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ABSTRACT

Large scale networks are an indispensable part of our daily life; be it biological net-

work, smart grids, academic collaboration networks, social networks, vehicular networks,

or the networks as part of various smart environments, they are fast becoming ubiquitous.

The successful realization of applications and services over them depend on efficient solu-

tion to their computational challenges that are compounded with network dynamics. The

core challenges underlying large scale networks, for example: determining central (influ-

ential) nodes (and edges), interactions and contacts among nodes, are the basis behind the

success of applications and services. Though at first glance these challenges seem to be

trivial, the network characteristics affect their effective and efficient evaluation strategy.

We thus propose to leverage large scale network structural characteristics and temporal

dynamics in addressing these core conceptual challenges in this dissertation.

We propose a divide and conquer based computationally efficient algorithm that

leverages the underlying network community structure for deterministic computation of be-

tweenness centrality indices for all nodes. As an integral part of it, we also propose a com-

putationally efficient agglomerative hierarchical community detection algorithm. Next, we

propose a network structure evolution based novel probabilistic link prediction algorithm

that predicts set of links occurring over subsequent time periods with higher accuracy. To

best capture the evolution process and have higher prediction accuracy we propose multiple

time scales with the Markov prediction model. Finally, we propose to capture the multi-

periodicity of human mobility pattern with sinusoidal intensity function of a cascaded non-

homogeneous Poisson process, to predict the future contacts over mobile networks. We

use real data set and benchmarked approaches to validate the better performance of our

proposed approaches.
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1. INTRODUCTION

We are living in an era of large scale networks [71]. With immense growth and

use of the Internet and computing technologies in the last two decades, the large scale net-

works have profound impact on the society with application domains spanning from the

Internet, transportation networks, social and opportunistic networks, smart grids, biologi-

cal networks, (scientific and academic) collaboration networks, to mention a few; justifying

active and profound research in large scale network analysis. To better analyze these net-

works, a substantial amount of research has emerged in the domain of modeling network

evolution [95], analytical tools for visualization [16, 76], determination of empirical, quan-

titative indices and clustering of social networks [112].

More so, decreasing cost of mobile devices, and wide spread adaptability of tech-

nology further emphasizes the existence of large scale networks as an an integral part of

our daily life, with much diverse application domains [6, 77, 121]. Large scale networks,

though gives rise to the possibility of many applications and services at its disposal; the

successful realization of these applications depend on efficient solution to various compu-

tational challenges originating with large network size, network dynamics, to mention a

few.

These computational challenges though specific to applications, are all stemmed

from the underlying large scale networks. Thus, the network characteristics and behavior

should be analyzed in order to propose efficient algorithms to resolve the intrinsic compu-

tational problems over the networks, and result in efficient and successful applications.
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The remainder of this discussion is organized as follows. Subsection 1.1 describes

the applications and challenges over large scale networks, while Subsection 1.2 presents

the motivations for the work in this dissertation. Subsection 1.3 states the main problems

that are addressed in this dissertation and discusses our major contributions. Finally, the

organization of this dissertation is presented in Subsection 1.4.

1.1. LARGE SCALE NETWORK APPLICATIONS AND CHALLENGES

Large scale networks, with its diverse network domains result in a wide range of ap-

plications, starting with routing, information dissemination, viral marketing (also determin-

ing market trends), disease propagation, scientific/ academic collaborations, new friendship

in social networks, movies and songs a user will listen to, hidden links in anti-social activ-

ities, to maintaining a reliable and secure network at its disposal. More so, the explosive

growth of Internet-related communication, decreasing cost of mobile devices like smart

phones and tablets etc., along with their ever growing density, and the large scale deploy-

ment of sensors, led to the class of mobility induced dynamic networks. More so, with

realistic inclusion of vehicular networks [6], smart health care, smart management of phys-

ical resources with realization of smart cities [77, 121], mobile social networks [74], and

mobile sensor networks [72] over the past decade, the ubiquitous smart devices result in

a large scale mobile, ad-hoc wireless network. These devices not only capable of sensing

vital environmental and application specific data, but are also equipped with storage, com-

putational, connectivity capabilities for successful realization of the applications, which

depend on the real-time, efficient collaboration among the devices for data offloading [67],

forming virtual cloud [47] etc.

The success and efficiency of the applications depend on various aspects like, avail-

ability of contact and link between node pairs (e.g. for collaboration, information spread-

ing, routing etc.), the set of critical nodes or influence of a node (e.g. for maintaining

reliable and secure networks and checking the spread of virus, in fast routing, fast infor-
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mation dissemination, to have effective vaccination strategies to check disease outbreak, to

have guided spread of advertisements for effective marketing). For example, in a good op-

portunistic routing algorithm the challenge is to which node and when a node should pass

message to, for the minimal latency, maximal coverage and is dependent on knowing the

timely contacts ahead of time, and the effective (central) nodes that needs to act as major

carriers.

These computational problems, such as determining influential nodes, finding links

and contacts between node pairs are in fact affected by the type of influential metric that

is considered (that causes possible increase in computational cost), the underlying network

structure, the intermittent and dynamic nature of networks that affect connectivity, to men-

tion a few. These computational challenges are further escalated with large size of the

underlying network.

Obviously underlying every large scale networks, there is a network graph. The

network elements are the nodes and the contacts or interactions represent the edges. In sta-

tionary graphs, the connectivity or edge remains (or is assumed to remain) unchanged and

is the aggregated graph of the contacts over the whole time domain. Whereas, the network

dynamics is best reflected over time domain is usually known as dynamic networks.

The inherent dynamic nature of large scale networks, stems with underlying inter-

actions (as in biological, bio-informatics, social networks) or caused due to mobility or

environmental factors (as in ad-hoc wireless networks, mobile-social networks, vehicular

networks, opportunistic networks) [27, 107, 126]. The dynamic nature of these networks

as a result of their structural changes over time. Change in network structure results from

the inclusion of new or exclusion of existing nodes, and presence or absence of links over

time. In reality the exclusion/ deletion is a rare event whereas, inclusion of new nodes is

prominent, resulting in denser network over time. Over such evolving networks predicting
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future link between node pairs is an important challenge. To best overcome the intermittent

connectivity or disconnection and variable delays that are an integral part of these network

it is wise that the problems be studied over temporal domain [70, 75, 103, 137].

Associated with large size also comes the sparsity of large scale networks. The

prominent challenge for the significant research interest in link prediction problem stems

from the sparsity of the real world large-scale networks [8, 48, 91], implying the existing

links at any instant are only a very small fraction of all potential links in the network. Lets

consider a network G(V,E) with V × V − E probable links to choose from. For a dense

graph E = O(V 2) ≈ V 2 − c, c a constant in the range [1,V ]. Thus, the size of probable link

set is O(1), with probability of O( 1
c ) to select a link correctly at random. If existing link

set is sparse then the probable link set is O(V 2), with O( 1
V 2 ) probability of correct random

selection of an future link. Thus, it is challenging to select the future edges accurately in

sparse graphs, along with the added dynamic nature of networks.

1.2. MOTIVATION OF THE DISSERTATION

As mentioned earlier, influential metric and knowledge of the availability of links

and contacts are critical to success and efficiency of applications. More so, betweenness

influential metric is based on dependency, in addition to being a just distance based and

being a critical factor in many applications. Efficient solutions to address these problems

will intern effect the success of diverse applications over law scale networks. So, in this

dissertation we consider proposing efficient solutions for betweenness centrality evaluation,

link prediction over dynamic networks and contact prediction over mobile networks.

Further, the usefulness of betweenness centrality lies in its computational cost.

Therefore, finding novel and computationally efficient algorithms for exact betweenness

centrality evaluation is at the heart of large scale network analysis and our work is devoted
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to it. More so, the computational challenges are sourced from the underlying network

structure. So, we are motivated to leverage network structural characteristics in proposing

our novel and efficient algorithms.

Static network representation is the basis of existing research, except a few that

consider temporal graphs. Here, link prediction consider evaluating prediction accuracy of

new links, e.g. whether two authors will collaborate with each other, or two persons will

become friends at a certain time. In relatively stationary network like academic collabo-

ration network (say, DBLP), the assumption may not give worst prediction accuracy, but

in dynamic networks, say online social networks, e-mail communications etc., where the

link or recurrent-link occurrence is very frequent, it significantly undermines the prediction

accuracy. Link prediction, though mostly addresses the possibility of new links between

node pairs, it is also significant to address the recurring-links/ interactions over an existing

link with examples like: interactions between two existing friends, collaboration between

pair of earlier collaborators in an academic network. These time stamped recurring-links

press the need for an incremental design model.

Existing techniques lack well defined time period for single snapshot of the tem-

poral graph that undermines an efficient and effective prediction model. For example, in

co-authorship network (DBLP network) this can be monthly, whereas in email, or online

social network communications the time period has to be small enough to capture the un-

derlying dependency (say, hour:minute format) for structural changes. Thus, the prediction

model needs to take care of both macroscopic and microscopic temporal evolution and

associated correlation over the respective time domains (i.e temporal graphs) for more ac-

curate prediction accuracy. Further, given the observation till time T or a static aggregate

snapshot graph or a single snapshot, existing models limit their link prediction for the next

time interval (say, T + 1).
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The conventional link prediction addresses whether two specific nodes indeed in-

teract at a specific time, in contrast the generative models describe evolution on large scale

using global characteristics (and latent parameters) without regard to which node interacts

with which one. Among the temporal graph based approach,the prediction models either

on network structure based [73, 130] or generative model based [68, 79], but what we really

need is integration of both for most accurate and elaborate prediction model to determine

the set of links at any future time. Further, the dynamic models restrict themselves to the

effect of only local neighborhood on link prediction. The challenge is to incorporate the

temporally evolving local and global structure in link prediction for improved prediction

accuracy.

Further, the dynamic models restrict themselves to the effect of only local neigh-

borhood on link prediction. We consider both local and global structural evolution in link

prediction. The challenge here is to incorporate the temporally evolving structure in our

dynamic link prediction approach for improved prediction accuracy. In addition, none of

the existing work consider rate of evolution in predicting future links.

Keeping aside the underlying dynamics over dynamic networks, the mobile net-

works and sensor networks are paged with additional factors like intermittent connectivity

and variable delays. Thus, exact estimation of the future contacts between node pairs, along

with the time at which contacts happen, help us make intelligent forwarding decisions dy-

namically. As future contact probability of node pairs changes over temporal domain, it

emphasizes the need to analyze past contacts to have accurate future contact predictions.

Even if it is tempting to assume that possibly contacts between node pairs occur at uniform

intervals, it is in reality completely opposite. In reality, contacts (interactions) have non-

uniform periods and rate of occurrence of interactions is no longer constant thus, assuming

regular contact pattern and associated homogeneous Poisson process model to analyze and

predict contacts is not suitable as in [28].
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Owing to this non-homogeneity that is the rate occurrence of interactions varying

significantly over time, we are motivated to consider the non-homogeneous Poisson process

(N HPP) model [24, 44, 63, 86, 87] as the basis of our proposed model.

Further, to capture the recurrent nature, the existing models use doubly periodic

property considering the applications to be only of short term and log term. Whereas, hu-

man mobility and hence contacts over mobile networks are beyond simply doubly periodic,

rather they are multi-recurrent. For example, we may go to school (lab) every day, to library

every weekend, attend a seminar talk bi-monthly, go to shopping mall every six months,

watch movies bi-monthly etc., and so are tasks of data offloading, mobile advertisement

etc. are beyond doubly periodic. More so, not only the probability and time of contacts,

but also duration, inter-contact period and number of contacts play a major role in efficient

and timely completion of applications.

1.3. CONTRIBUTIONS OF THIS DISSERTATION

We address three main problems in this dissertation, namely: exact betweenness

centrality evaluation, link prediction over dynamic networks, contact prediction over mo-

bile networks. These problems correspond to the core computational challenges over large

scale networks and are critical to applications’ success. We present an overview of our

contributions in each of the problems in Subsection 1.3.1, Subsection 1.3.2 and Subsection

1.3.3 respectively.

1.3.1. Exact Betweenness Centrality Evaluation. What is exact betweenness cen-

trality indices of network nodes to determine on critical nodes for the network applications?

We propose to leverage the underlying community structure exhibited by large

scale networks in proposing the divide and conquer based exact betweenness centrality

algorithm. As we leverage the community structure, we thus propose a novel commu-

nity detection algorithm that leverages network structural features like power law degree

distribution, before proposing centrality algorithm. In contrast to considering the entire
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network for evaluating betweenness centrality metric as in existing exact algorithms, we

use community structured network, over which the divide and conquer based centrality

algorithm executes, resulting in reduced computational cost. Specifically, the proposed

community detection algorithm in this dissertation captures the inherent community struc-

ture underlying the large scale network with predefined upper bound on the number and

size of communities (O(
√
|V |)), where |V | = n is the number of nodes in the network. The

resulting communities of the community detection algorithm are used in centrality evalu-

ation algorithm. Thus, we propose a community detection algorithm as an integral part of

our proposed centrality evaluation algorithm.

The proposed community detection algorithm (based on agglomerative approach)

uses network structural property of right-skewed nature of degree distribution (power-law

degree distribution exhibited over large scale networks [31]), coupled with incremental

accumulation and semi-local optimal node selection giving computational cost O(|V |2 −

m |V |k2), where k, |V | and m represent average degree, number of vertices and modularity

respectively. For any given network the modularity index quantifies its underlying modular

structure.

To proceed with centrality evaluation, the proposed approach inherits the set of

communities (O(
√
|V |)) resulting from community detection phase. Here, centrality in-

dices are based on shortest path weight measure, where path weight is a reflection of var-

ious cost measures. In evaluating exact betweenness centrality, the approach first lever-

ages intra-connections within communities (dense intra-modular), then leverages inter-

connections across communities (sparse inter-modular) to compute the centrality indices.

Finally, the two centrality scores corresponding to each node are summed up to obtain

the final exact betweenness centrality score for that node. The procedure costs O(|V |2 +

1
2 |V |

3
2 log |V |) time with |E | = m′ ' O(|V |2) edges.
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The computational cost incurred due to community detection and betweenness cen-

trality evaluation holds irrespective of graph density and out performs existing exact al-

gorithms. To the best of my knowledge our work is the first work to leverage structural

properties in community detection and exact betweenness centrality evaluation over large

scale networks. We validate our approach over four large scale network data sets relative

to benchmarked approaches.

1.3.2. Link Prediction over Dynamic Networks. How to know the link occur-

rences ahead of time over dynamic networks, so that we can have efficient application

services that are minimally affected by underlying network dynamics?

We propose a probabilistic model, with temporal graph as its basis for link predic-

tion over dynamic networks. Here, the link prediction probability is the transition proba-

bilities in the corresponding Markovian transition matrix. We consider the state space of

our Markov model to reflect the past s states during the evolution process and the model

is built bottom up. Nonetheless, we view the temporal evolution of links is a cascaded

process, with nodes acting as controller or potential barrier effecting which subsequent

links will appear; we use this concept to evaluate prediction probability for both source and

destination nodes for future link prediction.

Further, we propose integration of different timescales over network evolution for

most accurate prediction model. Thus, the analysis considers both local and global network

structure evolution with corresponding two-way temporal dimension; that is local structural

evolution (link evolution) is analyzed over microscopic time domain, whereas global struc-

tural evolution (evolution of clusters) is analyzed over macroscopic time domain. Since,

evolution of link gives rise to evolution of underlying communities/clusters, we have an in-

trinsically dynamic community structure. Besides, we also consider temporally correlated

evolution, rate of evolution and evolution dynamics over the dynamic (temporal) network

for model construction. Thus, our model is able to capture very distinct evolution profiles

during the observation period.
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We predict future links over both microscopic and macroscopic time domain. Fur-

ther, we also investigate prediction success beyond simply next time interval. Finally, we

experimentally evaluate the prediction accuracy of our approach using four real world data

sets with three dynamic network e.g. Twitter, Enron E-mail, Facebook and a lesser dy-

namic structure such as DBLP, and compare the accuracy with existing baseline static and

dynamic measures. We use ROC-curve (Receiver Operating Characteristic), AUC- value

(Area Under ROC -curve) metrics to reflect the model accuracy, both graphically and quan-

titatively.

To the best of our knowledge ours is the first work to consider Markovian ma-

trix model considering temporal graphs with integration of fine-grained and coarse-grained

temporal analysis for best accuracy. Further, we incorporate corresponding local and global

structural evolution, correlated evolution, and evolution dynamics at the start and end node

of a future link from the intuition of cascaded evolution process.

1.3.3. Contact Prediction over Mobile Networks. How to determine future con-

tacts between node pairs, specifically the number and inter-contact period of future contacts

associated with nodes, to efficiently perform tasks over intermittently connected mobile

networks?

To leverage the multiple recurrent and dependent nature of events, we propose a

cascaded non-homogeneous Poisson process (cascaded N HPP) model [45, 84, 114] in an-

alyzing the history of interactions. Unlike many existing prediction models based on static

(say, regression models) or discrete time models, we consider continuous time stochastic

model to analyze the recurrent, dependent contact pattern and predict the future traits in

contact patterns, as this is the most natural way of describing discrete contacts, occurring

over continuous time.
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In order to capture the multiple recurrent nature of contacts into our proposed

stochastic model, we propose using sinusoidal function as the intensity function. Further,

we also capture the direct dependency among recurrent contacts. As a result, we propose

cascaded non-homogeneous Poisson process model to replicate interactions and predict

future contacts.

We also consider the possibility of random occurring contact events (without any

periodicity) and propose to intercept these contacts and predict their future occurrences.

The Markov modulated Poisson process is proposed for this case. Thus, our contact pre-

diction integrates both proposed models to address prediction accuracy. We have consid-

ered simulation only for the recurrent contact patterns, and hence prediction accuracy is

validated only over cascaded non-homogeneous Poisson process. The simulation while

considering random contact patterns into account and hence the prediction accuracy of the

integrated model is still going on.

Experimentally, we analyze number of contacts relative to an user and over all users,

over different time intervals. We also analyze future contact time per user and per user pair

and conclude more accuracy in later case. Then, we predict aggregate inter-contact time

between node pairs over different time intervals and compare their accuracy. To evaluate the

performance and validate our model, we use MIT reality mining dataset [108], and compare

our model with doubly recurrent and homogeneous Poisson process model obtaining better

prediction accuracy, Further, we consider aggregate pairwise inter-contact period over the

whole observation period. To validate our model accuracy we use empirical measures like,

F score, ROC-curve (Receiver Operating Characteristic), AUC- value (Area Under ROC

-curve).

Part of our work is published in [37, 38, 39, 40, 41, 42, 43].

An overall graphical representation of the problems we consider, and the motivation

behind them is presented in Figure 1.1.
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Figure 1.1. A Schematic View of Our Problems and Motivation

1.4. ORGANIZATION OF THIS DISSERTATION

The remainder of this dissertation is organized as follows.

Section Two reviews the related work in betweenness centrality evaluation, commu-

nity detection, link prediction and contact prediction problem. In the centrality evaluation

subsection we start with the various existing centrality metrics, then discuss the existing ex-

act and approximation algorithms for betweenness centrality evaluation. As communities

are an integral part of our proposed centrality algorithm and we propose a novel algorithm

for community detection, we also discuss existing algorithms on community detection.
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Section Three presents the divide and conquer based deterministic (exact) between-

ness centrality evaluation algorithm. It emphasizes the use of underlying community struc-

ture and the sparse inter-community edges as the key points for reduced computational cost.

It also provides the network structure based community detection algorithm. We present

the correctness of our proposed algorithm, the improvement in computational cost for both

algorithms and their experimental validation in this Section.

Section Four presents the temporal network structure based probabilistic link pre-

diction model over dynamic networks. It presents the temporal model with multiple time-

lines to better reflect the network evolution process and discuss its integration in selecting

start and end nodes, and the link occurrence probabilities. We then discuss the procedure

for populating the Markovian matrix and considering links for subsequent time periods.

We also present information theoretic prediction procedure and then derive upper bound on

number of history states needed for the prediction model. Finally, the detailed experimental

validation of the approach is presented.

Section Five presents the cascaded non-homogeneous Poisson process (N HPP)

model that leverage multi-recurrent contact pattern to predict future contacts over mobile

networks. It also integrates the Markov modulated Poisson process to capture the random

(non-periodic) events. The contact prediction model is finally an integration of both mod-

els. We then present the parameter estimation and experimental validation for our proposed

recurrent model.

Section Six Summarizes our main contributions and discuss future work of this

dissertation.
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2. LITERATURE REVIEW

Large scale networks with its diverse applications is fast becoming an integral part

of our daily lives. More so, advances in the Internet and mobile technology, along with

reduced cost of smart devices, are now generating omnipresent smart and mobile environ-

ments. Over these networks, the application problems like routing, information dissemi-

nation, viral marketing, maintaining network reliability, addressing diffusion minimization

and maximization problems over temporal domain to disease propagation, though seem

significantly interesting, the underlying research challenges are quite complex; more so,

over time-varying or temporal networks. To best overcome the challenges for efficient

and effective realization of these applications, there is considerable research attempt to

better analyze these networks. For example, modeling network evolution [95], identify-

ing influential nodes, effective routing strategies [36, 50, 89], improving resilience [105],

security[133], privacy [18, 66], and clustering of (social) networks [16, 76, 112].

Core to the complexity and challenges in successful realization of these applica-

tions, are the challenges in the underlying large-scale networks, over which the applications

are made to be a reality. Addressing these challenges are part of network analysis problem.

As the applications are realized over networks, the network structural challenges for exam-

ple, centrality (more so, betweenness centrality), occurrence of links and contacts between

node pairs are core to the success of these applications. Though there are several algorithms

and approaches that address these challenges, and attempt to make the applications more

effective and efficient, most of them lack to integrate network structural characteristics and

temporal characteristics in their design. Considering the dynamic or time-varying nature of

the underlying network, and the structural changes here with, it is obvious to consider these

aspects in the design of efficient, effective and successful framework (strategy) to address
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the intrinsic challenges in network. In this dissertation, we propose to integrate network

structural and temporal characteristics to design novel, effective and efficient solutions to

address these challenges.

Underlying every network lies the associated network graph. So it is imperative that

network graphs form the backbone of the analysis process. In this dissertation we represent

the underlying network graph of a network as G(V,E), where V is the set of nodes and E

is the set of edges with number of nodes and edges are given by |V | = n and |E | = m′

respectively.

The remainder of our discussion here is organized as follows: Subsection 2.1 re-

views the various centrality measures concisely and then focus on the existing betweenness

centrality evaluation strategies. As we leverage the community structure underlying large

scale networks, for our centrality evaluation, and propose a novel and computationally ef-

ficient community detection algorithm, we also discuss the existing community detection

algorithms as part of it. Subsection 2.2 describes related work in link prediction. As the

underlying network is temporal (time-varying) in nature, and we incorporate this charac-

teristic for better prediction accuracy, we start with a description of temporal networks and

their representation. Then we discuss the existing class of link prediction models, along

with the specific versions of link prediction problems considered in literature. Subsection

2.3 describes the approaches for contact prediction over mobile networks across diverse ap-

plication domains, the existing models and also define some important models that are the

basis behind the contact prediction models. Finally, a summary of this Section is presented

in Subsection 2.4.

2.1. CENTRALITY: DEFINITION AND CLASSIFICATION

The key to maintaining a connected and reliable (safe) network is addressing its

vulnerable nodes. Vulnerability is proportional to the centrality or influential index of

any node. In fact, of the most important aspect of the analysis of large scale networks is
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the computation of centrality indices that measure the importance or influence of a node

or edge [17]. Depending on the application several measures of influential metrics are

proposed in the literature.

