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ABSTRACT

We study the long-range interaction between two hydrogen atoms, in both the

van der Waals and Casimir-Polder regimes. The retardation regime is reached when

the finiteness of the speed of light becomes relevant. Provided that both atoms are in

the ground states, the retardation regime is achieved when the interatomic distance,

R, is larger than 137 a0, where a0 is the Bohr radius.

To study the interaction between two hydrogen atoms in 1S and 2S states,

we differentiate three different ranges for the interatomic distance: van der Waals

range (a0 � R � a0/α, where α is the fine structure constant), the intermediate or

Casimir-Polder range (a0/α� R� ~c/L, where L is the Lamb shift energy), and the

very long or Lamb shift range (R� ~c/L). We also study the Dirac-δ perturbation

potential acting on the metastable excited states in the context of hyperfine splitting.

The |2P1/2〉 levels, which are displaced from the reference 2S-levels just by

the Lamb shift, make the study of hyperfine resolved 2S-2S system very interesting.

Each S and P state have a hyperfine singlet and a triplet. Thus, there are 8-hyperfine

states per hydrogen atom and 8 × 8 = 64 states in the two atom system. The

Hamiltonian matrix of the quasi-degenerate 2S-2S system is thus a (64× 64)-matrix.

Our treatment, which profits from adjacency graphs, allows us to do the hyperfine-

resolved calculation. We examine the evolution of the energy levels in the hyperfine

subspaces. We notice that there is a possibility of level crossings in higher dimensional

quantum mechanical systems, which is a breakdown of the non-crossing theorem.

For higher excited reference states, we match the scattering amplitude and

effective Hamiltonian of the system. In the Lamb-shift range, we find an oscillatory

term whose magnitude falls off as R−2 and dominates the Wick-rotated term, which

otherwise has a retarded Casimir-Polder type of interaction.
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1. INTRODUCTION

1.1. BACKGROUND

The motion of electrons in their orbitals around the atomic nucleus makes

an atom polarized to some extent. If two atoms or molecules are brought near each

to other, then quantum fluctuations mutually induce dipole moments. The weak

interaction which links the dipoles is the so-called van dar Waals (vdW) interac-

tion. Study of the vdW interaction is now popular not only among the physicists

but also among the vast majority of researchers from biochemistry, the pharmaceu-

tical industry, nanotechnology, chemistry, biology, etc. For a biochemist, it is the

vdW force which determines the interaction of enzymes with biomolecules [10]. For

a pharmacist, the binding nature of a drug molecule to the target molecule is de-

termined by the vdW force [11]. In nanoscience, by virtue of origin, the interaction

between polarizable nano structures which have wavelike charge density fluctuation

is the vdW interaction [12]. The vdW interaction between two atomic states is pro-

portional to R−6, where R is the interatomic separation. The vdW interaction is a

weak interaction, however, if two interacting objects have a significant number of such

interactions, the net vdW interaction of the system can be significantly strong [13].

In 1948, the Dutch physicist H. Casimir found that two perfectly conducting

parallel plates placed in a vacuum attract each other [14]. This force of attraction

is related to the vdW interaction in the retardation regime [15]. In the same year,

Casimir and Polder showed that if the distance between the atoms is much larger

than the distance related to the retardation time, the interaction potential will be

proportional to R−1 times the potential in the non-retardation regime. Thus in the

dispersive retardation regime, the van der Waals interaction changes the power law
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from R−6 to R−7. This power law modification has been verified experimentally by

D. Tabor and R. H. S. Winterton in 1968 [16]. The Russian physicist E. M. Lifshitz

developed a more general theory of vdW interactions about ten years after Casimir

and Polder proposed Casimir−Polder (CP) forces [17]. In 1997, S. K. Lamoreaux of

Los Alamos National Laboratory measured the Casimir force between a plate and

a spherical lens with good accuracy [18]. The Casimir effect received, even more,

attention of the scientific world when U. Mohideen and A. Roy of the University of

California measured the Casimir force between a plate and a sphere even more accu-

rately in 1998 [19]. Recent experimental work includes measurement of the Casimir

force between parallel metallic surfaces of silicon cantilever coated with chromium in

the 500 −3000 nm range [20], measurement of the Casimir force between dissimilar

metals [21], and the Casimir force measurements in a sphere-plate configuration [22].

1.2. ORGANIZATION OF THE DISSERTATION

This dissertation provides a detailed analysis of the long-range interaction

between two electrically neutral hydrogen atoms. Based on the interatomic distances

and nature of the state of the atoms of the system, we apply three different approaches

to study the long-range interaction. Every approach has its pros and cons. The

first approach is to make a Taylor series expansion of the electrostatic interaction.

This approach is valid in a short range regime. However, it does not talk anything

about the retardation effect. The other approach is a calculation based on a fourth-

order time-ordered perturbation theory. This approach is valid for a wide range of

interatomic distances ranging from a0 to ∞, but it suffers from a limitation that

both the interacting atoms must be in the ground state. If an atom interacting

with the ground state atom is in the excited reference states we match the effective

perturbative Hamiltonian with the scattering matrix amplitude.
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This dissertation is organized as follows. In Section 2, we discuss the basic

mathematical formulation. We present derivations based on the expansion of elec-

trostatic interaction and time-ordered perturbation theory. We will realize that the

interatomic distance has to be distinguished into three regimes. The last subsection

of Section 2 focuses on the long-range tails to the vdW interaction. This subsection

shows how an oscillatory dependence of the interaction energy naturally arises due

to the presence of quasi-degenerate states. In Section 3, we introduce the Sturmian

decomposition of the Green function and determine direct and mixing matrix ele-

ments for the first few nS-states of hydrogen. Section 4 highlights what is a Dirac-δ

perturbation of the vdW energy, why we care it, and how we determine it.

Section 5 is devoted only to the 1S-1S system. We calculate the vdW co-

efficient for the 1S-1S system. We also evaluate the δ-modification to the vdW

interaction energy for the 1S-1S system. In Section 6, we extend our study to the

2S-1S system. In the 2S-1S system, an atom in the ground state now interacts with

the other atom in the n = 2 excited states. This causes many complications. We will

see how important a role the quasi-degenerate levels play in the interaction energy.

We also study the modification of the interaction energy due to the δ-type potential.

We make use of our model parameters to verify that our expressions of the interaction

energy in the three different regimes are optimal.

Section 7 is all about the hyperfine-resolved 2S-2S system. We make use of

an applied graph theory to solve the Hamiltonian matrix of the 2S-2S system. We

extend our analysis to the vdW energy to the nS-1S system, for 3 ≤ n ≤ 5, in

Section 8. Conclusions are drawn in Section 9. Appendix A is about discrete part of

ground state static polarizability. We show that the contribution of continuum wave

functions to the ground state static polarizability can not be neglected. Appendix B

contains an analysis of the magic wavelengths to the nS-1S systems for 2 ≤ n ≤ 6.
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2. DERIVATION OF LONG-RANGE INTERACTIONS

2.1. ORIENTATION

Whenever I look into the internet for some quotes, my eyes pause for a moment

on the following quote of a famous physicist Galileo Galilei, “The laws of nature are

written by the hand of God in the language of mathematics”. This quote speaks the

importance of mathematical formulation in any scientific work very loud and clear.

We devote this Section to develop some mathematical formulations which we later

use to calculate many quantities in this project.

2.2. DERIVATION OF THE vdW AND CP ENERGIES

In what follows, we present a detailed derivation of the vdW and the CP

interaction energies. We here discuss two approaches to deduce interaction energies,

namely, derivation based on an expansion of electrostatic interaction and derivation

based on a non-relativistic quantum electrodynamics using time-ordered perturbation

theory.

2.2.1. Derivation Based on Expansion of Electrostatic Interaction.

Let us consider two neutral hydrogen atoms A and B. Let ~RA and ~ρa are the position

vectors of the nucleus and the electron of the atom A. Similarly, ~RB and ~ρb are the

position vectors of the nucleus and the electron of the atom B as shown in Figure 2.1.

The Hamiltonian of the system can be written as

Ĥ = ĤA + ĤB + ĤAB, (2.1)
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where ĤA and ĤB are Hamiltonians of the atoms A and B respectively, which read

ĤA =
~p 2
a

2m
− e2

4πε0

1

|~ρa − ~RA|
and ĤB =

~p 2
b

2m
− e2

4πε0

1

|~ρb − ~RB|
, (2.2)

where ~pa and ~pb are momenta of the atoms A and B respectively. The ĤAB represents

the perturbation Hamiltonian of the system. Let us first consider the electrostatic

interaction between the atoms A and B.

Velec =− e2

4πε0

1

|~ρa − ~RA|
− e2

4πε0

1

|~ρb − ~RB|
+

e2

4πε0

1

|~RA − ~RB|
+

e2

4πε0

1

|~ρa − ~ρb|
− e2

4πε0

1

|~ρa − ~RB|
− e2

4πε0

1

|~ρb − ~RA|
. (2.3)

The first and the second terms on the right-hand side of Eq. (2.3) are the electrostatic

potentials of atoms A and B respectively. Thus, the remaining terms can be treated

as the perturbation on the electrostatic interaction. With this, the perturbation

Hamiltonian ĤAB can be written as:

ĤAB =− e2

4πε0

{
− 1

|~RA − ~RB|
− 1

|~ρa − ~RA − ~ρb + ~RB + ~RA − ~RB|
+

1

|~ρa − ~RA + ~RA − ~RB|
+

1

|~ρb − ~RB + ~RB − ~RA|

}
. (2.4)

For the sake of simplicity, let us denote ~RA− ~RB = ~R, ~ρa− ~RA = ~r(A), and ~ρb− ~RB =

~r(B). We have,

ĤAB =− e2

4πε0

{
− 1

|~R|
− 1

|~r(A) − ~r(B) + ~R|
+

1

|~r(A) + ~R|
+

1

|~r(B) − ~R|

}
. (2.5)

The distance between the proton of an atom and its electron is much smaller than

the distance between two protons i.e. |~r(A)| � |~R| and |~r(B)| � |~R|. This allows us

to expand Eq. (2.5) into a series. The Taylor series expansion of Eq. (2.5) about ~r(A)
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B

A

~RB

~RA

~rb

~ra

~ρa

~ρb

~R

Figure 2.1: The vdW interaction of two neutral hydrogen atoms A and B.

and/or ~r(B), to second order, is given by

ĤAB ≈−
e2

4πε0

{
− 1

|~R|
− 1

|~R|
+
∑
i

(r(A) − r(B))i νi(~R)− 1

2

∑
ij

(r(A) − r(B))i

× (r(A) − r(B))j νij(~R) +
1

|~R|
−
∑
i

r
(A)
i νi(~R) +

1

2

∑
ij

r
(A)
i r

(A)
j νij(~R)

+
1

|~R|
+
∑
i

r
(B)
i νi(~R) +

1

2

∑
ij

r
(B)
i r

(B)
j νij(~R)

}
, (2.6)

where

νi(~R) = −Ri

R3
and νij(~R) =

3RiRj − δijR2

R5
(2.7)
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correspond to the dipole and the quadrupole contributions of the interaction poten-

tial. We can rewrite νij(~R) as

νij(~R) = −βij
R3

such that βij = δij −
3RiRj

R2
. (2.8)

After some algebra, Eq. (2.6) leads to

ĤAB ≈
e2

4πε0

∑
ij

βij
r

(A)
i r

(B)
j

R3
. (2.9)

The first order energy shift for a pair of hydrogen atoms in their ground state is given

by

∆E(1) = 〈ψ(a)
100 ψ

(b)
100|ĤAB|ψ(a)

100 ψ
(b)
100〉. (2.10)

Due to the configurational symmetry of the ground state of hydrogen atoms, we have,

〈~ra − ~RA〉 = 〈~rb − ~RB〉 = 0. (2.11)

Consequently, the first order energy shift is zero, i.e., ∆E(1) = 0.

The first non-vanishing energy shift comes from the second order correction.

To second order in perturbation, the energy shift is

∆E(2) =
∑
n6=1

〈ψ(A)
100 ψ

(B)
100 |ĤAB|ψ(A)

n`m ψ
(B)
n`m〉〈ψ

A)
n`m ψ

(B)
n`m|ĤAB|ψ(A)

100 ψ
(B)
100 〉

EA
0 − EA

n + EB
0 − EB

n

=− e4

(4πε0)2

2

|~RA − ~RB|6

×
∑
n6=1

∑
i,j

〈ψ(A)
100 |xi|ψ

(A)
n`m〉〈ψ

(B)
n`m|xj|ψ

(B)
100 〉〈ψ

(A)
100 |xi|ψ

(A)
n`m〉〈ψ

(B)
n`m|xj|ψ

(B)
100 〉

EA
0 − EA

n + EB
0 − EB

n

. (2.12)
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This is in the form

∆E(2) = − C

|~RA − ~RB|6
, (2.13)

where C is the vdW coefficient and given by

C =
2 e4

(4πε0)2

∑
n 6=1

∑
i,j

〈ψ(A)
100 |xi|ψ

(A)
n`m〉〈ψ

(B)
n`m|xj|ψ

(B)
100 〉〈ψ

(A)
100 |xi|ψ

(A)
n`m〉〈ψ

(B)
n`m|xj|ψ

(B)
100 〉

EA
0 − EA

n + EB
0 − EB

n

.

(2.14)

Making use of the identity

∑
i,j

〈ψ100|xi|ψn`m〉〈ψn`m|xj|ψ100〉 =
δij

3

∑
s

〈ψ100|xs|ψn`m〉〈ψn`m|xs|ψ100〉, (2.15)

which is valid for any S state, the vdW coefficient given in Eq. (2.14) yields

C =
2 e4

(4πε0)2

∑
n6=1

∑
s

∑
k

δij

3

δij

3

× 〈ψ
(A)
100 |xs|ψ

(A)
n`m〉〈ψ

(A)
n`m|xs|ψ

(A)
100〉〈ψ

(B)
100 |xk|ψ

(B)
n`m〉〈ψ

(B)
n`m|xk|ψ

(B)
100 〉

EA
0 − EA

n + EB
0 − EB

n

=
2 e4

(4πε0)2

∑
n6=1

∑
s,k

δii

9

〈ψ(A)
100 |xs|ψ

(A)
n`m〉〈ψ

(A)
n`m|xs|ψ

(A)
100〉〈ψ

(B)
100 |xk|ψ

(B)
n`m〉〈ψ

(B)
n`m|xk|ψ

(B)
100 〉

EA
0 − EA

n + EB
0 − EB

n

=
2 e4

3 (4πε0)2

∑
n6=1

∑
s

∑
k

|〈ψ(A)
100 |xs|ψ

(A)
n`m〉|2 |〈ψ

(B)
100 |xk|ψ

(B)
n`m〉|2

EA
0 − EA

n + EB
0 − EB

n

. (2.16)

With the following integral identity

2ab

π

∫ ∞
0

dx

(a2 + x2)(b2 + x2)
=
ab

π

∫ ∞
−∞

dx

(i|a|+ x)(−i|a|+ x)(i|b|+ x)(−i|b|+ x)

=
ab

π
2πi

[
1

2|a|i
1

|b|2 − |a|2
+

1

2|b|i
1

|a|2 − |b|2

]
= sgn(a)sgn(b)

[ |a|
|a|2 − |b|2

− |b|
|a|2 − |b|2

]
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=
sgn(a)sgn(b)

|a|+ |b|
, (2.17)

where sgn(a) and sgn(b) are sign functions, Eq. (2.16) can be written as

C =
4e4~

3π(4πε0)2

∑
n 6=1

∑
j,k

∫ ∞
0

dω (EA
0 − EA

n )(EB
0 − EB

n )

× |〈ψ100|xj|ψn`m〉|2 |〈ψn`m|xk|ψ100〉|2(
(EA

0 − EA
n )2 + (~ω)2

)(
(EB

0 − EB
n )2 + (~ω)2

) . (2.18)

The sign function sgn(a) of the real number a is +1 if a > 0 and −1 if a < 0 and

similarly for sgn(b). The quantity

2e2

3

∑
j

(EA
0 − EA

n )
|〈ψ100|xj|ψn`m〉|2(

(EA
0 − EA

n )2 + (~ω)2
) = α1S(iω,A), (2.19)

is the dipole polarizability of the hydrogen atom A in its ground state. We have

a similar expression for the atom B. The polarizability of an atom measures the

distortion of the charge distribution of the atom in the presence of the electric field.

An atom having high polarizability has large fluctuations in local charge distribution

[23]. Thus, from Eq. (2.18), the vdW coefficient can be expressed as

C =
3~

π(4πε0)2

∫ ∞
0

dω α1S(iω,A)α1S(iω,B). (2.20)

The important feature of expression (2.20) is the dependence of vdW coefficient on

the polarizabilities of the atoms.

2.2.2. Derivation Using Time-Ordered Perturbation Theory. The un-

perturbed Hamiltonian for a system of two neutral hydrogen atoms A and B is

Ĥ0 =
~p2
a

2ma

+ V (~ra) +
~p2
b

2mb

+ V (~rb) + ĤF , (2.21)
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where (ma, mb), (~ra, ~rb), and (~pa, ~pb) are masses, coordinates and momenta of elec-

trons in atoms A and B. And

ĤF =
2∑

λ=1

∫
d3k k a†λ(

~k) aλ(~k) (2.22)

is the electromagnetic field Hamiltonian where a†λ and aλ are the usual creation and

annihilation operators. If the two atoms are far enough such that |~ra− ~RA| � |~ra− ~RB|

and |~rb − ~RB| � |~rb − ~RA|, where ~RA and ~RB are the coordinates of the nuclei, the

potential V (~ra) and V (~rb) can be approximated as

V (~ra) = − e2

4πε0

1

|~ra − ~RA|
, and V (~rb) = − e2

4πε0

1

|~rb − ~RB|
. (2.23)

Substituting V (~ra) and V (~rb) in Eq. (2.21), the unperturbed Hamiltonian of the

system yields

Ĥ0 =
~p2
a

2ma

− e2

4πε0

1

|~ra − ~RA|
+

~p2
b

2mb

− e2

4πε0

1

|~rb − ~RB|
+ ĤF . (2.24)

The first two terms stand for the Schrödinger-Coulomb Hamiltonian ĤA, the sum of

the third and the fourth terms are the Schrödinger-Coulomb Hamiltonian ĤB, and

the ĤF is the field Hamiltonian. Along with the dipole approximation, the interaction

Hamiltonian in the so-called length gauges formulation of quantum electrodynamics

(QED) reads

ĤAB = −e~ra · ~E(~RA)− e~rb · ~E(~RB), (2.25)

where ~E(~RA) and ~E(~RB) are the electric field operators given as

~E(~RA) =

√
~c
ε0

2∑
λ=1

∫
d3k

(2π)3/2

√
k

2
ε̂λ(~k)

[
i aλ(~k)ei~k·~RA − ia†λ(

~k)e−i~k. ~RA

]
, (2.26)
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and

~E(~RB) =

√
~c
ε0

2∑
λ=1

∫
d3k

(2π)3/2

√
k

2
ε̂λ(~k)

[
i aλ(~k)ei~k·~RB − ia†λ(

~k)e−i~k·~RB

]
. (2.27)

In terms of the creation, annihilation operators of the field, the interaction Hamilto-

nian becomes

ĤAB =−
√

~c
ε0

e
2∑

λ=1

∫
d3k

(2π)3/2

√
k

2

[(
i aλ(~k)ε̂λ(~k)ei~k·~RA − ia†λ(

~k)ε̂λ(~k)e−i~k. ~RA

)
· ~ra

+
(

i aλ(~k)ε̂λ(~k)ei~k·~RB − ia†λ(
~k)ε̂λ(~k)e−i~k·~RB

)
· ~rb
]
. (2.28)

We take the state with zero photons |φ0〉 as the reference state and calculate the

perturbation effect of the interaction Hamiltonian. The creation operator increases

the number of particles in a given state |n〉 by one and brings the system to the state

|n+ 1〉 while the annihilation operator decreases the number of particles by one and

brings the system into the new state |n − 1〉. In the first order perturbation, the

annihilation operator kills the state as our system is already in the ground state and

the creation operators bring the system into its first excited state. The orthonormality

condition,

〈n|m〉 = δnm =


1, if n = m,

0, if n 6= m,

(2.29)

requires that the first order contribution should vanish. In the similar fashion, no

odd order perturbation contributes to the interaction energy. The second order terms

are the self-energy terms and do not contribute to the CP interaction. Thus, we look
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into the fourth order perturbation which reads

∆E(4) = 〈φ0|ĤAB
1

(E0 − Ĥ0)′
ĤAB

1

(E0 − Ĥ0)′
ĤAB

1

(E0 − Ĥ0)′
ĤAB|φ0〉. (2.30)

The prime in the operator 1

(E0−Ĥ0)′
indicates that the reference state is excluded from

the spectral decomposition of the operator.

