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Classification of Analysis Methods for Dynamic Soil-Structure 
Interaction 
(State of the Art Paper) 

John P. Wolf 
Institute of Hydraulics and Energy, Department of Civil 
Engineering, Swiss Federal Institute of Technology, CH-1015 
Lausanne, Switzerland 

SYNOPSIS: The various methods to perform soil-structure-interaction analysis are classified. The first 
classification uses as criterion the behavior (linear or nonlinear) of the structure and of the unbounded soil. The 
second classification distinguishes between the direct method and the substructure method, which do not 
necessarily lead to identical results. Within each method, however, the various procedures are mathematically 
equivalent. In the substructure method the dynamic stiffness representing the interaction forces of the unbounded 
soil is determined based on the boundary element method in the time or frequency domain. In the latter case 
various so-called realizations in the time domain are distinguished using the extent of the frequency-domain 
calculations as a criterion. 

INTRODUCTION 

The various methods to analyse dynamic soil
structure interaction appear at first sight to be quite 
different from each other, although they all model the 
same feature: wave propagation in the unbounded soil 
towards infinity. As shown is this paper, certain 
differences between the results of the so-called 
direct method and of the substructure method do 
actually exist. Within each of these two methods, 
however, the various approaches, which are based on 
different concepts, are mathematically equivalent. 
They are thus not truly different and independent 
procedures. Using certain criteria, such as e.g. which 
steps are performed in the frequency domain and 
which in the time domain, a classification of the 
methods to analyse soil-structure interaction results. 

To establish a firm base for the classification of the 
methods, the objective and the significant features of 
soil-structure-interaction analysis described in the 
two text books [33, 38] are summarized in the 
following. The dynamic system whose response is to 
be determined consists of two distinct parts with 
different properties: the (generalized) structure with 
bounded dimensions consisting of the actual structure 
and possibly an irregular adjacent soil region, and the 
unbounded soil extending to infinity (Fig. 1 ). The 
(generalized) structure is modelled straightforwardly 
with finite elements (the word "generalized" is 
dropped for the sake of conciseness in the following). 
To analyse the semi-infinite domain of the unbounded 
soil numerically, a surface forming the boundary of 
the numerical model is chosen which encloses the 
structure. The properties associated with the degrees 
of freedom of the nodes on this so-called interaction 
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horizon [45] represent the significant features of the 
unbounded domain located on the exterior of this 
surface. In particular, the radiation condition has to be 
enforced which states that only outwardly propagating 
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waves exist for a load applied to the structure or for 
the scattered motion in the case of e.g. seismic 
excitation. A certain arbitrariness exists when 
selecting the location of the interaction horizon, 
which actually has no physical significance. The 
interaction horizon can coincide with the structure
soil interface leading to the substructure method; or 
it can be identical to an artificial boundary up to 
which the soil is modelled with, for example, finite 
elements, which results in the direct method. If the 
same rigorous radiation condition were formulated in 
both methods, the two methods would actually be the 
same, leading to identical results. 

These concepts can be applied to other dynamic 
structure-medium interactions, such as fluid
structure interaction and structural acoustics. 

Two procedures of classification are discussed. The 
first procedure examined in the next section is based 
on the linear versus nonlinear behavior of the 
structure and of the unbounded soil. The second 
procedure distinguishes between the direct method 
(third section) and the substructure method (fourth 
section). 

Not all methods which have been developed can be 
discussed in this paper. Preference is given to those 
with which the author has had some contact. It is also 
not possible to provide an accurate historical review 
of the development of soil-structure-interaction 
analysis. The cited literature is restricted to a 
selection of historical references, some review papers 
which are still worthwhile to consult today and recent 
articles describing the latest progress. 