• Degree centrality: The degree centrality measures the total number of contacts in-

cident upon a node, with importance in the design of forwarding algorithms. Eval-

uation of degree centrality is of the order of O( |V |2) over an underlying network

graph G(V,E), that reduces to the order of O(|E |) for sparse graphs. Concisely we

can say that degree centrality reflects importance of a node from local perspective,

as it only takes into account number of incident (direct) edges or adjacent nodes.

In some application domain degree centrality has a more meaningful implication.

For example, in a co-citation network the paper ranked higher with degree centrality

index has many papers citing it; indicating its influence or prestige in that specific

category. But, it may not reflect the papers importance across specializations (global

influence), unless papers from other specialization also cite it. In general a node with

high degree tend to communicate with many other nodes. In power law degree dis-

tribution that is a case with few nodes. But when high degree is approximately equal

to average degree, communications are more evenly distributed. It does not consider

indirect contacts and their influence in the network. For example, two nodes in a

network with equal degree centrality may not be equally important considering the

network topology, similar to the scenario where someone may have small but really

important neighbors). To accommodate this eigenvector centrality come up. In ad-

dition, only adjacencies are counted not the distance of the adjacent nodes; so, in

a weighted graph any change in distance of adjacent nodes is not reflected in the

centrality metric. To accommodate this closeness centrality has come up.

• Closeness centrality [19]: The closeness centrality measures how close a vertex

is, to all other vertices in the graph and has applications in determining broad-

cast points. The closeness measure using the Single Source Shortest Path (SSSP)
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based exact algorithm of Di jkstra [34] over |V | source nodes is of the order of

O(|V | |E | + |V |2log |V |). A drawback in computing closeness centrality of a node

relative to the component in which the node lies in a disconnected network is that

a node in a smaller component will have higher centrality index than a node in a

larger component with much larger number of nodes, even if the node in the later

case is closest to all the nodes in that component. It is because of the larger number

of nodes in the larger component and when the nodes are scattered across that com-

ponent the distance among nodes is larger than smaller number of nodes condensed

inside a smaller component. A node with higher closeness centrality index is closer

to all nodes than the nodes with lesser closeness centrality indices. For both weighted

and un-weighted networks the node with highest closeness centrality has significant

importance in many application domain for example which one needs to be a broad-

cast center, or where information needs to be kept to be accessed by all nodes with

least delay (where edge weights reflect delay/traffic). In other words these nodes can

spread information very productively through the network. A node with high close-

ness is usually restricted to larger component of the network. In case of disconnected

(components of a) network the closeness centrality measure to becomes 0. In an un-

weighted n/w a node with highest degree centrality may not be the node with highest

closeness centrality index.

• Eigenvector centrality [110]: The eigenvector centrality measures the centrality of a

vertex as the highest value from the normalized eigenvector that corresponds to the

principle eigenvalue of the adjacency matrix for underlying application domain. Ex-

isting algorithms for eigenvector centrality indices employ power method that have

a computational complexity of O( |V | + |E |), although actual time depends on the

spectral gap of the adjacency matrix.
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• Betweenness centrality [56]: The betweenness centrality measures the importance of

a node from the perspective of being located in the shortest paths that connect other

peer nodes, thus captures both its load and significance or, critical factor in informa-

tion flow over the network. In essence betweenness centrality index quantifies the

number of times a node acts as a bridge along shortest paths between other nodes in

the network w.r.t. all possible shortest paths between all pairs nodes in the network.

Formally betweenness centrality, a relative measure of a node v is the percentage of

the number of shortest paths that node v is part of between all pairs of nodes, over

all possible shortest paths between them. This metric is of significance in a wide

range of application domains: the node through which maximum traffic or flow go

through (rate of flow uniform across all geodesic paths), the node whose vulnerabil-

ity/safety/failure affects the most in a global scale (in contrast to the mostly localized

disruption in case of degree centrality based central node). Thus, the node becomes

the most critical. The nodes with higher betweenness centrality index are consid-

ered to be influential as they help spread information across networks and acts as

connectors. In a network, a vertex can have low degree, with neighbors too having

low degree, even have higher mean distance to other nodes but still can have higher

betweenness centrality value

• Stress centrality [120]: The stress centrality measures the stress index of a node by

computing number of times the node being located in all pairs of least stress paths

over a network and is known as another variant of betweenness centrality.

Of the above approaches, the closeness, betweenness and stress centrality measures

are distance based metric. Further, though closeness centrality is directly based on the

shortest path algorithms and their computational cost, the betweenness centrality and stress

centrality measures have the added dependency factor that compromises the computational

cost purely based on the performance of shortest path algorithms. Of these centrality met-

ric, research over betweenness centrality evaluation has garnered more interest due to its
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wide range of applicability and the higher computational cost incurred due to indirect de-

pendency. The attempt is to propose approaches to reduce the computational cost i.e. to

compute the metric efficiently, so that it can be effectively used over wide range of appli-

cation domains. The approach and computation cost for betweenness centrality evaluation,

applies equally to the stress centrality evaluation too.

2.1.1. Betweenness Centrality Evaluation. We are specifically interested in the

betweenness centrality (BC), a relative measure of occurrence of node v over all pairs of

shortest paths. The usefulness of betweenness centrality lies in its computational cost.

Therefore, finding novel and efficient algorithms for centrality evaluation is at the heart of

large scale network analysis and hence much research has been devoted to the design and

analysis of efficient algorithms for evaluating the betweenness centrality which falls into

the distance based centrality measures. Thus, algorithms used for shortest path evaluation

are equally applicable in computing distance based centrality metrics. But, the issue lies

in the computational cost incurred in exact use of shortest path algorithms for betweenness

centrality evaluation. Using either of the Floyd-Warshall algorithm [34] or the Dijkstra’s

algorithm [34] (including BFS algorithm for unweighted graphs) in evaluating betweenness

centrality incurs computational cost of O(|V |3), and space utilization of O( |V |2), where |V |

is the number of nodes in the network. The O( |V |3) computational cost is incurred due to

the explicit addition of centrality indices in direct use of existing shortest path algorithm

for betweenness centrality evaluation. The work in [15] defines geodetic semiring, a closed

semiring generalization for shortest path problems, which results in θ(|V |3) algorithm for

betweenness centrality evaluation by augmenting the Floyd/ Warshall algorithm for all pairs

shortest paths problem with path counting.

Motivated by the need for efficient computation of betweenness centrality, Brandes

[21] proposed an exact algorithm based on Dijkstra’s shortest path algorithm that takes

O(|V | |E | + |V |2log |V |) time over weighted networks and O(|V | |E |) time for unweighted
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networks. O( |V |+ |E) memory space is required in both cases. Baglioni et al. [10] proposed

an improved version of Brandes algorithm to achieve a speed up of 2-to-5 times relative to

the Brandes approach.

In order to reduce computational cost approximate betweenness measure is pro-

posed by Bader et al. [9], Geisberger et al. [60], Riondato et al. [113] that use adaptive

sampling technique, linear and bisection scaling, VC−dimension. The drawback is that it

is valid for only high centrality nodes with certain probability bound and depends on sam-

ple/pivot selection, number of iteration etc. As exact evaluation of BC metric is critical to

applications and is computationally challenging, we focus on its exact evaluation.

The summary of the existing centrality evaluation approaches in literature can be

presented in a graphical form as in Figure 2.1.
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Figure 2.1. Schematic View of Existing BC Evaluation Schemes

2.1.2. Community Detection Strategies. A community is a set of nodes (network

elements) that are bonded together with higher connectivity than these nodes connectivity

with rest of the network. Determining inherent communities (clusters or modules) in large

scale networks is one of the fundamental structural problems and is widely addressed by
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the research community [7, 62, 99, 125], reflecting dense intra-module and sparse-inter

module connection. In this dissertation, to refer to a densely connected group of nodes, I

use cluster or community or module interchangeably.

There are three distinct strategies for community evaluation (detection), i.e., the

agglomerative, the devisive and the spectral approach. In the agglomerative hierarchical

clustering algorithms, the procedure starts with a set of nodes and gradually accumulated

with other nodes to form suitable community. The techniques vary with how the set of

nodes are selected initially and how they are accumulated with other nodes to form/detect

communities. In the divisive based clustering algorithms, the procedure starts with the

whole (complete) network at hand and then partitions it to reach at the suitable commu-

nities. The procedures vary by how the network is partitioned or divided in each stage.

Usually the betweenness centrality index of a node is used to help in partitioning task.

More so, a quantitative measure called modularity is used to reflect/ measure the binding-

ness or the bonding of the nodes in a community and help establish community boundaries.

In order to evaluate the effectiveness of community structure the most widely used measure

is modularity [30, 102], which is defined as Q =
∑

i (
eii
2m′ − ( ai

2m′ )
2), where eii denotes the

set of edges within community i, ai
2m′ denotes the expected fraction of edges connected to

community i in case of a random graph, over an undirected-unweighted network.

The larger the modularity, the better the corresponding partition or community. In

the spectral community formation schemes, the eigenvectors corresponding to the weighted

connectivity matrix of the network reflects the underlying communities. Below we present

some significant contributions from the literature in community formation strategies.

Since, finding optimal community structure is known to be N P-hard [59], heuris-

tic and approximation solutions have been proposed based on agglomerative hierarchical

clustering [30, 100], divisive clustering based on betweenness centrality [102], or spec-

tral partitioning [135]. The two agglomerative clustering costs O(dm′logn) time, d as the
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depth of the hierarchical clustering, and O(n2) time respectively; divisive clustering costs

O(n3) time; whereas spectral partitioning costs O(n) time, all these approaches are over

very sparse graphs (m′ ' n, with |V | = n nodes and |E | = m′ edges).

A graphical presentation of the classification of these existing approaches is pre-

sented in 2.2.
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Figure 2.2. Schematic View of Existing Community Evaluation Schemes

2.2. COMPUTING FUTURE LINKS: NETWORK MODELS

Large-scale networks are inherently dynamic and and ubiquitous in nature. The

dynamic nature of these networks as a result of their structural changes over time is rep-

resented using time varying graphs, and is viewed as a sequence of discrete snapshots of

an evolving graph [2, 70, 75, 103]. Change in network structure results from the inclusion

of new or exclusion of existing nodes, and presence or absence of links over time. In re-

ality the exclusion/ deletion is a rare event whereas, inclusion of new nodes is prominent,

resulting in denser network over time. Over such evolving networks predicting future link

between node pairs is an important challenge.



23

A natural strategy to analyze this structural evolution in dynamic networks is to

observe it over the temporal dimension. The study and modeling of the dynamics in the

network structure are a significant research domain and is addressed in many research pa-

pers [13, 23, 82, 85, 122]. Core to these structural evolution is the evolution of links or

formation of interactions or associations over the network that implies not only the pres-

ence or absence of a node but also its influence. This has wide range of applications in-

cluding but not limited to biology, medicine, social and opportunistic networks, to mention

a few, generating massive interest in link prediction problem. Irrespective of the diverse

application domains, common to all these networks is the representation of network evolu-

tion using time varying graphs [70, 75, 103, 137]. Though, network evolution or dynamics

and hence the underlying time varying graph is caused due to mobility of the participating

nodes relative to time in vehicular, opportunistic and mobile-social networks, in most large

scale networks mobility is not the influencing factor. In biological, social, and economic

networks, it is the underlying dynamics of interactions that result in system dynamics.

As most of the existing link prediction strategies are actually based on the aggre-

gated graph of the underlying dynamic network, we discuss this stationary representation

and then its variants to reflect the network. Still it is unable to reflect the network dynamics,

hence not suitable to be considered as the basis for prediction models over dynamic net-

works. Thus, comes the temporal or time-varying network (graph) consideration. Before

going into the details of existing prediction models, we discuss the two distinct interpreta-

tion of the underlying dynamic network, i.e., static and temporal network graphs.

2.2.1. Stationary and Temporal Interpretation of Dynamic Networks. Station-

ary graphs assume appearance of all edges and existence of all nodes at the same time, do

not capture significant temporal characteristics such as duration of exchange, inter-contact

time, recurrent contacts and time order of contacts along a path. In contrast the underlying

large scale networks are inherently dynamic, i.e., they vary over time. By considering static
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interpretation of these inherently dynamic networks, we loose the underlying behavior over

the network. We explain it below through a simple example. Let us consider a four nodes

A, B, C, D. We present their interaction time and duration over a time axis in Figure 2.3.

	

120 240  0 

2	 4	

2	 3	

2	1	

1	 4	

2	 3	

1	

2	

4	

3	
1	

2	

4	

3	 1	

2	

4	

3	

1
1

1

2
15	

35	

40	
40	

Figure 2.3. Time of Events

The corresponding static graph representation of a dynamic graph aggregates the

contacts over the time and it can either be unweighted or weighted. Considering our ex-

ample the widely used unweighted static aggregated graph is as shown in the first graph of

Figure 2.4. The second graph represents the weighted static aggregated graph, where edge

weights represent the frequency of contacts between node pairs.

In yet other representation of weighted aggregated static graphs the edges are weighted

according to the duration of interaction and order of interaction duration over any single

pair of nodes. We present the corresponding graphs associated with our example in the

following Figure 2.5. The graph in the left shows the edges annotated with edge weights

whereas, the second graph shows how nodes 2,3 interacted over two distinct intervals.
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Figure 2.4. Static Aggregated Graph: Unweighted and Weighted According to Frequency
of Contacts

	

120 240  0 

2	 4	

2	 3	

2	1	

1	 4	

2	 3	

1	

2	

4	

3	
1	

2	

4	

3	 1	

2	

4	

3	

1
1

1

2
15	

35	

40	
40	

	 2	

1	
4	

3	15	 40	

35	

15,	25	

Figure 2.5. Static Aggregated Graph: Weighted According to Contact Duration and Order
of Contacts

It is evident that the above static representation overestimates the contacts and does

not capture the structural evolution (in terms of edge creation/interaction) and order of

events/interaction in a global scale.

This necessitates the formation of Temporal graphs or Time varying graphs (or

dynamic graphs) instead of static graphs to represent networks and to better reflect its un-

derlying dynamics. It is first proposed by [75].

In order to incorporate temporal parameter existing approaches discretize the time

domain into a sequence of T time slots, each with duration/window size w. The instances

of the resulting graph called Time series graph or Time varying graph or Dynamic graph
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or Temporal graph [75, 81, 104, 128], shown in Figure 2.6. It shows the evolution of the

network structure in the underlying graph over discrete and consecutive time intervals. The

Time series graph shown here is based on the example we considered earlier.

	

1	

2	

4	

3	 1	

2	

4	

3	
1	

2	

4	

3	 1	

2	

4	

3	

G1	 G2	 G3	 G4	

Figure 2.6. Time Series Graph

In our proposed prediction model, we consider the underlying temporal network as

an integral part.

2.2.2. Link Prediction. Link prediction, though mostly addresses the possibility

of new links between node pairs, it is also significant to address the recurring-links/ inter-

actions over an existing link with examples like: interactions between two existing friends,

collaboration between pair of earlier collaborators in an academic network. These time

stamped recurring-links press the need for an incremental design model. As we mentioned

earlier, the set of links at any future time are crucial to success of many widely used applica-

tions, for example: next collaboration between authors, new friendship in social networks,

market trends, movies and songs a user will listen to, hidden links in anti-social activities,

and so on. This has led to significant research interest in accurate link prediction strat-

egy [1, 4, 5, 20, 88, 90, 111, 119, 129]. Accurate link prediction has also applications

in efficient routing in opportunistic, delay tolerant and mobile-social networks in order to

minimize delay and maximize coverage area [25, 26, 109].

Most of the literature baring a few consider static networks or static interpretation of

a time-varying networks, where the prediction probability of links at time T is derived over

a single snapshot of the network. The snapshot is a single aggregated graph representation

of all temporal graphs from start of the observation till time T − 1 or a single snapshot
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itself [1, 5, 20, 88, 90, 111, 119]. All these approaches incorporate network structure in

some way or other. In fact, preferential attachment model [13] is one prominent network

structure based link prediction model that considers connecting only pairs of high degree

nodes with higher probability. Another approach consider the statistical relational models

for link prediction [61, 69, 129], these are restricted to relational models and are designed

only for static networks. Yet another approach consider Markov chains for link prediction

[117] over website, but assume Markov property that limits it from capturing structural

evolution, temporal dependency and thus, making it un-suitable over dynamic networks.

The underlying large scale networks and their behavior are intrinsically dynamic.

Examples of some such dynamic instances over networks are, friendship or amount (de-

gree) of interaction among individuals in a social network is usually transient and recurrent

[80, 106]; collaboration among academic scholars changes with time [123]; different in-

tellectual tasks activate different voxels in brain causing different neural activity [54, 131];

communication among agents in a telecommunication system is usually bursty and fluctu-

ate over time [12, 97, 124], to mention a few. Increasing availability of microscopic data

over these intrinsically dynamic networks along with data from sensors, online resource

networks where the participating node or its participation may be changing (e.g. twitter,

inter-organizational collaboration), paves the way for temporal network and its analysis.

A natural strategy to analyze this structural evolution in dynamic networks is to

observe it over the temporal dimension. The study and modeling of the dynamics in the

network structure are a significant research domain and is addressed in many research pa-

pers [13, 23, 82, 85, 122]. Core to these structural evolution is the evolution of links or

formation of interactions or associations over the network that implies not only the pres-

ence or absence of a node but also its influence. This has wide range of applications in-

cluding but not limited to biology, medicine, social and opportunistic networks, to mention

a few, generating massive interest in link prediction problem. Irrespective of the diverse

application domains, common to all these networks is the representation of network evolu-
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tion using time varying graphs [70, 75, 103, 137]. Though, network evolution or dynamics

and hence the underlying time varying graph is caused due to mobility of the participating

nodes relative to time in vehicular, opportunistic and mobile-social networks, in most large

scale networks mobility is not the influencing factor. In biological, social, and economic

networks, it is the underlying dynamics of interactions that result in system dynamics.

Among the very few dynamic approaches, only [73, 116, 130] consider time series

data. Both models consider temporal graphs from start of observation till time T to evaluate

the prediction probability of links for time T + 1. In [73] the authors consider temporal

graphs over time periods of one month and frequency of communication between node

pairs as the corresponding edge weight. Here the time series is integrated with a structural

feature of static network i.e. common neighbors, to obtain the temporal prediction model,

similar is the case for the model in [130]. Whereas, in [116] the authors integrate time

series with common neighbors and last occurrence of a link for their temporal prediction

model and use real world sensor network and co-authorship network. These conventional

link prediction strategies focus on finding links over only the immediately next time slot/

time period. The conventional link prediction addresses whether two specific nodes indeed

interact at a specific time, in contrast the generative models describe evolution on large

scale using global characteristics (and latent parameters) without regard to which node

interacts with which one.

A schematic representation of the class of existing link prediction strategies are

given in Figure 2.7.

2.3. CONTACT PREDICTION OVER MOBILE NETWORKS

As discussed earlier, over dynamic pervasive networks the solution to contact pre-

diction or link prediction and its variants like mobility prediction, contact time prediction,

inter-contact time prediction are estimated and used to propose efficient techniques for rout-

ing, information dissemination, smart management etc. In literature, in order to predict the
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Figure 2.7. Schematic Overview of Link Prediction Strategies

above, human walk traces are analyzed to discover several significant statistical patterns

of human mobility like establishing the individuals’/mobile devices’ return to a few highly

frequented locations [64, 83], which implies that they come in contact with other mobile

devices frequenting there. Analysis of contact patterns, inter-contact period over DTN [32]

is used to show their exponential and power law distribution, to the analysis of contact time

using the fact that topology expands and shrinks with time, thus influencing connection

times and opportunities between participants. In contact processes over dynamic networks,

the inter-contact time between any pair of nodes is exponentially distributed as is supported

through numerical simulations based on synthetic mobility models. In [65] the authors used

the Random Waypoint mobility simulation to prove that the inter-contact time is mutually

independent and exponentially distributed.
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2.3.1. Contact Prediction Models. The links (or interactions or contacts or edges)

over a dynamic network are recurrent, that is exhibit some pattern over temporal dimension,

thus it is worth using this underlying pattern of interaction to predict future interactions. A

common notion to model the inherently regular contact pattern is to use Poisson process

models [114], that is also known as counting process model as is used to count the number

of contacts in any time interval. Assuming the contact patterns to be regular or homoge-

neous, Ciobanu et al., [28] proposed a simple homogeneous Poisson process model (HPP)

to predict future contacts.

In contrast Chaintreau et al. [26] considered the fact that there might be hetero-

geneity about the inter-contact time distributions of different pairs of devices. Further the

research work by Conan et al. [32] investigated three real human contact data sets and

found that most of the pair-wise inter-contact time distributions tend to well fit log-normal

curves, while some distributions may also fit the exponential distributions. In [118] the

authors found that the inter-contact times exhibit strong time-of-day non-stationary prop-

erty, whereas the cyclic rhythm of the inter-contact time distribution is found in [58]. This

generates curiosity to explore models reflecting time non-stationarity, varying contact rate,

correlation among contacts and periodic rhythms of contact patterns, hence predicting fu-

ture contacts.

The regularity of interaction pattern in designing prediction model for future inter-

actions is not suitable as the interactions have non-uniform periods and rate of occurrence

of interactions is no longer constant. Owing to this non-homogeneity that is the rate occur-

rence of interactions varying significantly over time, several variants of non-homogeneous

Poisson process models (N HPP) are considered [24, 63]. Further, to capture the recurrent

nature, the existing models use doubly periodic property considering the applications to

be only of short term and log term. One such doubly periodic non-homogeneous Poisson

process model is proposed over hurricane data [92], though it is also applicable to seismic

activity. In a similar line of study the authors in [93, 138] used the concept of doubly peri-
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odic contacts as short time interval (daily) and long time interval (weekly) contact events.

Thus, in order to study the pairwise contacts the authors use non-homogeneous Poisson

process along with homogeneous Poisson process. The authors in [93, 138] consider dou-

bly periodic stochastic double chain hidden Markov model to capture the recurrent pattern

in analyzing communication/contact over node pairs; for example, daily and weekly recur-

ring communication pattern, though over distinct application domain, i.e. over email and

MIT [108], UCSD [94] data sets respectively.

The class of existing approaches can be represented schematically as in Figure 2.8.
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Figure 2.8. Schematic Overview of Contact Pattern Prediction Strategies

Since, HPP and N HPP models act as the basis behind existing prediction models,

and a variant of N HPP model that is the cascaded N HPP model acts as the basis of our

proposed model, we here define these models before concluding this Section.
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2.3.2. Basic Model Definitions.

Definition 2.3.1 The Homogeneous Poisson process (HPP) model has independent and

identically distributed inter-contact time as per the exponential distribution with parame-

ter/contact rate λ. The number of contacts between time interval [0, t) given by the proba-

bility mass function P{N (t) = k} =
(λt)k e−λt

k! and the expected number of contacts during

the same period is given by E[N (t)] = λt. Incase of HPP the contact rate or the intensity

function remain homogeneous or constant over intervals i.e. λ(t) = λ,∀t ≥ 0. In realty

the contact rate or the intensity function instead is a function of time, represented as λ(t),

hence non-homogeneous.