Consider a CP interaction between two atoms A and B involving two virtual

photons. A time-ordered sequence results four different types of intermediate states

[24; 25], namely, (1) Both atoms are in ground states, and two virtual photons are

present, (2) Only one atom is in the excited state, and only one virtual photon is

exchanged, (3) Both atoms are excited state, but no photon is present, and (4) Both

atoms are excited state, and two photons are present. Thus, the electrons and photons

can couple in 4 × 3 × 2 × 1 = 12 distinct ways. Figure 2.2 represents all these 12

possible interactions.

Let us first investigate the first diagram of the Figure (2.2). There are four

factors which give contributions to the interaction energy, namely, emission of ~k2 at

RB, emission of ~k1 at RB, absorption of ~k2 at RA, and absorption of ~k1 at RA. The

corresponding fourth order energy shift reads

∆E
(4)
1 =

(
~c
ε0

)2

e4

∫
d3k1

(2π)3

∫
d3k2

(2π)3

∑
λ1,λ2

∑
ρ,σ

k1

2

k2

2
〈φ0|

[(
− i aλ1(

~k1)e−i~k1·~RA+

ia†λ1(
~k1)ei~k1·~RA

)
ε̂λ1(

~k1) · ~ra |ρ〉〈ρ|+
(

i aλ1(
~k1)ei~k1·~RB − ia†λ1(

~k1)e−i~k1·~RB

)
× ε̂λ1(~k1) · ~rb|σ〉〈σ|

][(
− i aλ2(

~k2)e−i~k2·~RA + ia†λ2(
~k2)ei~k2·~RA

)
ε̂λ2(

~k2) · ~ra

+
(

i aλ2(
~k2)ei~k2·~RB − ia†λ2(

~k2)e−i~k2·~RB

)
ε̂λ2(

~k2) · ~rb
]
|φ0〉

1

E1S,a − Eρ − ~ck1

1

−~ck1 − ~ck2

1

E1S,b − Eσ − ~ck2

. (2.31)
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ρ

k1

k2

σ

(I)

ρ

k1

k2

σ

(II)

ρ

k1
k2

σ

(III)

ρ

k1 k2

σ

(IV)

ρ

k1
k2

σ

(V)

ρ

k2k1

σ

(VI)

ρ

k1

k2

σ

(VII)

ρ

k1
k2

σ

(VIII)

ρ

k1 k2

σ

(IX)

ρ

k1 k2

σ

(X)

ρ

k1 k2

σ

(XI)

ρ

k1 k2

σ

(XII)

Figure 2.2: Diagram showing the CP interaction between two atoms A and B. The
ρ and σ lines are the virtual states associated with the atom A and the atom B. The
k1 is the magnitude of the momentum of the photon to the left, and the k2 is the
magnitude of the momentum of the photon to the right of the line.

The annihilation operator kills the ground state however the creation operator can

raise a particular state to the corresponding excited state. Thus, Eq. (2.31) yields

∆E
(4)
1 =

(
~c
ε0

)2

e4

∫
d3k1

(2π)3

∫
d3k2

(2π)3

∑
λ1,λ2

∑
ρ,σ

k1k2

4
(i)〈φ1S,a|ε̂λ1(~k1) · ~ra|ρ〉ei~k1·~RA(−i)

× 〈φ1S,b|ε̂λ1(~k1) · ~rb|σ〉e−i~k1·~RB (i)〈ρ|ε̂λ2(~k2) · ~ra|φ1S,a〉ei~k2·~RA(−i)〈σ|ε̂λ2(~k2) · ~rb|φ1S,b〉

× e−i~k2·~RB
1

E1S,a − Eρ − ~ck1

1

−~ck1 − ~ck2

1

E1S,b − Eσ − ~ck2

. (2.32)
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The polarization vectors ε̂λi(
~ki), i = 1, 2 satisfy

ε̂λi(
~k) · ε̂λj(~k) = δλiλj , (2.33)

~k · ε̂λi(~k) = 0, (2.34)

2∑
λi=1

ε̂pλi(
~kr)ε̂

q
λi

(~kr) = δpq − kprk
q
r

~k2
r

. (2.35)

Thus, the contribution to the interaction energy from the first diagram reads

∆E
(4)
1 =

(
~c
ε0

)2

e4

∫
d3k1

(2π)3

∫
d3k2

(2π)3

k1k2

4

(
δmr − km1 k

r
1

k2
1

)
×
(
δns − kn2k

s
2

k2
2

)
ei(~k1+~k2)·(~RA−~RB)

×
∑
ρ,σ

〈φ1S,a|xm|ρ〉〈ρ|xn|φ1S,a〉〈φ1S,b|xr|σ〉〈σ|xs|φ1S,b〉
(E1S,a − Eρ − ~ck1)(−~ck1 − ~ck2)(E1S,b − Eσ − ~ck2)

. (2.36)

In the diagram (II), the four factors which contribute to the interaction energy

are emission of ~k2 at RB, emission of ~k2 at RA, absorption of ~k1 at RB, and absorption

of ~k1 at RA. This leads to the following contributions to the interaction energy

∆E
(4)
2 =

(
~c
ε0

)2

e4

∫
d3k1

(2π)3

∫
d3k2

(2π)3

k1k2

4

(
δmr − km1 k

r
1

k2
1

)
×
(
δns − kn2k

s
2

k2
2

)
ei(~k1+~k2)·(~RA−~RB)

×
∑
ρ,σ

〈φ1S,a|xm|ρ〉〈ρ|xn|φ1S,a〉〈φ1S,b|xr|σ〉〈σ|xs|φ1S,b〉
(E1S,a − Eρ − ~ck2)(−~ck1 − ~ck2)(E1S,b − Eσ − ~ck2)

. (2.37)

If we denote a propagator denominator by D, then for diagrams (I) and (II), we have,

D
I

= (E1S,a − Eρ − ~ck1)(−~ck1 − ~ck2)(E1S,b − Eσ − ~ck2), (2.38)

D
II

= (E1S,a − Eρ − ~ck2)(−~ck1 − ~ck2)(E1S,b − Eσ − ~ck2). (2.39)
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The diagram (III) in Figure (2.2) involves the emission of ~k2 at RB, the emission of

~k1 at RA and the excitation of both atoms. Thus the propagator denominator (D
III

)

corresponding to the diagram (III) reads

D
III

= (E1S,a − Eρ − ~ck1)(E1S,a − Eσ + E1S,b − Eρ)(E1S,b − Eσ − ~ck2). (2.40)

The corresponding energy shift is

∆E
(4)
3 =

(
~c
ε0

)2

e4

∫
d3k1

(2π)3

∫
d3k2

(2π)3

k1k2

4

(
δmr − km1 k

r
1

k2
1

)
×
(
δns − kn2k

s
2

k2
2

)
ei(~k1+~k2)·(~RA−~RB)

×
∑
ρ,σ

〈φ1S,a|xm|ρ〉〈ρ|xn|φ1S,a〉〈φ1S,b|xr|σ〉〈σ|xs|φ1S,b〉
(E1S,a − Eρ − ~ck1)(E1S,a − Eσ + E1S,b − Eρ)(E1S,b − Eσ − ~ck2)

. (2.41)

Let us investigate diagram (IV) in Figure (2.2). The contribution to the interaction

energy from the diagram (IV) reads

∆E
(4)
4 =

(
~c
ε0

)2

e4

∫
d3k1

(2π)3

∫
d3k2

(2π)3

k1k2

4

(
δmr − km1 k

r
1

k2
1

)
×
(
δns − kn2k

s
2

k2
2

)
ei(−~k1+~k2)·(~RA−~RB)

×
∑
ρ,σ

〈φ1S,a|xm|ρ〉〈ρ|xn|φ1S,a〉〈φ1S,b|xr|σ〉〈σ|xs|φ1S,b〉
(E1S,b − Eσ − ~ck1)(E1S,a − Eρ + E1S,b − Eσ)(E1S,b − Eσ − ~ck2)

. (2.42)

We change the sign of k1 under the integral sign to get the same exponential for all

diagrams in Figure (2.2). Diagrams (V) and (VI) involve the emission of photon, ex-

citation of both atoms and the absorption of photons. The propagator denominators

for the diagrams (V) and (VI) are

D
V

= (E1S,a − Eρ − ~ck2)(E1S,a − Eρ + E1S,b − Eσ − ~ck1 − ~ck2)

× (E1S,b − Eσ − ~ck2), (2.43)
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D
V I

= (E1S,b − Eσ − ~ck1)(E1S,a − Eρ + E1S,b − Eσ − ~ck1 − ~ck2)

× (E1S,b − Eσ − ~ck2). (2.44)

Under the exchange of the ρ line and the σ line, the six diagrams (I) to (VI) correspond

to the other six diagrams (VII) to (XII). The corresponding propagator denominators

for the diagrams (VII) to (XII) are

D
V II

= (E1S,b − Eσ − ~ck1)(−~ck1 − ~ck2)(E1S,a − Eρ − ~ck2), (2.45)

D
V III

= (E1S,b − Eσ − ~ck2)(−~ck1 − ~ck2)(E1S,a − Eρ − ~ck2), (2.46)

D
IX

= (E1S,b − Eσ − ~ck1)(E1S,a − Eρ + E1S,b − Eσ)(E1S,a − Eρ − ~ck2), (2.47)

D
X

= (E1S,a − Eρ − ~ck1)(E1S,a − Eρ + E1S,b − Eσ)(E1S,a − Eρ − ~ck2), (2.48)

D
XI

= (E1S,b − Eσ − ~ck2)(E1S,a − Eσ + E1S,b − Eρ − ~ck1 − ~ck2)

× (E1S,a − Eρ − ~ck2), (2.49)

D
XII

= (E1S,a − Eρ − ~ck1)(E1S,a − Eρ + E1S,b − Eσ − ~ck1 − ~ck2)

× (E1S,a − Eρ − ~ck2). (2.50)

The net fourth order energy shift is the sum of the contributions of all the 12

diagrams. Explicitly,

∆E(4) =
(~c
ε0

)2

e4

∫
d3k1

(2π)3

∫
d3k2

(2π)3

k1k2

4

(
δmr − km1 k

r
1

k2
1

)(
δns − kn2k

s
2

k2
2

)
ei(~k1+~k2)·(~RA−~RB)

×
∑
ρ,σ

〈φ1S,a|xm|ρ〉〈ρ|xn|φ1S,a〉〈φ1S,b|xr|σ〉〈σ|xs|φ1S,b〉
XII∑
j=I

D−1
j . (2.51)

The propagator denominators corresponding to the diagrams (I), (II) and (IV) are

the denominators of the summands of Eqs. (2.36), (2.37) and (2.42). Namely,

D
I

= (E1S,a − Eρ − ~ck1)(−~ck1 − ~ck2)(E1S,b − Eσ − ~ck2), (2.52)
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D
II

= (E1S,a − Eρ − ~ck2)(−~ck1 − ~ck2)(E1S,b − Eσ − ~ck2), (2.53)

D
IV

= (E1S,b − Eσ − ~ck1)(E1S,a − Eρ + E1S,b − Eσ)(E1S,b − Eσ − ~ck2). (2.54)

while remaining D′s are given by Eq. (2.40) and Eqs. (2.43) to (2.50). We first

compute the sum of D’s. For simplicity, let us denote E1S,a − Eρ = Eaρ and E1S,b −

Eσ = Ebσ. Let us now group, simplify, and then assemble all the terms as below.

D−1
I

+D−1
III

=
−(Eaρ − ~ck1)− (Ebσ − ~ck2)

(Eaρ + Ebσ)(Eaρ − ~ck1)(Ebσ − ~ck2)(~ck1 + ~ck2)

=
−1

(Eaρ + Ebσ)(Ebσ − ~ck2)(~ck1 + ~ck2)
+

−1

(Eaρ + Ebσ)(Eaρ − ~ck1)(~ck1 + ~ck2)
, (2.55a)

D−1
IV

=
1

(Ebσ − ~ck1)(Eaρ + Ebσ)(Ebσ − ~ck2)

=
1

(Eaρ + Ebσ)

(
1

(Ebσ − ~ck1)
− 1

(Ebσ − ~ck2)

)
1

(~ck1 − ~ck2)
, (2.55b)

D−1
V II

+D−1
IX

=
1

(Ebσ − ~ck2)(−~ck1 − ~ck2)(Eaρ − ~ck2)
+

1

(Ebσ − ~ck1)(Eaρ + Ebσ)(Eaρ − ~ck2)

=
−(Eaρ − ~ck2)− (Ebσ − ~ck1)

(Eaρ + Ebσ)(Eaρ − ~ck2)(Ebσ − ~ck1)(~ck1 + ~ck2)

=
−1

(Eaρ + Ebσ)(Ebσ − ~ck1)(~ck1 + ~ck2)
+

−1

(Eaρ + Ebσ)(Eaρ − ~ck2)(~ck1 + ~ck2)
, (2.55c)

D−1
X

=
1

(Eaρ − ~ck1)(Eaρ + Ebσ)(Eaρ − ~ck2)

=
1

(Eaρ + Ebσ)

(
1

(Eaρ − ~ck1)
− 1

(Eaρ − ~ck2)

)
1

(~ck1 − ~ck2)
, (2.55d)

D−1
V

+D−1
V I

=
1

(Eaρ − ~ck2)(Eaρ + Ebσ − ~ck1 − ~ck2)(Ebσ − ~ck2)

+
1

(Ebσ − ~ck1)(Eaρ + Ebσ − ~ck1 − ~ck2)(Ebσ − ~ck2)

=
1

(Ebσ − ~ck1)(Ebσ − ~ck2)(Eaρ − ~ck2)
, (2.55e)
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D−1
XI

+D−1
XII

=
1

(Ebσ − ~ck2)(Ebσ + Eaρ − ~ck1 − ~ck2)(Eaρ − ~ck2)

+
1

(Eaρ − ~ck1)(Eaρ + Ebσ − ~ck1 − ~ck2)(Eaρ − ~ck2)

=
1

(Eaρ − ~ck1)(Eaρ − ~ck2)(Ebσ − ~ck2)
. (2.55f)

The six propagator denominators D−1
I

, D−1
III

, D−1
IV

, D−1
V II

, D−1
IX

, and D−1
X

can be grouped

as

D−1
I

+D−1
III

+D−1
IV

+D−1
V II

+D−1
IX

+D−1
X

=
1

(Eaρ + Ebσ)

[
− 1

(Eaρ − ~ck1)

×
( 1

(~ck1 + ~ck2)
− 1

(~ck1 − ~ck2)

)
− 1

(Ebσ − ~ck1)

( 1

(~ck1 + ~ck2)

− 1

(~ck1 − ~ck2)

)]
+

1

(Eaρ + Ebσ)

[
− 1

(Eaρ − ~ck2)

( 1

(~ck1 + ~ck2)
+

1

(~ck1 − ~ck2)

)
− 1

(Ebσ − ~ck2)

( 1

(~ck1 + ~ck2)
+

1

(~ck1 − ~ck2)

)]
= − 1

(Eaρ + Ebσ)

( 1

Eaρ − ~ck1

+
1

Ebσ − ~ck1

)( 1

~ck1 + ~ck2

− 1

~ck1 − ~ck2

)
− 1

(Eaρ + Ebσ)

( 1

Eaρ − ~ck2

+
1

Ebσ − ~ck2

)( 1

~ck1 + ~ck2

+
1

~ck1 − ~ck2

)
. (2.56)

Interchanging k1 and k2 in the second term of Eq. (2.56) we get

D−1
I

+D−1
III

+D−1
IV

+D−1
V II

+D−1
IX

+D−1
X

= − 2

(Eaρ + Ebσ)

×
( 1

(Eaρ − ~ck1)
+

1

(Ebσ − ~ck1)

)( 1

(~ck1 + ~ck2)
− 1

(~ck1 − ~ck2)

)
. (2.57)

Let us group the three D’s D−1
II

, D−1
V

and D−1
V I

.

D−1
II

+D−1
V

+D−1
V I

=
1

(Ebσ − ~ck2)(Eaρ − ~ck2)

(
− 1

(~ck1 + ~ck2)
+

1

(Ebσ − ~ck1)

)
=

1

(Ebσ − ~ck2)(Eaρ − ~ck2)

(
− 1

(~ck1 + ~ck2)
+

1

(Ebσ − ~ck1)
−

1

(~ck1 − ~ck2)
+

1

(~ck1 − ~ck2)

)
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=− 1

(Ebσ − ~ck2)(Eaρ − ~ck2)

(
1

(~ck1 + ~ck2)
+

1

(~ck1 − ~ck2)

)
+

1

(Eaρ − ~ck2)(Ebσ − ~ck1)(~ck1 − ~ck2)
. (2.58)

The three D’s, namely D−1
V III

, D−1
XI

and D−1
XII

can be grouped as

D−1
V III

+D−1
XI

+D−1
XII

=
−1

(Ebσ − ~ck2)(~ck1 + ~ck2)(Eaρ − ~ck2)
+

1

(Eaρ − ~ck1)(Eaρ − ~ck2)(Ebσ − ~ck2)

=
1

(Ebσ − ~ck2)(Eaρ − ~ck2)

(
− 1

(~ck1 + ~ck2)
+

1

(Eaρ − ~ck1)

)
=

1

(Ebσ − ~ck2)(Eaρ − ~ck2)

(
−1

(~ck1 + ~ck2)
+

1

(~ck1 − ~ck2)
− 1

(~ck1 − ~ck2)
+

1

(Eaρ − ~ck1)

)
=− 1

(Ebσ − ~ck2)(Eaρ − ~ck2)

(
1

(~ck1 + ~ck2)
+

1

(~ck1 − ~ck2)

)
+

1

(Ebσ − ~ck2)(Eaρ − ~ck1)(~ck1 − ~ck2)
. (2.59)

Adding Eqs. (2.58) and (2.59) we get

D−1
II

+D−1
V

+D−1
V I

+D−1
V III

+D−1
XI

+D−1
XII

=
−2

(Ebσ − ~ck2)(Eaρ − ~ck2)

×
(

1

~ck1 + ~ck2

+
1

~ck1 − ~ck2

)
+

1

(Eaρ − ~ck2)(Ebσ − ~ck1)(~ck1 − ~ck2)

+
1

(Ebσ − ~ck2)(Eaρ − ~ck1)(~ck1 − ~ck2)
. (2.60)

Under the interchange of k1 and k2, the second term in the right hand side of the

Eq. (2.60) is equal in magnitude but opposite in sign with the third term. Thus,

D−1
II

+D−1
V

+D−1
V I

+D−1
V III

+D−1
XI

+D−1
XII

=− 2

(Ebσ − ~ck2)(Eaρ − ~ck2)

(
1

(~ck1 + ~ck2)
+

1

(~ck1 − ~ck2)

)
. (2.61)



20

Interchanging k1 and k2 in Eq. (2.61) and adding the result to Eq. (2.57), the sum of

the reciprocal of all the twelve propagator denominators evaluates to

XII∑
j=I

D−1
j = − 2

(Eaρ + Ebσ)

(
1

Eaρ − ~ck1

+
1

Ebσ − ~ck1

)(
1

~ck1 + ~ck2

−

1

~ck1 − ~ck2

)
− 2

(Ebσ − ~ck1)(Eaρ − ~ck1)

(
1

~ck1 + ~ck2

− 1

~ck1 − ~ck2

)
=

−4(Eaρ + Ebσ − ~ck1)

(Eaρ + Ebσ)(Ebσ − ~ck1)(Eaρ − ~ck1)

(
1

~ck1 + ~ck2

− 1

~ck1 − ~ck2

)
. (2.62)