LINEAR VERSUS NONLINEAR STRUCTURE AND UN
BOUNDED SOIL 

The first classification uses as criterion the behavior 
(linear or nonlinear) of the structure and of the 
unbounded soil (Table 1). In the first case both the 
structure and the unbounded soil remain linear, which 
applies to many analyses of nuclear power plants and 
machine foundations. Quite surprisingly, also for a 
transient excitation such as an earthquake loading, the 
analysis for this total linear system is routinely 
performed in the frequency domain and only 
exceptionally in the time domain. This is due to the 
tact that the formulation of the radiation condition 
(only outgoing waves at infinity) is as an analytical 
expression better known in the frequency than in the 
time domain (and to a lesser extent as it is 
straightforward to incorporate hysteretic material 
damping). But equivalent formulations in the time 
domain of the radiation condition expressing a 
mechanics feature do, of course, exist. Reviews of this 
so-called complex response analysis working in the 
frequency domain exist [22, 28, 19) as do general
purpose computer programs [20, 23). This first case 
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UNBOUNDED CALCUlATIONAL 
STRUCTURE SOIL DOMAIN 

LINEAR LINEAR FREQUENCY (TIME) 
NONLINEAR LINEAR TIME 

(NON) LINEAR NONLINEAR TIME 

Table 1 Calculational Domain Determined by Behavior 
of Structure and Unbounded Soil 

which has reached a very high level of development is 
not addressed any further. 

In the second case the structure can behave 
nonlinearly while the unbounded soil will remain 
linear. The latter is normally justified, as for the 
three-dimensional spreading of the waves when 
propagating away from the structure the amplitudes 
decay. Examples are structures which perform in the 
nonlinear range for high seismic excitation; base
isolation systems with friction plates exhibiting 
strong nonlinear characteristics which have to be 
considered in design; local nonlinearities such as the 
partial uplift of the basemat and the separation 
occurring between the sidewalls of the base and the 
neighboring soil in the case of embedded structures; 
and the highly nonlinear soil behavior arising adjacent 
to the basemat. The analytical methods working in the 
time domain (with possibly certain steps performed in 
the frequency domain) are summarized in a text book 
[38]. 

In the third case the total dynamic system will be 
nonlinear (with as a special case linear behavior of 
the structure), which is analysed in the time domain. 
The nonlinearity of the unbounded soil can be caused 
by e.g. the two-dimensional propagation of surface 
waves, for which no decay of the amplitudes occurs. 
This case has hardly been addressed. An exception is 
Ref. 42 where as an approximation the tar field is 
modelled based on one-dimensional elasto-plastic 
wave propagation with one stress component. 

The direct and substructure methods discussed below 
will concentrate on the second case; i.e. the structure 
will be nonlinear (with as a special case linear 
behavior) while the unbounded soil will behave 
linearly. 

DIRECT METHOD 

How to formulate the radiation condition of the 
unbounded soil is the key issue in the analysis of soil
structure interaction. If the radiation condition 
(outwardly propagating waves only) is formulated at 
infinity, the rigorous boundary condition results, 
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Fig. 2 Differences in Formulating the Radiation 
Condition for Substructure and Direct Methods 

which is global in space and time (Fig. 2). That is, all 
degrees of freedom of the nodes located on the 
interaction horizon from the start of the excitation 
contribute to the interaction forces. The substructure 
method. (with the structure-soil interface coinciding 
with the interaction horizon) is based on this concept. 
In the direct method approximations are introduced. 
The radiation condition is formulated directly on the 
interaction horizon (= artificial boundary) in such a 
way that a (frequency independent) highly absorbing 
boundary condition results which is local in space and 
time. These transmitting boundaries thus use 
information only from the node being addressed or 
from the nearly region of the mesh at the current time 
station or, at most, at a few recent time stations. 