Definition 2.3.2 The non-homogeneous Poisson Process (N HPP) [114] with {N (t) : t ≥

0} is a counting process with intensity function λ(t), t ≥ 0 as an integrable function of

time, where N (t) be the number of interactions taking place in the interval [0, t). The mean

value function of the N HPP is defined as µ(t) ≡ E[N (t)] =
∫ t

0 λ(q)dq, ∀t ≥ 0. Further,

a non-homogeneous Poisson process is a Markov process, with 0 ≤ s < t, N (t) − N (s)

has a Poisson distribution with mean m(t) − m(s) =
∫ t

s λ(q)dq. We propose to use the

intensity function (λ(t)) of a N HPP to predict the occurrence of interactions. As we study

the interactions over temporal domain, it is natural to visualize the interaction set as time

stamp of their occurrence along the time axis.

Definition 2.3.3 A cascaded non-homogeneous Poisson process model, is a two state point

process model initially proposed by Malmgren et al. [93]. During the normal state of

operation the events occur at rate λ = λ0. Once an even has occurred at rate λ0, the

event rate is changed to λ = λ0 + δλ, where δλ > 0 represent the excited state. Thus,

this point process model is self exciting in the sense that an event occurrence in the normal

state excites the process to generate a cascade of events at a higher rate. More so, the

cascaded non-homogeneous Poisson process (cascaded NHPP) assumes that in normal

state the event rate is modulated periodically.
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This justifies cascaded NHPP models being used as basis in cyclic or periodic behavior

analysis.

2.4. SUMMARY

Here, we discussed a variety of approaches that address the core challenges in large

scale networks that also effect the success of various applications over the networks. How-

ever, the existing approaches lack integrating network structural characteristics and time-

varying properties properly in solving the network challenges. In contrast, as applications

are realized over large scale networks or an integral part of it. Our intuition points at lever-

aging the structural and temporal characteristics in resolving the network challenges in a

novel and efficient manner and thus helping to make applications a successful reality. We

propose to integrate network structural characteristics in providing novel and efficient al-

gorithms for community formation and betweenness centrality evaluation. Similarly, we

propose to integrate time varying nature of networks and the associated structural varia-

tions along temporal domain as basis for link prediction model. Further, we integrate the

multi-periodic temporal contact pattern as basis of our proposed cascaded N HPP model

for contact prediction over mobile networks.
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3. COMMUNITY AND CENTRALITY EVALUATION OVER LARGE SCALE
NETWORKS: LEVERAGING NETWORK STRUCTURE

Betweenness centrality (BC), a distance based metric, measures the influence of a

node from how many times it lies between indirectly connected node pairs. Higher the

betweenness centrality index of a node, the more it lies between pairs of other indirectly

connected node pairs in the network and is core to the success of many important appli-

cation problems like diffusion maximization and diffusion minimization, reliability of a

network, determining influential spreaders, determining community boundaries to mention

a few. Motivated by the need for efficient, and exact evaluation of betweenness centrality,

the formal problem definition and the approach for the network structure based between

centrality evaluation algorithm is presented here. As we propose a distributed evaluation of

the betweenness centrality evaluation and leverage the divide and conquer based algorith-

mic approach, we consider a network with communities as input to the centrality evaluation

algorithm. Thus, determining communities over the application network, is an integral step

of our proposed strategy. Here, we first propose a community detection strategy and then

evaluate the betweenness centrality.

The following discussion is organized as follows. In Subsection 3.1 we present

preliminary concepts and definitions used in centrality and community evaluation strategy.

Subsection 3.2 describes our approach for community detection, while Subsection 3.3 dis-

cusses our approach for evaluating exact betweenness centrality indices of all nodes in the

network. Subsection 3.4 reports experimental results and finally summary of our approach

and the obtained results are offered in Subsection 3.5.
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3.1. PRELIMINARY CONCEPTS: CENTRALITY EVALUATION

Let G(V,E,W ) represent the underlying graph of the directed-weighted application

network, where V , E and W denote the set of vertices, edges and edge weights respectively.

The number of vertices is considered to be |V | = n. For any pair of nodes u,v ∈ V , di-

rected edge from u to v is represented as euv ∈ E and a weighted edge is represented as

w(euv) ∈ W , representing variable edge weights, where as unweighted network has uniform

edge weights and edges are not annotated with weights. Further, we consider that the edge

weights in the weighted network are normalized as w(euv) = w(euv)/
∑
∀euv∈E (w(euv))

such that
∑

euv∈E w(euv) = 1. In absence of an edge between a pair of vertices, the cor-

responding normalized edge weight is assumed to be 0. The set of communities in the

network is represented by C = {C1,C2, . . .} where Ci (VCi ,ECi ) ∈ C represents a commu-

nity, C = ∪iCi and Ci ∩ Cj = φ,∀Ci,Cj ∈ C and i , j; VCi ,ECi are respectively the set of

vertices and edges in Ci. To describe the proposed centrality approach in Subsection 3.3,

the related definitions are introduced here.

• Internal Edges: In any Ci (VCi ,ECi ),∀ei (vk ,vl ), such that vk ,vl ∈ VCi , then ei ∈ ECi is

called an Internal edge of Ci.

• External Edges: Across any pair of communities Ci,Cj ,∀ei j (vk ,vl ), such that vk ∈

VCi ,vl ∈ VCj , then ei j ∈ E is called External edge between Ci and Cj .

• External (Boundary) Node: This is internal to a community with at least one incident

external edge.

• Internal Node: It is internal to a community with no incident external edge.
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• Internal (Local) Centrality: In any community the Internal (local) betweenness cen-

trality index associated with node vi, is denoted as δInt[vi] and computed over local

topology for Ci, taking into account only internal edges. The node vi ∈ VCi having

maximum local centrality index δInt[Ci] = max{δInt[vi]} is called local or internal

central node for that community.

• External Centrality: For any set of communities external betweenness centrality in-

dex for node (δext[vi]) is defined as the number of times the node acts as a connector

or bridge across distinct communities.

• Global Centrality: For graph G(V,E), global centrality of a vertex vi considers both

internal and external edges over graph GR. If δ[vi] is the global centrality index of

vertex vi, then the node with highest global centrality index in C δ[C] = max{δ[vi]}

is called the global central node.

• Virtual Cluster: For any external node in a community (vexti ∈ Ci), virtual cluster

VCvexti
is the subset of nodes in Ci that have the shortest path to vexti over all vext j ∈

Ci,vexti , vext j .

• Mutual Virtual Cluster: Over any pair of virtual clusters in a community, the mutual

virtual cluster (MVCvexti ,vext j
,vexti ,vext j ∈ Ci,vexti , vext j ) is the set of nodes in

VCvexti
whose shortest path to vext j is not via any vexti ∈ Ci.

• Complemented Mutual Virtual Cluster: Over any pair of virtual clusters in a com-

munity, complemented mutual virtual cluster (CMVCvexti ,vext j
) is the set of nodes in

VCvexti
whose shortest path to vext j is via vexti ∈ Ci.

For brevity we present the associated diagram explaining the definitions in Figure 3.3,

Subsection 3.3.
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Before going into the details of our proposed approach, we first formally define our

problem. Here, we are specifically interested in the betweenness centrality (BC), a relative

measure of occurrence of node v over all pairs of shortest paths, defined as: BC[v] =
σst [v]
σst

,

where s,v ∈ V, t ∈ V \ {s}, V is the total set of nodes, σst[v] is the number of shortest s { t

paths from s to t going through node v, and σst is the total number of shortest s { t paths

in the network. We compute the exact BC indices of all nodes in the network.

3.2. COMMUNITY STRUCTURE DETECTION

The proposed approach presents an algorithm to detect O(
√

n) communities, each

of size O(
√

n), |V | = n with computational cost O(n2−mk2n). The details over undirected-

weighted network are discussed and then expanded it over to directed-weighted network.

3.2.1. Initial Community Selection. We consider the set of nodes with degree one

as our initial set of unit size communities. This is in contrast to the usual consideration in

agglomerative hierarchical community detection schemes of either starting with each node

in the network as a distinct community, or starting with top r nodes ranked as per their

highest degree. Due to the right skewed-ness in degree distribution of large scale applica-

tion networks, there are nodes (though few) with very high degree, as large as O(n). To

include subsequent neighbors to the respective communities, starting at these top ranked

nodes would have incurred higher computational cost of O(n2) per node in modularity

computation. In contrast, due to connected network, power-law degree distribution, cou-

pled with our techniques, the initial community selection needs at most O(k2) time per

node, where k is the average degree. A combination of proposed subsequent techniques

ensure computational cost reduction. Before discussing rest of the techniques, they are first

explained in an example in Figure 3.1 over a directed network.

Illustration1: The example weighted, directed network with non-normalized edge

weights has 3 nodes A,D, I, each of degree one. Irrespective of their affinity with their

neighbors they have higher priority than virtual nodes (here, J, with self-edge weight
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Figure 3.1. Community Detection Steps and Final Outcome

1) and are self-accumulated, getting virtual nodes AB,ED,GI and respective self-edge

weights 1,2,2. From each virtual node we check if there is any node / virtual node (J)

that is adjacent to only the virtual node. Node J is self-accumulated with virtual node ED,

resulting in virtual node EDJ and self-edge weight 7. No other self-accumulation takes

place at this stage, as EDJ has higher self-edge weight than connecting edge with AB and

AB has neighbor nodes (F, H) with same edge weight; nodes (virtual nodes) with higher

connecting edge weights get precedence (F, H , EDJ over C, GI). Between nodes and

virtual nodes of same connecting edge weight, nodes get precedence. Now, nodes F,H

get precedence over C and EDJ. Instead of randomly accumulating them with AB, we

check their list of neighbors to find the number and weight of the associated tie of common

neighbors with AB. Precisely, we are checking triads ({F,C, AB}, {H,GI, AB}) and their

connecting edge weight ((AB,C), (AB,GI)). The one with higher weight takes precedence

such as (AB,C). In case these weights are same, the triads with higher total weight, i.e.,

(F,C) versus (H,GI) or {(F, AB)+ (C, AB)+ (F,C)} versus {(H, AB)+ (H,GI)+ (AB,GI)}

takes precedence. The resulting accumulated virtual nodes created at this stage is ABFC

and GIH with self-edge weights 15 and 7 respectively. Virtual node GIH is connected to

AB with edge weight 6 which is less than its self-edge weight, similar to EDJ; so they

are not accumulated with ABFC. Our approach optimizes modularity at every stage of

the accumulation irrespective of the constraint. In fact, our final outcome just fits fine
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for a maximum limit of 4 on size and number of communities. The resulting set of final

communities is shown in the extreme right of Figure 3.1. In the following subsection the

techniques are formally discussed.

3.2.2. Incremental Accumulation. In an attempt to reduce the associated com-

putational cost, the vertices in the same community are merged to a single node, called

the accumulated virtual node. This process intrinsically merges incident edges on nodes,

reducing the number of edges to be scanned in subsequent stages and helping single ad-

jacency nodes to be self-accumulated without modularity gain computation. Note that

any node (or virtual node) pair i and j to be merged have at most three types of incident

edges. The set of edges (eV\{i}) incident on i from remaining nodes and similarly eV\{ j}

set of edges incident on j, edges between i and j (ei j), and the set of edges within com-

munity i (eii) or community j (e j j). In creating an accumulated virtual node (k′ = i ∪ j),

the incident external edges to k′ are edges of 1st type above (eV\{k ′}), whereas the in-

ternal/self edges in k′ (ek ′k ′) are the remaining two types of edges from above. Fur-

ther, self-edge weight is given by w(ek ′k ′) =
∑
∀i,j∈k ′ (w(eii) + w(e j j ) + 2w(ei j )) over

undirected network that is intrinsically bi-directional. Similarly, external edge weight

w(eV\k ′) =
∑

i′,j ′ w(eii′) + w(e j j ′), i′ ∈ V \ {i}, j′ ∈ V \ { j}. As the approach will use

the modularity function [30, 102] in order to validate the resulting community structure, it

can be extended to modularity over undirected-weighted networks and can be defined as

follows.

Q =
∑

i

(
w(eii)∑

em′n∈E 2w(em′n)
− (

w(ai)∑
em′n∈E 2w(em′n)

)2) (3.1)

where w(eii) and w(ai) are edge weights within and across community i respectively, and

the denominator in the fractions represent total edge weight over the graph. With normal-

ized edge weights as defined in Subsection 3.1, Equation (3.1) reduces to:

Q =
∑

i

(
w(eii)

2
−

(w(ai))2

4
) (3.2)
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To define modularity gain over accumulated virtual node we proceed as follows. Let i and

j be two prospective nodes to be merged. The edge weight between i and j is w(ei j ).

Let the neighbors of a node (say i) be represented as N (i). Node j ∈ N (i) is consid-

ered as a candidate for merging with node i when w(ei j ) = M AXw(eiN (i)) and w(ei j ) =

M AXw(e j N ( j)), where w(eiN (i)), w(e j N ( j)) represents the set of edge weights between

node i, N (i) and j, N ( j) respectively. In other words ∀ j ′∈N (i)\{ j} (w(ei j ) − w(ei j ′)) > 0

and ∀i′∈N ( j)\{i} (w(ei j ) − w(e ji′)) > 0. Modularity gain over accumulated virtual node k′

(δQ′k = δQi j) is obtained as:

δQi j = (
w(ei j )∑

em′n∈E 2w(em′n)
−
w(eiN (i)\{ j})w(e j N ( j)\{i})

(
∑

em′n∈E 2w(em′n))2 ). (3.3)

With normalized edge weights, Equation (3.3) reduces to:

δQi j = δQk = (
w(ei j )

2
−
w(eiN (i)\{ j})w(e j N ( j)\{i})

4
). (3.4)

Now, we define the accumulated virtual node creation in relation with modularity.

Definition 3.2.1 (Accumulated virtual node creation) Let the neighbors of node i be N (i).

Let j ∈ N (i) that maximizes modularity, then nodes i and j are merged to create accumu-

lated virtual node k′. Any neighbor j of i resulting in δQi j > 0, i.e., positive modularity

gain becomes a candidate for merging, while for any j ∈ N (i) with δQi j < 0, i.e., negative

modularity gain is rejected from being merged to i.

From the earlier definition of ek ′k ′ we can define modularity of the virtual node k′ with

normalized edge weights as:

Qk ′ =
w(ek ′k ′ )

2 −
w(ek ′N (k ′)\{k ′ })2

4

=
w(eii )+w(e j j )+2w(ei j )

2 −
(w(eiN (i)\{ j })+w(e jN ( j )\{i }))2

4

= Q(i, j) =
w(ek ′k ′ )

2 −
w(ak ′ )2

4

=
[w(eii )+w(e j j )+2w(ei j )]

2 −
[(w(ai )+w(a j ))2]

4 .
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From Equation 3.2 Qk ′ can be represented in simpler form as:

Qk ′ =
w(ek ′k ′ )

2 −
w(ak ′ )2

4

=
[w(eii )+w(e j j )+2w(ei j )]

2 −
[(w(ai )+w(a j ))2]

4 = Q(i, j)

As accumulated node k′ has same modularity as that of nodes i, j jointly, the ac-

cumulation of vertices (or edges) does not affect the modularity of the vertices (or edges)

being accumulated. Let us further consider nodes j,p, l ∈ N (i). Let δQi j > 0, δQip < 0

and δQil < 0. Let us also consider that N (i) \ { j,p, l} , φ. Let j,p, l be accumulated as

part of the same community and form a virtual node. Further, the edges between nodes i

and j,p, l will be accumulated to a single virtual edge. Now, node i will be a candidate for

accumulation with virtual node containing j,p, l iff δQi j > δQip + δQil . Moreover, a node

having negative modularity with its neighbors before laters are accumulated, is refrained

from further consideration to aggregate it with that virtual node.

3.2.3. Incremental Elimination. During incremental accumulation two types of

nodes are accumulated irrespective of the resulting modularity gain, as they always result

in positive modularity gain. Let Ci represent the community containing any node i ∈ V .

The self accumulated nodes (SA) at any iteration t of the accumulation phase is defined as:

SAt =




φ if t=0

{i : |N (i) | = 1}∪

{i : ∀ j, l ∈ N (i),Cj = Cl } t > 0

Thus, a node is in the set of self accumulated nodes if either it has degree one or all

its neighbors are in the same community.

Lemma 3.2.1 (Modularity gain in self accumulated node) For any node i ∈ SAt , at any

iteration (say t) of accumulation phase, the modularity gain of i over N (i) is δQiN (i) > 0.
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Proof 3.2.2 For nodes (say i) with single degree, let j ∈ N (i). w(ei j )∑
j ∈N (i) w(eiN (i) )

= 1,
w(eiN (i)\{ j })∑
j ∈N (i) w(eiN (i) )

= 0 and 0 < w(e j N ( j)\{i}) < 1. Thus, δQi j = 1 > 0. For nodes (say i) with

|N (i) | > 1 and ∀ j, k′ ∈ N (i) : Cj = C′k , then
∑
∀N (i)∈Cj

w(eiN (i) )∑
N (i) w(eiN (i) )

= 1,
∑
∀l, j ∈N (i):Cl,Cj

w(eil )∑
N (i) w(eiN (i) )

= 0.

So, δQi j and hence modularity gain satisfies δQiN (i) > 0.

It is thus clear from above that the self accumulated vertices do not compromise modularity

gain. The question now is how to select these nodes, so as to reduce the computational cost.

3.2.4. Semi-local Optimal Node Selection. Our objective is to optimize compu-

tational cost along with the selection of most deserving nodes into prospective community.

Because of the O(
√

n) limit on the number and size of communities, the optimal node

order selection is more significant here. We propose a semi-local approach for node order

selection. A node j ∈ N (i) resulting in highest modularity gain among all the neighbors of

i is a candidate to be part of the community. Instead of accumulating it, we also look for

its neighbors that collectively with i and N (i) produces highest modularity gain and collec-

tively accumulate them. Let j ∈ N (i) be the node with maximum modularity at any stage

t. Let M AX (δQiN (i)) be the maximum modularity gain between nodes i and j ∈ N (i). For

the node with highest modularity gain, semi-local modularity optimization is used to select

the most suitable set of nodes at once. So, ∀ j ∈ N (i) : δQi j = M AX (δQiN (i)), we find

{N (i)\{ j}}∩{N ( j)}. Now, ∀ j′ ∈ {N (i)\{ j}}∩{N ( j)} we find δQtriad
j = δQi j +δQi j ′+δQ j j ′.

For positive modularity gain i.e., δQtriad
j > 0, and ∀ j′ : δQtriad

j = M AX (δQtriad
j ), we accu-

mulate j, j′, i to form a single virtual node and accumulate the corresponding edges. When

more than one node has highest modularity gain, semi-local modularity optimization is

used to determine the order of selection of a suitable set of nodes at once. Let the number

of neighbors with maximum modularity at any stage t be greater than 1. The approach is

as follows:

∀ j1, j2 ∈ N (i) : δQi j1 = δQi j2 , we find {N (i) \ { j1}} ∩ {N ( j1)} and {N (i) \ { j2}} ∩

{N ( j2)}. Now, ∀ j′1 ∈ {N (i) \ { j1}} ∩ {N ( j1)} and ∀ j′2 ∈ {N (i) \ { j2}} ∩ {N ( j2)} we find

total modularity gain involving i, j1, j′1 and i, j2, j′2 as:
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δQtriad
j1

= δQi j1 + δQi j ′1
+ δQ j1 j ′1

and

δQtriad
j2

= δQi j2 + δQi j ′2
+ δQ j2 j ′2

.

Now, ∀ j1, j2 ∈ N (i) : δQtriad
j1

, δQtriad
j2

> 0 and the node triplets have maximum modularity

gain.

The corresponding triads j1, j′1, i and (or) j2, j′2, i are accumulated, creating a virtual

node and virtual edge(s) incident on this node. In a directed graph a node with higher in-

degree is considered to be more influential, relative to a node with higher out-degree. Let

the corresponding impact factor (that determines relative importance of either degree) for

in-degree and out-degree be 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1 respectively, such that α+ β = 1. Let

the directed-weighted edge from any node j to node i and node i to node j be represented as

w(ei j ) and w(e ji) respectively. The total degree of a node i in the weighted-directed graph

is αw(eiN (i)) + βw(eN (i)i). Now, Equation (3.4) can be defined over directed-weighted

graph with normalized edge weights as in the following equation.

δQDirected
i j = (αw(ei j ) + βw(e ji))

− (αw(eiN (i)\{i,j}) + βw(eN (i)i\{i,j}))

(αw(e j N ( j)\{ j,i}) + βw(eN ( j) j\{ j,i})).

Over the directed-weighted graph, δQDirected
i j is used as the basic step in semi-local

optimal node selection and the techniques described above are applied.

We give the schematic presentation of the steps of community formation algorithm

in Figure3.2.

Algorithm 1 for community detection is equally applicable to undirected and directed-

weighted network. It starts with finding degree one nodes and forming unit size commu-

nities, followed by self-accumulation. The set of remaining vertices including the set of

virtual nodes, CommunitySize and NumberOfCommunity are updated and smallest degree

nodes are selected from the nodes that are not self-accumulated at the current iteration. The
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Figure 3.2. Steps of Community Formation Algorithm

semi-local optimal node selection strategy is followed and nodes are accumulated to pro-

duce virtual node and virtual edge(s), size and number of communities are updated. Finally,

the set of vertices (V ) are updated using the set of to be accumulated nodes in that iteration.

At the beginning of each iteration, the set of single adjacency nodes are self-accumulated

with their respective adjacent nodes. The algorithm repeats itself until the node set |V | is

empty, and the limit on the size and number of communities does not exceed.

3.2.5. Computational Cost. The proposed algorithm has major reduction in com-

putational cost from the incremental aggregation coupled with semi-local optimal node se-

lection, though self-accumulation also effects. It outperforms existing best known agglom-

erative hierarchical and decisive community detection algorithm having time complexity of

d |V |2log |V |, where d ∼ lg |V | [30] and O(|V |3) [102] respectively. Further, the spectral al-

gorithm [135] incurs cost O( |V |) over sparse graphs with |E | ∼ |V |, whereas our algorithm

costs O( |V | − m |V |),0 < m < 1, k ∼ 1 in the same domain. Though, over dense graphs

the fastest version of [135] takes O(|V |K2e), where K , and e are respectively the number
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Algorithm 1 Community Detection Algorithm
Require: Network graph GR(V,E,W ), |V | = n
Ensure: O(

√
n) Communities each of size O(

√
n)

t = 0,SA0 = {}, t = t + 1, SAt = {i : |N (i) | = 1};
Initialize |SAt | communities each of size one
while |V | > 0 or (CommunitySize ≯ O(

√
n) or NumberO f Community ≯ O(

√
n)) do

t = t + 1; SAt = {i : |N (i) | = 1};
for ∀i ∈ SAt : do

Accumulate node i with its adjacent node; Update CommunitySize,
NumberO f Community;

end for
|V | = |V | − SAt ; Initialize NodesToBeAccumulated;
Select node with smallest degree and maximum δQi j ;
Create Virtual node and edges , Update CommunitySize
Update NumberOfCommunity, NodesToBeAccumulated;

end while

of iterations of K-means algorithm and number of iterations of the proposed algorithm in

[135]. On the other hand our algorithm over dense graphs cost O(|V |2 − mk2 |V |), where

|E | ' |V |2.

Theorem 3.2.3 Computation Cost in Community Detection: The proposed agglom-

erative hierarchical community detection approach incurs computation cost of O( |V |2 −

mk2 |V |), where m, k, |V | are the modularity, average degree and number of nodes of the

network, respectively.

