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ABSTRACT

We study the long-range interaction between two hydrogen atoms, in both the
van der Waals and Casimir-Polder regimes. The retardation regime is reached when
the finiteness of the speed of light becomes relevant. Provided that both atoms are in
the ground states, the retardation regime is achieved when the interatomic distance,
R, is larger than 137 ag, where aq is the Bohr radius.

To study the interaction between two hydrogen atoms in 1S5 and 25 states,
we differentiate three different ranges for the interatomic distance: van der Waals
range (ap < R < ap/a, where « is the fine structure constant), the intermediate or
Casimir-Polder range (ag/a < R < he/L, where L is the Lamb shift energy), and the
very long or Lamb shift range (R > hic/L). We also study the Dirac-d perturbation
potential acting on the metastable excited states in the context of hyperfine splitting.

The |2P; ;) levels, which are displaced from the reference 2S-levels just by
the Lamb shift, make the study of hyperfine resolved 25-2S system very interesting.
Each S and P state have a hyperfine singlet and a triplet. Thus, there are 8-hyperfine
states per hydrogen atom and 8 x 8 = 64 states in the two atom system. The
Hamiltonian matrix of the quasi-degenerate 25-25 system is thus a (64 x 64)-matrix.
Our treatment, which profits from adjacency graphs, allows us to do the hyperfine-
resolved calculation. We examine the evolution of the energy levels in the hyperfine
subspaces. We notice that there is a possibility of level crossings in higher dimensional
quantum mechanical systems, which is a breakdown of the non-crossing theorem.

For higher excited reference states, we match the scattering amplitude and
effective Hamiltonian of the system. In the Lamb-shift range, we find an oscillatory
term whose magnitude falls off as R~2 and dominates the Wick-rotated term, which

otherwise has a retarded Casimir-Polder type of interaction.
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1. INTRODUCTION

1.1. BACKGROUND

The motion of electrons in their orbitals around the atomic nucleus makes
an atom polarized to some extent. If two atoms or molecules are brought near each
to other, then quantum fluctuations mutually induce dipole moments. The weak
interaction which links the dipoles is the so-called van dar Waals (vdW) interac-
tion. Study of the vdW interaction is now popular not only among the physicists
but also among the vast majority of researchers from biochemistry, the pharmaceu-
tical industry, nanotechnology, chemistry, biology, etc. For a biochemist, it is the
vdW force which determines the interaction of enzymes with biomolecules [10]. For
a pharmacist, the binding nature of a drug molecule to the target molecule is de-
termined by the vdW force [I1]. In nanoscience, by virtue of origin, the interaction
between polarizable nano structures which have wavelike charge density fluctuation
is the vdW interaction [I2]. The vdW interaction between two atomic states is pro-
portional to R7%, where R is the interatomic separation. The vdW interaction is a
weak interaction, however, if two interacting objects have a significant number of such
interactions, the net vdW interaction of the system can be significantly strong [13].

In 1948, the Dutch physicist H. Casimir found that two perfectly conducting
parallel plates placed in a vacuum attract each other [14]. This force of attraction
is related to the vdW interaction in the retardation regime [15]. In the same year,
Casimir and Polder showed that if the distance between the atoms is much larger
than the distance related to the retardation time, the interaction potential will be
proportional to R~! times the potential in the non-retardation regime. Thus in the

dispersive retardation regime, the van der Waals interaction changes the power law



from R7% to R~7. This power law modification has been verified experimentally by
D. Tabor and R. H. S. Winterton in 1968 [16]. The Russian physicist E. M. Lifshitz
developed a more general theory of vdW interactions about ten years after Casimir
and Polder proposed Casimir—Polder (CP) forces [I7]. In 1997, S. K. Lamoreaux of
Los Alamos National Laboratory measured the Casimir force between a plate and
a spherical lens with good accuracy [I8]. The Casimir effect received, even more,
attention of the scientific world when U. Mohideen and A. Roy of the University of
California measured the Casimir force between a plate and a sphere even more accu-
rately in 1998 [19]. Recent experimental work includes measurement of the Casimir
force between parallel metallic surfaces of silicon cantilever coated with chromium in
the 500 —3000 nm range [20], measurement of the Casimir force between dissimilar

metals [21], and the Casimir force measurements in a sphere-plate configuration [22].

1.2. ORGANIZATION OF THE DISSERTATION

This dissertation provides a detailed analysis of the long-range interaction
between two electrically neutral hydrogen atoms. Based on the interatomic distances
and nature of the state of the atoms of the system, we apply three different approaches
to study the long-range interaction. Every approach has its pros and cons. The
first approach is to make a Taylor series expansion of the electrostatic interaction.
This approach is valid in a short range regime. However, it does not talk anything
about the retardation effect. The other approach is a calculation based on a fourth-
order time-ordered perturbation theory. This approach is valid for a wide range of
interatomic distances ranging from ag to oo, but it suffers from a limitation that
both the interacting atoms must be in the ground state. If an atom interacting
with the ground state atom is in the excited reference states we match the effective

perturbative Hamiltonian with the scattering matrix amplitude.



This dissertation is organized as follows. In Section 2, we discuss the basic
mathematical formulation. We present derivations based on the expansion of elec-
trostatic interaction and time-ordered perturbation theory. We will realize that the
interatomic distance has to be distinguished into three regimes. The last subsection
of Section 2 focuses on the long-range tails to the vdW interaction. This subsection
shows how an oscillatory dependence of the interaction energy naturally arises due
to the presence of quasi-degenerate states. In Section 3, we introduce the Sturmian
decomposition of the Green function and determine direct and mixing matrix ele-
ments for the first few nS-states of hydrogen. Section 4 highlights what is a Dirac-0
perturbation of the vdW energy, why we care it, and how we determine it.

Section 5 is devoted only to the 15-15 system. We calculate the vdW co-
efficient for the 1S5-1S system. We also evaluate the d-modification to the vdW
interaction energy for the 15-15 system. In Section 6, we extend our study to the
25-18 system. In the 25-1S system, an atom in the ground state now interacts with
the other atom in the n = 2 excited states. This causes many complications. We will
see how important a role the quasi-degenerate levels play in the interaction energy.
We also study the modification of the interaction energy due to the d-type potential.
We make use of our model parameters to verify that our expressions of the interaction
energy in the three different regimes are optimal.

Section 7 is all about the hyperfine-resolved 25-25 system. We make use of
an applied graph theory to solve the Hamiltonian matrix of the 25-25 system. We
extend our analysis to the vdW energy to the nS-1S system, for 3 < n < 5, in
Section 8. Conclusions are drawn in Section 9. Appendix A is about discrete part of
ground state static polarizability. We show that the contribution of continuum wave
functions to the ground state static polarizability can not be neglected. Appendix B

contains an analysis of the magic wavelengths to the nS-15 systems for 2 < n < 6.



2. DERIVATION OF LONG-RANGE INTERACTIONS

2.1. ORIENTATION

Whenever I look into the internet for some quotes, my eyes pause for a moment
on the following quote of a famous physicist Galileo Galilei, “The laws of nature are
written by the hand of God in the language of mathematics”. This quote speaks the
importance of mathematical formulation in any scientific work very loud and clear.
We devote this Section to develop some mathematical formulations which we later

use to calculate many quantities in this project.

2.2. DERIVATION OF THE vdW AND CP ENERGIES

In what follows, we present a detailed derivation of the vdW and the CP
interaction energies. We here discuss two approaches to deduce interaction energies,
namely, derivation based on an expansion of electrostatic interaction and derivation
based on a non-relativistic quantum electrodynamics using time-ordered perturbation
theory.

2.2.1. Derivation Based on Expansion of Electrostatic Interaction.
Let us consider two neutral hydrogen atoms A and B. Let R, and p, are the position
vectors of the nucleus and the electron of the atom A. Similarly, Ry and pp are the
position vectors of the nucleus and the electron of the atom B as shown in Figure 2.1]

The Hamiltonian of the system can be written as

ﬁ:ﬁA+ﬁB+ﬁA3, (2.1)



where H, and Hp are Hamiltonians of the atoms A and B respectively, which read

=2 2 1 R =2 2 1
— Lo © and Hy=2L2b - °

H, = _ _ — -, 2.2
2m  Ame |p, — Ryl 2m  4mey |, — Rpl (22)

where p, and p, are momenta of the atoms A and B respectively. The Hap represents
the perturbation Hamiltonian of the system. Let us first consider the electrostatic

interaction between the atoms A and B.

e? 1 e? 1 e? 1
471'60‘,0“_RA| 4reg |y — Rp| 47T60|RA_RB|
e? 1 e? 1 e? 1

47T‘SO |ﬁa - ﬁb| - 47T€0 ‘ﬁa — EB‘ - 47TGO ‘ﬁb — EA| ‘

‘/;elec =

(2.3)

The first and the second terms on the right-hand side of Eq. are the electrostatic
potentials of atoms A and B respectively. Thus, the remaining terms can be treated
as the perturbation on the electrostatic interaction. With this, the perturbation
Hamiltonian H Ap can be written as:

ﬁ 62 1 1 i
AB — — - sy = - R = - = sy =
dmeg |Ra — Rp| |pa— Ra—p» + Rp+ Ry — Rp

1 1
————= === ¢ (2.4)
|pa — Ra+ Ra— Rp| |py — R+ Rp — R4

—

For the sake of simplicity, let us denote Ri—Rp = F?, Po—Ra =74 and pj, — Rp=

7B, We have,

A e? 1 1 1 1
Hap =— = = + = + — . (2.5)
dmeg \R| | — 7B+ Rl |+ R B — R|

The distance between the proton of an atom and its electron is much smaller than
the distance between two protons i.e. || < |R| and |#®)| <« |R|. This allows us

to expand Eq. (2.5) into a series. The Taylor series expansion of Eq. (2.5) about 74



Figure 2.1: The vdW interaction of two neutral hydrogen atoms A and B.

and/or 7P, to second order, is given by

~ e 1 1 - 1
Hyp ~ — { - - =+ Z(T(A) — B, 1(R) - 5 Z(T‘(A) — B,

7 i

= 1 — ]_ —
x (r — By, yi(R) + B ZT’EA) vi(R) + = Z ) P vij(R)

| | 7 2 i !
1 L B}
MTRILR RS DI w(R)}, (2.
where
4 Z- _ 3RR; — b, R?
() = =B and wy(B) = 2Hif 0 (2.7)



correspond to the dipole and the quadrupole contributions of the interaction poten-

tial. We can rewrite Vij(ﬁ) as

— ’ 3R;R;
I/ij(R) BRQ such that Bij = 5ij — TJ (28)
After some algebra, Eq. (2.6) leads to
. e? B
Hyup ~ PR R 2.9

The first order energy shift for a pair of hydrogen atoms in their ground state is given

by

Wloo 100‘HAB‘7/’100 7/’100> (2-10)

Due to the configurational symmetry of the ground state of hydrogen atoms, we have,
(Ty — Ra) = (1, — Rp) = 0. (2.11)

Consequently, the first order energy shift is zero, i.e., AE(M = 0.
The first non-vanishing energy shift comes from the second order correction.

To second order in perturbation, the energy shift is

AE® — Z <¢100 77010 i |HAB|¢ném n£m> <¢ném ¢nlm‘HAB‘w100 ¢1oo>
E} —EA+Ef — EB

n#l
et 2

(47T€0)2 ’éA — EB|6

(B)
XZZ ¢100|ZL‘ ¢n€m>< néml‘r]|¢100>< 100 |wn€m>< nfm' ]|¢100>. (212)

ke EX —EA+ EP —EP



This is in the form

[Ra — Rpl°

where C' is the vdW coefficient and given by

€= 26 5y Wi W) W 7 4100) Q2 9 ) 8 )
(47ep)? iy E{ —EA+ EB - EB '
(2.14)
Making use of the identity
61
Z<¢100|€E |Vnem) (Vnem| 2 [1P100) = Z<¢1oo|$ [Vnem) (nem| 2| 1100),  (2.15)
(2]

S

which is valid for any S state, the vdW coefficient given in Eq. (2.14]) yields

5” 5”
47r60 ZZ

n#l s k

% <w100‘x8‘wném>< nem| $|¢100>< 100’ k’¢n€m>< nfm’xk’w100>
EA E;;‘—i—EB EB

:%4ZZﬁM%W%MWHMMmWWMMWWM
(471'60)2

A A B B
pwriow 9 Ey — E+ By — E7
ZZZ K ¢100|x wn€m>|2 I{ 100|xk’¢nem>’ (2.16)
47T€0 =4 — EA+ EB —EB ' '

With the following integral identity

dx
—ila| + z)(i|b| + z)(—i|b| 4+ x)

2ab dx ab/
T Jo (@242 +a2)  w ) (ila| +z)(

ab, [ 1 L1 1
— 2Tl
m 2|ali [b]* = lal* ~ 2[b[i |af?> — |b[?

al U
= sgn(a)sgn(b) [|a|2 — |b? B la|? — |b|2}




_ sen(a)sgu(h)

) 2.17
a[+ [0 (2:17)

where sgn(a) and sgn(b) are sign functions, Eq. (2.16]) can be written as

4e*h A A B B
= Srline? ZZ/ dw (E{ — EM(EP — EP)
]’

x |<¢mo|xf|¢nm>|2 [(Wnem|2* [r00)* (2.18)

(B = B2+ (nw)?) ((BE = BD)? + (hw)?)

The sign function sgn(a) of the real number a is +1 if @ > 0 and —1 if @ < 0 and

similarly for sgn(b). The quantity

2 2 J m 2
S S L 0 R 1)
; (B = 27 + (hw)?)
is the dipole polarizability of the hydrogen atom A in its ground state. We have
a similar expression for the atom B. The polarizability of an atom measures the
distortion of the charge distribution of the atom in the presence of the electric field.

An atom having high polarizability has large fluctuations in local charge distribution

[23]. Thus, from Eq. (2.18]), the vdW coefficient can be expressed as

3h >
- iw, A iw, B). 2.2
C 7r(47760)2/0 dw a15(iw, A) ay5(iw, B) (2.20)

The important feature of expression (2.20]) is the dependence of vdW coefficient on
the polarizabilities of the atoms.
2.2.2. Derivation Using Time-Ordered Perturbation Theory. The un-

perturbed Hamiltonian for a system of two neutral hydrogen atoms A and B is

R 7
Hy = 27;;1 + V(ﬁz)

V H 2.21
o + V() + Hr. (2:21)
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where (mg, my), (7, 7), and (P, Pp) are masses, coordinates and momenta of elec-

trons in atoms A and B. And

??‘l
~—

(2.22)

HF—Z/dSkka/\ ax(

is the electromagnetic field Hamiltonian where ai and ay are the usual creation and

annihilation operators. If the two atoms are far enough such that |7, — R4| < |7 — Rgl
and |7, — Rp| < |, — Ral, where R4 and Rp are the coordinates of the nuclei, the

potential V(7)) and V(7)) can be approximated as

. e? 1 . e? 1
V(ra) = — —, and V(})=-————s—. (2.23)
47T€0 |7?a - RA| 471-60 |Fb — RB|

Substituting V(7,) and V(73) in Eq. (2.21)), the unperturbed Hamiltonian of the

system yields

. e 1 52 e? 1 .
Hy= Lo B . (2.24)

2m, 4meg |7, — Ryl 2my,  4meg |7y — Rp

The first two terms stand for the Schrodinger-Coulomb Hamiltonian H 4, the sum of
the third and the fourth terms are the Schrédinger-Coulomb Hamiltonian Hp, and
the Hp is the field Hamiltonian. Along with the dipole approximation, the interaction
Hamiltonian in the so-called length gauges formulation of quantum electrodynamics

(QED) reads

- - - =

Hup = —e7, - E(Ry) — ey - E(Rp), (2.25)

where E(R4) and E(Rp) are the electric field operators given as

= 5 [ gt o e, a2
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and

o) =[5 [ ot o s B sl B (22

In terms of the creation, annihilation operators of the field, the interaction Hamilto-

nian becomes

We take the state with zero photons |¢g) as the reference state and calculate the
perturbation effect of the interaction Hamiltonian. The creation operator increases
the number of particles in a given state |n) by one and brings the system to the state
|n 4 1) while the annihilation operator decreases the number of particles by one and
brings the system into the new state |n — 1). In the first order perturbation, the
annihilation operator Kkills the state as our system is already in the ground state and
the creation operators bring the system into its first excited state. The orthonormality

condition,

1, ifn=m,
(njm) = dpm = (2.29)

0, ifn#m,

requires that the first order contribution should vanish. In the similar fashion, no
odd order perturbation contributes to the interaction energy. The second order terms

are the self-energy terms and do not contribute to the CP interaction. Thus, we look
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into the fourth order perturbation which reads

N 1 - 1 A 1 -
AE® — (ol Hap — Hup — 5 —— Hap|do). (2.30)
(Eo — Ho)  (Eo—Ho)  (Eo — Ho)'

indicates that the reference state is excluded from

The prime in the operator ( EOE Ty
the spectral decomposition of the operator.

Consider a CP interaction between two atoms A and B involving two virtual
photons. A time-ordered sequence results four different types of intermediate states
[24; 25], namely, (1) Both atoms are in ground states, and two virtual photons are
present, (2) Only one atom is in the excited state, and only one virtual photon is
exchanged, (3) Both atoms are excited state, but no photon is present, and (4) Both
atoms are excited state, and two photons are present. Thus, the electrons and photons
can couple in 4 x 3 x 2 x 1 = 12 distinct ways. Figure represents all these 12
possible interactions.

Let us first investigate the first diagram of the Figure . There are four
factors which give contributions to the interaction energy, namely, emission of ks at

Rpg, emission of El at Rp, absorption of Eg at R4, and absorption of /;1 at R4. The

corresponding fourth order energy shift reads

h d*k d*k k k:
st (5 28 | ST e

1,A2 PO

(2.31)
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p p p p
ks
k’Q kQ kl k?
kl kl kl
g g (o} (o}
(D) (IT) (I1T) (IV)
P P P P
k k k
k2 1 2 1 kl
kl k2 kQ
o g g g
(V) (VI) (VII) (VIII)
p P P p
k
1 ko Ky ko ky ko ey iy
o o g o
(IX) (X) (XTI) (XII)

Figure 2.2: Diagram showing the CP interaction between two atoms A and B. The
p and o lines are the virtual states associated with the atom A and the atom B. The
ky is the magnitude of the momentum of the photon to the left, and the k5 is the
magnitude of the momentum of the photon to the right of the line.

The annihilation operator kills the ground state however the creation operator can

raise a particular state to the corresponding excited state. Thus, Eq. (2.31]) yields

hec 2 A3k A3k Lk B o
AE(4) N 4/ 1 / 2 M2 . e (Fn) _,a ik1-Ra/_:
' (60) ‘ (2m)3 (2#)3)\12/\2[):0 1 (1)(P15.alér, (k1) - Tulp)e (—i)
< (Busalén, (Br) - Flo)e™ ™2 (1) (plé, (o) - Fulnsia)e™ 1 (i) (o], () - Tl 1)
*iEQ-R)B ]- ]_ 1
ElS,a - Ep - thl —hck1 — hCl{}Q ElS,b _ EU _ th‘QI

X ¢ (2.32)
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The polarization vectors éy, (k;),i = 1,2 satisfy
k- e (k) =0, (2.34)
2
- - kPka
Y A (k) (k) = o7 — =Lt (2.35)
Ai=1 k?”

Thus, the contribution to the interaction energy from the first diagram reads

AE® _ he 264/ d*k, / kg kiky P kiKY
L \e (2m)3 ) (27)3 4 k3
% (5715 k}:éfs) ei(l;:‘l—i—l_c‘z)‘(ﬁ/;—ﬁ]g)
" Z (D15.4|7 ) (p2"|P154) (Pr58|2" |0) (O]|2°| P158) (2.36)
Elga — E — thﬂ(-thj — hck2>(E157b — Eo- — thQ) ' ‘

In the diagram (II), the four factors which contribute to the interaction energy
are emission of EQ at Rp, emission of /;2 at R4, absorption of El at Rp, and absorption

of k1 at R4. This leads to the following contributions to the interaction energy

A _ (1) o / &k, / ks kiks (o, KPR
2 €0 (2m)3 ) (2m)3 4 k3
% (677,8 _ kiljg) ei(E1+E2)'(EA_EB)
" Z (D15.al2™|p) (p|2"|P15.0) (P150] 27 |0) (O |2°|D15) (2.37)
ElSa — E — hC]fQ)(—thl — h0k2)(E1S,b — EU — thQ). '

If we denote a propagator denominator by D, then for diagrams (I) and (IT), we have,

D (Els,a — Ep — hCl{/‘l)(—th'l — hck2>(Els7b — Ea — thﬁQ), (238)

D (Elsa Ep - thQ)(—thﬁl - thQ)(Els,b - EU — th‘Q). (239)
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The diagram (III) in Figure 1} involves the emission of ks at Rp, the emission of

k1 at R4 and the excitation of both atoms. Thus the propagator denominator (D,,))

corresponding to the diagram (III) reads
DIU = (Els,a — Ep — hckl)(ELgya — EU + ElS,b — Ep)(ELg’b — EU — hckg). (240)

The corresponding energy shift is

AEW — hic 264/ 4k, / d?ky kiks s _ kKL
P \e (2m)* ) (2m)° 4 12
x (5”8 _ ki :;2) i1 +F)-(Fia—Fi)

« Z (P15.0]7™ |p) (pl2"|P15.4) (P150]2" |0) (o] 2°|P15p)
oo (EIS,a - Ep - thl)(Els,a - Eo + ElS,b - EP)(EIS,ZJ - EO' - h0k2)

. (2.41)

Let us investigate diagram (IV) in Figure (2.2)). The contribution to the interaction

energy from the diagram (IV) reads

he\ 2 d3k d3ky kik kmkr
AE(4) Y et 4/ 1 / 2 v1h2 5T 1M
! () “ ) @np) @rp 4 K2

y ( P kzk:;z) i(—Fr+E2) (FaFin)

o Z (15.0]2™|p) (p|7"|P150) (P150]2" o) (O] 2% |P15p)
o (Eisp — Ey — hicky)(Ervsa — E, 4+ Ersp — Eo)(Ervspy — Ey — heks)

(2.42)

We change the sign of k; under the integral sign to get the same exponential for all
diagrams in Figure (2.2). Diagrams (V) and (VI) involve the emission of photon, ex-
citation of both atoms and the absorption of photons. The propagator denominators

for the diagrams (V) and (VI) are

DV = (EIS,a — Ep — hck2)<Els’a - Ep + ElS,b — EU — FLC]CI — th‘Q)

X (Els,b — EU — hckg), (243)
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DVI = (EIS,b — f?(7 — hCl{h)(ElSﬂ — Ep + E157b — EU — hClﬁ — hCl{Zg)

X (EIS,b — EU — thQ). (244)

Under the exchange of the p line and the o line, the six diagrams (I) to (VI) correspond
to the other six diagrams (VII) to (XII). The corresponding propagator denominators
for the diagrams (VII) to (XII) are

DVII = (Els,b — EU — thl)(_thl - hckj2)(E15’7a — Ep — thJQ), (245)
DVIH = (E157b — EU — th’Q)(—thfl — h0k2)(E1$7a — Ep — th’Q), (246)
DIX = (Els’,b — EU — hck‘l)(Elgﬂ — Ep —|— ElS,b — EU)(Els,a — Ep — hck’g), (247)

>

« = (Bisa — E, — heky)(Erso — E, + Ersp — E,)(Fisa — E, — heky),  (2.48)
Dy, = (Ersp — By — hcky)(Ersa — Eo + Ersy — B, — hcky — hcks)

X (Eigq — E, — hicky), (2.49)
D, = (Eisq— E, — hcky)(Ers0 — B, + Ersp — Ey — heky — heks)

X (Erga — E, — hcky). (2.50)

The net fourth order energy shift is the sum of the contributions of all the 12

diagrams. Explicitly,

AE® :(@>264/ d3/€1 / d3k2 k1 ko <5mr B k?k‘{) <(5ns B k3k5>ei(ﬁ1+7€’2)'(é,4—ﬁ3)

€0 (2m)3 ) (2m)3 4 k3 k3
XII

X Y (150l 0)(pla"[G15.0) (Drss]a”|0) (o|2°|drsp) > D; . (2.51)
P, j=I

The propagator denominators corresponding to the diagrams (I), (II) and (IV) are

the denominators of the summands of Egs. (2.36]), (2.37) and (2.42)). Namely,

DI = (EIS,a — Ep — thl)(—thl — hckQ)(Elst — Ea — FLCI{ZQ), (252)
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= (Els,a — Ep — thQ)(—thl — hckQ)(Els’b — EG — thQ), (253)

DII
DIV = (Els,b — EU — hckl)(Elgya — Ep + ElS,b — Eg)(Els’b — EU — hckg). (254)

while remaining D’s are given by Eq. (2.40) and Eqgs. (2.43) to (2.50). We first

compute the sum of D’s. For simplicity, let us denote Ey5, — FE, = E,, and Eg, —

E, = Ey,. Let us now group, simplify, and then assemble all the terms as below.

_(Eap — h0k1> — (Ebo — FLC]CQ)

D—l D—l —
! - HI (Eap + Eba)(Eap - thl)(Ebo' — hCl{Jg)(thl + FLC]'{JQ)
—1
" (Bur 1 Evw) (Evy — hicks) (ks + cks)
—1
, 2.55
(Euy & Eny) (Bap — hicky) (ks + hiky) (2.55a)

1

D=
v (Ebg — thl)(Eap + Ebo-)(Eba — thQ)

1 1 1 1
_ _ . (2.55b
(Eap -+ Eba) ((Eba — thl) (Ebo — thQ)) (thl - hC]CQ) ( )

1
D—l D—l _
vir TP B hky) (< heky — icks) (Eay — hicks)
1
(Eba — thl)(Eap + Ebo’)<Eap — FLC]CQ)
B —(Eqp — hcks) — (Epy — hcky)
- (Eap + Ebcr)(Eap — FLCk’Q)(EbU — th‘l)(th‘l + th‘g)
1
— +
(Eap + Ebg)(Ebg — hck’l)(hckl + thQ)
1
2.
(Bay + Epy)(Bap — hicks)(hck + hekz)’ (2.55¢)
Dl = !

X " (Eop — hicky)(Eap + Eby)(Eap — heks)

B 1 1 1 1 (2554)
" (Eup+ Epo) \(Eap — heky)  (Ea, — hcky) ) (Rcky — hcks)’ '
1
(Eap — thQ)(Eap + Ebo - hClCl - thQ)(Ebg — thQ)
1
(Ebg — hckl)(Eap + Eba — hckl — FLCk’Q)(EbJ — hck’g)
1

_ 2.55
(Byy — hicky)(Epy — ficks)(Bay — hiky)’ (2.55¢)

-1 -1 _
DV +DVI -

+
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1
DlyDl =
1 51 T By — Ricks) (Eay + Euy — hicks — hicks)(Bay — ficks)

1
E,, — hck))(E,, + By — hcky — heks)(E,, — hcko
P P P
1

= : 2.55f
(Eap — hCl{Zl)(Eap — thQ)(Ebo— — th'Q) ( )

+

The six propagator denominators D , D1 Dt D! D! and D;l can be grouped

1rr’ 1w’ vIr’ x’

as

1 1
(Eap + Ebo) { (Eap — hcky)

D +DHI+D +DVH+D +D1

1 1 1 1
((hck:l + heks)  (Rck, — hck;Q)) ~ (Epy — heky) <(hck1 + hcks)
> 1 < 1 n
hckl thQ Eap + Ebg) (Eap — hck‘g) (th’l + thQ)
1 1
) - ( + )
(hcky — hckg Ebg — hck‘g) (hcky + heks) — (heky — heks)
i L o .
(Eap + Ebg) Eap — fLCk’l Ebg - FLCkZl FLCk’l + th’Q thJl — th?Q
1 1 1 1 1
_ . (2.56
(Eap + Ebo) <Eap — h,C/{Q + Ebg — thg) <ﬁck1 -+ FLC/{Q * hckl - FLC]{Q) ( )

Interchanging ki and ks in the second term of Eq. (2.56]) we get

2

D/4D 4+ D+ D +D !+ D =
+ 111 + + VII + + (Eap _'_ Ebo‘)

X ((Eap —1 hcky) + (Eyy _1 hck1)> ((hck1 i hcky)  (hek, i hck2)>‘ (2.57)

Let us group the three D’s D', D! and D .
1 1 1
(Boy — hicks)(Eay — hichy) < ~ (hker + hcky) | (Byy — hck1)>
1 1 1
= By — icks)(Eay — hicks) ( " (hekr & hcky) + (Byy — hekr)
1 1
(hker — hcky) | (ke — hckzg))

-1 —1 -1 _
DII +Dv +Dv1 -
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1 1 1
= (Epy — hcks)(Eay — hicka) ((hckl T hcky) | (e — hck2))+
1

. 2.
(Fuy — hoka) (Eny — hieke) (heks — hiky) (2.58)
The three D’s, namely D! | D1 and D! can be grouped as
Dl 4+ D 4D = — +
VI X1 XL (Epy — hcks)(heky + heks)(E,, — hcks)
1
(Eap — hckl)(Eap — FLCkg)(EbU — thQ)
B 1 - 1 L1
N (Ebg — th’g)(EaP — hckg) (hck‘l + th’Q) (Eap — thl)
B 1 -1
N (Ebo' — th‘z)(Eap — FLC/{J’Q) (th’l + th’Q)
1 _ 1 n 1
(th’l — th’Q) (thl — th‘g) (Eap — thZl)
- 1 1 . 1 .\
N (Ebg — th?Q)(Eap — th‘g) (FLC’Cl + hC’fg) (FLC’Cl — th‘Q)
1
. 2.59
(Ebo' — thg)(Eap — thl)(thl - hC]CQ) ( )
Adding Eqgs. (2.58) and (2.59) we get
D'+D'+D ' +D! +D I +D! = —2
II \% VI VIII XTI XIT (Eba _ thg)(Eap _ thQ)
1 1 1
x + +
hcky + heky  heky — heks (Eap — hcks)(Epe — heky)(heky — heks)
1
(2.60)

* (Eba - thQ)(Eap - thl)(thl — hck‘g)'

Under the interchange of k; and ko, the second term in the right hand side of the

Eq. (2.60) is equal in magnitude but opposite in sign with the third term. Thus,

-1 -1 -1 -1 -1 -1
DII +DV +DVI+D +DXI+D

VIIT XII1

2 1 1
S . (2.61
(Eba — thQ)(Eap — thQ) ((thl + thQ) + (thl — hCl{Ig)) ( )
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Interchanging k; and ks in Eq. (2.61]) and adding the result to Eq. (2.57)), the sum of

the reciprocal of all the twelve propagator denominators evaluates to

XII

Z — 2 Lo, 1 1
Ea + Eba' Ea - hC]fl Ebg — th’l thl + hC]CQ
P P

1 2 1 1
hcky — hck2> (B — heky)(E,, — hck,) <hck1 + hcky  heky — hckg)
B —4(E,p + By — hick,) 1 - 1
N (Eap + Eba)<Ebg — FLCkl)(Eap — th’l) th'l + ﬁCkQ hC]Cl — hC’CQ ’

(2.62)

The fourth order energy shift is now simplified to

hc\? d3k d3ky kik kmkr knks
AE(4):_ - 4/ 1/ 2 hih2 mr V11 ns __ V22
(60) “ ] @np ) @rpa (5 K2 )(5 2 )

XII

x el(hithe) (fa=fin) Z<¢1S,a|$m|P> (plz"|P15,0) (D150 2" [0) (0 |2°|P150) ZDJ‘_l

PO g=I
— @ ’ 64/ d3k1 / d3k2 klk? <5m’r . k?’bk'{) (5715 . l{'.;k;)
B €o (2m)3 ) (2m)3 4 k3 k3

x elhtke) (Ra=Fp) Z<¢15,a|$m’p> (plz"|p150) (P150]7"|0) (0 |2%[P155)

p,0
A(E,, + Epy — hcky) 1 - 1
(Eap + Ebg)(Ebo- — thl)(E thl) thl + thQ thl — thQ ’

(2.63)

Let us use the identity (2.15) in Eq. (2.63]). We get,

ho\? et kR kyks
4) — _ 3 3 mnsrs [ smr ns 22
AE (60) 5767T6/d kl/d s Jiky 607 (5 - S (o o )

x ol RZZZ 615027 10) (pl27|$15.0) (D150]2']0) (] | 615.)

po

(Eap + Ebo hckl) 1 _ 1
(Eap + Ebg)(Ebg — FLCk,’l)( hckl) th’l + hck’g hckl — th‘Q ’

(2.64)
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where, B4—Rp = R. Now substitute [ d*% = [;° k2dk [ sin0d0 [ d¢ in Eq. (2.64)

and carry out the integration of the angular part first. Note that

s 2m kmkr T Emkr .
sinfd6 / do(o™ — Ff — on / sinfdg ( omr — —L L) gikificosd
/O 0 ( kQ > 0 < k’% )

mr 1 a a ! ik1 Ru
=2 (9 +FaRm@>/ du e
(5mr n 1 9 0 ) sink R

k? OR™ OR" kiR
R™R"™\ sink R R™R"\ cosk1R
=4 oM — oM —3
”[( 7 ) kiR +< 7 )<k1R>2
R™R"\ sink R
— o™ — . 2.65
(5" ) e Z69)

With the help of Eq. (2.65)), Eq. (2.64]) can be re-expressed as

J J 14 0 00
AE@® _ _ <€0> 367T4ZZ (P15.4|77|p) (P27 |P15.0) (P15 |2 |0) (o] |¢1Sb>/0 iy

00 Gl (Eap + Eba)
& E., + Ey, — hcky) 1 1
dkf k3k53 ( P _ 5mn57"s
. /0 P2 (B — hicky)(Eqp — hcky) ((hck1 + hcky)  (hcky — hckzg))
R™R"\ sink; R R™R"\ cosk1 R R™R"\ sink1 R
mr o __ mr o __ —[§mr —
{(5 ) WE (o -3 (i R)? ( R2 )(klR)?’]
R"R*\ sinkoR R"R*\ coska R R"R*\ sinko R
ns __ ns __ _ 5”3 _
{(5 =) WR (6 ) (kaR)? ( I )(kQR)?J
hic et ZZ (P15.al77p) (0|27 | D154} (Pr5p|2|0) (0|2 P15p)
 367tel -~ (Eap + Eby)
&0 Ea + Ebo‘ — hckl)
dk, k3 ( L A™(k o o
X/O Y By — heky)(Eay — heky) (k1 )
o A" (kyR) /°° A"S(k:zR)>
X dkg k2 — 272 dko k3 22, 2.66
(/0 2 kit ke) oo (k=) (2.66)

where

o= (o= ) () - ()]

3

(2.67)
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The A™(z) is an even function of x. Thus Eq. (2.66) can be equivalently written as

below extending the integration limit from —oo to 4o0:

hic e* ¢1Sa|$J|P |1Uj’¢15a> <¢1Sb|$€|0><0|$é|¢15 b> /OO
( — 5 5 ’ 3
AE 3671'4 2 pZJ JZE (Eap + Ebo') 0 dkl kl
(Eap + Ebo‘ - th‘l) /oo 3 An8<k2R>
X AT (kyR) 0™ 6" dky ky ——————. (2.68
(Eyo — heky)(Eap — heky) (k1 B) I Ry ) (268)

Let us evaluate the ko-integral first. The ko-integral has a pole of order one at

ko = —ky. Let ko R = x and k1R = 1. Then the ko-integral can be written as

0 A" (ksR) 1 /00 A" (z)
dko k3 — =2 — — dz 23
/OO 272 (k1 + ]{?2) R3 oo v (1‘1 + $)

1 R"Rs 00 12 eiac 00 %2 e—ix
0" — d — = d
R3( R? ){/_oo :Ex+:1:12i /_Oo xac+x1 21}
1 R"R® > r ev 0 r e @
— 0™ =3 d — d
+R3< R2){/_OO m:z:+x12+/_oo xw~|—x1 2 }
R”RS o 1 e o 1 e®
ne— — = . (2.69
R3 (5 R? ){/_mdxx—l—xl 2i /_Oodma:—i—xl 2i } (2.69)

All the first integrals under curly brackets in Eq. (2.69) diverge as x — oo while all

the second integrals in the same equation diverge as x — —oo. Let us introduce a

convergence factor e”*l to make our integrands divergence-free. We have,

> A"s(kyR)
dko, k3 —~2" "
/_oo 2" (kg + ky)

1 5o R"R* . 0 4 elr— 17|x\ e~ iz— n|z|
_ﬁ( R )nlg% /OO xl’+$1 2i $+x1 2i

RnRs oo elr— n|z| —1m—n\m|
m I d
(5 R? )nli%{/oo xx+:x1 / x+:v1 2

:U|}—‘

e iz—n|z|

1 RnRs 00 elr— 17|;B|
— (o= I d
R (5 R? ) ) /OO xa: +x; 21

:v—l—xl 2i

(2.70)
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We evaluate integrals in Eq. (2.70]) with the help of contours as shown in Figure

and perform the integration. We finally take the limit n — 0 which yields

o A" (kyR) 1 RrReN (1 e el
3 - \verr _ ns - 2 2 _ _2 2
/ dhs Ky (k1 + ko) R® (5 R2 > {2< mi)or 5 — 5 (P2 e }

—00

1 (e JR'BN\|1, . e”i T ] . el
+ﬁ (5 -3 7 ){5(27@(—:@) 5 +§(—27r1) (—x1) 5 }

1 R"R® 1 e”im ] elv1
L (s = (2 _ = (=2ni
Wz (5 = ){2<m) A 21}

1 mn S 1 mn S
i (6”3 — il ) TI3 COST) — —= <(5”s — BRR]j > T, Sinay

1 R"R?
i = <5ns _3 7 ) T COSZT1. (2.71)

Figure 2.3: The contours to compute integrals in Eq. . We close the

contour in the upper half plane to evaluate the integral containing the expo-

nential factor e*. As the pole x = —x; align along the real axis, the integral

has a value %(2%1) times the residue at the pole. The contour is closed in the

lower half plane to calculate the integral containing e™*. In such a case, the
1

integral has a value 5(—2mi) times the residue at the pole enclosed by the

contour. The negative sign is because the contour is negatively oriented.

Here we have used the following well known Euler’s formula,

et = cosf +isind, (2.72)
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to express complex exponential functions into trigonometric functions. Rearranging

Eq. (2.71), we have

A" (keR)  wad R"R®\ coszy
dky k3 = 0" — —
/;oo 2 (kl + k2) R3 R? T

R"R? sinz;  coszy
o ) 2.
() T e

Replacing the assumed variable x; by its value x1 = k1 R, we get

o A(koR) R"R*\ coskiR
dkg ki —— =7k | | 6" —
/ 22 (k1 + ko) ™ [ ( R? ) kR

_(gns 3R"RS sink R n cosk1 R
R? (kiR)?  (kiR)?

Substituting the value of the integral (2.74]) in Eq. (2.68)), we have

—00

(2.74)

hee! (D15,al27]p) (pl2? | Prs,a) (Drsp]at|o)(o|zt]drsp)
AEW — ) : ;
3671'4 2 Z Z Z (Eap + Eba)

/ ]{36 EGP + EbU thl) smmn 5T
0 Eba — thl)(E th’l)

6"”“ RmRT sinky R RmRT) cosk R sinki R
R? kiR R? (k1R)?2 (kiR)?

R”Rs cosk:lR R"R? sinkt R coski R
(sns 5”5 -3 275
{ R ) R +( R ) ((k:lR)Q * (k:lR)3)] (2.75)

L (s

The Kronecker delta satisfies the following relations:

§Io =, 6" =3, (2.76)

as a result, Eq. (2.75)) gets simplified to

hic et (150|177 p) (p|a?|P15.a) (D150|2t|0) (0|2 |d155)
AE@W — _ , :
3671'4 Z Z Z (Eap + Eba)
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" /°° b,y Tk (Eap + Ebe — hcky) sin2k R B sin’k R B sin2k; R
o "Y(Eyy — hcky)(Ea, — heky) | (k1 R)? (kiR)®> (ki R)*
cos’ki R sin2ky R 51n2k1R sin2k; R cos’k R sin’k, R

“RP (BT SR O MRE O (RRpP T (mRp
- he e ¢1Sa|$3\ﬂ IO|IJ|¢15a><¢18b|xe|a><0’x€’¢15b>
- 3671'4 QG642 ZZZ (Eap + Ebcr)

o0 6 (Eap + By, — hcky) sin2k, R sin’k R cos’k R
x [ dhymht - g :
0 (Eps — ﬁckl)(Eap — heky) | (k1R) (k1 R) (k1R)

sin2k, R cos’k1R sin’k1 R sin2k; R
—6 6 3 2.77
By Ry OBy (R 270
We make use of the following identities
ikR | .—ikR ikR _ ,—ikR
coskR = % and sinkR = %, (2.78)
i

such that the Eq. (2.77) can be expressed in the following form

hc e (D15.4|77|p) (P27 | P15.a) (D15p]2¢|0) (0|2 |d15s)
AE® —
367'('3 2 Z Z Z (Eap + Eba)

o] _ 2ik1 R
5 [l/ by S (Eap + Ebe — hcky)e
0

2i "By — hcky)(E,, — hcky)

o 1 n 2i _ ) _ 61 " 3
(ki) (kR)*  (kR) (MR) - (kiR)
1 [ 6 (Eap + Epe — hck, )e~ 2k B
- = dky kY
2i J, (Epe — heky)(E,p — heky)

1 21 5 6i 3
X {(klR)Q - (,I{JIR)3 o (klR)4 + (klR)S + (klR)ﬁ} (279)

Now, let us introduce a new variable u which has values © = ikjc in the first
ki-integral and v = —ik;c in the second k;-integral inside the square bracket [ ] in

Eq. (2.79). Consequently, We get

he e (P15,0|27|p) (pl2? | P15,0)
4) _ _ J :
AET == GiemRta ZZZ / i’ By =52 oy D
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(P15p|2°]0) (o] 2| P15 ‘2“R/8[1+2+ 5¢? N 63 . 3¢
(E2 + h*u?)) uR  (uR)?  (uR)®  (uR)
=— m /000 du a(a,iu) a(b, iu)uﬁl%zuf?/c
[1 + 5—; + (5;2)2 + (S}C:)B + (5}0;4} (2.80)
=— m /000 dw a(a,iw) a(b, iw)uﬂ%zwl%/c
[1+2(ZR) +o(G7) +o(CR) +2(0R) ] 280

where the quantities «(a,iu) and «(b,iu) are the dynamic polarizabilities of atoms A

and B respectively and given by

2
a 1u ¢ ZZEW ¢1Sa|$] (E2!p><,;’2 2) |¢1S,a>

26 Eoq,
(P15.0]77 m

J

a(b,iu) = ZZEbo Prspla’ % “Iprsp)

ZZ Prsal’ h2 2) 2 dr5)- (2.83)

| prs,a); (2.82)

Making use of u = +ik;c = £w, the dynamic polarizabilities can be rewritten as

. 2¢? i H— ElS,a i
ol 1) = Z<¢1S,a|$j (H — Ei54)* + ?w? |é150)

<.

(& j 1 ;
- § g Z<¢ls’a’$ (H . ElS,a) 1 ihwx ’¢1S,a>; (2.84)

. (&
a(b,iw) = 3 ; %:(Cbls,bme (H — Eisy) + ihwfl?ngl&b). (2.85)



27

It is obvious to state from Eqgs. (2.84) and (2.85)) that the dynamic polarizability of

an atom is the sum of two matrix elements of the Schodinger-Coulomb propagator.

aa,w) = Pla,w) + P(a, —w) (2.86)
where,
2 & 1
Pla,+w) = — ol Ing). 2.87
() = 5 Yl eI (287)

For large w, the polarizability shows w=2 behavior. The expression for the CP in-
teraction between any two atoms A and B given by the Eq. (2.81]) is valid for any

interatomic separation R provided their wave functions do not overlap.

2.3. CHIBISOV’S APPROACH

Let us consider two neutral hydrogen atoms in which one atom is in the ground
state 1.5 and the other in the excited nS state. Consider the case in which the wave
function of the system is in the state of quantum entanglement. The wave function

of the system can be expressed as

U = K, |1) a[nS) 5 + K [nS) 4| 1S) 5. (2.88)

Total Hamiltonian of the system H is

H=Hy+ Hp+ Hap ZﬁS—FHAB, (2.89)
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where H s stands for the Schrodinger Hamiltonian. H 4 and H g are Hamiltonians of

the atom A and the atom B which are respectively

=2 2 =2 2
HA:p—a—e—_. and HB:p—b—e—_,. (290)
2m Amey|T, — Ra| 2m  Arney|F, — Rp]

As derived in section , the interaction Hamiltonian H AB is given by

2 ) (B)
Hap ~ Z . 2.91
AP e, Z & R3 (2.91)

Taking the entangled state |¥) given by Eq. (2.88)) as the eigenstate, the eigenvalue

equation of the system with the Hamiltonian H is
H|W) = (ﬁA+ﬁB+ﬁAB) T) = E|D). (2.92)
The total wave function of the system can be expressed as sum of all possible products
Z q|PS) 4laS) 5 (2.93)

where K, is the expansion coefficient. In the first order perturbation approximation,

the expansion coefficients K, are approximated as
Kpq = K;(;g) + K[()é)a (2.94)

where Kqu are the unperturbed coefficients of expansion and the qu) are the first

order corrections to the expansion coefficients. The first order correction Kéq) is given

as

KO _ K£O)<1SHS‘HAB‘pQ> + KO (nS1S|Hag|pq)
pq n 0 0 n 0 0
70 _ 50 50 5O

In = ~Pg nl

(2.95)
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In the eigen basis of the sum of the Hamiltonian H A+ H B+ H AB, the eigenvalue

Eq. (2.92) can be expressed as

(HA+HB+F[AB) Zqu\pq EZ qlPa),

pq

Or, Z o > |rs)(rs| Haplpg) = Z )lpg). (2.96)

Here we have used the completeness relation

Z |rs)(rs| = 1. (2.97)
Eq. (2.96]) can be re-expressed as
> {qu(E —EW) = K, y(rs|Hap |pQ>} Ipg) =0, (2.98)
pq rs
which implies
Kpy(ES) — E)+ Y K. (rs|Haplpg) = 0. (2.99)

rSs

Using Eq. (2.95) in Eq. 1} the two equations with the expansion coefficients K f?l)

and K a1 are

(15nS|H Hap|1
Kf) (E Y = B+ (15nS|Hap|15nS) + Y e AB|£>Q ><pq'<o>AB| Sns>>
E{) — Bl

pgF£ln In

- nS1S|H Hyp|18nS
+K£?<<n515|HAB|1SnS>+ y- (519 AZLZ(J?;D@;LO)AM >> 0,
— pq

pgF£ln 1in

(2.100)
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and

nl

K“”(E” E + (nS1S|Hap|nS1S) + Z<”515|HABlpq><pq|HAB|n51S>)

0 0
pg#nl Er(zl) - EI(JQ)

(15nS|Haplpa) (pal Has|nS18) | _
EY) - By

+K <<1STLS|HAB|7151S + Z

pg#nl

(2.101)

The homogeneous linear Eqgs. (2.100) and (2.101)) can also be written as the homoge-

neous matrix equation

w x| [ kY 0
o | = : (2.102)
y z)\ KY 0
where
(15nS|H
W =EY — B+ (1SnS|Hapl1Sns) + 3 W57 )\ AB(\?)@I | (2.103a)
pgF#ln Eln qu
(nS1S|Hap|pg) (pa| Hap|15nS)
X =(nS18|Hap|15nS) + Y Z«»_E«» b : (2.103b)
pg#£ln In rq
(1SnS| H ap|pg) (pg| Hap|nS1S)
Y =(15nS|H A5|nS1S) + ;1 50 _ g0 : (2.103c)
paFn
(nS1S|H
Z =B — E+ (nS15|HapnS18) + [(nS15] Haplpg) (2.103d)

0
pg#nl Enl) - El(’q)

The interaction Hamiltonian Hup is symmetric with respect to the order of the

selection of 1.5 and n.S in the eigenstates |15nS) and [nS1S). Namely,

(15nS|Hp|15nS) = (nS1S|Hp[nS1S). (2.104)
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Indeed, (15nS|Hap|1SnS) = (nS1S|Hap[nS1S) = 0 as the interaction Hamiltonian,
as required by the selection rule, does not couple S states. In addition to this, with

the interchange of 1 and n, the following two quantities are equal.

(2.105)

)3 |(1SnS|Hp|pg)|? -y !nSlS\HAB\qu

(0) (0) (0)
pg#ln pg#nl — Epq

As a result, the diagonal elements of the 2 x 2 matrix in are equal. And for
the same reasons the off-diagonal elements in are also equal. Thus, the matrix
in is a 2 x 2 symmetric Toeplitz matrix [26]. To have non-trivial solutions,
we require the determinant of the matrix to be zero which implies K f?} = :I:Kflol).