Based on various mathematical principles many 
apparently different local transmitting boundaries 
have been developed: the viscous damper [21], the 
paraxial approximation [11, 5], the extrapolation 
algorithm [18] and the superposition boundary [29, 8] 
to have just a few. Ref. [6] contains a detailed 
evaluation of some of these formulations. In Ref. [16] 
it is demonstrated that all the transmitting 
boundaries mentioned above, although they appear to 

be vastly different from each other, are actually all 
mathematically equivalent and thus are essentially 
alternative realizations of one and the same boundary 
mechanism. It is also demonstrated that the 
transmitting boundaries can be classified as being of 
first order, second order, etc. whereby higher-order 
schemes which would result in higher accuracy may 
lead to dynamic instabilities and can thus not be used. 
A real challenge exists to develop a transmitting 
boundary of higher accuracy which is local in time and 
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Fig. 3 Semi-Infinite Rod on Elastic Foundation 
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space and which can handle (approximately) all types 
of waves without restrictions on the geometry and on 
the material properties such as Poisson's ratio. This is 
definitively the area of soil-structure-interaction 
analysis where the research efforts should be 

concentrated. 

To demonstrate that improvement is possible, the 
wave propagation towards infinity in the one
dimensional semi-infinite rod on an elastic foundation 
[37, 39] is addressed (Fig. 3). This systems is 
dispersive and exhibits a cutoff frequency; properties 
which also arise in actual sites. 

The semi-infinite rod with area A, modulus of 

elasticity E, mass density p and spring stiffness per 

unit length kg is subjected to a prescribed axial 
support movement in the shape of a rounded triangular 

pulse at point 0 

u0 (l) • ~ [ 1 - cos [ 2 • :J ]. 0 < l < l o, ( 1 a) 

uon ) 0, (1 b) 

with the dimensionless time t = tee K (cc = -J E/p), K = 

-.Jk 9 /(EA). to equals 2. The exact value of the 

dimensionless reaction force P0 (i) = P0 (i)I(Kuo) with 

the static stiffness coefficient K = -.J EAk 9 is plotted 
as a dashed line in Fig. 5. Between point 0 and the 
artificial boundary (Fig. 4) 10 one-dimensional finite 

elements of equal length e are chosen. 



A potentially powerfull transmitting boundary can be 
based on the paraxial approximation [11, 5]. In this 
concept one constructs a differential equation similar 
to the wave equation, which allows in an approximate 
manner only outgoing waves to propagate. This 
differential equation is then used as the boundary 
condition enforced on the artificial boundary. 

The differential equation of motion equals 

U - K 2 U - _Q_ = 0 .xx c} 

For harmonic motion with frequency ro the solution 

u = ei(rot-kx) 

(2) 

(3) 

with the wave number k leads to the dispersion 
relation 

(4) 

For waves propagating only in the positive x-direction 
(outward) 

(5) 

follows with a0 = ro/(cc K). Eq. 5 represents the 
rigorous radiation condition, which should be modelled 
by a transmitting boundary mechanisms as accurately 
as possible. 

To construct a linear differential equation for the 
paraxial approximation, eq. (5) is expanded for ao> 1 
into a Taylor series. Keeping one and two terms 
results in 

and 

ik - iKa 0 = 0 

IC 
kao - Kag + - = 0 

2 

(6a) 

(6b) 

For the solution specified in eq. 3, eq. 6 corresponds to 

and 

U, X 

u 
U,x + -= 0 

Ct 

.. 2c 
+_!!_+~U=O 

Ct 2 

(7a) 

(7b) 

Eq. ?a corresponds to the first-order paraxial 
approximation which is equal to the viscous damper, 
eq. 7b to the second-order paraxial approximation. 

The reaction forces determined from a finite-element 
analysis with the above boundary conditions enforced 
are shown in Fig. 5, whereby for the paraxial 
approximation a special interface element has to be 
introduced. Although the second-order paraxial 
approximation (eq. 7b) is a more accurate 
representation of the exact equation (eq. 5) than the 
viscous damper (eq. 7a), the results do not confirm 
this. Compared to the exact solution a significant 
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difference still exists. The other transmitting 
boundaries (extrapolation algorithm and superposition 
boundary) do also not lead to a higher accuracy 
(results not shown in this paper). 

Another possibility does, however, exist, which leads 
to a dramatic increase in accuracy. It is in this one
dimensional case equivalent to the procedure to 
develop systematically consistent lumped-parameter 
models described in Ref. [43]. where the same example 
is solved. The reader is also referred to the discussion 
in connection with Fig. 11. 