The fourth order energy shift is now simplified to

∆E(4) = −
(
~c
ε0

)2

e4

∫
d3k1

(2π)3

∫
d3k2

(2π)3

k1k2

4

(
δmr − km1 k

r
1

k2
1

)(
δns − kn2k

s
2

k2
2

)
× ei(~k1+~k2)·(~RA−~RB)

∑
ρ,σ

〈φ1S,a|xm|ρ〉〈ρ|xn|φ1S,a〉〈φ1S,b|xr|σ〉〈σ|xs|φ1S,b〉
XII∑
j=I

D−1
j

=−
(
~c
ε0

)2

e4

∫
d3k1

(2π)3

∫
d3k2

(2π)3

k1k2

4

(
δmr − km1 k

r
1

k2
1

)(
δns − kn2k

s
2

k2
2

)
× ei(~k1+~k2).·(~RA−~RB)

∑
ρ,σ

〈φ1S,a|xm|ρ〉〈ρ|xn|φ1S,a〉〈φ1S,b|xr|σ〉〈σ|xs|φ1S,b〉

× 4(Eaρ + Ebσ − ~ck1)

(Eaρ + Ebσ)(Ebσ − ~ck1)(Eaρ − ~ck1)

(
1

~ck1 + ~ck2

− 1

~ck1 − ~ck2

)
. (2.63)

Let us use the identity (2.15) in Eq. (2.63). We get,

∆E(4) = −
(
~c
ε0

)2
e4

576π6

∫
d3k1

∫
d3k2 k1k2 δ

mnδrs
(
δmr − km1 k

r
1

k2
1

)(
δns − kn2k

s
2

k2
2

)
× ei(~k1+~k2)·~R

∑
ρ,σ

∑
j

∑
`

〈φ1S,a|xj|ρ〉〈ρ|xj|φ1S,a〉〈φ1S,b|x`|σ〉〈σ|x`|φ1S,b〉

× (Eaρ + Ebσ − ~ck1)

(Eaρ + Ebσ)(Ebσ − ~ck1)(Eaρ − ~ck1)

(
1

~ck1 + ~ck2

− 1

~ck1 − ~ck2

)
, (2.64)
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where, ~RA− ~RB = ~R. Now substitute
∫

d3k =
∫∞

0
k2dk

∫ π
0

sin θdθ
∫ 2π

0
dφ in Eq. (2.64)

and carry out the integration of the angular part first. Note that

∫ π

0

sinθdθ

∫ 2π

0

dφ
(
δmr − km1 k

r
1

k2
1

)
ei~k1·~R = 2π

∫ π

0

sinθdθ
(
δmr − km1 k

r
1

k2
1

)
eik1Rcosθ

= 2π
(
δmr +

1

k2
1

∂

∂Rm

∂

∂Rr

)∫ 1

−1

du eik1Ru

= 2π

(
δmr +

1

k2
1

∂

∂Rm

∂

∂Rr

)
2 sink1R

k1R

= 4π

[(
δmr − RmRr

R2

)
sink1R

k1R
+

(
δmr − 3

RmRr

R2

)
cosk1R

(k1R)2

−
(
δmr − 3

RmRr

R2

)
sink1R

(k1R)3

]
. (2.65)

With the help of Eq. (2.65), Eq. (2.64) can be re-expressed as

∆E(4) = −
(~c
ε0

)2 e4

36π4

∑
ρ,σ

∑
j,`

〈φ1S,a|xj|ρ〉〈ρ|xj|φ1S,a〉〈φ1S,b|x`|σ〉〈σ|x`|φ1S,b〉
(Eaρ + Ebσ)

∫ ∞
0

dk1

×
∫ ∞

0

dk2k
3
1k

3
2

(Eaρ + Ebσ − ~ck1)

(Ebσ − ~ck1)(Eaρ − ~ck1)

(
1

(~ck1 + ~ck2)
− 1

(~ck1 − ~ck2)

)
δmnδrs[(

δmr − RmRr

R2

)sink1R

k1R
+
(
δmr − 3

RmRr

R2

)cosk1R

(k1R)2
−
(
δmr − 3

RmRr

R2

)sink1R

(k1R)3

]
[(
δns − RnRs

R2

)sink2R

k2R
+
(
δns − 3

RnRs

R2

)cosk2R

(k2R)2
−
(
δns − 3

RnRs

R2

)sink2R

(k2R)3

]
= − ~c e4

36π4ε20

∑
ρ,σ

∑
j,`

〈φ1S,a|xj|ρ〉〈ρ|xj|φ1S,a〉 〈φ1S,b|x`|σ〉〈σ|x`|φ1S,b〉
(Eaρ + Ebσ)

×
∫ ∞

0

dk1 k
3
1

(Eaρ + Ebσ − ~ck1)

(Ebσ − ~ck1)(Eaρ − ~ck1)
Amr(k1R) δmn δrs

×
(∫ ∞

0

dk2 k
3
2

Ans(k2R)

(k1 + k2)
−
∫ ∞

0

dk2 k
3
2

Ans(k2R)

(k1 − k2)

)
, (2.66)

where

Ans(x) =

[(
δns − RnRs

R2

)sinx

x
+
(
δns − 3

RnRs

R2

)cosx

x2
−
(
δns − 3

RnRs

R2

)sinx

x3

]
.

(2.67)



22

The Ans(x) is an even function of x. Thus Eq. (2.66) can be equivalently written as

below extending the integration limit from −∞ to +∞:

∆E(4) =− ~c e4

36π4ε20

∑
ρ,σ

∑
j,`

〈φ1S,a|xj|ρ〉〈ρ|xj|φ1S,a〉 〈φ1S,b|x`|σ〉〈σ|x`|φ1S,b〉
(Eaρ + Ebσ)

∫ ∞
0

dk1 k
3
1

× (Eaρ + Ebσ − ~ck1)

(Ebσ − ~ck1)(Eaρ − ~ck1)
Amr(k1R) δmn δrs

∫ ∞
−∞

dk2 k
3
2

Ans(k2R)

(k1 + k2)
. (2.68)

Let us evaluate the k2-integral first. The k2-integral has a pole of order one at

k2 = −k1. Let k2R = x and k1R = x1. Then the k2-integral can be written as

∫ ∞
−∞

dk2 k
3
2

Ans(k2R)

(k1 + k2)
=

1

R3

∫ ∞
−∞

dx x3 Ans(x)

(x1 + x)

=
1

R3

(
δns − RnRs

R2

){∫ ∞
−∞

dx
x2

x+ x1

eix

2i
−
∫ ∞
−∞

dx
x2

x+ x1

e−ix

2i

}

+
1

R3

(
δns − 3

RnRs

R2

){∫ ∞
−∞

dx
x

x+ x1

eix

2
+

∫ ∞
−∞

dx
x

x+ x1

e−ix

2

}

+
1

R3

(
δns − 3

RnRs

R2

){∫ ∞
−∞

dx
1

x+ x1

eix

2i
−
∫ ∞
−∞

dx
1

x+ x1

e−ix

2i

}
. (2.69)

All the first integrals under curly brackets in Eq. (2.69) diverge as x → ∞ while all

the second integrals in the same equation diverge as x → −∞. Let us introduce a

convergence factor e−η|x| to make our integrands divergence-free. We have,

∫ ∞
−∞

dk2 k
3
2

Ans(k2R)

(k1 + k2)

=
1

R3

(
δns − RnRs

R2

)
lim
η→0

{∫ ∞
−∞

dx
x2

x+ x1

eix−η|x|

2i
−
∫ ∞
−∞

dx
x2

x+ x1

e−ix−η|x|

2i

}

+
1

R3

(
δns − 3

RnRs

R2

)
lim
η→0

{∫ ∞
−∞

dx
x

x+ x1

eix−η|x|

2
+

∫ ∞
−∞

dx
x

x+ x1

e−ix−η|x|

2

}

+
1

R3

(
δns − 3

RnRs

R2

)
lim
η→0

{∫ ∞
−∞

dx
1

x+ x1

eix−η|x|

2i
−
∫ ∞
−∞

dx
1

x+ x1

e−ix−η|x|

2i

}
.

(2.70)
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We evaluate integrals in Eq. (2.70) with the help of contours as shown in Figure 2.3

and perform the integration. We finally take the limit η → 0 which yields

∫ ∞
−∞

dk2 k
3
2

Ans(k2R)

(k1 + k2)
=

1

R3

(
δns − RnRs

R2

){
1

2
(2πi)x2

1

e−ix1

2i
− 1

2
(−2πi)x2

1

eix1

2i

}

+
1

R3

(
δns − 3

RnRs

R2

){
1

2
(2πi)(−x1)

e−ix1

2
+

1

2
(−2πi) (−x1)

eix1

2

}

+
1

R3

(
δns − 3

RnRs

R2

){
1

2
(2πi)

e−ix1

2i
− 1

2
(−2πi)

eix1

2i

}

=
1

R3

(
δns − RnRs

R2

)
πx2

1 cosx1 −
1

R3

(
δns − 3

RnRs

R2

)
πx1 sinx1

+
1

R3

(
δns − 3

RnRs

R2

)
π cosx1. (2.71)

eix e−ix

Figure 2.3: The contours to compute integrals in Eq. (2.70). We close the
contour in the upper half plane to evaluate the integral containing the expo-
nential factor eix. As the pole x = −x1 align along the real axis, the integral
has a value 1

2
(2πi) times the residue at the pole. The contour is closed in the

lower half plane to calculate the integral containing e−ix. In such a case, the
integral has a value 1

2
(−2πi) times the residue at the pole enclosed by the

contour. The negative sign is because the contour is negatively oriented.

Here we have used the following well known Euler’s formula,

e±iθ = cos θ ± i sin θ , (2.72)
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to express complex exponential functions into trigonometric functions. Rearranging

Eq. (2.71), we have

∫ ∞
−∞

dk2 k
3
2

Ans(k2R)

(k1 + k2)
=
π x3

1

R3

{(
δns − RnRs

R2

)
cosx1

x1

−
(
δns − 3

RnRs

R2

)[
sinx1

x2
1

+
cosx1

x3
1

]}
. (2.73)

Replacing the assumed variable x1 by its value x1 = k1R, we get

∫ ∞
−∞

dk2 k
3
2

A(k2R)

(k1 + k2)
=πk3

1

[(
δns − RnRs

R2

)
cosk1R

k1R

−
(
δns − 3

RnRs

R2

)(
sink1R

(k1R)2
+

cosk1R

(k1R)3

)]
. (2.74)

Substituting the value of the integral (2.74) in Eq. (2.68), we have

∆E(4) = − ~c e4

36π4ε20

∑
ρ,σ

∑
j

∑
`

〈φ1S,a|xj|ρ〉〈ρ|xj|φ1S,a〉 〈φ1S,b|x`|σ〉〈σ|x`|φ1S,b〉
(Eaρ + Ebσ)

×
∫ ∞

0

dk1 πk
6
1

(Eaρ + Ebσ − ~ck1)

(Ebσ − ~ck1)(Eaρ − ~ck1)
δmn δrs

×
[(
δmr − RmRr

R2

)sink1R

k1R
+
(
δmr − 3

RmRr

R2

)(cosk1R

(k1R)2
− sink1R

(k1R)3

)]
×
[(
δns − RnRs

R2

)cosk1R

k1R
+
(
δns − 3

RnRs

R2

)(sink1R

(k1R)2
+

cosk1R

(k1R)3

)]
. (2.75)

The Kronecker delta satisfies the following relations:

δijδjk = δik, δii = 3, (2.76)

as a result, Eq. (2.75) gets simplified to

∆E(4) = − ~c e4

36π4ε20

∑
ρ,σ

∑
j

∑
`

〈φ1S,a|xj|ρ〉〈ρ|xj|φ1S,a〉 〈φ1S,b|x`|σ〉〈σ|x`|φ1S,b〉
(Eaρ + Ebσ)
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×
∫ ∞

0

dk1 πk
6
1

(Eaρ + Ebσ − ~ck1)

(Ebσ − ~ck1)(Eaρ − ~ck1)

[
sin2k1R

(k1R)2
− 2

sin2k1R

(k1R)3
− sin2k1R

(k1R)4
+

2
cos2k1R

(k1R)3
− sin2k1R

(k1R)4
− 3

sin2k1R

(k1R)4
+ 3

sin2k1R

(k1R)6
− 6

cos2k1R

(k1R)5
+ 6

sin2k1R

(k1R)5

]
=− ~c e4

36π4ε20

∑
ρ,σ

∑
j

∑
`

〈φ1S,a|xj|ρ〉〈ρ|xj|φ1S,a〉〈φ1S,b|x`|σ〉〈σ|x`|φ1S,b〉
(Eaρ + Ebσ)

×
∫ ∞

0

dk1 πk
6
1

(Eaρ + Ebσ − ~ck1)

(Ebσ − ~ck1)(Eaρ − ~ck1)

[
sin2k1R

(k1R)2
− 2

sin2k1R

(k1R)3
+ 2

cos2k1R

(k1R)3

− 5
sin2k1R

(k1R)4
− 6

cos2k1R

(k1R)5
+ 6

sin2k1R

(k1R)5
+ 3

sin2k1R

(k1R)6

]
. (2.77)

We make use of the following identities

coskR =
eikR + e−ikR

2
and sinkR =

eikR − e−ikR

2i
, (2.78)

such that the Eq. (2.77) can be expressed in the following form

∆E(4) =− ~c e4

36π3ε20

∑
ρ,σ

∑
j

∑
`

〈φ1S,a|xj|ρ〉〈ρ|xj|φ1S,a〉 〈φ1S,b|x`|σ〉〈σ|x`|φ1S,b〉
(Eaρ + Ebσ)

×

[
1

2i

∫ ∞
0

dk1 k
6
1

(Eaρ + Ebσ − ~ck1)e2ik1R

(Ebσ − ~ck1)(Eaρ − ~ck1)

×
{

1

(k1R)2
+

2i

(k1R)3
− 5

(k1R)4
− 6i

(k1R)5
+

3

(k1R)6

}
− 1

2i

∫ ∞
0

dk1 k
6
1

(Eaρ + Ebσ − ~ck1)e−2ik1R

(Ebσ − ~ck1)(Eaρ − ~ck1)

×
{

1

(k1R)2
− 2i

(k1R)3
− 5

(k1R)4
+

6i

(k1R)5
+

3

(k1R)6

}]
. (2.79)

Now, let us introduce a new variable u which has values u = i k1c in the first

k1-integral and u = −i k1c in the second k1-integral inside the square bracket
[ ]

in

Eq. (2.79). Consequently, We get

∆E(4) =− ~c e4

c536π3R2ε20

∑
ρ,σ

∑
j

∑
`

∫ ∞
0

du u4 Eaρ
〈φ1S,a|xj|ρ〉〈ρ|xj|φ1S,a〉

(E2
aρ + ~2u2)

Ebσ
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× 〈φ1S,b|x`|σ〉〈σ|x`|φ1S,b〉
(E2

bσ + ~2u2))
e−2uR/c

[
1 +

2c

uR
+

5c2

(uR)2
+

6c3

(uR)3
+

3c4

(uR)4

]
=− ~

πc4(4πε0)2

∫ ∞
0

du α(a, iu) α(b, iu)
u4e−2uR/c

R2[
1 +

2c

uR
+

5c2

(uR)2
+

6c2

(uR)3
+

3c4

(uR)4

]
(2.80)

=− ~
πc4(4πε0)2

∫ ∞
0

dω α(a, iω) α(b, iω)
ω4e−2ωR/c

R2[
1 + 2

( c

ωR

)
+ 5

( c

ωR

)2

+ 6
( c

ωR

)3

+ 3
( c

ωR

)4 ]
, (2.81)

where the quantities α(a, iu) and α(b, iu) are the dynamic polarizabilities of atoms A

and B respectively and given by

α(a, iu) =
2e2

3

∑
ρ

∑
j

Eaρ〈φ1S,a|xj
|ρ〉〈ρ|

(E2
aρ + ~2u2)

xj|φ1S,a〉

=
2e2

3

∑
j

〈φ1S,a|xj
Eaρ

(E2
aρ + ~2u2)

xj|φ1S,a〉, (2.82)

α(b, iu) =
2e2

3

∑
σ

∑
`

Ebσ〈φ1S,b|x`
|σ〉〈σ|

(E2
bσ + ~2u2)

x`|φ1S,b〉

=
2e2

3

∑
σ

∑
`

〈φ1S,b|x`
Ebσ

(E2
bσ + ~2u2)

x`|φ1S,b〉. (2.83)

Making use of u = ±ik1c = ±ω, the dynamic polarizabilities can be rewritten as

α(a, iω) =
2e2

3

∑
j

〈φ1S,a|xj
H − E1S,a

(H − E1S,a)2 + ~2ω2
xj|φ1S,a〉

=
e2

3

∑
±

∑
j

〈φ1S,a|xj
1

(H − E1S,a)± i~ω
xj|φ1S,a〉, (2.84)

α(b, iω) =
e2

3

∑
±

∑
`

〈φ1S,b|x`
1

(H − E1S,b)± i~ω
x`|φ1S,b〉. (2.85)
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It is obvious to state from Eqs. (2.84) and (2.85) that the dynamic polarizability of

an atom is the sum of two matrix elements of the Schödinger-Coulomb propagator.

α(a, ω) = P (a, ω) + P (a,−ω) (2.86)

where,

P (a,±ω) =
e2

3

3∑
j=1

〈na|xj
1

En − Ea ± ~ω − iε
xj|na〉. (2.87)

For large ω, the polarizability shows ω−2 behavior. The expression for the CP in-

teraction between any two atoms A and B given by the Eq. (2.81) is valid for any

interatomic separation R provided their wave functions do not overlap.

2.3. CHIBISOV’S APPROACH

Let us consider two neutral hydrogen atoms in which one atom is in the ground

state 1S and the other in the excited nS state. Consider the case in which the wave

function of the system is in the state of quantum entanglement. The wave function

of the system can be expressed as

Ψ = K1n|1S〉A|nS〉B +Kn1|nS〉A|1S〉B. (2.88)

Total Hamiltonian of the system Ĥ is

Ĥ = ĤA + ĤB + ĤAB = ĤS + ĤAB, (2.89)
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where ĤS stands for the Schrödinger Hamiltonian. ĤA and ĤB are Hamiltonians of

the atom A and the atom B which are respectively

ĤA =
~p 2
a

2m
− e2

4πε0|~ra − ~RA|
and ĤB =

~p 2
b

2m
− e2

4πε0|~rb − ~RB|
. (2.90)

As derived in section 2.2, the interaction Hamiltonian ĤAB is given by

ĤAB ≈
e2

4πε0

∑
ij

βij
r

(A)
i r

(B)
j

R3
. (2.91)

Taking the entangled state |Ψ〉 given by Eq. (2.88) as the eigenstate, the eigenvalue

equation of the system with the Hamiltonian Ĥ is

Ĥ|Ψ〉 =
(
ĤA + ĤB + ĤAB

)
|Ψ〉 = E|Ψ〉. (2.92)

The total wave function of the system can be expressed as sum of all possible products

|Ψ〉 =
∑
pq

Kpq|pS〉A|qS〉B, (2.93)

where Kpq is the expansion coefficient. In the first order perturbation approximation,

the expansion coefficients Kpq are approximated as

Kpq = K(0)
pq +K(1)

pq , (2.94)

where K
(0)
pq are the unperturbed coefficients of expansion and the K

(1)
pq are the first

order corrections to the expansion coefficients. The first order correction K
(1)
pq is given

as

K(1)
pq = K

(0)
1n

〈1SnS|ĤAB|pq〉
E

(0)
1n − E

(0)
pq

+K
(0)
n1

〈nS1S|ĤAB|pq〉
E

(0)
n1 − E

(0)
pq

. (2.95)
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In the eigen basis of the sum of the Hamiltonian ĤA + ĤB + ĤAB, the eigenvalue

Eq. (2.92) can be expressed as

(
ĤA + ĤB + ĤAB

)∑
pq

Kpq|pq〉 = E
∑
pq

Kpq|pq〉,

Or,
∑
pq

Kpq

∑
rs

|rs〉〈rs|ĤAB|pq〉 =
∑
pq

Kpq(E − E(0)
pq )|pq〉. (2.96)

Here we have used the completeness relation

∑
rs

|rs〉〈rs| = 1. (2.97)

Eq. (2.96) can be re-expressed as

∑
pq

{
Kpq(E − E(0)

pq )−
∑
rs

Krs〈rs|ĤAB|pq〉

}
|pq〉 = 0, (2.98)

which implies

Kpq(E
(0)
pq − E) +

∑
rs

Krs〈rs|ĤAB|pq〉 = 0. (2.99)

Using Eq. (2.95) in Eq. (2.99), the two equations with the expansion coefficients K
(0)
1n

and K
(0)
n1 are

K
(0)
1n

(
E

(0)
1n − E + 〈1SnS|ĤAB|1SnS〉+

∑
pq 6=1n

〈1SnS|ĤAB|pq〉〈pq|ĤAB|1SnS〉
E

(0)
1n − E

(0)
pq

)

+K
(0)
n1

(
〈nS1S|ĤAB|1SnS〉+

∑
pq 6=1n

〈nS1S|ĤAB|pq〉〈pq|ĤAB|1SnS〉
E

(0)
1n − E

(0)
pq

)
= 0,

(2.100)
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and

K
(0)
n1

(
E

(0)
n1 − E + 〈nS1S|ĤAB|nS1S〉+

∑
pq 6=n1

〈nS1S|ĤAB|pq〉〈pq|ĤAB|nS1S〉
E

(0)
n1 − E

(0)
pq

)

+K
(0)
1n

(
〈1SnS|ĤAB|nS1S〉+

∑
pq 6=n1

〈1SnS|ĤAB|pq〉〈pq|ĤAB|nS1S〉
E

(0)
n1 − E

(0)
pq

)
= 0.