Proof 3.2.4 Let us consider the graph with O(|V |2) edges. The number of modularity com-

putation is done over every pair of adjacent vertices, thus requiring at most O(|V |2) com-

putations. Semi-local optimal node selection strategy selects a set of triads (node triplets)

with highest modularity gain. Let k be the average degree. For any node, the selection

strategy checks at least on its neighbors and also neighbor’s neighbors. Thus, the number

of modularity computations are O(|V |k2). Reduction in the number of computations for

next stage is proportional to the number of nodes (hence edges) accumulated in the current
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stage, which is proportional to |V |k2. Furthermore, two nodes being accumulated is also

dependent on the modularity m, resulting in the number of accumulated edges at any stage

as m |V |k2. This leads to, computation cost of O(|V |2 − m |V |k2).

Now that we have O(
√

n) modules (communities) of size O(
√

n) each, we discuss our

approach for exact betweenness centrality evaluation in the following section.

3.3. EXACT BETWEENNESS CENTRALITY EVALUATION

The following proposed approach to betweenness centrality evaluation is also equally

applicable to other distance based measures, such as Stress Centrality [120] and Closeness

centrality [19].

3.3.1. Internal Betweenness Centrality With Example. Community Ci is repre-

sented by a graph GCi (VCi ,ECi ,W ) where, VCi ,ECi ,W correspond to the set of nodes, and

edges within community Ci and W is the set of edge weights. In Algorithm 2, internal

centrality indices of nodes are computed over each community Ci with only internal edges.

The approach makes use of the list of predecessors for any shortest path, recursive de-

pendency computation intrinsic to shortest paths and Brandes [21] centrality aggregation

function as the basis behind Algorithm 2. Concisely, for predecessor node v in predecessor

set (Ps[t]) of shortest path s { v → t, the dependency δst[v] =
σst [v]
σst

. This can also be

stated recursively as:

δst[v] =
σsv

σsu1
×
σsu1
σsu2
× . . .×

σsuk

σst
, where the shortest path s { v { t has nodes u1,u2, . . . ,uk

with v as their predecessors, i.e., the path s { v → u1 → u2 { . . . { uk → t exists.

Now, when computing dependency on node v for all shortest paths s { t, ∀t ∈ V \ {s}, the

dependency index are recurssively accumulated not only for s { v { t, but also for all

nodes u in s { v { u { t such that v ∈ Ps[u]. Thus, in the above mentioned shortest

path s { v → u1 → u2 { . . . { uk → t, the dependency index on node v is given by:

δs[v] =
σsv

σsu1
+

σsv

σsu2
+ . . .+ σsv

σsuk
+
σsv

σst =
σsv

σsu1
+

σsv

σsu1
×
σsu1
σsu2

+ . . .+ σsv

σsu1
×
σsu1
σsu2
× . . .×

σsuk

σst . The
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above formulation reduces to the aggregation function defined in [21]. The dependency in-

dex on node v, over all shortest paths s { t, for t ∈ V \ {s}, starting at node s is obtained

as: δs[v] =
∑
∀t∈V\{s}{

∑
∀v:v∈Ps[u]

σsv

σsu
(1 + δs[u])}.

The, betweenness centrality index of any node v is its overall dependency index

with respect to all pairs of shortest paths s { t, ∀s ∈ V,∀t ∈ V \ {s}, is given by δ[v] =∑
∀s∈V δs[v] =

∑
∀s∈V {

∑
∀t∈V\{s}{

∑
∀v:v∈Ps[u]

σsv

σsu
(1 + δs[u])}}.

Algorithm 2 presents the pseudocode to evaluate the exact internal betweenness

centrality indices of all nodes over directed-weighted graph.

Algorithm 2 Calculate Internal Betweenness Centrality over Weighted-Directed Network
Graph
Require: Sub-region Ci = GCi (VCi ,ECi ,W ) a directed-weighted sub-graph, |VCi | =

O(
√

n) nodes and edge set e(vi ,v j ) ∈ ECi and edge weight w(e(vi ,v j )) ∈ W
Ensure: Internal Betweenness centrality indices δInt[v],∀v ∈ VCi .

StartNode = {},∀v ∈ VCi : δInt[v] = 0;
while StartNode , VCi do

SelectSelect StartNode s, evaluate shortest path to v ∈ {V } \ {s}, update immediate
predecessors list. Count the number of shortest path to node σs[v],v ∈ {V } \ {s}.
Compute δInt[v].

end while
Construct Virtual, Mutual Virtual and Complemented Mutual Virtual clusters and find
σvexti

[ui],vexti ,ui are external node and internal node in respective cluster.
∀v,vext ∈ VCi : Return δInt[v], σvexti

[v], VCvext , MVCvexti ,vext j
,

Internal AndExternalEdgeSet, CMVCvexti ,vext j
.

From internal centrality evaluation, we have shortest weighted path from every in-

ternal node to the external nodes within each community and vice versa. The shortest paths

are used to form the set of virtual clusters, mutual virtual clusters and complemented mu-

tual virtual clusters during this stage. We also have the list of predecessors, and the number

of successors of a node within the respective clusters. Internal nodes within the respective

clusters are ordered in the increasing order of their number of successors. Further, we keep

track of the number of shortest paths from the external node to the internal nodes in the

respective clusters. Without loss of generality we can assume that within any community
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the shortest distance between an external node in one virtual cluster and any other virtual

cluster is from the external node in the later cluster. Before presenting Algorithm 3 for

external centrality evaluation, an example (Figure 3.3) is presented for simplicity.
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Figure 3.3. Community with Virtual Clusters and External Edges

Illustration2: Let us consider two communities Community1, Community2. Con-

sider virtual clusters Avc,Bvc,Cvc,Dvc,Evc over external nodes A,B,C,D,E respectively,

mutual virtual clusters between AvcBvc,BvcCvc, AvcCvc as 1,2,3 respectively, and between

DvcEvc as 4. Similarly, their complemented mutual virtual clusters 1′ = {Avc} \ {1} and

so on. We also have the number of shortest paths a node has from the respective external

node (e.g., σD[u],∀u ∈ Dvc). For external centrality evaluation, we first find shortest paths

between every pair of external nodes; we also keep track of the number of shortest paths

between respective pairs and the external centrality indices the external nodes get at this

stage. External centrality indices of all nodes in the respective clusters are initialized to

0 at the beginning (say δextD [ui] = 0,∀ui ∈ Dvc); nodes other than leaf nodes are evalu-

ated and updated. Let us assume that we have shortest paths A → D and A → B → E.

Let the internal nodes within Dvc are as shown in the middle graph in Figure 3.3. We

find external centrality index of nodes in Dvc caused due to nodes in Avc, i.e., ∀vi ∈ Avc

acting as the source node s and due to the A → D path. Nodes are considered in increas-

ing order of successors, with external centrality index of its successor nodes known. So,

external centrality of u2 is computed, due to the path to u3 and u′3. For u2 we compute
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|Avc |
σD[u2]
σD[u3] , as for each node in Avc this path is explored (σs[u2]

σs[u3] =
σs[D]σD[u2]
σs[D]σD[u3

=
σD[u2]
σD[u3] ).

Similarly, due to u′3, |Avc |
σD[u2]
σD[u′3] . Let δextD [u2] be the external centrality index of u2 due to

interface node D. Thus, δextD [u2] = δextD [u2] + |Avc |(
σD[u2]
σD[u3] +

σD[u2]
σD[u′3] ). Similarly, for u1

we evaluate δextD [u1] = δextD [u1] +
σD[u1]
σD[u2] ( |Avc | + δextD [u2]) +

σD[u1]
σD[u′2] ( |Avc | + δextD [u′2]).

Now that we have external centrality indices for all internal nodes in Dvc, we compute

the same for D as
∑

ui (
1

σD[ui ]
),ui ∈ Dvc, (

∑
ui

σs[D]
σs[ui ]

=
∑

ui
σs[D]

σs[D]σD[ui ]
,ui ∈ Dvc). So,

δext D = δext D + |Avc |(
∑

ui (
1

σD[ui ]
)). Similarly, external centrality of A will be evaluated as

|Avc |
1

σA[D]
∑

ui (
1

σD[ui ]
),∀ui ∈ Dvc. Thus, δext[A] = δext[A] + |Avc |

1
σA[D]

∑
ui (

1
σD[ui ]

). Now,

for nodes in Avc with internal centrality 0, we do not need to compute external centrality

index. So, for nodes having nonzero number of predecessors (∀vi ∈ Avc,P[vi] , 0), let

Ptotal[vi] denotes the total number of predecessors of vi. Considering the rightmost graph

in Figure 3.3, since v2 has Ptotal[v2] > 0, the external centrality δext[v2] = δext[v2] +

σs[v2]
σs[A] +

σs[v2]
σs[A]

1
σA[D] (

∑
ui

1
σA[D] ),∀ui ∈ Dvc. We know 1

σA[D] (
∑

ui
1

σA[D] ) from external cen-

trality evaluation for A, which we substitute in evaluating centrality indices for nodes in

Avc. Now, that we are done with A → D path, let us assume that the A { E path exists

via B. Here the computations are performed as in the earlier case except that instead of

considering Avc, mutual and complemented mutual virtual clusters 1 and 1′ are considered

along with Bvc. For a given cluster, the external centrality indices of its nodes are computed

only once. Subsequent, reference to their interface external node (hence cluster) will only

use these values, thus minimizing the computation cost.

3.3.2. External and Global Betweenness Centrality Evaluation. We present the

steps of the external centrality evaluation in Algorithm 3. As we explained the basic steps

in the example, we omit the details for brevity. Now, that we have internal and external

betweenness centrality (δInt[v], δext[v]), ∀v ∈ V indices, Algorithm 4 gives the final step

for computing global centrality index. Centrality being an additive measure, summing the

internal and external centralities gives a node’s global betweenness centrality.
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Algorithm 3 Calculate External Centrality Indices over Weighted-Directed Network Graph
Require: Output from Algorithm 2
Ensure: External Betweenness centrality ∀v ∈ V : δext[v]

1. Compute shortest path, record ImmediatePredecessors.
2. ∀vexti ,vext j , Record the number of shortest paths between pairs of vertices
(vexti ,vext j ), i , j.
3. Compute centrality indices of external nodes over with only external edges.
4. Evaluate external centrality of all nodes. Consider Virtual cluster or Mutual and
ComplementedMutual Virtual cluster based on whether the shortest path across external
vertices excludes external node of the same cluster or includes them.
5. Reurn ∀v ∈ V : δext[v].

Algorithm 4 Compute Overall (global) Betweenness Centrality over Weighted-Directed
Network
Require: Internal and External Centrality indices for each node in GR i.e., ∀v ∈ V :
δInt[v], δext[v]

Ensure: Betweenness centrality indices δ[v],∀v ∈ V .
for (v ∈ V ) do
δ[v] = δInt[v] + δext[v]; BC(v) = δ[v];

end for

A schematic representation of the steps of betweenness centrality evaluation proce-

dure is shown in the following block diagram in Figure 3.4.

Theorem 3.3.1 Correctness Proof: The proposed approach correctly and effectively eval-

uates the centrality indices over all nodes.

Proof 3.3.2 Algorithm 2 uses internal edges and dependency among nodes in each com-

munity to evaluate δInt[v] with s { t, ∀s ∈ VCi ,∀t ∈ VCi \ {s}. It is given by δInt[v] =∑
∀s∈V δs[v] =

∑
∀s∈VCi

{
∑
∀t∈VCi

\{s}{
∑
∀v:v∈Ps[u]

σsv

σsu
(1+δs[u])}}, for nodes in respective com-

munities. Now, the dependency among nodes due to connections across communities is left

to be considered next. This first evaluates δext[vext],∀vext ∈ V by considering shortest

paths among external nodes in the same community (from internal centrality evaluation)

and external edges (e.g., A → B → E paths). Computing external centrality indices due

to node-to-node path across communities is the most trickier one. There can be two types
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Figure 3.4. Steps of Betweenness Centrality Evaluation

of paths: one without having any external vertices of the same community and the other

one having them. Here our major source of reduced computation is from three facts shown

in the earlier example where, δextD [u2] = δextD [u2] + |Avc |(
σD[u2]
σD[u3] +

σD[u2]
σD[u′3] ). It is possible

∀s ∈ Avc and for A → D shortest path, s has A as the only outgoing interface, else it

would not have been in Avc, by definition. Additionally, every s ∈ Avc will cause the same

computation, hence the multiplication by |Avc | (dependent on source clusters). In addition,

other incident shortest paths to D will use this computed δextD [ui],∀ui ∈ Dvc for further

computation. When the shortest path goes through more than one external vertex in the

same community, for every such additional vertex, mutual and complemented mutual vir-

tual clusters are considered along with the virtual cluster (for example in A → B → E,

Bvc,1,1′). With both δInt[v] and δext[v] for every node, Algorithm 4 evaluates the between-

ness centrality index for them over the network.
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Theorem 3.3.3 Computation Cost in Centrality Evaluation: The proposed approach

for exact betweenness centrality evaluation incurs O(|V |2 + 1
2 |V |

3
2 log |V |) computational

cost, where |V | = n is the number of nodes in the network.

Proof 3.3.4 The proposed exact algorithm operates in three main phases. It first evaluates

the internal centrality of each of the O(
√

n) nodes in each of O(
√

n) communities. As the

communities are dense, we assume each with O(n) edges. Evaluating internal centrality in

each community takes time O(n
3
2 + nlog

√
n), as shortest path computation is bounded by

Dijkstra’s Algorithm and computation for centrality indices is bounded by O(n2). Repeat-

ing the process over O(
√

n) communities incurs O(n2 + n
3
2 log

√
n) time. Forming virtual

clusters takes O(c
√

n) time, where c is a very small constant representing the number of

external nodes in a community. The computation of clusters, the list of successors, prede-

cessors, and the number of shortest paths from the external node to each of the internal

nodes in their respective virtual clusters are embedded during the shortest path computa-

tion of internal centrality evaluation phase. Then it is a fact that total number of external

nodes over all communities be c
√

n. Since the number of external edges across communi-

ties is very sparse, we consider it to be of the order of K1
√

n,c < K1 <
√

n. The second

phase of the algorithm first finds shortest paths and associated external centrality indices

over all pair of external nodes and takes O(cKn + c2nlog
√

n) time. Finally, computa-

tion of external centrality indices needs O(1) time per node in either cluster. There is c

virtual clusters, 4 mutual and complemented mutual virtual clusters over a pair of virtual

clusters. In the worst case 4c2 clusters will be involved in a community, resulting in total

time of O(4c2√n) ∼ O(
√

n) over all communities. Let us assume that the size of clus-

ters are not uniform to analyze the worst case, and the size of a cluster can be at most

O(
√

n). This implies O(n
3
2 ) computations for a single community to others and O(n2)

computations over all the clusters across all communities. In the third stage of computing

total/global exact centrality indices, there is just one addition per node, with the result-

ing computation cost of O(n). The total computation cost over all phases is thus bounded
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by O(|V |2 + |V |
3
2 log

√
|V |). Similarly, the community detection requiresO(|V |2 − mk2 |V |)

time. For both cases, this is the worst case over dense graphs where |E | ' |V |2. Thus,

computational cost of our proposed approach is bounded by O(|V |2 + 1
2 |V |

3
2 log |V |).

3.4. EXPERIMENTAL RESULTS

To validate our theoretical approach and to draw practical insight, we experimented

with four networks: NetScience, twitter mention, power grid, and Internet [136]. We per-

form all our experiments using 2.3GHz Intel Core i5, 4 GB RAM, MAC10.7.3. From Table

3.1 twitter mention is the most dense and NetScience is the least dense networks. Further,

they have large number of nodes of degree one (∼ O(n) in most cases).

Table 3.1. Network Statistics for Four Networks

 
 
 

 
 

 NetScience Twitter 
Mention 

Power 
Grid 

Internet 

Number of Nodes 1859 3656 4941    22963 
Number of Edges 2742 157727 6594      48436 
Network Density 1.329 43.14 1.334      2.1 
Average degree     3    86      2 4 
Number of Nodes 
of Degree one 

307 168 1226     7840 

The degree distribution of the four application networks in Figure 3.5 and Figure

3.6 justifies power-law from linearity of the long tails and the straight line nature of the

plots; thus, validates our approach, to start with degree one nodes and use right skewed

property to form self and incremental accumulation. This also implies that we can use

these four networks to study the performance of our algorithms.



54 

 

 

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

D
e

g
re

e
 D

is
tr

ib
u

ti
o

n
: 

LO
G

(P
(X

))
 

Degree:LOG(X) 
Degree Distribution (LOG LOG): NetScience 

0

0.1

0.2

0.3

0 10 20 30 40

 P
(X

) 

Degree (X) 

Degree Distribution: 
NetScience 

 

0

0.01

0.02

0.03

0.04

0.05

0 500 1000 1500

P
(X

) 

Degree (X) 

DegreeDistribution:  
Twitter 

Figure 3.5. Degree Distribution of Two Networks

 

0.0001
0.0051
0.0101
0.0151
0.0201
0.0251

5 10 15 20

P
(X

) 

Degree (X) 

Degree Distribution: 
PowerGrid 

 

0

0.1

0.2

0.3

0.4

0.5

1 200

P(
X)

 

Degree (X) 

Degree Distribution:  
Internet 

Figure 3.6. Degree Distribution of Two Networks

We use the community detection algorithm with and without constraint to evaluate

the effectiveness and modularity index, as shown in Figure 3.7. The modularity in select-

ing O(
√

n) communities in either case remains unchanged. Further, we are not selecting

community structure with maximum modularity, so the plot shows how effective they are

to the best obtained index. Modularity index above 0.3 are considered good, justifying our

community consideration. The Table in Figure 3.7 demonstrates the modularity index with

the number of considered communities (say 150 in NetScience) in our and Newman et al.

approach [30]. Our approach fares better and gives better modular structure.

The run time of the proposed approach and Newman et al.’s approach is shown in

the first graph of Figure 3.8, demonstrating that the algorithm out performs the algorithm

in [30]. For directed networks the proposed approach consider the impact factor α, β to
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be 0.85,0.25 respectively, because at this value the best community structure with optimal

modularity is obtained. The proposed exact betweenness centrality algorithm is also ran

over the obtained structure and compared it with Brandes approach [21] approach. It also

reflects the variation in computational cost relative to the modularity index, number of com-

munities and network density. The closer the number and size of communities to
√
|V | the

better the performance (e.g. power grid network). Further, performance is also dependent

on density of the network as evident between the Twitter network and the Internet.
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3.5. SUMMARY

To sum up our work here, the key to the effectiveness of our approach is not only

integration of structural properties, but also the fact that we are not putting any strict limit

on the number and size of communities. Instead we limit it to c′n, where c′ << n, thus

giving liberty to explore the best possible community structure, as well as creating the op-

portunity to not let the computational cost evaluations in later stage being bottlenecked by

any community. The proposed approach to evaluate exact betweenness centrality indices

for all nodes incurs the computational cost of O(|V |2 + 1
2 |V |

3
2 log |V |) over dense graphs in

which |E | ' |V |2, thus outperforming the existing exact algorithm in this domain. Sim-

ilarly, our community detection approach integrates power law property along with tech-

niques like incremental accumulation, self-accumulation, semi-local optimal node order

selection, resulting in O(|V |2 − mk2 |V |) computation cost over dense graphs. Whereas,

over sparse graphs the betweenness centrality evaluation will incur computational cost of

O(|V |
3
2 + 1

2 |V |
3
2 log |V |), where the number of edges in any community is |ECi | '

√
|V |.

Our theoretical and experimental analysis validates the better performance of our approach

over existing approach.
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4. PROBABILISTIC LINK PREDICTION OVER LARGE SCALE DYNAMIC
NETWORKS

One of the most intriguing aspects, or the core challenges of network analysis is

how links or interactions occur over time between node pairs. More so, whether we can

design to have a model to accurately predict the occurrence of these links ahead of time,

and with what accuracy. In contrast to the existing approaches, here we proposes a novel

Markov prediction model that leverages the underlying network structure evolution over

the time-varying graph of a large scale network. To incorporate the network structure

evolution over microscopic and macroscopic time frames, the model considers the effect

of multiple time scales in leveraging temporal analysis for link prediction. The analysis

considers microscopic (fine-grained) and macroscopic (coarse-grained) time scales, along

with associated local (links) and semi-global (clusters) structural evolution, respectively.

The model takes into account correlated evolution and rate of evolution in selecting start

and end nodes, and the corresponding interaction probability. We discuss the details in the

following Subsections.

The following discussion is organized as follows. In Subsection 4.1, we present

preliminary concepts and definitions used in link prediction strategy along with the formal

problem definition. Subsection 4.2 describes our proposed Markovian model, the use of

multiple time scales along with, correlated structural evolution and rate of evolution in link

prediction, while Subsection 4.3 presents the proof that our edge selections approach leads

to power-law degree distribution. Subsection 4.6 reports experimental results and finally a

summary of our proposed approach and the results are offered in Subsection 4.7.
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4.1. PRELIMINARY DEFINITIONS AND CONCEPTS: LINK PREDICTION

We represent the underlying application network graph G(V,E) with communities

and the observation time frame as, G(V,E,C, [0,T + 1]), where V,E and C represent the

set of vertices, edges and communities (clusters) respectively, [0,T] is the training period

and [T,T + 1] is the test interval. At the beginning, in absence of any edge, |C | = |V |.

As stated earlier, in a temporal network, the network interactions are viewed as a set of

discretized events over time axis. To have two-way temporal analysis, we visualize two

temporal domains over time axis. Thus, we divide the time interval [0,T] into uniform

length divisions, and further, divide each of these uniform divisions into uniform length

subdivisions. We visualize these as two distinct temporal domains over [0,T], referred to

as coarse-grained and fine-grained time domain, respectively.

Let the interval [0,T +1] be divided into macroscopic time interval, called time slots

T1,T2, . . . ,Ti,Ti+1, . . .Tk . Each of the time slot Ti is further divided into microscopic time

interval, called time stamps t1′, t2′, . . . ti′, ti′+1, . . . tk ′, where time stamp reflects the smallest

interaction time unit (say minute, hour, day or month) considered for an application. Let

the corresponding subgraph over any time Ti and ti′ be represented as GTi (VTi ,ETi ,CTi ) and

Gti ′ (Vti ′ ,Eti ′ ,Cti ′ ) respectively, such that GTi ,Gti ′ ⊂ G and Gti ′ ⊂ GTi ; VTi ,ETi ,CTi and

Vti ′ ,Eti ′ ,Cti ′ are the respective set of vertices, edges and clusters, with C j
Ti
∩ Ck

Ti
= ∅. For

notational simplicity we represent the clusters C j
Ti
,Ck

Ti
∈ CTi as C j

i and Ck
i respectively. We

consider directed network graph, where any undirected application network is incorporated

as having bidirectional edges between any pair of nodes. From here onwards, we use link

or interaction or edge or contact interchangeably.

From our observation of the structural evolution in real world networks, we make

the following model assumptions.

• Network evolution process is a sequence of states.

• The start state has interactions to reflect reality.
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• Every subsequent state is based on the past states (called history states).

Formal Problem Formulation:

We formally define the link prediction problem as the mapping f : (GTi ,CTi ,∀i ∈ [0,T]) →

{Li+1}, where GTi ,CTi are respectively the subgraphs and clusters over corresponding time

slots Tis, and {Li+1} is the set of links in the subsequent time slot T + 1 (i.e. interval

[T,T +1]). As we consider two distinct temporal axis, we consider T +1 as both subsequent

time slot Tk+1 and time stamp t1′ in Tk+1.

We represent some specific notations used in solving link prediction problem in

Table 4.1.