Provided the determinant of the matrix vanishes, the 2 x 2 matrix in Eq. (2.102))

gives

N 2
0) [(15nS|Hag|pq)|?
(Eln - B+ Z (0)

0
pg#ln Eln - EIE’Q)
A ~ 2
(nS15Hap|pg) (pa| Hap|151S)
_ (Z panrTe | (2.106)
pg#ln Eln - qu

Solving energy E from Eq. (2.106)), we get

E—p® _ Z ’15n§|HAB|pQ>| " Z (nS1S|Hag|pq) (pg|H ap|1SnS)

0 0 0
pg#ln E( qu) pq£ln Ein) - EI(NI)
0 2¢* |(LS]2"|p) (nS|2’|q)|*
:Egn) o 21D D 16 Z Z (0) (0) +
3(47T€0) |RA - RB| pg#ln i Eln - qu

((nSl2'|p)(1S|27|q))" ({1S]2’|p)(nS|2?|q))
Z £ E?o) —Ez(:g) P d ) (2.107)

i 1n

© 2¢* Z Z (LS]2"|p) (plz"[1S) {nS|z*[q) {q|z*|nS)
3(4meg)?| Ry — Ryl EY — EQ

1in
pg#ln rs 1in

.S ((18]2"|p) <p|ng£)>)_(£§)\xSIQ><QI9€SI15>>). (2.108)

T8 in
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In the second line of equation (2.107)) we have used the following identities

57,
Z(¢100|$ [Wnem) (Ynem |2 [1h100) = : Z<¢100|$ [Unem) (Ynem |2 |P100)  (2.109)

4,3

and
54989 = §" = 3. (2.110)
Let us define

3(47T€0) pgF#ln rs ES)L) Elgg)
and
_ ((1S|2"[p){plz"|nS)) ((nS|z*|g)(g|2*[15))
Mg(nS;15) = 47% Sy > 50— g0 . (2.112)
pgF£ln s pq
such that
D - 15) + M, 01
E = g _ De(ndi19) £ Ms(ns; 15) (2.113)

|[Ra— Rplo

By the notations Dg(nS;15) and Mg(nS; 1S), we are referring to the direct and the

mixing term contributions to the vdW Cg(nS; 15) coefficient such that
Cs(nS;1S) = Dg(nS;1S) £ Mg(nS; 15). (2.114)

The + sign depends on the symmetry of the wave function of the two-atom state.

Making use of the standard integral identity (2.17)), we can express Eqgs. (2.111]) and
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(2.112)) in terms of integrals over w as

4
De(nS; 15) :L) 3 <E§°> - E(0)> (E© — EO)

2 P q
3(4meg =
/dwz (152" |p) (p|"|15) (nS]2°|q) (gl2*[nS) (2.115)
L (B - B4 ) (B - B2 + )
and
M@(TLS 18) = 4—64 Z E(E(O) + E(O)) _ E(O) 1(E(0) + E /dw
’ 3(4me)? 201 " P 2
pg#£ln
<3 ((15]2"|p) (pla"[nS)) ((nS]z*|g)(glx*[LS))
2
((%(E§O) +BY) - B) + h%ﬂ) (((%(E@ +ED) - B0 hzwz)
(2.116)
Identifying
nS|z®|q)(q|z*|nS .
—6 Y. D (B <(0)| il ?0) In8) _ _ 4 si), (2.117)
pa#ln s <(En Eq’)? + h%ﬂ)
and

_62 3 Z( E + EO) _E(§0>) (( <nSIxSIQ><QIch|152>
(

paFin s JEY + EY) - BP) + hw)

= Oén515<iw>, (2118)

the direct and the mixing vdW coefficients can be rewritten as

4et > : :
Dg(nS;1S) :m/o dw aps(iw) g (iw), (2.119)
Ms(nS;18) = 4! /Ood (iw) s (iw) (2.120)
6o, _3(471'60)2 ; W 1 5ps\IW)0ing15(1W ). .
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There are some advantages of using the average energy corresponding to the
states of interest as the reference energy. First, there is no state which is degenerate
with the reference state. Next, the issue of the contributions arising from the inter-
mediate P-states is resolved. However, it requires calculating the quantum number
associated with the reference state. Taking 15 state as one state of interest and nS

as another, the energy associated with the reference state is

E\+E,  o’mc

Eret = 2 T e, (2.121)
Solving for n.¢, Eq. yields
1 1 1
@ =3 + 55 (2.122)
It is obvious to note that nys = 1 when n = 1 and n.s = V2 when n = .

Thus the quantum number corresponding to the reference state always lies in the
range 1 < nges < V2. A downside of this approach is that this is valid only in the
short range. Here, by the short range of the interatomic distance, we mean that
the interatomic distance must be less than the wavelength corresponding to a typical

atomic transition. To put it another way, R must satisfy

ag < RK ao/a, (2.123)

where qq is the Bohr radius and o« = 1/137.035999 139, is the fine-structure constant.

This is so-called vdW range.

2.4. ASYMPTOTIC REGIMES

To study the interaction between two atoms in S-states, we differentiate three

different ranges for the interatomic distance: van der Waals range (ag < R < ag/«),
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CP range (ap/a < R < 1/L, where L is lamb shift energy [27]), and Lamb shift
range (R > 1/L). Equivalently, we will call them the short range, the intermediate
range, and the long range of the interatomic distances.

In this work, we consider the interaction between two atoms in which one
atom sits in the ground state while the other one can be either in the ground state
or one of the excited nS-states. The ground state is nondegenerate. However, the
excited state has quasi-degenerate neighbors. If an atom is in an excited state, the

polarizability of the atom a,,g(w) is the sum

ans(w) = aps(w) + @ps(w), (2.124)

where a,¢(w) is the nondegenerate contribution to the nS polarizability while &,,s(w)
represents the contribution of the quasi-degenerate nP levels. The dipole polarizabil-
ity ai,g(w) is computed by a sum over all states. The degenerate polarizability @,s(w)

is a sum over quasi-degenerate neighbors. Mathematically,

e? nS|z/|nP(m = 2
Gus@ =520 > Y ‘énpj‘ _‘ Ens(i — _)>i‘€. (2.125)

The symbol nP; indicates the total angular quantum number j of the quasi-degenerate
P-states which are resonant . The total orbital angular quantum number [ has

the value 1 for P-state. Thus, the total angular quantum number j, and hence

1

5 and % The energy difference between the quasi-degenerate

nP;, can have values
levels with the principal quantum number n, <Enp1 o En5> and <Enp3 P Eng) are

respectively the Lamb shift £,, and the fine structure splitting F,,. Mathematically,

Eup, ), — Bus, ), =L, (2.126a)

Py

Eus, ), — Eup,,, =Fu. (2.126b)
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The nondegenerate polarizability &,s(w) is the sum over all states excluding
degenerate levels. It is the measurement of the polarizability due to states having

the different principal quantum number. More explicitly,

(nS|z7|nP(m 2
Gns(w ZZ Z Z'Ek’_ | Sihw“m (2.127)

j p=—1k>n
The sum over £ in the non degenerate polarizability indicates that we include all the
possible states whose principal quantum number is greater than the reference state.
The total interaction energy can be written as the sum

AE(?;IS = AET%)JS + Aﬁggs + Pnsis, (2.128)

n

where AE") 1 and AEnS 1 are the nondegenerate and the degenerate contributions
to the interaction energy respectively. The P,g.s is the pole term contribution,
which arises as the integration contour picks up a number of poles under the Wick-
rotation. Detailed discussion of the pole term is presented in Sec[2.5] Being the
Wick-rotated contribution, the AE") ngi1s and AEn; 15 can be renamed as an 15 and

an;ls respectively, such that the total Wick-rotated contribution reads

Wasiis = Wasis + Wasas, (2.129)

which allows us to write

AEr(fs)’;ls :WnS;IS + WnS;lS + P’nS;lS - WnS;lS + PnS;lS- (2130)
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The Wick-rotated nondegenerate an;ls and the degenerate WnS;lS contributions

are given by

o h i _ 4 ,—2wR/c
Whsis = — —/dw a(1S,iw) a(nsS, iw)%
0

X {1+2<£)+5(£>2+6<£>3+3<£>1. (2.131D)

For the short range (ap < R < ag/«) of interatomic distances, there is no

oscillatory suppression in the interaction energy and the first four terms under the

bracket [ } in both Eqgs. (2.131al) and (2.131b|) are negligible in comparison to the

fifth term. Furthermore, the exponential can be approximated to unity. Thus we can

approximate the Wick-rotated contributions VNVns;lg and Wns;ls as

wht 3

o 1S i) & cw!
7TC4(47T60)2/0 dw (1S, iw) a(nS,1w)R2 R
3h 0 N

~ " 7(dmeo)?RS 15,1 iw): 2.132
7T(47T€0)2R6/0 dw (15, iw) a(nS,iw); ag < R < ap/a, (2.132a)

— h
WnS;lS ~—

—~ h
WnS;lS ~—

_— /OO dw (18, iw) @(nS iw)w—43—c4
wct(4mey)? Jo ’ T R? (wR)*

3h o0
- )2RS / dw (15, iw) @(ns,iw); ag < R <K ap/a. (2.132b)
0

 m(4me

Both the nondegenerate and the degenerate contributions to the energy follow the
R~ power law in the short range.

Let us examine the behavior of the interaction for very large interatomic
distances (R > he/L). As the interatomic distance is very large, the exponen-

tial term and the negative powers of R vary very fast but not the polarizabilities
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[28]. Specifically, we can approximate the dynamic polarizabilities of atoms by
their static values. i.e. (1S,iw) = a(1S,w = 0), a(nS,iw) = a(nS,w = 0), and

a(nS,iw) = a(nS,w = 0). Consequently, we have

vl h s ~(nS Ood whe—2wR
WnS;lSN_ma(l ,w_O) a(n ,W—O)/ w I
0
& cC 4
{1 2 (wR) i (m) 6 (wR) +3 <wR> ]
23he  a(1S,w=0) a(nS,w =0)
T . 1

A7 (4meg)? R7 ; R> he/L (2.133a)

W .o a(lS,w=0) a(nS,w = 07dw -
LS et (4meg)? N -

0

<) o () e () e (R)

23hc  a(1S,w=0) @a(nS,w =0)
T . 2.1
A7 (4meg)? R7 ) R> he/L (2.133b)

Hence, in the long range of interatomic distances, both the nondegenerate and the
degenerate contributions has R~ dependence. We recovered the famous CP result.

Let us now investigate the interaction energy in the intermediate interatomic
distances (ap/a < R < he/F < he/L). The transition energies, in the nondegener-
ate cases, are in the order of the Hartree energy and the polarizabilities due to the
nondegenerate states can be approximated by their static values. Thus, we still get
a R™" power law dependence of the interaction energy.

To illustrate the analytic considerations of power law behavior of the inter-
action energy, we consider model integrals. In the nondegenerate case, the model

integral can be expressed as

o0

a b w4e—2wR
I(a,b,R) = [ d
(a5, ) / Yla—i2tw b—ie)?+u? R
0
2 5 6 3
1+ — + + + : 2.134
{ wR  (wR)?*  (wR)’ (wR)' (2134
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where a and b are the energy parameters. Let us choose the parameters:
a=1, b=1/4, and  e=1075. (2.135)

For small interatomic distance, the curve for a model integral with no approx-
imation (blue curve), matches with a 1/R% asymptotic (red-dashed) curve while for
large interatomic distance, the model curve matches with 1/R" asymptotic (green-
dashed) curve (see Figure 2.4). ag/a & 137.0364aq is the transition from 1/R° to

1/R" asymptotic.

ap apla hcl.L
“vdW range CP range | LS range
10°
=y
“
2
S 10204
Exact
23/(4ab R)
10404+ e 3r(2a RS)
ap 102ay 10%a, 1083, 1084,

R

Figure 2.4: Figure showing a numerical model for the interaction energy as
a function of interatomic distance in three different range. The interaction
energy shows 1/R" asymptotic for R > ay/a.
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In the presence of the quasi-degenerate states, the model integral can be writ-

ten as

oo
4.—2wR

a (=n) we
J(a,b,R) = [ d
(a,6, R) /“<a—ie)2+w2 (—n—i?+u? R

0

2 5 6 3
X [1 YR om? T e T en) (2.136)

where 7 is the energy shift of the degenerate levels which represents the Lamb shift

or fine structure. One good choice of the numerical values of the parameters are

a=1, n=1073, and €= 1079, (2.137)

Figure shows an exact, and approximate 1/R% and 1/R" asymptotic for inter-
action energy. For small interatomic distance, the curve for a model integral with
no approximation (blue curve), matches with a 1/R® asymptotic (red-dashed) curve
while for large interatomic distance, the model curve matches with 1/R" asymptotic
(green-dashed) curve. he/L is the transition from 1/R% to 1/R" asymptotic.

Now, it is time to clarify why we choose R > hc/L. As the long range of the
interatomic distances instead of R > hc/F. As F =~ 10L, the interatomic distances
he/F and he/L differ by an order of magnitude. One might argue that there is a

window

he he
— < R< —. 2.138
F L ( )

However, the window is so narrow that it does not give any meaningful sense and the
claim R > hc/L. As a separation of the intermediate interatomic distance from the

long interatomic distance holds well.
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ap apgla hel L
1020 F vaw range CP range [ LS range
x
fe}
8
= 1020+
Exact
23/(4na R)
1004+  |[------ 3/(2a RS)
ag 102a, 10%a, 10%a, 1083,

R

Figure 2.5: Figure showing a numerical model for the interaction energy as a
function of interatomic distance in three different range. In the presence of
quasi-degenerate states, the 1/R° range extends much farther out up to hc/L.

2.5. LONG-RANGE TAILS IN THE vdW INTERACTION

Study of the vdW interaction in the long-range distance between two electri-
cally neutral hydrogen atoms in their ground state is simpler as it follows the R~°
power law as predicted by Casimir and Polder [15], where R is the interatomic dis-
tance. Problems arise when one of the atoms is in the excited state. The presence of
the quasi-degenerate states available for the transition of virtual photons gives rise
the oscillatory dependence of the interaction energy with the amplitude falling off as
R™2, when the R is sufficiently large [29; [30; BT% [32]. So far the experimental verifi-

cation is concerned, an oscillatory distance dependence in the vacuum-induced level
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shifts has been observed in a single trapped barium ion in the presence of a single
mirror [33; [34].

2.5.1. S-matrix in the Interaction Picture. The interaction picture, in
which both the state vectors and the operators evolve in time, is applied to determine

the scattering matrix elements. We split the total Hamiltonian of the system, H, as
H=Hy+V(t) (2.139)

such that the Hy is the unperturbed part of the Hamiltonian and V' (¢) carries all the
interactions from the system. The operators in the interaction picture evolve freely,
and the dynamics of the state vectors depend on the interaction.

We consider two neutral atoms A and B. Let pj4 and R4 be the position
vectors of the electron and the nucleus of atom A and pp and ﬁB be the position
vectors of the electron and the nucleus of atom B. The relative coordinates of the
states are 7y = ﬁA—ﬁA and 7g = ﬁB—éB. Let R = EA—EB be the distance between
the nuclei. If |¢4(74), ¥p(T)) and [ty (F4), ¥5(7B)) be the ket vectors associated to
the initial state and the final state respectively and |®(t)) be the ket evolved from the
free initial state, the S-matrix element is the projection of the evolved state vector

|®(t)) on the final state. Mathematically,

Swpap = (Wy(Fa), Vs(75) | (1) = (W4 (Fa), W5 (F)| S [¥a(Fa), ¥v5(7s)), (2.140)

where S is the scattering operator [35], which satisfies the unitary condition, SSt=1.
Using the definition of the time evolution operator, U, in the interaction picture,

which reads

Ut to) = T oxp (—i /t t dt’V(t’)) | (2.141)
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one can write

Sapap = lim Tim (44 (7a), U5 (F)| Ut o) [¥a(7a), ¥5(75)). (2.142)

—00 top——00

The n'* order term of the Dyson series [29] for the time evolution operator in the

interaction picture reads

U™ (t,t,) = dt1

dtz / A VIV (L) --- V(L)  (2.143)

As the S operator is related to the evolution operator as
S = U(oo, —0), (2.144)

the n'" order contribution to S is given by

4 _ El—'g: /_‘:dtl /_ZdtQ.../_:dtnT[V(tl)V(tg)~~~V(tn)]. (2.145)

To the 4™ order, the contribution to S is given by

50 — i [ an [ Can [Can [ antvevevieve). e

The four indices can be paired in three different ways, namely: {(1,2)and (3,4)},
{(1,3)and (2,4)}, {(1,4)and (2,3)}, however each pairing yields the same integral
value as they differ only on how we call them. Thus,

SW — ﬁ dtl / dt, / dts / Aty TV () V (t)] T[V (t3)V (ts)].  (2.147)
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To the dipole approximation [36], the interaction V() can be approximated as

— — - — — —

V(t)=—ds- E(fa,t) —dg - E(fp,t) ~ —ds- E(Ra,t) —dg - E(Rp,t), (2.148)

where d = e7 is the electric dipole operator of an atom. Assuming that the un-
pertubed state of the system contains atoms on the state [¢)) = |¢a,15) and the

electomagnetic field in the vacuum state |0),

(59 =lOSW0) = [ dn [“an [ [
X WHOTIV (t)V ()] HONO{ TIV (t3)V (£)] O 49)- (2.149)

Let us say, Ty is the time ordering operator for the electric field operators and T,

is the time ordering operator for the dipole moments. Making use of Eq. (2.148)) to

Eq. (2.149), we have

59 g [ [t [ an [ a i { {1007 [(daen) - (R )
(dis(ts) - E(RB,tQ))} 10) + (0| 7% [(J’B(tl) CE(Rp, t1)) (da(ts) E(ﬁA,tQ))] |o>}
X {<O|TE [(JA(t3) : E<EA7t3)) (JB(t4) : E(§37t4))} 0)

+ (0|7 [(JB(t3) - E(Rp, t3)) (da(ts) - E(RA7t4))} |0>}} (2.150)

The integrand of Eq. (2.151]) is the sum of four terms which have different naming of

the indices but the same integral value. Thus one may write

(S@) Z% /_OO dt, /_oo dt /_OO dts /_oo Aty (01T E(Ra ) B, (R, 1)]0)
% (0T | E(Rasts) BB, t4) | 10) (0al T | das(tr) dan(t) | [1a)

x (| Ty [dBj(t2) dBé(M)] V). (2.151)



45

In terms of the scalar and the vector potential the electric field operator can be

written as
E=-Vd— —. (2.152)

With a proper choice of the gauge in which the scalar potential ® is zero, the electric

field can be written as E = —%—f . This is the so called temporal gauge. In this gauge,

2

(O[T [Ei(Ra, t1) Ej(Rp, t2)]|0) = a—(OITE[Ai(ﬁA,tl)Aj(ﬁB,tz)]lm

Ot 0ty
O 5 [ dw S\ it —ts
:181518152DU<R’ ty —tg) = —1/0‘o ZWQ Dij(w, R)e (t1—t )’ (2.153)
where B = Ry — Rg and
. hei\w\R/c ic 2
Dijlw, B) == | = B | 155 ~ e 2.154
B = iraa {O” . {IwIR w2R2H (2154

is the photon propagator in the mixed frequency-position representation.The tensor

structures a;; and 3;; are given by

R;R;
T

R;R;
R

and Bij = 5ij — 3

While the time ordering product of the electric dipole moment operators reads

> dw

7iw(t1 7t3)
— €
2T

QA,ik ((.U),

(PalTy [dAi(tl) dAk(t3)] tha) = —ihoaa(ts — t3) = —ih /

[e.o]

(2.156)

where the polarizability v ;x(w) is given as

(Waldailva) - (valdag[a) | (aldailva) - (valda[¢a)
aA’ik(w):Z( . gy,AA— et g,,,AA+ TR ) (2:157)

vaA
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With the help of Eqgs. (2.153]) and (2.156|), Eq. (2.151)) yields

d 5 )
5(4) / dtl/ dtQ/ dtg/ dt4 —1 / 2W1 wf Dzj(wl,R) o wi(ti—t2)
T

dw * dw .
x (1) / Q—;wz Dig(ws, R)e 2 @571)  (—ih) / 2—7:’6*1”3(t1*t3>aA,ik(w3)
X (—ih)/ %e—lm(b—m)a&ﬂ(wd (2.158)

Let us now carry out the t-integral.

d -
5(4) 2h2 / dtl/ dtg/ dtg/ ﬂw% Dij(wlaR)

: °° dwsy Lo
X e_lwl(tl_tz) —w2 Dkg(WQ, R)e‘lw?t?’
o  2m

“d
« / w3 e—lUJS(tl t?’)OéA k(wg) OZB jf( )

d —
2_h2 dtl/ dt2/ wl 2 Z] Wl,R) —iw1 (t1—t2)

dw .
X / —2w2 Dkg(wg,R)e lwat ,k(wQ)eMtQaB,jg(—wg)
o 27
1 oo 4 . )
= — dtl / % UJ% Dij (wl, R) eilwltl
X ( ) Di( wl,R)ewlthéA,ik;(—M)aB,je(wl)

2—712 dt / -~ W4 Dz] R)Dkg(w7 é>aA,Zk (W)OZB,JE(W)

T

2h2 4D( R)Dkf( R)aA,z‘k(w)OéB,jz(w). (2.159)

27r

o0

Here T = f:f dt = t; —t; denotes the total interval of time in which the transition

occurs. In the intermediate steps of Eq. (2.159)), we have used the following property

of the Dirac-delta function

/OO dz f(z)o(z — x0) = f(z0), (2.160)

o

which indicates that the integral takes the value of the function at the Delta-peak.
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2.5.2. Interaction Energy for nS-1S Systems. By the defination of the
S matrix element

(SW) = == T(W/|V]) = =3 TAB), (2.161)

the direct term contribution to the interaction energy can be written from Eq. (2.159))

as

, i [ dw = =
AE(dlrect) — ﬁ / %w4 Dij(wa R) Dké(wa R) aA,ik(w) OlB,jZ(w); (2162)
0

—

where, the photon propagator D;;(w, R), and the polarizability a4 ;x(w) are given by
Egs. (2.154) and (2.157)) respectively. Whereas, the mixing term contribution reads

- i [ dw 5 =
AEme) = ﬁ/o 5" Dij(w, R) Dyo(w, R) aap (@) 0y je(w), (2.163)

where asp 1 (w) is the mixed polarizability taking atom A as the reference atom and

mathematically it is given by

cap @) =S (<¢A| AEJZAE ;:Al ;JW)B> . (14 EV':AEF ;:Al ;GUWJB)). (2.164)

VA

Similarly, if we take atom B as a reference, the mixed polarizability, is now denoted

as aap jo(w), which reads

_ (Valdpilva) - (aldsjlvp) | (baldpilva) - (valds;[¥s)
aapij(w) =) ( By — s — o T Bop + o — - ) . (2.165)

va
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Now the total interaction energy between two identical atoms in their arbitrary states

can be written as the sum

AE = AEUiret) 1 A plmixing), (2.166)

For the sake of simplicity, we consider the atom B in the ground state and the atom
A in the excited state through out our derivation. Let |m4) be a virtual state of atom
A. In the Wick-rotated contour, in which the integration contour for w € (0,00) is
rotated to the imaginary axis, poles terms arises naturally. The poles are present at

_Bma

7 1€

w = j:Emh’A Fie. The Wick-rotated contour, however, picks up poles at w =
only (see Figure . Thus each of the direct term and mixing term can be expressed
as the sum of the wick-rotated term and the pole term. In this section, we concentrate
only on pole terms.

The direct type contribution of the virtually low-lying P-states can be written

as the sum
Q(direct)(R) — 'P(direCt)(R) + %I‘(direCt)(R) (2167)

We now call the real part of Q(R) as the pole type contribution. In other word, now
and onwards, whenever we say pole term we are referring to the real part, P(R). The
imaginary part is half of the width term I'(R). The pole term for the direct-type

contribution, P (R) is given by

' . [e’e) d N —
'P(dlreCt)(R) :Rel / _ww4 Dij (w, R) Dkf(w, R)
0

h 2
(Yaldailma) - (maldarliba)
g Bon £ o — ic ,5¢(w)

i . 1 w? _ S
=—Re ¥ (27i) Res D;j(w, R) Die(w, R)

w=—FE, A/h+ie h 27



iw

_ Ena .
W= ——5 + 1€

S
I
g

_ Ema

Figure 2.6: The figure shows an integration contour in the complex w-plane
when we carry out the Wick rotation. In the Wick rotation, the w € (0, c0)
axis is rotated by 90° in a counter clockwise direction to an imaginary axis.
The counter picks up only the poles at w = — Bma 4 e, Thus, the contribution

h

of the integration is 2xi times the sum of residues at the poles enclosed by

the contour.

(Yaldailma) - (maldax|ta)
Z Epa/htw—ie p.je(w)

h2

1
~Re g5 > (aldulma) - (maldaulvin) s

mA

wt e2i|w|R/c ic
X R i Bl s — =
w—Eme,j/rH-ie{ zi: Ena/htw—ie {a] P (|w|R w2R2>}

. 2
X [Oéke + Bre (ﬁ — ws—Pﬁ)} OéB,jz(w)}-

Let us first expand the following:

4 ic ? ic ?
w” | + Bij Wk 2R e + Bre R o2R?

C

2

49

(2.168)
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ic ? ic A\’
= w [Ozijakz + (i Bre + Bijoue) (— T ) + BijBre ( )

|w|R Wk w?R2
wl? w?c?
= ajjopw® + (i Bre + @‘jau)ll ]|% — (04 Bre + Bijawe + BijBre) —5- I
o
wle
2@351@@1’ < + ﬂzyﬁké
4

c w2R2 wiR?
= (/Bz’jﬁke (QCYUBM—F@]@%) + O ——— = )

w|R w|*R3
<251]5kﬁl — 2« ZJBM’ ’ )

(2.169)

With the help of Eq. (2.169), Eq. (2.168]) yields

4

m ZWAWAi\mA) (maldar|ba)

2i|lw|R/c
X R j
w:-Em(?j/thie{aB’]g(w) zi: Epa/htw—ie

P(direct)(R> — Re

2 P2

w R wiR*
X [(ﬁijﬁu (20t Bre +5zjﬁke) + Qo ——— o )

3p3
(2ﬁmﬂk£|w‘R - zy6k€|w| 1 ) }

(Yaldailma) - (maldak|ta) Epa, _o .
~ e Z (4mey)” RS e =) e oAl
EQ AR2 E4 AR4
(ﬁijﬂkz — (20458ke + @jﬂkz)w + Ozij%ﬁW)
malR By 1P
(251351% A 2aij6k€hé—i3)
(Yaldailma) - (maldak|ta) Ea 2E,, AR
R . —_ ki
Z (4me ) RS aB,jt h o8 he
. [2E.AR B2 R?
—1isin ( héA ) ) (61‘]‘61@4 — (20 B + ﬁijﬁkf)hé—;

E;, 4R E,aR |E3 R
_’_Ofijakfﬁ)“f‘l(Qﬂuﬂké h? 2@ij/3keh3’—?3) . (2.170)
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Thus the direct pole term to the interaction energy reads

direct) py _ N (Paldailma) (maldag|Ya) (Ema E, AR
P (R) Z (dreo) 0 apje | — cos | 2 o

ma

2 4
[ﬁijﬁke — (20 Bre + BijBre) (Em’AR> + Qg <Em,AR> ]

he he
EnaR . EpaR EpnaR ?
+ 2 e Sin (2 hic ) |:ﬁijﬁkg — Oéijﬁk[ < hic ) :| } (2171)

In the similar way the pole term contribution of the mixing term to the interaction

energy reads

o 1 [ dw 5 D
P(mlxmg)(R) :i_i /O gw‘l Dij(w7 R) DkZ(W, R)

(Yaldailma) - (maldaj|tva)
2 Eon £ I — ic ape(w)

+

1 B .
=Re Res — w* Dij(w, R) Dye(w, R)

w=—E,, a/h+ie h?

s Waldadma) - (maldasla) (2.172)

- Epoa/h+w—ic

The following replacement in Eqs. (2.171)) and (2.172)) yields the width term I'(direct)

and T'(™08) respectively:

Em,AR . Em,AR . Em,AR Em,AR
cos (2 T )—>sm<2 e ), Sln(2 = )—> 005(2 b ) (2.173)

Substituting the value of the photon propagator and evaluating the residue at the

pole, in the same way as we did for direct pole term, we get,

(mixing) _ <wA|dAZ’mA> <mA|dAk|wB> ' Em,A Em,AR
P (R) Z (dmey) 220 Qapge | —p cos | 2 T

mA

2 4
{@‘jﬁw — (2 ij Bre + BijBre) (Em’AR> + v e (Em,AR> ]

he he
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[ EnaR EnmaR EmaR\’
-+ sin (2 fic ) |:2 ﬁz‘jﬁkﬁ ( fic ) - 2aijﬁk4 ( fic ) :| } (2174)

For S-states, ap ji(w) = djpap(w), and aap ji(w) = dj0asp(w). Thus, for S-states,

the pole terms for the direct and mixing type contributions to the interaction energy

are
(direct) _ <¢A|dAZ |mA> <mA |dAk |77Z)A> m AR
E, AR m, AL
[@jﬁke—(?aijﬁke-i‘@jﬂke)< h? ) +Oéz]ak£< 4 ) }
. B, AR mAl E,, R
L CT T )
_ 20 ald ailma)(maldarlia) Ema EpnaR
= mZA (Imeo) T I0 ag . cos | 2 e 3
EnaR\?  (EwaR\'l . [ EnaR\ [ EnaR EnaR\’
E : ’ pai AT o (T .
5( he )+< he ) sin he 6 he he
(2.175)
and
(mixing) wA|dAZ|mA mA|dAk|77Z)B> mAR
P ; (4meg)2 RS A

[@jﬂke—(zaijﬁkewm) (E”,;’;“R> + o aw( > }
+sin (2E”;{C“R) {MWBM( ";;‘R) —20zw5k€( mAR) ]}
-yttt (5) {oe (5527
() (55 o (o5 it ()}

(2.176)
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Thus, in general, the pole type contribution contains terms which follow R=2, R~3,
R, R75 and R75. The pole term can also be expressed as the sum of cosine term
and a sine term. Let us now analyze Eq. in the very short-range regime.
2.5.3. Close-Range Limit, a9 < R < ag/a. By the close range limit we
are referring to the vdW range of the interaction, although to a cruel approximation

we can take R to0 in the close range limit. In the close-range limit, Eq. (2.168) can

be approximated as

h2

. 1
pldirect) (py _Re — da; . d S —
(R) =Re E (Waldailma) - (maldar|ta) (dregc?)’ B2

h2

mA

1 A
X R y .
w_EmE’}j/hHE{ zi: Ea/htw—ie BisBre R4 O[B’]Z(W)}

i Em7
B _% > _(Galdailma) - (maldaxla) o (TA> . (2177)

mA

For the hydrogen atom B being at the ground state i.e., 15-state and the atom A
being at the excited nS-state, Eq. (2.177]) simplifies as

irec 51 'ﬁk@ 5zk Emp — EnS
pldirect) (R) = —m? Zm:msyeﬂmza) H(mPlefInS) b ans | ="——"
2 62 EmP — Ens

- e S nSIrm) - (mPlrinS) s (E2 ) (2

(47€)” RS
Similarly, the mixing pole term is given as

mixin 262 Em _En
PO () = s STUSImP) - (Pl S) s () )

where the 15 state is underlined in the polarizability, o;g,s, to indicate that £ = E;g
is taken as the reference energy. Note that, in the close-range limit, both the direct

and mixing pole terms follow the R® power law. We do get the same result taking

the limit R — 0 in Eqgs. (2.175)) and (2.176)).
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2.5.4. Intermediate Range, ap/a < R < he/L. To determine the direct

and the pole term in the intermediate range, we use the most general expressions of

them which are given by Eqgs. (2.175)) and (2.176)).

2.5.5. Very Long-Range Limit, hic/L < R. If the interatomic distance,

R, is sufficiently large, a cruel approximation might be R — oo. In this range

4
Em AR\ [ EmaR\" . . . . . .
cos (2 ";mA ) ( e ) is dominant in comparison to the other sine and cosine terms

in both Egs. (2.175) and (2.176)). Thus, we have

plireet) (Ry — _ Z 2(alerma)(malerliha) o (Em,A) (Em,AR>4 o (QEm,AR)

- 3(4meg)? RO h he he
=2 S asiAmP) - (mPlrins)
= 3 line PR 2 nS|rim mP|rn
EmP,nS EmP,nS ! EmP,nSR
X Oélg( - ) ( T ) cos <2—hc ), (2.180)
and
ixi 2(alemlma)(malervp) Epa\ (EnaR\" E, AR
(mixing) _ , , 9 ,
P (R) g; 3(4meg)? RS “AB h he o8 he
2 2 -

= ST > (nS[FlmP) - (mP|F|LS)

Enrns\ (Enpas’ Epppsh
X anSlS( ;;’ S) ( f:: S) cos (2#3) : (2.181)

At the very large interatomic separation (R), the pole term contains an oscillatory

term whose magnitude depends on R~2.
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3. MATRIX ELEMENTS OF THE PROPAGATOR

3.1. STURMIAN DECOMPOSITION OF THE GREEN FUNCTION
For the Schrédinger Hamiltonian of the hydrogen atom

ﬁz 2
HS = 5 ‘ )
2m  4mwegr

(3.1)

the total Schrodinger-Coulomb Green function G(7, 7, z) is the solution of the second

order differential equation

(—V—2 - z> G (7,7, 2) = 03(Fy — 7). (3.2)

2m

The variable z is the complex generalization of the energy. It depends on the energy

of level n as follows:
z2=E, — hw. (3.3)

The Green function in the coordinate-space representation is given by

) l
G(FL, T, v) = > Y golFi, oy v)Yom (61, 61) Y5, (62, 62), (34)

=0 m=—¢

where v is an energy parameter associated with the generalization of the complex

energy variable z by

E,
V= n27. (3.5)
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It is worth noting that v depicts the generalization of the principal quantum num-
ber n. Yo, (61, ¢1) and Y, (62, ¢2) in Eq. (3.4) are usual spherical harmonics while
ge(71, o, v) is the radial Green function. In this work, we use the so-called Sturmian

form of the radial Green function [37; 38} 39]

oL m 2 20+1 o
gZ(T17r2,V> :ﬁ (—) exXp (—M) (,’,,17,,2)2

aglV aoglV

o I L2 (m) L2+ <2ﬂ>

apgv apgv
X%(k+2£+1)!(k+£+1—y)’ (3.6)

where aq is the Bohr’s radius given by

h

amec’

ag =

(3.7)

L2 <2ﬂ> and L2 <2ﬂ> in Eq. 1) are the generalized Laguerre polynomials.

agV agV

3.2. ENERGY ARGUMENT OF THE GREEN FUNCTION

For principal quantum number n,

a2m02

E, =—
2n?

The dimensionless energy parameter ¢t can be defined as

E, [ E, i\ Y2

We can re-express the z variable as

(3.10)
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where v is the generalized principal quantum number. Rearranging the left hand side

and the right most term of Eq. (3.10]), we get

E,
Lo = y=nt. (3.11)
z

Substituting the energy eigenvalue in Eq. (3.9)) from Eq. (3.8]), the parameter ¢ yields

2n2hw —1/2
tn = (1 + W) (3.12)
or,
1 2n?hw

n

When w =0, t = 1 and when w = 0o, t = 1. Thus any integral over w from 0 to oo is
equivalent to the integral over ¢ than from 0 to 1. In some situation, the integration
over t is simpler than the integration over w.

Indeed, we are going to consider the Wick-rotated form of expressions in our
calculations. Thus, in our computations, iw will be appeared in place of w. An w can

have both the positive and the negative value. We, therefore, replace w by +iw in

Eq. (3.13)). Let us denote the ¢ after such replacement as 7.
—=1+i—-:. 3.14
- i (3.14)

Rearranging equation (3.13)), we get the following expression for w,

2,002 1 _ 42
A" (3.15)

2n? 12
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Substituting Eq. (3.15) in Eq. (3.14) and solving for 7,,, it is found that the T,

depends only on t and reads as follows:

t

TF = : (3.16)
VE+ 21 Fi)
The T,, for the different values of n are related with each other as
Ti
T Bon (3.17)

"o \/m2 + (n? — mQ)Tnﬂ'

3.3. ANGULAR ALGEBRA (CLEBSCH-GORDAN COEFFICIENTS)

In this section, we discuss the addition of angular momenta and Clebsch-
Gordan coefficients. In general, for every quantum mechanical system, there exists
a vector operator J=L+§ , called the total angular momentum, where L and S
are the orbital and the spin angular momenta. J obeys the following commutation

relations
[Ji Ji] =1 e, [J,7%] =0, (3.18)
k
where J? is the sum
S =T+ T+ T (3.19)

and €5, is the Levi-Civita symbol defined by

)
+1 for even permutation of (4,7, k)

€k =13 1 for odd permutation of (3,7, k)

0 otherwise.

\
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The commutation relation tells that each component of J commutes with
J%. This indicates that any component of J and J? can have at least one non-zero
common eigenstate. For the sake of simplicity, J is chosen along the z-axis. We
denote the common eigenstate of the J? and J, as [j,m). J? and J, satisfy the

following eigenvalue equations.

J2g,m) = 50 + 1)j,m), (3.20)

Jelg,m) = mlj,m), (3.21)

where j(j + 1) and m are the eigenvalues of J? and J, respectively associated with
the eigenstate |j,m). Let us consider two quantum mechanical state spaces having
basis vectors |j1,m1) and |j2,m9) associated with angular momentum Jy and J,
respectively . The vector sum of the angular momenta associated with the quantum

mechanical spaces
J =T+ ), (3.22)

is the total angular momentum vector J for the combined space. The J2 = JE+ J3+
2.J,.Jo and J, = (J_i + J;)é = Ji. + Jo, of the combined space commute with each
other. Thus, there exist nonzero common eigenstates |j,m) such that eigenvalues
of JE, J2, J% Ji., Jo, and J, are ji(j1 + 1), j2(jo + 1), 5(j + 1), my, my and m
respectively. All j’s and m’s are either integers or half integers. j; and j5 fulfil the

triangular inequality

|71 — do| < J < |j1 + Jal- (3.23)
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And mq, ms and m satisfy the following selection rules:
ma €—|j1|,....,|j1| m2€—|j2],....,|j2| mi + mo =m. (324)

Making use of commutation relations for angular momenta, one can easily ver-
ify that Jy, Jo, J?, J, and Jy, Jo, Ji., Jo. form two different complete set of commutat-
ing observables (CSCO) [40)] associated with the orthonormal basis states |j1, j2, 7, m)
(simply denoted as |j,m)) and |ji, j2, m1, mo) respectively. One obvious question
which arises is how we can express a given state |j,m) in terms of |71, j2, m1, ma).

The answer is that we can use the completeness relation of |j1, jo, m1, ma):

Z |j1,j2,m1,m2>(j1,j2,m1,m2| =1, (3-25)

mi,m2

ie.
lj,m) = Z 715 J2s M, ma2) (1, J2, i, malj, m)
mi,ma
= Z (J1s J2s ma, maj, m)|j1, Jo, ma, ma)
mi,ma
= ) O it 2, ma). (3.26)
mi,ma
where C’jﬂmlm = (j1, Ja, m1, ma|j, m) are the so-called Clebsch-Gordan coefficients.

They depict coupling between angular momenta of two quantum mechanical systems.
The Clebsch-Gordan coefficients can also be expressed in terms of Wigner’s 3 — j
symbol [41] as given below:

v J2 )

Cjﬂ2m1m2 = <j17j27m17m2’j7 m) = (_1)j1*j2+m V 2] + 1 . (327)

my Mo —MN
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Here is the list of few Clebsch-Gordan coefficients:

ot g 1 o _ 1 oh \/5 3.98
p— ]_ —_ — —_ — p—t —_—. .
=t Yu=p %t m Gnatyy 6%

As stated by the Wigner-Eckart theorem, the matrix elements of a tensor operator

Ty, sandwiched between the basis states |7, j,m) is given by

Cj;rnl —
(rjm|Tyg|7'j'm’y = —222L (7| T*| 7. (3.29)

V2t 1

The index 7 is a collection of supplementary quantum numbers associated with ob-
servables other than J? and J,which are necessary to form a complete set of commu-

tating observables (CSCO). The quantum number 7 satisfies
(Tgm|7'5'm’) = 672101 O - (3.30)

The quantity (7j|7%|7'j") in equation (3.29) is a reduced matrix element which is
independent of m and m’. It can be concluded from Eq. (3.29) that the orientational
dependence of the matrix element can be determined from its geometrical consider-

ation.

3.4. 18, 28, 35, 4S, AND 58 MATRIX ELEMENTS

The matrix element of the Schrédinger Coulomb propagator [42], if both atoms

are in n.S states, in the co-ordinate space representation is defined as

)

2
e .
P(¢n,w) = = {(pn|t! o
(6nrt2) = SAnle) g
2
e

=3 (nS|2?G(ry, e, v = t)z? |nS). (3.31)
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The wave function (r, 8, ¢|nS) = Wpe(r, 0, ¢) contains the radial part R,o(r) and the

angular part Ygo(f, ¢) such that
Wnoo(r,0,¢) = Rno(1) Yoo(0, ¢). (3.32)

It is easy to separate the total integration into the radial part and the angular part.
The angular integration evaluates to one. Thus, Eq. (3.31)) reduces to the following

radial integration.

2

6 o0 o0
P(¢n,w) = 3/0 r? dr1/0 72 dry Ras(r1) r1 ge(ry,mo, V) 7o Rug(ra). (3.33)

3.4.1. 15 Matrix Element. Let us first consider two hydrogen atoms in

their ground states. The radial part of the ground state wave function reads

1
Ryo(r) =2 3—/26_”“0. (3.34)
Qg

Substituting Rio(r) from Eq. (3.34) and the Sturmian form of the radial Green

function from Eq. (3.6]), the @-matrix element P(1S,¢) can be written as

64me? [ o0 (r1 4+ rs)
P(S.1) =g /0 r dry /0 7t ey exp - 02

oo LIT2H1 (291 72041 (20
exp [ — (Tl + TQ) Z k’Lk (aot> Lk <aot) (3 35>
ag kzo(k+2l+1)!(k+l+1—t)' '
Let us introduce the dimensionless quantities p; = % and py = % We then have

P(lS t) h262 i k' t7 /oo 4 d _(%)plLi’)( )
= €
T Batmie & k3l (k2 —1) Jy KL

/ Pt dpoe= (572 L3 (). (3.36)
0
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We use the following standard integral identity [43]

T(y+ 1)(n+ p+ 1)
n!l'(p+1)

_ 1
(=) TR (—noy+ L+ 1 —),

/ dp e p L (p) =
0

(3.37)

to evaluate the integration in Eq. (3.36)), where 2F1< —n,y+ Lip+1; —%) is a
hypergeometric function of the form oF; (a, b; c; z) The hypergeometric function is

defined by the following power series

2 Fi(a,b;¢; 2) i = (3.38)
where
@ = U050 — g (a4 2) e a4 k- ), (339

is a Pochhammer symbol. If ¢ is not a negative integer, the hypergeometric series
(3.38) converges for all |z| < 1, and converges for |z| = 1, if R(c — a — b) > 0, where
R stands for the real part. It is worth listing values of the hypergeometric function

in the following special cases.

2F1(0,b;¢,2) =1, (3.40a)
o Fy(a,b;b;2) = a1 _1Z)a, (3.40Db)
2Fi(a,b+1;b;2) = (ba(l _b)j)(:f, (3.40¢)
2Fy (1,132 2) = In(1 — 2) (3.40d)
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In what follows, the following contiguous relations for hypergeometric func-

tions are also of great use.

(c=1)
2F1(a,b; C; Z) = m QFl(a,b— 1,C— 1,2) -+ (Z — 1)2F1(a,b;c— 1,2) .
(3.41a)
o) (b=0) Le
oFi(a,b;¢;2) = —a) _2b+ch1(a,b Licz)+
bz—1) QFl(a,b—i— 1;¢ z). (3.41b)

z(b—a)—2b+c

With the help of identity (3.37)), Eq. (3.36) gives

h%e? [2152(—3 — 18t — 421% — 423 — t* + 36t° + 3819)
atmdct 3(=1+t)(1+1)7
256105 Fy (1,2 — 653 — t; (ﬁ)2)]

P(15,t) =

3(—2+ (-1 +6)(1+ ;)+9t

(3.42)

The contiguous relation 1D lowers o[ (1, 2—t:3—t; (1—3)2) into
2Py (1,1 =12 — 15 (14)?) and oF) (1,2 — ;2 — £;(154)?). The relation (3.40bj) im-

plies that
1—t\? 1—t\?
— ) =1 | 1,2—t:2—t( —— = —1. 3.43
<(1+t) >2 1<7 ) 7(1+t)> ( )

We apply the contiguous relation 1} one more time. This lowers 2F1(1, 1 -

t;2—t; (%—3)2) into 2F1(1, —t;1—t; (%—3)2) and 2F1(1, 1—t;1—t; (1—3)2) After some

algebra P(15,t) works out to the following closed form

P(1S,1) =

h%e? [2t%(—3 + 3t + 12t% — 123 — 19" + 1915 + 265 + 38¢7)
atm3ct [ (=141t (1+1¢)*
25617 o Fy (1, —t;1 — t; (155)?)

3(—=1+1t)5(L+1t) }

(3.44)
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Fort — 1i.e. for w — 0 Eq. (3.44) gives the following:

9¢e2 B2
dotm3ct

P(1S,t) = +0(t—1)". (3.45)

For large w, i.e. when t — 0, P(1S,t) takes the following form

3h%e? 1 3h%e? 1

P(1 = — — ). 4
(19w) a?m?2c? hw 2m  h2w? +0 (W) (3.46)
Let us make some analytical comparison. For large w, X;er can be expanded
as given below.
1 1 1 1
= — — X+ =X*+ ... 4
X4+w w w? + w3 + (347)
Thus,
21,/ J _ J|p/
i Jray (nS|r?|n'S) B (nS|ri(H — E,g)r?|n'S) 3
(nS|r H—Eng—i—ﬁwr |n'S) o =3 +0 (w™?)
1 9 1 :
:a<n5|r In'S) — ST (nS|r? {(H — E.s)+ (Eys — Eps)
+([{—-Ey5ﬂ74hﬂ5>+49(w3). (3.48)
For the 15- 15 system,
1S|r? 1S
WS =g 1)

—%(15]1”2]15) — (18| (H — Eyg)ri[18) + O (w?)

h2w?

1 ‘
:a<15’7’2’15> — <1S|7“] |i(H — ElS) =+ (Els — E15)+

1
2h2w?
(H — E1s)] r7|1S) + O (w™)

1

1 2

(GS%JKE{—-Euﬂ,Wﬂ15>
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+ (1S|[r7, (H — ElS)]’l“j|1S>) +0 (w™)

%(1S|r2|15> r;w? (<1S|rj(—ih%7)|15) + (1S|(ih%)rj|15)> L0 (W)
2 lh 1 j -3
%(15% 1) + 5oy (<15|[rﬂ,pq|1s>> L0 (W)
2 : ih -3
%<1syr 11S5) + (31h)m<15|15> +0 (w™?). (3.49)

We have used [(H — Ei5),0]|1S) = (H — E15)O|1S) in the second line, [(H —
Eis),r’] = —ihp’ /m in the third line and the commutation relation [r?, p/] = 3ih in
the fifth line of the above expression. O refers to an arbitrary operator. Since, |1.5)

is normalized to unity. We have,

3

1S J -
(15]r 2mh2w?

r1[1S) = %QSWHS) - +0(w™).  (3.50)

H—Eis+ hw

We compute the expectation value

> 1, _2  4a® [> (2 2r\"* _z  4a?
(15]r?|15) :/ dr2? Lo —ﬂ/ d(Z) () ok = g
0 ag 32 Jo ao ag 32

3h?
=~ (3.51)
whence
62 . .
P(1 = (15! ——1|1
(18,) = TSI 1)
3n%* 1 3h%? 1 5
= —_— — ). .52
a2m2c2 ho 2m h2w? +0 (“ ) (3.52)

Hence, we see that the coefficients in the large asymptotic expression ([3.52) match

those of the series expansion (3.46) of our result. This is a good way to check
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the rather complicated expressions obtained when computing polarizabilities (for in-
stance, expression ) We now substitute ¢t = (1 + 2hw/a2m02)71/2 in Eq.
to get P(1S,w).

3.4.2. 2S5 Matrix Element. For the |2S5) state, the P-matrix element of

the Schrédinger-Coulomb propagator P(2S,t) is given by

2
P(2S,t) = %(25|xj G (11,72, v = 20)27]28), (3.53)

where t = (1 + 8w/(a?m))~"/? and g—i(r1, 72, v = 2t) is the radial Green function

given by Eq. (3.6). The wave function for the 25 state is

1\*? s
\11200(7“, ‘9, Cb) = RQO(T)%O(Q, ¢) = 2 (2—&0> (]_ — 2La0)e 2aq }/00(0, ¢) (354)

Substituting g¢(r1, 2, v = 2t) and |2S5) in P(25,t) and integrating using the standard

integral given in Eq. (3.37) we get,

P(28,1) =

h2e? 1642
¢ [ ( — 921 — 105¢ — 162t2 + 303 + 340¢*

amdct | 3(—1 + 131+ 1)

4 9845 — 4615 — 49447 — 23015 + 1181t9)

16384110(—1 +412), 1y (1,2 — 26,3 — 21; ((2)°)
(3.55)

(1+t)
3(—1+1t)3(141¢)t0

We lower the arguments of Hypergeometric functions using the relations (3.41af) and
(3.41Db)). After some algebra, P(2S,t) becomes

P(2S,t) =

h2e? [ 1642

2 3 4 5
3(—1+1)5(1+1)* (21 — 42t — 48t" + 138t” + 14¢" — 166t

atm3ct

—16t5 — 31417 + 1181t8) -

16384 £9(—1 + 4¢2) 2F1(1, —2t;1 = 2t; (}—1’2)2)
3(—1+1)5(1+1)S '

(3.56)
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Fort — 1, or, w— 0, we have

2h2
lim P(25,¢) = 0C

t—1 a4m3c4

+0(t-1". (3.57)

Fort — 0 ie. w — oo we get the following series for P(2S,t).