(2.101)

The homogeneous linear Eqs. (2.100) and (2.101) can also be written as the homoge-

neous matrix equation

W X

Y Z


 K

(0)
1n

K
(0)
n1

 =

 0

0

 , (2.102)

where

W =E
(0)
1n − E + 〈1SnS|ĤAB|1SnS〉+

∑
pq 6=1n

|〈1SnS|ĤAB|pq〉|2

E
(0)
1n − E

(0)
pq

, (2.103a)

X =〈nS1S|ĤAB|1SnS〉+
∑
pq 6=1n

〈nS1S|ĤAB|pq〉〈pq|ĤAB|1SnS〉
E

(0)
1n − E

(0)
pq

, (2.103b)

Y =〈1SnS|ĤAB|nS1S〉+
∑
pq 6=n1

〈1SnS|ĤAB|pq〉〈pq|ĤAB|nS1S〉
E

(0)
n1 − E

(0)
pq

, (2.103c)

Z =E
(0)
n1 − E + 〈nS1S|ĤAB|nS1S〉+

∑
pq 6=n1

|〈nS1S|ĤAB|pq〉|2

E
(0)
n1 − E

(0)
pq

. (2.103d)

The interaction Hamiltonian ĤAB is symmetric with respect to the order of the

selection of 1S and nS in the eigenstates |1SnS〉 and |nS1S〉. Namely,

〈1SnS|ĤAB|1SnS〉 = 〈nS1S|ĤAB|nS1S〉. (2.104)
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Indeed, 〈1SnS|ĤAB|1SnS〉 = 〈nS1S|ĤAB|nS1S〉 = 0 as the interaction Hamiltonian,

as required by the selection rule, does not couple S states. In addition to this, with

the interchange of 1 and n, the following two quantities are equal.

∑
pq 6=1n

|〈1SnS|ĤAB|pq〉|2

E
(0)
1n − E

(0)
pq

=
∑
pq 6=n1

|〈nS1S|ĤAB|pq〉|2

E
(0)
n1 − E

(0)
pq

. (2.105)

As a result, the diagonal elements of the 2× 2 matrix in (2.102) are equal. And for

the same reasons the off-diagonal elements in (2.102) are also equal. Thus, the matrix

in (2.102) is a 2 × 2 symmetric Toeplitz matrix [26]. To have non-trivial solutions,

we require the determinant of the matrix to be zero which implies K
(0)
1n = ±K(0)

n1 .

Provided the determinant of the matrix vanishes, the 2 × 2 matrix in Eq. (2.102)

gives

(
E

(0)
1n − E +

∑
pq 6=1n

|〈1SnS|ĤAB|pq〉|2

E
(0)
1n − E

(0)
pq

)2

=

(∑
pq 6=1n

〈nS1S|ĤAB|pq〉〈pq|ĤAB|1SnS〉
E

(0)
1n − E

(0)
pq

)2

. (2.106)

Solving energy E from Eq. (2.106), we get

E =E
(0)
1n −

∑
pq 6=1n

|〈1SnS|ĤAB|pq〉|2

E
(0)
1n − E

(0)
pq

±
∑
pq 6=1n

〈nS1S|ĤAB|pq〉〈pq|ĤAB|1SnS〉
E

(0)
1n − E

(0)
pq

=E
(0)
1n −

2e4

3(4πε0)2|~RA − ~RB|6
∑
pq 6=1n

(∑
ij

|〈1S|xi|p〉〈nS|xj|q〉|2

E
(0)
1n − E

(0)
pq

±

∑
ij

(〈nS|xi|p〉〈1S|xj|q〉)∗ (〈1S|xi|p〉〈nS|xj|q〉)
E

(0)
1n − E

(0)
pq

)
(2.107)

=E
(0)
1n −

2e4

3(4πε0)2|~RA − ~RB|6
∑
pq 6=1n

(∑
rs

〈1S|xr|p〉〈p|xr|1S〉〈nS|xs|q〉〈q|xs|nS〉
E

(0)
1n − E

(0)
pq

±
∑
rs

(〈1S|xr|p〉〈p|xr|nS〉) (〈nS|xs|q〉〈q|xs|1S〉)
E

(0)
1n − E

(0)
pq

)
. (2.108)
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In the second line of equation (2.107) we have used the following identities

∑
i,j

〈ψ100|xi|ψn`m〉〈ψn`m|xj|ψ100〉 =
δij

3

∑
s

〈ψ100|xs|ψn`m〉〈ψn`m|xs|ψ100〉 (2.109)

and

δijδij = δii = 3. (2.110)

Let us define

D6(nS; 1S) =
2e4

3(4πε0)2

∑
pq 6=1n

∑
rs

〈1S|xr|p〉〈p|xr|1S〉〈nS|xs|q〉〈q|xs|nS〉
E

(0)
1n − E

(0)
pq

, (2.111)

and

M6(nS; 1S) =
2e4

3(4πε0)2

∑
pq 6=1n

∑
rs

(〈1S|xr|p〉〈p|xr|nS〉) (〈nS|xs|q〉〈q|xs|1S〉)
E

(0)
1n − E

(0)
pq

, (2.112)

such that

E = E
(0)
1n −

D6(nS; 1S)±M6(nS; 1S)

|~RA − ~RB|6
. (2.113)

By the notations D6(nS; 1S) and M6(nS; 1S), we are referring to the direct and the

mixing term contributions to the vdW C6(nS; 1S) coefficient such that

C6(nS; 1S) = D6(nS; 1S)±M6(nS; 1S). (2.114)

The ± sign depends on the symmetry of the wave function of the two-atom state.

Making use of the standard integral identity (2.17), we can express Eqs. (2.111) and
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(2.112) in terms of integrals over ω as

D6(nS; 1S) =
4e4

3(4πε0)2

∑
pq 6=1n

(
E

(0)
1 − E(0)

p

) (
E(0)
n − E(0)

q

)
∞∫

0

dω
∑
rs

〈1S|xr|p〉〈p|xr|1S〉〈nS|xs|q〉〈q|xs|nS〉(
(E

(0)
1 − E

(0)
p )2 + ~2ω2

)(
(E

(0)
n − E(0)

q )2 + ~2ω2
) , (2.115)

and

M6(nS; 1S) =
4e4

3(4πε0)2

∑
pq 6=1n

(
1

2
(E

(0)
1 + E(0)

n )− E(0)
p

)(
1

2
(E

(0)
1 + E(0)

n )− E(0)
q

) ∞∫
0

dω

×
∑
rs

(〈1S|xr|p〉〈p|xr|nS〉) (〈nS|xs|q〉〈q|xs|1S〉)((
1
2
(E

(0)
1 + E

(0)
n )− E(0)

p

)2

+ ~2ω2

)((
(1

2
(E

(0)
1 + E

(0)
n )− E(0)

q

)2

+ ~2ω2

) .
(2.116)

Identifying

2

3
e2
∑
pq 6=1n

∑
s

(
E(0)
n − E(0)

q

) 〈nS|xs|q〉〈q|xs|nS〉(
(E

(0)
n − E(0)

q )2 + ~2ω2
) = αnS(iω), (2.117)

and

2

3
e2
∑
pq 6=1n

∑
s

(
1

2
(E

(0)
1 + E(0)

n )− E(0)
q

)
〈nS|xs|q〉〈q|xs|1S〉((

(1
2
(E

(0)
1 + E

(0)
n )− E(0)

q

)2

+ ~2ω2

)
= αnS1S(iω), (2.118)

the direct and the mixing vdW coefficients can be rewritten as

D6(nS; 1S) =
4e4

3(4πε0)2

∫ ∞
0

dω αnS(iω)α1S(iω), (2.119)

M6(nS; 1S) =
4e4

3(4πε0)2

∫ ∞
0

dω α1SnS(iω)αnS1S(iω). (2.120)
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There are some advantages of using the average energy corresponding to the

states of interest as the reference energy. First, there is no state which is degenerate

with the reference state. Next, the issue of the contributions arising from the inter-

mediate P -states is resolved. However, it requires calculating the quantum number

associated with the reference state. Taking 1S state as one state of interest and nS

as another, the energy associated with the reference state is

Eref =
E1 + En

2
= −α

2mc2

2n2
ref

. (2.121)

Solving for nref, Eq. (2.121) yields

1

n2
ref

=
1

2
+

1

2n2
. (2.122)

It is obvious to note that nref = 1 when n = 1 and nref =
√

2 when n = ∞.

Thus the quantum number corresponding to the reference state always lies in the

range 1 ≤ nref <
√

2. A downside of this approach is that this is valid only in the

short range. Here, by the short range of the interatomic distance, we mean that

the interatomic distance must be less than the wavelength corresponding to a typical

atomic transition. To put it another way, R must satisfy

a0 � R� a0/α, (2.123)

where a0 is the Bohr radius and α = 1/137.035 999 139, is the fine-structure constant.

This is so-called vdW range.

2.4. ASYMPTOTIC REGIMES

To study the interaction between two atoms in S-states, we differentiate three

different ranges for the interatomic distance: van der Waals range (a0 � R� a0/α),
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CP range (a0/α � R � 1/L, where L is lamb shift energy [27]), and Lamb shift

range (R � 1/L). Equivalently, we will call them the short range, the intermediate

range, and the long range of the interatomic distances.

In this work, we consider the interaction between two atoms in which one

atom sits in the ground state while the other one can be either in the ground state

or one of the excited nS-states. The ground state is nondegenerate. However, the

excited state has quasi-degenerate neighbors. If an atom is in an excited state, the

polarizability of the atom αnS(ω) is the sum

αnS(ω) = α̃nS(ω) + αnS(ω), (2.124)

where α̃nS(ω) is the nondegenerate contribution to the nS polarizability while αnS(ω)

represents the contribution of the quasi-degenerate nP levels. The dipole polarizabil-

ity αnS(ω) is computed by a sum over all states. The degenerate polarizability αnS(ω)

is a sum over quasi-degenerate neighbors. Mathematically,

αnS(ω) =
e2

3

∑
±

∑
j

1∑
µ=−1

∑
nPj=

1
2
,
3
2

|〈nS|xj|nP (m = µ)〉|2

EnPj
− EnS ± ~ω − iε

. (2.125)

The symbol nPj indicates the total angular quantum number j of the quasi-degenerate

P -states which are resonant . The total orbital angular quantum number l has

the value 1 for P -state. Thus, the total angular quantum number j, and hence

nPj, can have values 1
2

and 3
2
. The energy difference between the quasi-degenerate

levels with the principal quantum number n,
(
EnP1/2

− EnS
)

and
(
EnP3/2

− EnS
)

are

respectively the Lamb shift Ln and the fine structure splitting Fn. Mathematically,

EnP1/2
− EnS1/2

≡Ln, (2.126a)

EnS1/2
− EnP3/2

≡Fn. (2.126b)
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The nondegenerate polarizability α̃nS(ω) is the sum over all states excluding

degenerate levels. It is the measurement of the polarizability due to states having

the different principal quantum number. More explicitly,

α̃nS(ω) =
e2

3

∑
±

∑
j

1∑
µ=−1

∑
k>n

|〈nS|xj|nP (m = µ)〉|2

Ek − EnS ± ~ω − iε
. (2.127)

The sum over k in the non degenerate polarizability indicates that we include all the

possible states whose principal quantum number is greater than the reference state.

The total interaction energy can be written as the sum

∆E
(4)
nS;1S = ∆Ẽ

(4)
nS;1S + ∆E

(4)

nS;1S + PnS;1S, (2.128)

where ∆Ẽ
(4)
nS;1S and ∆E

(4)

nS;1S are the nondegenerate and the degenerate contributions

to the interaction energy respectively. The PnS;1S is the pole term contribution,

which arises as the integration contour picks up a number of poles under the Wick-

rotation. Detailed discussion of the pole term is presented in Sec.2.5. Being the

Wick-rotated contribution, the ∆Ẽ
(4)
nS;1S and ∆E

(4)

nS;1S can be renamed as W̃nS;1S and

WnS;1S respectively, such that the total Wick-rotated contribution reads

WnS;1S = W̃nS;1S +WnS;1S, (2.129)

which allows us to write

∆E
(4)
nS;1S =W̃nS;1S +WnS;1S + PnS;1S =WnS;1S + PnS;1S. (2.130)
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The Wick-rotated nondegenerate W̃nS;1S and the degenerate WnS;1S contributions

are given by

W̃nS;1S =− ~
πc4(4πε0)2

∞∫
0

dω α(1S, iω) α̃(nS, iω)
ω4 e−2ωR/c

R2

×
[
1 + 2

( c

ωR

)
+ 5

( c

ωR

)2

+ 6
( c

ωR

)3

+ 3
( c

ωR

)4
]
, (2.131a)

WnS;1S =− ~
πc4(4πε0)2

∞∫
0

dω α(1S, iω) α(nS, iω)
ω4 e−2ωR/c

R2

×
[
1 + 2

( c

ωR

)
+ 5

( c

ωR

)2

+ 6
( c

ωR

)3

+ 3
( c

ωR

)4
]
. (2.131b)

For the short range (a0 � R � a0/α) of interatomic distances, there is no

oscillatory suppression in the interaction energy and the first four terms under the

bracket
[ ]

in both Eqs. (2.131a) and (2.131b) are negligible in comparison to the

fifth term. Furthermore, the exponential can be approximated to unity. Thus we can

approximate the Wick-rotated contributions W̃nS;1S and WnS;1S as

W̃nS;1S ≈−
~

πc4(4πε0)2

∫ ∞
0

dω α(1S, iω) α̃(nS, iω)
ω4

R2

3 c4

(ωR)4

=− 3~
π(4πε0)2R6

∫ ∞
0

dω α(1S, iω) α̃(nS, iω); a0 � R� a0/α, (2.132a)

WnS;1S ≈−
~

πc4(4πε0)2

∫ ∞
0

dω α(1S, iω) α(nS, iω)
ω4

R2

3 c4

(ωR)4

=− 3~
π(4πε0)2R6

∫ ∞
0

dω α(1S, iω)α(nS, iω); a0 � R� a0/α. (2.132b)

Both the nondegenerate and the degenerate contributions to the energy follow the

R−6 power law in the short range.

Let us examine the behavior of the interaction for very large interatomic

distances (R � ~c/L). As the interatomic distance is very large, the exponen-

tial term and the negative powers of R vary very fast but not the polarizabilities



38

[28]. Specifically, we can approximate the dynamic polarizabilities of atoms by

their static values. i.e. α(1S, iω) = α(1S, ω = 0), α̃(nS, iω) = α̃(nS, ω = 0), and

α(nS, iω) = α(nS, ω = 0). Consequently, we have

W̃nS;1S ≈−
~

πc4(4πε0)2
α(1S, ω = 0) α̃(nS, ω = 0)

∞∫
0

dω
ω4e−2ωR

R2

×
[
1 + 2

( c

ωR

)
+ 5

( c

ωR

)2

+ 6
( c

ωR

)3

+ 3
( c

ωR

)4
]

=− 23 ~c
4π(4πε0)2

α(1S, ω = 0) α̃(nS, ω = 0)

R7
, R� ~c/L. (2.133a)

WnS;1S ≈−
~

πc4(4πε0)2
α(1S, ω = 0) α(nS, ω = 0)

∞∫
0

dω
ω4e−2ωR

R2

×
[
1 + 2

( c

ωR

)
+ 5

( c

ωR

)2

+ 6
( c

ωR

)3

+ 3
( c

ωR

)4
]

=− 23 ~c
4π(4πε0)2

α(1S, ω = 0) α(nS, ω = 0)

R7
, R� ~c/L. (2.133b)

Hence, in the long range of interatomic distances, both the nondegenerate and the

degenerate contributions has R−7 dependence. We recovered the famous CP result.

Let us now investigate the interaction energy in the intermediate interatomic

distances (a0/α � R � ~c/F < ~c/L). The transition energies, in the nondegener-

ate cases, are in the order of the Hartree energy and the polarizabilities due to the

nondegenerate states can be approximated by their static values. Thus, we still get

a R−7 power law dependence of the interaction energy.

To illustrate the analytic considerations of power law behavior of the inter-

action energy, we consider model integrals. In the nondegenerate case, the model

integral can be expressed as

I(a, b, R) =

∞∫
0

dω
a

(a− iε)2 + ω2

b

(b− iε)2 + ω2

ω4e−2ωR

R2

×
[
1 +

2

ωR
+

5

(ωR)2 +
6

(ωR)3 +
3

(ωR)4

]
, (2.134)
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where a and b are the energy parameters. Let us choose the parameters:

a = 1, b = 1/4, and ε = 10−6. (2.135)

For small interatomic distance, the curve for a model integral with no approx-

imation (blue curve), matches with a 1/R6 asymptotic (red-dashed) curve while for

large interatomic distance, the model curve matches with 1/R7 asymptotic (green-

dashed) curve (see Figure 2.4). a0/α ≈ 137.036 a0 is the transition from 1/R6 to

1/R7 asymptotic.

Figure 2.4: Figure showing a numerical model for the interaction energy as
a function of interatomic distance in three different range. The interaction
energy shows 1/R7 asymptotic for R� a0/α.
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In the presence of the quasi-degenerate states, the model integral can be writ-

ten as

J(a, b, R) =

∞∫
0

dω
a

(a− iε)2 + ω2

(−η)

(−η − iε)2 + ω2

ω4e−2ωR

R2

×
[
1 +

2

ωR
+

5

(ωR)2 +
6

(ωR)3 +
3

(ωR)4

]
, (2.136)

where η is the energy shift of the degenerate levels which represents the Lamb shift

or fine structure. One good choice of the numerical values of the parameters are

a = 1, η = 10−3, and ε = 10−6. (2.137)

Figure 2.5 shows an exact, and approximate 1/R6 and 1/R7 asymptotic for inter-

action energy. For small interatomic distance, the curve for a model integral with

no approximation (blue curve), matches with a 1/R6 asymptotic (red-dashed) curve

while for large interatomic distance, the model curve matches with 1/R7 asymptotic

(green-dashed) curve. ~c/L is the transition from 1/R6 to 1/R7 asymptotic.

Now, it is time to clarify why we choose R� ~c/L. As the long range of the

interatomic distances instead of R � ~c/F . As F ≈ 10L, the interatomic distances

~c/F and ~c/L differ by an order of magnitude. One might argue that there is a

window

~c
F
< R <

~c
L
. (2.138)

However, the window is so narrow that it does not give any meaningful sense and the

claim R� ~c/L. As a separation of the intermediate interatomic distance from the

long interatomic distance holds well.
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Figure 2.5: Figure showing a numerical model for the interaction energy as a
function of interatomic distance in three different range. In the presence of
quasi-degenerate states, the 1/R6 range extends much farther out up to ~c/L.