4.2. MODEL FOR LINK PREDICTION: MARKOV MODEL

Here, we discuss the details of our proposed stochastic prediction model, the steps

involved and how they work in tandem in computing prediction probabilities, i.e. how to

formulate the initial prediction probabilities (i.e., the elements of the transition probability

matrix), and then proceed to describe the steps to populate the elements of M (Ti) (also,

M (ti)) in subsequent steps.

4.2.1. General Model Definition and Initialization. This Subsection discusses

high-level integration of the temporal network with our proposed model, our model archi-

tecture, and its initialization process.

We consider dynamic network evolution as a transition process over sequence of

network states, going by the intrinsic evolution process in real world networks, which are

referred as the corresponding temporal graphs over time domain.

In Figure 4.1, the temporal graphs Gt1 ,Gt2 ,GTi represent network states over time

stamps t1, t2 and time slot Ti respectively, where time slot Ti is divided into two time stamps

t1 and t2. The green, blue and orange dots represent nodes; where as the directed and

bi-directed arrows reflect interaction between node pairs.
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Table 4.1. Notation Explanation

Notation Description

s Set of states of the evolution process that are kept

track

[0,T] Observation period

Ti Time slots in [0,T]

ti′ Time stamps in Ti

tk ′ Last time stamp over all ti′ w.r.t. each Ti

t1′ First time stamp over all ti′ w.r.t. each Ti

di Number links for node vi

d j Number links for node v j

din(v) In-degree of node v at time stamp ti′

dout (v) Out-degree of node v at time stamp ti′

d(v) Total degree of node v at time stamp ti′

Ci Set of clusters in time slot Ti

C j
i A cluster j, with C j

i ⊂ Ci

M AXd(v) Maximum degree of node v

MI N (a,b) Returns minimum of the two parameters a and b

The network state corresponding to any time interval, t1, t2 or Ti (as shown within

green, blue or orange rectangles) reflects the interactions, i.e. the edges between node pairs

during that specific period. Further, the subgraph of the temporal graph that is inside each

dotted quadrilateral, corresponds to the clusters formed over that time slot (here, Ti). The

network evolution is interpreted as a transition process from one network state to another.

The correct subsequent state depends on the accuracy of the state transition probabilities

that in turn is dependent on the past states. From the temporal graph representation un-
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derlying a network state, the transition probability over subsequent temporal graphs is the

probability of links over each node pair. Thus, the resulting transition probability between

states is a transition probability matrix over set of links.

4.2.2. General Model Definition and Initialization. This Subsection discusses

high-level integration of the temporal network with our proposed model, our model archi-

tecture, and its initialization process.

We consider dynamic network evolution as a transition process over sequence of

network states, going by the intrinsic evolution process in real world networks, which are

referred as the corresponding temporal graphs over time domain.

In Figure 4.1, the temporal graphs Gt1 ,Gt2 ,GTi represent network states over time

stamps t1, t2 and time slot Ti respectively, where time slot Ti is divided into two time stamps

t1 and t2. The green, blue and orange dots represent nodes; where as the directed and bi-

directed arrows reflect interaction between node pairs. The network state corresponding

to any time interval, t1, t2 or Ti (as shown within green, blue or orange rectangles) reflects

the interactions, i.e. the edges between node pairs during that specific period. Further, the

subgraph of the temporal graph that is inside each dotted quadrilateral, corresponds to the

clusters formed over that time slot (here, Ti). The network evolution is interpreted as a tran-

sition process from one network state to another. The correct subsequent state depends on

the accuracy of the state transition probabilities that in turn is dependent on the past states.

From the temporal graph representation underlying a network state, the transition probabil-

ity over subsequent temporal graphs is the probability of links over each node pair. Thus,

the resulting transition probability between states is a transition probability matrix over set

of links. Thus, we propose a Markov model, with its states referring to network states and

the inter-state transition probability represented by the Markovian transition matrix over

corresponding temporal graphs . For most accurate prediction probability, the state space

of the Markov model encapsulates the past s states within it.
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Figure 4.1. Time-Varying Graph of The Dynamic Network States

Over the two distinct temporal domains we consider local and semi-global structural

evolution (i.e. link and clusters respectively). Let M (Ti) represent the Markovian transition

matrix model. In transition from Ti to Ti+1, called time slot Ti+1, for each t j ∈ Ti+1, we

evaluate the corresponding renewed transition probability, owing to the changes in link

structure. At each time stamp ti, for temporal graph Gti , we have the associated transition

matrix Mti . Over time stamp ti, we consider and compute the local structural evolution or

link evolution. Whereas, we consider global structural evolution or evolution of clusters

w.r.t. time slots. The clusters and cluster evolution probability is computed once per time

slot , at the end of its respective last time stamp tk . For example, in Figure 4.1 the clusters

are computed over Ti once, at the end of its last time stamp t2. Though, the initial time slot

T1 is a diversion from this. We consider edge weight, based on the number of interactions

(say, number of papers they co-authored etc.) in that slot (initial time slot), to compute the

clusters. The transition probabilities are evaluated based on the procedures in the following

sub-sections, and the i jth entry of the matrix M (Ti) represent the conditional probability
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that a node with di links will interact with a node with d j links. Let us represent the link

probability between a node pair with degree di and d j in cluster C j
i and Ck

i respectively as

p
C j
i Ck

i

did j
.

In Figure 4.2, C1
i ,C

2
i , . . . ,C

k
i are the row and column sub-matrices, representing

the corresponding clusters in the underlying time-varying network graph. Each sub-matrix

has number of rows and columns equal to the number of vertices in the corresponding

cluster. Elements in the main diagonal are the prediction probability for future interactions

between pair of nodes within any cluster, whereas probabilities in the upper and lower-

diagonal matrix elements correspond to pair of nodes in distinct clusters, and are called

intra- and inter-cluster link prediction probabilities respectively.
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Figure 4.2. Markovian Prediction Matrix Model

Besides the proposed model framework, the mathematical formulae underlying the

model, the approach for model parameter evaluation and interaction probability compu-

tation, is inspired by intrinsic operations over real world networks. For example, over

academic collaboration network, a CS researcher can collaborate with Physicists to have

an one time paper in Quantum Computing area, or have a set of papers over time slot(s).

Here, the individual-one time collaboration corresponds to links over different time stamps,

whereas the later one reflects changed community structure over time slot. Thus, comes the

evolution of links over time stamps and evolution of clusters over time slots, as described

in Subsection 4.2.3.
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Further, it is evident from online social networks (e.g. Facebook, Twitter etc.) that

in any interaction, nodes that reply, re-tweet etc. are considered initiator of the action.

In response, receiving nodes may reply, re-tweet (to others), like a post etc. This type

of cause-effect-based interactions or occurrence of pairs of interactions, gives rise to the

concept of temporally correlated evolution over both time scales, as is used in Subsections

4.2.3.1, 4.2.3.2 and subsequently in 4.2.4. More so, a person with more collaborators or

friends gets opportunity for more interactions; similarly persons’ active duration attracts

others to interact with. In addition, receiver communication with others depends on its set

of associates (degree), its duration and interaction frequency. In fact these basic attributes

are used in the detailed formulation of Subsections in 4.2.3, and 4.2.4.

4.2.2.1. Effect of node degree in real world networks. Here we give a simple

degree based prediction probability computation. In real world application networks, nodes

of high degree prefer to interact with other high degree nodes. Though, there are also high

degree nodes interacting with other low degree nodes, justifying the right-skewed degree

distribution [31] in them. So, to some extent interaction between pair of nodes is dependent

on both source and destination node degree or how much they communicate. In fact, the

Pearson correlation coefficient of the degrees of the end points of an edge is given by [101].

In order to reflect the explicit correlations we need the distribution of interaction p(di) and

the conditional probability that a node of degree di interacts with a node of degree d j , i. e.,

p(d j |di),
∑

di
p(di) = 1 and

∑
d j

p(d j |di) = 1. In the simplest Markovian model, each of

the matrix elements can be represented as p(di) × p(d j |di).

The following Subsection presents our approach to initialize the matrix elements of

M (Ti) (also, M (ti)).

4.2.2.2. Initializing Markov matrix elements. Over time stamp ti, the changes in

the elements of MTi (also Mti ) are effect of local evolution, where as over time slot Ti the

effect of global evolution is reflected in the elements of MTi . If we start with the network
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without any interactions (say at t = 0), then interactions between pairs of nodes occur

uniformly at random and can be selected likewise. Where as, in presence of interactions

from the beginning, we describe the initialization of matrix elements below.

Initializing M (t1) in Presence of Interactions:

At time stamp t1 corresponding to T1, we have the first temporal graph and is the

start of our observation. At this point we do not have any past interaction information to

derive edge weights. So, we use node attributes (say, authors in same research field, same

University, and people in the same geographic location, affiliation to same interest/club) to

form the initial tentative clusters, and the resulting network graph has now both intra- and

inter-cluster interactions.

We now compute the probabilities within cluster p
C j

1 C j
1

did j
(t1′) and across cluster p

C j
1 Ck

1
did j

(t1′).

Let vi,v j be the vertices with di,d j number of links respectively. When vi,v j ∈ C1
j , let

p(di) and p(d j ) be their associated degree distributions w.r.t. C1
j . Thus, we define intra-

cluster initial link probabilities as:

p
C j

1 C j
1

did j
= p(di)p(d j )

din(vi)∑
v∈C j

1
din(v)

×
d(v j )∑
v∈C j

1
d(v)

. (4.1)

In a similar manner, we initialize the initial inter-cluster link probabilities given by

the following Equation:

p
C j

1 Ck
1

did j
= p(di)p(d j )

din(vi)∑
v∈C j

1
din(v)

×
d(v j )∑

v∈Ck
1

d(v)
, (4.2)

where nodes vi ∈ C j
1 , v j ∈ Ck

1 ; corresponding degree distribution p(di) and p(d j )

over modules C j
1 and Ck

1 respectively.

The weighted in degree reflects a node’s position as a start node, whereas weighted total

degree on end node reflects that a leaf node may not have any out degree, but may still be

connected. In case the underlying clusters are ignored at the start of observation, the node

degrees need to be weighted over the whole network in contrast to their respective cluster.
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Now, we describe the correlation associated with local and global structural evolu-

tion and their associated rate of evolution, as they effect link prediction and are parameters

in our subsequent steps. Subsequently, we discuss ways to populate the elements of transi-

tion probability matrix M (Ti) (also, M (ti)).

4.2.3. Markov Model: Evolution Metric Computation. In this Subsection we

discuss the procedures for evaluating parameters that are in turn used in computing link

prediction probabilities in Subsection 4.2.4.

4.2.3.1. Correlated evolution of links: local correlation. We consider the set of

time-varying graphs over time stamps ti′ ∈ Tj ,∀Tj ∈ [0,T]. We compute the correlated evo-

lution of links w.r.t. the set of time-varying graphs over each time stamp. Over subsequent

time stamp pairs ti′, t j ′ ∈ Tj , we have L(ti′) and L(t j ′) as the corresponding link sets over

time-varying graphs Gti ′ , Gt j ′ respectively. We determine correlated link evolution over

successive time stamps as follows:

CorrLink (t j ′, ti′) =
|L(ti′) ∩ L(t j ′) |
|L(ti′) ∪ L(t j ′) |

. (4.3)

Similarly, over pairs of successive time stamps in each time slot we consider average cor-

related evolution of the corresponding pairs of time-varying graphs. We evaluate average

correlated evolution of links over each slot Tj as given by the following Equation.

ζlink =

∑tk ′
t=t1′

Corr (t, t + δt)

tk ′ − t1′
, (4.4)

where δt = t j ′ − ti′, with ti′ and t j ′ being the two successive time stamps over any time

slot Ti. 1 − ζlink is the average number of links changed over pairs of successive temporal

graphs in any time slot Ti. Likewise, the recursive correlated evolution of links over pair of

time-varying graphs corresponding to respective time stamps in any time slot is given by

Equation 4.5.

Corrrecursiver
Link (t j , ti) =

|L(ti) ∩ L(ti + δtr ) |
|L(ti) ∪ L(ti + δtr ) |

, (4.5)
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where r represents the number of time intervals between considered time-varying graph

pairs. in other words time stamp intervals between time stamps ti and t j .

We define average recursive correlated evolution of links over any pair of time-varying

graphs in any time slot Ti as:

ζ recursiver
link =

∑tk
t=t1

CorrLink (t, t + δtr )

tk − t1
, (4.6)

where 1− ζ recursiver
link is the average number of links changed over those time-varying graph

pairs. Over successive time-varying graphs we have r = 1.

As link evolution can be visualized as a cascaded process that takes place in number

of successive steps, we consider pairwise link occurrence rate. Likewise, for each link in a

time-varying graph we determine the number of times a link l j follows a link li in ti′, i.e.

F(li ,l j ) (ti′). For example, let A, B, C be three network nodes. Let, li is the contact between

A and B; l j is the contact between B and C. (Say, over Twitter application network, let A

tweets a message to B and B tweets to C.) Thus, F(li ,l j ) (ti′) is the number of times B com-

municates with C, following As’ communication with B in ti′ (say, a day). The weighted

measure of the pairwise link occurrence over a single time-varying graph Gt ′i is given by:

Fweighted
(li ,l j )

(ti′) =
F(li ,l j ) (ti′)∑

∀li ′,li F(li ,li ′ ) (ti′)
, (4.7)

Relative to successive time stamps, the correlated pairwise link occurrence rate over

successive time-varying graphs Gt ′i ,Gt ′j is denoted as FCorr (t′i , t
′
j ). We define FCorr (ti′, t j ′)

as:

FCorr (ti′, t j ′) = MI N {Fweighted
(li ,l j )

(ti′),F
weighted
(li ,l j )

(t j ′)}, (4.8)

Similarly, with δt = t j ′ − ti′, average correlated pairwise link occurrence is defined as:

F Avg
Corr =

∑tk ′
t=t1′

FCorr (t, t + δt)

tk ′ − t1′
. (4.9)
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4.2.3.2. Correlated evolution over clusters: semi-global correlation. We deter-

mine the clusters corresponding to each GTi ,∀Ti ∈ {T1, . . . ,Tk }, based on the edge weight

over Ti. As mentioned earlier, we create the initial cluster at time stamp t1, corresponding

to time slot T1. We compute the cluster over time slot T1 i. e. over interval [0,T1], after its

last time stamp say, tk occurs. We use the community formation algorithm in [37] for this

and the resulting clusters refers to the underlying graph structure in GT1 .

After 1st time slot T1, the subsequent clusters are created over Ti (instead of tis), for

which the incremental variant of the community formation algorithm in [37] is used over

respective GTi s.

In the incremental version, for the nodes involved in interaction over a slot, we

compute the relative measure of the interaction weight of a node with other nodes within

its cluster, to nodes outside its cluster for that slot. To be more precise, the relative weight

measure is computed with the nodes interaction weight within its cluster to interaction

weight with every other cluster, taken the other clusters one at a time, of which the interact-

ing nodes are part of. If the interaction weight for both the compared clusters is same, then

the node belongs to the cluster with which it has higher number of interacting nodes for

that slot; else, it joins the cluster with higher interaction weight with it, in the current time

slot. Incase both weight and number of nodes that it interacted with are same over different

clusters, it remains part of the current cluster. This way the clusters in the successive time

slots are formed. We present the steps for our incremental algorithm in Algorithm 5.

Clusters in the successive time slots are formed as discussed above, but what is

important for our work here is, how the clusters are correlated over successive time slots.

We compute correlation coefficient for both within and across cluster. For a cluster

Ck
i in time Ti, we evaluate its correlation with two successive clusters Ck

i and Ck
i+1 in re-

spective time slots Ti and Ti+1 as,
|Ck

Ti
∩Ck

Ti+1
|

|Ck
Ti
∪Ck

Ti+1
|
. If more than one cluster merges into a single

cluster over successive intervals, or a cluster divides into two or more clusters over suc-

cessive intervals we compute their joint correlation effect as
∏
∀ j
|Ck

Ti
∩C j

Ti+1
|

|Ck
Ti
∪C j

Ti+1
|
, where cluster
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Ck
i evolves into clusters C j

i+1s or clusters C j
i+1s merge into cluster Ck

i over successive time

interval. For any pair of clusters that do not either evolve from or to each other over suc-

cessive intervals it is simply computed as,
|Ck

Ti
∩C j

Ti+1
|

|Ck
Ti
∪C j

Ti+1
|
. Thus, the total correlated evolution

among all pairs of successive clusters is given by:

CorrCluster (Ti,Ti+1) =
∑
k,j

[ |Ck
Ti
∩ C j

Ti+1
|

|Ck
Ti
∪ C j

Ti+1
|

+
∏
∀ j

|Ck
Ti
∩ C j

Ti+1
|

|Ck
Ti
∪ C j

Ti+1
|

+
|Ck

Ti
∩ Ck

Ti+1
|

|Ck
Ti
∪ Ck

Ti+1
|

]
.

(4.10)

We evaluate average correlated evolution over successive time slots is given by:

ζcluster =

∑Tk
Ti=T1

CorrCluster (Ti,Ti+1)

Tk − T1
. (4.11)

In the above, CorrCluster (Ti,Ti+1) is evaluated over successive time slots.

As in recursive correlated evolution of links, we can compute ζ recursiver
cluster w.r.t clus-

ters, where r is the temporal interval between pairs of temporal graphs GTi ,GTk , we omit it

here for brevity. In the above, CorrCluster (Ti,Ti+1) is evaluated over successive time slots

and has r = 1.

Similar, to the correlated evolution of individual links we determine the correlated

evolution of the same cluster over pairs of GTi s and the average correlated evolution of

clusters over all pairs of GTi s (let it be, ζcluster). Likewise, we can determine ζ recursiver
cluster ,

where r is the temporal interval between pairs of temporal graphs GTi ,GTk .

For a cluster Ck
i we evaluates its correlation over successive time slots Ti and Ti+1,

given by
|Ck

i ∩Ck
i+1 |

|Ck
i ∪Ck

i+1 |
, representing ratio of common interactions to all interactions for the

cluster over successive time slots. If more than one cluster merge into a single cluster over

successive intervals, or a cluster divides into two or more clusters over successive intervals

we compute their joint correlation effect as
∏
∀ j
|Ck

i ∩C j
i+1 |

|Ck
i ∩C j

i+1 |
, where cluster Ck

i evolves into

clusters C j
i+1s or clusters C j

i+1s merge into cluster Ck
i over successive time interval. For any
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pair of clusters that do not either evolve from or to each other over successive intervals,

it is simply computed as
|Ck

i ∩C j
i+1 |

|Ck
i ∩C j

i+1 |
. Thus, the total correlated evolution of a cluster Ck

i

over successive intervals is given by, CorrCluster (Ti,Ti+1) =
∑
j

[ |Ck
i ∩C j

i+1 |

|Ck
i ∩C j

i+1 |
+

∏
∀ j
|Ck

i ∩C j
i+1 |

|Ck
i ∩C j

i+1 |
+

|Ck
i ∩Ck

i+1 |

|Ck
i ∪Ck

i+1 |

]
.

Algorithm 5 Incremental Community Formation Algorithm (ICF)
Require: Graph (initial clusters formed using [37]) in ta of T1. Interaction weights (accu-

mulated over node pairs) over the time slots (Tis). Graph with clusters from the last time
slot (say, GTi ).

Ensure: Clusters over current slot (GTi+1) with best modularity.
Form initial clusters over GT1 with interaction weights over T1 (using the community
formation algorithm [37]).
for ∀ Tis: do

for ∀ Interacting node Ti: do
Compute Relative Interaction Weight.
Compute Maximum Relative Interaction Weight relative to all such clusters in Ti.

end for
end for
if Maximum Relative Interaction Weight = 1 and number of nodes that it interacts with
in these clusters are unequal: then

Node is assigned to the cluster having fewer number of nodes it interacted with.
else if Maximum Relative Interaction Weight = 1: then

Node is assigned to the cluster with fewer number of nodes.
else if Maximum Relative Interaction Weight < 1: then

Node is assigned to the cluster having higher interaction weight with it.
else if Maximum Relative Interaction Weight > 1: then

Node remains unchanged.
end if

We evaluate average correlated evolution of a cluster over successive time slots as,

ζcluster =

∑Tk
Ti=T1

CorrCluster (Ti ,Ti+∆T )

Tk−T1
, where ∆T = Ti+1 − Ti.

In a similar manner, we can compute ζ recursiver
cluster , where r is the time interval be-

tween pairs of temporal graphs GTi ,GTk . In the above, CorrCluster (Ti,Ti+1) is evaluated

over successive time slots and has r = 1.

Similar, to the correlated evolution of individual links we determine the correlated

evolution of the same cluster over pairs of GTi s and the average correlated evolution of

clusters over all pairs of GTi s (let it be, ζcluster).
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Likewise, we can determine ζ recursiver
cluster , where r is the temporal interval between

pairs of temporal graphs GTi ,GTk .

In a similar manner, we can compute ζ recursiver
cluster =

∑Tk
Ti=T1

CorrCluster (Ti ,Ti+∆T r )

Tk−T1
, where

r is the number of time interval between pairs of time-varying graphs GTi and GTk .

With the correlation parameters in hand, we now compute the probabilities for the

selection of the start and end nodes, and the parameters in evaluating the interactions and

probability of interactions. In the above generalized model, we have discussed recursive

version of parameters that helps us analyze the scalability of the model and also relate

with computational cost. Due to brevity, we refrain from the discussion of scalability and

computational cost, rather we consider r = 1 for our experimental analysis, excluding the

recursive analysis.

Before we discuss the computation of interaction probabilities, we give a schematic

presentation (Figure 4.3) of the steps involved in the prediction process and their direct (the

solid arrows) and indirect (the dotted arrows) inter-relationship.

	

Correlated	Link	Evo‐
lution:	Time	Stamp	

Correlated	Cluster	
Evolution:	Time	Slot

Compute:	Start	and	
End	Node	Selection

Interaction	Probab‐
ility	Computation

Figure 4.3. Schematic Presentation: Inter-relationship Among Prediction Steps

With correlation parameters in hand, we now compute the probabilities for start and

end node selection, and the interaction probability, using the parameters evaluated in the

previous Subsections.
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4.2.4. Markov Model: Computation of Interactions. Here, we describe the steps

involved in computing interactions, i.e. procedure for selecting start and end nodes, and

computing the interaction probability using the parameters evaluated in the previous Sub-

section.

4.2.4.1. Selection of start and end nodes. We first present the procedure for se-

lection of start and nodes.

Selection of Start Node (Initiator):

The probability that node v becomes initiator at time ti′+1 be represented as qv
start (ti′+1).

For any node v ∈ C j
i , v to be an initiator at time ti′+1 is dependent on its influence and frac-

tion of its neighbors that are initiators at time ti′, the correlated evolution of its outgoing

links, and average rate of pairwise link creation.

If ρv (ti′) is the fraction of start nodes (initiators) incident on node v at time ti′.

Then ρv (ti′) =
din (v)∑

vi
dout (vi )

, evaluated w.r.t. t′i , vi is neighbor of v. Further, for any node v,

its influence depends on the relative weight of its degree and distribution of its node degree.