Multiplying both sides of the rigorous dispersion 
relation (eq. 5) by EAu 0 (a 0 ) leads to a force
displacement relationship which is formulated as 

P(ao) • iK~ u0 (ao) (8) 

whereby iK...J ag - 1) represents the dynamic-stiffness 
coefficient S. Rewriting S as 

~ = i { "'-' ag - 1 - a o ) + iao (9) 
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K/( KC£) and K/(Kc£) 2 , respectively) 

two parts are formed. The second, ia0 , represents a 

damper. The first, i ( ...J a8 - 1 - a 0 ), is approximated 

as a ratio of a polynomial of 4th degree to a 

polynomial of 5th degree in ia0 using a curve fitting 

procedure (O<ao<oo). As can be seen from Fig. 6, a very 

good agreement for the real and imaginary terms 

results. The ratio of the two polynomials is then 

rewritten as a partial-fraction expansion. For each 

term a physical model can be constructed [43] which 

forms the building block for the lumped-parameter 

model. The total lumped-parameter model consisting 
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of springs, dampers and masses for both parts 

representing the dynamic-stiffness coefficient or the 

dispersion equation is shown in Fig. 7. Besides the 

displacement uo three internal displacements u 1, u2, u3 

aris~ in the lump~d-parameter model, which can easily 

be mcorporated m a general-purpose finite-element 
program. The reaction force determined from a finite

element analysis tor the prescribed displacement u0 

(eq. 1) coincides from a practical point of view with. 
the exact value (comparison not shown). 

The procedure outlined above could possibly be 

generalized to the two- and three-dimensional cases 



with more than one wave number. The dispersion 
relationship for the two-dimensional (x, y) scalar 
wave equation describing e.g. the out-of-plane 
(antiplane) motion (c. = shear-wave velocity) equals 

(1)2 
k2 + k2- - = 0 

x Y c~ ( 1 0) 

The exact dispersion relation (radiation condition) for 
an artificial boundary x = canst. is formulated as 

kx = +ky .... / 2(J)2k 2 -\1 Cs y 
( 11) 

Eq. 11 can again be interpreted as a force
displacement relationship with the right-hand side 
representing the dynamic-stiffness coefficient. 
Comparing eq. 11 with eq. 5 it follows that by 
identifying w/(csky) as a0 the same curve fitting 
procedure can be applied leading to the same lumped
parameter model. The parameter kz is, however, not 
constant and would have to be approximately 
determined in each node on the artificial boundary 
based on the distribution of the displacement along 
the artificial boundary and this task would have to be 
performed at every time station. 

SUBSTRUCTURE METHOD 

Dynamic Stiffness Calculated with Boundary 
Element Method 

The dynamic-stiffness matrix relating the 
displacements in the nodes on the structure-soil 
interface to the interaction forces of the unbounded 
soil (or in a computional algorithm the interaction 
forces at a specific time station) are calculated based 
on the boundary element method . Ref. [3] provides a 
review of this very effective numerical method, which 
is well suited to represent semi-infinite domains such 
as the unbounded soil.. For this case the advantages of 
the boundary element method become significant. i.e. 
the discretization is performed only on the surface of 
the domain (reduction of the dimensionality of the 
problem by one) and the radiation condition can be 
enforced exactly at infinity by incorporating it in the 
fundamental solution. 

The first time-domain boundary-element formulation 
for the unbounded soil was presented in Refs. [15] and 
[32]. whereby in the latter a nonlinear application is 
included. For restricted cases such as the out-of-plane 
motion, earlier work e.g. Ref. [7] can be mentioned. 
Many different boundary-element formulations in the 
time domain exist (Refs. [36, 3]). Besides the direct 
method, which is applied widely, indirect methods, 
weighted residual procedures and others have been 
used. 
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Displacement, 
Convolutions 

Velocity and Acceleration 

The interaction force-displacement relationship 
formulated in the frequency domain as the product of 
the frequency-domain dynamic-stiffness matrix and 
the displacement amplitudes is written in the time
domain as the convolution of the time-domain 
dynamic-stiffness matrix and the displacements. 
Besides this displacement convolution corresponding 
velocity and acceleration convolutions leading to the 
same interaction forces can be used. The following is 
based on Ref. [26]. whereby velocity and acceleration 
convolutions for the unbounded soil are also addressed 
in Ref. [34]. 