2.5. LONG-RANGE TAILS IN THE vdW INTERACTION

Study of the vdW interaction in the long-range distance between two electri-

cally neutral hydrogen atoms in their ground state is simpler as it follows the R−7

power law as predicted by Casimir and Polder [15], where R is the interatomic dis-

tance. Problems arise when one of the atoms is in the excited state. The presence of

the quasi-degenerate states available for the transition of virtual photons gives rise

the oscillatory dependence of the interaction energy with the amplitude falling off as

R−2, when the R is sufficiently large [29; 30; 31; 32]. So far the experimental verifi-

cation is concerned, an oscillatory distance dependence in the vacuum-induced level
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shifts has been observed in a single trapped barium ion in the presence of a single

mirror [33; 34].

2.5.1. S -matrix in the Interaction Picture. The interaction picture, in

which both the state vectors and the operators evolve in time, is applied to determine

the scattering matrix elements. We split the total Hamiltonian of the system, H, as

H = H0 + V (t) (2.139)

such that the H0 is the unperturbed part of the Hamiltonian and V (t) carries all the

interactions from the system. The operators in the interaction picture evolve freely,

and the dynamics of the state vectors depend on the interaction.

We consider two neutral atoms A and B. Let ~ρA and ~RA be the position

vectors of the electron and the nucleus of atom A and ~ρB and ~RB be the position

vectors of the electron and the nucleus of atom B. The relative coordinates of the

states are ~rA = ~ρA− ~RA and ~rB = ~ρB− ~RB. Let ~R = ~RA− ~RB be the distance between

the nuclei. If |ψA(~rA), ψB(~rB)〉 and |ψ′A(~rA), ψ′B(~rB)〉 be the ket vectors associated to

the initial state and the final state respectively and |Φ(t)〉 be the ket evolved from the

free initial state, the S-matrix element is the projection of the evolved state vector

|Φ(t)〉 on the final state. Mathematically,

SA′B′AB = 〈ψ′A(~rA), ψ′B(~rB)|Φ(t)〉 = 〈ψ′A(~rA), ψ′B(~rB)| Ŝ |ψA(~rA), ψB(~rB)〉, (2.140)

where Ŝ is the scattering operator [35], which satisfies the unitary condition, ŜŜ† = 1.

Using the definition of the time evolution operator, U , in the interaction picture,

which reads

U(t, t0) = T̂ exp

(
−i

∫ t

t0

dt′ V (t′)

)
, (2.141)
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one can write

SA′B′AB = lim
t→∞

lim
t0→−∞

〈ψ′A(~rA), ψ′B(~rB)|U(t, t0)|ψA(~rA), ψB(~rB)〉. (2.142)

The nth order term of the Dyson series [29] for the time evolution operator in the

interaction picture reads

U (n)(t, t0) =
(−i)n

n! ~n

∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tn−1

t0

dtnV (t1)V (t2) · · ·V (tn). (2.143)

As the Ŝ operator is related to the evolution operator as

Ŝ = U(∞,−∞), (2.144)

the nth order contribution to Ŝ is given by

Ŝ(n) =
(−i)n

n! ~n

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2 · · ·
∫ ∞
−∞

dtnT̂ [V (t1)V (t2) · · ·V (tn)]. (2.145)

To the 4th order, the contribution to Ŝ is given by

Ŝ(4) =
1

24 ~4

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2

∫ ∞
−∞

dt3

∫ ∞
−∞

dt4 T̂ [V (t1)V (t2)V (t3)V (t4)]. (2.146)

The four indices can be paired in three different ways, namely: {(1,2)and (3,4)},

{(1,3)and (2,4)}, {(1,4)and (2,3)}, however each pairing yields the same integral

value as they differ only on how we call them. Thus,

Ŝ(4) =
1

8 ~4

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2

∫ ∞
−∞

dt3

∫ ∞
−∞

dt4 T̂ [V (t1)V (t2)]T [V (t3)V (t4)]. (2.147)
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To the dipole approximation [36], the interaction V (t) can be approximated as

V (t) = −~dA · ~E(~ρA, t)− ~dB · ~E(~ρB, t) ≈ −~dA · ~E(~RA, t)− ~dB · ~E(~RB, t), (2.148)

where ~d = e~r is the electric dipole operator of an atom. Assuming that the un-

pertubed state of the system contains atoms on the state |ψ〉 = |ψA, ψB〉 and the

electomagnetic field in the vacuum state |0〉,

〈S(4)〉 =〈ψ|〈0|Ŝ(4)|0〉|ψ〉 =
1

8 ~4

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2

∫ ∞
−∞

dt3

∫ ∞
−∞

dt4

× 〈ψ|〈0|
{
T̂ [V (t1)V (t2)]

}
|0〉〈0|

{
T̂ [V (t3)V (t4)]

}
|0〉|ψ〉. (2.149)

Let us say, T̂E is the time ordering operator for the electric field operators and T̂d

is the time ordering operator for the dipole moments. Making use of Eq. (2.148) to

Eq. (2.149), we have

〈S(4)〉 ≈ 1

8 ~4

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2

∫ ∞
−∞

dt3

∫ ∞
−∞

dt4 T̂d〈ψ|
{{
〈0|T̂E

[(
~dA(t1) · ~E(~RA, t1)

)
(
~dB(t2) · ~E(~RB, t2)

)]
|0〉+ 〈0|T̂E

[(
~dB(t1) · ~E(~RB, t1)

)(
~dA(t2) · ~E(~RA, t2)

)]
|0〉
}

×
{
〈0|T̂E

[(
~dA(t3) · ~E(~RA, t3)

)(
~dB(t4) · ~E(~RB, t4)

)]
|0〉

+ 〈0|T̂E
[(
~dB(t3) · ~E(~RB, t3)

)(
~dA(t4) · ~E(~RA, t4)

)]
|0〉
}}

. (2.150)

The integrand of Eq. (2.151) is the sum of four terms which have different naming of

the indices but the same integral value. Thus one may write

〈S(4)〉 =
1

2 ~4

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2

∫ ∞
−∞

dt3

∫ ∞
−∞

dt4 〈0|T̂E
[
Ei(~RA, t1)Ej(~RB, t2)

]
|0〉

× 〈0|T̂E
[
Ek(~RA, t3)E`(~RB, t4)

]
|0〉〈ψA|T̂d

[
dAi(t1) dAk(t3)

]
|ψA〉

× 〈ψB|T̂d
[
dBj(t2) dB`(t4)

]
|ψB〉. (2.151)
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In terms of the scalar and the vector potential the electric field operator can be

written as

~E = −~∇Φ− ∂ ~A

∂t
. (2.152)

With a proper choice of the gauge in which the scalar potential Φ is zero, the electric

field can be written as ~E = −∂ ~A
∂t

. This is the so called temporal gauge. In this gauge,

〈0|T̂E[Ei(~RA, t1)Ej(~RB, t2)]|0〉 =
∂2

∂t1∂t2
〈0|T̂E[Ai(~RA, t1)Aj(~RB, t2)]|0〉

=i
∂2

∂t1∂t2
Dij(~R, t1 − t2) = −i

∫ ∞
∞

dω

2π
ω2 Dij(ω, ~R)e−iω(t1−t2), (2.153)

where ~R = ~RA − ~RB and

Dij(ω, ~R) =
~ei|ω|R/c

4πε0c2

[
αij − βij

[
ic

|ω|R
− c2

ω2R2

]]
(2.154)

is the photon propagator in the mixed frequency-position representation.The tensor

structures αij and βij are given by

αij = δij −
RiRj

R2
, and βij = δij − 3

RiRj

R2
. (2.155)

While the time ordering product of the electric dipole moment operators reads

〈ψA|T̂d
[
dAi(t1) dAk(t3)

]
|ψA〉 = −i~αA,ik(t1 − t3) = −i~

∫ ∞
∞

dω

2π
e−iω(t1−t3)αA,ik(ω),

(2.156)

where the polarizability αA,ik(ω) is given as

αA,ik(ω) =
∑
νA

(
〈ψA|dAi|νA〉 · 〈νA|dAj|ψA〉

Eν,A − ~ω − iε
+
〈ψA|dAi|νA〉 · 〈νA|dAj|ψA〉

Eν,A + ~ω − iε

)
. (2.157)
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With the help of Eqs. (2.153) and (2.156), Eq. (2.151) yields

〈S(4)〉 =
1

2~4

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2

∫ ∞
−∞

dt3

∫ ∞
−∞

dt4 (−i)

∫ ∞
∞

dω1

2π
ω2

1 Dij(ω1, ~R) e−iω1(t1−t2)

× (−i)

∫ ∞
∞

dω2

2π
ω2

2 Dk`(ω2, ~R)e−iω2(t3−t4) × (−i~)

∫ ∞
∞

dω3

2π
e−iω3(t1−t3)αA,ik(ω3)

× (−i~)

∫ ∞
∞

dω4

2π
e−iω4(t2−t4)αB,j`(ω4) (2.158)

Let us now carry out the t-integral.

〈S(4)〉 =
1

2~2

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2

∫ ∞
−∞

dt3

∫ ∞
∞

dω1

2π
ω2

1 Dij(ω1, ~R)

× e−iω1(t1−t2)

∫ ∞
∞

dω2

2π
ω2

2 Dk`(ω2, ~R)e−iω2t3

×
∫ ∞
∞

dω3

2π
e−iω3(t1−t3)αA,ik(ω3) eiω2t2αB,j`(−ω2)

=
1

2~2

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2

∫ ∞
∞

dω1

2π
ω2

1 Dij(ω1, ~R) e−iω1(t1−t2)

×
∫ ∞
∞

dω2

2π
ω2

2 Dk`(ω2, ~R)e−iω2t1αA,ik(ω2)eiω2t2αB,j`(−ω2)

=
1

2~2

∫ ∞
−∞

dt1

∫ ∞
∞

dω1

2π
ω2

1 Dij(ω1, ~R) e−iω1t1

× (−ω1)2 Dk`(−ω1, ~R)eiω1t1αA,ik(−ω1)αB,j`(ω1)

=
1

2~2

∫ ∞
−∞

dt

∫ ∞
∞

dω

2π
ω4Dij(ω, ~R)Dk`(ω, ~R)αA,ik(ω)αB,j`(ω)

=
T

2~2

∫ ∞
∞

dω

2π
ω4Dij(ω, ~R)Dk`(ω, ~R)αA,ik(ω)αB,j`(ω). (2.159)

Here T =
∫ tf
ti

dt = tf − ti denotes the total interval of time in which the transition

occurs. In the intermediate steps of Eq. (2.159), we have used the following property

of the Dirac-delta function

∫ ∞
∞

dx f(x) δ(x− x0) = f(x0), (2.160)

which indicates that the integral takes the value of the function at the Delta-peak.
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2.5.2. Interaction Energy for nS-1S Systems. By the defination of the

S matrix element

〈S(4)〉 = − i

~
T 〈ψ′|V |ψ〉 = − i

~
T∆E(direct), (2.161)

the direct term contribution to the interaction energy can be written from Eq. (2.159)

as

∆E(direct) =
i

~

∫ ∞
0

dω

2π
ω4Dij(ω, ~R)Dk`(ω, ~R)αA,ik(ω)αB,j`(ω), (2.162)

where, the photon propagator Dij(ω, ~R), and the polarizability αA,ik(ω) are given by

Eqs. (2.154) and (2.157) respectively. Whereas, the mixing term contribution reads

∆E(mixing) =
i

~

∫ ∞
0

dω

2π
ω4Dij(ω, ~R)Dk`(ω, ~R)αAB,ik(ω)α∗AB,j`(ω), (2.163)

where αAB,ik(ω) is the mixed polarizability taking atom A as the reference atom and

mathematically it is given by

αAB,ij(ω) =
∑
νA

(
〈ψA|dAi|νA〉 · 〈νA|dAj|ψB〉

Eν,A − ~ω − iε
+
〈ψA|dAi|νA〉 · 〈νA|dAj|ψB〉

Eν,A + ~ω − iε

)
. (2.164)

Similarly, if we take atom B as a reference, the mixed polarizability, is now denoted

as αAB,j`(ω), which reads

αAB,ij(ω) =
∑
νA

(
〈ψA|dBi|νA〉 · 〈νA|dBj|ψB〉

Eν,B − ~ω − iε
+
〈ψA|dBi|νA〉 · 〈νA|dBj|ψB〉

Eν,B + ~ω − iε

)
. (2.165)
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Now the total interaction energy between two identical atoms in their arbitrary states

can be written as the sum

∆E = ∆E(direct) + ∆E(mixing), (2.166)

For the sake of simplicity, we consider the atom B in the ground state and the atom

A in the excited state through out our derivation. Let |mA〉 be a virtual state of atom

A. In the Wick-rotated contour, in which the integration contour for ω ∈ (0,∞) is

rotated to the imaginary axis, poles terms arises naturally. The poles are present at

ω = ±Em,A

~ ∓iε. The Wick-rotated contour, however, picks up poles at ω = −Em,A

~ −iε

only (see Figure 2.6). Thus each of the direct term and mixing term can be expressed

as the sum of the wick-rotated term and the pole term. In this section, we concentrate

only on pole terms.

The direct type contribution of the virtually low-lying P -states can be written

as the sum

Q(direct)(R) = P(direct)(R) +
i

2
Γ(direct)(R) (2.167)

We now call the real part of Q(R) as the pole type contribution. In other word, now

and onwards, whenever we say pole term we are referring to the real part, P(R). The

imaginary part is half of the width term Γ(R). The pole term for the direct-type

contribution, P(direct)(R), is given by

P(direct)(R) =Re
i

~

∫ ∞
0

dω

2π
ω4Dij(ω, ~R)Dk`(ω, ~R)∑

±

〈ψA|dAi|mA〉 · 〈mA|dAk|ψA〉
Em,A ± ~ω − iε

αB,j`(ω)

=− Re
i

~
(2πi) Res

ω=−Em,A/~+iε

1

~
ω4

2π
Dij(ω, ~R)Dk`(ω, ~R)
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ω = −Em,A

~ + iε

ω =
Em,A

~ − iε

ω =∞
ω = 0

iω

Figure 2.6: The figure shows an integration contour in the complex ω-plane
when we carry out the Wick rotation. In the Wick rotation, the ω ∈ (0,∞)
axis is rotated by 900 in a counter clockwise direction to an imaginary axis.
The counter picks up only the poles at ω = −Em,A

~ +iε. Thus, the contribution
of the integration is 2πi times the sum of residues at the poles enclosed by
the contour.

∑
±

〈ψA|dAi|mA〉 · 〈mA|dAk|ψA〉
Em,A/~± ω − iε

αB,j`(ω)

=Re
1

~2

∑
mA

〈ψA|dAi|mA〉 · 〈mA|dAk|ψA〉
~2

(4πε0c2)2R2

× Res
ω=−Em,A/~+iε

{∑
±

ω4 e2i|ω|R/c

Em,A/~± ω − iε

[
αij + βij

(
ic

|ω|R
− c2

ω2R2

)]

×
[
αk` + βk`

(
ic

|ω|R
− c2

ω2R2

)]
αB,j`(ω)

}
. (2.168)

Let us first expand the following:

ω4

[
αij + βij

(
ic

|ω|R
− c2

ω2R2

)][
αk` + βk`

(
ic

|ω|R
− c2

ω2R2

)]
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= ω4

[
αijαk` + (αijβk` + βijαk`)

(
ic

|ω|R
− c2

ω2R2

)
+ βijβk`

(
ic

|ω|R
− c2

ω2R2

)2
]

= αijαk`ω
4 + (αijβk` + βijαk`)i

|ω|3c
R
− (αijβk` + βijαk` + βijβk`)

ω2c2

R2

− 2βijβk`i
|ω|c3

R3
+ βijβk`

c4

R4

=
c4

R4

[(
βijβk` − (2αijβk` + βijβk`)

ω2R2

c2
+ αijαk`

ω4R4

c4

)

− i

(
2βijβk`

|ω|R
c
− 2αijβk`

|ω|3R3

c3

)]
. (2.169)

With the help of Eq. (2.169), Eq. (2.168) yields

P(direct)(R) = Re
c4

(4πε0c2)2R6

∑
mA

〈ψA|dAi|mA〉 · 〈mA|dAk|ψA〉

× Res
ω=−Em,A/~+iε

{
αB,j`(ω)

∑
±

e2i|ω|R/c

Em,A/~± ω − iε

×

[(
βijβk` − (2αijβk` + βijβk`)

ω2R2

c2
+ αijαk`

ω4R4

c4

)

− i

(
2βijβk`

|ω|R
c
− 2αijβk`

|ω|3R3

c3

)]}

=− Re
∑
mA

〈ψA|dAi|mA〉 · 〈mA|dAk|ψA〉
(4πε0)2R6

αB,j`(
Em,A
~

) e−2iEm,AR/(~c)

×

[(
βijβk` − (2αijβk` + βijβk`)

E2
m,AR

2

~2c2
+ αijαk`

E4
m,AR

4

~4c4

)

+ i

(
2βijβk`

Em,AR

~c
− 2αijβk`

E3
m,AR

3

~3c3

)]

=− Re
∑
mA

〈ψA|dAi|mA〉 · 〈mA|dAk|ψA〉
(4πε0)2R6

αB,j`

(
Em,A
~

) (
cos

(
2Em,AR

~c

)

− i sin

(
2Em,AR

~c

))[(
βijβk` − (2αijβk` + βijβk`)

E2
m,AR

2

~2c2

+ αijαk`
E4
m,AR

4

~4c4

)
+ i

(
2βijβk`

Em,AR

~c
− 2αijβk`

|E3
m,AR

3

~3c3

)]
. (2.170)
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Thus the direct pole term to the interaction energy reads

P(direct)(R) =−
∑
mA

〈ψA|dAi|mA〉〈mA|dAk|ψA〉
(4πε0)2R6

αB,j`

(
Em,A
~

){
cos

(
2
Em,AR

~c

)
[
βijβk` − (2αijβk` + βijβk`)

(
Em,AR

~c

)2

+ αij αk`

(
Em,AR

~c

)4 ]
+ 2

Em,AR

~c
sin

(
2
Em,AR

~c

)[
βijβk` − αijβk`

(
Em,AR

~c

)2 ]}
. (2.171)

In the similar way the pole term contribution of the mixing term to the interaction

energy reads

P(mixing)(R) =
i

~

∫ ∞
0

dω

2π
ω4Dij(ω, ~R)Dk`(ω, ~R)∑

±

〈ψA|dAi|mA〉 · 〈mA|dAj|ψA〉
Em,A ± ~ω − iε

αAB,j`(ω)

=Re Res
ω=−Em,A/~+iε

1

~2
ω4Dij(ω, ~R)Dk`(ω, ~R)∑

±

〈ψA|dAi|mA〉 · 〈mA|dAj|ψA〉
Em,A/~± ω − iε

αAB,j`(ω). (2.172)

The following replacement in Eqs. (2.171) and (2.172) yields the width term Γ(direct)

and Γ(mixing) respectively:

cos

(
2
Em,AR

~c

)
→ sin

(
2
Em,AR

~c

)
, sin

(
2
Em,AR

~c

)
→ − cos

(
2
Em,AR

~c

)
(2.173)

Substituting the value of the photon propagator and evaluating the residue at the

pole, in the same way as we did for direct pole term, we get,

P(mixing)(R) = −
∑
mA

〈ψA|dAi|mA〉〈mA|dAk|ψB〉
(4πε0)2R6

αAB,j`

(
Em,A
~

){
cos

(
2
Em,AR

~c

)
[
βijβk` − (2αijβk` + βijβk`)

(
Em,AR

~c

)2

+ αij αk`

(
Em,AR

~c

)4 ]
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+ sin

(
2
Em,AR

~c

)[
2 βijβk`

(
Em,AR

~c

)
− 2αijβk`

(
Em,AR

~c

)2 ]}
. (2.174)

For S-states, αB,j`(ω) = δj` αB(ω), and αAB,j`(ω) = δj` αAB(ω). Thus, for S-states,

the pole terms for the direct and mixing type contributions to the interaction energy

are

P(direct)(R) = −
∑
mA

〈ψA|dAi|mA〉〈mA|dAk|ψA〉
(4πε0)2R6

αB

(
Em,A
~

)
δj`

{
cos

(
2
Em,AR

~c

)
[
βijβk` − (2αijβk` + βijβk`)

(
Em,AR

~c

)2

+ αij αk`

(
Em,AR

~c

)4 ]
+ sin

(
2
Em,AR

~c

)[
2βijβk`

(
Em,AR

~c

)
− 2αijβk`

(
Em,AR

~c

)]}

= −
∑
mA

2〈ψA|dAi|mA〉〈mA|dAk|ψA〉
(4πε0)2R6

αB

(
Em,A
~

){
cos

(
2
Em,AR

~c

)[
3

− 5

(
Em,AR

~c

)2

+

(
Em,AR

~c

)4 ]
+ sin

(
2
Em,AR

~c

)[
6
Em,AR

~c
− 2

(
Em,AR

~c

)2 ]}
.