Relative weight of node v’s degree at time ti′ is d(v)
∀vi ∈C M AXd(vi )

and its degree distribution is

p(d(v)). Thus, start node selection probability is computed as follows:

qv
start (ti′+1) = ρv (ti′) ×

d(v)
∀vi∈C M AXd(vi)

× p(d(v)) × ζlink × dout (v)

× F Avg
Corr × |v ∈ li ∩ l j |,

(4.12)

where li ∩ l j finds the common node between the two links at time ti′, the correlated evolu-

tion of outgoing links, and average rate of pairwise link creation for node v are ζlink×dout (v)

and F Avg
Corr × |v ∈ li ∩ l j | respectively. When dout (v) at time ti′ is 0 or |v ∈ li ∩ l j | = φ at time

ti′, the partial multiplicative terms in the above are substituted with 1 − ζlink and 1 − F Avg
Corr

respectively.
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Selection of End Node (Receiver):

Probability of node v to be selected as end node, denoted as qv
end (ti′+1), depends on

its affinity to start node, the correlated evolution of its incoming links, and average rate of

pairwise link creation.

Let auv (ti′) be the affinity between node u and v at time ti′, where affinity is inverse

of the number of hops between u and v. Thus, the probability of a node being selected as

end node given by:

qv
end (ti′ + 1) = auv (ti′) × ζlink × din(v) × F Avg

Corr

× (F (li, (u,v)) + F ((u,v), lk )),
(4.13)

where (u,v) denotes the respective link and (li, (u,v)) represent (u,v) follows link li. When

din(v) = 0, and (F (li, (u,v)) + F ((u,v), lk )) = 0 at time ti′, the partial multiplicative terms

in the above are substituted with 1 − ζlink and 1 − F Avg
Corr respectively. Number of hops is

sufficient to limit to five but due to small world concept, during experimental evaluation we

find a limit of three hops works fine.

4.2.4.2. Effect of node age and node degree. The interaction of a node for next

time interval (say, ti′+1) is dependent not only on its duration of presence in the network,

but also on its influence/degree in current time. We evaluate a node’s duration of presence

in the network as tp = (ti′+1) − ta, where ta is the time node v start to be part of the

network. As t1′ is the start of the observation time, the observation duration of the node is

to = (ti′+1) − t1′; thus, the weighted age of the node become tweighted (v) =
tp
to

.

Now, at time ti′, the weighted node degree is, dweighted (v) =
d(v)
2Eti ′

, where d(v) is

node degree and Eti ′ is total number of edges in the network. To incorporate their mu-

tual effect ψ joint , we consider their joint weighted parameter to predict the occurrence of

interaction for node v, thus:

ψ joint (v) = tweighted (v) × dweighted (v). (4.14)
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The weighted degree of a node is computed relative to the whole network, instead of its

respective cluster.

4.2.4.3. Global effect in link prediction. In computing global effect, we consider

time slot (i.e. Tis) as the concerned time interval of our time-varying graph, instead of

time stamps. First, we consider global structural parameter like modularity index in link

formation. At any time Ti, let the number of edges in a cluster C j
i be E j

i , the total number

of edges in the network be ETi , and the number of edges that a cluster C j
i have with other

clusters (Ck
i ) is

∑
Ck
i

E j k
i ,∀k , j. We compute modularity index [98] (Q j

i ) as, a relative

measure of the number of edges within C j
i and across C j

i . Thus, Q j
i =

E j
i

ETi
−

(
E jk
i

ETi

)2

. We

formulate the probability of an edge over nodes u,v ∈ C j
i (i.e. φC j

i C j
i (uv)) to be dependent

on both modularity index, correlated evolution over clusters and influence of the respective

nodes. Thus we have:

φC j
i C j

i (uv) = Q j
i × ζcluster ×

d(u)
2E j ×

d(v)
2E j . (4.15)

Further, for a pair of nodes across distinct clusters, we evaluate the probability of a

linkage as:

φC j
i Ck

i (uv) = (1 − ζcluster ) ×
E j k

i∑
l,i and m, j
l, j and m,iE

lm
i

×
E j k

i (u,v)∑
∀u′,u and v′,v E j k

i (u′,v′)
,

(4.16)

here on the right hand side, the second term shows the connection across these two clusters

relative to other cluster pairs, and the last term represents the number of links between

(u,v) relative to other links across the cluster pair.

In the above discussions we have omitted ζ recursives
link , ζ recursives

cluster and their successive

complements in the discussion of procedures due to brevity and clarity.
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We analytically explain the underlying evolution or the cascaded interaction, i.e. in-

teractions effecting succeeding interactions. Let ρC j
t

di
(0) define the initial fraction of degree-

di nodes in community C j
t that are having interactions at initial time stamp, i.e at time t1.

Let ΓC j
t

di
represents the number of nodes of degree di in community C j

t with out-degree ≥ 1

at time t, acting as initiators. Thus, ρC j
t

di
(0) = Γ

C j
t

di
/
∑

di
Γ

C j
t

di
. Let us define the probability

that a degree-di node in community Ck
t is about to form an interaction at time step t as

qC j
t

di
(t), where at least one of its neighbors is not forming any interaction.

Probability that the neighbor of a non-initiator node of degree di in community C j
t

is going to form a new interaction in time instance (t + 1) is given by:

q̃C j
t

di
(t + 1) =

∑
Ck
t

∑
d j

pC j
t Ck

t

did j
(t)qCk

t

d j
(t)∑

Ck
t

∑
d j

pC j
t Ck

t

did j
(t)

(4.17)

The probability that a degree-di node in community C j
t will initiate an interaction

at time interval t is given by Equation (4.18).

ρ
C j
t

di
(t) = ρ

C j
t

di
(0) + (1 − ρC j

t

di
(0)) ×

k∑
j=0

*..
,

k

j

+//
-

× (q̃C j
t

di
(t − 1)) j (1 − q̃C j

t

di
(t − 1))k− j

(4.18)

4.2.4.4. Temporal dependency on link . We have temporal graphs over each time

stamp, corresponding to each time slot in [0,T]. For each link l ∈ ti, let Z be the random

variable reflecting its time dependent occurrence or the interval between its occurrence.

Let us assume that ∀ti ∈ Tj , we gather the occurrence interval for all links over Gti . Let

us represent it by {t′0, t
′
1, . . . , t

′
k−1}. Let I be the maximum interval, and number of times a

link occurs is µ, then the ith time interval is given by t′i ∈ [0, b I
µc],∀i ∈ {0, k − 1}. From the
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observed data values for intervals, let r j represent the number of times a specific interval

appears in I, 0 ≤ j ≤ b I
µc. Thus, the probability that the interval for the link occurrence

will be j, is given by r j
k .

Concisely, our approach in Section 4.2 performs the following steps to compute pre-

diction probability and select suitable links for subsequent state. It initializes the Markovian

transition matrix using the approach in Subsubsection 4.2.2.2, at the start of the observation

(t1′), over Gt ′1
∈ GT1 . For predicting links in the subsequent interval, it selects the start node

using the procedure in Subsection 4.2.4.1 and Subsection 4.2.4.2; being two independent

parameters, multiplying both gives their joint effect in selecting start node. Once we have

the start nodes, the possible destination (end) node selection probabilities are calculated as

in Subsection 4.2.4.1. As we have the source and destination node pairs, their interaction

probabilities are calculated considering whether they are in the same or different cluster

as in Subsection 4.2.4.3. The elements of the Markovian matrix in Subsection 4.2.2.2 are

then updated with this probability. The interaction takes place across the selected start and

destination nodes with interaction probability above certain threshold limit (say, top 30%).

The above procedure is iterated for each successive interval till the end of the training pe-

riod, evaluated links over each interval being considered for training data for subsequent

intervals and then for predicting the link occurrence over time slots [T,T + 1] of the test set,

and also over time stamps in time slot T + 1. We use top 5%, 10%, 20% of the predicted

link probabilities and compared it with actual occurrence of links to evaluate our prediction

model.

Every created edge contributes to the degree of respective start and end nodes. Thus,

the degree distribution of the application network depends on these created edges. The

degree distribution of the real world large scale networks are known to exhibit power law.

So, we need to investigate whether the correctly predicted edges by our prediction model,

results in power law for degree distribution over the respective application network.
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4.3. POWER LAW DEGREE DISTRIBUTION OF PREDICTED EDGES

Here, we show that our proposed approach (model) for node and edge selection,

results in power law distribution of the resulting node degree over the network, as is ob-

served in real world networks. In Subsection 4.2, we integrated temporal dimension in to

our parameters.This helps in synchronization of the prediction model with the underlying

network evolution. Moreover, in Subsection 4.2.4.2, we integrate age of node along with its

degree, in its selection. Now, let us assume that the time interval between successive edge

creation of the node, say v, be τd (v) = td+1(v) − td (v), where (d + 1) and d are its node

degree at time t + 1 and t. The closest replication model (distribution) of this time interval

is given by the power law with exponential cut off [101], Pl (τd; ρ,σ) ∝ τ
−ρ
d exp(−στd),

where d is current degree, ρ,σ are parameters of distribution of τd as a function of cur-

rent node degree d. In Subsection 4.2.4.2, we also integrate node degree that reflects the

preferential attachment property exhibited by networks. Thus, the slope ρ of the power law

distribution remains constant, whereas parameter σ representing exponential cutoff part be-

comes faster. Thus, successive edges are added at a faster rate, i.e., (d + 1)st edge of a node

added faster than dth edge. So, distribution of τd becomes Pl (τ |d; ρ,σ) ∝ τ−ρexp(−σdτ).

A degree d node v, samples with intervals τ from Pl (τ |d; ρ,σ) = 1
Z τ
−ρexp(−σdτ) and

remains inactive for a period τ. Additionally, the experimental analysis of nodes life time

in Section 4.6 shows that they are exponentially distributed with parameter say, λ.

Theorem 4.3.1 The resulting node degree distribution exhibits power law.

Proof 4.3.2 We evaluate the normalization constant Z from the distribution for time inter-

val Pl (τ |d; ρ,σ) = 1
Z τ
−ρexp(−σdτ). We have, Z =

∫ ∞
0 τρe−σdτdτ =

Γ(1−τ)
(σd)1−τ . Let T be

the life time of a node. Between two successive samples of a node from the distribution

Pl (.), it (node) remains inactive for τ(k) time period. Each successive sampling increases

node degree by 1. Let D be the final degree a node attained in its life time T. In attaining
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D, the node remains inactive in total for:

D∑
d=1

τ(k) ≤ T. (4.19)

On a similar note, the expected time interval E(τ |d; ρ,σ) for a node of degree d is:

E(τ |d; ρ,σ) =
Γ(2 − ρ)
Γ(1 − ρ)

(σd)−1. (4.20)

From Equations (4.19) and (4.20), we relate lifetime T and expected final degree D

of the node to have inequality:

D∑
d=1

Γ(2 − ρ)
Γ(1 − ρ)

(σd)−1 =
Γ(2 − ρ)
Γ(1 − ρ)

(σ)−1
D∑

d=1

d−1 ≤ T. (4.21)

We know that
∑D

d=1 d−1 = Θ(lnD). From Equation (4.21), the final degree D of a

node with lifetime T is:

D ≈ exp
(
Γ(1 − ρ)
Γ(2 − ρ)

σT
)

(4.22)

Thus, D is exponential function of the lifetime (T) of a node. We can write it as, D =

exp(ϕT ), where ϕ =
Γ(1−ρ)
Γ(2−ρ)σ.

Further, the node life time is exponentially distributed; thus, the distribution of node

degree (D) using λ and ϕ will be:

D ∼ λ
ϕD e

−λ
ϕ logD

= λD−(1+ λϕ )

ϕ .

With exponent (1 + λ
ϕ ), the node degree is power law distributed. Thus, predicted

edges in our model results in power law degree distribution, as in case of real world net-

works.

In the following, we consider information theoretic prediction model in further re-

duction of uncertainty and thus, enhancing the prediction accuracy.
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4.4. INFORMATION THEORY IN ELIMINATING PREDICTION UNCERTAINTY

Entropy is a metric for measuring the uncertainty (or, information content) over the

probability distribution of a random variable [35]. Rather than the weighted average of

the information content over all the outcomes, we are interested in the information content

of any specific output called its self information. In order to explore the causality and

association relation in the interactions over node pairs, we consider the concept of mutual

information. First we formally define self information and mutual information [35], before

using them in the context of link prediction.

Definition 4.4.1 Self and Mutual Information [35]: Let x be the outcome of a random

variable X with probability p(x). The self-information or uncertainty (I (x)) of the outcome

x is given by I (x) = log 1
p(x) = −logp(x). That is, the higher the self-information of x, the

lower is its prediction outcome.

Now in case of two random variables X,Y with joint and marginal probability mass

functions respectively p(x, y) and p(x), p(y), the mutual information is defined as I (X ;Y )

=
∑

x∈X
∑

y∈Y p(x, y)log p(x,y)
p(x)p(y) =

∑
x,y p(x, y)log p(x,y)

p(x)p(y) =
∑

x,y p(x, y)log p(x |y)
p(x) . For out-

comes X = x and Y = y we have I (x; y) = log p(x,y)
p(x) = −logp(x) − (−logp(x |y)) =

I (x) − I (x |y). Thus, mutual information is the reduction in the uncertainty in one random

variable due to another variable and in absence of causal relation mutual information will

be 0.

In reference to future interactions, we reduce the uncertainty among pairs of struc-

turally correlated nodes for future interactions. For this we use the triad structure of inter-

action patterns among nodes.

Definition 4.4.2 Conditional Self-Information in Prediction Accuracy: Let us consider any

node vi and let N t
vi

be its set of neighbors interacting with it at time t. Let a pair of

correlated nodes be (vi,v j ) and their respective neighbors at time t be N t
vi

and N t
v j

, which

are represented as N t
i and N t

j for simplicity. Let the set of common neighbors be, CN t
i,j =
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N t
i ∩ N t

j . Now, we predict the possible future interaction between pair of nodes (vi,v j )

as the conditional self-information content −I (Lt+1
i,j |CN t

i,j ). From the definition of self-

information content, the smaller is its value, the higher is prediction accuracy for the link

Lt+1
i,j at time instance (t + 1).

Definition 4.4.3 Capturing Correlation into Prediction: We know that for any two ran-

dom variables X and Y , the mutual information can be represented as the reduction in

uncertainty in one variable due to the information of the other variable, i.e., I (X ;Y ) =

I (X ) − I (X |Y ). In order to incorporate the correlation between future interaction of a

pair of nodes and their common neighbors in reducing prediction uncertainty, we use the

above relation. Thus, we define I (Lt+1
i,j |CN t

i,j ) = I (Lt+1
i,j − I (Lt+1

i,j ; CN t
i,j )), where I (Lt+1

i,j )

is the self information of the interaction between node pairs (vi,v j ) at time (t + 1). The

self-information is evaluated on the prediction probability of elements of Markovian matrix

(Mt+1), i.e, pCiCj

did j
, as defined in Subsection 4.2.2. The mutual information I (Lt+1

i,j ; CN t
i,j )

effects reduction in uncertainty of the predicted link Lt+1
i,j due to interactions with common

neighbors.

When nodes in CN t
i,j are independent of each other, mutual information is the aggregate

over all nodes (ls) in CN t
i,j as given in Equation (4.23).

I (Lt+1
i,j ; CN t

i,j ) =
∑

∀l∈CN t
i, j

I (Lt+1
i,j ; l) (4.23)

Now we capture the correlation for all node pairs that have interactions with each

node l ∈ CN t
i,j and their corresponding mutual information as in Equation (4.24), by com-

puting the average mutual information over all such node pairs.

Iavg (Lt+1
i,j ; l) =

1
|N t

l |(|N
t
l | − 1)

∑
∀i′,j ′∈N t

l
,

i′, j ′

I (Lt+1
i′,j ′; l) (4.24)
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From the definitions of mutual information and conditional self-information, and

from all pairs of nodes that share a single common neighbor (say l) we will have:

∀i, j ∈ N t
l : Iavg (Lt+1

i,j ; l) = Iavg (Lt+1
i,j ) − Iavg (Lt+1

i,j |l) (4.25)

Now, the conditional probability corresponding to the conditional self-information

for interactions can be evaluated using the modularity index relative to node l as follows:

∀i, j ∈ N t
l : pavg (Lt+1

i,j |l) = |CN N t
l |/

����������

*....
,

N t
l

2

+////
-

����������

(4.26)

where |CN N t
l | is number of neighbor pairs of l with mutual interactions at time t, i.e.

connected neighbor pairs of l, and

��������

*..
,

N t
l

2

+//
-

��������
is all possible pairs of neighbors of node l.

Lemma 4.4.1 Average Mutual Information and Average Conditional Self-Information: Given

the prediction probabilities pavg (Lt+1
i,j ), the average mutual information Iavg (Lt+1

i,j ; l) =

1
|N t

l
|(|N t

l
|−1)

∑
∀i′,j ′∈N t

l
i′, j ′

*..........
,

−logp(Lt+1
i′,j ′) + log

|CN N t
l
|

����������

*....
,

N t
l

2

+////
-

����������

+//////////
-

.

Proof 4.4.2 Iavg (Lt+1
i,j ; l) = 1

|N t
l
|(|N t

l
|−1)

∑
∀i′,j ′∈N t

l
i′, j ′

I (Lt+1
i,j ) − Iavg (Lt+1

i,j |l)

= 1
|N t

l
|( |N t

l
|−1)

∑
∀i′,j ′∈N t

l
i′, j ′

(−logp(Lt+1
i′,j ′) − (−logp(Lt+1

i′,j ′ |l)))

= 1
|N t

l
|(N t

l
|−1)

∑
∀i′,j ′∈N t

l
i′, j ′

(−logp(Lt+1
i′,j ′)) + log |CN N t

l |/

����������

*....
,

N t
l

2

+////
-

����������

.
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Thus, we compute the likelihood score of the interaction between node pairs, in

terms of their conditional self-information as follows.

Iavg (Lt+1
i,j |CN t

i,j ) = I (Lt
i,j ) −

∑
l∈CN t

i, j

Iavg (Lt+1
i,j ; l) (4.27)

We illustrate the steps discussed above, for uncertainty reduction over the computed

prediction probabilities of the transition matrix in Subsection 4.2, through a simple example

in Figure 4.4 and show its effectiveness.

	

	

			D	

			B	

			A	
			C	

			H	

			E	

			F	

			G	

Figure 4.4. Example: Information Theory in Prediction

Example: In our simple example node degrees are 1,2,3, with frequency 1,2,5 re-

spectively; thus, the respective degree distributions (p(d))’s are 1
8 ,

2
8 ,

5
8 . Let the two clusters

be C1 = {A,B,C,D},C2 = {E,F,G,H }. From definition in Subsection 4.2.2.2, we obtain

pBC , pBD,pCD,pCE ,pCH ,pEG,pGH ,pEH . For simplicity we are omitting the cluster and

time instance notations in this illustration. Using the above procedure we find the predic-

tion probability for interaction or link (B,C). We have the set of common neighbors of

nodes B and C as, CNBC = {A},NA = {B,C,D}, with only connected node pair (B,D)

in NA. Evaluating the conditional self-information content over the node pairs in NA we
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get, I (LBD |A) = −0.477, similarly I (LBC |A) = I (LCD |A) = 0.477. The self-information

I (LBD) = −log20 + log1728. Similarly, I (LBC) = −log 4
576 . Now, Iavg (LBC,BD,CD; A) =

0.8651. So, Iavg (LBC |A) = 3.0269. Similarly, Iavg (LCD |A) = 1.2949. Thus, interaction or

link between node pairs C,D is more likely to occur.

Similarly, over prospective links E,H and B,C, the 1st one is higher probable with

Iavg (LEH |CNEH ) = 0.113 and Iavg (LBC |CNBC) = 3.0269, from the fact that they have two

common neighbors in comparison to node pairs B,C with only one common neighbor A.

Further, different nodes vary with the magnitude that they contribute to the mutual

information and hence in reducing uncertainty in link prediction. For example, consider

between nodes F and A. From the above computation we have Iavg (LEG,GH,EH ; F) =

1.106 and Iavg (LBC,BD,CD; A) = 0.8651. So, in computing conditional self information

that is the likelihood of occurrence of a link, the later one reduces uncertainty by lesser

amount in comparison to the fast one. Thus, node F contributes to reducing uncertainty in

predicting future interaction to a higher degree than node A. We can explain this from the

network structure that the corresponding node is associated with. Though, both the nodes

have degree 3, node F has higher number of triads or denser structure associated with, in

comparison to node A. Thus, the proposed information theoretic formulation, incorporates

the underlying network structure to help reduce prediction uncertainty.

4.5. ORDER OF PREDICTION MODEL

An important question in the accuracy of prediction model is how should we con-

sider the dataset, so that the prediction outcome over the test set is neither under-fit nor

over-fit? A simple way used in this is to do k-fold cross validation as we use in Subsection

4.6; that also makes the model more robust and generalized one. A significant underlying

aspect addressed here is the amount of data considered as training and test set.
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Besides this another important aspect is, how many previous states the Markov

model needs to keep as history, i.e. the order of the Markov model. More so, to integrate

temporal evolution of local and global structure we consider both fine and coarse-grained

time scale. The links at successive stages which we model as states of the evolving network

graph, in turn corresponds to the states of the Markov model. So, the question is how many

states s, or how many states over corresponding time scales that the model needs to keep

as history. Another way to put it is, how many states s will be sufficient to eliminate

the uncertainty in the stochastic prediction model. We use the information theoretic and

compression based concepts and results from [35] and [140] in giving a optimal bound

(upper bound). From our definition of prediction model in Subsection 4.2.2, we can infer

the following definition of states.

Definition 4.5.1 The evolution history or state transition history of the links (and hence

the Markov model) is given by state set s = {s1, s2, . . .}. The associated state transition

matrix M (t) and M (T ) updates the subsequent state. In fact, these states (sis’) are not

necessarily distinct.

Furthermore, the learning of the stochastic process over the history of states is done

offline (though, can also be online too), to get better insight of the possible future state.

The essence of the prediction model is to incorporate the correlation information (repetitive

nature) from history states. In fact, it is the repetitive nature of identifiable states of history

that makes stationarity as an intrinsic property of this stochastic model. Thus, from [35]

we can infer the following definition over stochastic process associated with states of the

prediction model.
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Definition 4.5.2 The stochastic prediction model for links is a stationary process P =

{pi}, where pi = si ∈ s when the ith transition occurs. The joint distribution of any sub-

sequence pis is invariant relative to the shifts (say, t) in time axis. i.e., Pr[p1 = s1,p2 =

s2, . . . pz = sy] = Pr[p1+t = s1,p2 = s2+t , . . . py+t = sy]. The state transition history is a

sample trajectory in P .

In the Markovian prediction model, the question that arises is whether higher or-

der adds to the better prediction of the generalized prediction model that is to investigate

whether it make the model richer. The intuition is that there has to be a bound to the rich-

ness, as the sought after general model has to be the richest. So, at what order (say, k)

should we stop. From the definitions of entropy rate in [35], we have the entropy rate per

state and the continual entropy rate as follows:

Definition 4.5.3 The entropy rate per state H (P ) for a stochastic process P = {pi}, is de-

fined by H (P ) = lim
y→∞

1
y H {p1,p2, . . . ,py}, when the limit exists. Similarly, the conditional

entropy rate for the same process is given by H′(P ) = lim
y→∞

H (py |p1,p2, . . . ,py−1), when

the limit exists.

Further, the equality of H (P ) and H′(P ) also follows from [35] due to the fol-

lowing.