In the frequency domain the interaction force 
(amplitudes {R(w)}) - displacement (amplitudes {u(w)}) 
relationship is formulated with the dynamic-stiffness 
matrix [S(w)] as 

{R(w)} = [S(w)] {u(w)} ( 12) 

To determine its Fourier transformation, [S(w )] is 
decomposed into a singular part, which is equal to its 
asymptotic value at w = oo, [Kool + iw[Coo]. and the 
remaining regular part [K,(w)]. which is absolutely 
integrable over the w-axis [38] 

[K,(w)] = [S(w)] - [KooJ - iro[Coo] ( 13) 

The interaction force-displacement relationship in the 
time domain involving a displacement convolution is 
then equal to 

I 

{R(t)} = f [K,(t-1:)] {u(1:)} d1: + [Koo] {u(t)} + [Coo] { iJ ( t)} 
0 

( 14) 
with [K,(t)] denoting the inverse Fourier transform of 
[K,(ro)]. 
Alternatively, eq. 12 can be rewritten as 

{R(w)} = [~(w)] iw{u(w)} 
100 

( 15) 

where iw{u(w)} are the velocity-amplitudes. [S(w)]/(iw) 
is again decomposed into its singular part consisting 
of [Cool and of its real term at w = 0, [K0 ]/(iw), and the 
remarnrng regular part [C,(w )]. [Ko] is the static
stiffness matrix. 

[C,(w)] = [S_(w)] - [~o] - [Coo] 
100 100 

(16) 

Eq. 14 can then be reformulated involving a velocity 
convolution with [C,(t)] denoting the inverse Fourier 
transform of [C,(ro)] as 

I 

{R(t)} = f [C,(t-1:)] { u (1:)} d1: + [K0 ] {u(t)} 
0 

+ [Coo ] { U ( t ) } ( 1 7) 



[C,(t)] is also the indefinite time integral of [K,(t)]. 

Finally, eq. 12 can be specified as 

{R(ro)} = [S(ro)] (iro) 2 {u(ro)} 
(iro) 2 ( 1 8) 

The singular part of [S(ro )]/(iro ) 2 determined by its 

behavior at ro = 0 equals [K0 ]/(iro) 2 + [C0 ]/(iro). The 

Fourier transform [M,(t)] of the regular part 

[M (ro)] = [S(ro)] - ~- [Co] 
r (iro) 2 (iro) 2 iro 

( 1 9) 

allows the interaction forces involving an 
acceleration convolution to be formulated as 

t 

{R(t)} = f [M,(t-'t)] {u('t)} d't + [K0 ] {u(t)} + [Co] { u ( t)} 
0 

(20) 

Again, [M,(t)] is the indefinite time integral of [C,(t)]. 

The formulation involving the velocity convolution (eq. 
17) is especially attractive, as for the calculation of 
the singular term only the static-stiffness matrix [Ko] 

and the asymptotic value at ro = oo of the damper [Cool 

are needed. The contribution of a unit area to [Coo] 

equals the product of the mass density and the wave
propagation velocity. 

The two alternative formulations (eq. 17 + 20) can 
also be derived in the time domain starting from eq. 
14 and using integration by parts, whereby the 
singularities arising at the limits of integration have 
to be taken into account. 