14 h%e? 1 h2e? 1

P2Sw) = ———— — — 3. 3.58
(25,) a’m2c2 hw  2m h2w? (w ) (3.58)
The Taylor series of the matrix element for large frequency is
P(25.0) = & (28] L i)
w)=— r r
’ 3 H — Eyg + hw
e?[ 1 ; ; _
=3 a(QS]rﬂ?S) ~ (2517 (H — Ey5)r’|25)| + O (w™?)
e? e?h?
=—@23|r*28) - ——— + 0 (v ). 3.59
3y (21 129) = 5 + O (W) (3:59)
We compute the expectation value
> ame\? amer\
29 2 29) = d 22 4 1— —amer/h
esirtizs) = [ar 2 () (1= 20T ) e
:a3m303 /OO dr T4e—amcr/h . amc /OO dr 7,5e—amcr/h
2h3 0 h Jo
o2m22 [ )
—amecer/h
—f-w/o' dT re :|
_aPm’P [R°T(5)  h°T'(6) N R°T(7)
2B |aPmPe® aPmbd  4aPmbed
42h?
Substituting the value of (25]r?|2S) from Eq. (3.60) in Eq. (3.59)), we get
14 h2%e? 1 h%e? 1
P(2 = — - 3. .61
(25 w) a?m2cz hw  2m h%w? +O (™) (3.61)
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This is exactly what we have in (3.58]).
Let’s get back to the matrix element P(2S5,t). We want to exclude the 2P

state from the sum over states in Eq.(3.56]).

2 2 2 2 2 9 )
Eloplyitilop _ ¢ 27qg & 2R 9e¢*h 8h ¢
3 hw 3h w 3hao2m2c2w  o2m2c2 a?me? 1 — t2
e?h? [ 7212
T atmidh {1 — tz} : (3.62)

One needs to subtract right hand side of Eq. (3.62) from Eq. (3.56) to exclude the

degenerate contribution of the 2P state to the matrix element P(2S, w) which results

P(25,t) = il 162 (21 — 42t — 48t + 138t% + 14¢* — 166¢°
T atm3et | 3(—1 +1)5(1 4 )4
) i o 163840(=1+ 48%) oF (1,21 — 265 (1))
— 1615 — 31447 + 1181t ) -
* 31+ 0)5(1+ 1)
7212 8hw \ ?
+ ﬁ] ) where t = (1 + m) . (363)

P(25,t) in Eq. (3.63) is the nondegenerate contribution to the matrix element P(2S,
w).
3.4.3. 35, 45, and 55 Matrix Elements. For the 3S state of the hydro-

gen, the radial wave function is given as

Rao(r) = 2 (i>3/2 (1 _ 2 2 ) exp(—=). (3.64)

3ay 3ao 27a2 3ay

Thus, the integral form of the P-matrix element takes

2

e [e.e] o0
P(3S,w) = g/o r? drl/o 72 dry Rao(r1) r1 ge(r1, 72, v = 3t) 19 Rao(ra). (3.65)
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After some algebra, the matrix element of Schrodinger Coulomb propagator for 3.5

state P(3S,t) is given as

P(35,t) = e oat” 23 — 46t — 95t + 236t> 4 128t* — 492¢°
T admBet | (1 1)8(1 4 t)S
972 ¢*
— 62t° 4 40¢™ + 2871¢° + 2090° — 13283¢'% — 2852¢"" + 15538t12> g
| 091201+ 00 - TR (1,31 - )Y
(=1 +1)8(1+1)® ’
187w \ /2
where ¢ = (1 + %) : (3.66)
a“mec

We subtracted % [83—%] from P(35,t) to exclude the contribution of the degen-
erate 3P states. The series expansion of the matrix element P(3S,t) for low frequency

case i.e., about t = 1 yields

2025 h%e?

On the other hand, the series expansion of the same matrix element P(39,1)

for large frequency is

69 h2e? 1 h2e? 1

_ -3
With the help of the Eq. (3.48)), the matrix element
P(35,0) = S (3809 |38 (3.69)
3 H — F35 — hw ’ '

can be expanded for large w to get

e*(3S]r?3S) ¢ (
3hw 6h2w?

P(3Sw) = 3S|r7 | (H — Esg) + (H — Esg) |r7[38) + O (w™®)
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6h2w?
+ (387, (H — Egs)]’f’j|35>) +0 (w_3)

= (35]2[38) - (<3S|rf[<H ~ Bye))135)

3hw

3hw (35|7’2|35> 67;12 ((35|rj(—ih%j)|35> + (35|(ih%j)rj|38)> +0 (w™?)
3,w e asI138) + e (@51 1185) ) + 0 ()

%w € 351238) + 6;;62; (3m<35|35>) +0 (W)

37% £ (3512|38) — Z;i; +0 (W), (3.70)

The expectation value (35|r?|3S) amounts to be

207h?
a?m?2c?’

(35|r*39) = (3.71)

Substituting the value of (35|r?|3S) in the last line of Eq. (3.70]), the series of the
matrix element P(3S,w) for large frequency gives

69 h2e? 1 h2e? 1

P(35,w) = a?m2c hw  2m h2w?

+0 (w™?). (3.72)

This is exactly same to Eq. (3.68). This verifies our result (3.66)) for matrix element
P(3S,w). Following the same steps what we did for 35 matrix element, the 45 matrix

element and the 55 matrix element are given as

P(48,t) =

R2¢? [ 25612

16 15 14
270t — 1)10(t + 1) (9293353t — 1252434t — 14419772t

atm3ct
+1876682t"3 + 7960532t'2 — 963186t — 1841172t™° + 160410¢° + 1592228

+37242t7 — 12132t% — 31410¢° + 10548¢* + 103143 — 4428¢% — 1458t + 729)

2 _1)2
576017 1048576t" (16> — 1) (23t* — 18> + 3)” 1 F} (1, —4t; 1 — 4t; 848‘2) .
1-— t2 27 (tQ o 1)10 3
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320w \
h t=(14+ -7 .
where < + a2m02) : (3.73)
P(55,t) = e 125017 [1748868107520 — 18533620t — 388092451¢*®
T admBet | 27(t — 1)12(t 4 1)10

440364922t + 339195951416 — 34343064t — 148417204t + 14394688t

+34111792¢'2 — 3002592t — 3909954t + 182820t + 204834¢° + 843127

—28692t5 — 4132817 + 15534¢% + 10260¢% — 4563t> — 1134¢ + 567} - ==
2
 1600001°(25¢2 — 1)(4551° — 509 + 16517 — 15)7 1 (1, _5¢t:1 — 5t; %) |
27 (12 — 1)" ’
50hw \
where ¢t = (1 + ﬁ> . (3.74)
a“mc

To exclude the contributions of the degenerate P-states, we subtracted afjf;& [‘Z’Iﬁ%j]

2¢2

from P(45,t) and -5 [2(215_0?2%2} from P(5S,1).
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4. DIRAC-DELTA PERTURBATION OF THE vdW ENERGY

4.1. HYPERFINE HAMILTONIAN AND DIRAC-DELTA POTENTIAL

Atomic nuclei have a small but non-zero magnetic moment. It is small in a
sense that the magnetic moment of the nucleus is in the order of 10? times smaller
than that of an electron. The interaction between the magnetic moment of the nucleus
and the magnetic moment of the electron results in the hyperfine structure of spectral

lines. The magnetic moment of the proton in a hydrogen atom is

(& —

Sps (4.1)

o = 9337
where g, = 5.585694 702 is the g-factor of the proton. M and gp denote the mass of a
proton and the proton spin vector. The proton of the hydrogen atom experiences the
magnetic field due to the orbital angular momentum and the spin angular momentum
of the electron revolving around it. The magnetic field due to the orbital motion of

the electron is given by

- —e)U X (—T e L, =
Bg:( ) 2(3ﬂ):— 5 37‘><P:——2 3
8megcr 8megc*mr Smegctmr

e

L, (4.2)

where —7 is the relative position of the electron with respect to the proton. The
electron is moving in a circular orbit around the proton with the velocity ¢. In
Eq. (4.2)), we have used v = ﬁ/m and 7 x ¥ = L, where P and L are respectively
the linear and the orbital angular momenta of the electron. The extra factor of 1/2
comes from the so-called Thomas precession effect [44; 45] which is the relativistic

effect as the electron does not move in a straight line.
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The magnetic field experienced by the proton of the hydrogen atom associated

with the spin angular momentum of the electron is given by [46]

_ 1 2
s — _)e )T — _)e _’653 3
Tneocd [B(fie-F)F — fie] + 3e2l (7)
eh = = 2 eh-
= |3(S.-7)F = S — S0 (7 4.3
Amegcmrd (Se - 7)7 3egc2 m ("), (43)
where fi, = —%ge is the magnetic moment and g@ = hS, is the spin angular momen-

tum of the electron. The total magnetic field on the proton is the sum

B=B,+ B,
(& - e — — 2 e =
= - L— 3(Se - 7)F — S| — —S5.5%(7). 4.4
megcZmr3 4megcmr3 (Se-7)r 3epcz m () (4:4)

The total perturbation Hamiltonian due to the magnetic moment interaction of the

electron and the proton is

ths = —LLp.B = —ﬁsp - B. (45)

Substituting the total magnetic field B in Eq. 1) from Eq. ‘) we obtain

Hi=re 8, D 0 3(S. 1) - 5] - 5,
16megc2mMr3 8megc2m M3
(8, 505
“ Tt L i (356 5) =5
* %gp(gp . §e)m7r;jc53(f’)_ (4.6)

In the first and the second lines of Eq. (4.6), we have used the value of € in SI

units i.e. e? = 4mephca. For a pair of neutral hydrogen atoms a and b, the hyperfine
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Hamiltonian is given by:

ha g S ha g 1 N = =
Hygo = ——0- Y~ 2P g o 2—5[S(Sej-rj)(rjﬂpj)—Sej-Spj]
T

dmMc = T 2mMec =
4 - o mhoa N
590 D (S Seg) a8 (7). (4.7)

j=a,b

The first summands in the right-hand side of Eq. (4.7)) has zero contribution
for S states as the orbital angular momentum quantum number for S states are zero.
Let us now see 3(S,; - #;)(#; - S,;) for S-states.
d3r;

158 )- Slns) =3 [ 5

J

<nS|rk|7‘J><r]|rz|nS>Sk S

ej™~pj

o pd gkt [T "
=3 [ Ban|Ra(r) P [ do [ sinddd Yie(6,0)¥in(6,0)
0 0 0

2 3
sin @ cos ¢ sin @ cos ¢
sin 6 sin ¢ sin 6 sin ¢ ngsﬁg
cosf) cosf)
7 sin6
—3/00 idr’|R (rA)IQ(S_M/r 0040 —— | rein2 | St
- orjjn()] 308 yp 7 sin“0 i pj
27 cos20
| 4 4
:/ _dTJ|RnO(T])| 2 — e (7?3 +73 +2m(5 )> Sf]Sf;]
0
o0 1
:/ _dT]‘RnO(rJ)’ 5MS§JS§J
o 7
S-S
= (nS| =572 ns). (4.8)
J

With the help of Eq. (4.8)), it becomes evident that for S states the second summand in
the right-hand side of Eq. (4.7) does not contribute anything which further leads us to

the conclusion that a Dirac-delta type interaction depicts the hyperfine Hamiltonian
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associated to S states of hydrogen atoms. More explicitly,

4 . h
Hygs =59 Z (Spj - Sej) e 53 () for S-states.

37 mMc
j=a,b
_4 E:m gpj gej 2 h33—»
—ggpj:abﬁ (7 . h ) amc % 7T(5 (7”3). (49)

4.2. WAVE FUNCTION PERTURBATION

Let us consider a small perturbation ‘0’ on the Hamiltonian ‘H’ proportional

to the Dirac—¢ function as given below

SV = amc® (i)3w53(f‘). (4.10)

This potential is the so-called standard Dirac—d potential. Suppose the perturbation

0V changes the Hamiltonian, energy, and ket associated to the wave functions as

H— H+4V,
E— E+0E=FE+ (nS|oV|nS),

|nS) — [nS) +1d(nS)). (4.11)

This perturbation is weak enough. It is weak in the sense that the eigenstates and
the eigenvalues do not deviate heavily from their corresponding values before the per-
turbation is applied. Applying this correction to the time-independent Schrodinger

equation, we get the following equation

(#7+6v) (1n8) 10001 ) = (Bus + 5 ) (Ins) + 16005y )

(4.12)
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In the zeroth order approximation, Eq. (4.12) takes the following form
H|nS) = E,g|nS), (4.13)

and the eigenstates and eigenvalues reduce to their corresponding unperturbed values.

In first order approximation,
H |6(nS)) 4+ 0V |nS) = E,s|6(nS)) + §EnS). (4.14)
Rearranging Eq. , we get
(5V - <nS!6V\nS>> |nS) = (EnS — H> |0(n.S)). (4.15)
This leads to the following modification on the wave functions

L 5Vins). (4.16)

0(nsS)) = m

As a result, the correction to the wave function reads

1 1
-6V [n00) = ——=38 Ry (r). (4.17)

0noo (1) = (7] (Bos —HY NP

This correction to the wave function is orthonormal to the unperturbed wave function.
In Eq. (4.16), 1/(E,s — H)" is a reduced Green function. We introduced the prime
on the Green function to exclude nS states. Let us use the following form of the

normalized radial wave function and calculate the energy shift due to 0V

2\’ n—t—-1) = r\ 2r
— nao [ — | [, +1 o= . 4.1
Bona(1) \/(nao) 2n(n + 0)! ¢ (na()) ”’Z’l(nao) (4.18)
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For S-states,

1) = \/( 2 ) (n_lué!e”LaoLff_%(ﬁ)- (4.19)

nag ) 2n (n! nag

Furthermore, (r, 6, ¢|nS) = U,00(r, 8, ¢) is the product of R,o(r) and Y; (6, ¢) i.e.

‘I’noo(ﬂ 0, Gb) = Rno(T)Yo,o(Qa ¢) =

Rpo(7). (4.20)

The energy shift to the nS—state i.e. 6E = (nS[|6V|nS) is

1/ 2\ (n-1) o p
(nS|oVnS) = ( ) (n—1) /dgre nag Lfll_)l (%) amc?
! 0

47 \ nag

3
x(il>7ﬁ%mL;1(31)
mce nag

1 2\* 1 arn? T [ 2r
“ (o) 3 /“”"/S”“HOW/CWe ity
0

0

X 50(r) = 26(0) 8() L, ()

n—1

nao
1 OéTt'h?’ ) (1)
L,
(nao) 202 m2c 1(0) 1(0)
- (1 1)
= —amc (aom ) L,”,(0) L,”,(0)
B 1)I'(n+1)
B n5 F(n) ['(n)
a*mc?
=5 (4.21)
We may rewrite Eq. as
(Ens — H) 0V 00(r,0,0) = (0V)W,00(7, 0, ). (4.22)

Making use of Eqs. (4.17) and (4.20), one can show that the correction to the

radial part of wave function § R,o(r) must satisfy the second order partial differential
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equation as given below:

(Ens — H) dRuo(r) = (0VYRy0(r)

or, {Eng - (— h;nvj - O‘Thc)} SRuo(r) = (5V) Roo(r). (4.23)

In the first line of Eq. (4.23), we have substituted H = —h?V?2/(2m) — hca/r. Re-
arranging Eq. (4.23), and substituting VZ = 9? + 2/rd, and E,s = —a*mc?/(2n?),

the differential equation takes the following form

2m2atc?

h2n3

2mco

+02 + %ar - Ro(r). (4.24)

n2h?

a2m202
T

] SRu(r) = —

To calculate the correction to the radial part of wave functions, we make the

following ansatz:

b
0Ryo(r) = (70 + by + by 7“) e /% 4+ In (1) (bg) e "/, (4.25a)

Qo
0 Rao(r) = <@ tca+cer+cs 7’2>€T/(2a0) + In (L> <do + d17”> e~/ (2a0)
r 2@0
(4.25b)
0 R30(r) = <6—0 +ep+egrt+esrt+ 647’3) e 7/ (Bao)
r
In <3%) (fo + fir + f2r2> e~/ (3a0) (4.25¢)
0

5R40(T) = <% + 01+ G217+ g3 72 + 947“3 + g57“4) e_r/(4a0)+

In (4%0) (ho + byt + hor? + h37~3) ¢/ (4a0), (4.25d)

0 R50(r) = (Z?O iy i i3 7% 4 dgr® 4 dsrt 4 i67"5)e—7"/(5ao)_|_

In (%) (jo + i+ Jor® + jar® + j4r4) e /(Ba0), (4.25¢)
0
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The corresponding radial part of wave functions are listed below:

1\ 32
Rlo(r) =2 (—) e—r/a(), (426&)
Qo
1\ 32 .
:2 - 77’/(2“0) 1 o 42 b
Ru) =2 () e ). (4.261)
R :2 - 7"1/(3040) 1 . 426
s0(r) (3ao) ¢ 30y | 2742 ) (4.26c)
1\*? 3r r? r3
Ry(r)=2(—) et (1-—4 - —— 4.26d
ao(r) (4a0> ¢ lag  8a2 19243 ) (4.26d)
1\*? 4r 472 473 27t
Rso(r) =2 =— —r/ao) (11— — - . 4.26
so(r) (5ao> ¢ 5ay | 2542 375al | 93754l (4.26¢)

We first simplify the left-hand side of Eq. for a given value of n and compare the
coefficients of the various powers of r with the right-hand side of the expression. Using
the fact that [(nS)) and |6(nS)) satisfy the orthogonality relation (nS|é(nS)) =

we can uniquely determine all by, cx, dg, €x, fr, 9x, hi, ix, and ji. The resulting

corrections to the radial part of the wave functions are

2 2 1In (L>
Q 15 27, n 2r n ao o/a0.

" al?| T 4.27
10(r) = a(l)/2 r g + o 2 ” ( 2
3 13r v, r 1P In (C:"—O>
0R 3 1Br yr r?
20( 1/2 { 4@0 8a§ 2 a% 8a8 + a
r ln< ) o7/ (200) oy
2a3
(5R30(T’) = 04—2 _ l 2& - 4’yET 8_7“ B 16T2 4’}/ET2
\/§a(1)/2 3r 3@0 9@% 9@8 81@8 81@%

2r 2r 2 2r
4,’,3 2111 (%) 4?”111 <%> 4T hl (%)
— —7/(3ao) 4.27
T 7200 T T 34 02 8lal 19’ ;- (4270)
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o’ 1 11 v 33r  3y,r  11r? oy r?
SRu(r) =2 | = e _ ST 2
w(r) e { i 184y 24y 642 Ba@  Gdal | 164
11373 - 1 - i . In (ﬁ) - 3rln (ﬁ) r?In (ﬁ)
9216a;  384al  6144aj 2ay 8ad 16a}
r3ln (ﬁ) ,
- W} e_r/( a0)7 (427d)
0
a? 1 47 2 116r  8v,.r 8672  8~,.1?
§R5O(T):—l/2|:___|_ + 7E+ - 7E2_ s+ ’7E3
V5alZ| 5 150ay  Bay | 375 253 625 | 1254

2r
160 8yt 323et Ayt 40 87°In ()
1125a8  1875a%  703125a3 ' 4687baj ' 1171875a3 ' 12ba]

33l (5277«0) 4140 (;TTO) 21n (%) 8rln (%) 5
~ _ —r/(500) (497
1875ad  ©46875a; | bag 2502 ] ¢ (4.27¢)

4.3. CALCULATION OF THE DIRAC-DELTA PERTURBATION TO
E aw

Let us recall the fourth order energy shift AE&? (R) due to the interaction

Hamiltonian between two atoms A and B.

AEc(fg(R) == WH;TGO)Q /000 dw ag(iw) ab(iw)aﬂ%?mc
ea(cn) oo () o G o ()] o

The interaction energy due to the presence of a Dirac-delta perturbation potential

can be enunciated as

4 672wR/c

0Eap(R) = — L)? /000 dw [5%(@) ap(iw) + aq(iw) 504{;(10.7)] N

mct(4meg R?

[m(é)+5(£)2+6(£>3+3(£)1, (4.20)
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where da,(iw) and dap(iw) are the perturbation of the Wick-rotated form of the
polarizabilities of atoms A and B due to the potential V. Each of them is the sum

of the two contributions

dag(iw) = 0a, (w) + dag (iw),

Sa(iw) = 6 (iw) + 0a,(iw), (4.30)

where 0@, (iw) and day,(iw) are degenerate contributions and day, (iw) and day(iw) are
nondegenerate contributions to the Wick-rotated polarizabilities.

In the vdW range of interatomic interaction, the exponential term in Eq.
does not suppress anymore, and the first four terms under the square bracket [ | are
insignificant in comparison to the fifth term 3/(wR)*. Thus the interaction energy, if

the delta perturbation perturbs only atom A, can be estimated as

sho [
Esla; b)) ~ ——— i iw). 4.31
dFE¢(a;b) 7T<47T€())2R(3/dw dag (iw)ap(iw) (4.31)
0
We can rewrite Eq. (4.31)) as
0Dg(a;b
0Eqp(R) = —%’ (4.32)

where 0Dg(a;b) is the direct vdW coefficient due to the Dirac-delta perturbation

potential and given by

o0

/dw dag (iw)ap(iw). (4.33)

0

3h

m(4mep)?

(SDg(a; b) =
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The correction to the Wick-rotated form of the polarizability is the sum of perturbed

P-matrix elements for w and —w. For example for atom A, da,(iw) reads

dag(iw) = 0P, (iw) + I Py (—iw). (4.34)

There are three sources for the Dirac delta modification of the P-matrix ele-
ment, namely Hamiltonian, energy, and wave function. Let us first investigate how
these components bring the modification to the P-matrix elements. In the investi-
gation of the correction on the P-matrix element, we first consider the form of the
matrix element without taking care of the Wick rotation. However, we definitely per-
form the Wick rotation before we calculate the integral. The Dirac delta perturbation

on the Hamiltonian gives the following modification in the P-matrix.

1
H+0V — E,s+ hw

(nS|a’ 7'|nS)

=(nS|z'

1+ oV 71xi|n5>
H—-FE,s+ hw H—-FE, s+ hw

; 1 1 1 i
={nSe {H—Enﬁhw TH - Baii H-Baiiw |
(4.35)
To the first order,
1 : 1 1 :
PH - _ i i
P ¢(w) 3(nS|x H Bt hwavH o P |n.S)
1 L, (hY . 1 5 1 .
= —gamec (m_c> (nS|x 7 Eng+hw5 (T)H_ Ens—l—hwx InS).

(4.36)
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The probability density of P-states vanishes at the origin. Thus, the Hamiltonian

correction to the P(nS,w) is zero .

SPL(w) =0.

(4.37)

We expect that the correction due to the energy brings the following modifi-

cation on the matrix element

ey oy oy L
i o _1i
=(nS|x H—En5+hw<1 - H—Eng—I—hw) z'|nS)
| 1 SE A
=(nS|zt .2t nS).
sl {H—Ens%-ﬁij(H—Eng%—hw)ZjL }”'M

To the first order,

4,342 ' SE A
PE () = Ymcte ; ;
P s(w) T (nS|z e ﬁw)Zx |n.S)
a*mdcte? ; 0 [y ;
= o T G (H—Eng—l—hw))x nS)
atm3cte? 0 ; 1 ;
=T o) (nS|x (H—Ft hw)x InS) O0FE
0

= ————P,s(w) (nS|6V|nS).

In terms of the parameter ¢, the frequency w is given as

2, 2 2

a‘mec* 1l —t
hw:——
2n? 12

Hence the correction to the matrix element due to energy becomes

n®> 0

a?me? ot

SPE(w) = — [—t?’ } P(nS,t)(nS|6V|nS)

(4.38)

(4.39)

(4.40)
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n2t3 9[P(nsS,t)]
= . 4.41
s (nS|oV|ns) (4.41)

Let us now replace |n.S) by the corrected wave function [n.S+49(nS)) in the P-
matrix to examine the modification in the P-matrix element due to the wave function
correction. It is corrected in the sense that it includes the effect of the Dirac delta

modification on the wave function.

(nS+6(nS)|x T Bt P InS +0(nS)) = (nS|x T Eor T3 |n.S)
+ (nS|z T Ear o |0(nS)) + (§(nS)|x T Ea7 o |n.S)
Sl g 10(nS)) (4.42)
To the first order,
5PY(w) =% [nSle - 15(0)) + (B ———al|nS)
ns(W) =73 na:H_EnS a|o(n n $H—Eng+hw$n
T —— (4.3
T3 VW TR a0V '

where |§(nS)) is the modification of the wave function due to the delta perturba-

tion potential. Substituting |6(n.S)) in terms of the reduced Green function, from

Eq. (£16), Eq. (43) becomes

2¢? . 1 - 1
P _ i i
dP (w) = 3 (nSla*—— o x (— Es) JH|nS). (4.44)

In general, the modification of the P-matrix element arising from the energy and the

wave function is nonzero.
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5. LONG-RANGE INTERACTION IN THE 15-1S SYSTEM

5.1. CALCULATION OF Cg(1S;1S) IN THE vdW RANGE

As we already discussed in Sec. (2.2.2)), the vdW coefficient for the interaction

between two atoms a and b both being in the 1.5 state is

L)Q /0 " dw ars(iw) ass(iv). (5.1)

7(4meg

Cs(15:18) =
The dipole polarizability for the 1S state, a;s(iw), is the sum
aps(iw) = P(15,iw) + P(1S, —iw). (5.2)

The matrix element P(1S5,iw) has been derived in Sec. (3.4.1). With the proper
substitution of the variable, one can easily determine the dynamical polarizability
a(1S,iw). In the static limit, the dipole polarizability [42] is given by

9e?h? 9¢%a?

a(lS,w=0) = Satndd ~ 2E, (5.3)

where B, = o?

mc? is the Hartree energy and ag = A/(amc) is the Bohr radius. The
ground state of the hydrogen atom is a nondegenerate state. The calculation of the
vdW coefficient Cg(15;15) is fairly easy as there are neither virtual P-states, nor

mixing terms. The Cg(1S5;1S) is calculated numerically which works out to

Cs(15:15) = 6.499 026 705 Ej,al. (5.4)
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5.2. CALCULATION OF C(1S;1S) IN THE LAMB SHIFT RANGE

If the interatomic distance, R, is very large, i.e., R > hc/L, the integrand in

w4672wR/c

h o : :
)2/0 dw a5(iw) ag5(iw) —

crea () v () +o () +a ()] 69

is damped by oscillations in w. The contribution of the non-vanishing frequencies in

Eisa1s(R) = —

the polarizabilities is exponentially suppressed which yields

A 8] w4672wR/c
~ a15(0) ar5(0) / dw
0

nct(4meo)?
x {1+2<£>+5<£)2+6(£)3+3<£>41. (5.6)

Let us evaluate the following integral at first.

[ () e () o GR) 2 (G

5 00 4 3 2
[T (EEN rene | (WEY T (WRENT L s (@R o (RN
R™ J, c c c c c
17 23¢°

¢ |3 3 1 1
= |24+2x2 - - i .
R7{4+ X8+5X4+6X4+3X2] R (5.7)

Fisas(R) = —

With the help of Eq. (5.7), the interaction between two neutral atoms at ground

states, at very large interatomic separation, reads

23 he
AT R™ (47ep)?

Els;lg(R) = 0415(0) 0415(0). (58)

Note that, the interaction energy has the R~" dependence in this range. Both hy-

drogen atoms are in the 1S-state which is the nondegenerate ground state. From
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Eq. (5.6)), the interaction energy Es.15(R) for the 15-15 system can be written as

23 hc
AT R (47eg)?

23 ke 9e%h2 1\
© 47RT (4mep)? \ 2aimBct

1863 E}, (10)7
— 20 (o 5.9
16 cwr(R ’ (5.9)

FEisas(R) = a15(0) a15(0)

which implies

1863 B},

Cr(18518) =— ==

(ao)” . (5.10)

5.3. CALCULATION OF THE 15-1S5 DIRAC-6 PERTURBATION E, qw

The perturbation of the CP energy for two neutral hydrogen atoms both in

the ground state |15) is computed using

w4e—2wR/c

h > : :
)2/0 dw dag(iw) alg(lw)T

e (4meo)?
x {1+2(£)+5(£>2+6<£>3+3<£)1. (5.11)

It should be noted that in the close range of the interatomic separation ay < R <

dE1515(R) = —

ap/c, the fourth term under the square bracket [ | i.e. 3(c/wR)* dominates other
terms and the exponential approaches unity. Thus, the Dirac delta perturbed energy

dE15.15(R) obeys the power law R™% such that

6EIS;1S(R) = RS 5

(5.12)
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where the Dirac-delta-perturbed vdW coefficient 6 Dg(15;15) is given by

i)Z /000 dw dag(iw) ag(iw). (5.13)

m(4meg

The quantity daqg(iw) is the Wick-rotated Dirac-delta perturbed polarizability of the
ground state hydrogen atom. Computation of the vdW coefficient becomes simpler
if we separate the total contribution into two parts, namely the wave function contri-

bution D (15;15) and the energy contribution §DF(1S; 1S) which are respectively

given by
(4 3h > ¥ s .
5D6 (15, 15) - W . dw 50&15'(10.)) OélS(lCL)), (514)
D¢ (15;18) = e ), dw das(iw) arg(iw). (5.15)

Each of the wave function part and the energy part of the perturbed vdW coefficient
has only the nondegenerate contribution as the ground state hydrogen atom does not
have any degenerate neighbor.

5.3.1. 8D¥(18;18) Coefficient. We first look at the modification on the

P-matrix element due to the Dirac-delta perturbation potential action on the wave

function.
2atm3cte? , ,
OPls(t) = —pr (15127 ge(r1m, 1) 2'[3(15))
22 [ >
= ?/ T’%d’f’l/ ng?"g ng(’f’l) T1 gg(T’l,Tg,t) T2 (SRlo(Tg). (516)
0 0

We first change the variables to their dimensionless forms and integrate using the

standard integral (3.37)). The perturbed P-matrix element due to the wave function
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correction reads

5P1ws(t) -

h2 e? [ 2

t' +2369¢t'0 + 2561¢° + 1569¢t° — 730t"
9(t—1)6(t—|—1)7[609 + 23694 + 25611 + 1569¢° — 730

aZm3ct

12819 2
—570t% + 270¢° t* — 183¢% — 183¢2 t } 1
570t5 4 270t° + 366 83 83t + 33t + 33 e i

256 3217 =y
s nere MO gpTeg g el (1’ “hlohaT 1)2)

2t
X {3 — 2% + 95" + 24 (t* — 1) t*In ( )}

t+1
oo Sf(ttl i eh (1, —t;1—t; ;—i) : (5.17)
where the function Fyyy(t)
= 0 () LFOO (k4,4 )
Fou(t) = Z [ , (5.18)

k=0

can not be simplified to a closed-form expression. However, we can calculate this term
numerically. In terms of the parameter ¢, the vdW coefficient 6Dy (15;15) reduces
to
1
SDY(15:18) = Sme / W saty(t) ans(). (5.19)

© 2m(4men)? )t
0

Let us say the parameter ¢ before and after the Wick rotation is ¢ and T3 respectively.

Then, for the 1S state, T'F are given as
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In the new variables the integral (5.19) takes the following form

3a’me

D}(15:15) =5 [ G (5P (0) + 5Py (1)

X (P15(T1+(t)) + Pis(17 (t))) (5.21)

We divide the integration into two different regions. (I) The non-asymptotic
region for which ¢ is close to 0 and (II) The asymptotic region for which ¢ is close to 1.
In the non-asymptotic region, we use the exact form of the expressions, however, in
the asymptotic region, the exact expressions are replaced by the corresponding series.
In the non-asymptotic region, the F,;.(t) term converges very slowly. We compute
this slowly convergent series using the convergence acceleration technique discussed
in Ref. [47; 48] . We first take a general series Fyp.(t) which gives Fyyy(t) as a special

case. We first express Fy.(t) as the following partial sums

Fape(t,n) = Z s (t (5.22)

We perform the Van Wijngaarden transformation of the series as follows.

EXWV(t,n Z qu s (4, 20(k+1) —1). (5.23)

k=0
We now use the recursive Weniger transformation on FyW(t,n). Let us define

Eaupe(t,n, k, B) and hep.(t, n, k, 5) as given below

Eave(t, 0, K, B) = Z”b—H (5.24)
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and
hose(t, 1, £, ) = —cnes (5.25)
abe\l, TV, K, VW 72\ .
’ Ry (t.n)
such that
g bc(tv n, k, 5)
EYen(t,n, k,B) = 2222 2L 5.26
o (0B = ,B) (>:20)
where FY"(t,n, k, 3) stands for the series, we obtained from Weniger transformation.
In Eq. (5.24), RYY(t,n) is the remainder term. The remainder can be estimated as

Rabc ( ) Rabc (t7 n+ 1) (527>
We use the following three terms recursion relations as explained in Ref. [49} 50]

habc(t n, k ﬂ) abc(t n + 1 k — 1,B)

_ B+n+k-1D)B+n+k-2)
(B+n+2k—=2)(8+n+2k-23)

hope(t,n, k —1,5),  (5.28)

gabc(t7n7 ]{?,ﬁ) :gab(:(t?n + 17 k— 17 ﬁ)

Brntk-1DB+ntk-2)
“ B rni 223 ik g Stk —18). (5.29)

In the asymptotic region, as P(15,t) and 0P(1S,t) contain (—1 + ¢) in the
denominator, they converge very slowly when the parameter ¢t approaches to 1. To
compute P(1S,t) and 0P(1S,t) and hence the vdW coefficient in the asymptotic

region, we replace all the condensed expressions by their corresponding series. Let us
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now discuss the term containing Fyyy(t) first:

v h%e? 256 ¢1°
0P(15,t) = Fouu(t
(15,¢) a?m3ct 3(t —1)(t+1)9 2u(t)
o0 (0100)
042m304Z t—l(t+1) (k—t—|—2) ' '

Here §P(1S,t) denotes the term containing Fhy(t) in §P(1S,t). Let us now calculate

2F1(0,1,0,0) (—k,b; c; z) for a general case.

JFOIO0 (kb2 = lim Z—(_k)m(b)mz—

= (¢)m m!Ob T(b)

k
S (R [Dbtm) Th4m),
=2 0. m'l N0 N0 “b)]

. (=k)m 2" T (b + m) {F'(Hm) F’@].

(©)m m! T(b) [TO+m) T(b) (5.31)

Let us use the following standard equation for the derivative of Gamma function:

1 1
I =—(m-—D!{ — — -]. 5.32
) = ~(m = 1! 3, Zj) (5.32)
Then, Eq. (5.31]) gives the following
k m-+b
o F b+ m) 1 1
F(o,l,o,o) kb _ _ s
261 2) Z () mib r Zj
m=0 7=1
b
1 1
: (6 MDY 5)}
7j=1
_i(—k)m(b)mz_ 1_;_2":1 %1
_m:0 ()m  m| b b+m A
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k b—1 b+m—1
—k)(b)y, 2™ 1 1
_ Z (=F)m(b) Z_‘ [ _ 4 _] (5.33)
m=0 (C m m: j=1 J j=1 J
For our special case
k m 3 3+m
2 (=Kk)m(4)m 1 2 1 1
F(O,LOO k 4 4 — . — — —
2T 1+t Z (4 mI\1+1¢ Zj+.2j
m=0 7j=1 j=1
k m r 3+m
k! 1 2 1
= (=" —( ) {Z —,]. (5.34)
— (k—m)!m!\ 1+t =

Substituting 2F1(0’1’00 ( k,4;4; ) in Eq. (5.30), we get

P14t

256 11 —14+6\*/ 2 \"
IP(18,1)
P( ozm%‘lzz 3(t—1) t+1)9(1+t) <1—i—t)

1 [ B A
Xk—t+2(k—m)!ml.23]' (5.35)
j=4

We take N = 50 and expand the series about ¢ = 1. This yields

h2e? 1 19(t—1) 691(t—1)> 1188151(t — 1)*
lim §P(18,¢) = —— | — — — (=1 6o1t—17 (t—1)
11 a2mdct| 96 360 6912 14515200
20018237(¢t — 1)*  1496035033(t — 1)°  1316337316397(¢ — 1)°
870912000 365783040000 153628876800000
+0@t—-1)". (5.36)

We now numerically calculate the quantity 0P (15;1S) in both the asymptotic and

non-asymptotic region and add them up which yields

6D¢(15;18) = 27.286 919180 724 o2 E), al. (5.37)
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5.3.2. 6DF(18S;18) Coefficient. Let us recall the energy correction on the

P-matrix element

n2t3 9[P(nS,1)]

PE(t) = . .
P (t) e 5 (nS|6VInS) (5.38)
For the 1S state, we have
3 O[P(1S,1)] s,
E _ ) 4 2 243
IP5(t) = T 5 Y me =oa t aP(lS, t)
44
=—— [3 — 18¢% + 48t* — 118¢% — 288¢" — 171¢% + 96t” + 64¢'°—
3(t2—-1)
t—1)2 1,0 (t—1)
1920 1, (1, —t:1 — ¢ U1 A5 (2 — 1) o, FO0M0 (1, -1 — 1
9 21(7 ) 7(t+1>2>+6 ( )21 ) ) 7(t+1)2 +
t—1)2 0,1,0,0 (t—1)
om (1, -1 -t A8 (12 — 1) P00 (1, .1 — ¢ .
576 21(, y 7(t+1)2>+6 ( )21 ) ) 7(t+1)2
(5.39)
The integral
30me [ d
E _ _sa‘me t1 ) b
6Dg (155 15) —m/ﬁ (5P15(T1+(f)) + 0Ps(T, (tl)))
0
< (Pus( )+ Pistt 1) ). (540

which measures the energy contribution to the delta perturbed vdW coefficient con-
verges sufficiently fast for ¢ — 0. However, the convergence is slower as we approach
t =1. For t — 1 we express the hypergeometric function and its derivatives in series.

The series expansion of a hypergeometric function o F(a, b; c; 2) is given by

N—oo
m=0

oFi(a,b;c;z) = lim Z (Cl)(mﬂﬁ (5.41)
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Moreover, the first order derivative of the hypergeometric function o Fi(a, b; ¢; z) with
respect to its second and third arguments are given, in the series form, by the following

formulas:

N (b) om n+b—1 1
F(Oloo)abcz hm —m—[ —}, 5.42

N n+c—1
zm 1
(0,0,1,0) m B 1
o F} (a,b;c;2) A}l_lrgo mE { jE:c j] (5.43)

We now choose a finite value of N and substitute the corresponding arguments to
get the respective series. At the end, we calculate the vdW coefficient § DE(15;15)

numerically which yields

§DE(15;18) = 7.398 625218 232 a® Ej, al. (5.44)

The total Dirac delta perturbed van der Waals coefficient Dg(1S5;1S) is the sum of

the wave contribution and the energy contribution. More explicitly

0D(15;25) =0DY (1S;1S) + 6DE(15;15)

=34.685 544 398 957 o* Ej, ay. (5.45)

5.4. CALCULATION OF 4C7(15;1S) IN THE LAMB SHIRT RANGE

In the long-range interatomic distance, the contribution of the non-vanishing
frequencies in the polarizabilities da,s(iw) is heavily repressed by the exponential

term e 2“%. Thus, in a good approximation, the Dirac-delta perturbed Wick-rotated
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polarizability, day,s(iw), is given by
datns(iw) ~ day,s(0). (5.46)

In this work, in the long range, we are concentrating only on the 15-1S5 and 15-25

systems. The Dirac-delta perturbed interaction energy, in this range, reads

—2wR/c

m ars(0) 6 (0) /0 h dw“ﬂ‘eT
y {1+2(£) +5(£)2+6(£)3+3(£>4} (5.47)

Making use of the integral (8.81]) and relation

5E15;n5<R) ~ —

a5 (0) = 6024 (0) + 6a¥4(0), (5.48)

equation ((6.196]) can be expressed as

23 he

R O

a15(0) (mfs(()) + 5%(0)) . (5.49)

For 15-15 system, Eq. (6.198)) for interaction energy reads

23 he
dE1s05(R) = — I (e B a15(0) (M{Es(o) + 504111}5(0))
23 he 23 he
=- I (e R a15(0) dafs(0) — Ir (dreg PR a15(0) afs(0)
:5E1ES;15(R) + 5E1/}S;1S(R)' (5.50)

The energy type correction of d-perturbed polarizability, daf(0), and the wave func-

tion type correction of d-perturbed polarizability, 504%5(0), are

(5.51)
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Hence, the interaction energy, dFis.15(R), becomes

23 he
- EWQIS(O) (50‘{35(0) + 50‘%5@))

23 he ( 9¢e2h? ) (43€2h2 81€2h2)

dE1515(R) =

T 47 (4me)2RT

1503/ e \’1 [ h 7am02
167 \4dmeghe) R7 \ amc
1503 7
B, <@> . (5.52)

16« "\R

204 m3ct 23m2c?2 46 m?2c?

From Eq. (5.52)), the 6C7(15;1S5) coefficient is given by

1
5C5(15;15) :i—gg % Epa’. (5.53)
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6. LONG-RANGE INTERACTION IN THE 25-1S SYSTEM

6.1. 25-15 SYSTEM IN THE vdW RANGE

Recall the vdW range of the interatomic distance. The interatomic distance,

R, in the vdW range, satisfies the condition

a0<<R<<ao/a, (61)

where g is Bohr radius and ag/« is the wavelength of the typical optical transition.
As explained in Section , in the vdW range, the interaction energy Esg.1g(R) can

be written as

RS ’

Eysas(R) = — (6.2)

where Dg(25;1S) and Mg(2S;1S5) are the direct and the mixing vdW coefficients of
the 25-15 system.

6.1.1. Calculation of the 25-18 Direct vdW Coefficient. If one of the
atoms is in the ground state and the other is in the first excited state, the 1S-state has
none but the 25-state has 2P-states as its quasi-degenerate neighbors as indicated in
Figure [6.1] The dipole polarizability, in such cases, has two contributions, namely,
(¢) the Lamb shift £, i.e. energy shift between |2P,;/,) and |2S) and fine-structure

Fy i.e. energy shift between |2P;)) and [25) [51].

E(2P,5) — E(2S12) = L3 = 1.61 x 107" E},

E(25))2) — E(2P35) = F» = 1.51 x 10 °E), &~ 10L,. (6.3)
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Energy

n=2 2Ps)2 . 202
Fp=9911GHz 25172
A , Lo =1.058GHz
2512, 2P 2P /o
n=1
\\\ 43.52 GHz 181
18, J 8.70 GHz
Bohr Level Dirac fine structure Lamb shift

Figure 6.1: Energy levels of the hydrogen atom for n=1 and n=2. L, and
F3 stand for the Lamb shift energy and the fine structure respectively. The
Dirac fine structure lowers the ground state energy and resolves the degeneracy
corresponding to the first excited state. The degenerate 25/, and 2P/, level
is a low-lying energy level than 2Ps/, [I]. The degeneracy of the 25/, and
2P, )5 levels is resolved by the Lamb shift, which is in the order of o [2} 3.
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where Ej, = a?mc? = 4.35974434 x 10718] is the Hartree energy. and (i7) the contri-
butions due to nP states with principal quantum number n > 3.

The oscillator strength of |2P; /) and |2P;/,) states with respect to 2S are
distributed in a ratlo 5+ [52} The dynamic polarizability is the sum of the con-
tribution @sg(w) of the quasi-degenerate level and that asg(w) of the non-degenerate

levels. Each agg(w) is the sum of the corresponding matrix elements for w and —w

The contribution of the quasi-degenerate levels to the P-matrix element corresponding

to Schrodinger-Coulomb propagator for position operators is given as

2,0,002°[2, £, m) > | 26 S~ (2,0, 00272, £, m) |
P =
2s(w ZZ —Lo + hw — i€ * 9 ZZIZ Fo + hw — i€
ZZ| 25|z'|2P(m = u NE 262i2| 25|z°|12P(m = ,u)>|
—Lo+ hw — 9 p Fo+ hw —

(6.4)

and the contribution of the non-degenerate level to the P-matrix element is

~ e2 25| |\nP(m = 2
Paste) =52 2.0 |<En|—‘E2 J(r e —'LL)IZ| | (6:5)

All sums are taken over the nonrelativistic nP states with magnetic projection quan-
tum numbers g = —1,0, 1. Let us now evaluate Payg(w).

We use the following form for |25}, [2P(m = u)) and 27:

1 L}e_ﬁ,

— _[2—
4/ 27rag/2 [ Qo

‘11200 =
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1 T o__r
VUyp= ————~=—=¢ 2a0 cosf,
4/27al’? ag
1 T o__r
Uy = ————¢ Zoginfe™™®,
8/may? o
' = x =rsinfcosp, a* =y =rsinfsing, 2* =z = rcosb. (6.6)

Here,

2w 2
(2S|z|2P(m / er/ sm@d@/ dqb( 3/2) <2_ L)
4/ 2ma Qo

X <L>c059 r sinfcoseo

Qo

1 00 s T 2m
= / dr (2 -1 )e / sin? fcoshdd / cosopdo,
32map* Jy o 0 0

(6.7)

and

1 oo o s 27
@slyl2Pm =) = oo | drr4<2—i>e 5 [ geostan [ sings
0 0 0

32mayg aop

(6.8)

Both of these above integrals work out to zero as fozﬂ cospdgp = 0 and fo% singdg = 0.

On the other hand

1 e’} r s T 27
25|z|12P(m = 0)) = drr*(2——)e @ inf 29d6/ de. (6.
(25|z|2P(m = 0)) 327ra04/0 rr ( ao)e 0/0 sinf cos i ¢. (6.9)

The r—integral is
/ dr rt <2 — L)e;o = / dr r4e7% — / dr r4<L)e;0
0 Qo 0 0 Qo

= —T2ap. (6.10)
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The #—integral is given by

T 1 2
2
/Sin@COSZHdQZ/ d(cosh) (cos@) =3 (6.11)
0 -1

While the ¢—integral is given by fo% d¢ = 2m. Hence,
1 N2
(25’|z|2P(m = 0)> = 327‘_—0[04 X — 72&0 X g X 2m = 3@0. (612)

Let us now evaluate (2S|27|2P(m = p)) for u = +1. Here,

0 T 27 1 s
(2S|z|2P(m = £1)) = / r2d7’/ sinQdQ/ dqﬁ(—w) (2 - L)e 240
0 0 0 4V 2may Qo

. 1 r o __r . .
X 1 sinf cosp ————=—e 20 sinf e=?

8ﬁag/2 ap
S S /Oo dr (2 - L) e /7r sin®0dé /27T cos¢ e d¢
321/ 2a0* Jo ag 0 0

_ m » (_7zag> X (%) « (iﬂ) - q:%ao. (6.13)

Similarly,

oo L 2
(2S]y|2P(m = £1)) = / 7“2(17“/ Sin9d9/ d(b(;m) (2 - L)e_%o
0 0 0 4/ 2may, Qo

1 r __r
—e 290 ginf e

8y/may/? ao
L /Ood 4(2 ! )eT /7r sin®0dé /27T sing e d¢
= — rr - — a0 1 in
327/ 2a0 Jo ag 0 0
_ x( 725)><(4)><(i'> 3 (6.14)
- — 72a - 1T | = Fi——=ayp. .
327/ 204" 0 3 RN

Furthermore,

X 1 sinf sing ig

oo ™ 2m 1 r s
251z|2P(m = £1)) = / r2d7’/ SinQdQ/ dgb(—) (2 — —)e Zag
(25]<12F( ) 0 0 0 4/ 27?@3/2 Qo
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1 T
X 7 cosH) ——————¢ Fa sinfh eti®

8\/may 3/2 g
1 00 . T 2T )
= —/ drr4(2— L)e GO/ sin® GCosedH/ e*?dp =0. (6.15)
321/ 2a0* Jo ag 0 0

Hence,

3

> D @S|’ 2P(m = u))?