For any set of k discrete random variables with joint probability distribution given

by Pr (p1,p2, . . . ,pk ) = Pr[p1 = s1,p2 = s2, . . . ,pk = sk],∀i, si ∈ s, the joint entropy

is given by H (p1,p2, . . . ,pk ) =
k∑

i=1
H (pi |p1,p2, . . . ,pi−1). From the above conditional en-

tropy, it implies that higher the history of states, better is the model or more information

rich. In other words, lower order models underestimate the associated uncertainty in the

prediction of the underlying model. In fact, from the results in [35] the highest order of

the Markov model naturally follows from the following fact. For a stochastic stationary

process P = {pi}, the conditional entropy H (py |p1,p2, . . . ,py−1) is a decreasing function

in y and is limited by H′(P ).
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It is clear now that the marginal improvement in model richness starts to die out

soon. Intuitively, the largest meaningful order has something to do with largest chain of

dependency observed in the state history and is evident from the left hand side of the joint

entropy of the k-states (H (p1,p2, . . . ,pk )). Thus, the per state entropy rate would then

represent the running average of conditional entropy rates. Thus, from the result of [35] we

have: For a stationary stochastic process P , both the limits in definition 4.5.3 exist and

are equal i.e. H (P ) = H′(P ).

Now, the only thing we need to decide is the appropriate order for the univer-

sal/generalized model. This is achieved by a class of compression algorithms proposed

by Ziv and Lempel [140]. The larger contexts in the conditional probabilities helps in

higher prediction accuracy/richness of the higher order Markov model, as inferred earlier.

As, there is a limit to the model richness for stationary processes, the symbol wise model

by Ziv and Lempel should eventually converge to universal model. In fact, from the result

in [55], the bound is deduced to be O(log(y)).

The incremental parsing model (IP) asymptotically outperforms a Markov predic-

tor of any finite order, thus attaining finite state predictability. But the rate at which the

predictability is attained is O( 1√
logy

), which is slower than the rate O(
√

2k/y), for which

the number of effective states that IP has is O(y − logy) and thus, its equivalent Markov

model order is given by O(log y
logy ) = O(logy− loglogy) ≈ O(logy), where y is the (total)

number of states.

4.6. EXPERIMENTAL RESULTS

We evaluate our approach using real world data sets and comparing the prediction

accuracy over the standard receiver operating characteristic (ROC) curve with false posi-

tives in X- axis and true positives in Y -axis to represent the outcomes in successive time

intervals. The area under the ROC curve (AUC measure) represents the achievable true

positive rate (TPR) relative to false positive rate (FPR). The ROC curve helps us evaluate
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the effectiveness of prediction model from tradeoff between TPR and FPR. The higher the

TPR than FPR, the better the model; though, in general TPR > FPR is considered a good

model.

We evaluate and compare the accuracy of our Markov model based approach (Das)

relative to the state-of-the-art approaches such as: Adamic-Adar score (AA), Katz-measure,

Common Neighbors (CN) mentioned in [88] and the recent dynamic approaches such as

Sarkar et al. [116] (Sarkar) and Tylenda et al. [130] (Tylenda). The AA, CN, Katz are static

approaches based on the aggregated graph over [0,T]. TPR and FPR are computed from

fraction of correct predictions and fraction of wrong predictions. The measure is equally

applicable to evaluate prediction accuracy of selected start nodes. Further, the AUC values

resemble ROC curve, in reflecting the performance/accuracy of the approach.

We use Twitter, Facebook, Enron and DBLP dataset. Use of Enron and DBLP

data set help effective comparison with the work of Sarkar et al. [116] and Tylenda et

al. [130], as they also use the same data sets. Further, Twitter network data set helps us

evaluate the effectiveness of all the dynamic approaches. The Facebook dataset used by

Viswanath et al. [132] contain wall-to-wall post relationship among 11,470 users between

years 2004-to-2009. The DBLP dataset is from [46], to which the year of collaboration

timestamps are attached and 3000 authors with at least 5 papers are considered. With

Twitter API, over 88,930 time stamped interactions from reply, retweet, favorite message

during a period of 32 weeks are collected from Twitter network (July, 2015-to-January,

2016). In the Enron data set [49], the email communication in the range of July 2000 to

March 2002 is considered for our experiments.

Over Enron, Facebook and twitter, the data is time stamped in hour:min format. A

day is taken as the smallest time unit i.e. time stamp over these networks, whereas a month

and a week taken as time slots over them, respectively. For DBLP network, we consider a

year as the time slot and time stamps are half yearly. The frequency of interaction between

node pairs is incorporated over the respective time stamps.
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We consider all time stamps in one slot to predict over next time stamp and all

time slots to predict over next slot; thus, the number of history states s equals the number

of time stamps or total number of time slots in respective time domain. For example, in

twitter application network, we consider time stamps over three slots. Thus, s = 21 for time

stamps, and s = 31 for time slots, used for prediction over next time stamp or time slot.

Further, over Enron email application network we have s = 20 w.r.t. time slots, whereas,

s = 30 over time stamps.

In Figure 4.5, the age of nodes over three networks follow exponential distribution,

as the elongated shape along X and Y-axis for each is observed. This justifies our consider-

ation of exponential parameter λ in Subsection 4.3. Further, the inter-arrival time between

interaction is power law distributed (exponent between 2-to-3) with exponential cut off over

all the three networks, as is evident from the Figure 4.6. Moreover, the parameters ρ as-

sociated with their distribution remains almost constant (Y-value almost same throughout

per curve) with degree d, where as the other associated parameter σ grows linearly with

time, as is reflected in Figure 4.7. We used these facts in Subsection 4.3. In Figure 4.5 and

Figure 4.6, we presented separate graph for each network owing to distinct ranges.

First, we show the accuracy of our start node selection with top 30% of the com-

puted probabilities over DBLP, Twitter and Enron datasets in Figure 4.8. To clarify further,

when we use top 30% of the link prediction probabilities, we check the TPR and FPR val-

ues within this set of predicted links. Owing to the relatively lesser dynamic (time-varying)

nature of the DBLP dataset, it has better accuracy than other two datasets.

Now, we evaluate the prediction accuracy over the next time slot, i.e. [T,T + 1].

The ROC curves in Figure 4.9 and the 2nd graph of Figure 4.8 presents the prediction

accuracy of our approach (Das) relative to the other approaches over three datasets. The

three dynamic approaches (Tylenda, Sarkar and Das) outperform the remaining static ap-

proaches, as is evident from the ROC curves (and AUC values Table 4.2). Further more, the

probabilistic Markov model in (Das) has higher prediction accuracy than the integration of
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local network structure and time series based approaches (Tylenda and Sarkar). The better

prediction accuracy of our model is attributed to the two way temporal analysis, that is con-

sideration of two time scales and the corresponding local and global structural evolution.

Here, we use top 20% of the predicted links in all cases, for evaluating accuracy of the

proposed model. Each of the ROC curves shows the variation of rate of correct predictions

to rate of wrong prediction.

In the 1st graph of Figure 4.10, we show the link prediction accuracy while selecting

top 5%, 10%, 20% of the prediction probabilities for links over Twitter network. In the 2nd

graph we show the prediction accuracy (with top 20% and 30% link selection) over time

stamps of one slot ([T,T + 1]). Here, we have included the effect of cluster evolution

and rate of evolution computed over time slots, to predict for the next time stamps (days

in Twitter network). Thus, prediction accuracy (with 20%) for time stamps and slots are

almost similar over Twitter network.

To avoid possible over fitting in the above predictions, instead of taking only [0,T]

as training set and [T,T + 1] as test set, we rather consider k-fold cross validation. To com-

pute the prediction accuracy of model, we iterate it k times, over our observation interval

and take average of the prediction outcomes over all test intervals. For example: in Twitter

application network, of the 32 week (slots) observation period, we take sets of 31 weeks

as training set in each iteration and predict over the remaining slot in that iteration. Over

32 test sets, we take average of the prediction outcome to determine the final prediction

accuracy of the model. Table 4.3 shows the resulting prediction accuracy of three dynamic

models, over three distinct datasets, with higher accuracy of our proposed model (Das). In

Figure 4.11 we show the corresponding ROC curves for Enron and Twitter networks. Here,

we show only the dynamic models, as static models have further lower accuracy.

It is interesting to note that the ROC curves for Figure 4.9 and 2nd graph of Figure

4.8, seems to have a lesser TPR around FPR value of 0.1 (we do not give any smoothed

version of ROC curves, so at some points we may see this), for all baseline approaches (CN,
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Figure 4.5. Distribution of Node Lifetime
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Figure 4.6. Inter-arrival Time Distribution: Interactions
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Figure 4.7. Evolution of ρ and σ with Node Degree

AA, and Katz); but, the curves have an overall upward trajectory. Further, the ROC curves

in Figure 4.11 have relatively lesser prediction accuracy than the earlier curves, without

over fitting being taken care of.

Over the subsequent time slots, we show variation of prediction accuracy in Figure

4.12 over 10 consecutive time slots and time stamps for Markov model, with top 20% and

30% selection of predicted links for Facebook network.
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Figure 4.8. Accuracy over Node Selection and Link Prediction
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Figure 4.9. Accuracy over Link Prediction

Table 4.2. AUC Value with Our Model

AUC results over Twitter, Enron, DBLP datasets

Dataset CN AA Katz Tylenda Sarkar Das

Twitter 0.6467 0.6816 0.6968 0.7643 0.8293 0.9183

Enron 0.6615 0.6753 0.7389 0.7835 0.9031 0.9328

DBLP 0.7523 0.7721 0.7338 0.8230 0.9143 0.9613

We now investigate the effect of number of history states. We show the results

for one of the heavily dynamic network data set, Facebook for brevity and sufficiency.

Considering the division of time stamps and slots as described above, we have 2190 time

slots and 52560 time stamps, each as states over respective time domain, for Facebook

network data set.
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Table 4.3. Average AUC Value with Our Model

AUC results over Twitter, Enron, DBLP datasets

Dataset Tylenda Sarkar Das

Twitter 0.7039 0.7935 0.8503

Enron 0.7313 0.8189 0.8635

DBLP 0.7953 0.8456 0.9093
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Figure 4.11. Average Link Prediction Accuracy over All Slots

We take s = 50 as history states and show the outcome averaged over all subsequent

slots, over both Markov and ITH model. We also show the prediction accuracy for s = 10

and s = 16. We show the prediction accuracy for s = 10in the 1st graph of Figure 4.13.
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Table 4.4. Average AUC Value: Markov and ITH Model

AUC results over Twitter, Facebook, DBLP datasets
Dataset Das ITH
Twitter 0.8503 0.8493
Enron 0.8635 0.870
Facebook 0.8563 0.8589
DBLP 0.9093 0.9188
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Figure 4.13. Prediction: ITH vs Markov, And Varying Degree of Selection

We show the corresponding AUC value for the comparison of ITH and Markov

model in Table 4.4. Here the accuracy of ITH model is slightly better than Markov model.

But for s = 16, we find the prediction accuracy for Markov model to converge to the

accuracy of ITH model, possibly as the number of states are almost O(logs), s is the total
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number of possible states. We also show the prediction accuracy of Markov model over

Facebook network data set with top 15%, 20%, 30% selection of predicted links in the 2nd

graph.

4.7. SUMMARY

To sum up, the effectiveness of our Markov model approach lies in the incorpora-

tion of the temporal evolution over both fine and coarse grained time domain, along with

their correlated structural evolution (i.e. links and clusters respectively), rate of evolution

and evolution dynamics in building our prediction model bottom up. This captures the

randomness and multiple evolution profiles resulting in higher prediction accuracy. Fur-

ther, our node selection in Markov model reflects higher prediction accuracy. Further, our

information theoretic approach not only uses Markovian transition matrix as its basis, but

also integrates network structural properties to further reduce underlying entropy. Both our

approaches outperform the state-of-the-art static approaches, as well as the recent dynamic

approaches, as is evident from the ROC curves (also AUC value) over three highly dynamic

and one relatively static example network. We observe that our Markov model is competent

enough with the proposed information theoretic model, as both have almost same predic-

tion accuracy; more so, when we approach the upper bound of O(logs), on total number

of history states the prediction accuracy of Markov model converges with the information

theoretic model, thus justifying that we do not need to keep track of all the history states

for best prediction accuracy, irrespective of how large the network data sets are. More so,

we derived the theoretical upper bound on number of desired states of the Markov predic-

tion model for best prediction accuracy. The computation cost of the prediction model is

bounded by O(∆tlogs), where ∆t is the computation time per state and logs is number of

history states taken into consideration.
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5. CONTACT PATTERNS IN FUTURE CONTACT PREDICTION OVER
MOBILE NETWORKS

As discussed earlier, with advances in the Internet and mobile technology, and de-

creasing cost of mobile devices, large scale dynamic pervasive networks are now ubiquitous

in solving many earlier service limitations. The challenge here is in its underlying temporal

graph. It introduces technical limitations in efficient routing, maximal coverage with min-

imal latency, data offloading, to effective dissemination over mobile networks or mobility

induced dynamic networks. The efficient solution to these inter-related problems lies in the

novel prediction strategies for most accurate future contacts; more so, inter-contact period

between node pairs, and their future contact time are also of significant use. In contrast

to the existing strategies that consider regular pattern and periodic nature of contacts, we

propose a novel stochastic Poisson process model that employ multi-recurrent, dependent

pattern of contact as the basis of our novel prediction model. We use variants of cascaded

non-homogeneous Poisson process model as our proposed model. We predict number of

contacts relative to a node and over all nodes in any future interval, future contact time over

a user and a pair of users. We discuss the process details in the following sections. Finally,

we validate our model with a widely used empirical data set, and compare our model with

doubly recurrent and homogeneous Poisson process model to conclude the superiority of

our prediction model. We discuss the details in the following Subsections.

The following discussion is organized as follows. In Subsection 5.1, we present

preliminary concepts and definitions used in contact prediction strategy, along with the for-

mal problem definition. Subsection 5.2 describes our proposed variant of NHPP model. It

includes framework to capture both multi-recurrent contact pattern and also random con-

tact pattern, while Subsection 5.4 reports experimental results and finally a summary of our

proposed approach and the results are offered in Subsection 5.5.
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5.1. PRELIMINARY DEFINITIONS AND CONCEPTS: CONTACT PREDICTION

As earlier, we represent the underlying temporal network graph over an observation

period as G(V,E, [0,T]), where V and E represent the set of vertices and edges respec-

tively, and [0,T] is the observation period. The subgraph at any time period δt is repre-

sented as Gδt (Vδt ,Eδt ), where Vδt , Eδt are the corresponding vertices and edges. Corre-

sponding to real world application, where a contact is established between a pair of mobile

devices/nodes within communication range, an edge is established in the underlying graph

between a pair of nodes, i.e. (vi,v j ) ∈ E at time instance t called future contact time (con-

tact initiation time), where vi,v j are the respective mobile nodes in the application network.

As mentioned earlier, we are leveraging the generalized recurrent pattern. It is not

limited to only two degrees of periodicity (i.e. short term and long term or, daily and weekly

periodicity), rather it takes into account the multi-recurrent contact pattern. Further, both

direct and indirect dependent nature of the contact patterns over temporal dimension are

considered to predict future contacts. In this context we formally define our problems as

follows:

Let the contact remain active in time [t, t + δt), then δt is called the contact pe-

riod/duration for the corresponding node pair, t ≥ 0, δt > 0. The number of contacts that

a node vi has in time interval δt i.e. ∀v j : (vi,v j ) ∈ Eδt are called its neighbors (
∑

v j (vi)).

For any node vi, we predict its number of contacts during time period [t, t + δt) given by

N[t, t + δt) = N (t + δt) − N (t).

We also define inter-contact period between a pair of nodes (vi,v j) having contact at

time t and the subsequent contact at time t+t′, as the time period between its two successive

contacts, where t′ > 0. For any pair of nodes vi,v j we evaluate its aggregate inter-contact

period as the ratio of the total time units of inter-contact period of the node pair to the total

number of their contacts. Let k be the number of times the node pair vi,v j are in contact. Let
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t′i j be the inter-contact period corresponding to pair of subsequent contacts say, ith and jth

contact for i, j ∈ k. Thus, the aggregate inter-contact period of the corresponding node pair

is given by
∑
∀i, j ∈k : j=i+1 t ′i j

k .

We describe our proposed model framework in detail below.

5.2. PROCESS MODEL

Let us define the number of observed contact counts at any time t ∈ {0,T } in a

temporal counting process as N (t), that incorporates multi-recurrent contacts and their

underlying dependency.

Let [t0, tn+1) denote the observation interval of the experiment and 0 < t0 < t1 <

. . . < tn+1 be the successive contact times of the same pair of nodes, say nodes vi and v j ,vi ,

v j . Let the set of contact events be represented as 0,1, . . . ,n. Over the process model N (t),

let the latent variable zi to indicate the dependence among recurrent contact observations,

with zn over observation interval [tn, tn+1]. Let the set of observed and hidden variables be

{o0,o1, . . . ,on,on+1} and {z1, z2, . . . , zn, zn+1}. Further, with hidden state zn, the nth inter-

contact time period is tn+1 − tn. We propose to use the intensity function (λ(t)) underlying

a N HPP to predict the occurrence of interactions. As we study the interactions over tem-

poral domain, it is natural to visualize the interaction set as time stamp of their occurrence

along the time axis.

The overall graphical process model is shown in Figure 5.1. The counting process is

the result of recurrent process (Nr (t)), and dependency among underlying recurrent events

(shown with process hidden states Zis’).

In the following Subsections (5.2.1, 5.2.3), we consider process models for recur-

rent, dependent contacts and stochastic event dependent contacts. In the first subsection we

consider contacts with multiple recurrent patterns with correlation among recurrent events.

5.2.1. Process Model With Recurrent Pattern. To incorporate multiple recurrent

nature of contacts, we consider the intensity function as a sinusoidal function.
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Figure 5.1. Stochastic Process Hierarchy

In contrast to the homogeneous Poisson process (HPP) model that has station-

ary intensity function independent of time, i.e. λ(t) = λ, we consider the standard non-

homogeneous Poisson process model (N HPP) {Nr ′ (t) : t ≥ 0} as our basis with intensity

function given by:

λr ′ (t) =

p∑
c=1

Acsin(ωct + ϕc), (5.1)

where the sinusoid function represents recurrent contact pattern, with amplitude Ac, angular

frequency ωc and phase ϕc corresponding to cycle (period) c.

Let us consider that n contacts are observed at time instances t1 < t2 < . . . < tn

in time interval [0,T ). Consider the N HPP stochastic process as basis with intensity

function as described in Equation (5.1). The corresponding parameter set is given by

[A1, A2, . . . , Ap,ω1,ω2, . . . ,ωp, ϕ1, ϕ2, . . . , ϕp,c]. Let us denote the above parameter set as

θr ′. In determining the maximum likelihood estimates of the parameters, we determine the

log-likelihood function of the parameter set with Nr ′ (T ) = n and t′ = (t1, t2, . . . tn), as log
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is monotonic. Thus, the log-likelihood of θr ′ is given by Equation (5.2).

Lr ′ (θr ′ |n, t) =

p∑
c=1

n∑
j=1

Acsin(ωct j + ϕc)−

∫ T

0
exp{λr ′ (z)}dz

(5.2)

Now the question is, how we determine the initial estimates for parameters of

the above intensity function. We observe that if we get initial estimates of frequencies

{ω1,ω2, . . . ,ωp}, then the initial estimates of rest of the parameters can be easily derived.

In lieu of prior information of the process, the initial estimate of the frequencies are ob-

tained from sampled data, with Fourier transform. Once we have the estimated values of

frequencies, we estimate for amplitudes {A1, . . . , Ap} and phases {ϕ1, . . . , ϕp} are deter-

mined as follows. The log-likelihood function of Equation (5.2) is given as Equation (5.3).

Lr ′ (θr ′ |n, t) =

p∑
c=1

n∑
j=1

Acsin(ωct j + ϕc)−

∫ T

0
{Π

p
c=1exp (Acsin(ωcz + ϕc))}dz

(5.3)

We assume ωc = 2π
C , and C as the length of one cycle. To simplify Equation (5.3),

we consider values of ωc, for which the observation interval constitutes complete cycles.

Let k denote the number of cycles of length C in [0,T ), thus T = C k. Now, the integral in

the right hand side of Equation (5.3) can be represented as follows:

∫ T

0
{Π

p
c=1exp(Acsin(ωcz + ϕc))}dz =

Π
p
c=1

∫ T

0
exp{Acsin(ωcz + ϕc)}dz =

Π
p
c=1k

∫ C

0
exp{Acsin(ωcz + ϕc)}dz.

(5.4)
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We have, sin(ωct j + ϕc) = sinωct j cosϕc + cosωct j sinϕc. Further, let ζ = ωcz = 2πz
C .

Substituting it in the above log-likelihood function of Equation (5.3) and (5.4), we get:

Lr ′ (θr ′ |n, t) =

p∑
c=1

AcB(ωc) cosϕc +

p∑
c=1

AcB′(ωc) sinϕc−

Π
p
c=1k

∫ 2π

0

C

2π
exp{Acsin(ζ + ϕc)}dζ

=

p∑
c=1

AcB(ωc) cosϕc +

p∑
c=1

AcB′(ωc) sinϕc−

Π
p
c=1

T
2π

∫ 2π

0
exp{Accosζ }dζ,

(5.5)

where for c = 1, . . . ,p, B(ωc) =
∑n

j=1 sin(ωct j ) and B′(ωc) =
∑n

j=1 cos(ωct j ).

Now, from Equation (5.5), Πp
c=1

T
2π

∫ 2π
0 exp{Accosζ }dζ = Π

p
c=1T I0(Ac), where

I0(Ac) is the Bessel function of first order.

In order to estimate the parameters we take partial derivatives of the above equation

with respect to ϕc and Ac, and equate to 0. Thus, we have:
∂Lr ′ (θr ′ |n,t)

∂ϕc
= Ac cosϕc B′(ωc) − Ac sinϕc B(ωc) = 0.

∂Lr ′ (θr ′ |n,t)
∂Aic

= sinϕc B′(ωc) + cosϕc B(ωc) − Πp
c=1T I0(Ac) = 0.

From [84] we can deduce the parameters to be:

∀c ∈ {1, . . . ,p},

ϕc = tan−1[B′(ωc)/B(ωc)] and

Ac =

√
(B2(ωc )+B′2(ωc ))

nc
,

where nc is the number of contacts in the corresponding cycle c over interval (0, bωcT
2π c

2π
ωc

].

Further, we see that the unknown continuous parameters corresponding to a cycle depend

only on the frequency of that cycle that is already known.

Now that we have the needed parameters for the rate function of the recurrent

N HPP, we will formulate the total number of contacts relative to a node or node pairs,

next contact time, inter contact period and contact duration of node pairs.
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Now, the probability density function of the contacts at the ith interval is given by:

f (ti |ti−1) = λr ′ (ti).exp(−
∫ ti

ti−1

λr ′ (z)dz)). (5.6)

Similarly, the cumulative distribution function for the future contact time say, τi+1

conditioned on the observed value τi = ti of the current contact time is given by:

Fτi+1 |τi (t |ti) =




1 − exp[−
∫ t

ti
λr ′ (z)dz] t ≥ ti

0 otherwise

With recurrent process model as our basis, we now integrate with it the relationship

between states of unobserved variables (i.e. dependent recurrent events). We present the

enhanced model in the following subsection.

5.2.2. Multi-Recurrent Dependent Contact Pattern Model. We thus propose

the resulting enhanced process model on our basic recurrent N HPP model to be a cas-

caded non-homogeneous Poisson process model, Nr (t).

We represent the cascaded non-homogeneous Poisson process model in Figure 5.2.

Here, the time axis represents the sequence of observed time intervals. Further, it also has

the set of observed variables as {o0,o1 . . . ,on,on+1} and the corresponding set of hidden

variables as {z1, z2, . . . , zn, zn+1}, as discussed in Section 5.2.	