As an example a very simple one-dimensional case is 
examined, the spherical cavity with radius a embedded 

in a full space (shear modulus G, mass density p, 

dilatational-wave velocity Cp) with symmetric waves 
occurring caused by a uniform pressure p acting on the 
cavity's wall (Fig. 8). The dynamic-stiffness 
coefficient S(a0 ) relating the amplitude of the radial 

wall displacement u(a0 ) to p(a0 ) with a0 = roa/cp equals 

[38] 

- .Ei. + i ao .Ei. + .Ei. 1 J 
4c~ 4c~ 4c~ 1 + ia 0 

(21) 

where K0 = 4G/a. With Koo = K0 ( 1 - cJ1!{4cl)). Coo = 

K0acp/(4c~) = pep and with ( t = tcp/a) 

- _3_ ·t 
K,( t) = Ko 4ac~ e (22) 

the interaction force-displacement relationship (eq. 
14) equals 

I 

() K _3_ 
P t = 0 4ac~ f -cp/a(t-'t) 

e uo('t)d't 
0 

+ Ko(1 - 4c!~)u 0 (t) + pCpUo(t) (23) 
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Fig. 8 Spherical Cavity with Uniform Pressure 

With 

- .EL f 
C ,( t ) = -K0 4c~ e (24) 

eq. 17 with the velocity convolution is formulated as 

p(t) .EL 
-Ko 4ct 

t 

f e 
-cp/a(t-'t) 

Uo('t)d't 
0 

+ Kouo(t) + pep uo ( t) 

With C0 = 0 and with 

- acp f 
M,( t ) = Ko 4c~ e 

eq. 20 with the acceleration convolution results in 

I 

K ac J e -cp/a(t-'t) 
p(t) = o ~ 

0 
Uo('t)d't + K0 u0 (t) 

(25) 

(26) 

(27) 

The interaction forces {R(t)} expressed in eqs. 14, 17 
or 20 have to be calculated at each time station. The 
evaluation of the convolution integrals is 
computionally expensive: the total number of 
operations is proportional to the square of the number 
of time steps and in addition the total time history of 
the displacement, velocity or acceleration has to be 
stored. As discussed in the next subsection, however, 
the recursive evaluation of the convolution integrals 
makes this time-domain analysis using the 

substructure method computationally competitive, as 
for a typical seismic excitation a reduction of one to 
three orders of magnitude results (Refs. [31, 24, 40 



BOUNDARY INTEGRAL EQUATION 

FORMULATED IN 

BOUNDARY ELEMENT 
METHOD IN 

TIME DOMAIN 

DIRECT FREQUENCY 
DOMAIN 

FUNDAMENTAL 
SOLUTION IN 
TIME DOMAIN INVERSE 

FOURIER 
TRANSFORM 

BOUNDARY ELEMENT 
METHOD IN 

FREQUENCY DOMAIN 

DYNAMIC STIFFNESS 
IN FREQUENCY 

DOMAIN S(ro) 

HYBRID 
FREQUENCY

TIME 
DOMAIN 
METHOD 

r~----------------~1 
DYNAMIC STIFFNESS IN 

TIME DOMAIN S(t) S(ro) 

SEE 
L 

INTERACTION FORCES 

FIG.lO FIG. II 

FREQUENCY -INDEPENDENT 
PROPERTY MATRICES 

INCREASE IN FREQUENCY DOMAIN CALCULATIONS -+ 

Fig. 9 Classification of Computational Procedures of 
Substructure Method to Model Unbounded Soil 

41]). For instance, the recursive evaluation of the 
convolution integral in eq. 14 at time tn = nM 

leads to 

In 

{R,}n = J [K,(t-'t)] {U('t)} d't 
0 

M L 

(28) 

{R,}n = L [a] I { R,}n-1 + M L [b]i { U}n-i (29) 
i= 1 i=O 

where [a]1 and [b]1 are matrices which are independent 
of the time step. The interaction forces {R,}n are thus 
computed from the n-th displacements {u}n and the M 
and L past values of the forces and displacements, 
respectively. The decrease in computational effort 
(the number of operations is proportional to the 
number of time steps) and storage requirement is 
especially large for dynamic-stiffness coefficients 
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which do not return to zero immediately after the 
waves have passed. The velocity and acceleration 
convolution integrals, which are not addressed any 
further in this paper, can be treated analogously. 

Computational Algorithms 

A classification of the various methods to model the 
contribution of the unbounded soil to the equations of 
motion is shown in Figs. 9, 10 and 11. The further to 
the right a procedure is placed in Fig. 9, the more 
calculations are performed in the frequency domain. 
Many other methods with slight differences also exist. 