=1 pu
3\’ 3\ .3 3
= (3a 2+<—a) —l—(——a) + [i—=ao* + | — i—=ao|?
(3a0) V2 V2 | V2 o+ V2 o
= 27a3, (6.16)

and we can write

|(2S|2'|2P(m = u 26 (25| |2P(m = ,u)>|
P
R e

e? - 1 2
:—§ > [(28]a'[2P(m = )|
9 L L |25 ["[2P(m = p) <—£2+hw—ie+5+hw—ie)

— < (7 ! + -
9 O\ =Ly + hw —ie  Fo+ hw —ic

_ el ( 2 ) (6.17)

oa?m2c2 \ — Lo+ hw —ie  Fy+ hw — e

For the 25-15 interaction, the vdW coefficient Dg(2S5;1S5) is given by

sh [ | .
Dg(2S;18) = m /dw g5 (iw)as(iw)
0
N 7d [@as(iw) + s (iw)] au s (iw)
= e W |Giag (1w Qg lw)| iy g(1w
0
o [ : sho [ :
= W/dw Qo5 (iw) g (iw) + W/dw Qs (iw)as(iw)
0 0

= Dg(25;185) + Dg(25; 19), (6.18)
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where

o0

Dg(25;18) /dw o (iw)ag(iw), (6.19)

47T60
0

is the contribution due to degenerate states and

Dg(25;15) = ﬂ%zo)? / dw Fag(iw) g (iw), (6.20)

0

is the contribution due to non-degenerate states. Let us first evaluate Dg(2S5;1S).

o0

— 3h N,
Dg(25;15) :m /dw a5(iw) ang(iw)
0
47re S /dw aq5(iw) (ng(iw) +?25(—iw))
o) 0
3h 3h%? 7 o ass(i) 1 ) 1
= w ag(iw
m(4meg)? a?m?c? e —Lo +ihw —ie  —Lo — hiw — i€

0

2 2
+f2+ihw—ie+.7:2—ihw—ie)

9 FLCLO . —2£2 4F2
s | ) (oo owr * i o)

(6.21)

Residue calculation at the poles of the integrand follows as given below. The first
integrand —2L,/[(—Ly — i€)? + (w)?] has poles at fiw = +i(—Ly — ic) and the second
integrand 475 /[(Fy — i€)? + (w)?] has poles at fw = +i(F, — ie). These poles lie in

the first quadrant and the third quadrant. We close the contour in the upper half
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plane and evaluate integrals.

lim lim Oodw —2L, aus(iw)
L2—0 -0 (—Ly —i€)? 4 (hw)?

0

— Jim tim i (2222) Res s (i)
T Lo0es0 h hw=i(—La—ie) (— Loy — €)% + (fuw)?
—2miLy a5 (iw) ‘
ho i(—Ly —i€) + (hw) hw=i(—La—ie)
= lim lim <_27T£2 a5(iw) >

= lim lim
Lo—0e—0

L2—0 €0 h 2(—Ly — i)
- % ars(w = 0). (6.22)

Likewise,

L T ay5(iw)4F,
A, 15%( / o T+ (hw)2>
0

— lim lim ((m) (4_?) Res (lw)

Fam0 €0 hw=i(Fa—ie) (Fo — i€)? + (
o 4miFy Oéls(lw)
= lim lim - .
L350 €0 h o i(Fy —ie) + —i(Fa—ic)
lim lim AnFy _ans(iw)
Fo—0e—0 h 2(?2 - )
2
= % als(w = O) (623)

Substituting Eqs. (6.22)) and (6.23) in Eq. (6.21]), we get the contribution of the

degenerate part on the van der Waals coefficient,

— 9hade* (m 27
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The ground state polarizability a;g(iw) is given by

2
aps(iw) =

(P(lS, iw) + P(18S, —iw)). (6.25)

atm3ct

In the static limit, lim P(1S,w) = lim P(1S, —w) = 9¢?/4. Thus, the atomic
w— w—

polarizability in the static limit is given by

a15(0) = 9( n )20;2 . (6.26)

2 \ amc mc?

Substituting a;5(0) in Dg(25;1S) we get,

o 927 a2e2 no\ 2 2
D6(25;15):ﬂ><?( ) ¢

(4meg)?2 2 \ame ) a?mc?

243 ,( & \°[ K \*
= —Q mc
2 0\ dreghic amc

243 243
=5 S a’me® = T(ISEh, (6.27)

where we have used the following expressions for the fine-structure constant «, the
Bohr radius ag, and the Hatree energy Fj:
e? h

— _ — d E, = a*md. 6.28
dreghc’ %= ame’ a T ame (6.28)

The contribution of the non-degenerate states to Dg(25;15) reads

o0

g5 /dw Qs (iw)arg(iw). (6.29)
0

25:1
(S 5) 47T€0

The dynamic polarizability due to the non-degenerate states aag(w) is

das(w) = P(25,w) + P(2S, —w). (6.30)
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~1/2 -
We substitute ¢ = (1 + 21hw/(a2m02)> in Eq. (3.44) to get P(1S,iw). And

~ ~1/2

P(1S, —iw) is obtained through the relation ¢ = (1 — Qihw/(anCQ)) . Simi-
—1/2 —1/2

larly, substitution of ¢t = (1 + 8iFw/(a2mc2)> and t = (1 — 8ihw/(oz2mc2)>

in P(25,t) gives P(25,iw) and P(2S, —iw) respectively. We evaluate dag(iw) and

ay5(iw) using the following equations

aas(iw) = P(25,iw) 4+ P(2S, —iw),

as(iw) = P(18,iw) + P(1S, —iw). (6.31)

Now we evaluate Dg(25;15) numerically. A numerical integration of Eq. (6.29) then

yields the following value for 56(25’ :19),
Dg(25;15) = 55. 252 266 285 Ej,ab. (6.32)
The total vdW coefficient Dg for the 1S-2S interaction is thus

Dg(25;15) = Dg(25; 15) 4 Dg(25;18)

243
— (T + 55.252266285) Enal

= 176.752 266 285 E,af. (6.33)

6.1.2. Calculation of the 25-15 vdW Mixing Coefficient. We first
determine the matrix element of the Schrodinger Coulomb propagator between the

15 state and the 25 state.

2

P(2S18,w) = %<1S|mj 27]28). (6.34)

1
Hy,—E, + hw
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E, in Eq. (6.34), given by E, = —a?mc?/(2n%;) , is the energy of reference. The
generalized quantum number v depends on the selection of the reference energy.
Namely, v =t when 15 state is the reference state, and v = 2t when 2S5 state is the

reference state. The matrix element in (6.34]) takes the following integral form

2

e o0 o0
P(251S,v) = g/ dry r%/ drary Rig(r1)r1 gei(r1,m9,v) roaRao(r2).  (6.35)
0 0

We substitute the radial part of wave functions i.e. Rio(r;) and Ry(rq) for the 1.5
state and the 25 state respectively and the radial part of the reduced Green function

gy_1(r1,m2,v) in Eq. (6.36). Then we integrate it which yields

P(251S,v) =

e’h? { 512v/2 12
729(v —2)3(v + 2)2 (12 —
4096v/21° oI} (1’ —vil— v u23u+2)}

7 6 5 4
s 7 (41907 +1340° — 15" + 300

v24-3v+42
3(v2 —4)° (12 —1)°

16005 — 1200° — 320 + 64) _

(6.36)

Taking 1S5 state as the reference state, the series expansion of the matrix element

P(251S,v) in terms of w when w is very large is

512v/2e2h? 1 +32\/562712 1
729 a?m?2c? hw 243 m  h2w?

P(25818,w) = +0 (w™?). (6.37)

One way of checking the expression (6.36)) is expanding the matrix element
P(2515,w) for large w and comparing the result with Eq. (6.37). For large w, (H —
Eis)/(hw) < 1. Thus ,

2

e
3 H— FEis+ hw
2

-1
_ s (1 s
3M<1S|r (1 R r’]25)

P(2518,w) = — (1S 11285
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2 2
— o SI7128) = S (US| — B (28) +.0 ()
2 2

e
15]r2|2
37m< SIrt128) = 5

+ (H — Egs)} r12S) + O (w—3)

(15}’ [(H ~ Bi) + (Bas — Fus)

2 62

3m<18|r2‘25> 6h2w2 <(E25 — E15)(15]r%]285)
OSSO ) Flis)) + ()

62

6h2w?
(1S|rip1]|2S) + <1S|r2p2]|25>)] +0 (w‘3> : (6.38)

(lS|r2|2S)

[(Ezs — Ei5)(1S]r?)25)

ul

The orthonormality condition of the wave functions requires that (15]25) = 0. Hence,

2 2

P(2S15,w):3%<15|r2|25> 7 ——— (Eas — Els)(15|r2|25>+0(w_3). (6.39)

Let us now evaluate (15|r?|2S) and (Fays — E1g).

N 3/2 3/2 —amcer
(15|r%28S) = / 2 dr 2 (m;;c) e—amer/h .2 o (04;;0) (1 B aZ;cT) =
0 o oh

amec\3 [ —3amer amer
(Y [t (e
V2 " /Or re o7

2° h2\/2 o 1 [ —
:352—\/2_2(/ dxx4e_$—§/ dxxf’e_m); x:$
a‘mec 0 0
C32v2 R (F<5)_F(6))__512\/§ h?

243 a?m?2c? 3 243 a?m?2c?’

(6.40)

And

a‘mc a‘me 3a’mc?

Eas — Eig = — T T =g (6.41)
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Substituting the values of (15]r?|2S) and (Eas — E1s) in Eq. (6.39), we get

512v/2e2h? 1 +32\/§e2h2 1
729 a?m?2c? hw 243m  h2w?

P(2515,w) = +0 (w™?). (6.42)

This verifies our expression for P(251S,v) given by Eq. (6.36).

Now we want to compute the 25-15 mixing vdW coefficient Mg(25;1S5). The
total mixing vdW coefficient has two contributions, namely, the non-degenerate con-
tribution and the degenerate contribution of mixing terms. The non-degenerate con-
tribution to the vdW coefficient ]\A/E;(QS ; 1.9) is given by

o0

/dw &ﬁlg(iw)&gsﬁ(iw), (643)
0

3h

where agg15(iw) and aggis(iw) represent the Wick-rotated form of the non-degenerate
polarizability dog15(w) when we take the energy level of the 15 state and the 25 state
respectively as the reference level. We do not use the tilde asg15(w) when the 1S-state
is taken as the reference level as 1.5-state does not have any degenerate neighbor. We

numerically evaluate the expression ((6.43]) which gives
Mq(25;15) = —18.630 786 870 al E},. (6.44)

Similarly, the degenerate contribution to the mixing vdW coefficient for 1.5 and 25

states is

sho [ N
—7r( reo)? /dw Qas1s(iw)dggrg(iw). (6.45)
0

As in non-degenerate contribution, @sg1s(iw) refers to the Wick-rotated polarizability

of @ss15(w) when we take energy level of the 25 state as the reference level. Each
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Qz515(iw) is the sum of the two matrix elements Y Pyg15(Fiw). Thus,
£
aﬁl,s(iw) = ?ﬁls(iw) -+ ﬁﬁls(—iw). (646)

The mixing matrix element taking energy of the 2S5 state as the reference level,

Pysi5(iw), is given as

3

(28|27 |2P) 2P|aﬂ|1s L2 25|x3|2P 2P|x3|18)
P
2915(1w) ; Zu: —Ly +ihw — 9 Z zu: — le
¢ i2<25| i|2P)(2P|27|1S) ! + 2
—_— €T X
9j:1 " —£2+ihw—ie f2+ihw—i€
2 128+/2h? 1 2
([ 128v2 T, (6.47)
9 27a2m2c? —Lo +ihw —ie  Fy + ihw — ie

Substituting the value of Pagys(iw) and Pagis(—iw) Eq. (6.46) follows

aﬁl,s(iw)

128v2e%R 1 1
© 243a2m2c2 £2—|—1hw—1e —Ly — ihw —

2 2
To + ihw — i€ +f2—ihw—ie)
128v/2¢2h? —2 —4
_ 128V Ly + 47 . (6.48)
C24302m22 \ (—Ly —i€)2 + (hw)? | (Fy — i€)? + (hw)?

The degenerate contribution of the mixing term M¢(2S5;1S9) is thus given as

o0

- 3h 128+/2e2h? —2L,
Mg(25;1S) = m /dw azs15(w) < T 4302 m2c2 ((_52 —i€)2 + (hw)?
0

4T,
T E e (m>2)>]

384y/2 €2 h?

= T 2Br (dne)? azmza (esis(w = 0)(T + 2m). (6.49)
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In the static limit,

3584+/2 2h?
Substituting the value of asg15(w = 0) in Eq. (6.49), we get
— 384v/2 [ 3584v/2 ho\°
Mg(25;15) = — — 3 *mc?
o(25:18) = =5 5 ( 729 >( ™) <amc> ame
= 46.614 032414 a E},. (6.51)
The total contribution of the mixing term to the vdW coefficient is the sum
Mg(25;15) = Mg(25:15) + Mg(25;15)
= —18.630 786 870 aS E}, + 46. 614 032 414al E),
= 27.983245543 aS E),. (6.52)

Following calculation which follows the Chibisov approach [53] verifies the result we
just calculated for Mg(25;15).

Let us now come back again to the Eq. . Take the average energy of
the 1S level and 2S level as the reference energy . Calculate v for this system as
v = Neert, where n. is the effective quantum number associated with the reference

energy level.

5)
B = — = ——a’mc’. :
ref 5 2 5 a“mc (6.53)

o mc? B+ Ey 1 a?mc® a®mc? B
ref B B 2 ].6

Let us simplify Eq. (6.53)) for n.r

8 8
Nyef = \/; Thus, v = R t. (6.54)
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We now calculate Wick-rotated asg15(iw) using the sum.

asg1s(iw) = P(251S,iw) + P(251S, —iw). (6.55)

The mixing vdW coefficient Mg(2S5;1S5) is now calculated numerically using

Mg(25;1S) 47T€0 —— /dwozgglg iw) st s(iw), (6.56)
0
which yields
Mq(25;15) = 27.983 245 543 Ejal. (6.57)

The total interaction energy in the vdW range can be written as
6
Easas(R) = — (176.752 266 285 + 27.983 245 543) E), (a—]g) . (6.58)

The direct vdW coefficient for 25-15 system is larger than that of the mixing one.

Thus the symmetry-dependent vdW coefficient
Cs(25;18) = Dg(25;18) + Mg(2S;1S) (6.59)
is positive and hence the interaction is attractive in nature.

6.2. 25-15 SYSTEM IN THE INTERMEDIATE RANGE

The interatomic distance, R, in the intermediate range, satisfies

ap/a < R < he/L. (6.60)
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Obviously, £ for 25-15 system is L, = E(2S1/2) — E(2P;)2), the energy splitting
between |251/2) and 2P, /5). The interaction energy of atoms, keeping in mind that
the polarizability of the atom which is in 2S5-state has two types of contributions
which come from the non-degenerate state and the states degenerate to 25-state, can

be expressed as

w4e—2wR/c

R2

[ oG o ) ()]
" o o ‘ w4e—2wR/c
i ) s
2 3 4
<[ () o G o () o ()
——(direct

A (direc )
=Wt s(R) + Wass (R). (6.61)

irec h ° . ~ .
B () = ———?Adwmwmwm

7wt (4meg

Here, the superscript ‘direct’ stands for the direct contribution. The contribution
of the non-degenerate state to the interaction energy ngﬁegt)(l%) is exponentially
suppressed in the CP region. Furthermore, we can approximate the polarizability
due to the non-degenerate states by its static value. This leads us to the following

general expression for the non-degenerate contribution to the interaction energy in

the CP range

A (direct) h " oo w4ef2wR/c
Wagis (R) =— W%S(w = 0)ass(w =0) i dw 72

() o (R e GR) e ()]

=— R (dre)? aps(w = 0) ags(w = 0). (6.62)
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In the last line of Eq. (6.62), we have used

[ e () s (GR) e () 0 () | = T

(6.63)

The ground state static polarizability is a;s(w = 0) = 9¢*h?/(2a*m3¢*) and for the
25 state, the static polarizability ayg is proportional to eh?/(a*m3¢*). This clearly
indicates that

—(d Ej !
irect
Wisis! (R) ~ E(R) : (6.64)

However, we can still approximate the degenerate contribution Wgs;lg(R) of the

interaction energy as

(direc 3052 N .
WQS 1St)(R) =7 dw a5 (iw)das(iw)
Dg(25:18
= —%. (6.65)

In the CP region, the interatomic distance R > ag/a > ag, thus the interac-

tion energy Ess.is(R) can be approximated as

direct) (direct) direct) (direct) EG (257 15)
EGs" (R) = Wislis (R) + WG (R) ~ Wisli) (R) = - =522 (6.66)
The behavior of the degenerate and the non-degenerate contributions to the interac-

tion energy due to the mixing terms is similar to that of the direct terms in the CP

region. More precisely,

mixin, A5 (mixin mixin T;5(mixing) M (25, 15)
Eys, ISg(R) Was 15g (R) + Wzs 18 ® (R) ~ Was, 1sg (R) = _6T' (6.67)
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Thus the Cg(2S5; 15) coefficient, in the intermediate range, is given by

Cs(28;18) =C6(25;15) = Dg(25;1S5) & M4(25;19)

— (243/2 £ 46.614 032413 758) EjaS;  ap/a < R < he/L.  (6.68)
The interaction energy is thus reads
6
Essas(R) = — (243/2 + 46.614 032413 758) Ej, (%) . (6.69)

The negative sign in Eq. indicates that the long-range interaction is of attrac-
tive nature. The long-range interaction fine-tune the 25-15 transition frequency and

the 25 hyperfine splitting frequency [54].

6.3. 25-15 SYSTEM IN THE LAMB SHIFT RANGE

Here, by the Lamb shift range, we mean R > he/L. In this range, the

integrand in

w4e—2wR/c

h o . .
)2/0 dw a;5(iw) aps(iw) —

mct(4meg

x {1+2<£>+5<£>2+6(é)3+3<£>4}. (6.70)

direct
EéS;lS )(R> -

is damped by oscillations in w. The contribution of the non-vanishing frequencies in

the polarizabilities is exponentially suppressed which yields

—2wR/c

h < wle
5 0615(0) 0625(0) / dwT
0

mct(4meg)

x {1+2<£)+5<£>2+6<£)3+3(£)1. (6.71)

direct
Eés;w )(R) ==
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Recall the already calculated value of the integral present in the Eq. (6.71])) which we

have done in section [5.1] and we got

/OOO dww4i;m {1 +2(—=)+5 (éf +6 (&)3 +3 (ﬁf] - 13—;75, (6.72)

which leads equation (6.71]) to

23 he

(direct) o
Ejgas () =— Ir (reg PR

a15(0) azs(0). (6.73)
Eq. (6.79) shows the R~7 dependence of the interaction energy, which depicts a much

famous CP interaction. Recall that asg(0) = @25(0) 4 dag(0). Substituting

9¢2h? 120e2h?

_ 1 2 ~
0515(0) = m, ags(O) = 662 (_E_Z + ?2) 5 0125(0) = W’ (674)
we get
~ 621 E 2F ap\” 3105 aop\ "’
B (R =~ (e ) B (F) — =B () 6.75
sis B ==\, TR )P \R) T e (R (6.75)

However, there is also a R~ dependent cosine pole term as discussed in Ref. [29].

AS explained in section [2.5] the direct pole term for 25-1S system reads

; 2 E
(direct) o o 2 2P2S
P () =~ e S 25Ie 2P m =) s (22
2EspasR EspasR ? EapasR\*
x{cos( e > 3—5< he ) —i—( e )
2E9pasR . (2E3pasiR 2E5pasR ?
gt (2 [, (st

The interatomic distance, R, is sufficiently large, for example, a cruel approximation

could be R — o0. So, cos (2E5p25R/(hc)) cannot be approximated by unity, however,
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cos (2E,pas R/ (he)) X (EapasR/(he))* is dominant to the other cosine and sine terms.

irec 26 E 2S5
Pisns (R)%—WZWSW?P(W Mk Oéls( 27:2)

2Eopos R\ [ EapasR
X {COS( e )( ” ) } (6.77)

To a good approximation, ays (E2p2s/h) can be replaced by the static value a;5(0).

Furthermore, considering that comparatively |2P3/5) is displaced a lot than the |2P; /5)

from |25 5), the energy shift Fypsg can be approximated by the Lamb shift L.

irec 2¢e? L 4 2L5R
P2(c51*;1st)(R) ~ WOQS (0) (7?2) cos ( 2 >Z| 25|72P(m = p)|*.

(6.78)

Let us follow some parametric analysis of these two terms , namely CP and the pole
terms with the very large interatomic distance. Let us recall ay = h/(amc) and
L = o®mc? In(a?)/(6m). Thus, at the transition R/ag ~ he/Ly ~ he/(a®mc?) ~
ag/a*. Thus, keeping in mind that the dominant contribution on the polarizability
au5(0) comes from the 2P-states which are quasi-degenerate with the 2S-state, i.e.,

az5(0) = ap5(0), we have

direc
Eésgst) (R> ~

1 (he)® €%l e*al aé( e >2 h*c*  he (6.79)

ﬁ(47€0h0)2 E, L, ~RT dmeohe ) a2me® Loy

Recognizing €?/(4mephc) = o and h/(ame) = ag, we get,

. 4 B2 E

R7 ame) ot ot \R
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On the other hand,

2
(direct) Ni € K22 e? aO Lo 2
Pasas (R) R? (4mephc)? ¢ E}, (hc) o

<@>2 2 2 pB2.2 é a2
R dreghc )  o*mc? \ ke 0
ap\? 5 5 o
(R) ame (amc) ( )

16
~ (a4) 2 Eh ag aa_4
0

ag ~ o** B, (6.81)

We can thus conclude that Ezglrfgt)(R) and 772(;“16? (R) are on the same order. How-

ever, if the experimental relevance is concerned, the frequency shift in this region,

o B, 4.359 x 10°18
~ ~Y ~/ 10_36 H 682
Y T T (137)%4 % 6.626 x 1034 ” (6.82)

is too small to consider.
Similar to the direct term contribution, the CP type mixing term contribution
to the interaction energy EQ?lfgng)(R) also follows a R™7 power law and it can be

expressed as

mixin; 23 he
Eés 18 ¢ (R) = TR m a2515(0) a2515(0). (6.83)

Substituting the value of asg15(0) and agg15(0), we get

mixin 216 % 7 x 23 E, 2F, 7
EéS;ng)(R>:— (———l— >Eh<R>

311 yiyes LQ .FQ
21T % 52 x 7 x 23 aop\ 7
312 T En (E) ' (6.84)

The first term in Eq. (6.84]) is the direct-type and the second term is the mixing-type

contribution to Eég“f ;ng)(R). And similar to the direct pole term, the mixing pole
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term for the 25-15 system in the very large range of interatomic distance reads

Pégiféng)(R) ~— m a2515(0) <%) cos <2§263)
> (1S|F2P(m = p)(2P(m = p)|72S). (6.85)

I

where £ = F;g in the polarizability indicates that we are taking 1S-state as the
reference state. The parametric analysis for the mixing term contribution is same to

that of the direct term contribution. We notice that
ESSRTP(R) ~ PIEAS™ (R) ~ o* By, (6.86)

The frequency shift corresponding to them is in the order of 1073¢ Hz, which is too

small to consider in an experimental point of view.

6.4. 25-1S-DIRAC-6 PERTURBATION TO E 4w

The perturbation of the CP energy for two neutral hydrogen atoms in which

the atom A is at |25) and the atom B is at |15). reads

w4e—2wR/C

h > . .
m/o‘ dw (50(25(10.}) alS(lw)T

x [1+2(£)+5(£)2+6<£>3+3<£)4}. (6.87)

The 2S5-15-Dirac-delta-perturbed vdW coefficient in the vdW range of interatomic

dEss.15(R) =

interaction can be evaluated using the integral

L)Q /0 " dw Sans(iw) s (i), (6.88)

m(4meg
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Let us concentrate on the detailed calculation of the contribution of the energy part
and the wave function part on 6 Dyg.15(R).

6.4.1. 8DF(2S;1S) Coefficient. The correction to the van der Waals co-
efficient from the direct term due to the Dirac-delta perturbation to the energy can

be approximated by

§DE(28;18) = 3h ) / dw dads(iw) apg(iw), (6.89)
0

m(4mep)?

where dads(iw) is the Wick-rotated energy correction on polarizability for |2S5). For
the 2S state, the modification of the P-matrix element can be deduced from Eq. ((6.92))

substituting n = 2 and using (25[0V|2S) = a*m ?/23,

223 9[Q(285,1)]

SPE(t) = 3 5 (25]6V|25)
228 9[Q(2S,1)] atm
a2me? ot 23 (6.90)

Differentiating P(25,t) derived in section with respect to the parameter ¢, and

substituting the result in Eq. , after some algebra, we get

8t h%e?

3a?m3ct (12 — 1)

SPE(t) = - [81921512 +14336t'" — 9129t1° — 2508817 — 5947t

+ 4608t + 950t5 — 294t* + 99t* — 15 4 2048(4t* — 5% + 1)¢8

x G OOLO (9 1 9t (t—1)°
2 1 bl 9 9 (t+ 1)2

t— 1)
2048 (4t* — 5¢2 + 1) 3, P00 (1 21— 2¢ (

— 1024(9 — 49¢* + 28t*) o I (1, —2t:1 — 2t; E .’ ;z> } (6.91)

(07]‘7070)

In the above expression oF) represents the first order derivative of o F; with

F(O,O,I,O)

respect to its second argument and oF} represents the first order derivative
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with respect to its third argument.

Substituting the value of parameter ¢ in terms of w and expanding the series for large

w, Eq. (6.91) gives the following.

TaSm2cte?  almicbe?

4R2w?  Sh3w?

0 Pyg(w) = +0 (w™). (6.92)

Let us now examine the large w asymptotic behavior of the matrix element Q% (w)

3 oF ,
5P (w) = S ol 527 [25)
3h? (H — Eys + hw)
4,3 4
— L B8 a7 [25)
atm3cte? 1 2(H — Fys)| _
:T5E<2S|x]h2 2{1— hw 2 ]m3|25>+0(u} )
atmicte? 25|r2128)  2atmicte? SE , . B
T 5! f‘sz‘z - 5 T (2S|e (H = Eas)a’|25) + O (w7)
a‘m3cte? __(2S|r2|2S)  2atmicte? i .
= P e T e g P PEH O ()
atmdcte? . (2S|r?2S) . atm?2cte? . 4
=3 OFE 33 i T (3)6E + O (w™)
atmicte? _(25r?28)  atm?cte? _
= =3 O g e OE+O (W) (6.93)
Here,
o 42 h?
2 2 1 2
()25 = (25]1%[25) :/0 P Ban(r) Py = o (6.94)
and
4, 2
SE = (V) = 21 (6.95)
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Let us substitute Eqs. (6.94) and (6.95) in Eq. (6.93):

Tam2cte? almicbe?

SPE(w) = TS R +0 (w™). (6.96)

Eq. is identical to equation (6.92)). This confirms the expression for § P (t)
given by Eq. (6.91]). Thus, in terms of the parameter ¢, Eq. (6.91]) takes the following

form

1
3 a®mc? 1

5D (29;15) = ———— [ dt — Sags(t t). 6.97

£(25:15) = o [ dafi(n) ans (6.97)

Taking the average energy, (E1s + Eag)/2 as the reference state energy, the reference

quantum number for the system is 2v/2/4/5. Implementing the reference quantum
number and integrating Eq. (6.97)) numerically we get,

§DE(25;18) = 49.733 193536 E), ab. (6.98)

6.4.2. 6DY(2S;18) Coefficient. In this section, we put the detailed calcu-
lation of the direct vdW coefficient arising from the modification of the wave function.
The Dirac-delta perturbed interaction energy due to the wave function correction
reads

o0

h : . .
5E;ps;1s(R) = TcA(dmeo)? 7171_% dw 50435(1@0415(10))
0

x {1+2(£)+5(£>2+6<£>3+3<£)1. (6.99)

w462wR/c

R2
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As the polarizability is the sum of the non-degenerate and the degenerate polariz-

ability, the wave function type correction to polarizabilility can be expressed as
dads(w) = dabg(w) + dalg(w), (6.100)

and hence the interaction energy can be written as

_'l/) ~
5E;ps;1s(R) = 0Ey5,5(R) + 535/}5;15(3), (6.101)
where
- ) i _ ) . w4€2wR/c
5E;/’S;15(R) = —m 71]1:1(1) dw 5a;ps(1w) OélS(IW)T
0
c c \2 c\?3 c \*
x {“2(@)%(@) +6(25) +3(m>]’ (6.102)
is the non-degenerate contribution to §EY (25;1S) and
— h ] it - ) ] w4€2wR
0Eyg15(R) = —m}?{g dw dayg(iw) ans(iw) 72
0
c c \2 c\3 c \*
() () o) )] e
x{+ —5)tolog) t6(og) 3 (5p (6.103)

is the degenerate contribution. Let us first concentrate on the non-degenerate con-

tribution to 515@” (25;1S5). In the vdW range of interaction, we can approximate

Eq. (6.102)) as

6Dy (285;15)

5E;Z}S;IS(R) ~ RS

. (6.104)
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Here, 6D (25; 1) is the non-degenerate contribution to the vdW coefficient due to

the Dirac-delta perturbation potential on the wave function and is given by

oo

h N
5 : / dw 68 (iw) arg(iw). (6.105)

0

The wave function correction to the polarizability reads
dayg(w) = 6 Pyg(w) + 0 Pyg(—w). (6.106)

One can evaluate the modification in the matrix element 6 P(2S,w) due to the

wave function correction using the following relation:

) 2¢? i
0P)s(w) = — (252 (6.107)

1 )
‘16(2
s s,

where (r,0,¢|0(25)) = \/%751%20(7“). The radial part dRg(r) of the Dirac-delta-
modified wave function dWqgo(r, 0, @) is given in Eq. (4.27b)). Let us rewrite §Rao(7)

as a sum of six terms as follows.

a5/2m1/2 efamr/Q

dp; = — ,
¥1 2\/57’

,YEOé'?/QmS/? e—amr/Q 3a7/2m3/2 e—amr/Q

dpg = :
- V2 12
5 B 13a9/2m5/2re—amr/2 ,yEa9/2m5/2Te—amr/2 6.108
Y3 = 8\/5 - 2\/§ ) ( . C)
a11/2m7/2 T.QGfamr/Q
Sps = — ,
P4 8\/5

o7?m?/2 e=omr/2 In(amr)

dps = :
Ps \/5

9/2,,,5/2 —amr/2 1
5906:_& m®?re n(amr)‘ (6.108f)
22

(6.108a)

(6.108b)

(6.108d)

(6.108e)
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The contributions of dp;, ¢ = 1,2, ...,6 to the P matrix element can be expressed as
. 2e? [ o
5P265(*%)(t) = ?/ T%drl/ ngTz R20(T1) ™ gz(Tl,Tzat) ) 5[901'(7“2)]- (6-109)
0 0

We first change the variables to their dimensionless forms and integrate using stan-
dard integral (3.37)). For dp1, dps, dp3 and dp,, the matrix elements can be easily

evaluated. We have,

5(o1) h%e? | 8t% (305t0 — 98> — 19t* + 83 — t2 — 6t + 3)
0Pys™ (t) = = —— 5 3
a?m3c 3(t—1)5(t+1)
2048t7 (412 — 1) o F} (1, _9t:1 — 2t (}—:;)2)
+ - : (6.110a)
3(12—1)
5PNy = fre” 24y, — 3 (6.110D)
25 Ca2m3ct 2 -1 ’ '
_+\2
R 8192(47, — 13)t% (442 — 1) a®» F (1, —21; 1 —2t; (1) )
25 - a2m3c4 3 (tz _ 1)6
16(4y, — 13)#° 8 7 | 46 5 4 3
5861% — 148t + ¢ — 110£° 4+ 7t* + 96t
30— 1)5(1 + 1)? + H
— 33t% — 30t + 15) : (6.110c)
_+\2
S ) = 22 [6553602¢2 411 (462 — 1) 5 F) (1, —21; 1 —2t; (1) )
25 - &2m304 3 <t2 . 1)7
+ 8t (9331810 — 2278¢° + 331t° — 2480t — 338¢°
3(t—1)7(t+ 1)5
+ 3156t° — 618t* — 1920¢* + 735t + 450t — 225)] : (6.110d)

Fifth and sixth terms contain the natural logarithm of r along with the Laguerre
polynomial and exponential of r. These terms require special consideration. The

replica trick helps us to handle them. The replica trick refers to the following identity:

€_1 €
In(mra) = lim (mra) = d(mra) . (6.111)
e—0 € de e=0
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As suggested by the replica trick [55], at first, we differentiate the expression with
respect to €, and then we take the limit ¢ — 0. Besides the simpler looking terms,
5P;§'95)( t) contains o F\""% (—k, 5:4:2/(1 + t)) and §P§§%)(t) contains

2F1(0’1’0’0) (—k,6;4;2/(1+1t)). We now use the following identity for the hypergeo-

metric function Ref. [43].

(b—c—1)2F1(a,b—2;¢;2)
G- D=~ 1)
(—az+bz—2b+c—z+2)2F1(a,b—1;¢;2)
(b—1)(z—-1) '

2Fi(a,byc; z) =

(6.112)

We use the derivative of this identity with respect to the second argument, b, of the
hypergeometric function. This lowers the second arguments of the hypergeometric

functions and simplifies
JFOO (k5 42/(14 1) and o FOMY (k. 6;4;2/(1+ 1)) (6.113)

in terms of QF(O’l’O’O) (—k,4;4;2/(1 +t)) and some simpler algebraic terms containing
t and k. 5P6<¢5 (t) contains two types of terms.

1. Terms free from the hypergeometric function.

2. Terms containing the derivative of the hypergeometric function with respect to its
second argument on the numerator.

The terms free from the hypergeometric function can be easily summed over k£ and
simplified. The terms containing the derivative of the hypergeometric function with

respect to its second argument in the numerator appear in the following form

1+t 2
qu< i ) 9 2 (. Y ) g=12..5 (6.114)
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All the terms which do not contain the derivative of the hypergeometric function can

be summed over k using the following identity.

= s I~ (n) ;05F(l,a:a+1:s5)
>k a+k:52{ _}sﬂ - : (6.115)
k=0 =0 UJ

where {?} is the Stirling number of the second kind which can be computed using

the following formula:

(}-5500()

where (;) is a binomial coefficient. For terms which contain the derivative of the

hypergeometric function, we use the following identity

) ) Y I (1 b: ¢ _—_52)
nek _ o o n jﬁ 201\, U, G 1—¢
Zk 5 2F1( kabacaz>_2{j}§ 85] 1_§ ]7 (6117>
k=0 7=0
which is obtained from the following identity discussed in Ref. [42].

00 oI (1, b; c; —%)
Zé-kQFl(_k7b; Cz) = (6.118)
k=0 1=¢

Substituting the corresponding sums, the result will be the sum of a number of terms

of the form QFl(O’l’O’O) (a, 4;4; %—:;) where a = 4,5 and 6. We calculate the first order

derivative of hypergeometric function with respect to its second argument as follows:

g 1= g 1=
2F(o,l,o,O) (a e 1—75) ~ lim 21 (a74+€’4’ﬁ) — 2l (a’4_67471_+i)
1 )y - .

(6.119)
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To get rid of the indeterminate form which arises if we take the limit € — 0, we make

use of the L'Hospital rule:

lim @ = lim g ()

limg 5 = lim 7 (6.120)

In Eq. (6.120), g(e) and h(e) represent the numerator and the denominator of the
right-hand side of Eq. and the prime denotes their first order derivative with
respect to €. In Eq. , we first calculate the derivative of the numerator and
the denominator and determine their ratio. Only then we substitute € = 0.

The contribution of d¢5 to the matrix element is found to be

h2 2 8t2
SPIF () = ————— : ( — 3715¢" — 6400t” — 189¢° 4 3328t" + 242¢° 4 950t
asm=ct | 3 (12 — 1)
87, t2 (36t — 180¢° + 360t° — 360t* + 180> — 36
— 4478 4 87) _ 82t 00 ks )
3(t2-1)
B 817 (=384t + 768t™ — 3841%) o Fy (1, —2t;1 — 2t; 1)
3(t2—1)°
82 (1318417 — 742417 + 38415) o (1, —9t:1 — 2t %)
— - (6.121)
3(t2—1)

In contrast to the first five 5P;é%)(t), the 5P;é“06)(t) not only contains the derivative
of hypergeometric function with respect to its second argument on the numerator but

also contains (2 + k — 2t) on the denominator which appear in the following form

0o gk 2F1(0’1’0’0) (—k,4; 4: L)

#10 s Ay 6.122
> 12

and can not be simplified to a closed-form expression. We denote this function as

F544(t) and evaluate it numerically. The total expression is

16
) (t+1)

— - (7185t15 + 36625t + 1275t — 43525t
a“mec

h2e?
B
(5P25(f"6)(t) = [9(75 |
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— 62622t — 926¢1° + 24470¢° + 109028 — 7515¢7 — 7515¢° + 28475
64,
3(t—1)5(t + 1)*
2048 5 F} (1, 91 — 2 %)
9(t —1)7(t + 1)7

42847t — 4561 — 456252) _ (586t10 _ 148t 4 5 — 11047

4745 4+ 065 — 334 — 3063 + 15t2> n

X 192y, "% — 283" — 240y, ' + 566t'" + 48,7 — 139t

of 2048t% (1, —2t;1 — 2t; 1)
t+1) B (t —1)5(t +1)5

8192 (7t 4 10 — 2t7) 1n(ti—2> 65536 (412 — 1) Fhuu(t)
3(t —1)5(t +1)° 3(t = 12(t+ 1)

— 48(4t* — 5t* + 1)t” In(

n (6.123)

We now add all these six terms to get the total correction due to the wave function:

GPys(t) = SPgs™ (£) + G Pys™ (1) + 6 Pys™ (1) + O Pyer ) (t) + P (1) + Py (1),

(6.124)

After a bit of work, Eq. (6.124]) simplifies to

h2e? 8

P _
Fes() = Saraa sg =1 T0)

0 {12288 (4t2 — 1) (t — 1)5F244(t) 4 t2(t 4 1)2

x [ — 123 — 123t + 8012 + 8013 — 2124¢* — 1932t° + 4002t° + 11234¢”

+3661¢% — 20979t + 2285¢'0 4 9645¢'! + 26314¢'% + 3402t" — 576(t — 1)*°(t + 1)*

t—1 2 2
x (2 4+1) oF, (1, —-2t:1 —2¢: —— 3072t  In | —— 4608t% In | ——
( +>2 1(7 3 at+1>+ n<t+1)+ n(t+1>

2 2t 2
— 13824t In | —— | — 27648t In | —— | + 23040t In | ——
t+1 t+1 t+1

1075207 I (2 ) —ar5 (e + 1) (1,-2001 20 L

2t
X [371t6 —193t* + 113t* + 96 (4¢° — 5t* + t*) In (t+—1) - 3H } (6.125)
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Let us now compare the coefficients of leading terms for large w. Substituting

t in terms of w in the final result obtained from Eq. (6.125)), we get

411 21”1
Y _
) = ™ S 2 (6:126)
For large w, we can expand the P-matrix element as given below
(257 L ises)
(H — Eys + hw)
(I i - L
= E@SV |0(25)) + W(?S][zzﬂﬂ]]&(&?)) +O(w™) (6.127)
1 1 _3
= A1 % + AQ W + O(w ), (say). (6128)
The coefficient of (Aw)~! is
A1 == / T2d’f‘ Rgo(r) 7"2 5R20(T). (6129)
0
We use the following expressions for Rog(r) and 0 Rag(7):
(am)?/2e=om/2 (1 — Lamr)
Roy(r) = , 6.130
20( ) \/§ ( )
045/27711/2 e—amr/Q VE(X?/Qm?’/Q e—amr/2 3067/2777/3/2 e—ozmr/2

5R20(’l“) = —

ar NG - 2

13a9/2m5/2,refamr/2 ,yEa9/2m5/2refamr/2 a11/2m7/2 ,,ﬂ2efamr/2

8v/2 2v/2 8v/2

N Q72m3/% e=em/2 In(amr) B a?2mb/2 p g—amr/2 ln(amr)' (6.131)
V2 22

The right-hand side of the Eq. (6.129)) works out to 41/m?. i.e.
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We now calculate coefficient of (w)™2

m / (aRQi( )) 7 0Lt (r). (6.133)

We first differentiate Eq. (6.130]) with respect to r and then substitute the result and

the corrected wave function given by Eq. (6.131)) in Eq. (6.133)). Eq. (6.133]) simplifies
to

2102

Ay = — )
2 8m

(6.134)

These coefficients verify the Eq. (6.126]). We now replace w by iw to find the Wick-
rotated form of the perturbed P-matrix.

In terms of the parameter t, Eq. (6.105]) takes the following form

~ 3 a’mc? dt
6D¢(25;18 —/ b t). 6.135
(25:18) = s | G dag(t ans(t (6.135)
Let us say the parameter t before and after the Wick rotation are ¢,, and T,, respec-

tively. Then, for 1S state, T, are given as

t tn
T} = ———— and Ty = : (6.136)
i+ t3(1—1) —i+t3(1+41)

Similarly for n = 2, we get the following

. —i4 (141)t2

ta
, Ty = — :
w/1+t2 1—i \/ t2 2 1/_j+t§(—1+i)\/—41+(41+1)t%

(6.137)

T =
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In the new variables the integral (6.135)) takes the following form

5D (25118) =g / e (5P ) + 0P (T (1))

X (PlS(Tf(tl)) + P15(T1(t1)))- (6.138)

Following the same procedure we followed for § D¢ (15; 1.5), we now numerically cal-
culate 5152? (25;15) in both the asymptotic and non-asymptotic regions and add them
up. The total non-degenerate wave function contribution to the perturbed vdW co-

efficient is found to be
§D¥(25;18) = 297.931412174 718 o Ej, af. (6.139)

We now consider the degenerate contribution on §Dg(2S5;15) due to the wave
function correction.The degenerate contribution 5D6w (25;15) comes from the quasi
degenerate 2P states. Let us recall the degenerate contribution on perturbation

energy due to the wave function correction dE¢ (25; 15) of CP interaction.

— -~ A ) % . ) 4e2wR/c
5E25;15(R) - 7T<47T€0)2 7171_I>1’(1) dw 50625(IW) @15(1&1) R2
0
4
{1 +2 (wR> +9 (wR) +6 (wR) +3 (wR) } (6.140)

The P-matrix element for degenerate states in terms of frequencies in its Wick-rotated

form reads as below.

e 1 2
Pag(+iw) = (25|27 |2P( ( )
25 (Hw) 922‘ Sla'[2P(m = u)f Lot iho—ic | FLilhw—ic

(6.141)
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where Lo and F;, stand for the Lamb-shift energy and the fine structure interaction
respectively between 2S5 and 2P states. The Lamb shift energy Lo is in the order
of 1077 times Hartree energy and the fine-structure energy JF, is in order of 1076
times Hartree energy. To the first order approximation, the ket associated to wave
function corresponding to the nS-state can be expressed as [nS) — |nS + 6(nS)).

The P-matrix element also gets modified.

Pholio) = 53 S (@) 2Plm = w)(2P(m = )" |25)+
(a8 [2Pm = ) 2P(m = )00 ( —p i * Frrme =)
SIS @Sl2POm = p)2P(m = )l4'13(25))
8 <—£2jzihw—ie+}"2ii?iw—ie)' (6.142)

The wave function correction to the polarizability, 5@12/’5(@ is the sum

S514 v
50425( ) = 0Pyg(w) + 6 Pyg(—w). (6.143)
Thus, we have
2¢? 3 , )
datys (i) = (25]z"|2P(m = p))(2P(m = p)|x"|6(25))
=1 p=1,0,—1

1 1 2 2
x(—£2+1hw—ie+—L‘Q—ihw—ie+f2+ihw—ie+]-"2—ihw—ie)

2053 sla2Pn = m)2POm = pla5(29))

i=1 p=1,0,—1

2L, 4T,
. 144
. ((—52 P P P P hw) (6.144)




With the help of equations (6.140) and (6.144)), we can evaluate 5E§S;IS(R) as

- h 262 ’
0E55,5(R) = W 15(0 9 Z Z (25| [2P(m = p))

=1 p=1,0,—1

X (2P(m = p)|x'6(29)) lli%ggé}?l% dw I

(B_le >[1+2 +5(wR> +6(WCR) +3<MCR)4}

3h ’ .
S L § (2S|2*[2P(m =
7T(47T€0)2R6als e |2*[2P(m = )

wie2wR/e —2L,
(—Ly —i€)? + (hw)?

~

x (2P(m = }a15(29)) (7 + =)

2¢? ’
= a0 2

=1 p=1,0,—1

X (2P(m = p)|a’|7) (7]0(29))
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/ r2dr, / 12dr (25|71 (7|2 |2P (m = 1)
0 0

2¢? & &
= —ngm) /O 7’% d?”l \/O 7’% dTQ RQO(T’l) T1 Rgl(Tl) R21(r2) T2 (SRQO(TQ)
262 [ee) [e'e]
— —Wozls(O) A dTl T? Rgo(Tl)Rgl(Tl) A dTQ T% Rgl(T2> 5R20(7“2).
(6.145)
The integration (|6.145)) evaluates to %cﬂag so that
— 2¢? 9e?h? 9 22 81 , . a§
OF ¢ o(R = ——a°E)—. 6.146
2sas () = = TS St 19 %0 =~ Ens (6.146)
Comparing Eq. (6.146)) with
o 0Djs15(R)
0B5505(R) = —— (6.147)

we see that the vdW coefficient (551;5;1 s(R) is

6Dyg15(R) = "By, (6.148)



137

The non-degenerate and the degenerate contributions of the wave function add up
to give the total wave function contribution to the direct vdW coefficient due to the

Dirac delta perturbation potential.

5DY(25;18) = 6DY(25;18) + 6Dy, (25;15)
81
= (297931412174 718 + Z) o® Epad

= 318.181412174 718 o* Epaf. (6.149)

The -perturbed direct vdW coefficient is the sum of the energy type contribution,

6DF(25:18) and the wave function type contribution , 6Dg (25;15) | i.e.,
6Dg(25;18) = 6D§(25;18) + 0DE(25;18) = 367.914605 710 a% Epal.  (6.150)

Note that, in the vdW range, the wave function type contribution is dominant over

the energy type contribution.

6.5. 25-1S5-DIRAC-6 MIXING PERTURBATION TO E,qw
For n = 2, the mixing vdW coefficient can be written as

3h o ) .
—)2 / dw aggig(iw)asgis(iw). (6.151)
0

7(4meg

The Wick-rotated polarizability asg1s(iw) is the the sum of the mixing matrix ele-

ments
ags1s(iw) = P(25185,iw) + P(251S, —iw). (6.152)

The probability density of P-states features by lobes emanated from the origin which

vanishes for » = 0. Thus, the modification to the Hamiltonian due to the Dirac-delta
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perturbation potential does not give any contribution to the mixing vdW coefficient.
However, the modification to the energy and the wave function, in general, have
non-vanishing contribution to the mixing vdW coefficient. Let dMF(2S5;1S) and
6MY(25;15) be the contributions due to the modification to the energy and the
modification to the wave function respectively in the presence of the Dirac-delta
perturbation potential.

Only the 25 state is perturbed. However, both E;s and FEsg energy levels can
serve as the reference energy level. For the sake of simplicity, we take the average of
E1s and Esg as the reference energy level. The reference quantum number associated

with the reference energy level is given as

1 1,1 1 2
e — e = 24/ 2. 1

ref

The energy and the wave function parts of the perturbed vdW coefficient can be

written as
5 6h e? o0 _ 5.
OMy (25;18) = Tre) /. dw ass15(iw) dang ¢(iw), (6.154)
and
P 6h €2 o . " .
IMg (25;18) = e’ ), dw agg15(iw) dage ¢(iw). (6.155)

The energy correction to the polarizability due to the Dirac-delta perturbation po-

tential can be expressed as

: : o) .\ O0E
Saggs(iw) = Z 6 Pig o(Fiw) = — Z a—wP(251S, 1w)7. (6.156)
- -
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where 0 PJf%, 5(iw) is the modification to the P-matrix element due to the Dirac-delta
perturbation. In terms of the parameter ¢, the perturbed P- mixing matrix element

due to the energy correction is given as

R%e? t3n2; 0 oFE
E o Mot
OPsisl) = Gapaa o 5t 21905
h?e? 64+/2 nd it

= 12 11 10
~a?m3ct 799 (282 — 4)" (n242 — 1)° l972nreft + 243004t — 611903t

— 170100247 + 197502 ;1 + 1749607 ;" + 4384nS5 ;2% + 656m2 ¢ — 1408n2#* + 512
n2 % — 3nyert + 2
nZ 2 4 3nygest + 2
n2.it% — 3nyert + 2
n2 2 + 3nyest + 2
n2, 4% — 3nygett + 2
n2,t% + 3nyert + 2
(6.157)

—972n7 17 (Snfeft4 35m2 % + 36) o1 <1, —Nypert; 1 — Nyett;

+972n8 8 (nfeft4 — bnZt? + 4) 2F1(0,0,1,0) <1, —Nyefl; 1 — Npert;

+972n§eft8 (nfeft4 — 5nfeft2 + 4) 2F1(07170’0) (17 _nreft; 1— nreft;

The P(251S,v) mixed-matrix element is given by

h2e? 512v/2n2 it
?m3ct 729(nyest — 2)3 (Mot + 2)2 (nfgt? — 1)

Prsis(t) = . (419njeft7 413408 10

—15RD. 15 + 30nt it + 60n3 % — 12002 4% — 32npt + 64)

’ n2 124300t 42

4096\/§n?eft9 2F1 (17 —Nyefl; 1 — nyest; M)
3 (nl?eft2 - 4)3 (n?eft2 - 1)2 '

(6.158)

In terms of the variable ¢, taking the average of E1g and FEsg as the reference energy,

the Dirac delta perturbed mixing vdW coefficient §M¥(25;18) is given by

3a’mc? [ dt _
MESiLS) — o / s (0PEus T, + 0Pfs(T,,(0)

x (PZSlS(Tnfef(t)) + P2515(Tw(t))>. (6.159)
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The numerical evaluation of the integral (6.159)) yields
SME(25;18) = 12.556 663 546 763 o> E}, al. (6.160)

The wave function correction on the P-mixed matrix element due to the Dirac-delta

perturbation potential acting on the 25-15 system is

2¢e2 )
5Piins(v) = S (181 gems (r1, 2, )7 |5(25)

/ dT1/ T%dT’Q Rw(rl)rl ggzl(rl,T27V> T2 5R20(7’). (6161)
0

where v = n¢t is the generalized principal quantum number. For the 25-15 system,

the reference quantum number is n,o = 2v/2 / V5. We obtain

12503012

(5P2%15(1/) =

+
a?m3ct | 3(v —2)(v+ 1) (v +2)° 2187 (2 —4)* (12 —1)°

h2e? [ 4194304v/2 Foy (v) 32¢/212

+ 869941 — 107796 + 495721° — 28324518 + 45100807 + 2354720° + 466561°

32V207 (V2 +4) oy (1, —v5 1 — vy 53

(v—22v—-13wr+1)3rv+2)?