(2.175)

and

P(mixing)(R) = −
∑
mA

〈ψA|dAi|mA〉〈mA|dAk|ψB〉
(4πε0)2R6

αAB

(
Em,A
~

)
δj`

{
cos

(
2
Em,AR

~c

)
[
βijβk` − (2αijβk` + βijβk`)

(
Em,AR

~c

)2

+ αij αk`

(
Em,AR

~c

)4 ]
+ sin

(
2
Em,AR

~c

)[
2 βijβk`

(
Em,AR

~c

)
− 2αijβk`

(
Em,AR

~c

)2 ]}

= −
∑
mA

2〈ψA|dAi|mA〉〈mA|dAk|ψB〉
(4πε0)2R6

αAB

(
Em,A
~

){
cos

(
2
Em,AR

~c

)[
3

− 5

(
Em,AR

~c

)2

+

(
Em,AR

~c

)4 ]
+ sin

(
2
Em,AR

~c

)[
6
Em,AR

~c
− 2

(
Em,AR

~c

)2 ]}
.

(2.176)
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Thus, in general, the pole type contribution contains terms which follow R−2, R−3,

R−4, R−5 and R−6. The pole term can also be expressed as the sum of cosine term

and a sine term. Let us now analyze Eq. (2.168) in the very short-range regime.

2.5.3. Close-Range Limit, a0 � R� a0/α. By the close range limit we

are referring to the vdW range of the interaction, although to a cruel approximation

we can take R to0 in the close range limit. In the close-range limit, Eq. (2.168) can

be approximated as

P(direct)(R) =Re
1

~2

∑
mA

〈ψA|dAi|mA〉 · 〈mA|dAk|ψA〉
~2

(4πε0c2)2R2

× Res
ω=−Em,A/~+iε

{∑
±

1

Em,A/~± ω − iε
βijβk`

c4

R4
αB,j`(ω)

}

= − βijβk`

(4πε0)2R6

∑
mA

〈ψA|dAi|mA〉 · 〈mA|dAk|ψA〉αB,j`
(
Em,A
~

)
. (2.177)

For the hydrogen atom B being at the ground state i.e., 1S-state and the atom A

being at the excited nS-state, Eq. (2.177) simplifies as

P(direct)(R) = − βijβk`

(4πε0)2R6

δik
3

∑
m

〈nS|e~r|mP 〉 · 〈mP |e~r|nS〉 δj` α1S

(
EmP − EnS

~

)
= − 2 e2

(4πε0)2R6

∑
m

〈nS|~r|mP 〉 · 〈mP |~r|nS〉α1S

(
EmP − EnS

~

)
. (2.178)

Similarly, the mixing pole term is given as

P(mixing)(R) = − 2 e2

(4πε0)2R6

∑
m

〈1S|~r|mP 〉 · 〈mP |~r|nS〉α1SnS

(
EmP − EnS

~

)
, (2.179)

where the 1S state is underlined in the polarizability, α1SnS, to indicate that E = E1S

is taken as the reference energy. Note that, in the close-range limit, both the direct

and mixing pole terms follow the R6 power law. We do get the same result taking

the limit R→ 0 in Eqs. (2.175) and (2.176).
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2.5.4. Intermediate Range, a0/α� R� ~~~c/L. To determine the direct

and the pole term in the intermediate range, we use the most general expressions of

them which are given by Eqs. (2.175) and (2.176).

2.5.5. Very Long-Range Limit, ~~~c/L � R. If the interatomic distance,

R, is sufficiently large, a cruel approximation might be R → ∞. In this range

cos
(

2
Em,AR

~c

)(
Em,AR

~c

)4

is dominant in comparison to the other sine and cosine terms

in both Eqs. (2.175) and (2.176). Thus, we have

P(direct)(R) = −
∑
mA

2〈ψA|e~r|mA〉〈mA|e~r|ψA〉
3(4πε0)2R6

αB

(
Em,A
~

)(
Em,AR

~c

)4

cos

(
2
Em,AR

~c

)

= − 2 e2

3(4πε0)2R2

n∑
m=2

〈nS|~r|mP 〉 · 〈mP |~r|nS〉

× α1S

(
EmP,nS

~

)(
EmP,nS
~c

)4

cos

(
2
EmP,nSR

~c

)
, (2.180)

and

P(mixing)(R) = −
∑
mA

2〈ψA|e~r|mA〉〈mA|e~r|ψB〉
3(4πε0)2R6

αAB

(
Em,A
~

)(
Em,AR

~c

)4

cos

(
2
Em,AR

~c

)

= − 2 e2

3(4πε0)2R2

n∑
m=2

〈nS|~r|mP 〉 · 〈mP |~r|1S〉

× αnS1S

(
EmP,nS

~

)(
EmP,nS
~c

)4

cos

(
2
EmP,nSR

~c

)
. (2.181)

At the very large interatomic separation (R), the pole term contains an oscillatory

term whose magnitude depends on R−2.
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3. MATRIX ELEMENTS OF THE PROPAGATOR

3.1. STURMIAN DECOMPOSITION OF THE GREEN FUNCTION

For the Schrödinger Hamiltonian of the hydrogen atom

HS =
~P 2

2m
− e2

4πε0r
, (3.1)

the total Schrödinger-Coulomb Green functionG(~r1, ~r2, z) is the solution of the second

order differential equation

(
−∇

2

2m
− z
)
G(~r1, ~r2, z) = δ3(~r1 − ~r2). (3.2)

The variable z is the complex generalization of the energy. It depends on the energy

of level n as follows:

z = En − ~ω. (3.3)

The Green function in the coordinate-space representation is given by

G(~r1, ~r2, ν) =
∞∑
`=0

∑̀
m=−`

g`(~r1, ~r2, ν)Y`m(θ1, φ1)Y ∗`m(θ2, φ2), (3.4)

where ν is an energy parameter associated with the generalization of the complex

energy variable z by

ν2 = n2En
z
. (3.5)
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It is worth noting that ν depicts the generalization of the principal quantum num-

ber n. Y`m(θ1, φ1) and Y`m(θ2, φ2) in Eq. (3.4) are usual spherical harmonics while

g`(~r1, ~r2, ν) is the radial Green function. In this work, we use the so-called Sturmian

form of the radial Green function [37; 38; 39]

g`(~r1, ~r2, ν) =
2m

~2

(
2

a0ν

)2`+1

exp

(
−(r1 + r2)

a0ν

)
(r1r2)`

×
∞∑
k=0

k! L2`+1
k

(
2r1
a0ν

)
L2`+1
k

(
2r2
a0ν

)
(k + 2`+ 1)!(k + `+ 1− ν)

, (3.6)

where a0 is the Bohr’s radius given by

a0 =
~

αmc
. (3.7)

L2`+1
k

(
2 r1
a0ν

)
and L2`+1

k

(
2 r2
a0ν

)
in Eq. (3.6) are the generalized Laguerre polynomials.

3.2. ENERGY ARGUMENT OF THE GREEN FUNCTION

For principal quantum number n,

En = −α
2mc2

2n2
. (3.8)

The dimensionless energy parameter t can be defined as

t ≡
√
En
z

=

√
En

En − ~ω
=

(
1− ~ω

En

)−1/2

. (3.9)

We can re-express the z variable as

z ≡ En − ~ω = −α
2mc2

2ν2
= −α

2mc2

2n2

n2

ν2
= En

n2

ν2
, (3.10)



57

where ν is the generalized principal quantum number. Rearranging the left hand side

and the right most term of Eq. (3.10), we get

ν2

n2
=
En
z

= t2 =⇒ ν = n t. (3.11)

Substituting the energy eigenvalue in Eq. (3.9) from Eq. (3.8), the parameter t yields

tn =

(
1 +

2n2~ω
α2mc2

)−1/2

(3.12)

or,

1

t2n
= 1 +

2n2~ω
α2mc2

. (3.13)

When ω = 0, t = 1 and when ω =∞, t = 1. Thus any integral over ω from 0 to∞ is

equivalent to the integral over t than from 0 to 1. In some situation, the integration

over t is simpler than the integration over ω.

Indeed, we are going to consider the Wick-rotated form of expressions in our

calculations. Thus, in our computations, iω will be appeared in place of ω. An ω can

have both the positive and the negative value. We, therefore, replace ω by ±iω in

Eq. (3.13). Let us denote the t after such replacement as T±n .

1

T±2
n

= 1± i
2n2~ω
α2mc2

. (3.14)

Rearranging equation (3.13), we get the following expression for ω,

~ω =
α2mc2

2n2

1− t2

t2
. (3.15)
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Substituting Eq. (3.15) in Eq. (3.14) and solving for Tn, it is found that the Tn

depends only on t and reads as follows:

T±n =
t√

±i + t2(1∓ i)
. (3.16)

The Tn for the different values of n are related with each other as

T±m =
nT±n√

m2 + (n2 −m2)T±2
n

. (3.17)

3.3. ANGULAR ALGEBRA (CLEBSCH-GORDAN COEFFICIENTS)

In this section, we discuss the addition of angular momenta and Clebsch-

Gordan coefficients. In general, for every quantum mechanical system, there exists

a vector operator ~J = ~L + ~S, called the total angular momentum, where ~L and ~S

are the orbital and the spin angular momenta. ~J obeys the following commutation

relations

[
Ji, Jj

]
= i
∑
k

εijkJk,
[
~J, J2

]
= 0, (3.18)

where J2 is the sum

J2 = J2
i + J2

j + J2
k , (3.19)

and εijk is the Levi-Civita symbol defined by

εijk =


+1 for even permutation of (i, j, k)

−1 for odd permutation of (i, j, k)

0 otherwise.
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The commutation relation (3.18) tells that each component of ~J commutes with

J2. This indicates that any component of ~J and J2 can have at least one non-zero

common eigenstate. For the sake of simplicity, ~J is chosen along the z-axis. We

denote the common eigenstate of the J2 and Jz as |j,m〉. J2 and Jz satisfy the

following eigenvalue equations.

J2|j,m〉 = j(j + 1)|j,m〉, (3.20)

Jz|j,m〉 = m|j,m〉, (3.21)

where j(j + 1) and m are the eigenvalues of J2 and Jz respectively associated with

the eigenstate |j,m〉. Let us consider two quantum mechanical state spaces having

basis vectors |j1,m1〉 and |j2,m2〉 associated with angular momentum ~J1 and ~J2

respectively . The vector sum of the angular momenta associated with the quantum

mechanical spaces

~J = ~J1 + ~J2, (3.22)

is the total angular momentum vector ~J for the combined space. The J2 = J2
1 +J2

2 +

2 ~J1. ~J2 and Jz = ( ~J1 + ~J2).ẑ = J1z + J2z of the combined space commute with each

other. Thus, there exist nonzero common eigenstates |j,m〉 such that eigenvalues

of J2
1 , J2

2 , J2, J1z, J2z, and Jz are j1(j1 + 1), j2(j2 + 1), j(j + 1), m1, m2 and m

respectively. All j’s and m’s are either integers or half integers. j1 and j2 fulfil the

triangular inequality

|j1 − j2| ≤ J ≤ |j1 + j2|. (3.23)
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And m1, m2 and m satisfy the following selection rules:

m1 ∈ −|j1|, ...., |j1| m2 ∈ −|j2|, ...., |j2| m1 +m2 = m. (3.24)

Making use of commutation relations for angular momenta, one can easily ver-

ify that J1, J2, J
2, Jz and J1, J2, J1z, J2z form two different complete set of commutat-

ing observables (CSCO) [40] associated with the orthonormal basis states |j1, j2, j,m〉

(simply denoted as |j,m〉) and |j1, j2,m1,m2〉 respectively. One obvious question

which arises is how we can express a given state |j,m〉 in terms of |j1, j2,m1,m2〉.

The answer is that we can use the completeness relation of |j1, j2,m1,m2〉:

∑
m1,m2

|j1, j2,m1,m2〉〈j1, j2,m1,m2| = 1, (3.25)

i.e.

|j,m〉 =
∑
m1,m2

|j1, j2,m1,m2〉〈j1, j2,m1,m2|j,m〉

=
∑
m1,m2

〈j1, j2,m1,m2|j,m〉|j1, j2,m1,m2〉

=
∑
m1,m2

Cjm
j1j2m1m2

|j1, j2,m1,m2〉. (3.26)

where Cjm
j1j2m1m2

= 〈j1, j2,m1,m2|j,m〉 are the so-called Clebsch-Gordan coefficients.

They depict coupling between angular momenta of two quantum mechanical systems.

The Clebsch-Gordan coefficients can also be expressed in terms of Wigner’s 3 − j

symbol [41] as given below:

Cjm
j1j2m1m2

= 〈j1, j2,m1,m2|j,m〉 = (−1)j1−j2+m
√

2j + 1

 j1 j2 j

m1 m2 −m

 . (3.27)
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Here is the list of few Clebsch-Gordan coefficients:

C
1
2

1
2

1
2

1
2

1
2

1
2

= 1, C
1
2

1
2

1
2

1
2
− 1

2
1
2

=
1√
2
, C

1
2
− 1

2

1 1
2

0− 1
2

=
1√
3
, C

1
2

1
2

1 1
2

1− 1
2

=

√
2

3
. (3.28)

As stated by the Wigner-Eckart theorem, the matrix elements of a tensor operator

Tkq sandwiched between the basis states |τ, j,m〉 is given by

〈τjm|Tkq|τ ′j′m′〉 =
Cjm
j′m′kq√
2j + 1

〈τj|~T k|τ ′j′〉. (3.29)

The index τ is a collection of supplementary quantum numbers associated with ob-

servables other than J2 and Jzwhich are necessary to form a complete set of commu-

tating observables (CSCO). The quantum number τ satisfies

〈τjm|τ ′j′m′〉 = δττ ′δjj′δmm′ . (3.30)

The quantity 〈τj|~T k|τ ′j′〉 in equation (3.29) is a reduced matrix element which is

independent of m and m′. It can be concluded from Eq. (3.29) that the orientational

dependence of the matrix element can be determined from its geometrical consider-

ation.

3.4. 1S, 2S, 3S, 4S, AND 5S MATRIX ELEMENTS

The matrix element of the Schrödinger Coulomb propagator [42], if both atoms

are in nS states, in the co-ordinate space representation is defined as

P (φn, ω) =
e2

3
〈φn|xj

1

Hs − En + ~ω
xj|φn〉

=
e2

3
〈nS|xjG(r1, r2, ν = t)xj|nS〉. (3.31)
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The wave function 〈r, θ, φ|nS〉 = Ψn00(r, θ, φ) contains the radial part Rn0(r) and the

angular part Y00(θ, φ) such that

Ψn00(r, θ, φ) = Rn0(r) Y00(θ, φ). (3.32)

It is easy to separate the total integration into the radial part and the angular part.

The angular integration evaluates to one. Thus, Eq. (3.31) reduces to the following

radial integration.

P (φn, ω) =
e2

3

∫ ∞
0

r2
1 dr1

∫ ∞
0

r2
2 dr2 RnS(r1) r1 g`(r1, r2, ν) r2 RnS(r2). (3.33)

3.4.1. 1S Matrix Element. Let us first consider two hydrogen atoms in

their ground states. The radial part of the ground state wave function reads

R10(r) = 2
1

a
3/2
0

e−r/a0 . (3.34)

Substituting R10(r) from Eq. (3.34) and the Sturmian form of the radial Green

function from Eq. (3.6), the Q-matrix element P (1S, t) can be written as

P (1S, t) =
64me2

3~2a6
0t

3

∫ ∞
0

r4
1 dr1

∫ ∞
0

r4
2 dr2 exp

(
− (r1 + r2)

a0t

)
exp

(
−(r1 + r2)

a0

) ∞∑
k=0

k!L2l+1
k

(
2 r1
a0t

)
L2l+1
k

(
2r2
a0t

)
(k + 2l + 1)!(k + l + 1− t)

. (3.35)

Let us introduce the dimensionless quantities ρ1 = 2 r1
a0t

and ρ2 = 2 r2
a0t

. We then have

P (1S, t) =
~2e2

48α4m3c4

∞∑
k=0

k!

(k + 3)!

t7

(k + 2− t)

∫ ∞
0

ρ4
1 dρ1e−( 1+t

2
)ρ1L3

k(ρ1)∫ ∞
0

ρ4
2 dρ2e−( 1+t

2
)ρ2L3

k(ρ2). (3.36)
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We use the following standard integral identity [43]

∫ ∞
0

dρ esρ ργLµn(ρ) =
Γ(γ + 1)Γ(n+ µ+ 1)

n!Γ(µ+ 1)
(−s)−(γ+1)

2F1

(
− n, γ + 1;µ+ 1;−1

s

)
,

(3.37)

to evaluate the integration in Eq. (3.36), where 2F1

(
− n, γ + 1;µ + 1;−1

s

)
is a

hypergeometric function of the form 2F1

(
a, b; c; z

)
. The hypergeometric function is

defined by the following power series

2F1

(
a, b; c; z

)
=
∞∑
k=0

(a)k (b)k
(c)k

zk

k!
, (3.38)

where

(q)k =
Γ(k + q)

Γ(q)
= q(q + 1)(q + 2) ... (q + k − 1), (3.39)

is a Pochhammer symbol. If c is not a negative integer, the hypergeometric series

(3.38) converges for all |z| < 1, and converges for |z| = 1, if <(c− a− b) > 0, where

< stands for the real part. It is worth listing values of the hypergeometric function

in the following special cases.

2F1

(
0, b; c; z

)
= 1, (3.40a)

2F1

(
a, b; b; z

)
=

1

(1− z)a
, (3.40b)

2F1

(
a, b+ 1; b; z

)
=

(a− b)z + b

b (1− z)a+1 , (3.40c)

2F1

(
1, 1; 2; z

)
= − ln(1− z)

z
. (3.40d)
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In what follows, the following contiguous relations for hypergeometric func-

tions are also of great use.

2F1

(
a, b; c; z

)
=

(c− 1)

z(c− a− 1)

[
2F1

(
a, b− 1; c− 1; z

)
+ (z − 1)2F1

(
a, b; c− 1; z

)]
.

(3.41a)

2F1

(
a, b; c; z

)
=− (b− c)

z(b− a)− 2b+ c
2F1

(
a, b− 1; c; z

)
+

b(z − 1)

z(b− a)− 2b+ c
2F1

(
a, b+ 1; c; z

)
. (3.41b)

With the help of identity (3.37), Eq. (3.36) gives

P (1S, t) =
~2e2

α4m3c4

[2t2(−3− 18t− 42t2 − 42t3 − t4 + 36t5 + 38t6)

3(−1 + t)(1 + t)7

−
256 t10

2F1

(
1, 2− t; 3− t; (1−t

1+t
)2
)

3(−2 + t)(−1 + t)(1 + t)9

]
. (3.42)

The contiguous relation (3.41a) lowers 2F1

(
1, 2− t; 3− t; (1−t

1+t
)2
)

into

2F1

(
1, 1− t; 2− t; (1−t

1+t
)2
)

and 2F1

(
1, 2− t; 2− t; (1−t

1+t
)2
)
. The relation (3.40b) im-

plies that

((
1− t
1 + t

)2

− 1

)
2F1

(
1, 2− t; 2− t;

(
1− t
1 + t

)2
)

= −1. (3.43)

We apply the contiguous relation (3.41a) one more time. This lowers 2F1

(
1, 1 −

t; 2− t; (1−t
1+t

)2
)

into 2F1

(
1,−t; 1− t; (1−t

1+t
)2
)

and 2F1

(
1, 1− t; 1− t; (1−t

1+t
)2
)
. After some

algebra P (1S, t) works out to the following closed form

P (1S, t) =
~2e2

α4m3c4

[2 t2(−3 + 3t+ 12t2 − 12t3 − 19t4 + 19t5 + 26t6 + 38t7)

3(−1 + t)5 (1 + t)4
−

256 t9 2F1

(
1,−t; 1− t; (1−t

1+t
)2
)

3(−1 + t)5(1 + t)5

]
. (3.44)



65

For t→ 1 i.e. for ω → 0 Eq. (3.44) gives the following:

P (1S, t) =
9e2~2

4α4m3c4
+O (t− 1)1 . (3.45)

For large ω, i.e. when t→ 0, P (1S, t) takes the following form

P (1S, ω) =
3 ~2e2

α2m2c2

1

~ω
− 3~2e2

2m

1

~2ω2
+O

(
ω−3

)
. (3.46)

Let us make some analytical comparison. For large ω, 1
X+ω

can be expanded

as given below.