As already pointed out, the unbounded soil is modelled 
using the boundary element method (Ref. [3]), which is 
based on a boundary integral equation. The latter e.g. in 
the form of a reciprocity relationship or of an 
application of the superposition principle can either 
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be formulated in the time domain or in the frequency 
domain. 

The time-domain boundary-element method is 
addressed first (left part of Fig. 9). The fundamental 
solution (Green's function) of the full space is 
specified directly in the time domain, which leads to 
an additional discretization of the free surface of the 
site [15, 1]. Alternatively, as recommended for layered 
sites, the fundamental solution is first determined in 
the frequency domain and then using the inverse 
Fourier transformation calculated in the time domain 
[35]. In this case the discretization is limited to the 
structure-soil interface. The interaction forces of the 
unbounded soil acting in the nodes on the structure
soil interface can then be calculated, which is 
performed for each time station. A recursive 
evaluation of the convolution integrals appearing in 
the boundary integral equation should be possible. The 
time-domain boundary element method using the 
fundamental solution of the full space avoids all 
calculations in the frequency domain. 

The frequency-domain boundary element method is 
examined next (right part of Fig. 9). The procedure 
leads to the dynamic-stiffness matrix in the 
frequency domain [S(ro)] of the unbounded soil referred 
to the nodes located on the structure-soil interface. 
This transfer function matrix describes the 
displacement amplitude (input) - interaction force 
amplitude (output) relationship in the frequency 
domain. The corresponding relationship in the time 
domain is called a realization, whereby many 
possibilities exist for a specific dynamic-stiffness 
matrix in the frequency domain [4]. It is appropriate to 
distinguish between those which, by first performing 
an inverse Fourier transformation, are based on the 

dynamic-stiffness matrix in the time domain [S(t)] and 
those which start directly from [S(ro)]. The former, 
which lead to the interaction forces at a specific time 
station, are classified as shown in Fig. 10. The latter 
which can result in addition in a set of differential 
equations for the interaction forces with initial 
values or in frequency-independent property matrices 
are classified as in Fig. 11. Finally, [S(ro)] of the 
unbounded soil can be assembled with the dynamic
stiffness matrix of the structure and the total 
dynamic system solved in the frequency domain. This 
leads to the hybrid frequency-time domain method [17, 
9, 1 0]. where a series of linear analyses are performed 
in the frequency domain iteratively with pseudo-loads 
taking the nonlinearities into account. 
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Turning to the realizations which start from the 
dynamic-stiffness matrix in the time domain [S(t)] 
(Fig. 1 0). the convolution integral can be evaluated 
directly non-recursively. The equations for the 
displacement, velocity and acceleration convolution 
are specified in eqs. 14, 17 and 20. The recursive 
formulation (eq. 29) represents, in general, an 
approximation. Actually, the dynamic-stiffness matrix 
in the time domain [S(t)] is approximated in some way. 
The choice of a recursive equation is not unique, and 
many possibilities exist. Two options are developed in 
Ref. [40]. The first called the impulse-invariant 
method [31] sets the approximate dynamic-stiffness 
matrix corresponding to the recursive formulation 
equal to the exact one at specified points in a certain 
time range. This results in a system of equations with 
the unknown [a]i and [b]j. The approximate dynamic
stiffness matrix will, in general, deviate from the 
exact one in the other time ranges. In the second 
procedure, the segment approach, the dynamic
stiffness coefficients in the time domain are 
interpolated piecewise. Applying the so-called z
transformation then results in an explicit r~cursive 
equation without solving a system of equations. 