— 2132160* + 15590412 — 40192} —

e T = ) [
9w =24 (v — 13+ 1)3(v + 2)4 {37“ — 720" 4 1808v° — 192+
2v 512v/212n(81)  2048v/21%n (%)
V+2)]+ 243 (v? — 4) 243 (v2 — 4) *
512v/20% (41907 + 13405 — 1505 + 300* + 600° — 12002 — 320 + 64) In (;2%)

729(v — 2)3(v + 2)2 (V2 — 1)

384 (1/4 — 52+ 4) ?In <

128v/202 (230° — 1280 4 102004 — 99202 + 320) In (%) (6.162)
729 (12 — 4)* (12 - 1)° 7 |
where
- (2= (0,1,0,0)
P10 () PO (4,4, A7)
- 2 6.163
244( ZO 1024(k — v +2) ’ ( )
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is a term containing sum over k which does not take a closed form expression. The se-
ries convergence is extremely slow around v = 0. We use the convergence acceleration
technique as discussed above in the Sec. [5.3.1]

Keeping in mind that n,. is the reference quantum number, the wave function
correction to the mixing matrix element 6 Pjy, ¢(v) can be expressed in terms of the
parameter ¢ just by the substitution of v = n.st. We now use the following formula

for the Delta perturbed mixing vdW coefficient due to the wave function correction
2 2 ; d
3ame t _
o (25:18) =2 [ (3155, (0) + 0P (T, )

4m(4meg)? ) 13
0

X (PZSls(T;:efof)) + PZSLS'(anef(t))) , (6164)
and evaluate the integral numerically which yields
oMY (25;15) = —70.652 014 640 246 o* Epal. (6.165)

The total mixing vdW coefficient in the presence of the Dirac delta perturbation

potential is the sum

0Mg(25;18) = oMY (25;1S) + 6MEF(25;19)

= —58.095 351093483 a® Ejal. (6.166)
The total §-perturbed vdW coefficient dCg(2S5;15) is the sum

5C5(25:18) =6Dg(25;18) % 5My(2S; 19)

= (367.914 605 710 F 58.095 351 093) o* Ejaf. 6.167
0
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Notice that, in the vdW range, the direct term contribution to the symmetry-dependent

0C6(25; 1) coeflicient is dominant over mixing term contribution.

6.6. DIRAC-0 INTERACTION FOR 25-1S SYSTEM IN THE CP RANGE

The Dirac delta perturbation potential has very interesting impacts on the
interaction energy. The perturbation potential gives rise to both the energy type and
the wave function type corrections. Both the energy and the wave function correc-
tions have contributions from the degenerate term and the non-degenerate term. If
we concentrate only on the non-degenerate part of the contribution, the interaction
potential would be proportional to R~7. However, the degenerate contribution is
expected to be in the order of R7%. In the CP range, the degenerate contribution
is dominant over the non-degenerate contribution. Let us separate the degenerate
contributions on the Dirac-delta perturbed interaction energy into two different cat-
egories, namely, wave function contribution and the energy contribution.

6.6.1. Wave Function Contribution. If we concentrate on the Dirac-delta
perturbed interaction energy due to the presence of the 2P-states which are degen-
erate with the 2S-state, the following expression provides the wave function type

contributions:

SE"(25;18) = —7T(47T€0)2R6/0 dw oy 5(iw) das ¢ (iw)
T4
0D (2551
_ _W_ (6.168)

As we already calculated in Section , the 6Ew(25 ; 1.9) coefficient is given by

81
0Dy (25;15) = ~ o”Enaj. (6.169)
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On the other hand, the mixing terms contribution SE” mlxmg(?S ; 1.5) reads

—1), mixin, 3h & 1 5
OF g(25; 18) = _W /o dw [afﬂg 5 (iw) 5@35?SE 9 (iw)
B0 ) T )| (6.170)

where ahg ' (iw) and abg, o (iw) are Wick-rotated polarizabilities taking 1.5 and
25 as the reference state respectively. Here, ¥ in the superscript indicates the wave
function contribution. Recognizing that Eq. (6.170) is in the usual mathematical

form for CP interaction,

SMTL (2S;185)

SEV™(25:18) = — e (6.171)
the mixing coefficient 5H6¢)(25; 15) can be written as
SITL(25:15) = — [ Qu BB (i) dait5 P
6 (25;1S) T(dmeo)? J, w Qggyg° (Iw) %515 (iw)
3h >
T lIme)? /0 dw darysy 5™ (iw) Dygrs (i)
3h o 62 LA
:W/ dw a5 5 ( 9 Z Z (29)|27|2P(m = p))
0 j=1 p=—1
, —2L5 4F,
2P(m = p)|27|1
X (2P(m = p)la’|15) |:(—£2 —i€)? + h2w? * (Fy —ie)? + thQ}
an - 31
+ —/ dw 60E55 (1w) €2 25|2712P(m =
7T<47T€0)2 0 2518 ( ) ;MZ_1< | | ( )>
, —2L5 4F,
2P(m = 711 . 172
< (2Pm = Wl 1)~ s * e T (O1)

The integrands have poles of order one at w = £(—Ly —i€) and w = £(F, —ie). We
complete the contour in the upper half of the complex plane such that the contributing

poles will be w = —(—Ly —i€) and w = —(F2 —i€). We now calculate residues about
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the poles enclosed by the contours and then take limits lim and lim which yields
[,2—)0 Fa—0

I} (25:15) = 30 af5570) 3 Y (68 le’[2P(m = 1)

j=1 p=—1
< QP = e 15)F + 5 + 1 5af5870)
<3 5 (2812 = 2Pl = e 1) + )
Jj=1 p=-1
e o ElS 31 3 ) j
_(ZLTOQSIS ;#:Z (29)]2?|2P(m = u))(2P(m = p)|2’|1S)

w

2 1
T ey 3005515 (0) Y D ( 28|27[2P(m = p)) (2P(m = p)|2|1S). (6.173)

Jj=1 p=-1

For the 25-15 system, the perturbed mixing vdW coefficient arising from the wave

function correction due to the degenerate level reads

2 3 1
—) ) ‘
M (28:18) =753 0355400 Y (28 2P (m = 1) 2P(m = )|+7[15)
=1 p=-1
62 3 1
- E= ElS j _ _ i
ey 02sis );;_1(23'x 2P(m = w))(2P(m = p)|a?|18)

G 3584v/2 h?e? 32v/2a%h?
 (4meg)? 729 atm3ct 81 a?m?2c?

N e? 9.295 890 768 1811 A2 1281/2h?
(4mep)? atm3ct - 8la?m2?
= — 58.439051900 100 o Ej,ad. (6.174)

6.6.2. Energy Contribution. The Dirac-delta perturbed interaction en-

ergy due to the degenerate levels that come from the modification of the energy

reads

3h

0E (25;19) = —7((4%0)2]%6/0 dw ay5(iw) ayg(iw). (6.175)
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Recognizing that the right-hand side of Eq. (6.175) is in the form —655(25; 15)/R®,

the direct term contribution of the vdW coefficient 5Ew(25 ; 19) can be expressed as

55?(25; 15) = 3h ) / dw ay5(iw) dabs(iw). (6.176)
0

m(4mep)?

Substituting the value of daks(iw), we get

3 1

6Dg (25;18) = o3 /OOO dw ayg(iw) %Z Z 1(25|27|2P(m = p))[?

m(4meo)? j=1 p=—1

AL W) AT W) ]
[(—£2 =i + (hw)?]”  [(F> — i) + (hw)?]?
_ %Z ; (25]2?|2P(m = p))|? (25]6V|25)

Jj=1 p=-

x (25]0V|25S)

0 [ _ar, B A%,
% /0 was(iw) | 57 Ly =12 1 ()’ | 0F, (Fo—ie)? + (hw)?

_ ;‘_ﬂ 23: Zl; (25|27 |2P(m = p))|? (25]6V|25)
x [ (LQ) >—|—oz15(]-'2)88}_2 (2“)] —0. (6.177)

Let us now investigate contribution of the energy modification of the mixing coefficient

5M§(25 ; 1.5) which reads

3h

7r(47r50)2/0 dw gy (iw) 0yg1s > (iw). (6.178)

50, (25;18) =

The superscript F in 5HE(25 ; 15) and (5655:1?15 indicate that these contributions are
of the energy type and the E = Fsg in the superscript tells us that we are taking Esg

as a reference energy level. Substituting the value for the Wick-rotated form of the
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perturbed mixing polarizability, we can rewrite Eq. (6.178]) as

—E 3h o E=FE =F
OMy(25;18) = — d o 29
6 (25518) 7r(47reo)2/0 W Qogrg ¥ (iw) 0‘2515 (iw)
S /Oo dw a5, 2" (iw 6—22 i (1S]27|2P(m = p))
m(4men)? Jo 2518 9

2(L2 — h2w?)
(=L —i€)? + (hw)?]?

x (2P(m = u)|27]25)(25[6V|2S)

4(F} — R2w?) ]
[( s — i€)2 + (hw)?]’

;),W(Amo 5 2 D (18I 2P (m = ) (2P(m = p)|+7[25) (25]4V125)

Jj=1 p=-1
- o) —2L o) —4F.
d E=E5s 2 9
X/O W lsg1g ( )[a£2( £2_i€)2_|_( ) af2 (];2 ) +(hw)2
) 3 1
o A ‘
=53 7 (SIaT 2P (m = p))2P(m = ) 7 |28)(25]6V|25)
=1 p=-1
=E 0 (m X 0 (2rm
X [%Eﬂg 5(52)6—£2 (ﬁ) + aggrg S(~7:2)a]_-2 ( ) ] = 0. (6.179)

We conclude that not only the direct 55? (25;15) but also the mixing (5M6E (25;19)
term vanishes. Let us take a step back from the R™¢ paradigm and go to the more
general expression. To the first order approximation, the modification of the P-matrix

due to the Dirac-delta perturbation on energy is

3 1
e?
oP 25 (fiw) 2522 QS]x\QPm ,u))]

2
Tt . 16]2)53 (6.180)

ﬁgilh&) [nglm}—
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The Wick-rotated perturbed polarizability day(iw) which is the sum >, 6?5 o(Fiw)

is given by

) S S i 2(23 ~ (1w)?)
Saks( 9 z:: Z (28] [2P( ) ([(—EQ—ie)2+(hw)2]2

W = )
e R ) PV RS (G150

The perturbed interaction energy due to the modification of the energy which comes

from nP-states which are degenerate with nS-state can be written as

5—E h ' ) i B w4e—2wR/c
Eygas(R) =— w ey 2 fim lim [ du aus (iw) Tag (iw, 1) —p3
0

e () o (G o (L) w3 () ]|

where 7 stands for the lamb shift £, or the fine structure F,. We can approximate

(6.182)

the ground state atomic polarizability by its static value. This is because in the range
R < 1/n, the degenerate polarizability asg(iw,n) varies very rapidly over the range
w ~ 7 and is suppressed for w > n. The dominant contribution comes from the
frequency range w ~ n < 1/R, where we can approximate the non-degenerate polar-
izability by its static value i.e. w = 0. This infers that the ground state polarizability
a;5(iw) can be approximated by its static value a;5(0) in the range R < 1/n . Thus,
the energy correction to the Dirac-delta perturbed interaction energy can be written

as

62

3
0E5515(R) = e Am TR > 1(25]27|2P(m = p)) | (28]6V[2S)
0) j=1 u=1,0,—1
' ‘ . ” w4€—2wR/c
AT A, [ s s

0
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y ( 2L~ (o)) AT~ (hw)?) )
(=L2 =1 + (hw)?* * [(Fo —i€)* + (hw)?]?

{1+2<WR> +5 £>2+6(£) +3<w‘}%>4}

3

h e? .
== —0 — 25|27 |12P(m = w))|* (25|6V |2
7TC4(47T50)2a1S<0> 9 JZIM:LO’lK S|z?2P(m = p))|* (25]|6V[2S5)
o ALE— (hw)?)  whe2R/e
% lg%clir—?o de [(—Ly —i€)2 + (hw)?]? R2
0

x 1+2<wR> +5<wR>2+6<£> +3<wR>4]

4(]:22 — (hw)2) whe—2wR/c

+ lim lim dw

e—0 F—0 J [(F2 —i€)? + (hw)?]? R?
e () vs () ro () +a ()
__ mawm) 5 Z (25]a?|2P(m = p))?

j=1 p=1,0,-1
x (25]0V125) [@ + @} : (6.183)
where the integral

4672wR/c

7 (L3 — (hw)?)  w
O=tglm, [z, 2
() o (R o (0R) (R

T _ 4,—2wR/c
=lim hm—/dw 2£2 we
0

e~0 La—0 0Ly —Ly —i€)? + (hw)? R2

() o) o o )

T oR RS 184
2R2R>’ (6.184)
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and the integral

i [ AT (w))  wleRr
@_15%}5310 WIE i (e R’

0

[1+2 (WR> +5 (wR)2+6 (wR) +3 <WR>4]

o0

i 0 —4F, wie 2R/
=l lim 57 / WiE Sy ] B
{1 +2(gp) + (wR) 0 (é)g 3 <£>4}

113
TR2RS

(6.185)

In the above calculation of the terms @ and @, we first integrate the above
expressions over w, then we carry out the respective derivatives. Only then we do set
lim , lim and lim which yields the above results. Substituting the values for @
e—0 = Lo—0 Fa—0

and from Egs. (6.184]) and (6.185), we find a R~ dependence of the degenerate
energy contribution on the interaction energy which is a distinct feature of Dirac-delta

perturbed interaction energy.

—E h e & -
EL. S — c 25[2712P(m = u))|?
Bhrs(R) = ——rp—sons®) 5 3 X [8lef2P(0 = )
j=1 p=1,0,—1
112 112
x (25]0V]2S) {2712]%5 + =Y
h 9R2e? 2 <& a*me? 333
=— < (25 |27|2P(m 20 TE 99¢
mct(4me)? 2atm3ct 9 Z Z (2571 = W)l 23 2h2RS

-1
33 e2 2 3 1
T 32rRP (47T60h0) atm3c3 Z Z (28]27|2P(m = p))[* &* By,

- 327rR5 (CLO) 2 Z [(2S]27|2P(m = p)|* o* (6.186)

=1 p=-1
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Substituting Y7 | S [(2S]27[2P(m = p))[? = 27a? in Eq. (6.186), we get

—E 33 891 ap\®
6Enss(R) = — =0’ By a} (27a}) = 2o, (E> . (6.187)
The Eq. (6.186) is in the form
E ﬁE(ZS' 15)
5E23;1S(R) = _5R—5»’ (6.188)
where the 35(25 : 1.9) coefficient is given by
— 891
Dy (25;18) =550 Bn(a0)”. (6.189)
m

Interestingly, the interaction energy 5E£b(R) has vanishing 1/R® but non-vanishing
1/R® dependence. This situation motivates us to present a model integral for the
energy type correction on the d-perturbed interaction energy. We can model the

interaction energy 6E”(R) as

00 a o (_77) :C4e—2Rz
K R) = d —
(a,m, R) /0 x(a —i€e)2+220n(—n —ie)2 + 22 R?

5 3 3
X |14+ — + + + 6.190
Rt et e (610

We choose the following numerical values for the parameters:
a=1, n=1073, e=107%. (6.191)

In Figure [6.2], we present a numerical model for energy type modification of the
interaction energy in three different interatomic ranges. The blue curve overlaps
with 1/R% red-dashed curve in the vdW range, 1/R® orange-dashed in the CP range

and 1/R" green-dashed curve in the Lamb shift range.
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aop agla hclL
1020 “_vdW range CP range ] LS range
Exact

—_ 23/(42a RY)
%. — — = — 37/(2a2 RY)
s | | TS |- ~ 11/(4a R®)
< 00y

10740 4, . . . .

ao 102a, 10%a, 10%a, 108a,

Figure 6.2: Asymptotics of the modification of the interaction energy due to
the energy type correction in all three ranges. The interaction energy follows
the 1/R® power law in the vdW range, and the 1/R"power law in the Lamb
shift range. However, it follows the peculiar 1/R5 power law in the CP range.

Let us now examine the mixing terms contribution M?@S; 15) due to the
modification of the energy. The energy type correction to the interaction energy

arising from the degenerate 25 — 2P levels can be expressed as

A 4ef2wR/c

o0
—F,mixing E=Fyq /- __E,E=FEsg/: \%W
5E2s;1s (R)=— —7r04(47r60)2 /o dw aggy¢'° (Iw) 0004, ¢ 25(1w>—R2

JEECARECARTICOREE

N S 1Sput2P(m = ) (2P (n = )] 2S)

mct(4mep)? 9 ==
[e.e]
E=Fs

x (25]0V|2S) 11_1)1551;210};130 dw a6 (iw)
0
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" 2(L3 — h*w?) 4(F2 — h2w?) whe wh/e
[(—Ly — i€)? + hPw?)? [(F2 —i€)? + hPw?]? R?

<[ (CR) o () o (R) e (GR)

he? g °L e
:_W Wyar e (0 Z Z (18|27 12P(m = p))

J=1 p=-1

x (2P(m = p)|27]|25)(25]6V[2S)

o T whe—2wR/e 2(L% — h2w?)
X{l%/};% e P 1 TP
0

{14_2(@0}%) +5(WR) +6(ch> +3<WCR>4}

Tl . 4 4(;22 _ FLQWQ) w4€f2wR/c
1n  111m w
e—0 Fo—0 [(.7:2 — 16)2 + h2w2]2 R?

0

el () +o () o ()] |
:_#12 res(0) ]il#:i (18|27 |2P(m = p))

< (2P(m = p]a’|25) (25]sv]2) { (D) + D)} (6.192)

Substituting the values of @ and @ in Eq. (6.192 (5E§Sm1?mg(R) is given by

—F mixin, 33 62 i !
0Eagrs  (B) =~ g <47Teohc) Tre: Oasis (0 )Y S (1Sle? 2P (m = )

Jj=1 p=-1

x (2P(m = u)|27|2S) (25|6V|2S)

3 1
33«
=~ Bt 03 3 (Sl/2P(m = )

=1 p=-1
2
< 2P (m = )| 2S)
3303 E), alz Els LA
T 1ddnR 25417Sre Z D (Sla’[2P(m = )
Jj=1 p=-1

X (2P(m = )|7]25),
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which is in the form

—F mixing

—F
OM5 (25518
5E2s;1s (R) =— M

e (6.193)

where the perturbed mixing vdW coefficient 5Mf(25 ;15) is

— B 1PE,  p - ‘ .
My (25;15) Ima%@s(o) > > (1S 12P(m = p))(2P(m = p)]a?]25)

j=1 p=—1

1102 E), (_128\/§ 212 ) (_3584\/§ B2 )

" 48n(4eo) 27 atmich 729 a?m?c?

3
= 10.682 382428 153 — Ejaf. (6.194)
m

Above calculation leads us to the conclusion that for the CP regime, the energy type

contribution follows the R~5 asymptotic.

6.7. 0E3s:1s(R) IN THE LAMB SHIFT RANGE

For R > hc/L, the contribution of the non-vanishing frequencies in the po-
larizabilities dang(iw) is heavily repressed by the exponential term e=2*%. Thus, in a
good approximation, the Dirac-delta perturbed Wick-rotated polarizability, dagg(iw),

is given by
dans(iw) & dang(0). (6.195)
The Dirac-delta perturbed interaction energy for the 25-15 system, in this range,

reads

—2wR/c

h > wle
m 0415'(()) 50625(0)/0 dwT

x {1 +2 (é) +5 (éf +6 (&)3 +3 (ﬁﬂ . (6.196)

OBy555(R) ~ —
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Making use of the integral (8.81]) and relation
Saras(0) = 6y (0) + dads(0), (6.197)

equation ((6.196]) can be expressed as

irec 23 he
SE3§SS(R) ~ 77 15(0) <5a55(0) +5a;f’5(0)> . (6.198)

 4r (47eo)

The §-perturbed polarizability has two contributions, namely, the non-degenerate and
the degenerate contributions. However, the most dominant contribution on the po-

larizability comes from the degenerate 25 state. Thus, dasg(0) can be approximated

Sa5(0) = dags(0) + 50425( ) & dayg(0) + 50‘25( )- (6.199)
As,

5E(0) ~ |(2S]e FI2P) 2 {22 - ;2} (25]5V]25), (6.200)

5G%4(0) ~ (2Se F2P)(2P|e F15(2S)) {—Ei? + %} , (6.201)

and the energy type contribution dominates over the wave function type contribution,
the frequency shift does not exceed 7 (25]6V[25) x 107% Hz, which is too small to

measure from the experimental point of view.



155

7. HYPERFINE-RESOLVED 25-2S5 SYSTEM

7.1. ORIENTATION

In Ref. [56], S. Jonsell et al. studied the long-range interaction between two
hydrogen atoms when each atom is in the first excited state. They treated the dif-
ference between the total Hamiltonian of the 25-25 hydrogen system and the sum
of the Hamiltonians of the atoms as a perturbation. They mentioned the necessity
of including further effects like the spin-orbit interaction and the Lamb shift in the
25-25 interaction. However, we have noticed that no work has been done yet in this
regard. On the other hand, the hyperfine correction has been taken into account in
the vdW interaction between two atoms in Refs. [57; 58; 59; 60]. In these works,
the authors investigated the hyperfine pressure shift and vdW Interactions in the
hydrogen-helium, nitrogen-helium, and hydrogen-rare-gas systems. In 2003, Hansch’s
group at the Max-Planck Institute of Quantum Optics in Garching, Germany mea-
sured the 25 hyperfine splitting frequency in hydrogen atom using an optical method
[61]. In 2009, Hénsch’s group measured the 2S hyperfine frequency again using an
ultra-stable optical frequency reference [B; [62]. This optical measurement of the 2.5
hyperfine frequency interval boosted up our motivation to investigate the hyperfine
resolved 25-2S system.

The 25-2S interaction is fascinating as each of the 2S-state couples with their
quasi-degenerate neighbors (2P-states). We first write down the total Hamiltonian
of the system. The vdW, the Lamb shift, and the hyperfine energy splits are on same
order for R > 100ay. However, the fine structure splitting energy is much larger than
them for R > 100ay. Assuming that fine structure levels are sufficiently apart, we

do not take the fine structure splitting Hamiltonian into account. Thus, the total
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Hamiltonian of the system is the sum of the vdW, the Lamb shift, and the hyperfine

splitting Hamiltonians. More explicitly,
H = Hys + Hurs + Hyaw, (7.1)

where Hyg is the Lamb shift, Hypg is the hyperfine splitting, and H,qw is the vdW
Hamiltonians. If A and B are the two hydrogen atoms, at the first excited states,
interacting with each other, the Lamb shift Hamiltonian is given as
4, L,/ h\° 1 5
His = HLS,A + HLS,B = gOé me” | — In Z ) (Tj), (72)

2
mc o
j=A,B

where «a is the fine-structure constant, m is the mass of an electron, and 7 is the
relative distance of an electron in an atom with respect to its nucleus. The Lamb
shift energy Eyrg shifts the nS;/, state upwards relative to the Dirac position for the
corresponding j = 1/2 level, thereby splitting the nS;/, and the nP;/, states, which
are otherwise degenerate according to the Dirac theory of the hydrogen atom. It is
believed that the origin of the Lamb shift is the interactions of the electron and the
quantum vacuum fluctuations of the electromagnetic field within the atom [63]. The

Hyrs in Eq. (7.1)) represents the hyperfine splitting Hamiltonian given by

Hyrs = Hurs a + Hurs

hag S, L; hag 1 > . = 5 &
:4mZ\/I[)cZ oy b Z—3[3(5@'T’j)(?"j'spj)—sej'spj

Payy T 2mMec Py T
42 S (8-S JLCIF TR (7.3)
3gpj:AB i Rei) e 3l :

where gej and gpj are the spin angular momenta of the electron and the proton of
the atoms A or B. M and g, = 5.585694702 are the mass and the g-factor of the

proton. Ej is the orbital angular momentum of the electron. The first term on the
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right-hand side of Eq. (7.3]) has a zero contribution for S states as [ = 0 for S-states

nS> . (7.4)

Thus for S-states, the hyperfine splitting Hamiltonian is also the Dirac-d type as

and the second term is zero for S-states as

Sej - Spj
3
T

given below:

4 - o mhoa .
Hyrs = 39 Z (Sps - Sej)mMCCSS(Tj) (7.5)
j=A.B
_4 m Sy Se o (B
= ggpng i ( T ) ame”  — w8 (75). (7.6)

Hqw in Eq. (7.1]) denotes vdW hamiltonian of the system. Recalling the electrostatic

interaction between two hydrogen atoms, as discussed in Sectionf2] we have

(4) ,.(B)

a G (7.7)
vdW N47reo ZZ; ijTa .
where 3;; is a second rank tensor given by
3R;R;
Bij = 0s5 — R ’. (7.8)
Eq. (7.7) can equivalently be written as
~ 62 ’I?A-T_“B 3FA§FB§
Hoqw =~ — ) 7.9
aw 47eg ( R3 RS (7.9)
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Let us assume that the atomic separation R is along the quantization axis of the

system i.e., z-axis, we obtain

H Ny 62 (xAxB+yAyB+zAzB) 3(ZAZBR2)
4meg R R
(Taxp+Yyays — 224 2B)
= ahe e . (7.10)

7.2. CONSERVED QUANTITY

The total angular momentum of the system is the sum of the total angular

momentum of the atoms A and B.
F=Fy+ Fg. (7.11)

The total angular momentum of each atom is defined by the sum

—

F=L+S5.+85, (7.12)

where L is the orbital angular momentum, S is the spin angular momentum of the
electron, and §p is the spin angular momentum of the proton. The z-component of

the total angular momentum is thus given by
Fz = LZ,A + Lz,B + Sez,A + Sez,B + sz,A + sz,B- (713>

We are interested in the commutation relation [F,, H].

Let us first compute the commutator [L, 4 + L, 5, H|:

[LZ,A + Lz,Ba H] = [LZ,A + Lz,B; HLS] + [LZ,A + Lz,Ba HHFS] + [LZ,A + Lz,Ba HvdW]7
(7.14)
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where

4 A 1
[L.a+ L.p,His] = §a2m62 <—> In <?> L.a+ L, g, Z 53(77]-) . (7.15)

mc
j=A,B

The spatial distribution of the electron of an electrically neutral hydrogen atom in
its S-states is spherically symmetric. The position operator 7~ of the electron in such
a spherically symmetric distribution commutes with the orbital angular momentum

operator of the same electron. This implies

[L.a+ L. g, His] = 0. (7.16)
Furthermore,
4 Tha % &5 \e3/o
[Lz,A + Lz,Ba HHFS] - ggpm Lz7A + LZ’B, Z (Spj : Sej)5 (Tj) . (717)
j=A,B

As explained earlier for commutation relation (7.15]), the orbital angular momentum
commutes with the position operator. Moreover, the orbital angular momentum and

the spin commutes. Thus, we have

[L:a+ L. 5, Hurs| = 0. (7.18)

Let us now examine the commutator of L, 4 + L, p with Hyqw:

-2
|:Lz,A+Lz,B;HVdW} — {L%A + L. p, ahe (raxp+Yays ZA ZB>:|

R3
ahe
:ﬁ [Lz,A + LZ,B,JJA T+ Yayp — 224 ZB]
ahc
:ﬁ( [Loa,2a2B +yays) + LB, TATB + Yays] )
ahe

:—( [xAP A~ yAPz,A;xA T+ Ya ?JB]
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+ [Py — ypPrB, AT + Yays] )

ahe

~ T (wA (—ihyp) — ya (—ihwp) — ya (~ihep) — x4 (—ihyp) ) =0. (7.19)

To get the third line of Eq. (7.19)), we have used the fact that [L,,z] = 0. In the
fourth line, we have expressed the z-component of the orbital angular momentum in

terms of position components and the linear momenta as
L,=xP,—yP,. (7.20)

To get the fifth line of Eq. (7.19)), we have made use of the following commutation

relations:

[Ti, Ti] = 0, [PZ, IDZ] = O, [7”1', PJ] = lhéw, and [A, B] = — [B, A] . (721)
The spin angular momentum commutes with the spherically symmetric function of

the position operator. Thus, we have

[Sez,a + Sez,5, His] = 0, (7.22a)
[Sez.a + Sez.n, Hurs] = 0, (7.22b)
[Sez,a + Sez,5, Hyaw] = 0, (7.22¢)

[Spz.a + Spz.5, His] = 0, (7.22d)
[Spz.a + Spz.5, Hurs] = 0, (7.22e)
[Spz,a + Spz.5, Hvaw]| = 0. (7.22f)

From Eqgs. (7.16)), (7.18)), (7.19)), and (7.22al)-(7.22f), we can conclude that the total

angular momentum of the system containing two electrically neutral hydrogen atoms




161

commutes with the total Hamiltonian of the system i.e.
[F,,H] = 0. (7.23)

This clearly states that the total angular momentum F, is a constant of motion [64].

7.3. HYPERFINE-RESOLVED BASIS STATES

The Hyperfine splitting and the Lamb shift are of the same order to the vdW
interaction for R > 100aq, where R is the interatomic distance. However, the fine

structure energy shift Frg is
EFS = E(2P3/2) — E(ZSl/Q) ~ 10 x ELS- (724)

In comparison to the 2P, o-state, the 2P;/o-state is heavily displaced from the 2.5 /o-
state (see Figure . Thus, we can neglect the influence of the 2P;/5-state. In other
words, we concentrate only on the effects of the hyperfine splitting, the fine structure,
and the vdW interaction on the 25-25 system.

If £, 7, and F are the orbital angular momentum quantum number, the total
1

electronic angular quantum number, and the total atomic quantum number, j is ;5

and ¢ takes value ¢ = 0 for the 25,/ and ¢ = 1 for the 2P, 5. However, I holds

: (7.25)

which indicates that I’ takes either 0 or 1. By the definition of the multiplicity,

g, =2F +1, (7.26)
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Figure 7.1: Fine and hyperfine levels of the hydrogen atom for n=1, 2. Here, £ and

F represent the Lamb shift and fine structure, F' stands for the hyperfine quantum

number and F, indicates the z-component of the hyperfine quantum number, where

z-axis is the axis of quantization. The numerical values presented in this figure are

taken from Refs. [4; [5; 6} [7; 8 @]. The spacing between the levels is not well scaled.
In other words, some closed levels are also spaced widely for better visibility.
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the (F = 0)-state is a singlet and the (F' = 1)-state is a triplet. There are 8 states
per atoms, viz. one state corresponding to the 2.5 o-state with F' = 0, three states
corresponding to the 257 ;-state with F' = 1, one state corresponding to the 2P jo-
state with F' = 0, and three states corresponding to the 2P p-state with ' = 1. For
the two-hydrogen atoms system, there are 8 x 8 = 64 states. Let I, = F, 4 + F., g be
the total hyperfine quantum number of the 64-dimensional Hilbert space. As F, of
either atom can have values 1, 0, or —1, the total hyperfine quantum number takes

values
F.=-2,-1,0, +1, +2. (7.27)
Let us denote the eigenstates of the unperturbed Hamiltonian
Hy = Hurs A + Hurss + Hisa + His s, (7.28)

of the system as |(, F, F,). Let us first analyze the basis sets considering only the
electronic contribution. The total angular quantum number j and the total magnetic

projection quantum number p are given by

1 1
j:€+§ and M:mii’ (7.29)

where ¢ is 0 for S-state and 1 for P-state. The magnetic projection quantum number
m ranges from —¢ to ¢. Let us denote the electronic basis state by |7, ¢, ) which
can be expressed in terms of the orbital angular momentum and the spin angular

momentum with the help of Clebsch-Gordan coefficients as

4, 6, ) = Z > 02“1 le,m |— 7). (7.30)

m=—{ 5= :I:1
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As we ignore the influence of the 2P;/,-state, we consider only the value j = % We

then have

Z > C;jjlawm 1 o). (7.31)

m=—/ o=+1 1

For ¢ = 0, the total magnetic projection number p can take either +% or —%.

1 1 11 11 11

=.0,=) = C22,10,0)]=, =) = [0,0)]=, =) = [0, 0),|+)e. 7.32
1 1 11 1 1 1 1

- —_—) = 2 2 —_ —_— ) = _ — )y = —

|2’07 2> 000%_%|070>|27 2> |070>|27 2> - |070>e| >e- (732b)

For ¢ = 1, m can have any one value of 1, 0, or -1. However, the condition m + % =l

is satisfied.

m=—1
ook L ok L1
:010%%|170>‘§7§>+Cn%,%|171>|§7_2>
1 11 2 1 1
=——11,0 — — 1, D)=, —=
L0015 5) /311015 —3)
1,00 e+ /2 1, 1)) (7.332)
=——7|4,0), e — |1, L)e|—)e- .00Q
V3 3
1
1 1 1_1 1
1, —=) = c? 21, =,
1_1 11 1_1 1 1
=2 21117_1 02121170 - —=
1*1§§| >|2 2>jL Til >‘2 2>
2 11 1
S ]

1), >fr 0l )
_\/_|10 \[|1 (7.33Db)

We add the proton spin to compute the hyperfine basis set of a single atom. As the

spin of the proton of the hydrogen atom exerts a torque on the electron revolving
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around it producing magnetic dipole field, the set of observables (., S,, m;, m,) can
not be the CSCO anymore. Here, J and S, are the total electronic angular momentum
and the spin angular momentum of the proton whereas m; and m, are the magnetic
projections of J and 5,. On the other hand, the total angular momentum of the
system F=J+ gp and its z-component are conserved. In our case, the allowed

values of I are

1 1
F:‘é—sp, ,‘§+Sp
=0 and 1, (7.34)
whereas F, varies from —F, —F + 1, ...., F. Let us denote the state vectors by

|(, F, F;). In our system, { = 0 and ¢ = 1 refer to the 25/, and 2P, states respec-
tively. F' = 0 and F' = 1 respectively indicate the hyperfine singlet and hyperfine
triplet whereas F, the z-component of the total angular momentum of the system,

is the magnetic projection of F'. Then we have

|£7F7F Z Z Zifé‘jvg U ’_ >

p=—j B=

=D I G HNLNATAEN R (7.35)

p==+1p=+1

provided 1 + p = F is satisfied. For S-states |(, F, F,) = |0, F, F.).
For /=0, F=0and F, =0,

2 2
1 1.1 1 1 1,11
_ 00 - - - 00 - _ -
- %%%_%‘250a2>e’27 2>p+0%_%%%‘2a07 2)6‘272>p
B 1|101>|1 1>+1|10 1>|11>
VG AP A X M L 1 LD LD M e
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For /=0, F=1and F, =1,

1 1 1 1. 11
_ 11 ol
‘Oa171>_ Z Z C%#%B’§707ﬂ>6|§7/@>p_C%%%%|§707§>8‘§a§>p
p=*3 f=t;
1 1. 11
=|=,0,=)|=, = e 0,0). 7.37
15:0: 50l 500 = [)el41,10,0) (7.37)
For =0, F=1and F, =0,
1 1
o 10 |t =
|O,].,0>— C%“%5|2707M>6|275>P
p==+1p=t1
1 1.1 1 1 1. 11
__ 00 - - 00 - N Z 2
_C%%%—%|27072>6|27 2>P+C%%%%|27072>6|27 >P
_1|101>|1 1>+1|101>|11>
/22772 2P a0 2l o
1
= 25 (It 11, ) 0.0 (7.39
For /=0, F=1and F, = —1,
1 1 1.1 1
0,1, - C 5 2017111 17,0, —2)elzs—2
’ b Z Z > ‘275)1’ 57§§7§|27 9 2) ‘27 2>p
p=+3 p==+1
1 1.1 1
=150, =3 )el3: =300 = 1)l =110,0).. (7.39)
For /=1, F=0and F, =0,
1
‘100 Z Z O 15| ) a >6‘27/8>p
p=+1 p=+1
1 1.1 1 00 1 1. 11
C%%%,% 271»§>e|2>—§>p+C%%%%|§=1»—§>e|§a§>p
1.1 1.1 1 11 1. 11
:__1_6 s - =15 T 5/elar o
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1 1 2 1 1
_E (—E |1,0>e|+>e + \/;Hv 1>e|_>€> |§’ _§>p
1 1 1 1
1
ﬁ|+>e’+>}7|17 _1>e - %|_>6|+>P|170>€
1 1
+ %Hel—%\l, e — %\ﬂe!—)p!l, 0)e- (7.40)

There are four P-states in which |¢, F, F.) = |1, F, F,). For{ =1, F=1and F, =1

1 1
1>: Z Z Céilﬁ‘ ) 7/L> |§7ﬁ>p
p==+3 f=+7
1 1. 11 1 1. 11
_ 11 - B W i O et N1z Z
_C%%% |2’1’2>6|2’2>” |2’1’2>6|2’2>1’

1 2 11
:< ﬁ” O> |+> \/;|171>e|_>e> |§v§>;0

1 2
= ﬁ‘+>e|+>p|1v 0)6 + \/g‘_>e|+>p’1> 1>e' (741)

For /=1, F=1and F, =0,

p=+1p=+1

1 1.1 1 1 111
10 - _ - 10 - _ - I
%%l*%|2’ ’2>€|2’ 2>p C%*%%l|2’1’ 2>E|2’ v

1 1 2 11
- = _1 el /e — _17 16 e S
+2<yﬂn> ) >H>5ﬁ
0L~ 1) + =)o 4),]1,0)
3 e plts e \/6 e plts e

+H%HMM—%H$WMa (7.42)
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Finally, for / =1, F =1 and F, = —1,

LL-1)=3" > Coils.Luls. B
p=+1 p=+1
1 1.1 1
:Ciilll 105 1,— el
5*55*5’2’ ’ 2> |2’ 2>p
1 1. 1 1
— 1, =)=, —=
|27 I 2) |2 2>p
1 2 1 1
=|1—=11,0 e e 17_1 e e PR
1 2
=ﬁ|—>e|—>p|1,0>e =/ 3l H)el=pl1, ~1)e. (7.43)

These 8 states, namely 4 S-states and 4 P-states given by Eqs. ((7.36)) - (7.43), serve

as the single-atom hyperfine basis states.

7.4. MATRIX ELEMENTS OF ELECTRONIC POSITION OPERATORS

We use the definition of the spherical unit vectors as defined in Ref. [65].

1
é+ = —E (Ax + léy) (744&)
éo = é, (7.44b)
1
o= (e —i¢) (7.44c)

Let us evaluate few r-matrix elements.

(00,0718, 1,0) = | = (=1 = =) ol00]| 7| = )by 11,-1),
1 1 1
+ _6|_>e|+>p|1v O)@ + ﬁ|_>e|_>p|17 1>e + %|+>e|_>p|1v O)@
1 1 1 1
:_2 (_%) e<00’7?|170>e - E (%) e<00|ﬂ170>e
1

= — —(00|A1,0), = ——= (=3 apé.) = V3ag é.. (7.45)

w
5l
w
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(0,0,0/71L, 1, 1) = [% (et~ - e<—|p<+|)e<00|] f[¢ 2510

£ \/gr—>e\+>pui1>e]

1 1 3CLOA 3aoiA o ~
= _%emoym +£1). = e (Eex + Eey) = V3ag éx. (7.46)
(0., 0F1L0.0) = | = (=l =100l 7| T4yl -1,
1 1 1
_%| > |+> |1 0> ﬁ‘_>e|_>p’171>e_%’+>6|_>p|170>e

1 1

== E <00|F|170>e - ﬁe«)mfllvo)e
1 1 L A

== .(00]71,0), = e (=3 apé.) = V3ag é.. (7.47)

(0,1, %1[71,0,0) = [e<i|p<i|e<oo@f[%|+>e|+>p|1, “1). = =)L, 00

1 1
+ =)l pl1, e - 7|+> JlL, o>e}
1 ap
=5 (00[F11 F 1) = ET(:F% iéy)
=v/3a, [ \/ﬁ(eziley] V3a (éx)". (7.48)
(0,1, +1|/1, 1, +1) = { (] (e <00\} [ el H),/1, 0), \[| be|+)p|1 £ 1) }
1
=+ —3e<00!ﬂ1,0>e = :Fﬁ (—3apé.) = j3\/_@0 €. (7.49)
1 1
(0.1, %1[71,1,0) = [ ([ (] (0 @ [— b ~+ T+, 0),

1 1
b )l Lt =L 0]
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1 1 0 .
=1 (00[F1F 1), = F—= 22 (Fé, +ié,) = £V 3ag é=. 7.50

(0. LOFTL 10) = | S (o4 1) 001 7] £ o010,

\[y— Vol 14 1) ]
1 3@0

—i—\/g(()()mlil) \/_\/_<i6a;+iéy>
=FV3a, ( — —(iew + 1ey)> = FV3ap é4. (7.51)

All the other r-matrix elements are zero. For example,

QAL L = [ el 0rZc b

, 1 2
T { T ﬁ|+>e|+>p|17 0)c £ \/;|_>6|+>p|1 + 1>6}
1 2

=5 (L0[FIL0)c + 3 (L 1L+ 1) = 0, (7.52a)
1
(0,0,0/710,0,0) = [ﬁ (]~ e<—|p<+|>e<00|}

7 (0= 12040, ) 0.0 = o000y, =0, (7520)

and so on.

7.5. SCALING PARAMETERS

For the sake of simplicity, we define the following parameters

4 2
H = %s 9 %02, (7.53)
_a 1 2
L= aln <§) me, (7.54)
a2
V = ahe R—%, (7.55)
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which we use to scale the expectation values of the hyperfine Hamiltonian, the Lamb
shift and the vdW interaction. Substituting the values of the fine-structure constant,
g-factor of the proton, masses of the electron and the proton, and the speed of light,

the hyperfine splitting constant H works out to

H =3.924 x 107*°J =5.921 x 10" Hz. (7.56)

In terms of H, the Lamb shift £ and the vdW interaction V are given as

L =17.873H, (7.57a)
4.942 x 1023
V=N (7.57b)

The expectation value of the Lamb shift Hamiltonian amounts to £ and it is nonzero

only if both atoms are in the S-states, i.e.,

(0, F, Mp|Hys|l, F, Mp) = L . (7.58)

The hyperfine triplets corresponding to the 2P, /, are displaced from the corresponding
hyperfine singlet by #H, whereas the hyperfine triplet corresponding to the 257, is
displaced by 3H from the corresponding hyperfine singlet. The triplet is lifted upward

and the singlet is pushed downward [66]. Thus, we have

3
<0,1,MF|HHF5|O,1,MF> = ZH’ (759&)
1
<1717MF|HHFS|171;MF> = ZH, (759b)
9
(0.0, 0 Hirs[0,0,0) = ——#, (7.59¢)

3
(1,0,0|Hirps|1,0,0) = =M. (7.59d)
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7.6. GRAPH THEORY (ADJACENCY GRAPH)

In the graph theory, an adjacency graph [67; [68] is a diagrammatic represen-
tation of a square matrix whose elements are boolean values. One vertex can be
connected to the other vertex by one, or more than one edge. A vertex can be con-
nected to itself as well. If each vertex is connected to every other vertex in some
number of steps, then the graph is said to be connected. However, if two vertices
are not connected at all, they do not talk with each other. The adjacency matrix
corresponding to the undirected graph is symmetric in nature. Note that the eigen-
values of a symmetric matrix are real and it is always possible to get orthonormal
eigenvectors [69].

The non-negative power A* of an adjacency matrix tells us about the number

of paths of length k of its elements. For example, (A*),,, is the count of paths of
k

length &k from m to n. The sum ZAi, which depicts the number of paths of length
ranging from 1 to k£ between ever;?air of vertices, possesses impressive feature. If the
final matrix obtained from the sum contains all the nonzero entries, this means the
matrix is irreducible. In other words, if the sum contains any zero entries it indicates
that the matrix can be reduced into irreducible matrices. The power A2 is of particular
importance. It not only counts the number of paths of length 2 of its entries but also
tells us about the connectedness of the corresponding adjacency graph.

The adjacency graph G corresponding to an adjacency matrix A of order n is

disconnected if and only if there exists a square matrix S = A% of order n such that

the matrix S can be written as

kak . O

0 Cok)xn—k)
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Detailed mathematical proof of the statement of disconnectivity is given in theorem
1.6 of Ref. [70]. The adjacency matrix A containing two disconnected components

can be split-up as

: (7.61)
0 : A(GQ)

where A(G;) and A(G2) stand for the adjacency matrices of the components of the
adjacency graphs G; and G3. The components GGy and G2 do not share any edges
between their vertices. Thus, there is no coupling between them. In later sections,
we will notice that the adjacency graph is very useful to express a hyperfine subspace

into two irreducible subspaces.

7.7. HAMILTONIAN MATRICES IN THE HYPERFINE SUBSPACES

As we already mentioned, the 64-dimensional Hilbert space has five manifolds
namely, F, = +2, F, = +1, F, =0, F, = —1, and F, = —2. The F, = 42 and
the F, = —2 manifolds are 4-dimensional, the F, = +1 and the F, = —1 manifolds
are 16-dimensional, and F, = 0 manifold is 24-dimensional. We analyze all these
manifolds separately.

7.7.1. Manifold F, = +2. The four states in the F, = +2 manifold, in the

ascending order of quantum numbers, are

’¢1> = |(0= 17 1>A(07 1, 1)B>7 |¢2> = |(07 17 1)A(17 17 1)B>7

’¢3> = |(17171)A(07171)B>7 |¢4> = |(17171)A(17171)B>' (762>



174

The first element of the matrix (¢1|H|¢1) is given by

<¢1|H|¢1> :<(O7 L, 1)14(07 L, 1)B|H|(07 L, 1)/‘(07 L, 1>B>
=c,a{t] pa(+] (0,0 ¢ p{+] p.B{+| 50, 0|H|+)c.a

X [+)p.a 10,0)e.a |F)e.sl+)p.5 10,0)e 5, (7.63)

where H = Hyg A + Hig, B + Hurs, o + Hurs, 8 + Hyaw. The Lamb shift due to each
of the Hyg A and Higs p is £ and the hyperfine splitting due to each of the Hypg, o
and Hyrg, B 1S %7—[, whereas the vdW interaction does not contribute anything to the

diagonal element. Thus, we have
3
(p1|H | 1) 257-[ +2L. (7.64)
The matrix element (¢1|H|po) is given by

<¢1|H|¢2> :<<O’ 17 1)A(07 17 1)B|H|(O> 17 1)14(1? 1’ 1)B>

:e,A<+| p,A<+| e,A<O70| e,B<+| p,B<+| e,B<0a0|H|+>e,A|+>p,A |Oa0>e,A

1 2
=200 10 1100 + 21 |+>p,B|1,1>e,B], (7.65)

The orthogonality relation . 5(0,0[1,0). 5 = 0 requires that the right-hand side of
Eq. ([7.68) should vanish.

<<Z51|H|<Z52> =0= (<¢2‘H|¢1>)* = <¢2|H’¢1> (7~66)

Swapping A and B in (¢1|H|¢p2), we get (¢1|H|ps). Thus, it is straightforward to

note that

(91| H|p3) = 0= (¢3|H]|¢1). (7.67)
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The matrix element (¢|H|¢4) is given by

<¢1|H|¢4> :<<07 17 1>A(O7 17 1)B|H’(17 17 1)14(17 17 1)B>

=, A{+] palt] ¢,.4(0,0] .5 (+| pB{+] ¢5(0,0|

(
1] = a4 1L0)ea+ /2 sl
\/g e, A p,A |13 Y/e A 3 e, A p,AlLy L/eA

1 2
- T e 1706 o | /e 1716
[ Lol 0 + 2 sl sl D]
1
3

e,A<O7 0| e,B<0a O’HvdW‘la O>e,A’1> 0>e,B

= —2V = (¢4|H|¢n). (7.68)

In the similar manner, we determine all the element of the matrix Hp —9),

which reads

SH+2L 0 0 =2y
0 H+L =2V 0
Hp,=12) = : (7.69)
0 -2V H+4+L 0
—2V 0 0 H

The adjacency matrix associated to the Hamiltonian matrix Hp,— o) is

A(p=y2) = : (7.70)

which is obtained by the replacement of the nonzero entries of the matrix Hp,— 2y by
one. The adjacency graphs corresponding to adjacency matrix A(p,—;9) is shown in

Figure[7.2l With the help of the adjacency graph, we see that the F, = +2 manifold
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O—~w 00

Figure 7.2: An adjacency graph of the matrix Ar,—y2). The first diagonal
entry, i.e., first vertex is adjacent to the fourth diagonal entry, i.e., fourth
vertex and vice versa. The second diagonal element, i.e., the second vertex
is adjacent to the third diagonal element, i.e., third vertex and vice versa.
However, the two pieces of the graph do not share any edges between the
vertices.

can be decomposed into two subspaces. The subspace (I) is composed of the states

) = 161) = 1(0,1,1)4(0,1,1) ), (7.71)
65)) = J¢a) = 1(1,1,1) (1,1, 1)), (7.72)

in which atoms are in S-S or P-P configuration while the subspace (II) is composed

of the states

) = |62) = 1(0,1,1)4(1,1,1)5), (7.73)
6987) = |¢) = (1,1,1)4(0,1,1)5), (7.74)

in which atoms are in S-P or P-S configuration. These two subspaces do not couple

to each other. The Hamiltonian matrix corresponding to the subspace (I) reads

Hy = : (7.75)
-2V in
In the subspace (I), the energy levels are non degenerate. The energy eigenvalues

corresponding to the subspace (I) are given by

1
Em:%+£i§JmW+GHQQ% (7.76)
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Or,
E® =29 yor 44 L +0(VY (7.77a)
) H+2L ’
O Ly W +OWVY. (7.77b)
-2 H+2L

This clearly shows that the eigenvalues in the subspace (I) do not experience the first
order shift in the vdW interaction V), i.e., AEj(EI) ~ R75. From Egs. 1D one can

write

V2
ABP ~ 4 7.78
M+ (7.78)
We have H = 0.055949L, and in the atomic units ¥V = 3/R* and £ — g—jln(on).
Thus,
4 107

(0.055949L + 2L) RS~ 2.055949 a®In (a~2) RS RS

Recognizing £ = —Cg/R®, we find that the vdW coefficient , Cs, for 2S(F = 0) —
25(F = 1) or 2P(F = 0) — 2P(F = 1) hyperfine transition is in the order of 10.