1

X + ω
=

1

ω
− 1

ω2
X +

1

ω3
X2 + ....... (3.47)

Thus,

〈nS|rj 1

H − EnS + ~ω
rj|n′S〉 =

〈nS|r2|n′S〉
~ω

− 〈nS|r
j(H − En′S)rj|n′S〉

~2ω2
+O

(
ω−3

)
=

1

~ω
〈nS|r2|n′S〉 − 1

2~2ω2
〈nS|rj

[
(H − EnS) + (En′S − EnS)

+ (H − En′S)

]
rj|n′S〉+O

(
ω−3

)
. (3.48)

For the 1S- 1S system,

〈1S|rj 1

H − E1S + ~ω
rj|1S〉

=
1

~ω
〈1S|r2|1S〉 − 1

~2ω2
〈1S|rj(H − E1S)rj|1S〉+O

(
ω−3

)
=

1

~ω
〈1S|r2|1S〉 − 1

2~2ω2
〈1S|rj

[
(H − E1S) + (E1S − E1S)+

(H − E1S)

]
rj|1S〉+O

(
ω−3

)
=

1

~ω
〈1S|r2|1S〉 − 1

2~2ω2

(
〈1S|rj[(H − E1S), rj]|1S〉
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+ 〈1S|[rj, (H − E1S)]rj|1S〉
)

+O
(
ω−3

)
=

1

~ω
〈1S|r2|1S〉 − 1

2~2ω2

(
〈1S|rj(−i~

pj

m
)|1S〉+ 〈1S|(i~p

j

m
)rj|1S〉

)
+O

(
ω−3

)
=

1

~ω
〈1S|r2|1S〉+

i~
2m~2ω2

(
〈1S|[rj, pj]|1S〉

)
+O

(
ω−3

)
=

1

~ω
〈1S|r2|1S〉+ (3i~)

i~
2m~2ω2

〈1S|1S〉+O
(
ω−3

)
. (3.49)

We have used [(H − E1S),O]|1S〉 = (H − E1S)O|1S〉 in the second line, [(H −

E1S), rj] = −i~ pj/m in the third line and the commutation relation [rj, pj] = 3 i~ in

the fifth line of the above expression. O refers to an arbitrary operator. Since, |1S〉

is normalized to unity. We have,

〈1S|rj 1

H − E1S + ~ω
rj|1S〉 =

1

~ω
〈1S|r2|1S〉 − 3

2m~2ω2
+O

(
ω−3

)
. (3.50)

We compute the expectation value

〈1S|r2|1S〉 =

∫ ∞
0

dr 22 1

a3
0

r4e
− 2r

a0 =
4a2

0

32

∫ ∞
0

d

(
2r

a0

)(
2r

a0

)4

e
− 2r

a0 =
4a2

0

32
Γ(5)

=
3~2

α2m2c2
, (3.51)

whence

P (1S, ω) =
e2

3
〈1S|rj 1

H − E1S + ω
rj|1S〉

=
3 ~2e2

α2m2c2

1

~ω
− 3~2e2

2m

1

~2ω2
+O

(
ω−3

)
. (3.52)

Hence, we see that the coefficients in the large asymptotic expression (3.52) match

those of the series expansion (3.46) of our result. This is a good way to check
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the rather complicated expressions obtained when computing polarizabilities (for in-

stance, expression (3.44)). We now substitute t = (1 + 2~ω/α2mc2)
−1/2

in Eq. (3.44)

to get P (1S, ω).

3.4.2. 2S Matrix Element. For the |2S〉 state, the P-matrix element of

the Schrödinger-Coulomb propagator P (2S, t) is given by

P (2S, t) =
e2

3
〈2S|xjg`=1(r1, r2, ν = 2t)xj|2S〉, (3.53)

where t = (1 + 8ω/(α2m))−1/2 and g`=1(r1, r2, ν = 2t) is the radial Green function

given by Eq. (3.6). The wave function for the 2S state is

Ψ200(r, θ, φ) = R20(r)Y00(θ, φ) = 2

(
1

2a0

)3/2 (
1− r

2a0

)
e
− r

2a0 Y00(θ, φ). (3.54)

Substituting g`(r1, r2, ν = 2t) and |2S〉 in P (2S, t) and integrating using the standard

integral given in Eq. (3.37) we get,

P (2S, t) =
~2e2

α4m3c4

[
16t2

3(−1 + t)3(1 + t)8

(
− 21− 105t− 162t2 + 30t3 + 340t4

+ 284t5 − 46t6 − 494t7 − 239t8 + 1181t9
)

−
16384t10(−1 + 4t2)2F1

(
1, 2− 2t; 3− 2t;

( (−1+t)
(1+t)

)2
)

3(−1 + t)3(1 + t)10

]
. (3.55)

We lower the arguments of Hypergeometric functions using the relations (3.41a) and

(3.41b). After some algebra, P (2S, t) becomes

P (2S, t) =
~2e2

α4m3c4

[
16t2

3(−1 + t)6(1 + t)4

(
21− 42t− 48t2 + 138t3 + 14t4 − 166t5

−16t6 − 314t7 + 1181t8
)
−

16384 t9(−1 + 4t2) 2F1

(
1,−2t; 1− 2t;

(
1−t
1+t

)2
)

3(−1 + t)6(1 + t)6

]
.

(3.56)
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For t→ 1, or, ω → 0, we have

lim
t→1

P (2S, t) =
60 e2~2

α4m3c4
+O (t− 1)1 . (3.57)

For t→ 0 i.e. ω →∞ we get the following series for P (2S, t).

P (2S, ω) =
14 ~2e2

α2m2c2

1

~ω
− ~2e2

2m

1

~2ω2
+O

(
ω−3

)
. (3.58)

The Taylor series of the matrix element for large frequency is

P (2S, ω) =
e2

3
〈2S|rj 1

H − E2S + ~ω
rj|2S〉

=
e2

3

[
1

~ω
〈2S|r2|2S〉 − 1

~2ω2
〈2S|rj(H − E1S)rj|2S〉

]
+O

(
ω−3

)
=

e2

3~ω
〈2S|r2|2S〉 − e2~2

2m~2ω2
+O

(
ω−3

)
. (3.59)

We compute the expectation value

〈2S|r2|2S〉 =

∫ ∞
0

dr 22

(
αmc

2~

)3

r4

(
1− αmcr

2~

)2

e−αmcr/~

=
α3m3c3

2~3

[ ∫ ∞
0

dr r4e−αmcr/~ − αmc

~

∫ ∞
0

dr r5e−αmcr/~

+
α2m2c2

4~2

∫ ∞
0

dr r6e−αmcr/~
]

=
α3m3c3

2~3

[
~5Γ(5)

α5m5c5
− ~5Γ(6)

α5m5c5
+

~5Γ(7)

4α5m5c5

]
=

42~2

α2m2c2
. (3.60)

Substituting the value of 〈2S|r2|2S〉 from Eq. (3.60) in Eq. (3.59), we get

P (2S, ω) =
14 ~2e2

α2m2c2

1

~ω
− ~2e2

2m

1

~2ω2
+O

(
ω−3

)
. (3.61)
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This is exactly what we have in (3.58).

Let’s get back to the matrix element P (2S, t). We want to exclude the 2P

state from the sum over states in Eq.(3.56).

e2

3

〈
2P

∣∣∣∣xj 1

~ω
xj
∣∣∣∣ 2P〉 =

e2

3~
27a2

0

ω
=
e2

3~
27~2

α2m2c2ω
=

9 e2~
α2m2c2

8~
α2mc2

t2

1− t2

=
e2~2

α4m3c4

[
72t2

1− t2

]
. (3.62)

One needs to subtract right hand side of Eq. (3.62) from Eq. (3.56) to exclude the

degenerate contribution of the 2P state to the matrix element P(2S, ω) which results

P̃ (2S, t) =
e2~2

α4m3c4

[
16t2

3(−1 + t)6(1 + t)4

(
21− 42t− 48t2 + 138t3 + 14t4 − 166t5

− 16t6 − 314t7 + 1181t8
)
−

16384t9(−1 + 4t2) 2F1

(
1,−2t; 1− 2t;

(
1−t
1+t

)2
)

3(−1 + t)6(1 + t)6

+
72t2

t2 − 1

]
, where t =

(
1 +

8~ω
α2mc2

)−1/2

. (3.63)

P̃ (2S, t) in Eq. (3.63) is the nondegenerate contribution to the matrix element P(2S,

ω).

3.4.3. 3S, 4S, and 5S Matrix Elements. For the 3S state of the hydro-

gen, the radial wave function is given as

R30(r) = 2

(
1

3a0

)3/2(
1− 2 r

3a0

+
2r2

27a2
0

)
exp(− r

3a0

). (3.64)

Thus, the integral form of the P-matrix element takes

P (3S, ω) =
e2

3

∫ ∞
0

r2
1 dr1

∫ ∞
0

r2
2 dr2 R30(r1) r1 g`(r1, r2, ν = 3t) r2 R30(r2). (3.65)



70

After some algebra, the matrix element of Schrödinger Coulomb propagator for 3S

state P (3S, t) is given as

P (3S, t) =
~2e2

α4m3c4

[
54t2

(−1 + t)8(1 + t)6

(
23− 46t− 95t2 + 236t3 + 128t4 − 492t5

− 62t6 + 40t7 + 2871t8 + 2090t9 − 13283t10 − 2852t11 + 15538t12

)
− 972 t2

1− t2

+
6912 t9(−1 + 9t2)(3− 7t2)2

2F1

(
1,−3t; 1− 3t; (−1+t)2

(1+t)2

)
(−1 + t)8(1 + t)8

]
;

where t =

(
1 +

18~ω
α2mc2

)−1/2

. (3.66)

We subtracted ~2e2
α4m3c4

[
972t2

(1−t2)

]
from P (3S, t) to exclude the contribution of the degen-

erate 3P states. The series expansion of the matrix element P (3S, t) for low frequency

case i.e., about t = 1 yields

P (3S, t) =
2025

4

~2e2

α4m3c4
+O(t− 1)1. (3.67)

On the other hand, the series expansion of the same matrix element P (3S, t)

for large frequency is

P (3S, ω) =
69 ~2e2

α2m2c2

1

~ω
− ~2e2

2m

1

~2ω2
+O

(
ω−3

)
. (3.68)

With the help of the Eq. (3.48), the matrix element

P (3S, ω) =
e2

3
〈3S|xj 1

H − E3S − ~ω
xj|3S〉, (3.69)

can be expanded for large ω to get

P (3S,ω) =
e2〈3S|r2|3S〉

3~ω
− e2

6~2ω2
〈3S|rj

[
(H − E3S) + (H − E3S)

]
rj|3S〉+O

(
ω−3

)
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=
e2

3~ω
〈3S|r2|3S〉 − e2

6~2ω2

(
〈3S|rj[(H − E3S), rj]|3S〉

+ 〈3S|[rj, (H − E3S)]rj|3S〉
)

+O
(
ω−3

)
=

e2

3~ω
〈3S|r2|3S〉 − e2

6~2ω2

(
〈3S|rj(−i~

pj

m
)|3S〉+ 〈3S|(i~p

j

m
)rj|3S〉

)
+O

(
ω−3

)
=

e2

3~ω
〈3S|r2|3S〉+

i~ e2

6m~2ω2

(
〈3S|[rj, pj]|3S〉

)
+O

(
ω−3

)
=

e2

3~ω
〈3S|r2|3S〉+

i~ e2

6m~2ω2

(
3i~〈3S|3S〉

)
+O

(
ω−3

)
=

e2

3~ω
〈3S|r2|3S〉 − ~2 e2

2m~2ω2
+O

(
ω−3

)
. (3.70)

The expectation value 〈3S|r2|3S〉 amounts to be

〈3S|r2|3S〉 =
207~2

α2m2c2
. (3.71)

Substituting the value of 〈3S|r2|3S〉 in the last line of Eq. (3.70), the series of the

matrix element P (3S, ω) for large frequency gives

P (3S, ω) =
69 ~2e2

α2m2c2

1

~ω
− ~2e2

2m

1

~2ω2
+O

(
ω−3

)
. (3.72)

This is exactly same to Eq. (3.68). This verifies our result (3.66) for matrix element

P (3S, ω). Following the same steps what we did for 3S matrix element, the 4S matrix

element and the 5S matrix element are given as

P (4S,t) =
~2e2

α4m3c4

[
256t2

27(t− 1)10(t+ 1)8

(
9293353t16 − 1252434t15 − 14419772t14

+1876682t13 + 7960532t12 − 963186t11 − 1841172t10 + 160410t9 + 159222t8

+37242t7 − 12132t6 − 31410t5 + 10548t4 + 10314t3 − 4428t2 − 1458t+ 729

)

−5760t2

1− t2
−

1048576t9 (16t2 − 1) (23t4 − 18t2 + 3)
2

2F1

(
1,−4t; 1− 4t; (t−1)2

(t+1)2

)
27 (t2 − 1)10

]
;
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where t =

(
1 +

32~ω
α2mc2

)−1/2

, (3.73)

P (5S,t) =
~2e2

α4m3c4

[
1250t2

27(t− 1)12(t+ 1)10

[
174886810t20 − 18533620t19 − 388092451t18

+40364922t17 + 339195951t16 − 34343064t15 − 148417204t14 + 14394688t13

+34111792t12 − 3002592t11 − 3909954t10 + 182820t9 + 204834t8 + 84312t7

−28692t6 − 41328t5 + 15534t4 + 10260t3 − 4563t2 − 1134t+ 567
]
− 22500t2

1− t2

−
160000t9(25t2 − 1)(455t6 − 509t4 + 165t2 − 15)2

2F1

(
1,−5t; 1− 5t; (t−1)2

(t+1)2

)
27 (t2 − 1)12

]
;

where t =

(
1 +

50~ω
α2mc2

)−1/2

. (3.74)

To exclude the contributions of the degenerate P -states, we subtracted ~2e2
α4m3c4

[
5760 t2

(1−t2)

]
from P (4S, t) and ~2e2

α4m3c4

[
22500 t2

(1−t2)

]
from P (5S, t).
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4. DIRAC-DELTA PERTURBATION OF THE vdW ENERGY

4.1. HYPERFINE HAMILTONIAN AND DIRAC-DELTA POTENTIAL

Atomic nuclei have a small but non-zero magnetic moment. It is small in a

sense that the magnetic moment of the nucleus is in the order of 103 times smaller

than that of an electron. The interaction between the magnetic moment of the nucleus

and the magnetic moment of the electron results in the hyperfine structure of spectral

lines. The magnetic moment of the proton in a hydrogen atom is

~µp = gp
e

2M
~Sp, (4.1)

where gp = 5.585 694 702 is the g-factor of the proton. M and ~Sp denote the mass of a

proton and the proton spin vector. The proton of the hydrogen atom experiences the

magnetic field due to the orbital angular momentum and the spin angular momentum

of the electron revolving around it. The magnetic field due to the orbital motion of

the electron is given by

~B` =
(−e)~v × (−~r)

8πε0c2r3
= − e

8πε0c2mr3
~r × ~P = − e

8πε0c2mr3
~L, (4.2)

where −~r is the relative position of the electron with respect to the proton. The

electron is moving in a circular orbit around the proton with the velocity ~v. In

Eq. (4.2), we have used ~v = ~P/m and ~r × ~v = ~L, where ~P and ~L are respectively

the linear and the orbital angular momenta of the electron. The extra factor of 1/2

comes from the so-called Thomas precession effect [44; 45] which is the relativistic

effect as the electron does not move in a straight line.
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The magnetic field experienced by the proton of the hydrogen atom associated

with the spin angular momentum of the electron is given by [46]

~Bs =
1

4πε0c2r3
[3(~µe.r̂)r̂ − ~µe] +

2

3ε0c2
~µeδ

3(~r)

= − e~
4πε0c2mr3

[
3(~Se · r̂)r̂ − ~Se

]
− 2

3ε0c2

e~
m
~Seδ

3(~r), (4.3)

where ~µe = − e
m
~Se is the magnetic moment and ~Se = ~Se is the spin angular momen-

tum of the electron. The total magnetic field on the proton is the sum

~B = ~B` + ~Bs

= − e

8πε0c2mr3
~L− e

4πε0c2mr3

[
3(~Se · r̂)r̂ − ~Se

]
− 2

3ε0c2

e

m
~Seδ

3(~r). (4.4)

The total perturbation Hamiltonian due to the magnetic moment interaction of the

electron and the proton is

Hhfs = −~µp. ~B = −e gp
2M

~Sp · ~B. (4.5)

Substituting the total magnetic field ~B in Eq. (4.5) from Eq. (4.4), we obtain

Hhfs =
e2gp

16πε0c2mMr3
~Sp · ~L+

e2gp
8πε0c2mMr3

[
3(~Se · r̂)r̂ − ~Se

]
· ~Sp

+
e2gp

3ε0c2mM
(~Sp · ~Se)δ3(~r)

=
~α gp

4mMcr3
~Sp · ~L+

~α gp
2mMcr3

[
3(~Se · r̂)(r̂ · ~Sp)− ~Se · ~Sp

]
+

4

3
gp(~Sp · ~Se)

π~α
mMc

δ3(~r). (4.6)

In the first and the second lines of Eq. (4.6), we have used the value of e2 in SI

units i.e. e2 = 4πε0~cα. For a pair of neutral hydrogen atoms a and b, the hyperfine
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Hamiltonian is given by:

Hhfs =
~α gp

4mMc

∑
j=a,b

~Spj · ~Lj
r3
j

+
~α gp

2mMc

∑
j=a,b

1

r3
j

[
3(~Sej · r̂j)(r̂j · ~Spj)− ~Sej · ~Spj

]
+

4

3
gp
∑
j=a,b

(~Spj · ~Sej)
π~α
mMc

δ3(~rj). (4.7)

The first summands in the right-hand side of Eq. (4.7) has zero contribution

for S states as the orbital angular momentum quantum number for S states are zero.

Let us now see 3(~Sej · r̂j)(r̂j · ~Spj) for S-states.

〈nS| 3
r3
j

(~Sej · r̂j)(r̂j · ~Spj)|nS〉 = 3

∫
d3rj
r5
j

〈nS|rkj |~rj〉〈~rj|r`j|nS〉SkejS`pj

= 3

∫ ∞
0

r4
j

r5
j

drj|Rn0(rj)|2
δk`

3

∫ 2π

0

dφ

∫ π

0

sinθdθ Y00(θ, φ)Y00(θ, φ)
sin θ cosφ

sin θ sinφ

cosθ


m

sin θ cosφ

sin θ sinφ

cosθ


m

SkejS
`
pj

= 3

∫ ∞
0

1

rj
drj|Rn0(rj)|2

δk`

3

∫ π

0

sinθdθ
1

4π


π sin2θ

π sin2θ

2π cos2θ


m

SkejS
`
pj

=

∫ ∞
0

1

rj
drj|Rn0(rj)|2δk`

1

4π

(
π

4

3
+ π

4

3
+ 2π(

2

3
)

)
SkejS

`
pj

=

∫ ∞
0

1

rj
drj|Rn0(rj)|2δk`SkejS`pj

= 〈nS|
~Sej · ~Spj
r3
j

|nS〉. (4.8)

With the help of Eq. (4.8), it becomes evident that for S states the second summand in

the right-hand side of Eq. (4.7) does not contribute anything which further leads us to

the conclusion that a Dirac-delta type interaction depicts the hyperfine Hamiltonian
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associated to S states of hydrogen atoms. More explicitly,

Hhfs =
4

3
gp
∑
j=a,b

(~Spj · ~Sej)
π~α
mMc

δ3(~rj) for S-states.