The realizations which work directly from the 
dynamic-stiffness matrix in the frequency domain 
[S(ro)] and thus avoid the calculation of [S(t)] are 
classified in Fig. 11. Various possibilities exist. The 
first quite inefficient procedure consists of 
performing at each time step a Fourier transformation 
of the displacement time history {u(t)}, which leads to 
{u(ro)}. The interaction forces in the frequency domain 
{R(ro)} then follow as the product of [S(ro)] and {u(ro)}; 
those in the time domain {R(t)} are equal to the 
inverse Fourier transform. This procedure, consisting 
of successive Fourier transformations, is discussed in 
Ref. [25]. In the same reference a recursive evaluation 
of the amplitudes of the displacements in the 
frequency domain at the time station t = n~t. {u(ro)}n is 
described, using only the amplitudes of the previous 
time step {u(ro) }n-1 and the displacements at time t = 

n M, {u}n and at t = (n - 1 )~ t, {u}n-1· An alternative 
derivation based on the z-transformation is possible 
which is addressed in Ref. [41 ]. It is important to 
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Fig. 11 Interaction Forces and Property Matrices Determined from Dynamic Stiffness in Frequency Domain 

stress that the recursive evaluation calculated for all 
frequency components is rigorous. It corresponds to 
the exact calculation of the convolution integral in the 
frequency domain. It is customary in the standard 
complex response analysis performed for a total linear 
system in the frequency domain not to solve the 
system of equations for all frequencies, but also to 
make use of interpolation schemes. The same concept 
can of course also be used in the recursive evaluation 
which will now, however, only be approximate. 

As an alternative each coefficient of the dynamic
stiffness matrix in the frequency domain [S(ro)] can be 
approximated as a ratio of two polynomials in iro 
using a curve-fitting technique based on the least
squares method which leads to the solution of a 
system of linear equations (right-hand side of Fig. 11 ). 
No other approximation is introduced. It is possible to 
transform the ratios of the two polynomials to 
ordinary differential equations which constant 
coefficients for the interaction forces together with 
the initial conditions, which can be solved directly 
[41 ]. Using the z-transformation, the so-called direct 
form of the recursive evaluation of the convolution 
integral can be derived [41 ]. Applying the partial 
fraction expansion to the ratio of the two polynomials 
and using the z-transformation the cascade [27] and 
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parallel forms [41] of the recursive evaluation in the 
time domain of the interaction forces are derived. 
Alternatively, each term of the partial-fraction 
expansion can be rigorously represented by a discrete 
model consisting of frequency-independent springs, 
dampers and masses. They form the lumped-parameter 
model [43] which can be directly incorporated in a 
general-purpose computer program, or the 
corresponding frequency-independent property 
matrices (stiffness, damping, mass) [44] can be used 
as input. In this case the interaction force
displacement relationship follows as the realization. 
The latter can also be derived from [S(ro )] by a 
nonlinear identification of the parameters of the 
lumped-parameter model [2, 14]. 

CONCLUSIONS 

The first classification uses as criterion the behavior 
(linear or nonlinear) of the structure and of the 
unbounded soil. When they both remain linear, unified 
highly-developed analysis procedures exist, which 
work mostly in the frequency domain. When the 
unbounded soil exhibits nonlinear behavior with the 
structure being linear or nonlinear, the only available 
analysis procedure is based on one-dimensional 



elasto-plastic wave propagation with one stress 
component in the far field. The analysis is performed 
in the time domain. In the remaining case the 
unbounded soil will behave linearly with the structure 
exhibiting nonlinear behavior (with linearity as a 
special case). For this case the second classification 
distinguishes between the direct method and the 
substructure method. It has been demonstrated before 
that all available local transmitting boundaries of the 
direct method working in the time domain are at least 
in the limit of the continuum formulation 
mathematically equivalent. In the substructure method 
the dynamic stiffness representing the interaction 
forces of the unbounded soil is calculated based on the 
boundary element method either in the time domain or 
in the frequency domain. In the former case it is 
possible to formulate the entire procedure in the time 
domain. In the latter case various realizations in the 
time domain are distinguished using the extent of the 
frequency-domain calculations as a criterion. The 
dynamic stiffness in the frequency domain can either 
be transformed to the time domain or used directly. 
Either interaction forces calculated recursively or 
frequency-independent property matrices 
corresponding to a lumped-parameter model of the 
unbounded soil are determined. 
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