The normalized eigenvectors associated to the eigenvalues Eg) and EJ(FH) are

) = < (alof?) + culof?)). (7:802)
1 2

0) =~ (aalof”) — alof))) . (7.500)
1 2

where a; and ay are given by

CH 2L+ 16V + (H + 2£)?
4y

162 \'?
1 14+ ——-
*( +<H+2£>2>

a1 =

H+2L
4y
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__LZE 1+4—V2
B 2V (H +2L)?

as = 1. (7.81D)

) +0(V?), (7.81a)

Note that for very large interatomic separation, 4V?/(H + 2£)? < 1 and hence,

la1| = (H+2L£)/(2V) > ay = 1. The Hamiltonian matrix associated to the subspace

(IT) is

- H+L -2V
Hip—yoy = w war ] (7.82)

The energy levels are degenerate and coupled by the vdW interaction V. The eigenen-
(IT)

ergies and eigenvectors of the Hamiltonian matrix H (F.—42) A€
D=+ L2V, (7.83)
1
(I1) < (Iy 4 14D ) ' 7 84
017) = 7 |017) £ [ ) (7.84)

The shift in the eigenenergies of the subspace (II) are linearly dependent with the

vdW interaction energy V. More explicitly,
ABEW = 4y (7.85)

Thus, the hyperfine transition in the subspace (II) goes to R™. See Figure for
an evolution of energy levels as a function of interatomic distance in the F, = +2
hyperfine manifold. For a sufficiently large interatomic distance, V — 0, and we have
only three energy levels as expected from unperturbed energy values. However, as
the interatomic distance decreases the vdW interaction comes into play and energy
levels split and deviate from unperturbed values. The energy levels do not cross in

the F, = +2 hyperfine manifold.
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Figure 7.3: Energy levels as a function of interatomic separation R in the F, =
+2 hyperfine manifold. The horizontal axis which represents the interatomic
distance is expressed in the unit of Bohr’s radius, ag, and the vertical axis,
which is the energy divided by the plank constant, is in hertz. The energy
levels in the subspace (I) deviate heavily from their unperturbed values %7—[
and %H—FE for R < 500ag. The doubly degenerate energy level L+H splits up
into two levels, which repel each other as the interatomic distance decreases.
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7.7.2. Manifold F, = +1. The F, = +1 manifold has 16 states as listed

below:

|¢1> = ‘(07 07 O)A(O> 17 1)B>7
|¢3> = ‘(07 17 O)A(07 17 1)B>7
|¢5> = ‘(O’ 17 1)A<07 07 0)B>7

|¢7> = |(0’ 1’ 1)A<17 07 0)B>7

W2> = |(0> 07 O)A(L 17 1)B>7
‘¢4> = |(07 17 O)A(L 17 1)B>7
W)6> = |(O7 17 1)A(07 17 O)B>7

‘¢8> = |(0> 17 1)A(17 17 O)B>7
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|w9> = ‘(17 070)/\(07 17 1)B>7 |’¢10> = ‘(17070)14(17 17 1)B>7
|¢11> = |(17 17 O)A(07 1, 1)B>7 |¢12> = |(17 17 O)A<17 L, 1)B>7
|¢13> = |(17 17 1)A(07 07 0)B>7 |¢14> = |(17 17 1)A<07 17 0)B>7

|¢15> = |(17171>A<170’0)B>7 |¢16> = |(17171)A(171’0)B>' (786)

In Eq. (7.86)), the 16 states are ordered in the ascending order of quantum numbers.
We calculate all the 256 elements of the Hamiltonian matrix for F, = +1. Then we
replace all the nonzero off-diagonal element by 1 and all the diagonal elements by

zero. This results an adjacency matrix Ap,—41) of order 16 as given below:

00010011
001 01100
1 00 0 11

1 0 0

= o o
—
o o o O
—_ =
o o O
o O
= o O
—

—_
—_

0
0
0
0
0
0
0
0

o o o o o o o o
o o o o o o o o

—_
—_
—_

Ay = (7.87)

o O o o o o o o o
o O o o o o o o o
o O O O o o o o o

—_

o o o o o o o o o o
—
[

—_

o o o o o o o o o o o
[
=
o
o

—_
o o O
(an]

(@)

—

—

—
o
o o o o

o O
—

—
o o o o o o o o

o O O o o o o o o o
o o o o o o o o

o O o o o o o o o o
o o o o o o o o

o O O o o o o o o

o o o o o o o o o o
o O O o o o o o o o o

—
o
o o O
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See Figure for adjacency graph for the matrix A(p —1) which shows the linkage

between neighboring vertices in the matrix ((7.87). We notice that

a 0Ob 0bb0OO0OO0cO0dOO
0Oa ODO0OO0DbbcO0dOd
b 0 a O b b 00O

IS
o
o
) QU o SH
QU [en} ISH

oS O A O
)

S
Q

]
]
e

d
0
d
0
0
d

16
> Alp—iy = . (7.88)
i=1

o
Q. O
o
o
(@] ISH (@] SH
() QU [en} IS8
o o
> Q
o o
Q >
[a=) o
(@) o
o o>
S S

SN
=}
e ) ST ) IS ) ) o

o

S8

<

]

=

]

S

<

)

]

_Q O O Qa O . o o o

)
S O & a o
)
) jen) S8 IS )
IS
o
e} o SH
o
[en}
S
o
S
jan)
e}
Q
S

where,
a = 12106896, b = 12106888, ¢ = 4035624, and d = 4035632. (7.89)

The presence of zeros in 2221 Aé F.—41) indicates that A(p,=41) can be reduced into
at least two irreducible matrices. It can be clearly seen from the adjacency matrix
(7.87) that 1 is adjacent to 12, 15, and 16. 16 is adjacent to 1, 3, and 5. 5 is adjacent

to 10, 12, and 16. 12 is adjacent to 1, 5, and 6. 6 is adjacent to 10, 12, and 15. 10
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11
(b) Gy

Figure 7.4: An adjacency graph of the matrix Az —;1). The graph for Ap —4y) is

disconnected having two components GE?Z: 1) and ng): 1) which do not share any
edges between the vertices.

is adjacent to 3, 5, and 6. 3 is adjacent to 10, 15, and 16. 15 is adjacent to 1, 3,
and 6. However, these vertices are neither adjacent nor linked in any steps to the
remaining other vertices. At the same time, 2 is adjacent to 11, 13, and 14. 14 is
adjacent to 2, 4, and 7. 7 is adjacent to 9, 11, and 14. 11 is adjacent to 2, 7, and 8. 8
is adjacent to 9, 11, and 13. 13 is adjacent to 2, 4, and 8. 4 is adjacent to 9, 13, and
14. 9is adjacent to 4, 7, and 8. The power A%Fz=+1) of the adjacency matrix A(p —11)
contains two diagonal nonzero matrices of order 8 and two same sized off-diagonal
zero matrices, which verifies that the adjacency graph corresponding to the matrix
A(p,=+1) has two disconnected components.

The graph [7.4] clearly indicates that the 16-dimensional F, = +1 manifold can
be decomposed into two subspaces. These two subspaces do not talk with each other
as they are uncoupled. Thus we can analyze each subspace independently. Firstly,

we consider the subspace (I) of manifold F, = +1. The subspace (I) is composed of
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[tha), |a), [W07), [bs), |¥o), 111), |1s), and |ih14). We rename these states as below:

[0i) = ) =1(0,0,004(1,1,1)g),  [95”) = ebs) = 1(0,1,0)a(1,1, 1)),
5)) = r) = 10,1, 1)a(1,0,005),  [4”) = lwbs) = 1(0,1,1)a(1,1,0)),
[W57) = [do) = 1(1,0,0)(0,1, 1)), [e") = [¢n1) = |(1,1,0)4(0,1, 1)),

) = his) = [(1,1,1)4(0,0,0)),  [4") = 1) = [(1,1,1)4(0,1,0)).
(7.90)

The Hamiltonian matrix of the subspace (I) reads

L—2H 0
H+L

(7.91)

o o o o
o
< o n o o
o
<
|
<
o
|
)
<~

)

(Fo—t1)> WE have

It AS;Z: 1) is the adjacency matrix corresponding to H

11135 10880 10880 10880 10710 10965 10965 10965
10880 11135 10880 10880 10965 10710 10965 10965
10880 10880 11135 10880 10965 10965 10710 10965
8 m i 10880 10880 10880 11135 10965 10965 10965 10710
Z (A(Fz:+1)) = . (7.92)
i 10710 10965 10965 10965 11135 10880 10880 10880
10965 10710 10965 10965 10880 11135 10880 10880

10965 10965 10710 10965 10880 10880 11135 10880

10965 10965 10965 10710 10880 10880 10880 11135

As all of the elements of the Zf (A(I) " are nonzero, we confirm that all the

(Fmt1)

states are connected with each other.
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The energy level £ — 2H and L are doubly degenerate and coupled with
the nonzero off-diagonal entries V. However, the energy level £ 4+ H is four-fold

degenerate. Consider the subspace spanned by |¢§I)> = |¢§A)> and |@Z)§I)> = |77ZJ§A)>.

The Hamiltonian matrix H ((?z): 1) reads
L—2H 1%
(A) _
Hipl_yy = . (7.93)

1% L—2H

The eigenvalues and the corresponding eigenvectors of the Hamiltonian matrix ((7.93)

are

EW =21+, (7.94a)

) = 2 (J™) = [pf™) ) (7.94b)

N —

The other doubly degenerate energy level L is spanned by |¢§I)) = |1/J§B) ) and |¢§I)> =

‘¢§3)>, The Hamiltonian matrix H ((1]23:+1) is

LV
H® . (7.95)
1%

The eigenvalues and the corresponding eigenvectors of the Hamiltonian matrix ([7.95)

are

EP =y, (7.96a)
By _ L (® (B)
) = —= (™) £ 19™)). (7.96b)
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The four-fold degenerate Hamiltonian matrix

H+L 0 0 %
© 0 H+L V 0
Hy) = (7.97)
0 Vv H+L 0
% 0 0 H+L

is spanned by the following vectors

) = [?), =), ) =), ) =10, (7.98)

The Hamiltonian matrix H ((g): 1) can again be decomposed into two identical 2 x 2
matrices.
L+H Vv L+H 1%
.1 _ ©2
H(Fz=+l) - ’ and H(Fz:+l) = . (799)
1% L+H 1% L+H

(C),1

(Fo=t1) 18 associated with |¢§C)> and |¢flc)> while H((C)’2

The Hamiltonian matrix H Foet1)

is associated with |¢§C)> and |2/J§C)>. The eigenvalues of both the matrix are given by
) _
EQ = +HEV, (7.100)

whereas the eigenvectors are given as

| 1
D = % (Ii/}@) + |¢§B)>> . ) = NG (|¢§C’> + |¢§B>>> . (7.101)

Figure is a Born-Oppenheimer potential curve for subspace(I) of F, = +1 hyper-
fine manifold. For large interatomic distance, ¥ — 0, and as the interatomic distance

decreases, energy levels split, repel with each other, and experience V — R~3 shift.
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Figure 7.5: Evolution of the energy levels as a function of interatomic separation R
in the subspace (I) of the F, = +1 hyperfine manifold. For infinitely long interatomic
distance, we observe three distinct energy levels same as in the unperturbed case.
However, for small interatomic separation, the energy levels split and deviate from
the unperturbed energies and become separate and readable.

Let us now focus on the subspace (II) of manifold F, = +1. The subspace (II)

is spanned by |U1), |¥3), [¥s), [¥e), |¥10), |12), [15), and |ib1s). We rename these

states as below:

™) = [i1) = 1(0,0,0)4(0,1, 1)), [98") = [e3) =1(0,1,0)4(0,1,1)5),
[5) = [is) = 1(0,1,1)4(0,0,0)5),  [§") = |ws) =1(0,1,1)4(0,1,0)5),
) = o) = 1(1,0,004(L. 1, 1)5),  [0g”) = [tr2) = [(1,1,0)4(1,1,1)),
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i) = las) = (L1, 1)a(1.0,0)5), ") = o) = |(1,1,1)a(1, 1,0)5).

(7.102)

The atoms in the subspace (II) are in S-S or P-P configurations. The Hamiltonian

matrix of the subspace (II) reads

2L — 3H 0 0 0 0o -2y v =V
0 2L + 32 0 0 -2Y 0 -V YV

0 0  2L-3% 0 v -V 0 -2V
) 0 0 0 2L4+3H -V YV =2V 0

Hip —sn) =

0 -2V 1% -V —3H 0 0
-2V 0 —y 1% 0 sH 0 0
1% -V 0 -2V 0 0 —3H 0

~V 1% —2V 0 o 0 0 IH

(7.103)

In this subspace, no two degenerate levels are coupled by V in first order. Thus, all

the energy levels experience R~® vdW shift as shown in Figure [7.6l Thus the states

listed in Eq. ((7.102]) serve as eigenstates of the Hamiltonian matrix, H

system. The hyperfine transition goes second order in V. If AE

matrix of H((JIVIZ)=+1)’ then the sum 3; (AEEZ):H)

IT)
F.=+1)

)i is identical to Eq.

((II:IZ):H), of the

is the adjacency

7.92).

7.7.3. Manifold F, = 0. The F, = 0 hyperfine manifold is composed of

‘\Ij1> = |(070>0)A(07070)B>7 ’\Ij2> = ‘(07070>A<O7 170)B>7
|\Ij3> = |(07070)A(17070)B>> ’\I]4> = ‘(07070>A(17 1?0)B>7
|\Ij5> = |(O7 L, _1>A<O7 L 1)B>7 |\Ij6> = ‘(Ov L _1>A(17 L, 1)B>7

|\I[7> = |(O7 lvo)A(0707O)B>7 ’\I]8> = |(0> 170>A(07 170)B>7
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Figure 7.6: Evolution of the energy levels as a function of interatomic separa-
tion R in the subspace (II) of the F, = +1 hyperfine manifold. For infinitely
long interatomic distance, we observe four distinct energy levels same as in
the unperturbed case. However, for small interatomic separation, the energy
levels split and deviate from the unperturbed energies and become distinct

and readable.

[Wo) = 1(0,1,0)4(1,0,0)5),
[W11) = 1(0,1,1)4(0,1, =1)5),
[W13) = [(1,0,0)4(0,0,0)p),
[W15) = (1,0,0)4(1,0,0)5),
[Wi7) = |(1,1,=1)4(0, 1, 1)),

|\Ij19> = |(17 17 O)A(()? 07 O)B>7

[Wi0) = [(0,1,0)4(1,1,0)),
[W12) = 1(0,1,1)4(1,1, =1)B),
[W14) = [(1,0,0)4(0,1,0)),
[Wi6) = [(1,0,0)4(1,1,0)),
[Wis) = [(1,1, =1)a(1,1,1)5),

|\Ij20> = |(1> 17 O>A<07 1? 0)B>7

188



189

|\I[22> = |(1> 17 O>A(17 17 0)B>>

|Was)

|\II21> = |(1> 17 O>A(17 07 0)B>7

[Wa3)

(7.104)

|(1,1,1)4(1,1,—1) ).

|(1= L 1>A(07 17 _1>B>7

The Hamiltonian matrix H(p,—g) is a square matrix of order 24. We first evaluate

0), and then replace each of the off-diagonal nonzero entries by 1 and each of

Hp,

the diagonal elements by 0. Thus constructed square matrix, whose entries are of

0y Which reads

boolean values, is an adjacency matrix Ap,

0) —

A,

(7.105)

0 0 O

1

0o o0 o0 o0 o0 0 0 O0OOTO0OO0OO0OO0OUO0OTO0TO0

0

1

o 0 0 o o0 0 o o0 0 0o 0 0 0o 0 0 o0 o

0 0 1 0 O

1

o o0 o0 o0 o0 0 0 0 0 0 0 0 00 0O

1 0 0 0 1

0

1

0o o0 o0 o0 o0 0 0 0 0 0 O0 0 o0 o0 O0oO0

1

1

0o 0 0 0 0 0 0 0O 0 0 0 0 0O

0 0 0 O

1

o 0 0 0o 0 0 0 0O 0 0 0 O

1 0 0 0 0 0 1

0

1

o o0 o0 o0 0 o0 0 0 0 0 0 0 0 0 O

0O 0 1 0 0 0 0 0 1

1

0o o0 o0 0 0 0 0o 0 0 0 0 o0 0O

0O 1 0 0 0 0 0 1

0

1

0 0 0 0 0 0 0 0O 0 0 o0 o0 O

0 0 0 1 0 0 0 0 0 1

1

o o0 o0 0 0 0 0 0O 0 0 0 O

1 0

0 0 0 0 1

1

1

0o o0 o0 0 0 0 0o 0 0 0 0 0 0 O

1 0

1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 o0 0 O

1
1 0 0 0 1 0 1

0 o0 o0 0 0 0 0 0 0 0 0 O

0 0 0 0 O

0 0 o0 0 0 0 0 0 0 0 0 O

0 0 1 0 0 1

1

0 0 0 0 O

0 0 0 0 0 0 0 0 0 0 0 o0 O

1 0 0 1 0 0 1

0 0 0 O

0 0 0000 OO O O O0 0O

1 0 0 0 1

0

1

0 0 0 O

o 0 o o0 0 0o 0 0 0O 0 0 0o 0 O

1 1

0

o o0 o0 o0 0 0 0 0 o0 0 0 0 O0 0 0O

0 1 1

1

0 0

0 0 o0 0 0 0 0O 0O 0 o0 0 O

0 0 0 0 0 1

1

0 0 0 0 0 0 0 0O 0 o0 0 O

0 0 1. 0 0 0 0 0 1

0

o 0 0 0 0 00 00 0 0 0O

0 0 0 0 0 1

1

0

0o o0 o0 0 0 0 0 0 0 0 0 o0 O

0O 0 0 1 0 0 0 0 0 1

1

0 o0 0 0 0 0 0O 0O 0 o0 0 O

1 0 1

10 0 0 0 1

0

0 0 0 0O0O0OOOO O O 0 0O

1 0 0 1

0O 0 0 0 1

1

1

0)’

1Al

24

The sum ) ;

)

0)-

Figure is an adjacency graph corresponding to Ap,

which counts the number of neighbors of length(d) given by 1 < d < 24 that by every
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pair of nodes shares, satisfies

24

Z AéFFO) -

1

i

where

17374576685400,

R:

13185279766572,

Q
T

13185279766584,

P =

18646800486300,

U:

13185279766572,

18646800486300,

S:

3444045886584,

X =

4870616940000,

W =

3444045886572,

V=

26370559533144,

A=

26370559533156,

7 =

4870616940000,

Y =

(7.107)

and C = 6888091773144.

B =6888091773156,

0) can be
0) takes

o) are nonzero. Thus, the matrix Hp,—

(F.=

i

24
=1

i

reduced into irreducible sub-matrices. The adjacency matrix squared A% ]

Not all the elements of )
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Figure 7.7: An adjacency graph of the matrix Az —p). The graph for

A(p,—0) has two disconnected components GE%:O) and GEB:O) which do
not share any edges between the vertices.

the form

Biaxiz ¢ Or2xi2

A g = D : (7.108)

O12x12 - Cl2><12

where Biay12 and Ciayxia are nonzero matrices of order 12 while 01912 represents a
null matrix of order 12. Eq. (7.108)) confirms that the adjacency graph corresponding

to the adjacency matrix A(p,—g) has two disconnected components. Each component

Gg;zzo) and GEIFIZZO) of the adjacency graph has 12 vertices. Eq. (7.108)) and Figure|7.7

imply that we can partition the Hamiltonian matrix H(z —g of the F, = 0 hyperfine
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manifold as

H((?z 70) 0
Hp.—q) = ] (7.109)
0 H(p) o)

Thus, our 24-dimensional hyperfine manifold F, = 0 reduces into two irreducible 12-
dimensional sub-manifolds. The subspace (I) of the F, = 0 manifold is composed of

|\:[11>7 |\I/2>7 |q[5>a |\II7>7 |\I/8>7 |q[11>7 |\I/15>a |\:[116>7 |\P18>7 |\I]21>a |\Ij22>7 a‘nd |‘1124>' Thusa

[U) = [W1) = (0,0,0)4(0,0,0)5), [¥5) = [W5) = (0,0,0)4(0,1,0)5),
(W) = [Ws) = [(0,1,-1)a(0,1, 1)), [§) = [P7) =[(0,1,0)4(0,0,0)5),
[05)) = |Us) = [(0,1,0)4(0, 1,0)g), [¥G") = [W11) = |(0,1,1)4(0, 1, ~1)),
) = [W15) = 1(1,0,0)4(1,0,0)5), W) = [¥16) = |(1,0,0)a(1,1,0)s),
W) = [W1g) = [(1, L, ~1)a(L, 1L, 1)g), [¥5g) = [Par) = [(1,1,0)4(1,0,0)5),

(U) = [Wao) = [(1,1,0)4(1,1,0)8), [W1H) = |Was) = |(1,1,1) (1,1, ~1)5), (7.110)

are the corresponding basis vectors. The Hamiltonian matrix H ((22:0) reads

I
H o
20 — 22 0 0 0 0 0 0 0o -V 0 -—2v -V
0 2L — 31 0 0 0 0 0 VvV -—2v 0 -V
0 0 20 + 31 0 0 0 -V v v v Vv 0
0 0 0 20— 3% 0 0 0o —2v -V 0 0o v
0 0 0 0 20 + 3% 0 -2y 0 vV 0 (Y
0 0 0 0 0 20+ v v 0o vV Voo2v
0 0 -V 0 -2V -V =31 0 0 0 0 0
0 0 1% -2V 0 -V o % o o0 0 0
-V % 2V -V 1% 0 0 o % o 0 0
0 -2V -V 0 0 1% 0 o o % 0o o0
-2y 0 1% 0 0 % 0 0 0 0 xooo0
-V -V 1% 1% 2V 0 0o 0 0 o %
(7.111)
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No two degenerate levels of the matrix are coupled. Thus, the states listed
in serve as the eigenvectors of the matrix (7.111)). Figure is a Born-
Oppenheimer potential curve for F, = 0 in subspace (I). For a very large value of
R,V — 0, however, the interaction energy experiences a R~% type energy shift as R
decreases. Surprisingly, we notice several level crossings and the level crossings are
unavoidable. According to the no-crossing rule, this is an unusual outcome.

On the other hand, if AE?FO) is the adjacency matrix corresponding to the

Hamiltonian matrix H ((2220), the sum Zzlil (Agzz:o)) is given by

a By B By o b e d (€
Boay B B v 0 € ¢ 0 €
Yy vy n vy b0 e et e €k
BBy a B v o C e d b e
BB v B avy (6 e 6 ¢
i(AEQzO))i: LARAL R A A , (7.112)
i=1 6 0 € ¢ e a By B By
0 0 € ¢ 0 € p ay B p oy
€ € L e € Kk yynyyH
0 ¢ e d o e p By alpy
¢ 0 e 0 e p By B ay
e e ke e Ly y b vy

where

a = 12697599, [ = 12693504, v = 17881088, 0 = 12618606, € = 17918537,

¢ = 12622701, n = 25391103, 6 = 25387008, ¢ = 25241307, x = 25237212. (7.113)
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Figure 7.8: Evolution of the energy levels as a function of interatomic sepa-
ration R in the subspace (I) of F, = 0 hyperfine manifold. The energy levels
are asymptotic for large interatomic separation. Although at the large sepa-
ration, there are six unperturbed energy levels, the degeneracy is removed in
small separation and hence, the energy levels spread widely. The small figure
inserted on the right top of the main figure is the magnified version of a small
portion as indicated in the figure. The figure shows several level crossings.
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The absence of the zero in the sum leil ( ASV)Z:O))i indicates that the matrix H ((2220)
can not be reduced anymore.

Now we focus on the subspace (II) of manifold F, = 0. The subspace (II) of
the F, = 0 manifold is composed of |¥3), |W¥y), |We), |Wo), |¥10), |V12), [P13), |¥14),

|W17), [Wig), [Wao), and |Was). Let us rename these states as

[U) = [05) =1(0,0,0)4(1,0,0)5),  [W5) = [ W) = |(0,0,0)(1, 1,0)5),
U§Y) = W) = |(0,1,-1)a(1, 1, 1)p), W) = |Wg) =[(0,1,0)4(1,0,0)s),
TSV = [T1p) = [(0,1,0)4(1,1,0)5),  [¥§V) = [T1o) = [(0,1, 1)u(L, 1, —1)5),
[UP) = [W15) = [(1,0,004(0,0,0)5),  [¥{Y) =[T14) =(1,0,0)4(0,1,0)5),
Ug) = (W) = [(1,1,-1)a(0,1,1)5),  [W1Y) = [W1g) = [(1,1,0)4(0,0,0)5),
[UV) = [Wa) = [(1,1,004(0,1,0)5), [ ¥5)) = [a5) = |(1,1,1)(0,1, —1)).
(7.114)

The Hamiltonian matrix H (I

(F.=o) Of the subspace (II) reads

H((gz)zo) -
L—3H 0 0 0 0 0 0 0 -V 0 -2V -V
0 L—2H 0 0 0 0 0 0 % -2V 0 -V
0 0 LA+H 0 0 0 -V % 2V -V % 0
0 0 0 L 0 0 0 -2V -V 0 0 %
0 0 0 0 L+H 0 -2V 0 % 0 0 %
0 0 0 0 0 L+H -V -V 0 % % 2V
0 0 -V 0 -2V -V L—3H 0 0 0 0 0
0 0 % -2y 0 -V 0 L 0 0 0 0
-V % 2V -V % 0 0 0 L+H 0 0 0
0 -2V -V 0 0 % 0 0 0 L—2H 0 0
-2V 0 % 0 % 0 0 0 0 L+H 0
Y v o v v 2y 0 0 0 0 0 L+H
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It is interesting to note that if AE?Z)ZO) is the adjacency matrix corresponding to

(1)
H(Fz:()) ’

then the sum .2, (Agz):O)) is identical to Y012, (A(I)

(Fz:0)> . Notice that,

there are four degenerate subspaces in the H((gjzo)- The two-fold degenerate level
L —3H has vanishing off-diagonal elements. Thus, the degeneracy remains unresolved
in the first order correction. The states |\I/§H)) and |\If(7H)> serve as eigenvectors.

The energy level £ — 2H is two-fold degenerate. The Hamiltonian matrix of

this degenerate subspace is

Hipl_g) = : (7.116)
-2V L-2H
which is spanned by
o) = [w5")  and UV = (W), (7.117)

The eigenvalues and the eigenvectors are

EX = — 21 +2v, (7.118a)
1
) = 5 (1) = 198 (7.118b)

The third degenerate subspace with doubly degenerate energy L is spanned by
) =) and ) = (07, (7.119)

The Hamiltonian matrix reads as

Hp ) = . (7.120)



The eigenvalues and the eigenvectors of the system are

B = £+2v,
B 1 B B
) = 5 (10™) = 1u)).

The fourth degenerate subspace is spanned by the states

C 11 C 11
Wiy = [wi™), ey = jwiy,
C I C 11
w0y = 1oy, el = (e,
C 11 C 11
w0y =ty ey = ey,

with the 6-fold degenerate Hamiltonian matrix

H+L 0 0 2y V
0 H+L 0 V 0
© 0 0 H+L 0 %
H(Fz:O):
2V V 0 H+L 0
vV 0 V 0 H+ L
V 2V 0 0

The eigenvalues of the Hamiltonian matrix (7.123)) are

Bl =L+Hx2V,
Ef%:ﬁ+%i(x/§+1>v,

B =£+H+(V3-1)V.
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(7.121a)

(7.121D)

(7.122)

(7.123)

(7.124a)

(7.124D)

(7.124c)
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The degeneracy is completely removed and the energy shifts are first order in V. The

corresponding normalized eigenvectors are

©) 1 C C C
WD) =5 (FI9) #1047 - ) +19(7)) (7.125)
1 (©) (©) (©) (©)
!Xf%>:—<i\‘111 ) (VE—1) [0 & ) + i)
T 2V3 -3

+ (\/§ —1) w9 + \pg%), (7.125b)

_ (\/3 +1) |y 4 \Iféc))), (7.125¢)

As interatomic distance decreases, the unperturbed £ —3%H energy level experience an
energy shift which is second order in V i.e. ~ R7® whereas rest of other unperturbed
energy levels experience R~ type energy shift (see Figure .

7.7.4. Manifold F, = —1. The F, = —1 hyperfine manifold has 16 states.
We write the 16 states in this manifolds in the ascending order of quantum numbers

as given below:

[¥1) =1(0,0,0)4(0,1, =1)5),  |dh) =1(0,0,0)4(1,1, —1)p),
[¥5) = 10,1, =1)4(0,0,0)5),  [¢) = 1(0,1,-1)4(0,1,0)p),
[¥5) =100,1, =1)a(1,0,0)5),  |th) = 1(0,1,=1)a(1,1,0)p),
[¥7) =100,1,0)4(0,1, =1)5),  |tg) =1(0,1,0)4(1,1, —1)p),
[¥9) =1(1,0,0)4(0,1, =1)5),  |¢h10) = 1(1,0,0)a(1, 1, =1)),
1) = (1,1, =1)4(0,0,0)5),  [¢19) = [(1,1,=1)4(0,1,0)p),
[¥1s) = (1,1, =1)a(1,0,0)5),  [¢1a) = [(1,1, =1)a(1,1,0)p),

[¥15) = 1(1,1,0)4(0,1, =1)5),  [te) = |(1,1,0)4(1, 1, =1)5). (7.126)
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Figure 7.9: Evolution of the energy levels as a function of interatomic separation
R in the subspace (II) of F, = 0 hyperfine manifold. The vertical axis is the
energy divided by the plank constant, and the horizontal axis is the interatomic
distance in the unit of Bohr’s radius ag. The energy levels are asymptotic for
large interatomic separation. Although at the large separation, there are six
unperturbed energy levels, the degeneracy is removed in small separation and
hence, the energy levels spread widely. We observe two level crossings for small
atomic separation. The arrow, ‘ 1/, shows the location of crossings.

The Hamiltonian matrix for F, = —1 hyperfine manifold is a square symmetric matrix
of order 16. We replace all the nonzero off-diagonal element of the Hamiltonian matrix

by 1 and all the diagonal elements by zero to construct corresponding undirected
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adjacency matrix A(x,—_;) which reads

0000O0O0OO0OO0OOODOOTL1T1O01
0 0000O0OO0OO0OO0OO0OD11O0O0T1O
0000O0O0OO0OO0OOT1TO0OOOT1O071
0 000O0O0OO0OO0OO0OT1TO0OOT1QO0T®O0?1
0000O0O0OO0OO0OT1TO0OO0OT1TO0O0OT1TO
0 0000O0OO0OO0OT1O0OT1O0O0OO0OT1TO0
0 0000O0OO0OO0OO0OCITOOTIL1IT1O00

Ay = 0 0000O0OO0OO0OT1TO0OT1T1O0O0O0O0 (7.127)
00001 10100O0O0O0O0O0TO
0011001O0O0O0O0O0O0O0O0O®O
01 00010100O0O0O0O0OO0TO
01 001001O00O0O0O0OO0OO0O®O
100100100O0O0O0O0O0OGO0OO0
101000100O0O0O0OO0OO0GO0ODO0
01 001100O00O0O0O0GO0O0O®O
101 10000O0O0O0O0OO0O0GO0OO0

Figure[7.10|is an adjacency graph corresponding to Az, —_1). The sum Zil AéFz:—U

counts the number of neighbors of length(d) given by 1 < d < 16 which is shared by

every pair of nodes. Interestingly, we find

16 16
D Alp—my =) Alp—sy. (7.128)
=1 i=1

Thus, similar to the Hg,—11) matrix, the Hp,—_;) matrix can also be reduced into ir-

reducible sub-matrices. The square of the adjacency matrix Az —_;) can be expressed
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(Fz==1)

Figure 7.10: An adjacency graph of the matrix Az __;). The graph for

A(p,=—1) is disconnected having two components Gg«{:—n and Gg,f:_l) which
do not share any edges between the vertices.
as
Bsys @ Osxs
Alp_ = . : (7.129)
Osxg @ Cgxs

where Bgys and Cgyg are nonzero matrices of order 8 while Ogyg represents a null
matrix of order 8. Eq. (7.129)) confirms that the adjacency graph corresponding to

the adjacency matrix Az —_1) has two disconnected components. Each component

ngzq) and ngzfl) of the adjacency graph has 8 vertices (see Figure [7.10]). The
graph clearly indicates that the 16-dimensional F, = —1 manifold can be decomposed

into two subspaces each of dimension 8. These two subspaces are uncoupled to each

other. The first subspace, subspace (I) of the manifold F, = —1, is composed of |¢}),
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[95)5 [e), [0s), [99), 1) [¢12), and [¢h5). We rename these states as below:

A7) = [¢5) = 1(0,0,0)4(L, 1, =1)g), ") = [0) = (0, 1, =1)a(L,0,0)z),
[05) = ) = 10,1, =1)a(1,1,0)8),  [i") = [u) = [(0,1,0)a(1,1, 1)),
037) = 1¢6) = 1(1,0,0)4(0, 1, = 1)), [ig") = [41) = |(1,1,~1)(0,0,0)z),

[F0) = [¢15) = 1(1,1,=1)4(0,1,0)5),  [¢4") = [¥l5) = |(1,1,0)a(0,1,—1)p).

(7.130)
The Hamiltonian matrix of the subspace (I) reads
L—-2H 0 0 0 0 V V 2V
L 0 0 1% 0 2V 1%
0 L+H 0 V 2V 0 V
Lo 0 0 0 L+H 2V Y % 0
ey o vV vV 2v £ 0 0 0
)% 2V % 0 L—-2H 0 0
V 2y 0 0 L+H 0
2V V V 0 0 0 L+H
(7.131)

Notice that, there are three degenerate subspaces. The energy levels £L—2H and L are
doubly degenerate whereas the energy level £ + H is four-fold degenerate. Consider
the subspace spanned by |¢/1(I)> = |1/11(A)> and |¢/6(I)> = |1/1;(A)>. The Hamiltonian

matrix H ((Iéz):q) reads

A
Hyp = . (7.132)
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The eigenvalues and the corresponding eigenvectors of the Hamiltonian matrix ([7.132])

are

EW =21 +V, (7.133a)

) = 5 (10 £ 105)) (7.133)

The doubly degenerate energy level £ is spanned by |1/1;(I)> = \wi(B)> and yw;‘”> =

|¢;(B)>. The Hamiltonian matrix H((FB)ZA) is

z

(Fe=—1) —

LV
a® . (7.134)
V L

The eigenvalues and the corresponding eigenvectors of the Hamiltonian matrix (|7.134)

are

EP =r+v, (7.135a)
By _ L (@ /(B)
) = =5 (™) £ 104™)) (7.135D)

The four-fold degenerate Hamiltonian matrix

L+H 0 0 %
© 0 L+H VY 0
Hy) = (7.136)
0 vV LAH 0
% 0 0 L+H

is spanned by the following vectors

)y = (i, Y = Ry, ey = Ry, )y = [0l 9).
(7.137)
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The Hamiltonian matrix H ((gjzfl) can again be decomposed into two identical 2 x 2

sub-matrices.

L+H % L+H 1%
H(C)l _
(Fz=-1) ’ (F ——1) o
% L+H % L+H

(7.138)

The Hamiltonian matrix H ((Igji—l) is associated with ]wll(c)> and Wﬁfc)> while H ((1(033;2_1)

is associated with |1/);(C)> and |7,Dg(c)>. The eigenvalues for both the matrix are given

by
=L+HEV, (7.139)
whereas the eigenvectors are given as
(©) /(C) /(B)
N = 7 (1 1™ . (7.140a)
) = 5 (104 £ ™)) (7.140b)

See Figure for an evolution of energy levels as a function of interatomic separa-
tion, R, in the subspace (I) of the F, = —1 hyperfine manifold. As the interatomic
distance increases, each of the unperturbed energy levels experience a R~ type en-
ergy shift. In contrast to the F, = 0 hyperfine manifold, there is no level-crossing in
the subspace (I) of the F, = —1 hyperfine manifold. Notice that, energy curves for
subspace (I) of F, = £1 are alike.

The subspace (II) of the F, = —1 manifold is spanned by [¢]), [¢%), |¢)), [¥%),

[h0), |[¥hs), |¥1s), and |Ys). Let us rename these state vectors as below:

W)/(H > W)l) |(O 0, 0) (07 L, _1)B>7 W/(H > |77Z)é> = |(07 L, _1)A(07070)B>7
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Figure 7.11: Energy levels as a function of interatomic separation R in the
subspace (I) of the F, = —1 hyperfine manifold. For infinitely long inter-
atomic separation, there are three distinct energy levels, as exgjected from

the unperturbed energy values of the Hamiltonian matrix, H! (F.

_1) given

by Eq. m However, for small interatomic separation, the energy levels

split.
™y = [y = [(0,1, =1)4(0,1,0)5), |0™") =
™Y = [9lg) = [(1,0,0)4(1,1,~1)5), | ") =
™y = i) = 1(1,1, =1)a(1,1,0)5),  |os™) =

[¥%) =1(0,1,0)4(0,1, = 1)),
|¢33> = |(17 17 _1)A(17070)B>7
[¥i6) = 1(1,1,0)4(1, 1, = 1) ).

(7.141)
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The Hamiltonian matrix of the subspace (II) reads

Hip) oy =

2L — 3H 0 0 0 0 22 VY

0 2L — 3H 0 0 2V VY

0 SH+2C 0 1ZAY 1%

0 0 SH+2 2v VYV 0

(7.142)

0 1% 1% 2V —3H 0

v 2V 0 —3H 0 0

1% 2y 0 0 iH 0
2V 1% 1% 0 0 0 3H

In this subspace, no two degenerate levels are coupled to each other. Thus, the diago-
nal elements serve as the eigenvalues, and the state vectors serve as the eigenvectors.
An evolution of energy levels as a function of interatomic distance is presented in
Figure [7.12] As interatomic distance decreases, energy levels experience the second
order shift in V and evolve as R~5 type shift.

Analysis shows very interesting feature in the comparison of the F, = +1 and
F, = —1 manifolds. The components of the adjacency graph corresponding to the
matrix A —11) and Ar,—_1) look identical though ordering of the vertices is not
identical. Furthermore, the Hamiltonian matrix Hp,—1) is not exactly same to that
of Hp,—_1). However, they do have the same eigenvalues.

7.7.5. Manifold F, = —2. Similar to the F, = +2 hyperfine manifold, the

F, = —2 manifold is also a 4-dimensional subspace. It is composed of

|¢,1> = |(07 L, _1)A(07 L, _1)B>7 ’Cb/2> = |(07 L, _1)A(17 L, _1)B>,

’¢g> = |(171’_1)A(071’_1)B>7 ’¢21> = |(171’_1)A(171’_1)B>' (7'143)
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Figure 7.12: Energy levels as a function of interatomic separation R in the
subspace (II) of the F, = —1 hyperfine manifold. For infinitely long inter-
atomic separation, there are four distinct energy levels, as expected from the
unperturbed energy values of the Hamiltonian matrix, H ((22:_1), given by
Eq. (7.142)). However, for small interatomic separation, the energy levels split
and deviate from the unperturbed values.

The Hamiltonian matrix of the F, = —2 reads
SH+2L 0 0
0 H+L =2V
Hp,——2) =
0 -2V H+L
-2y 0 0

-2V

DO [—

0
0

(7.144)
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This is same to that of the F, = +2 manifold. The Hamiltonian matrix Hp —_s) can

be decoupled into two 2 x 2 matrices H ((22272) and H ((23272) which read

3H
oL —2p H+L -2V
HY = ? and HY_ = . (7.145)

(F.=-2)
—2y 2V H+L

B

The subspace (I) with the Hamiltonian matrix H ((}2 gy 18 spanned by

6 = |¢)) = (0,1, =1) (0,1, =1)), and |¢5”) = [¢}) = [(1,1,=1) (1,1, —1)).

(7.146)
The eigenvalues of the Hamiltonian matrix H ((22:_2) are
1
:7—[+£i§\/16)}2+(7{+2£)2, (7.147)
Or,
B = Syvor+a v +0(VY (7.148a)
2 H+2L ’ ‘
I) ]_ VQ 4
- 257{—4H+2£+O(V ) (7.148b)
with the corresponding eigenvectors
1
61) = ——— (erlol") + aale)) (7.149a)
ot + o
1 (1) (1)
¢y = (a2 & DY — a6 DY) | 7.149h
6 =~ (ld?) — culef”) (7.149)
where a; and as are given by
1612 2L 2L
o = \/ VA (HA2L)F+H = ay, (7.150a)

4y
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az = 1= ay. (7.150Db)
The subspace(II) is composed of

1) = |¢h) = (0,1, =1)a(1,1, 1)), and |5 ") = |¢4) = |(1,1,-1)4(0,1,~1)).
(7.151)

with the hamiltonian matrix H ((JI[,I)

z

__9) given in Eq. (7.145)). The eigenenergies and

eigenvectors of the Hamiltonian matrix H ((EZ):_

gy Are given by

EY =H 4+ L+2v, (7.152)
/ 1 / !/
67 = 5 (16) £ 165™)). (7153)

See Figure for evolution of energy levels as a function of interatomic separation
R in the F, = —2 hyperfine manifold. Note that, the eigenvalues of the F, = —2
manifold are identical to that of F, = 42 and eigenvectors of one manifold can be

acquired from the other one just by swapping |¢;) <> |¢]).

7.8. REPUDIATION OF NON-CROSSING RULE

The non-crossing theorem for a polyatomic system [71] says that for a system
with N atoms, there will be 3N — 6 coupling parameters, as a result, level-crossing
would occur, however, the number of level-crossing does not exceed 3N — 6, where
N > 2. For example, for a system containing three atoms, there are three coupling
parameters. Thus the potential curves can have maximum three level-crossings. Sim-
ilarly, a four-atom system can have maximum six level-crossings. On the other hand,
a system containing two atoms has just one coupling parameter. In the long-range

interaction, this coupling parameter is the interatomic distance R. Thus, the two
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Figure 7.13: Energy levels as a function of interatomic separation R in the
F, = —2 hyperfine manifold. For large interatomic separation, there are
three distinct energy levels. However, for small interatomic separation, the
degenerate energy level £ + H splits into two, and the level repulsion occurs.

atom system is supposed not to have any level-crossing, which requires no level cross-
ings also in our system of two neutral hydrogen atoms both of them being in the first
excited states.

For F, = 4+2 hyperfine manifolds of the 25-25 system, each of the irreducible
subspaces is of dimension two. As expected from the non-crossing rule, we also do
not see the level crossings in either of the four subspaces. In the F, = £1 hyperfine
manifolds, each of irreducible subspaces is of dimension 8. There is no level crossing
within the irreducible subspaces although some of the energy curves from different
irreducible subspaces cross. Peculiar things happen in the F, = 0 hyperfine sub-

space. In the subspace in which the atoms are in S-P or P-S configurations, we
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witness two level crossings. On the other subspace in which the atoms are either
in S-S or P-P configurations, several level crossings occur. In our work, we have
employed an extended-precision arithmetic near the crossing point and confirmed
that the crossing points are not due to the numerical insufficiency [72]. This find-
ing confirms that the level crossings do present and are unavoidable, which indicates
that the non-crossing theorem discussed in the literature so far does not hold true
in higher dimensional quantum mechanical systems. Taking the example of water
dimer, authors in Ref. [73] also have shown possibility of the curve crossings between
two Born-Oppenheimer potential energy surfaces. Interestingly, they also found sev-
eral curve crossings of potential energy surfaces. Their results also favor our findings.
The following rewording seems appropriate: “A system with two energy levels follows
non-crossing theorem. However, the higher-dimensional irreducible matrices do not

always follow the non-crossing theorem”.

7.9. HYPERFINE SHIFT IN SPECIFIC SPECTATOR STATES

In this section, we investigate the energy differences of 25 singlet and triplet
hyperfine sub levels. The spectator can be in any arbitrary atomic state. We present
detailed calculation of the Hamiltonian matrices, the normalized eigenvectors and
the corresponding eigenvalues in all three possible hyperfine manifolds, viz. F, = +1,
F,=0and F, = —1.

7.9.1. Manifold F, = +1. The atom A, in the following states

[017) = 10,0,0)4(0.1,1)5) and [¢5”) =(0,0,0)a(1,1,1)5)  (7.154)
is in the hyperfine singlet whereas the atom B is in the hyperfine triplet in the states

[5") = 10,1,004(0,1,1)p) and [05") = [(0,1,0)a(1,1,1)p).  (7.155)
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The spectator atom, i.e., the atom B is in 25 /5 state in the transition w§“’> — Wém)
while the spectator atom B is in the 2P, /, state in the transition |1/1§I)) — |¢§I)>. Note
that the state |¢§I)> is same to that of ]w§1)> =1(1,1,1)4(0,0,0)5) and the state |¢§I))
is also same to that of |1/)§I)) = |(1,1,1)4(0,1,0)5) under the interchange of the
subscripts A and B. Thus, the state |1/1£I)> is energetically degenerate to ]¢§I)> and
the state ]wél)) is energetically degenerate to Wél)) which are coupled with each other

through the off-diagonal elements V. We have

(WO | Hyawl ") =V, (7.156a)

WP | Hoqw ")

V. (7.156b)

Egs. (7.156a)) and ([7.156b) tell us that, in the F, = +1 manifold, if the spectator
atom is at 2P ,-state, the hyperfine transition is linear to V. On the other hand,

\¢§II)> and |w§H)> are not coupled to any other energetically degenerate level. This
implies that there is no first order vdW shift proportional to V. The absence of the
first order shift does not guarantee that ]¢§II)> and ]¢§II)> are completely decoupled.
Let us define the effective Hamiltonian H.g as

Hay = lim B —lim H, - [~ ). H (7.157)

© e—0 off e—0 ! E107,¢Y — HO + € b .

where H; is the off-diagonal part of the Hamiltonian matrix of respective hyperfine
manifold and Ej, is the energy corresponding to the reference state |1)). We take
the limit € — 0 at the end of the calculation.

Interchanging the subscripts A and B in the state |w§n)), we get the state
Wéﬂ)> =(0,1,1)4(0,0,0) ). This implies that the state |¢§H)) with energy £ —3H is
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energetically degenerate with respect to |1/J§H)). The Hamiltonian matrix H; 3 reads

(I1) H I1) (I1) (I1)
ot [ AT AV ) —

TN @S EG W) @8 HG )

Let us now evaluate the elements of the matrix H, 3.

e @ (@ (DY e (D) 1 , (1n)
(H1,3)11—11_{%<¢1 | Heg |41 >—11_I>%<¢1 | H, (Eow‘ll)_H0+€) Hilgy 7).

(7.159)

Let us introduce a completeness relation:

> 188l = 1. (7.160)
B

This is the so-called spectral decomposition of unity [74]. Using relation (7.160)) in

Eq. (7.159), we get

(IT) 1 1n
H13 _hmzz |Hl|m ’EO@MH) —]‘[0—|—€|n><n|]—[1|¢1 >

e—=0 ’EO W~ Hy+e€
1
- HO + €
1 I, , () ., , (I (10
H H
B i A A o)
R S N '
T IH-LIH - IH M 2L-IH-IH
512 V2

f— + .

