcement Learning, Adaptive Dynamic
Control and Robotic Systems. In May 2018, he received his Ph.D. in Computer Engineering

from the Missouri University of Science and Technology, Rolla, Missouri, USA.

	Adaptive dynamic programming with eligibility traces and complexity reduction of high-dimensional systems
	Recommended Citation

	page 1-31
	1-13
	14-29
	30-31

	template