	

[t0	,	t1]	 [tn‐1	,	tn]	[tn	,	tn+1]…

…

…

			O0	 			O1 			On‐1 			On	
			
On+1	

	
			Z1	

	
			Zn‐1	

	
		Zn	

	
			Zn+1	

Figure 5.2. Cascaded NHPP
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In this model, we have two hidden states reflecting either occurrence of a dependent

recurrent contact or absence of it between successive time intervals. We represent them as

s1 or s0 respectively. We define the corresponding state transition matrix as:

S =
*..
,

s1 1 − s0

1 − s1 s0

+//
-
, where si j are transition probability between states i to j. The

switch over the hidden state occur only at the time of the contact, when observed new

state is guaranteed. Further, within each specific cyclic process say, weekly or semester

wise pattern, the corresponding intensity function is uniform, but it is between the cyclic

patterns and among distinct cycles that the intensity function varies. The transition function

implies whether it is continuation of the earlier state (intensity function) or a different one.

In other words, the hidden variable zi represents whether the ith event is a continuation of

the current cyclic pattern (zi = 1) or a new one (zi = 0).

Thus, in the cascaded NHPP model (refined recurrent Poisson process model),

{Nr (t) : t ≥ 0}, where for any time ti ≤ t, Nr (ti) represents the number of contacts in

time interval [0, ti), ti ≤ t. Here, this can be easily classified to contacts relative to each

node or pair of nodes as needed. Similarly, the ith contact time depends on both the state

of hidden variable zi and the previous contact time ti−1. Since, observation at ti depends

on ti−1, Figure 5.2 shows an initial output value O0 with no corresponding hidden state.

Let probability distribution of the first hidden state be {p0,p1}, where it refers to initial

distribution corresponding to states s0, s1. Now, with hidden state si, the observations are

created with probability as follows, where λ0
r refers to the contact rate at initial state and

1 ≤ si ≤ n.

η = P(ti |ti−1, si) =




1 − exp[−
∫ ti

ti−1
λ0

r (z)dz] si = s0,

1 − exp[−λr (ti − ti−1)] si = s1,

We define contact rate at initial state λ0
r , as the average contact rate, i.e. the ratio

of total number of contacts relative to the corresponding time interval. We evaluate the

intensity function (λr) and estimate the parameters in Subsection 5.3.
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Now, we redefine the probability density function of contacts in the ith interval from

Equation (5.6) as:

f (ti |ti−1) = λr (ti).exp(−
∫ ti

ti−1

λr (z)dz)). (5.7)

Similarly, the cumulative distribution of future contact time (τi+1) is redefined as:

Fτi+1 |τi (t |ti) =




1 − exp[−
∫ t

ti
λr (z)dz] t ≥ ti

0 otherwise

Now, the cumulative distribution function of inter-contact period (δτi) conditional on t1, t2, . . . , ti

is given by:

Fti (τ) = 1 − exp(−λr (ti + τ) + λr (ti)) (5.8)

In the following subsection we present the stochastic process model to capture con-

tacts occurring due to sparse, random events and indirect correlation among such events.

5.2.3. Process Model With Random Patterns. We propose a Markov modulated

Poisson process model (M MPP) in order to capture the random, rare event specific con-

tact patterns and the underlying event specific indirect dependency that cause abrupt spike

and/or damp in contacts. In general, M MPP models are suitable when there is a randomly

changing component effecting observations, which are well captured by these models. The

advantage of using M MPP models to capture the random contact observations here, lies

in its ability to provide explicit closed-form prediction formulae for both events and the

corresponding observations over any future time horizon that is over short term and long

term time frames.

Let us consider the corresponding stochastic process {Nc(t) : t ≥ 0} with intensity

function given by:

λc(t) = λc(Ht ), (5.9)
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where Ht is the event process with random events that are possibly indirectly correlated

resulting in hidden states Vis . The counting process Nc(t) represents the number of contacts

in time (0, t], caused due to random events. Let us consider Ht over {1, . . . ,n} with discrete

values v ∈ Ht . We represent the intensity function corresponding to a value (event) from

the set as λc(v) = λcv ,v ∈ {1, . . . ,n}.

Let us assume the underlying indirect correlated event process Ht follows a con-

tinuous time homogeneous Markov process with generator G = (gvu)n×n. Let the initial

distribution be βv = P(H0 = v). The transitions in the MMPP model is shown in Figure

5.3. The discrete event states/values are represented as {1,2, . . . ,n}, the transition proba-

bilities among the states are shown as gvu,u,v ∈ {1, . . . ,n} and the intensity function of

contacts associated with respective states/events is given by λi, i ∈ {1, . . . ,n}, as shown in

the figure.

Let the vector of possible (initial) intensities over the discrete events/values be rep-

resented as Λinit
c (v) = (λc1 , λc2 , . . . , λcn )init . The initial probability distribution over dis-

crete parameter values/events is given by βinit
v = {βv1 , βv2 , . . . , βvn }

init . Thus, the unknown

parameters of the proposed model that needs to be determined are given by Equation (5.10,

5.11, 5.12):

Λc = (λc1 , λc2 , . . . , λcn ) (5.10)

G =

*..........
,

g11 g12 . . . g1k

g21 g22 . . . g2k

...
...

...
...

gk1
... . . . gkk

+//////////
-

(5.11)

βv = (βv1 , βv2 , . . . , βvn ) (5.12)
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Figure 5.3. MMPP for Event Specific Indirect Correlation

Now, our objective is to determine the maximum likelihood estimates for the un-

known parameters in the above equations for Λc,G , βv.

We consider the stochastic contact process and the underlying indirectly correlated

event process being continuously observed over n state transitions, say over fixed interval

[0, tn). Here, tn is the time for nth transition of event process Ht corresponding to indirectly

correlated events that cause the corresponding contacts/observations. During the inter-

val [0, tn), we represent the indirect variables as v = {(v0, t0), (v1, t1), . . . , (vn−1, tn−1),vn},

where vn corresponds to the nth state of the indirect correlated process effecting the con-

tact outcome. Let tsi is the time that the process remains in a state say, vi, so tn =

ts0 + ts1 + . . . + tsn−1 . Let the time instances for the observed contacts be denoted as

t′ = (t′1, t
′
2, . . . , t

′
k ), where 0 ≤ t′1 ≤ . . . ≤ t′k ≤ tn in time interval [0, tn).

The likelihood function can now be written as in the following Equation (5.13).

Lc(Λc,G , βv |t′,v) = Πk
j=1λce(t ′

j
)
.exp *

,
−

n−1∑
i=0

tiλcvi
+
-

. βv0Πv,ug
nvu
vu Πe∈vegeeτe ,

(5.13)
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where e(t′j ) ∈ v is the observed state of the underlying event, nvu is the transition frequency

in the sample v0,v1, . . . ,vn and τe is the total observed time during which the indirect cor-

related event process occupied state e(t′j ) during interval [0, tn).

The log-likelihood function corresponding to Equation (5.13) is presented in Equa-

tion (5.14).

logLc(Λc,G , βc |t′,v) =

k∑
j=1

λce(t ′
j
)
−

n−1∑
i=0

tiλcvi

+ log βv0 +
∑
v,u

gnvu
vu +

∑
e∈v

geeτe,

(5.14)

Since log function is monotonic, the maxima for Equation (5.14) remains unaffected

for Equation (5.13), and the earlier one is much easier to work with. We thus determine the

maximum likelihood estimates for the parameters in Λc,G , βv from Equation (5.14).

With univariate optimization technique the maximum likelihood estimates of pa-

rameters is as follows:
λcv =

Nv (t′)
τv

, ∀v ∈ Ht

gvu =
nvu

τv
∀v , u ∈ Ht

βv = 0 ∀v ∈ v \ {v0},

(5.15)

where Nv (t′) = |{k : e(t′j ) = v}| is the number of times e(t′j ) = v.

Once we have the maximum likelihood estimates from Equation (5.15), we proceed

to evaluate the prediction of the expected frequency of contacts over any future time interval

t > 0. We observe the stochastic contact process (Nc(t)) and the event process (Ht) guiding

indirect event correlation over time interval [0,T ).

Now, given the number of contacts and the states of the hidden event correlation

process till time t, we evaluate the expected number of contacts that will take place over

the ∆t future time interval as follows:

Ot (∆t) = E(Nt+∆t − Nt |Nt ′,Xt ′; 0 ≤ t′ ≤ t). (5.16)
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Above contact prediction can be computed explicitly using the following equation:

Ot (∆t) =
∑
vi∈v

λc(v)
∫ ∆t

0
pviv j (t

′)dt′ (5.17)

where pviv j (t
′) = P(Xt ′ = v j |X0 = vi),vi,v j ∈ Ht are evaluated using maximum likelihood

estimates of G , θc.

Below we discuss parameter estimation over our application data set.

Here, with respect to our application domain (MIT data set) we are not given spe-

cific events. So, we consider month wise contact as events.

5.3. PARAMETER ESTIMATION AND ESTIMATION FROM DATA

We consider the reality mining data set [108] from the MIT media laboratory for

our experiments. It is a data set collected over 94 subjects, provided with Nokia 6600

mobile phones, over the time period from September 2004 to June 2005. Since, bluetooth

devices respond to other bluetooth devices within 5-10 meters, it resembles the contact

establishment process. The scans performed over 5 minutes intervals creates logs with

starting time of contact, duration of contact, the two phone numbers involved, i.e. the

source and destination of contact.

To estimate parameters, we divide the data into training and test data set. We es-

timate parameters over the training data set. In Subsection 5.4 we show the prediction

outcomes over test data set. To be precise, we use k-fold cross validation [78], where data

is divided into k -equal portions. Over each iteration we learn over k − 1 data portions

and validate our prediction over the remaining data portion. Thus, we repeat the process

k-times and take the average to have our parameter estimates and prediction outcomes.

From Subsection 5.2.1, to evaluate the parameters in θ, we first need to obtain initial

estimates of the frequencies (ωc) from standard spectral analysis with FFT (using fftwtools

package in R). With known frequency initial estimates for ϕc, Ac can also be computed.
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Let φh, φd , φw, φm, φs correspond to the relative change for hour, day, week, month

and semester respectively or the interval of the day (with half hourly intervals, there is total

of 48 intervals, whereas with hourly intervals, there is 24 intervals in total), the day or the

week or the month or the semester in which time t falls. On the circumference of circle, we

take into account 24 hours, 7 days, 4 weeks, 12 months, 3 semesters (Fall, Spring, Winter

break) respectively. Let nh,nd ,nw,nm,ns be the number of contacts that occur during hour

h, day d, week w, month m, semester s respectively. We now define ntotal
h =

∑23
h=0 nh,

ntotal
d =

∑6
d=0 nd , ntotal

w =
∑3

w=0 nw, ntotal
m =

∑11
m=0 nm, ntotal

s =
∑2

s=0 ns. Now we evaluate

φh, φd , φw, φm, φs as follows:

φh =
24nh

ntotal
h

φd =
7nd

ntotal
d

φw =
4nw
ntotal
w

φm =
12nm

ntotal
m

φs =
3ns

ntotal
s

(5.18)

Now, we evaluate λ0 =
ntotal
s

tn+1−t0
. Further, λ is defined relative to specific set of cyclic pattern,

and within specific cycle we have the needed parameters evaluated earlier.

We use the values corresponding to φh, φd , φw, φm, φs as the magnitude of ωc cor-

responding to the respective cycle. Once we have ωc, we can evaluate ϕc, Ac. With all

the needed parameters we can evaluate λr and rest of the dependent components/variables.

Here we do not use any specific Estimation approach as from the data set we can classify

contacts as per requirement.

The multiplicative decomposition λ = λ0φhφdφwφmφs indicates the occurrence of

the event on specific hour of the day, day of the week, week of the month, month of the

semester and the semester itself. In fact, the contact rate over the transitions from one cyclic

pattern to another can be stated as follows:

λtransition = λ0φhφd or,

λtransition = λ0φdφw or,
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λtransition = λ0φwφm or,

λtransition = λ0φmφs respectively, based on the current and subsequent cyclic pattern

(whether it is hourly and daily or daily and weekly or so on).

In evaluating the effect of direct recurrent pattern of contacts, though we have the

relative periodic changes and the corresponding evaluation methodology for ωc, ϕc and

Ac, what we lack is the association of events (observed time instances) to respective peri-

ods/cycles. So, we use the existing Expectation Maximization (EM) algorithm [115] (using

the EM package in R) to iteratively maximize the assignment of event instances to cycles

based on the optimum probability distribution and also infer the model parameters. The

EM algorithm iteratively updates the probability distribution over the cycle assignments

and maximum likelihood of parameter estimates by going through E-step and M-step. The

two step process proceeds until it converges to a local optimum of the incomplete data like-

lihood. In the E-step, a probability distribution over cycle assignments, conditioned on the

current parameter estimates is computed. In the M-step, the parameter estimates are up-

dated to their maximum likelihood values, conditioned on the current distribution of cycle

assignments. After several repetitions of the E-step and M-step the algorithm converges.

We have considered 30 iterations per training data set.

For brevity, the resulting uniform and transition intensity function is shown in Fig-

ure 5.4 (1st two plots) for monthly cycles only. The probability density function for the

transition probability si j is in the 3rd plot.
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In Subsection 5.4, we evaluate the prediction accuracy of future contacts over our

application data set.

5.4. EXPERIMENTAL RESULTS

To predict number of contacts, future contact time we analyze the statistical features

over our experimental data set. From the given data distribution, we see there is a sudden

drop of contacts over the month of September and February. For brevity, only weekly and

monthly overall contact distributions are shown in Figure 5.5.
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Figure 5.5. Weekly and Monthly Contacts

We organize the data over all users as a group, per user, and pair of users relative to

hour, day, week and semester. Once we have the estimated parameters over the respective

organized training data set, we validate the model of its prediction accuracy over the test

data set. We use the formulations from Subsection (5.2.2), to predict the total number of

contacts, future contact time over respective time frames. Using k- fold cross validation

with 9 months, we consider 8 months as training data set whereas, data over 1 month is test

set. We iterate 9 times, to have each month acting once as our test set and the remaining

8 months as training set for the respective iteration. We take average of the Parameter and

prediction outcome over the 9 iterations as the as the prediction outcome. We use the F-

score to validate the test (prediction) accuracy.
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Figure 5.6, shows the accuracy of prediction for total number of contacts for all

participants and relative to a single participant (say participant id 82), over hourly, daily,

weekly, monthly, semesterly periods. The accuracy over single participant is higher owing

to less variability or unpredictability associated with multiple participants/users. Similarly,

the accuracy decreases with higher prediction prediction interval. The accuracy of 0.82 to

0.9 (per user case) reflects the the data to be of periodic nature (owing to the periodicity of

human mobility pattern), though there is also random component that is more prominent

over all user.
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Figure 5.6. Total Contact Prediction Averaged over Test Set

We examine the prediction performance over each test set (i.e. over each month

that acts as the test set over respective iteration), Figure 5.7. The prediction accuracy over

the months of September and February are lowest, this might be owing to the sudden drop

in contacts in these two months, possibly as a result of random events.

The average future contact time over test set relative to both individual user (say,

96) and user pair (say, 96 and 29) is in Figure 5.8, with the later having more affirmative

prediction accuracy. This is possibly due to the definite identity of the two contacting

nodes, where as individual user has more variability (all other users it is in contact).

Finally, we compare the effectiveness of our prediction model (N (t)) relative to the

doubly recurrent model and HPP model, our model outperforms the other two. For brevity,

we predict only the total contacts per user and over all users, Figure 5.9 (contact time
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Figure 5.7. Monthly Contact Prediction Accuracy
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Figure 5.8. Future Contact Time Prediction Accuracy

comparison is obvious and follows similarly). In all three models the prediction accuracy

is better in case of per user evaluation, than over all users; owing to the less variability in

case of single user. Further, we also show that this holds over distinct time intervals (here,

showing outcome for hourly and monthly intervals only).
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5.5. SUMMARY

In this part of the dissertation, we propose a novel stochastic contact prediction

model that takes into account both multiple recurrent nature of contact patterns, along with

direct dependency on recurrent events. The higher prediction accuracy of our model relative

to HPP and doubly periodic models, lies in isolating/assigning events relative to specific

recurrent pattern (i.e hourly, daily, weekly, monthly and semester wise patterns) and cap-

turing their dependency. We validate our prediction model with F-score that shows to have

value above 0.82 (highest 0.909) and 0.778 (highest 0.876) for total number of contacts

in case of single and all participants respectively. We have also discussed the prediction

accuracy of future contact time of a user and a user pair.

The monthly prediction accuracy Figure (5.7) has lowest value for September and

February ( 0.66 to 0.72). This implies extending the model to capture random events and

their inter-dependency. Thus, it is natural to extend the present model to an additive Poisson

process model, to reflect not only sudden changes in contact pattern, but also also investi-

gate any possible random contacts and their inter-dependency. This is how our proposed

process model N (t) comes up. We also describe the framework to capture the random

contact patterns using an M MPP model.
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6. CONCLUSIONS

The main challenge in successfully and efficiently implementing the applications

and services over large scale networks is not only the size of the network but also the

network structure and its underlying intrinsic dynamics that gives rise to core conceptual

problems over them, such as evaluating centrality metric (betweenness centrality), predict-

ing future links and contacts. In this dissertation, we address these three core conceptual

challenges from the perspective of underlying network structure and the intrinsic network

dynamics (temporal characteristics), that help overcome these critical bottlenecks in suc-

cessful implementation of application services.

Issues like intrinsic community formation, influential nodes (edges), future links

and contacts are addressed over dynamic networks with and without node mobility. These

aspects of dynamic networks are the basis behind successful applications over real world

networks. Though, we have considered online social networks, the Internet, and mobile

network data sets to experimentally validate our approach, our approach is equally appli-

cable to other real world networks, that are known to be intrinsically dynamic.

We present three of our works in Section Three, Section Four and Section Five,

respectively. Here, in Subsection 6.1, we present the summary of the contributions in this

dissertations and in Subsection 6.2 we present our future research work.

6.1. SUMMARY OF CONTRIBUTIONS

We propose an efficient betweenness centrality computation approach in our third

section. With large scale networks reflecting intrinsic community structure, we aim to

leverage the divide and conquer algorithmic strategy in proposing the betweenness central-

ity algorithm. In the process we first propose a community formation/detection algorithm.

It leverages the power law based degree distribution along with incremental accumulation
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and creation of virtual nodes, and semi-local optimal node selection strategy in detecting

communities in a computationally efficient manner. Over sparse graphs with |E | ∼ |V |, our

algorithm costs O( |V | −m |V |), m < 1, k ∼ 1 computation time, whereas over dense graphs

with |E | ' |V |2, the proposed algorithm incurs a cost of the order of O(|V |2 − mk2 |V |)

and is computationally efficient than existing algorithms. Further, over the community

structured network we propose our betweenness centrality algorithm. It takes advantage

of the dense intra-community edges and sparse inter-community edges over the intrinsi-

cally clustered network structure. The computation of betweenness centrality incurs cost

of O( |V |2 + 1
2 |V |

3
2 log |V |), with computational cost better than existing betweenness cen-

trality approaches.

In the fourth section, we propose a novel link prediction strategy over intrinsically

dynamic networks. The problem is interesting not only because of its use in several appli-

cations, but also because of the computational challenges of prediction accuracy over large

scale, sparse networks. Our approach not only takes into consideration the occurrence of

new links between node pairs, but also takes into account the occurrence of recurring links

between them. Our probabilistic approach is inspired by the network evolution process,

where interactions or occurrence of links between node pairs is a cascading process. In

fact, the occurrence of links over a time frame gives rise to the possible creation of commu-

nities. The links, themselves are occurrences over smaller time-frame. Thus, we visualize

the links and communities as microscopic and macroscopic structural elements over two

distinct time frames. We take into account their evolution and effect in formation of future

links. We also investigate the improvements in accuracy with information theoretic analy-

sis, where entropy and prediction accuracy are interrelated. We validate the approaches

over online social networks like, Twitter, Facebook, Enron email network, and DBLP

co-authorship network. More so, we evaluate the performance (prediction accuracy) of

the approaches relative to existing benchmarked stationary and temporal approaches. The

quantitative results show our Markov model outperforms the two recent dynamic approach
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by 16.42% to 19.81% and 7.5% to 15.88% respectively, and obviously outperforms the

state-of-the-art static approaches Further, the information theoretic approach has resulted

negligible performance improvement over our approach. We also obtain an upper bound

on number of history states to be taken into consideration for optimal prediction accuracy

and derive that it is in logarithmic order of the number of states.

We present the novel contact prediction approach over mobile networks in the fifth

section. The intermittent connectivity associated with mobility of the network elements

is a challenge for successful prediction. The interesting point here is the fact that human

mobility patterns are non-homogeneous and periodic in nature. More so, his movement

dependent activities are multi-periodic in nature. More so, there is also possible random

contacts without any periodic occurrence. Here, we propose a cascaded non-homogeneous

Poisson process model to capture the periodic contacts and the underlying contact depen-

dency, with a sinusoidal function as the intensity function to take care of the multi-periodic

nature. We also propose the Markov modulated Poisson process model to capture the ran-

dom contacts. The integration of both the model counts for prediction accuracy of number

of contacts and contact time over the application domain. We give a detailed experimental

evaluation of our approach and compare its accuracy with existing homogeneous Poisson

process models and doubly periodic models. Further, our ongoing work reflects that among

the two class of prediction models, i.e. the network evolution based probabilistic temporal

models and the non-homogeneous Poisson process based models neither is suitable for the

other class of problems.

6.2. FUTURE WORK

We propose to improve on our community formation algorithm over aggregated

dynamic network and its incremental version over temporal network to develop a dynamic

community formation algorithm. Further, we also propose to use the incremental and dy-
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namic version of the community formation algorithm, to formulate a computationally effi-

cient temporal betweenness centrality algorithm. We also aim to parallelize the algorithms

to obtain higher performance.

Further, considering the fact that the success of many applications over temporal

(and dynamic) networks is dependent on link (contact) prediction accuracy. We would

like to analyze the effect and hence propose effective algorithms and mechanisms (frame-

works) for information diffusion, routing and smart environment (smart city) management

applications. Here, we also plan to investigate the energy efficient approaches/ algorithms.

In the link prediction problem over dynamic networks we would like to justify the

varying consideration of specific time stamps and slots over different application domains,

say over Twitter and Enron e-mail network.

We also propose a hybrid SARI M A and RN N model based on our current work, to

predict future contacts over mobile networks.

More so, our underlying network graphs are binary in nature, in essence the edges

(and nodes) either exist or do not exist. So, the inherent question is how about random

graphs? Well, the solution strategy for link prediction problem intrinsically considers this

aspect, by proposing a probabilistic model where the link occurrence is the computed pre-

diction probability and we consider links above certain threshold as discussed in detail

there. Considering this link (occurrence) probability in fact gives us a visualization of ran-

dom graphs. A more relevant and detailed question we would like to address is how the

considered problems vary with random graphs. Realistically enough, the real world net-

works in fact resemble random graphs, where the physical reality of link (link occurrence)

happens when it exceeds certain threshold probability. More so, over a temporal domain it

also integrates this time varying occurrence probabilities, while physical existence of links

happens. In fact, some of the basic network models [52] studies the possibility of random

graphs as the basis for generating (replicating or reflecting) the real world networks and

investigated how closely the proposed random graph models resemble the real networks.
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They also considered problems like centrality, network evolution, disease propagation etc.,

though these random graphs later reflected their inability in replicating real-world networks

and their dynamics.
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