2L —H) 2L —H

im [< a ! o8y (L [ ) (0 | [ )

+ (] ™Y (o™ | Hy 3™ (80| Hy ™)

E07w:(111)

11
+ ("

(7.161)
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1
— 1 D) 7€)y, ADy g ) ) ) (1)
(H13), _}g% (1 7 [Heg |thg ) = lg% (1 7| Ha <E0w<n) —H0+e> Hilys )
¥

=ty 3 S ol )
~lim [<w§“>| e e CRLUREIRIERCATY

U e W A ) )

0 g A ) )

“

U ol 7 )
=0 25(_—21325_—?% o+ 25(_—]);)’(}; Z)H
2521}27{ (7.162)

To obtain the second last line of Eq. (7.162)), we substituted the values (¢, 1 |H, |¢§H)> =

0, (¢ (H)|H |zZJ3H ) = 0 and then we took € = 0. The Hamiltonian matrix H((F):+1) is

symmetric. Thus, we have

(Hi3)1y = (Hig),, - (7.163)

Similarly,

1
L () £ 150Dy — Jimy (D ‘ (1)
(H1,3)5 _}g% (g [Hog [thg >—lg (g [ H - <E0w<“) —Ho+e> Hilys )
W3

L 0 1 (11)
=l 3 3 (A ) ol g i )
1
—k (11) (I1) (11) H (11) (11) H, (11)
i [ws e A I o )
W3
11 1 1), , (1) 1), , (11 1
R e LRI A LRI CER L ATE R

wa;’n)
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g U W ) )
Y3
R N ) (0 )
R V2 42
T M 1N L 3H I oL WA
512 V?

~sc 70 T (7.164)

The matrix H; 3 given in Eq. ((7.158) reads

52 % 2)2

—+—
Hyy=| 20770 ¥ £ . (7.165)
22 52 + V2
L—H 2L—H) " 2L—H

The matrix (7.165)) has the following eigenvalues and eigenvectors:

. B2 V2 2?2
Fis = 2(£ T TR TE (7.166a)
WS = (1) £ ™). (7.166b)

Let us now discuss the reference state \wém). The state Wjém) is degenerate
with the state |1/)L(1H)). The unperturbed energy corresponding to these states is 2L +

%’H. The Hamiltonian matrix Hs 4 is given by

wII H l/}(H Q/J(H) He(e) 1/1(11)
Hy, = lim WS HG ) @S HG ) | (7.167)

TN @M ED W) @ HE ™)

The first diagonal element (Hy4),, is given by

L A1) 77()(  AD\ 1 W)y 1 _ (1)
(H24)y, —11_{% (g '|Heg |03 ") = ll_ﬁ% (g | Hn (Eow“” ~ Hy 6) Hily )
. 0 1 I

=iy 5 8 il oml el el )

E, 0~
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1
—lim (I1) (I1) (I1) H (I1) (I1) H (I1)
H%;8<wk | By o T ) f ™) (™ )
5 2 2
Y Y (7.168)

L+ H)  ULAH

The next diagonal element (Hzy4),, is given by

L (0] 0y _ iy (5 1 _ (1)
(H2,4)5 *11_{% (s " [Hegt |thy ) = 11_> (g " [Hy - <Eo L — Ho + e) Hilhy )
Wy

. 1 ), , (1) (1), (1) (1n)
=lim > ("] [Py W H o) (ot Hy )
e—0 k;5z,677 EO,%(}H) — Hy+e¢
5 2 2
14 14 (7.169)

YL+ H)  ULAH

The off-diagonal elements are given by

1 (0| 7700,y _ 1 o 1 (1)
(H2,4)12_11_I>% (o [ Heg [t >—11_{%< > [ <E0w(11)—H0+6> ey )

1
0 k:5,7< | 0@511) —Hy+e¢ |¢k >< | W) ><,¢k | 1|¢4 >
21?2
B =& ' 7.170
L+H (H2,4)51 ( )

The Hamiltonian matrix Hy 4 thus reads

512 + V2 212

Hyy = 20C+H) " 2L+H L+H (7.171)

212 512 + V2

L+H 20L+H) | 2L+H
which has the eigenvalues

5V? V? 2)?
Ff, = + + 7.172
UL+ H) 2L+H T LAH ( )
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with eigenvectors

w5) = —= (g™ & ™). (7.173)

vl

The first order vdW shift V is proportional to R~3, where R is the interatomic dis-
tance. This clearly indicates that the transition energies are R-dependent. In the

|@/J(H ) — |¢§H)> transition, the energy difference between the symmetric superposi-
tions —= (Wlu )+ | >> and —= <|1D(II )+ |¢i11))> and the energy difference between
the antisymmetric superposition 75 <W1H)> — Wém)) and —= <W2H)> ‘¢i11)>) are
given in the Table In the V) — |¢§I)) transition, the energy difference be-

Table 7.1: The energy differences between the symmetric superposition AEI(IJr )

and the antisymmetric superposition AEI(I_ ) in the unit of the hyperfine split-
ting constant #H. In this transition, the spectator atom is in the 2.5/, state.

R AE(Y AE
00 0 0
750 ao | -0.00701 | -0.00133
500 ao | 0.38331 | 0.04394
250 ao | 37.04226 | 22.83556

: s I I I
tween the symmetric superpositions % (|¢§ I )>> and —= <|¢2 )+ |4 ))> and

the energy difference between the antisymmetric superposition —= (\¢§I)> — w%)

V2
and —= <|@/12 ) — |¢§I)>> are given in the Table
7.9.2. Manifold F, = 0. The 24-dimensional F, = 0 hyperfine manifold has

4 states having atom A in the 25 singlet level as given below:

1Y) = (0,0,0)4(0,0,0)5),  [TP) =1(0,0,0)4(0,1,0)5),

[T) = 1(0,0,0)4(1,0,0)5),  [TSV) = (0,0,0)4(1,1,0)5). (7.174)
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Table 7.2: The energy differences between the symmetric superposition AEIH)

and the antisymmetric superposition AEIP) in the unit of the hyperfine split-
ting constant . In this transition, the spectator atom is in the 2P, /, state.

R AE™ AE
00 0 0
750 ap | 263762 | 2.81736
500 ap | 13.26784 | 13.32229
250 ao | 125.04124 | 125.04234

The atom A is in the hyperfine triplet in the following 4 states:

[U) =1(0,1,0)4(0,0,0)5), W) =(0,1,0)4(0,1,0)5).
) = 1(0,1,004(1,0,0)5),  [¥V) = |(0,1,0)4(1,1,0)p). (7.175)

The spectator atom B is in the state |25/), which is preserved in the transitions
|\IJ§I)) — |\I/Z(ll)) and |\Ifg1)> — |\Ifg)> whereas the state |2P; /) of the spectator atom B
is preserved in the transitions |\II§H)> — ’\1;5111)> and ]\I/§II)> — |\I/§)H)>. The state |\II§II))
is energetically degenerate with ]kIféH)) and coupled each other by the first order vdW

interaction —2V, i.e.,
(U Hyqw |OV) = —2p. (7.176)

Same thing happens for |\IféH)> which is degenerate to |\11%I)> and |\IJéH)> which is

degenerate to |\Iféu)) and |\I/g)>, ie.,

(U Hyqw |0 = —2vp, (7.177)

(U3 Hoawe| 95") = (057 Huaw | P15) = —2V. (7.178)
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Interesting thing happens in the transition \\Ilgl)> — ]Q’fp) as the state |\IJ§I)> is non-

degenerate. Here is the detailed calculation of the energy AE .
1

. I € I . I
AEyo =lim (0| H|0) = lim (017, - (

. 1
=lim > 0w ) | n) (| Eu0)

e—0 0,00 Hy+e

. 1 0\ /(D) M\ /(D) (1
= lim ()| Oy (O ey (U )

e—0 k—92,1;,12 EO,‘I’gl) — Hy+e¢
(=) n (—2V)? N (-V)?
C2L-IH-IH 2L -IH-IH 2L -H - 1H

62

_ , 7.179

2L — 5H ( )

The state |¥{") is energetically degenerate to the [¥'). However, the degenerate
states are not coupled directly. So, the first order vdW shift is absent. We want to

determine the matrix Hy 4 given by

Myt | (V2 P12 (0T HGD) ) 7.150)
TN\ @R e (v g )

Here, we have used a new symbol H to denote the Hamiltonian matrix Hs 4 instead
of Hy4 just to distinguish the matrix from . The new symbol does
not carry new physical meaning. Following the same procedure which we applied
to calculate Hy4 in the subspace (II) of the F, = +1 manifold, we can easily the
calculate the Hamiltonian matrix Hy4 in the subspace (I) of the F, = 0 manifold
which yields

v_2+ 4y? V2
H274 _ L—H 2L—H —L+H ) (7181)

V? V2 + 4y?
—L+H L—H 2L—H
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The eigenvalues and the eigenvectors corresponding to the Hamiltonian matrix Hg 4

are

V? 42 V2
Eyy= + 182
M T KT LA (7.182a)
1
[U5) = 7 <|‘I’§I)> + |‘1’§I)>> : (7.182b)

Let us now analyze the state |\Dg)) corresponding to the unperturbed energy 2L+ %7—[,

which is degenerate to the states |\II§I)> and |\Ifg)>. The Hamiltonian matrix Hs ¢ is

given by
I € I I € I I € I
WP HQSy P D) (w0
. I € I I € I I € I
Hyso = lim | (0|HQ105) (W) |HG W) (v |Eg|ve) [ (7183)

I € 1 1 € I I € 1
(o m Gy (w1l (e H )

The elements of the matrix Hss6 can be calculated in a similar way to H; 3 in the

subspace (II) of the F, = +1 manifold. We have,

o O 1 , (1)
(Hs56)1 —113% (W3 | Hy (Eo oo — Ho + e) Hy|Wy7)
)3
. I 1 I I I I I
=lim Y (0 - Oy ([ Hy [ 00) (0 Hy B )
€—0 E o —Hy+e
k=17,8,9,10,11 0,0y
V2 V2 512

(7.184)

T 3H CL+H 2t H

1
1 I (1)
(Hs5.6)1, = lim (W37 H, - (E —H0+e> - HL|P57)

0,
1
H0k=79< ' |E0,\1/§I>_H0+6| e (s H [0 ) (0 [ HL [ P57)
21?2 2))2

T 3H 2L H (H356): - (7.185)
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1
H —lim (V| H, . - Hy oD
(H35,6)5 6g%< 3 [H (EO\IJ(I) _H0+€> 1| Wg”)
»*'3
) I 1 I I I I I
=lim > (0| (U [ ) ()0 )
k=7,8,10,11 0,w" 0
V2 VQ VQ V2
= — — +
2L+H) 20L+H) 2L+H 2L+H
=0 = (Hss)s - (7.186)
o 77 1 _ ()
(H375,6>22 _11_{% <\Ij5 ’Hl <E0 o — Hy + 6) Hl’\pfy >
5
) I 1 I I I I I
=tim > (0 () (W ) (9 [ 05
k=7,9,12 0,o) 0
4V2 22
= . 7.187
L +3H 2L+ H (7.187)
o 7 1 , (1)
(H35.6)23 _11—{% (W5 |y (Eo oo — Ho+ e) )
[}
: 1 Dy /D Oy M
=lim (v Oy (U | Hy [ 00) (0| 1y )
e—0 k:§12 EO,\I/éU — Hy+¢€
2)? 2)?
— — (H . 7.188
Py T Yo TR L (7.188)
1
o O _ M
(H35.6)33 _11—{% (We' [ Hy (E o — Hy + e) )
0,Wg
. I 1 I I I I I
=tim D (| [ ) (0 )
k=7,8,10,11,12 0,o{) 0
V2 VE 5V2
_ . 7.189
L 13H L+H 2L+ H (7.189)
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V2 % 52 212 212
2L+3H + L+H + 2L+H 2L43H + 2L+H 0
H = 21?2 212 4?2 21?2 21?2 21?2
3,56 Se+3H T 3C+H SC+3H T 3L+ Se+3H T 3L+
22 212 V2 % 512
0 2L+3H + 2L+H 2L43H + L+H + 2L+H

(7.190)

If we apply the additional approximation H < £ in Eq. (7.190), the matrix Hss6

reduces to the following simpler form:

a2 20?2
L L 0
Hycon | 222 32 02
3,5,6 7 7 7
202 42
0 =& =

The eigenvalues of the the matrix (7.191]) are

o (T+V33)V?
E3,5,6 :T7
41?2
E(2) _r
856~ p
o _(1=V33))?
3,56 — Ve )
with the corresponding eigenvectors
1 I I I
53 6) = (4195") + (V33 - 1wl + 4wl
2(33 — v/33)
1
W30 == 5 (1947 - 1w")
1 I I I
25 6) = (41e") — (VB3 + D) + apu) ).

2(33 + v/33)

(7.191)

(7.192a)

(7.192b)

(7.192¢)

(7.193a)

(7.193b)

(7.193c)
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In the \\IJEI)) — |\Iffll)> transition, the energy difference between the symmetric super-
positions \/Li (|\I/(1D> + |\Ifg)>> and \/LE <|\I/(11)> + |\IJL(LI))> and the energy difference be-
tween the antisymmetric superpositions Js (|\If§I)> — \\Ifg)>) and \/iﬁ (|\I!§I)) — ]\IIELI)>)
are given in the Table . In the |\I/§H)) — |\1151H)> transition, the energy difference

Table 7.3: The energy differences between the symmetric superposition A81(+)

and the antisymmetric superposition AEI(_) in the unit of the hyperfine split-
ting constant #H. In this transition, the spectator atom is in the 25/, state.

R A AED)
00 0 0
750 ag | 0.05421 | 0.01816
500 ag | -0.24993 | -0.077 32
250 ag | 21.73218 | -2.88235

between the symmetric superpositions \/Lﬁ (|\I/§H)> + |\I’;H)>> and \/LE <]\I/A(1H)) + ]llfg)>)
)

and the energy difference between the antisymmetric superposition \% <|\If§1)> — |, >>
and \% <|\I/Ef)> - ]\Ifg))) are given in the Table 7.4

Table 7.4: The energy differences between the symmetric superposition AEI(IJF )

and the antisymmetric superposition AEI(f) in the unit of the hyperfine split-
ting constant . In this transition, the spectator atom is in the 2P/, state.

R AEL AE
00 0 0
750 ag | -1.58670 | 2.186 39
500 ao | -2.57128 | 12.31798
250 ao | -2.93837 | 38.70442

7.9.3. Manifold F, = —1. The difference in the Hamiltonian matrix be-
tween the F, = 4+1 and F, = —1 manifolds tells us that we need a detailed analysis
of the F, = —1 manifold as well. We have the following two states, in which the atom

A is in the hyperfine singlet

947 =1(0,0,0)a(1,1,=1)5) and [¢7) = [(0,0,0)4(0,1,=1)5)  (7.194)
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whereas the atom A is in the hyperfine triplet in the states
i) = 1(0,1,0)a(1, 1, =1)5) and  [@f") = |(0,1,004(0,1,~1)).  (7.195)

The spectator atom, i.e., the atom B is in 25/, state in the transition |¢1(H)> — |1/J:1(H)>
while the spectator atom B is in the 2P/, state in the transition W/1(1)> — Wfp)
Interchanging the subscripts A and B of the states |@Z)1(I)> and |¢;(I)> we get |¢é(l)> =
(1,1, =1)4(0,1,0)5) and |/7) = |(1,1,=1)4(0,1,0)5). Thus, the state |/\") is
energetically degenerate to |wé(l) ) and the state Wﬁp} is energetically degenerate to
|@/)/7(I)). These states are coupled with each other through the off-diagonal elements V

indicating that the interaction energy is proportional to R=3. We have

(W | Heawlvg") =V, (7.196a)

(W3 | Heawl i)

(7.196b)

The state |¢1(H)> and |¢;‘(H)> are not coupled to any other energetically degenerate
levels which implies that the first order vdW shift is absent. Hence we expect the
leading order shift to be of second order in V. Exchanging the subscripts A and B,
in the state |1/11(H)>, we get, |1p;(H)>. We now calculate the Hamiltonian Hj , as we did

for H, 3 in F, = +1 manifold.

() g9 ¢/(H /(H) » /(11)
T i I L T

e—0 € II H II
TN @ H ™Y e H ™)

where

1
HY — H, . - Hj. 7.198
eff ! (EO S0 Hy + €> ! ( )
"1
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The elements of the matrix Hj, can be calculated as we did for H; 3, which yields

512 + % %
H{ , = 2(L—H) 2L—H L—H ‘ (7.199)
’ 212 512 + %
L—H 2(L—H) 2L—H

This is same to that of matrix H; 3. The unperturbed energy corresponding to the

states |¢;(H)> and |@Z);(H)) is 2L — 27{. The matrix (7.199) has the following eigenvalues

and eigenvectors:

5V? V2 22

B = + 2
A T R Y Ty T (7.200a)
/ ]- / /

|w1(7121)i> - <W1(H)> 4 |¢2(11)>) _ (7.200b)

Let us now turn to the reference state |¢2(H)>. The state |¢L(H)> is degenerate with
the state W;,,(H)>. The Hamiltonian matrix Hj , is found to be identical to Hy 4 which

reads

5V2_ V2 212
H . — 2(L+H) 2L+H LA+H (7201)
49 22 52 + V2
L+H 2(L+H) T 2L+H
with eigenvalues
51?2 V? AV
Ef = + + 7.202
YBUALHH) 2L4+HT LAH ( )
and eigenvectors
) = —= (1™ & ™)) (7.203)
V2

In the [/{™) — [™) transition, the symmetric superpositions are \/iﬁ (Wi(n)> + ]w;(n)))
(11) ) (I ) 1 1
and 3 (10f"™) + ™) ) whereas &5 (1u™") = [pf") ) and &5 (Ju™) = 0™ ) are
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the antisymmetric superpositions. The energy differences between the symmetric lev-
els AE}(;F) and the antisymmetric levels AE}(f) can be read from the Table n with

the substitutions

| II)> |¢/(II> |¢(II > N |77Z);(H)>, |w§H)> N |¢:1(H)>, |'€Z}4(1H)> N |¢é(II)> (7204)

Similarly, in the case of |¢1(I)> — |¢Z1(I)> transition, the energy differences between
the symmetric superposition —= (|1/11 )+ Wg%) and - <|¢/(I )+ |¢/(H))) as well as

the antisymmetric superposition —= (W/(I ) — W/G(I))) and \/Li (W/(I ) — |w/7(H))> can

be read from Table [7.1] with the substitutions

) = [y, [y = g™y, ey = [Py, ) — ey, (7.205)
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8. LONG-RANGE INTERACTION IN nS-1S SYSTEMS

8.1. DIRECT INTERACTION ENERGY IN THE vdW RANGE

In this Section , we concentrate on the interaction between two hydrogen atom
in which one of them is in the ground state, and the other one is in the higher excited
state of the atom. In such a system, an extra contribution to the interaction energy
naturally arises as the Wick-rotated contour enclosed poles. The source of the poles
is the low-lying virtual states of the reference atom available by a dipole transition.
We here focus on the nS-15 system with n = 3,4,5. We refer to Ref. [T5] for a
detailed analysis of n.S-1S systems for 3 < n < 12.

The 1S-state is a nondegenerate state while the nS-state has nP-states as its
quasi-degenerate neighbors. The state corresponding to the |nP; /o) is shifted from
the nS-state by the Lamb shift £, and the state corresponding to the |nPjj,) is

shifted from the nS-state by the fine structure F, i.e.

E(nSy ) — E(nPiys) = Ly, (8.1a)

The Lamb shift and the fine structure of hydrogen for n = 3,4, and 5 can be found
in Refs. [76; [77; [78]. In the units of Hartree energy, Ej, £, and F,, for 3 < n <5,

are given as

L3=478 x 107 E),, F3 =446 x 1077 E}, (8.2a)
Ly=202x10°E),, Fi=188x 107" E,, (8.2b)

L5=982x10""E),, Fs =9.45 x 107° B, (8.2¢)
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A few more values of £,, and F,, can be found in Refs. [6;[51]. Notice that, F,, = 10 L,,.
Furthermore, both the Lamb shift, £,, and the fine structure splittings, F,, decreases
approximately as 1/n? as the principal quantum number 7 increases.

As oscillator strength of |nP;/y) and |nPs),) states with respect to the nS

state are distributed in a ratio 3 <+ 2, the matrix element P, s(w) is given by

2 3 i 2 2 3 i 2
e [(n,0,0[a|n, &, m)[* 2 [(n,0,0[a |, £, m)

9 3
e - 1 2
= — ' g 2 ° *
9 Zi:l Zﬂ [, 0, Ol |, £, m)| (—En+hw—ie+.7:n+7i/,u—ie) (83)

The polarizability to the nS state a,g(w) is the sum of the matrix elements P, s(w)
and P,g(—w), thus the Wick-rotated form of the degenerate polarizability @,s(iw)

can be written as

ps(iw) = Pps(iw) + Prg(—iw)

o2 —2L, 4F,
= 52; nS|x InP(m = M)>| <(_£n —i6)2 + (hw)? + (Fp — i€)2 + (hw)2>

=1

(8.4)
We substitute Eq. (8.4]) in the following expression
——direct 3h r _ . .
W’nS;lS(R) - —W /dw CYnS(lCU)O{]_S(l(JJ) 5 (85)

0

to determine the degenerate contribution to the interaction energy in vdW range,

direct

WTLS;IS(R> . NamelY:

direct 6
WnS,lS(R):_g (47T60 2R6 ZZ| TLS|ZL' |nP(m :U’)>|
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(e}

" /dw( —Ly lf)ﬁnJr ()2 (Fa— ii:)J;n+ (hw)2>0‘15(iw)

0

_ —ZZ| (nS|2|nP(m = p))[? (47rf>2R6 s(0) (% " 2%)
S Z Z [(nS|z*|nP(m = p))|? (47;2)236 g (afw>2 o;jwz
__ _ZZ| (nS|z'[nP(m = p))|* (MEzhC)QmCQ% (MZCY

IS S snrn - e z

Here, we have used o = e?/(4mwephc) and ag = h/(amc). The nondegenerate con-
tribution to vdW interaction WnS;lS(R) arising due to the virtual kP states, where

k > n, can be calculated numerically using

o0

Wi (R) = —

n

Then, we get the Wick-rotated contribution as the sum

direct

WISSH(R) = Wiisis(R) + Wik (). 88)

n n

direct

In the short range limit, the direct pole term, Pigis(R), is given by

Pdlrect . 262 . EmP_EnS S 7 P 2 8.9
nSlS( )——Wzals W—T ZK” |2 [mP)[". (8.9)

The pole term also follows the R~% power law in the vdW range.

8.1.1. 35-1S System. For the 35-15 system, we have

> D 1(@3Sla’[3P(m = p))[* = 162aj, (8.10)
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——direct

Thus, the degenerate contribution Wsg.5(R) reads

9 é ao 6
Wigas(R) = =5 x 1624 Ehﬁ — 729 E, <§> . (8.11)

The nondegenerate contribution ngﬁcst(R) is calculated numerically using

o0

/dw aszs(iw)ag(iw). (8.12)
0

WSA(R) = mo e T

As usual, azg(iw) is the sum agg(iw) = ﬁgs(i&)) +§35(—iw), where the matrix element

()35 (£iw) in terms of frequency, can be acquired replacing ¢t = (1 i18hw/(oz2m02))71/2

in the matrix element derived in section (3.4.3)). The numerical calculation yields

6
Wiireet (R) = —180.320 073 947 B, (%) . (8.13)

——direct

The sum of the Wyg,5(R) and de‘i‘g(R) is the total contribution due to the Wick-

rotated term, W§S$(R), which reads

direct

— 6 6
Wi (R) = Wiso(R) + WEre(R) = —729 B, (%) — 180.320 073 947 B, (a—}g)

6
— —009.320 073947 Ej, (%) . (8.14)

The pole term, Psi4(R), arises due to the presence of the virtual 2P state, which

reads

PAS(R) = -

20 S~ Sl RP) 2P B 15120 ) ki 1)
2R6 Eys + (Eap — Ess)

2e? Eyp — E i i

2¢? 5amc?
=~ g sl =——— Z| (35|z'|2P)|?
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22 (ol S o gl 6] 2oxe
(47eg)2 RO ST WU T B1) 52 a2mie?

240, 4632338310 K 2% x 3% a3
RS atm3ct % 512

6
— 8158497517 (a—}g) . (8.15)

In the second line of Eq. (8.15)), we have used w = —a?mc?/(8h) + a*mc?/(18h) =

—5a®mc?/(72h) for w in the expression t = 1/4/1 £ E(,—1)/(hw) to calculate the
corresponding values of the P-matrix element. On the fifth line of Eq. (8.15)), we
have used E, = a?mc? and ag = h/(amc) to express our result in terms of the
Hartree energy and the Bohr radius.

The total vdW interaction to direct term, E§§5E(R), is the sum

Eygi§(R) = Wag5(R) + Pigis(R)

s

6
— ~909.320073 947Eh< “) 8158497517 E), (%)

R
— 917478571 464 E), (%) . (8.16)

8.1.2. 45-1S System. For the 45-15 system, we have

> D _l(s|a[4P(m = p))[* = 540aj, (8.17)

Thus, the degenerate contribution Wigelc ;(R) reads

3 4
—dlrect 9 i Qa
Wisas(B) = =5 > E (45" [4P(m = M))!QEh—R%
=1

4

- 9><54o 25,00 — 2430 (ao)ﬁ (8.18)
T2 hR6_ "\R/ - ‘
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The nondegenerate contribution deﬁcst(R) is calculated numerically using

irec Sh r ~ . .
Wils S(R) = _W /dw s (iw)ass(iw), (8.19)
0
which yields
6
Wiireel (R) —= —415.860 208 974 E, (%) . (8.20)

On the other hand, the pole term, P{ESE(R), is given by

Pdlrect R _ 2e ° —EkP_E4S 45 Z]CP 2
B =~ - 3 s —=5) % 3 [(4s|a' k)]
0 2<k<4 i

262 < EQP — E4s) 221 (I%
= — alS w =

(4meg)? RS h 315
262 . E3p — E4S 229 % 37 X 132 Cl,g
(4mep)? RS s h 716
6
— _ 55.313793349 (%) . (8.21)

Finally, the total contribution, E{§S§(R), reads

——direct

E{§55(R) = WiESH(R) + PRSS(R) = Wisis(R) + WiESS(R) + PESE(R)

= —2901.174002 323 B}, ( (8.22)

8.1.3. 55-1S System.

—direct 9o a?
Wisas(R) == 5> > 1(55]a"5P(m = ) EhRG
=1 pu
4

— ) 13502 B — 6075 E (“0>6 (8.23)
T2 hRG_ "\Rr/) - ‘
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The nondegenerate contribution deﬁcst(R) is calculated numerically using

irec 3h r ~ . .
stls S(R) = (Ao 2RO /dw ass(iw)ars(iw), (8.24)
0
which yields
6
Weireet(R) = —797.620 619336 B, (%) . (8.25)

On the other hand, the pole term, PSESE(R), is given by

irec 2e 2 E E5S
PUS(R) = s als< S > lssla )
2<k<5

n
262 EQP — E5S 215 X 33 59 2
= — ——5==015
(4meg)? RS
262 Egp — E55 3 X 59 X 112 CLO
B (4%60)2R6a15
2¢2 E4p ~ Esg) 22 x 510 x 14472 a2
e 05
(4meg)? RS
— —199.631309 749 B, <E> . (8.26)

The total contribution, E§iSE(R), is the sum
irec irec irec Ja;direct irec irec
ES§5S(R) = WESSS(R) + PSess(R) = Wi s(R) + Wgs S(R) + PS§Ss(R), (8.27)
which yields

6
Edirect(R) = —7072.251 929 086 E), (%) . (8.28)

In this range, both the Wick-rotated and the pole term are of the R=% type. However,

the Wick-rotated term dominates over the pole term. Notice that higher the principal
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quantum number of the atom interacting with the ground state atom, larger the direct

term contribution to the interaction energy.

8.2. MIXING INTERACTION ENERGY IN THE vdW RANGE

Similar to the direct term, the mixing term contribution can be written as

3 4
——mixin, i i a,
Wisas (R) = = ans15(0) > [(nS|a*[nP)(nPla’|1S) EhR—%, (8.29)
=1
J Aymixing o 3h = d 1oy i
Wisas (1) = — w(dmeo) R0 W ans1s(iw)apsis(iw), (8.30)
mixin; 262 EmP - EnS
Prsas (1Y) = — (Ireg) 70 > ansis <W = T)
x> (nS|a'|mP)(mP|x'185), (8.31)

such that,

ENETE =WISTE(R) + Paete(R) = Wighs (R) + WiSE(R) + Phet(R). (8.32)

n n

8.2.1. 35-1S System. Proceeding as in the case of 25-1S5 system, the mix-
ing P-matrix element between 1S and 35 states for the generalized energy variable

v can be formulated as

Psg15(v)

22 9v/32
¢ [ V3 [169751/9 1 641908 — 6674417

" atmict 64(v — 3)4(v +3)3 (12 — 1)

—209520° + 2700° — 810v* — 388813 + 1166412 + 2187y — 6561}

2304+/31° (71/2 —27) o F} (17 —v:l - V2—4l/+3>
a : (8.33)

) v24+4v+3
(12 —9)' (12 —1)

where v = n.st. The quantum number n. is 1 for the E1g and 3 for the Esg. There

are three sources which contribute to the vdW interaction, namely, the nondegenerate
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contribution arising from the nP states with principal quantum number n > 4, the
input from the 3P states which are degenerate with the 3S state, and the pole term
arises due to the presence of the 2P states which are accessible from 35 states by a
dipole transition. The first two of them are of Wick-rotated type contribution, and
the third one is the pole type contribution. The Wick-rotated mixing polarizability
azs15(iw) is the sum ngslg(iiw). The contribution of the degenerate 3P levels to

the mixing interaction energy is given by

——mixing 3h 202 B L
= TS A 206 (1 I|13P P J
() = ST § 2 2 (SIIBPm =) - (3P(m = ple?35)

lim lim lim dw asgg19(iw
e—0 L3—0 F3—0 *( ) (

—£3 1 2?3
L3 —i€)2 + (hw)? | (F3 — i€) + (Tw)?

—00

he?

1
S (drreg) 2RO 4 Z (18|27[3P(m = p)) - (3P(m = )|27[3S)

Hn=—

)

meMw

+

S

X 043515(0)(

62

=~ neayims o150 Z Z (18]a7[3P(m = 1)) - (3P(m = p)|27|3S)
Te i

e (_ 621+/3h%e? ) ( | 243V3R? )

~ (47eg)2RE 512 atm3ct 64 a?m?

39 % 23 ap\ 6 agp\ 6
__ 2 X2p (—) — _13.8155822 E(—) 34
o5 B ( 3.815 582275 E), 7 (8.34)

c2

The contribution due to nondegenerate nP states for n > 4

3h

_ I d i i 8.35
e | osss(iogms(ie), (835

Wisis (R) =

is evaluated numerically which gives

—~ . 6
WIS () — 5588150518 ), (a—]_g) . (8.36)
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Thus, the Wick-rotated type contribution is given by

Tmixing

WIS (R) =Wsgs (R) + Waai o (R)

6
— 8.22T42275T B, (%) . (8.37)

The Wick-rotated contour enclosed a pole at fuv = + [(Eop — E3g) — i€] in the com-

plex plane. The pole term contribution reads

. 2 ¢ 35|2|2P) - (2P|#|1S) (18|27 |k) - (k|27|3S
priing () — _ 6262< |#'|2P) - (2P|2"[15) (15|27 |k) - (k[27[35)
’ 3(471'60) R yy Elsi(EQP—Egs)
2 2 Eap — B35\ < A ,
j=1
C2e2 [ 2.1593949925916 h2e? 215 2
(4mep)? RS atm3ct 561/3 a2m?
6
— 5229153219 B, (%) . (8.38)

The total contribution of the mixing vdW interaction is the sum

Esgref(R) =Wigis¥(R) + Pigra(R)

6
— 2,998 269538 Ej, (%) . (8.39)

We do get the same result taking the average energy

Eis + Esg

Eavg = 9 )

(8.40)

as the reference energy as we did for the 25-15 system and calculating the mixing
vdW coefficient using the Chibisov approach.
8.2.2. 45-1S System. We can now move on to the higher energy states.

For the 45-1S5 system, the nondegenerate and the degenerate vdW interactions are
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given by
W) = —— s [ ausis(iv)asss (i
’ 7(4me)? RS J,
— 3.063 629 331 906 £, (%)6, (8.41)
and
W) = - 2 Z gjlusuw(m — 1)

x (4P(m = p)]a?|45) aus15(0)(37)

514 )

ao 6
— _8.015439766 487 E (-) . 8.42
o (%) )

Thus, the Wick-rotated term of the interaction energy, ngfgg(}%), in the vdW range

is given by

e Tmixing

. . 6
YN (RY — WIS (R) 4 Wieyer(R) = —4.951 810434581 B, (“-}2) . (8.43)
The Wick-rotated contour picks up the poles at fiw = — (Eap — Eyg) + ie and hw =
— (E3p — E4s) + ie, which give rise the pole term contributions, Pgiigg(R). In the

mixing

short range limit, the P,g g (R) also follows the R~% power law. We have,

2et Z (4S|2°|12P) - (2P|2*|1S) (15|27 |k) - (k|27 |4S)
3(471'60)2R6 T Elg + (Egp — E4S)

2e! (4S|2°|3P) - (3P|2*|1S) (15|27 |k) - (k|27 |4S)
T 2
+.k

Pisas (R) =~

B 3(4meo) Eis £+ (Esp — Eyg)
22 Esp — E 5 . ,
= (e 21T 4518 (MTALS) Z(15|:L‘]|2P> - (2P|27]4S)

1

.
Il

(1S]27|3P) - (3P|2?|4S)

WE

2¢e? E3p — Fys
_——_— a _—
(4meg)? RO 1515 h

1

<.
Il
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2¢e? ( 1.181398063825h262)( 218 p2 )

 (4me)2RS atm3ct 312 a?m?
2¢? 1.135676 172 453 h2e? 28 x 37 x 13 K2
(4meg)? RS atmict 78 a?m?
6
—1.033 187464293 E), (%) . (8.44)

This yields
- 6
Efgj‘;gg(R) Wf;’;‘gg(R) Pngﬁlgg(R) = —0.918622970 288 E}, <%) . (8.45)

8.2.3. 55-1S8 System. Similarly, for the 55-15 system, we obtain
mixin 3h 26
Wisas (R) = — S (dmes P 9 Z Z (1S]27|5P(m = p))
=1 p=-1
X (5P(m = p)|27]58)ass15(0)(3m)
2x 57 x7 ap\ 6 ap\ 6
_ X0 X (_> — 571 AE (-) 4
a1 av: 5.716 898 855 084 F, I (8.46)
6

WIS R) =2.006 704 605 106 E), (%) . (8.47)

The contribution of the poles at hw = — (Eyp — Fsg) + i€, hw = — (Esp — Esg) + i€

and hiw = — (E4p — Fsg) + i€ to the interaction energy is given by

ixi (5S|z|mP)(mP|x[18)(1S|27|k) (k|27]5S)
Pml'xlng R) =
s () 47r60 3(4meg)2RS 22:34; Eis % (Enp — Esg)
262 —F S 3 .
=~ e’ Z 045515( ° ) Z 1S|2?|mP) - (mP|x?|5S5)
m=2,3,4 j=1
—3.302 240 658 867 Ej, ( R) . (8.48)

The total mixing vdW coeflicient for the 55-15 system is the sum

.. .. 6
EIPSE(R) = WIPIS(R) 4 PRI (R) — —0.407953591 110 E, (%) . (8.49)



239

Calculation shows that higher the principal quantum number of the atom interacting
with the ground state atom the smaller the mixing type contribution to the interaction

energy.

8.3. DIRECT INTERACTION ENERGY IN THE CP RANGE

The degenerate contribution, Wil;efg(z%), calculated in the vdW range is still

valid in the CP range as well. However, the non-degenerate contribution, Nggefé(R),

and the pole term, Poget(R), change appreciably. The integrand in

n

e A o0 ) _ ) w4672wR/c
WISSH(R) = — m/o dw ay5(iw) s (iw) 7
c c \2 c\3 c\*
{”2(@*5(@) +6(25) *3%)] (8.50)

is damped by oscillations in w. The contribution of the non vanishing frequencies in

the polarizabilities is exponentially suppressed which yields

_ 00 w4€72wR/c
5 a15(0) anS(O)/o dwT

mct(4meg)

() o) o (R) e ()]

= — WW 0415'(0) ans(O) (851)

YA direc h
Wgs;lg(R) -

Here, we have substituted the value of the integral

/OOO dw“4‘gij {1 +2 (é) +5 (é)Q +6 (i)g +3 (éﬂ - 13—];5. (8.52)

Let us now substitute

9¢?h? _ e?h?

a15(0) ans(0) = X (ns(0)) g, (8.53)

204m3ct’ atm3ct
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where (@,5(0))q.. 18 the value of the static polarizability a,s(0) in atomic units.

Thus, Eq. (8.54) yields

207

W () = —

n

(@ns(O)e B () (8.54)

Note that, the nondegenerate contribution to the interaction energy in the CP range
has the R~7 dependence. The prefactor of the polarizabilities (@,5(0)),... are given

as

2025 35625

<&3S(O)>a.u. = 5 <a45(0)>a.u. - 49927 <&5S(0)>a.u. - T (855)

Thus, the nondegenerate contribution to the direct interaction energy, ngefg(R), for

n = 3,4,5 reads

419175 . rag\”

W) = - T B (3) - (8.56a)
129168 . /ag\T

WiESH(R) = — — Ej, (ﬁ) , (8.56b)
7374375 _ rag\T

WISS(R) = — o> By <EO) . (8.56¢)

Introducing a new dimensionless variable p = R/ag, the Wick-rotated term for the

interaction energy are given as

irec Ja;direct irec Eh 419175 Eh
WisSS(R) = Wigs(R) + ng s(R) = 729; T Tora o7 (8.57a)

irec Jdirect irec Ey 129168 E,,

Wilteet (R) = Wigns(R) + Wiket(R) = 2430/)— e (8.57h)
irec A direct irec Eh 7374375 Eh

WgS;lé(R> = Wisas(R) + WSS 15(R) =—6075— — (8.57¢)

08 167 p7

Let us now look into the pole term contribution, P1e54(R), in the CP range. Below

the 35 energy level, we have a quasi-degenerate 3P and a low lying 2P levels. The
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Wick-rotation of the integration contour along the positive real axis to the imaginary
axis picks up two poles at w = —Esp3g/h + i€ and w = —FEypsg/h + ie. The contri-
bution of the quasi degenerate level to the pole term is negligible in comparison to
the contribution coming from the low lying 2P level. Thus the direct term for 35-15

system reads

. 2 E.
dlr.ect _ 2P _ 2 2P,3S
7335,15(R) —3(47reo)2R6 ; [(3Sler2P(m = p)|* ais A
2E)p3s R EypssR\® | (EapasR\"
x{cos( e > 3—5( e ) +( e )
+2E2P,3SR <in 2Eop3s R 5 EopasR ?
he he he
2¢f 2P x38ad 5EW | oo (PERBRY [5 5 (BERY’
T 3(Ame )RS 52 ¥\ 72n 36 he 72 he
L (PEENT] | SERR L (SEWRN [ (SERY
72 he 36 hc 36 hc 72 he
- 219 x 3% e?ad (ars) 5E,\ e%*h? 5E,R .
B 512 (4me)? RS Uslaw\ Ton ) admder | “ \ 36 he
o (BERENT L (SEEN'] | SEWR (SBR[ (SERRNT
72 he 72 he 36 hc 36 he 72 he ’

(8.58)

where (15)q.. Tepresents value of the ground state polarizability in atomic units.
Recognizing that e?/(4meghc) = a, h/(amc) = ag, a’*mc?® = Ey, and Ej/(kic) = a/a,

we have
. 215 % 38 Eab 5E 5aR 5aR\>
direct h%o —h
Ct(R) = — 2 0 U Vo 35
Pssiis(L2) 512 Ro (18)a.u. (7271) {COS <36a0) [ (72%)

paR\"'] | 5aR . (5aR 5aR\’
" (72%) ] " 364" (36@0) {3_ (72a0) }} (8.59)
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In terms of the new variable p = R/ag, Eq. (8.59) gives

. 215 x 33 5E 5a 5ap)’
direct _ h h P P
P3S;IS(R) - 512 F<a15>a.u. < 72FL) {COS (%) |:3 -5 (W)
dap ! dap . [ dap dap 2
Figure shows a comparison between an absolute value of the Wick-Rotated and
the pole term for direct type contribution of the 35-15 system. Initially, the Wick-

rotated term dominates the pole term, however, as interatomic distance increases the

pole type contribution dominates the Wick-rotated type contribution.

10’ +
— (dir) ~ (dir)
10° + |W35;1s + Wigas
(dir)
10-2 —_— |9D3 S;18

|IRe EV(R)|/h [Hz]

4 i i i }
103 5%10°3 104 1.5x104 2x104

R [units of ay]

Figure 8.1: Distance dependent direct-type interaction energy in the 35-15 system in
the CP range. The vertical axis is an absolute value of the interaction energy divided
by the Plank constant. We have used the logarithmic scale on the vertical axis. The
horizontal axis is the interatomic separation in units of Bohr’s radius. The arrow
indicates the minimum distance where the pole term and the Wick-rotated term are
equal.

In the 45-15 system, the Wick-rotated integration contour encloses three

poles, namely, w = —Eypyg/h + ie, w = —Espss/h + ic and w = —FEypys/h + ie.
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The 4P-level shifts only by the Lamb shift from the reference state, i.e., 4S-level.
Thus, the contribution of the quasi degenerate 4P-level to the pole term is negligible
in comparison to the contribution coming from the low lying 3P and 2P levels. Thus,

the direct pole term for 45-15 system reads

2 E
direc _ _ 2 3P4S
PUS) = = ggmege 2 WASIe TSP = ) s (Pre)
2E3pasR EspssR ? EspssR !
x{cos(—hc ) 3—5( he ) —I—( he )
2E3pasR . (2E3p4sR EspasR\’
+ sin 3— | ———
he he he

2 2 Fspas
—W;WLS\@H?P(W—M)\ als( = )

) o (PorasBY |5 (BorasB)® | (BarasR\'
he he he
2E5pasR . (2FopasR E2P4SR
+ sin 3 —
he he

262 229 X 37 X 132 Qa 7Eh 7EhR
=— 0 g CoS 3—
3(4meg)? RS 716 288h 144 he
TE R\ 7TE,R\* TE R . [ TE,R TE R\
5 + + sin 3 —
288 hc 288 hc 144 ke 144 he 288 hic
C2¢ Py (3B [ (BERNT[, L (3ER)’
3(4meo)2RE 315 '\ 32n 16 hc 32 he
3E,R\*1 3E,R . [3E,R 3EL R\
3— . 8.61
+(32hc) }+ 16hcsm(16hc 32 he (8.61)

Using ay5(w) = €2h?/(a*m3ct) x (15)a.u., Teplacing R/ag by p, and recognizing that

e?/(4meohc) = a, h/(amc) = ag, a®*mc?* = Ej,, and Ey/(hic) = a/ag, we have

29 X3 X1 E TE 7o
direct _ _ h h p
Pis. 15(p) = 716 p6< @18)au (288h> {CO (144) {3_
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S

0.0]
oo

Tap 2 Tap ! Tap . (Tap Tap\?
5<@) *(@) P ) P \g

222 [, 3E), 3ap ap\’
=31 (8)e. (%) { (E) [3—5( 2)

3ap 4 3ap . [ 3ap 3ap 2
+(§) ]*Esm(ﬁ =% ) | (8.62)

See Figure for a comparison between the Wick-Rotated and the pole term for

w
s

w

direct type contribution of the 45-1.5 system.

10% +
p— —— (dir) ~ (dir)
E 10° |W4 s:1s + Wasas
p— dir)
— |P§s:
= 1024 | 48;18
=
m 4
~ 107% =+
=
)
K 1064
&
— 1084
b i }
103 5%103 104 1.5x10% 2x104

R [units of ay]

Figure 8.2: Distance dependent direct-type interaction energy in the 45-1S system in
the CP range. The vertical axis is an absolute value of the interaction energy divided
by the Plank constant. We have used the logarithmic scale on the vertical axis. The
horizontal axis is the interatomic separation in units of Bohr’s radius. The arrow
indicates the point where the pole term becomes comparable to the Wick-rotated
term.
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We follow the same procedure as we did in the 45-1S system to evaluate the

pole term contribution of the 55-15 system, which yields
223 x 510 x 1447% E), 9 Fy, 9ap
direct _
Pesis(e) = 310 o (asla (SOOh) co8 (400) {3_
Yap 2 9ap ! 9ap ) ap
N = +| == ——sin
800 800 400 O 800
_ 3% x 59 x 112@< 8Eh 16ap 3_
238 P8 225h 225
Sap 2 Sap 16ap . { 16ap 8ap 2
N == +| == sin
225 225 225 225
216 x 3% x 5% E), Eh (a1s) 21 E, 21ap
716 g6 s/ 200h 100
2lap 4 21ozp . [ 2lap 21ap
—_— 3 — 8.63
* ( 200 ) } * 100 > < 100 200 (8.63)

See Figure for a comparison between the Wick-Rotated and the pole term for

direct type contribution of the 55-15 system.
Recall that the total interaction energy is the sum

En$is(R) = Wosts(R) + Prdis(R). (8.64)
The Wick-rotated term is the sum of the degenerate part which follows R~% and the
nondegenerate part which follows R~7 power law. The degenerate part dominates
over the nondegenerate one. On the other hand, the pole term has terms obeying
R72 R3, R™*, R ®and R % power law. The pole term can also be expressed as
a sum of a cosine and a sine term. Notice that the contribution due to the pole
at w = —FEsp,g/h + i€ is larger than the other pole at w = —E,,p,s/h + ie due
to the presence of low lying virtual mP-levels. So far the comparison between the

Wick-rotated term and the pole term is concerned, initially, the Wick-rotated term
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|IRe EV(R)|/h [Hz]
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103 5x10° 104 1.5%10% 2x104

R [units of ag]

Figure 8.3: Distance dependent direct-type interaction energy in the 55-1.5 system in
the CP range. The vertical axis is an absolute value of the interaction energy divided
by the Plank constant. We have used the logarithmic scale on the vertical axis. The
horizontal axis is the interatomic separation in units of Bohr’s radius. The arrow
indicates the point where the pole term becomes comparable to the Wick-rotated
term.

dominates the pole term. However, as the interatomic separation increases, the pole
term gradually becomes larger the Wick-rotated term as shown in Figures [8.1],
and Not only nS-1S systems but also nD-1S systems have the same behavior
of Wick-rotated versus pole term dominance [79]. Notice the position of arrows in
Figures [8.1] and The arrow shifted to the larger value of R as the principal
quantum number of the atom interacting with the ground state increases. This leads
us to the conclusion that larger the value of n in nS-1S system longer it takes for the

pole term to dominate over the Wick-rotated term.
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8.4. MIXING INTERACTION ENERGY IN THE CP RANGE

Similar to the direct term contribution, the degenerate contribution, W.,. ;filnsg(R),
calculated in the vdW range is still valid in the CP range as well. However, the non-
degenerate contribution, E™%2¢(R), and the pole term, Paéss(R), are different than

the values in the vdW range. The approximation used for the nondegenerate polar-

izabilities for the direct term holds true also for the mixing term, i.e.,

(l/ngﬁ(w) ~ (pS1 (w = O), &ﬁls(w) = &ﬁls(w = O) (865)

Thus the non-degenerate contribution, Wyg§%(R), reads

A mixing h ~ o Ap—2wR/c
Wisas (R) =— W ns1s(w = 0) apgis(w = O)/O dwT
c c \? c \3 c o\ 4
1+2(57) +5 (o) +9(28) +2(23)
X{—i_ wR M wR 6 wR 3 wR
23 hc "
T~ (472 ansis(w = 0) apsis(w = 0). (8.66)
Writing
e?h?
ansis(w = 0) = I (ns18)au. (W = 0), (8.67a)
~ en?
ansi1s(w =0) = e (ns515(0)) .. (8.67b)

where (@,515(0))q.. is the static nondegenerate the polarizability &,,s15(0) in atomic

units, Eq. (8.66|) leads to

Y A ymixin, 23 ~ a 7
WIBE(R) = = T (aus1g)on @ = 0) (@usis(0)an Br () - (868)
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Substituting the corresponding polarizabilities, we have

Jmbsng ) 23 [ 621v3) 18225v3 5, (@)7
3515 Ao 512 512 R
310 x 52 x 232 Eh <a0>
220 Ta \R/ ’
23 [ 442368 49348608 <a0>7
dra \ 390625 ) 390625 "\ R
228 % 3* x 23 x 251 E), sap\7

- (2 8.70

516 Ta <R) ’ ( )

—_— 23 4375+4/5 1296875y 5 7
Tmisns () — — 23 (43755 Y5 5, (%)
' 4o 13122 13122 R
5 ><7><23><83Eh<a0>
- 24 % 316 Ta \R/

(8.69)

Wisisd(R) = —

(8.71)

The total Wick-rotated contribution to the mixing term interaction is the sum

WIS (R) = Wiisiis' (R) + WSTE(R). (8.72)

no;

Thus, we have

3¥%x23 E, 3©9x52x232 E,

mixing o

Wisis (p) = — R + 5% —l (8.73a)
mixin 226 % 36 B, 228 x 3" x23x 251 E

W4S;1Sg(p> = — T F + 516 o p77 (873b)
misin 2x5'x7E, 51'x7x23x83 E,

Wighs®(p) = — ——— (8.73¢)

314 F - 24 5 316 Tap’

Notice that the degenerate part which depends on p~% dominates the nondegener-

ate part which follows R~7 power law. Determination of mixing type pole term,

ng’.?gg (R), follows the same type of algebra we used for the direct type pole term

Pd1rect mixing

nsis(R). For the 35-1S system, the mixing type pole term P3¢’ ¢ () is given by

2

Pisas (R) = " 3(dmeo) 2RO

Y _(8S[er2P(m = pu))(2P(m = u)|e7|15)
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Espss 2EspssR EypssR\’
“omsis |\ T J S e ) PO T e

EypssR\']  2FspssR . (. FopssR EypssR\?
’ — ’ - ’ . (8.74
* ( hc ) } + he s (2 he ) [3 ( hc ) <8 7 )

Substituting  (3S|712P(m = p))(2P(m = p)|r11S) = —42’;5?/5@3 and carrying out

few steps of algebra we get,
mixin 215\/g Eh dl 5 Eh 5CYP 50ép ?
Pasas” (R) = 37555 5 s (ﬁ) (%) [3 -5 (W)
dap * dap . [ dap dap 2
The mixing type contribution to the pole term for 45-1S system, Pgiigg(R), reads

PSR = ~grmesyag S WSIeTI3P(m = i) BP(m = e 118)

‘o Espas cos 2E3pasR 5 _5 EopasR ?
WL g he he
EspisR\* 2E3pasR . EspssR EspssR\’
E) ) 2 ) _ )
+( he > } + fic sm( he ) [3 ( hc )

_W > (4Slef2P(m = p))(2P(m = p)|e FI1S)

o Fopas cos 2E5pasR 35 EopasiR 2
L Tp he he
EspasR\* 2E5pasR . EspasR EypasR\’
, v 9 2PA57h B : .
* ( he > * he o0 he k he (8.76)

Substituting

S S|P (m = ) (3P(m = I1S) = oo,

I

S WSI2P(m = ) (2P(m = plFLS) = 2ol

0
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and carrying out few steps of algebra, we find

P (p) = —W%(amm (278];’%) {cos (%‘;) {3 5 (%)2
() | () - G) 1)
2 S () () o)
+ <%)4] + %sm (%) [3 - (%)2} } (8.77)

Similarly, for the 55-15 system, we have,

mixin 223 x 1447 B, 9E,
P5s;1sg(,0) = _319><—5\/EF<%S§>Q'U' (m

Yap 2 Yap 4 9ap . [Yap
5( == = “Lsin (=L ) [3-
(800) * (800) 200 ™™ \ 200
30 x 5% x 11\/3Eh< > 8By, 16ap 5
— — a.u. COS | — —
225 pb \ooLe 225h 225
Sap 2 Sap 4 16ap . [ 16ap Sap 2
. (%) * (%) M7 5T N L
216 5% x \/SEh< > 21 E), 2lap [, . (2lap 2
- ( a. cos | —— -5 | ——
34 x 78 6 8 200h 100 200
21ap 4 2lap . (2lap 21ap 2
== 3— (==£ . 8.78
+(200) }JF 100 Sm(loo 200 (8.78)

The mixing type contribution for nS-15 system decreases as n increases.

~__
—N—
o
@)
)

8.5. OSCILLATORY TAILS IN THE DIRECT TERM IN THE LAMB
SHIFT RANGE

We devote this subsection to the calculation of the interaction energy in the

long range of interatomic distance. By the long range interatomic distance, we mean
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the interatomic distances such that R > hc/L, where L is the Lamb-shift energy. At

this interatomic range, the integrand in the Wick-rotated the interaction energy

w4e—2wR/c

h o ) .
)2/0 dw 0415(1w)04n5(1w)T

et (dmeo)?
[1+2 (é) +5(£)2+6<£>3+3 (éﬂ (8.79)

is damped by oscillations in w. The contribution of the non vanishing frequencies in

n

Wi (R) = -

the polarizabilities is exponentially suppressed, which yields

—2wR/c

h < e
— o15(0) s (0) /O o —

7wt (4meg)

() o) e (R e ()]

= — R W 0518(0) O‘nS(O)' (8'80>

WIL(R) =

n

Here, we have substituted the value of the integral
e 2wh/e c c \2 c \3 c \4 23¢°
g |1+2(z5) +5 (GR) +0(Cr) +3(0R) | = 1 o
/0 TR {Jr or) TP \or) T Lr) TP LR e &8
The static polarizibily a,s(0) is the sum
ans(0) = @,s(0) + an,s(0), (8.82)

where @,5(0) is the degenerate and the a,,5(0) is the nondegenerate polarizability.

Thus, Eq. (8.80)), can be expressed as

23 hc _ 23 ke

direct _
- S;ls(R) AR (47eg)? @

n

——direct direc
:WnS;ls(R> + WgS;l;(R>7 (883>
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where

——direct 23 he

Wisas(R) = —Wm a15(0) @,s(0) (8.84)

is the degenerate contribution to the direct interaction energy and

23 he
AT R (4mep)?

Wisss(R) = —

15(0) ans(0) (8.85)

is the nondegenerate contribution to the direct interaction energy. The static polar-

izability due to the degenerate states, @,s(0), can be expressed as

%2¢ 2 3 1 1 9
ans(0 7; Z (nS|z?nP(m = p))? (—En + E) (8.86)

Substituting a;5(0) = 9e*h?/(2a*m3¢*) and @,s(0) from Eq. (8.86)), Eq. (8.84) yields
direct 23 he
W,s15(R) = — —+—— 0) @ns(0

23 9w e2 \?2mdc
 47RT 204m3ct 9

4dmeghc

x 2 2 lnSla’lnP(m = u>>|2< o %)

j=1 p=—1

23 BN s a2
" 4maR7 (amc) (oFme?)

- i i |<"S‘xj|”P<m=u)>|2<_ Ei 2 )

j=1 p=—1

T
1
23a 1 2

=1 p=-1

Substituting

3

30> 1381273 (m = p))[* = 1624, (8.88)

J=1 p=-1
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1
> [(4S|27[4P(m = p))|* = 540 a3, (8.88h)
—
1

|(58|27[5P(m = p))|> = 1350 ag, (8.88¢)

M“@Mw

Jj=1 p=-1

——direct

in Eq. (8.87), W, 5.15(R) results

odirect 3726 Eh 2Eh 7

WSS 15( ) 47‘(‘0( (—5—3 + f3 ) Eh (R) s (889&)
Tdirect 12420 Eh 2Eh 7

Wasas(B) = - dra <_£_4 * Fu ) En <R> ’ (8.89b)
Tdirect 31050 Eh 2Eh Qao 7

Wasns(R) == = <—£—5+ = ) En (R> . (8.89¢)

On the other hand, the nondegenerate polarizabilities a,,5(0) are given by

~ 2025 e?h? 4992 e2R*  _ 35625 e?h?
Oég,g(()) 0445(0) = — 0455(0) = (890)

2aim3ct’ atmsct 2atm3dct

Substituting nondegenerate polarizabilities form Eq. (8.90) and a15(0) = 9¢2h?/(2a*m3c?)

in Eq. (8.85)), we get

419175 . /ag\”

W) = - T2 B (T - (8.91a)
129168 . rag\"

Wiket(R) = — —— b (—0) : (8.91b)
T3TA375  rag\”

st 5(R) =— 1670 Ej, (ﬁ) : (8.91¢)

Thus the Wick-rotated part, Wagst(R), which is the sum of the degenerate contri-

n

——direct

bution W, ¢.;5(R) and the nondegenerate contribution ngefg(R) are given by
419175 E, 2E Ey,
direct
= 3726 —— 4+ — )| —— 8.92
W) = - [ S arao (- 2+ )| (8.922)
516672 E 2k E
direct (p) = — +12420 (=0 + 20 ) | — 8.92b
Wik o) = - | R (8.920)
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7374375

Wisiis(p) = (8.92¢)

Ey 2B, Ey,
Fs

31000 | ==+ — || ——=.
* ( Ls * Arap”

Both the degenerate and nondegenerate parts obey p~' power law. However, the de-
generate part dominates the nondegenerate one. The Wick-rotated contours enclosed
the low lying virtual P-states which are available for a dipole transition from the ref-
erence state. The contribution of the pole in the long range limit can be written

as

n

i 2¢?
Prsis(R) = T 3(dne) I Z(nS\ﬂmP> -(mP|F|nS)
m=2

EmP,nS EmP,nS ! EmP,nSR
xalg( - )( e ) oS (ZT) (8.93)

For n = 3,4, 5, the direct pole terms are given as

irec 23 054 Eh 5 Eh 50ép
Pgs s(p) =~ 57(0415%@. <%) cos (3— , (8.94)
rpdlrect( ) . 2 x 3P x13%at Eh< 7Eh 70ép
45;15\P 712 « 194 p2 15 a.u. 288h 144
22 (6] Eh SEh 306,0
312 p2 < IS>a.u. (32h) ( (895)
23 x 5% x 14472 o* E), 9E) 9ap
direct _ Jap
Pss: 1s(p) = 332 2 (18)au. (80071) cos (40())
5x 112 o Eh< > 8 Ej, 16ap
T 5% < a5 5 \& a.u.
2% x 32 p2 V1 2250 225
2 x 35 x 5atE), 21 E), 21lap
- a.u. 8.96
e (ashe (20071) ( 100 ) (8.96)

See Figure[8.4]for a comparison between the Wick-rotated and pole type contributions
to the direct term in the Lamb-shift range for the 35-15 system. The energy curves
of the 45-15 and the 55-15 systems are similar to that of the 35-15 system. The
pole term contains an oscillatory cosine term whose amplitude goes as p~2. In this

range, the direct term of interaction energy for the nS-15 system is larger for the
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large value of n. As shown in Figure [8.4] in the very long range of inter atomic

distance, the pole type contribution dominates over Wick-rotated contribution.

_ i —(di ~ (dir)
10-15 4 — |P§Es [ Wasits+Wasas
E 10-20-1 mmmmrﬂmf—\f—\/—\f—
i 10-25 +
~
’5 10—30 .
S
§
Lr.] 10—35..
P)
E 10—40 4
10_451 [ | 1 L | 4 ' .

2.0000005  2.0000015  2.0000025  2.0000035
R [units of 10'%q,]

Figure 8.4: Distance dependent direct-type interaction energy in the 35-15 system in
the very long range. This is a semi-log plot. The vertical axis is an absolute value of
the interaction energy divided by the Plank constant. We have used the logarithmic
scale on the vertical axis. The pole-type contribution approaches to —oo upon the
change of sign of the pole term contribution.

8.6. OSCILLATORY TAILS IN THE MIXING TERM IN THE LAMB
SHIFT RANGE

Similar to the direct term contribution, the mixing term contribution to the

Wick-rotated part of interaction energy can also be written as

——mixing o

WIS (R) =W, gns (R) + Whet®(R), (8.97)

n
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where

Tomixing 23 hic

Wisas (R) = _WW ns15(0) Tns15(0) (8.98)

is the degenerate contribution to the mixing interaction energy and

Y A mixin 23 hc ~
Wyshs () = Py W%Sﬁ(o) ps15(0) (8.99)

is the nondegenerate contribution to the mixing interaction energy. Here, the degen-

erate part of the static polarizability, @,s15(0), is

Fs15(0) = %62 jiusujmp) (P2 |nS) ( _ Lin + J%) (8.100)
We have,
23:(18|xj|3P> - (3P[27|35) = —2422/3613, (8.101a)
j=1
iusw 4P - (AP|27]4S) = — 11150652952ag, (8.101b)
j=1
iasw 5P) - (5P|27]5S) — —25;);;/5@3. (8.101¢)

j=1

The static polarizability, a,515(0), with Eg as the reference energy are given as

6213 e2h2

&35&(0) = — 512 oz4m3c4’ (8102&)
442368 e2h2

as15(0) = = 350695 aimact” (8.102b)
4375v/5  e2h?

0455'&(0) = — (8.102C)

13122 adm3ct’



Substituting the values of @,s515(0) and a,s15(0) in Eq. (8.98)), we get

——mixi 37 x 232 E 2F E

mixing _ . _h h h
W3S;IS (p) - 216 ( £3 + _F3 ) 7TOép7’
——mixi 225 x 31 x 23 E 2F E

mixing _ . _h h h
W4S;15 (p) - 514 ( £4 + f4 ) 7TOép7’
T mixin 59 x 7 x 23 Eh ZEh Eh
Wiei(p) =22 227 b 270 _

5S5;18 (p) 316 ( £5 + .F5 ) 7TOép7
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(8.103a)
(8.103b)

(8.103c¢)

As we calculated in the CP range, the nondegenerate contribution to the Wick-rotated

part of the interaction energy for 35-1.5, 45-15, and 55-15 systems are given as

30x 52 %232 B,

Wisas* (P) ==z <t (8.104a)
——mixin 228 % 3% x 23 x 251 E,
Wigas® (p) = 30 —d (8.104b)
T mixin 511 X 7 %X 23 x 83 Eh
Wisas® (P) =i 310 —t (8.104c)
Thus the total Wick-rotated part given by
Wisis®(p) = Wisis: (p) + Wishs® (p), (8.105)
for nS-1S system with n = 3,4, 5 reads
. 37 %232/ E, 2E,\ 3°x5x232] E,
mixing o
W35;1s (p) =— _T ( - £—3 + 7 ) — 520 } —a (8.106a)
mixin [225 x 3% x 23 E, 2E, 228 % 3* x 23 x 251 E,
W4S;1sg(/)) === |\ — &7 T - T -
L ) Ly Fu 5 Tap
(8.106b)
mixin [59 x 7 x 23 E, 2FE, 5 x 7 x 23 x 83
Wss;lsg(P) =- —( ) - . (8.106¢)

316 L 24 x 316
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An extra contribution comes from the poles present in the Wick-rotated contours.

The mixing pole term, in the long range limit, can be written as

mixin, 262 -
Prsas (B) = N > (nS|FimP) - (mP|F]1S)
m=2
Enpns\ (Empns\' EppnsR
X 04n51s< ;; S> < hlz S) coS (2%) ) (8.107)

Substituting the corresponding matrix elements and the values of E,,p,s for n =

3,4,5, we have
mixin. 23\/§ Oé4 Eh 5) Eh 50ép
7)3S;15g(p) :310 % 52 p2 aggﬁ (m) COs (%) s (8108&)
mixin 2x32x13a*E), TE), Tap
P4S;1Sg(p) = 74 % 194 e (@15)a.u. (m) cos (M)

1 CY4 Eh 3 Eh 3(1/,0
— 2X—397<0615>a‘u. (%) COS <E 3 (8108b)

g 2 x 1447 o' B, 9B, 9ap
mixing _
Paoas (V) = = S g B g2 \slon (800h) cos <4oo)

11V a4Eh<a > 8 E), o [ X60P
218 x 32 x 51 p2 VO en | 9o5p 225

24 x V5 arE, 21 E, 21ap
A Sl el 2 1
it gz (slew (20071) cos ( 100 ) (8-108¢)

The mixing part of the total interaction energy is the sum of the Wick-rotated term

and the pole term. The Wick-rotated term follows p~7 power law while the pole term
contains a cosine term whose magnitude falls off as p~2. Notice that the contribution
of the pole at w = —FEsp,g/h + ic is significantly larger than the other pole at

w= —FE,pns/h+ie with m > 2.
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9. CONCLUSION

To study the long-range interaction between two neutral hydrogen atoms, we
have used the time ordered perturbation theory. We observed that the odd order
perturbations vanish and the second order terms correspond to the self-energy con-
tribution and talk only about the Lamb shift of the individual atoms. Thus, what
we care about here is the fourth order perturbation term, which finally gives the CP
interaction.

The functional form of the interatomic interaction depends on the range of
the interatomic distance. If both the interacting atoms are in the ground state, the
interaction follows the usual Cg(15;15)/RS functional form for ap < R < ag/a. The
distance R, which ranges from the Bohr radius ag to the wavelength of the typical
optical transition ag/« is the so-called vdW range. For the 15-1S system, we find
C6(15;15) = 6.499 026 705Eal, which agrees with the previously reported result
[53; 180 BT [82]. The interatomic interaction has the well known R~7 functional form
if the distance is larger than the wavelength of optical transition i.e. ag/a < R. Thus,
when both atom are in ground state fourth-order time-ordered perturbation theory
is applied and retardation regime is achieved for ag/a < R

The situation is different if the atom interacting with the ground state atom
is in an excited state. For excited reference states, we match the scattering ampli-
tude and the effective Hamiltonian of the system. If the atom interacting with the
ground state atom is in the first excited state, quasi-degenerate levels are present.
In this case, we have to differentiate three ranges for the interatomic distance: vdW
range (ap < R < ap/a), CP range (ap/a < R < he/L), and Lamb shift range
(R > he/L). In the vdW range, the interatomic interaction between the atoms A

and B can be formulated in the functional form —Cg(25;15)/R°. A complication



260

arises as [15) 4|25) g and |2S5) 4|15) g are energetically degenerate. Thus, we have the
mixing term contribution as well. We have thus expressed the vdW interaction as
the sum, C4(25;15) = Dg(2S;1S5) £ Mg(25;15), where Dg(2S;1S) represents the
direct term and Mg(2S;1S) depicts the mixing term contributions. For the 2S5-15
system, there is a clear discrepancy in the literature among various results. In Ref
[80], Tang and Chan reported that the direct coefficient Dg(2S;1S5) is 56.7999 Eyad
and they did not calculate mixing terms contribution. In Ref [53], Chibisov pre-
sented the calculation of both the direct and the mixing term. Chibisov claimed
that Dg(25;1S) = 55.5(0.5) Epal and Mg(25;1S) = 27.9819(2) Epal. In Ref.
[83], Deal and Young reported that Dg(2S;1S) = 176.7523Eal and Mg(2S;15) =
27.9832E,aj. Our finding, ignoring the relativistic correction, shows Cg(25;15) =
(176.752 266 285 + 27.983 245 543) Ejal. We confirm all the significant figures of the
result reported in Ref [83], and we add few more significant figures. We noticed that in
both publications [80] and [53], authors did not include the contribution of the quasi-
degenerate 2P levels of the excited atom. In the CP range, the interaction is still of
the R~ functional form. We find C(2S5;1S) = (243/2 F 46.614 032414) E},af, which
is smaller than that of C4(2S;15) coefficient in the vdW range. For the very large in-
teratomic distance, the interaction energy is the sum of the CP type —C7(2S;15) /R~
term and the pole term which has an oscillatory distance dependance whose ampli-
tude falls off as R~2. The pole term arises as the Wick-rotated contour of the complex
w-plane picks up a pole at w = Ly + i€, where Ly = E(251/) — E(2P5) is the Lamb
shift.

We have examined the Dirac-0 perturbation to the interaction energy of the
15-15 and 2S5-15 system. The Dirac-d perturbation is a local potential which is non-
zero only at the origin. It is the first time that the d-perturbation to the interaction
energy for S-states have been studied. The Dirac-6 modification of the interaction

energy is of great interest as the fine structure, the hyperfine correction, and the
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leading radiative correction to the vdW interaction for S-states [84] are of Dirac-¢
type. The d-perturbation has vanishing contribution to the Hamiltonian of the system
as the probability density of the P-states vanish at the origin. However, it modifies
both the energy and the wave function of the system. The Dirac-é correction to the
interaction energy is in the order of a? times the plain interaction. If both atoms
are in the ground state, there is no degenerate state to consider. The d-perturbed
interaction energy for the 1.5-15 system ignoring the relativistic correction is found to
be E(15;1S5) = —34.685 544 399 (%)6 E,. In the CP region, where the contribution
is chiefly due to the degenerate one, both the energy part and the wave function part
of the 15-18 follow 1/R" behavior which is negligible. On the other hand, the energy
part and the wave function part of perturbed interaction energy in the Lamb shift

range are found to be

387 fap\7 29« rap\7
SESs(R) = =7 () B and SEGs(R) = 52 (F) B O)

For 25-15 system, we observed that the d-perturbed interaction energy, in the vdW

range, is

— T
%

6
—(367.914605710 F 58.095351093)a> E, ( R) , (9.2)

0E(25;19) =

which is clearly in the 1/R® functional form. A very peculiar behavior is observed
as the § perturbed interaction energy follows the 1/R® power law in the CP range.
The energy type contribution, 6 5#)(25;15), and the wave function type correction,

SE®)(25;1S5), both of them are solely the contributions given by the quasi-degenerate
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states, which are

§D(25;18) + 6 M (25:18)

SEH(25;18) = —

R5
891 o rag\s
= — (3_2 + 10.682382428> —E, <E) : (9.3)
W) (oq. ) (oq.
55025, 15) — D8 (25:15) ;651\46 (25;15)
- 81 2 o 6
_ ( T 58.439051900) 0*E, (R) . (9.4)

It is observed that, in the van der Waals range, the dominant contribution comes
from the wave function type correction, however, in the CP range, the energy type
correction is the dominant one. In the Lamb shift range, the interaction energy is
the sum of the CP term which follows a R~" power law and the long range cosine
term with amplitude falling off as R~2 and it is in the order of 1073 Hz. From the
experimental point of view, this is too small quantity to consider.

In this work, we have also analyzed the hyperfine resolved 25-2S5 system com-
posed of two electrically neutral hydrogen atoms. The analysis of the 25-25 system
involves fascinating interplay of degenerate and nondegenerate perturbations theory
with a full account of hyperfine splitting. Our approach to investigating the 2S5-
25 system allows us to do the hyperfine calculation and to estimate the hyperfine
pressure shift for the 25 hyperfine interval measurement.

Each hydrogen atom has four hyperfine states for S-states, namely the hy-
perfine singlet for F' = 0 and the hyperfine triplet for /' = 1 and similarly the four
hyperfine states corresponding to P-states. Thus, the basis set of the two hydrogen
atom system has 64 states. The 64-dimensional Hilbert space corresponding to the
hyperfine resolved 25-2S system decomposes into five manifolds. We noticed that
the adjacency graph serves as a great tool to study a higher dimensional matrix.

Interestingly, each manifold further decomposes into two sub-manifolds of the same
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dimension. In each of these sub-manifolds, the Hamiltonian matrix can be solved
analytically. In these sub-manifolds, there are several degenerate subspaces which
are first order in vdW shift, i.e., proportional to R~3. However, the hyperfine tran-
sition where both atoms are in S-states undergoes the second order in vdW shift,
i.e., proportional to R7%. We also study the evolution of the energy levels, which are
so-called the Born-Oppenheimer potential curves, in all the hyperfine subspaces. We
observed a strange but a highly impressive feature of level crossings in the hyperfine
resolved 25-25 system. In F, = +2 and F, = —2 manifolds, no level crossing oc-
curs. However, in F, = +1 and F, = —1 manifolds, the level-crossings occur between
the levels of different irreducible sub-manifolds, while in the F, = 0 manifolds, the
level-crossings present not only between the levels of different manifolds but also the
levels of the same irreducible manifolds may cross. We reveal that the crossings are
unavoidable, which repudiates the non-crossing theorem discussed in the literature
so far. Thus, we can conclude that the system with two energy levels follows non-
crossing theorem; however, the higher-dimensional irreducible matrices do not always
follow the non-crossing rule. We are not much aware of the applicability of such phe-
nomenon in spectroscopy; however, this certainly gives an insight understanding the
Born-Oppenheimer potential curves.

We also studied higher excited S-states of the hydrogen atom interacting with
the ground state atom. For excited reference states, interaction energy is calculated
matching the scattering amplitude and the effective hamiltonian of the system. For
mathematical simplicity, we have also employed the method of Wick-rotation, which
is one of a standard calculation tricks of rotating the integration contour. The Wick-
rotated integration contour enclosed poles at w = —FE,,p,s/h + i€, where mP with
2 < m < n are the low lying virtual P-states of the atom which is at nS-state. The
pole term contribution to the interaction energy thus arises naturally. In the vdW

range, both the Wick-rotated and the pole terms of both the direct and the mixing
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type contributions to the interaction energy are of R~ type, although the dominant
contribution comes from the Wick-rotated term. We notice that the higher principal

quantum number of the atom, larger the direct contribution E,(;g.rle?)(R) and smaller

the mixing contribution Eg”{?g)(}%) to the interaction energy. In the CP range, the
Wick-rotated type input is the sum of the R~¢ and R~7 terms, and the pole type
contribution has cosine terms obeying the power law R=2, R~*, and R~% and sine
terms obeying power law R~3 and R~°. An nS-1S system for a particular value of n
has n — 2 poles arising from the low-lying virtual m P-states, where 2P-states have
the dominant contribution.

In the Lamb shift range, the Wick-rotated term follows the R~7. In the case of
pole term, the dominant contribution comes from the cosine term whose magnitude is
of R72 type. In this range, the Wick-rotated term and the pole term are of the same
order of magnitude. The interaction energy of the nS-15 systems in the vdW range is
negative, which indicates that there exists the electrostatic force of attraction between
the atoms which establishes a weak chemical bond between them in the vdW range.
However, in the CP and Lamb shift ranges, the electrostatic force is not necessarily
attractive. Indeed, its attractive and repulsive nature oscillates.

For excited reference states, in vdW range both the Wick-rotated and the
pole term follow the same R~% functional form, in Casimir-Polder range, there is a
competition between Wick-rotated (R~®) and the oscillatory pole term, and in the
Lamb shift range, an oscillatory pole term whose magnitude falls off as =2 dominates
the Wick-rotated term. In short, if an atom interacting with the other atom in the

ground state is in an excited state, the system never reach to the retardation regime.
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A.1. DISCRETE RADIAL GREEN FUNCTION

With the help of the completeness relation in discrete representation, one can

write (1]r2) as below:

<F1‘1‘F2> = Z(Fl‘n€m> <n€m‘7?2> = Z wnﬁm(rla ‘917 901)¢sz(7"27 927 902)

ném ném

= Z Ro(r1) Rye(12) Yom (01, 01) Yy, (02, 02)

ném
(n—+¢—1)! 2 \* 14 7o 2r; ¢ 219 ¢
S exn (-
2n(n+0)! \(nay nao nao nag
2 2
et (2 e, (22 (A1)
0 nag

Here, (Flnfm) = nem(r, 0, ¢) is the complete eigenfunction for Schrédinger-Coulomb
Hamiltonian. We have used an ansatz which states that the total eigenfunctions can

be expressed as the product of a radial part and an angular part as

wném(ra 07 90) :Rnf(r)}/lm<97 §0>7 (Az)

where the radial wave function R,,(r) is given by [85]

(n—0—1)17"2 200 1 r\! r i1 [ 21
_ — )L —_— A.
Rp(r) { (n+10)! n? ag/2 nay *xp nag) "1\ nag /)’ (A-3)

and the angular part Yy, (6, ¢) is the usual spherical harmonics given by

—m)!1]? i
(%;(% )] )'} Fi (cos(On e Y

Yim (0, ) = {

Here, L2} <2—r> and P} (cos(0)) are respectively the associated Laguerre and the

associated Legendre polynomials. In what follows, we generalize this concept to derive
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discrete radial Green function. The total discrete Green function is given by

o o1 ) 1 )
G575 ) =( ) = S ) gt
_ Z wnem(ﬁ, 01, 901)7?;%1(7”2, 0, 902)
E,—F
ném
Z (n—¢—-1)! [ 2 3 ry + 19 2r, ¢ 219 ¢
= exp | —
E —FE 2n(n+0)! \ nag P nag nay nao
27”1 27”2
2, () 2y (22) Vi Ono)VinO ) (A5)

Here, F), is the energy eigenvalues corresponding to the eigenvalue equation

I g2 O‘—hc) Roo(r) = EpRp(r). (A.6)

2me, T

HRpu(r) = (-

Let us rewrite R,(r) as

Rug(r) = Cug " exp (—i> L) (ﬁ> , (A7)

nago nagp

where

o[-t V2ottl 1 /1 \* (Ag)
e (n+£)! n? ag/2 nag) ‘

is a constant independent of r. In the following derivation, we will be using L in place

of L2*} < ) just to save some space. Now, we have

R - h
HR(r) = <_2m V2 — a70> Che 7° exp (—L> L

R (0* 20 ((l+1) ahic P r
= |- - = -
[ 2m. (87“2 + ror r2 ) r ] Cne 17 exp ( na0>

2 ¢
= —h—C'ngﬁ 0r*~texp D )L- 7ﬁ—exp S N rlexp - 2L
2m,  Or nag nag nag nag ) Or
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h? 1 0
- Cn E eXp —L I_ — —TZeXp —L L + /r‘gexp _L _L
2m6 nag nag nag nag ) Or

2
r
1 2
Cne[ €€—|— meac] o exp (—L)L

hr nag
00— 1) l (0 l 1 1 0
=— C’n L — L —L - L L — —
2me ¢ [ r2 nagr o ror nagr * (n&o)2 nag Or
¢ 0 1 0 0? r h? 2/ 1 0
+-—L— — L+ —L|r - = e — |-L— —L+ —L
r@r nag Or * or? }T P < na0> 2meC “r L" nag * or ]
h? 1 2
X rfexp NI Che _f(ﬁ +1) + et rt exp - L
nay 2m, r2 hr nag
h? 1 r 0? 2r\ 0
= — - - —L 20+2— — ) —L —(¢—1)L
L eorten ) (- 2) 8]
h? 20 2 1 2meac 2n 20 2
- —— - +—+ —~ +—+
2m, nagr  nagr (nao) hr nagr  Nagr  Nagr
x 1t exp (—L> L. (A.9)
nagp

Using the fact that L = Liefgl_l (n%) satisfies the associated Laguerre differential

equation:

0? 2r \ 0
—L 20+2— — | —L —/—-1L=0 A.10
"o + ( + nao) or +(n ) ’ ( )
Eq. (A.9) reduces to
h? 1 2meac 2 r
HR, = - < - — Cn ¢ ——|L
«(r) 2m, {(nao)Z * hr aor} erexp ( nao)
h? h h?
= |- 5 — ac—i— Crort exp N
2men2ad r MeayT nao
042mec20 ¢y "\, a2mec2R () (A11)
=— 5 Cur’exp | —— | L=———5—Rulr) .
2n? ¢ P nag 2n?2 ¢

Here, we have used ag = h/(am.c). From Eq. (A.11)), the eigenvalues E, can be

written as

(A.12)
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If we define a new quantum number £ such that k = n—/¢—1, the associated Laguerre

polynomials Lfffgl_l (7127’”0) becomes Li“l <(k+£2+)ao> and the energy eigenvalues, in

this condition, can be written as

a’m.c?

Ey=—F—"-—7—"7—. (A.13)
2(k+0+1)
The energy difference E,, — E in Eq. (A.5) is thus given by
2. 2 2. 2
En_E:_ozmec [ _a'mec
2n? 212
Lme (1 1Y Rty
2 2 2meat \ n2v?

Substituting the value of the energy difference E,, — E from Eq. (A.14) to Eq. (A.5)),

we get
i) < 3 S G () e () ()
(E_Z)EL%%! (%) qufjel_1 (222) Yém(ela 901>Yem(927802)
:4;;8 n[zm n? V—z Z (7:1(_71%1-_5)1!)! <nio>%+1 P <_T1"—20T2> (rars)
2 (2 ot (22 ) Vo Vi), (19

The total discrete Green function is defined as

Gdls 7“1,7“27 ngls 1,72,V Ykm(91,901)3/2m(92,902) (A-16)

ném
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Comparing Eq. (A.16) with Eq. (A.15]), we get the discrete radial Green function

g8 (ry 9, v) as

. Am, V2 n—4{0—1)! 2\ 2 ro+r
g¢°(r1,ra,v) Z ( ) ( ) exp (— : 2> (7“17°2)€

R —n*—v> n(n+)! \na nag

2r 2r
g (2 e, (22, (17

nag nagp

The (¢=1)-component of the discrete radial Green function gi* (ry, ro, ) reads

N ( ) dm, 0o 2 9 3 T + 79 ( )
E(ry,re,v) = E xXp i~ nr
Gp—1 (71,72, 72 (n? — 12)n2(n2 — 1) \ na, p nag 172

n=2
2T1 27“2
L3 ==\ — . Al
n—2 nag) n—2 (nao) ( 8)

The sum over n starts from 2 not from zero as L?,(z) = 0 = L3, (z).

A.2. DISCRETE GROUND STATE POLARIZABILITY

The ground state static polarizability due to discrete energy levels is given by

15)

1
TlH_ETQ

2
af(w = 0) =2P%(w = 0) = 2% <15

2e2 [ * :
:T T%drl/ ngTQRlo(ﬁ)ﬁg?l:sl(?”sz,V) Rio(r2) 12
0 0
32m, e /OO A /OO 4 ( 7"1+7“2> - 1
= rydr rodry exp | — P
3m2ad J, M), 2? P ao ;nQ (n2 — 1)

2 \? 2 2
(_) exp (_“ + ) L;H (_) o, (_) | (A19)
nag nag nag nagp

Here, we have used the value of gi% (ry,r9,v) from Eq. (A.18) with v = 1 and

substituted the radial part of ground state wave function of hydrogen which reads

2 o=r/a0

Rlo(’f‘) = 3 <A20)
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Let us use dimensionless variables p defined as p; = 2r;/(nag). Then Eq. (A.19)

becomes

N 32me nag\" [ -
afg(w = 3 h2a3 Z n2 n2 ( 2 ) /0 fi dpl/o 0 dpx
n+ pan +

exp (_%) exp (_pl . p?) L3y (p1) L2y (p2)
4 2 OO 5 o0

agMe € n 4 (L+n)p 3

_ Z "\ L d

1272 nzg(n2-1f2/C e ( 2 o

/0°° Py €Xp <—%) L3, (p2) dps. (A.21)

Interestingly, the p;-integral is identical to the po-integral. Hence, one can write

Eq. (A.21) as

di e? a% = n’ - (1+n)u/2 73 ?
S(w=0)= w2 s (u)d . A.22

Here, we have also used a = h/(agm.c), and E; = a’m.c?, where o and Ej, are
respectively the fine-structure constant and the Hartree energy. We can evaluate the

u-integral in Eq. (A.22)) using the standard integral identity [43]

Fy+1)I'(n+p+1)
nl'(pn+1)

1
(=) TP (= ny + Lpt 1),

/(MWNM@Z
0

(A.23)

which yields

o0 T(5)T(n + 2 2\’ 2
/ ut e~ (Hmu/2 L2, (u)du = (B)L(n +2) oF1 | 2 —n,5;4; .
0 (n—=2)I'4) \1+n 1+n

(A.24)
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Substituting the value of the integral in Eq. (A.22) and simplifying the expression

using standard integral identity [43]

—Da+ k=
Fi (- Liasz) = (1 — )f E-Hatke
oF (=k,a+1;a;2) = (1 — 2) =1

we get

2,2 9 2n
dis e‘ag 1024 n (n — 1)
aje(w=0)= E ,
5w =0=F ~ 3 (n-1)°(m+1)° \n+1
which yields

dis 62&(2)
of(w = 0) =0.362240 952 L.

Recalling the total ground state static polarizability of a hydrogen atom

9e%a?
o w:o :——7
15 ) =3 E,

(A.25)

(A.26)

(A.27)

(A.28)

we come to the conclusion that, the major contribution in the ground state static

polarizability comes from the continuum wave functions.
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B.1. ORIENTATION

The AC Stark shift, which is the shifting of spectral lines in the presence of an
oscillating electric field, can be used to trap neutral atoms. The AC Stark can also
be useful in optical lattice clock experiments [806} [87: [88]. We here concentrate only in
the trapping of the neutral hydrogen atoms. The AC Stark shift for the ground state
is different to that of the excited states of the transition. The AC Stark shift vanishes
if the trapping laser of particular wavelength called magic wavelength is turned on
[86; 89 90]. The calculation involves the determination of the point, where the AC
Stark shift for the ground state is equal to that of the excited state, and the shifts
due to the laser cancel. In other words, the atom does not feel the presence of light
if the laser wavelength matches its magic wavelength value.

The AC Stark shift for the state |¢) of an atom depends on the intensity of

the laser field and the optical frequency of the photon which is given by

I
AFE 0 = —TLC a(é,wr), (B.1)
0

where I, stands for the intensity of the laser field. The I}, is proportional to the square
of the amplitude of the electric field £, mathematically, I} = %eocé'z. a(p,wr) in
Eq. represents the dipole polarizability of the state |¢) [91}; 02; O3].

The magic wavelengths corresponding to the 25-1S transition of a hydrogen atom
is computed in reference [94]. However, the author took only the discrete states
of the hydrogen atom into account. The fact is the contribution of the continuum
states can not be ignored. We already saw in Appendix A, for the ground state, the

dominant contribution comes from the continuum states, not from the discrete one.
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The following definition of the dipole polarizability

1

— —|

2
a(¢’“L):%Z<¢ "Hi—E+hop

+

¢> - Pyw). (B2)

includes the contributions of both discrete and continuous parts of the spectrum. The
Ha=p?/(2m.) — (ahc)/r, E, and P, in Eq. (B.2)) are the atomic Hamiltonian of the
system, the energy eigenvalues, and the P matrix element for the atomic reference

state ¢. The Pig, Pyg, P3s, Pis, and Pss matrix elements are given by Eqgs. (3.44)),

(3.56)), (3.66), (3.73]), and (3.74) respectively. The Psg matrix element reads

P(6S,t) =

atm3ct

e [ R T)Bii e (39439108405t24 — 3444722282t

— 113551229560t% + 9795349850t*! 4 135698822058t*° — 11514250414

— 87425932088t 4- 7253828382t'7 + 33018970995¢'¢ — 2654366212t

— 7439943344t + 569035620t 4- 971507820t — 65940540t — 67724400¢°

+ 1350940t° 4+ 2692555t + 1404750t — 509400t% — 501150¢° + 200650¢*

442368 t°(—1 + 36t2)
25(—1 + t2)14

+ 99850t* — 45400t* — 9050t + 4525> —

t—1)>
x (202365 — 293265 + 1410¢* — 260¢> + 15)% L Fy <1, —6t; 1 — 6t; Et . 1;2>

40 +2 9 —-1/2
_ 080401 ]; where t= (1 + ﬂ) . (B.3)

1 —1¢2 a?mc?

The contribution of the degenerate P-states has been excluded from P(6S,t) sub-

: h2e? 68040 ¢2
tracting ——=— [(1%2) .

Work to the magic wavelengths for the 25-1.5 and 35-1S transitions in hydro-
gen atoms including the relativistic correction is presented in Ref. [05]. However, the
relativistic correction, which is in the order of a? ~ 10~* depends on the laser-field

configuration. It is different for the different experimental setup. On the other hand,
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the dominant correction to the magic wavelengths in the non-relativistic one-particle
approximation comes from the reduced mass correction [96]. More explicitly, the
reduced mass correction to the wavelength is of order m./m, ~ 107*. The P matrix
elements are proportional to the square of Bohr radius, ag = i/(amc), and inversely
proportional to the Hartree energy, E, = a?mc?. Thus, the reduced mass correc-
tion on the dipole polarizability and hence the AC Stark shift has overall factor of

(me/m,), where the reduced mass m, of the system is given by

MMy

(B.4)

m’f’ - T
Me + My,

where m, and m, are the masses of an electron and a proton respectively. In this
work, we also calculate the reduced mass correction of the magic wavelength, AC

Stark shift, and the slope of the AC Stark shift at the magic wavelengths.

B.2. MAGIC WAVELENGTHS AND AC STARK SHIFT
Let us recall the AC Stark shift corresponding to the nS-state, which reads

Iy,
€oC

AFEac(nS) = — a(nS,wr). (B.5)

Then the difference in AC Stark shift between an excited state and the ground state,

ie.,

I
AEsc(nS) — AEsc(18) = — ELC [a(nS,wp) — (1S, wp)] (B.6)
0
can be written as
I
AEsc(nS) — AEAc(1S) = == figns(wr), (B.7)

2 €gC
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Table B.1: Influence of the reduced-mass correction (RMC) on the magic wavelengths
A, and the AC Stark shifts AFE), for nS-1S transitions, where n = 2,3,4,5,6.

Quantity condition transitions
95-15 | 35-1S | 45-1S | 55-1S | 65-1S
without RMC | 514.366 | 1371.11 | 2811.24 | 493599 | 7588.47
A (in nm) with RMC | 514.646 | 1371.86 | 2812.77 | 4938.68 | 7592.60
without RMC | -221.222 | -212.290 | -211.249 | -211.026 | -210.964
. IL
ABy (i owfaH2) | o rve | 221584 | -212.637 | 211,505 | -211.371 | -211.300
where

fisns(wr) = a(nS,wr) — (1S, wy). (B.8)

The magic angular frequency satisfies the condition fig,s(wy = war) = 0, which is the
point of interaction of the polarizability of the ground state and that of the excited
state of interest. Alternatively, this is the point where the difference of AC Stark
shifts corresponding to the ground state, and the excited state vanishes nullifying the
systematic uncertainties (see Figures (B.1) - (B.5))

The magic wavelength, A,;, for the hydrogen nS-1S transition is given as

h h
th =Fy = —C - )\M = ¢ .
)\M FLWM

(B.9)

The magic wavelengths, Ay, and the AC Stark shifts, AF ¢, for the 25-15,
35-1S, 45-15, 55-15, and 6S-1S transitions are listed in Table (B.1). The magic
wavelength Ay, = 514.646 nm for the 25-15 transition lies in between the 2S5-3P
transition (656.387 nm) and 2S5-4 P transition (486.213 nm) of a hydrogen atom. The
magic wavelength Ay, = 1371.86 nm for the 35-15 transition lies in between the 35-
4P transition (1875.39 nm) and 3S-5P transition (1282.01 nm) of a hydrogen atom.

The magic wavelength Ay, = 2812.77 nm for the 45-15 transition lies in between
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Figure B.1: AC Stark shift coefficients for the 15- and 2S5-states for inten-
sity, I, = 10kW/cm? as a function of laser photon energy E, = hwy. In
Figure (a), the dashed line at AE ¢ ~ 0 represents the AC Stark shift co-
efficient of the 1S-state while the solid curved lines represent the AC Stark
shift coefficient of the 2S-state. Figure (b) shows the AC stark shifts near
the magic wavelength, A/, for 25-15 transition. The AC Stark shifts of the
1S-state (dashed line) and the 2S-state (solid line) intersect at (2.41043 eV,
-2.21222kHz)).
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Figure B.2: AC Stark shift coefficients for the 1.S- and 3S-states by a laser
light of intensity, I, = 10kW /cm? as a function of laser photon energy E., =
huwp,. In Figure (a), the dashed line at AE 4 ~ 0 represents the AC Stark shift
coefficient of the 1S5-state while the solid curved lines represent the AC Stark
shift coefficient of the 3S-state. Figure (b) shows the AC Stark shifts near
the magic wavelength, Ay, for 35-1S transition. The AC Stark shifts of the
1S-state (dashed line) and the 3S-state (solid line) intersect at (0.904264 eV,
-2.12290 kHz/(kW /em?)).
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Figure B.3: AC Stark shift coefficients for the 1.5- and 4S-states for intensity,
I, = 10kW/cm? as a function of laser photon energy E., = hwy. In Figure
(a), the dashed line at AF ¢ = 0 represents the AC Stark shift coefficient of
the 1S-state while the solid curved lines represent the AC Stark shift coeffi-
cient of the 4S-state. Figure (b) shows the AC Stark shifts near the magic
wavelength A/, for 45-15 transition. The AC Stark shifts of the 15-state
(dashed line) and the 4S-state (solid line) intersect at (0.441031 eV, -2.11249
kHz/(kW /cm?)).
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Figure B.4: AC Stark shift coefficients for the 1.5- and 5S-states for intensity,
I, = 10kW/cm? as a function of laser photon energy E., = hwy. In Figure
(a), the dashed line at AFE ¢ = 0 represents the AC Stark shift coefficient of
the 1S-state while the solid curved lines represent the AC Stark shift coeffi-
cient of the 5S-state. Figure (b) shows the AC Stark shifts near the magic
wavelength Az, for 55-15 transition. The AC Stark shifts of the 15-state
(dashed line) and the 55-state (solid line) intersect at (0.251184 eV, -2.11026
kHz/(kW /cm?)).
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Figure B.5: AC Stark shift coefficients for the 15- and 6S5-states for intensity,
I, = 10kW/cm? as a function of laser photon energy E., = hwy. In Figure (a),
the dashed line at AE 4o ~ 0 represents the AC Stark shift coefficient of the 1.5-
state while the solid curved lines represent the AC Stark shift coefficient of the
6S-state. Figure (b) shows the AC Stark shifts near the magic wavelength Ay,
for 65-15 transition. The AC Stark shifts intersect at (0.163385eV, -2.10964
kHz/(kW /cm?)).

the 45-5P transition (4051.77 nm) and 45-6P transition (2625.55 nm) of a hydrogen
atom. Similarly, the magic wavelength magic wavelength for 55-15, A\j; = 4938.68 nm
lies between the 55-6 P transition (7458.94 nm) and 55-7P transition (4653.21 nm) of
a hydrogen atom. Likewise, the magic wavelength magic wavelength for 65-15, Ay, =
7592.60 nm lies between the 65-7P transition (12370.4 nm) and 6S-8P transition
(7501.57 nm) of a hydrogen atom. It is evident from Figures (B.1), (B.2), and (B.3)
that, in addition to the magic wavelength tabulated above in Table [77] there are
few other magic wavelength as well for each transition. For example, for the 25-
15 transition, other magic wavelengths with reduced mass correction are 443.212
nm, 414.484 nm, 399.451 nm and so on with AC Stark shifts —225.203 kW/Cm2)HZ

—227.404 -F—Hz, and —228.776 -F—

(kW/ %)
As shown in Figures (B.1) - (B.5), the AC Stark shift for 1S-state is almost

W / Hz respectively.

constant. The AC Stark shift for 1S-state, AE4¢(15), is almost a horizontal line at
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zero AC Stark shift. Numerically,

Iy
€gC

AEAc(1S) = ——E (1S, wy). (B.10)

A lawful approximation to the dynamic polarizability of the ground state hydrogen is
that it is roughly equal to its static polarizability, i.e., (15, wy) ~ a(1S,w;, = 0) =
9¢%a2/(2E}). Thus, Eq. (B.10)) yields

I

AFEac(15) ~ —210.921 —————
ac(15) 09 kW /cm?

Hz. (B.11)

One of the most important features we observe in the AC Stark shift for the 45, 55,
and 6S reference states is the double pole structures in their energy versus AC Stark
shift plots. For the 4S-state, the AC Stark shift has a double pole at 0.661388 eV.
Similarly, for the 55- and 65- states, poles appear respectively at 0.306128 eV and
0.166292 eV.

Let us now discuss the origin of such double pole structures. As given by

Eq. (24) of Ref. [91], the AC Stark shift of the unperturbed state |¢, ny) reads

AExc(¢) =

_e2th Z l(¢|z|m>(m|2|¢>n i <¢|z!m><m!z\¢> (nL+ 1) : (B.12)

2e0V Em—Ey—hwp = Em— Ey+ hwp,
which reduces to Eq. in the classical limit, ny, — oo, ¥V — oo, and ny/V =
constant. Here, wy, V, E,,, and E, are the laser field frequency, normalization volume,
energy corresponding to a virtual intermediate state |m), and energy corresponding
to the reference state |¢) respectively. If the laser frequency is same to the energy
difference between the energy of the reference state and one of the virtual level, we
observe the pole structures as seen in the Figures. (B.3), (B.4), and (B.5) in the Stark

shifts. More interestingly, the double pole structure in the AC Stark shift of 4S-state
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can be eliminated by subtracting the following term

I, ¢ (45]27 3P (m = p)) (3P (m = p)|27|4S)
_2 €pC g; ; (Egp - E45) + huw ‘ <B13)

Similarly, the double pole structure in the Ac Stark shift of 5S- and 65- states gets

eliminated if we subtract

I, € Z (5S|27|4P(m = p))(4P(m = u)|z7]5S)
 2enc gzﬂ - (Esp — Ess) + hw 7 (B14)
and
Ip, 622 Z (6S|27|5P(m = p))(5P(m = u)|27]6S)
_2606 3 palr (Esp — Fgs) + hw ’ (B.15)

respectively from the total AC Stark shifts of the respective states. This double
pole structure suggests that there exist a resonant emission into the laser field. The

emitted photon has energy,

AFE = hw = EnS — E(n_l)p, n Z 4. <B16)

Our investigation shows that Eq. (B.16|) exactly predict the position of the double
poles in the AC Stark shifts of 45-; 55-, and 6.5- states.

B.3. SLOPE OF THE AC STARK SHIFTS
The slope n of the AC Stark shift at the magic wavelength is given by

0
n —(AEAc(TLS,wL) —AEA0<1S,WL)) s (Bl?)

Owr wr=war

which measures how fast the difference of AC Stark shifts between the n.S-state and
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Table B.2: Influence of the reduced-mass correction (RMC) on the slope of
Stark shifts at the magic wavelengths in unit of m for 25-15, 35-19,
45-15, 55-1S5 and 65-1S transitions.

condition transitions

25-18 35-18 45-15 5S5-15 65-15

without RMC | -0.215044 | - 3.20155 | - 28.4212 | - 201.627 | -8036.57
with RMC | -0.215395 | - 3.20679 | - 28.4677 | - 201.737 | -8049.72

the 1S-state changes with the laser frequency. The slope of the AC Stark shifts at
magic wavelengths are presented in Table (B.2). The magic wavelengths listed in
Table (B.1) are the longest magic wavelengths for the corresponding transitions, and
the slope of these transitions in Table (B.2) are the minimum slopes. The value of 7
with the reduced mass correction is 1.001637 times that of the n without the reduced
mass correction. This factor comes from (m./m,)3. In the laser trapping process, a
large slope of the AC Stark shift should be avoided. With no surprise, the slope of
the AC Stark shift in n.S-15 transition is larger for the higher value of n. So far the
feasibility of optical trapping [97] is concerned, difficulty increases as the value of n

and hence the value of 7 increases.
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