=
4

3
gp
∑
j=a,b

m

M

(
~Spj
~
·
~Sej
~

)
αmc2

(
~
mc

)3

πδ3(~rj). (4.9)

4.2. WAVE FUNCTION PERTURBATION

Let us consider a small perturbation ‘δV ’ on the Hamiltonian ‘H’ proportional

to the Dirac−δ function as given below

δV = αmc2

(
~
mc

)3

πδ3(~r). (4.10)

This potential is the so-called standard Dirac−δ potential. Suppose the perturbation

δV changes the Hamiltonian, energy, and ket associated to the wave functions as

H → H + δV,

E → E + δE = E + 〈nS|δV |nS〉,

|nS〉 → |nS〉+ |δ(nS)〉. (4.11)

This perturbation is weak enough. It is weak in the sense that the eigenstates and

the eigenvalues do not deviate heavily from their corresponding values before the per-

turbation is applied. Applying this correction to the time-independent Schrodinger

equation, we get the following equation

(
H + δV

)(
|nS〉+ |δ(nS)〉

)
=

(
EnS + δE

)(
|nS〉+ |δ(nS)〉

)
.

(4.12)
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In the zeroth order approximation, Eq. (4.12) takes the following form

H|nS〉 = EnS|nS〉, (4.13)

and the eigenstates and eigenvalues reduce to their corresponding unperturbed values.

In first order approximation,

H |δ(nS)〉+ δV |nS〉 = EnS|δ(nS)〉+ δE|nS〉. (4.14)

Rearranging Eq. (4.14), we get

(
δV − 〈nS|δV |nS〉

)
|nS〉 =

(
EnS −H

)
|δ(nS)〉. (4.15)

This leads to the following modification on the wave functions

|δ(nS)〉 =
1

(EnS −H)′
δV |nS〉. (4.16)

As a result, the correction to the wave function reads

δψn00(~r) = 〈~r| 1

(EnS −H)′
δV |n00〉 =

1√
4π
δRn0(r). (4.17)

This correction to the wave function is orthonormal to the unperturbed wave function.

In Eq. (4.16), 1/(EnS − H)′ is a reduced Green function. We introduced the prime

on the Green function to exclude nS states. Let us use the following form of the

normalized radial wave function and calculate the energy shift due to δV :

Rn`(r) =

√(
2

na0

)3
(n− `− 1)!

2n(n+ `)!
e
− r
na0

(
r

na0

)l
L2`+1
n−`−1(

2r

na0

). (4.18)
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For S-states,

Rn0(r) =

√(
2

na0

)3
(n− 1)!

2n (n!)
e
− r
na0L

(1)
n−1(

2r

na0

). (4.19)

Furthermore, 〈r, θ, φ|nS〉 = Ψn00(r, θ, φ) is the product of Rn0(r) and Y0,0(θ, φ) i.e.

Ψn00(r, θ, φ) = Rn0(r)Y0,0(θ, φ) =
1√
(4π)

Rn0(r). (4.20)

The energy shift to the nS−state i.e. δE = 〈nS|δV |nS〉 is

〈nS|δV |nS〉 =
1

4π

(
2

na0

)3
(n− 1)!

2n n!

∫
d3r e

− 2 r
na0 L

(1)
n−1

(
2r

na0

)
αmc2

×
(

~
mc

)3

πδ3(~r)L
(1)
n−1

(
2r

na0

)

=
1

4π

(
2

na0

)3
1

2n2

απ~3

m2c

∞∫
0

r2dr

π∫
0

sin θdθ

2π∫
0

dφe
− 2 r

na0L
(1)
n−1(

2r

na0

)

× 1

r2
δ(r)

1

sin θ
δ(θ) δ(φ) L

(1)
n−1(

2r

na0

)

=
1

4π

(
2

na0

)3
1

2n2

απ~3

m2c
L

(1)
n−1(0) L

(1)
n−1(0)

=
1

n5
αmc2

(
~

a0mc

)3

L
(1)
n−1(0) L

(1)
n−1(0)

=
α4

n5
mc2 Γ(n+ 1)

Γ(n)

Γ(n+ 1)

Γ(n)

=
α4mc2

n3
. (4.21)

We may rewrite Eq. (4.16) as

(EnS −H) δΨn00(r, θ, φ) = 〈δV 〉Ψn00(r, θ, φ). (4.22)

Making use of Eqs. (4.17) and (4.20), one can show that the correction to the

radial part of wave function δRn0(r) must satisfy the second order partial differential
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equation as given below:

(EnS −H) δRn0(r) = 〈δV 〉Rn0(r)

or,

[
EnS −

(
−~2∇2

r

2m
− α~c

r

)]
δRn0(r) = 〈δV 〉Rn0(r). (4.23)

In the first line of Eq. (4.23), we have substituted H = −~2∇2
r/(2m) − ~cα/r. Re-

arranging Eq. (4.23), and substituting ∇2
r = ∂2

r + 2/r∂r and EnS = −α2mc2/(2n2),

the differential equation takes the following form

[
−α

2m2c2

n2~2
+ ∂2

r +
2

r
∂r +

2mcα

~ r

]
δRn0(r) = − 2m2α4c2

~2n3
Rn0(r). (4.24)

To calculate the correction to the radial part of wave functions, we make the

following ansatz:

δR10(r) =

(
b0

r
+ b1 + b2 r

)
e−r/a0 + ln

(
r

a0

)(
b3

)
e−r/a0 , (4.25a)

δR20(r) =

(
c0

r
+ c1 + c2 r + c3 r

2

)
e−r/(2a0) + ln

(
r

2a0

) (
d0 + d1r

)
e−r/(2a0),

(4.25b)

δR30(r) =

(
e0

r
+ e1 + e2 r + e3 r

2 + e4r
3

)
e−r/(3a0)+

ln

(
r

3a0

) (
f0 + f1r + f2r

2

)
e−r/(3a0), (4.25c)

δR40(r) =

(
g0

r
+ g1 + g2 r + g3 r

2 + g4r
3 + g5r

4

)
e−r/(4a0)+

ln

(
r

4a0

) (
h0 + h1r + h2r

2 + h3r
3

)
e−r/(4a0), (4.25d)

δR50(r) =

(
i0
r

+ i1 + i2 r + i3 r
2 + i4r

3 + i5r
4 + i6r

5

)
e−r/(5a0)+

ln

(
r

5a0

) (
j0 + j1r + j2r

2 + j3r
3 + j4r

4

)
e−r/(5a0). (4.25e)
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The corresponding radial part of wave functions are listed below:

R10(r) =2

(
1

a0

)3/2

e−r/a0 , (4.26a)

R20(r) =2

(
1

2a0

)3/2

e−r/(2a0)

(
1− r

2a0

)
, (4.26b)

R30(r) =2

(
1

3a0

)3/2

e−r/(3a0)

(
1− 2r

3a0

+
2r2

27a2
0

)
, (4.26c)

R40(r) =2

(
1

4a0

)3/2

e−r/(4a0)

(
1− 3r

4a0

+
r2

8a2
0

− r3

192a3
0

)
, (4.26d)

R50(r) =2

(
1

5a0

)3/2

e−r/(5a0)

(
1− 4r

5a0

+
4r2

25a2
0

− 4r3

375a3
0

+
2r4

9375a4
0

)
. (4.26e)

We first simplify the left-hand side of Eq. (4.24) for a given value of n and compare the

coefficients of the various powers of r with the right-hand side of the expression. Using

the fact that |(nS)〉 and |δ(nS)〉 satisfy the orthogonality relation 〈nS|δ(nS)〉 = 0,

we can uniquely determine all bk, ck, dk, ek, fk, gk, hk, ik, and jk. The resulting

corrections to the radial part of the wave functions are

δR10(r) =
α2

a
1/2
0

−1

r
− 5

a0

+
2 γ

E

a0

+
2 r

a2
0

+
2 ln

(
r
a0

)
a0

 e−r/a0 , (4.27a)

δR20(r) =
α2

√
2 a

1/2
0

[
− 1

2 r
+
γ

E

a0

− 3

4a0

+
13 r

8a2
0

− γ
E
r

2a2
0

− r2

8a3
0

+
ln
(
r
a0

)
a0

−
r ln

(
r
a0

)
2a2

0

]
e−r/(2a0), (4.27b)

δR30(r) =
α2

√
3 a

1/2
0

[
− 1

3r
+

2γ
E

3a0

− 4γ
E
r

9a2
0

+
8r

9a2
0

− 16r2

81a3
0

+
4 γ

E
r2

81a3
0

+
4 r3

729a4
0

+
2 ln

(
2r
3a0

)
3a0

−
4 r ln

(
2r
3a0

)
9a2

0

+
4 r2 ln

(
2r
3a0

)
81a3

0

]
e−r/(3a0), (4.27c)
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δR40(r) =
α2

2a
1/2
0

[
− 1

4r
+

11

48a0

+
γ

E

2a0

+
33r

64a2
0

− 3γ
E
r

8a2
0

− 11r2

64a3
0

+
γ

E
r2

16a3
0

+
113r3

9216a4
0

− γ
E
r3

384a4
0

− r4

6144a5
0

+
ln
(

r
2a0

)
2a0

−
3 rln

(
r

2a0

)
8a2

0

+
r2ln

(
r

2a0

)
16a3

0

−
r3ln

(
r

2a0

)
384a4

0

]
e−r/(4a0), (4.27d)

δR50(r) =
α2

√
5 a

1/2
0

[
− 1

5r
+

47

150a0

+
2 γ

E

5a0

+
116r

375a2
0

− 8 γ
E
r

25a2
0

− 86 r2

625a3
0

+
8 γ

E
r2

125a3
0

+
16 r3

1125a4
0

− 8 γ
E
r3

1875a4
0

− 323 r4

703125a5
0

+
4 γ

E
r4

46875a5
0

+
4 r5

1171875a6
0

+
8 r2ln

(
2r
5a0

)
125a3

0

−
8 r3ln

(
2r
5a0

)
1875a4

0

+
4 r4ln

(
2r
5a0

)
46875a5

0

+
2 ln

(
2r
5a0

)
5a0

−
8 rln

(
2r
5a0

)
25a2

0

]
e−r/(5a0). (4.27e)

4.3. CALCULATION OF THE DIRAC-DELTA PERTURBATION TO
EvdW

Let us recall the fourth order energy shift ∆E
(4)
a;b (R) due to the interaction

Hamiltonian between two atoms A and B.

∆E
(4)
a;b (R) =− ~

πc4(4πε0)2

∫ ∞
0

dω αa(iω) αb(iω)
ω4e−2ωR/c

R2[
1 + 2

( c

ωR

)
+ 5

( c

ωR

)2

+ 6
( c

ωR

)3

+ 3
( c

ωR

)4
]
. (4.28)

The interaction energy due to the presence of a Dirac-delta perturbation potential

can be enunciated as

δEa;b(R) =− ~
πc4(4πε0)2

∫ ∞
0

dω
[
δαa(iω) αb(iω) + αa(iω) δαb(iω)

]ω4 e−2ωR/c

R2[
1 + 2

( c

ωR

)
+ 5

( c

ωR

)2

+ 6
( c

ωR

)3

+ 3
( c

ωR

)4
]
, (4.29)
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where δαa(iω) and δαb(iω) are the perturbation of the Wick-rotated form of the

polarizabilities of atoms A and B due to the potential δV . Each of them is the sum

of the two contributions

δαa(iω) = δαa(iω) + δα̃a(iω),

δαb(iω) = δαb(iω) + δα̃b(iω), (4.30)

where δαa(iω) and δαb(iω) are degenerate contributions and δα̃a(iω) and δα̃b(iω) are

nondegenerate contributions to the Wick-rotated polarizabilities.

In the vdW range of interatomic interaction, the exponential term in Eq. (4.29)

does not suppress anymore, and the first four terms under the square bracket [ ] are

insignificant in comparison to the fifth term 3/(ωR)4. Thus the interaction energy, if

the delta perturbation perturbs only atom A, can be estimated as

δE6(a; b) ≈ − 3~
π(4πε0)2R6

∞∫
0

dω δαa(iω)αb(iω). (4.31)

We can rewrite Eq. (4.31) as

δEa;b(R) = −δD6(a; b)

R6
, (4.32)

where δD6(a; b) is the direct vdW coefficient due to the Dirac-delta perturbation

potential and given by

δD6(a; b) =
3~

π(4πε0)2

∞∫
0

dω δαa(iω)αb(iω). (4.33)
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The correction to the Wick-rotated form of the polarizability is the sum of perturbed

P -matrix elements for ω and −ω. For example for atom A, δαa(iω) reads

δαa(iω) = δPa(iω) + δPa(−iω). (4.34)

There are three sources for the Dirac delta modification of the P -matrix ele-

ment, namely Hamiltonian, energy, and wave function. Let us first investigate how

these components bring the modification to the P -matrix elements. In the investi-

gation of the correction on the P -matrix element, we first consider the form of the

matrix element without taking care of the Wick rotation. However, we definitely per-

form the Wick rotation before we calculate the integral. The Dirac delta perturbation

on the Hamiltonian gives the following modification in the P -matrix.

〈nS|xi 1

H + δV − EnS + ~ω
xi|nS〉

=〈nS|xi 1

H − EnS + ~ω

(
1 +

δV

H − EnS + ~ω

)−1

xi|nS〉

=〈nS|xi
[

1

H − EnS + ~ω
− 1

H − EnS + ~ω
δV

1

H − EnS + ~ω
+ · · ·

]
xi|nS〉.

(4.35)

To the first order,

δPH
nS(ω) = −1

3
〈nS|xi 1

H − EnS + ~ω
δV

1

H − EnS + ~ω
xi|nS〉

= −1

3
αmc2

(
~
mc

)3

〈nS|xi 1

H − EnS + ~ω
δ3(~r)

1

H − EnS + ~ω
xi|nS〉.

(4.36)
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The probability density of P -states vanishes at the origin. Thus, the Hamiltonian

correction to the δP (nS, ω) is zero .

δPH
nS(ω) = 0. (4.37)

We expect that the correction due to the energy brings the following modifi-

cation on the matrix element

〈nS|xi 1

H − EnS − δE + ~ω
xi|nS〉

=〈nS|xi 1

H − EnS + ~ω

(
1− δE

H − EnS + ~ω

)−1

xi|nS〉

=〈nS|xi
[

1

H − EnS + ~ω
+

δE

(H − EnS + ~ω)2 + · · ·
]
xi|nS〉. (4.38)

To the first order,

δPE
nS(ω) =

α4m3c4e2

3~2
〈nS|xi δE

(H − EnS + ~ω)2x
i|nS〉

=
α4m3c4e2

3~2
〈nS|xi

(
− ∂

∂(~ω)

δE

(H − EnS + ~ω)

)
xi|nS〉

= −α
4m3c4e2

3~2

∂

∂(~ω)
〈nS|xi 1

(H − EnS + ~ω)
xi|nS〉 δE

= − ∂

∂(~ω)
P̃nS(ω) 〈nS|δV |nS〉. (4.39)

In terms of the parameter t, the frequency ω is given as

~ω =
α2mc2

2n2

1− t2

t2
. (4.40)

Hence the correction to the matrix element due to energy becomes

δPE
nS(ω) = −

[
−t3 n2

α2mc2

∂

∂t

]
P̃ (nS, t)〈nS|δV|nS〉
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=
n2t3

α2mc2

∂[P̃ (nS, t)]

∂t
〈nS|δV|nS〉. (4.41)

Let us now replace |nS〉 by the corrected wave function |nS+δ(nS)〉 in the P -

matrix to examine the modification in the P -matrix element due to the wave function

correction. It is corrected in the sense that it includes the effect of the Dirac delta

modification on the wave function.

〈nS + δ(nS)|xi 1

H − EnS + ~ω
xi|nS + δ(nS)〉 = 〈nS|xi 1

H − EnS + ~ω
xi|nS〉

+ 〈nS|xi 1

H − EnS + ~ω
xi|δ(nS)〉+ 〈δ(nS)|xi 1

H − EnS + ~ω
xi|nS〉

+ 〈δ(nS)|xi 1

H − EnS + ~ω
xi|δ(nS)〉. (4.42)

To the first order,

δPψ
nS(ω) =

e2

3

[
〈nS|xi 1

H − EnS + ~ω
xi|δ(nS)〉+ 〈δ(nS)|xi 1

H − EnS + ~ω
xi|nS〉

]
=

2e2

3
〈nS|xi 1

H − EnS + ~ω
xi|δ(nS)〉, (4.43)

where |δ(nS)〉 is the modification of the wave function due to the delta perturba-

tion potential. Substituting |δ(nS)〉 in terms of the reduced Green function, from

Eq. (4.16), Eq. (4.43) becomes

δPψ
nS(ω) =

2e2

3
〈nS|xi 1

H − EnS + ~ω
xi

1

(H − EnS)′
δH|nS〉. (4.44)

In general, the modification of the P -matrix element arising from the energy and the

wave function is nonzero.
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5. LONG-RANGE INTERACTION IN THE 1S-1S SYSTEM

5.1. CALCULATION OF C6(1S; 1S) IN THE vdW RANGE

As we already discussed in Sec. (2.2.2), the vdW coefficient for the interaction

between two atoms a and b both being in the 1S state is

C6(1S; 1S) =
3~

π(4πε0)2

∫ ∞
0

dω α1S(iω) α1S(iω). (5.1)

The dipole polarizability for the 1S state, α1S(iω), is the sum

α1S(iω) = P (1S, iω) + P (1S,−iω). (5.2)

The matrix element P (1S, iω) has been derived in Sec. (3.4.1). With the proper

substitution of the variable, one can easily determine the dynamical polarizability

α(1S, iω). In the static limit, the dipole polarizability [42] is given by

α(1S, ω = 0) =
9e2~2

2α4m3c4
=

9e2a2
0

2Eh
. (5.3)

where Eh = α2mc2 is the Hartree energy and a0 = ~/(αmc) is the Bohr radius. The

ground state of the hydrogen atom is a nondegenerate state. The calculation of the

vdW coefficient C6(1S; 1S) is fairly easy as there are neither virtual P -states, nor

mixing terms. The C6(1S; 1S) is calculated numerically which works out to

C6(1S; 1S) = 6.499 026 705Eha
6
0. (5.4)
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5.2. CALCULATION OF C7(1S; 1S) IN THE LAMB SHIFT RANGE

If the interatomic distance, R, is very large, i.e., R� ~c/L, the integrand in

E1S;1S(R) =− ~
πc4(4πε0)2

∫ ∞
0

dω α1S(iω)α1S(iω)
ω4e−2ωR/c

R2

×
[
1 + 2

( c

ωR

)
+ 5

( c

ωR

)2

+ 6
( c

ωR

)3

+ 3
( c

ωR

)4
]

(5.5)

is damped by oscillations in ω. The contribution of the non-vanishing frequencies in

the polarizabilities is exponentially suppressed which yields

E1S;1S(R) =− ~
πc4(4πε0)2

α1S(0)α1S(0)

∫ ∞
0

dω
ω4e−2ωR/c

R2

×
[
1 + 2

( c

ωR

)
+ 5

( c

ωR

)2

+ 6
( c

ωR

)3

+ 3
( c

ωR

)4
]
. (5.6)

Let us evaluate the following integral at first.

∫ ∞
0

dω
ω4e−2ωR/c

R2

[
1 + 2

( c

ωR

)
+ 5

( c

ωR

)2

+ 6
( c

ωR

)3

+ 3
( c

ωR

)4
]

=
c5

R7

∫ ∞
0

d

(
ωR

c

)
e−2ωR/c

[(
ωR

c

)4

+ 2

(
ωR

c

)3

+ 5

(
ωR

c

)2

+ 6

(
ωR

c

)
+ 3

]

=
c5

R7

[
3

4
+ 2× 3

8
+ 5× 1

4
+ 6× 1

4
+ 3× 1

2

]
=

23c5

4R7
. (5.7)

With the help of Eq. (5.7), the interaction between two neutral atoms at ground

states, at very large interatomic separation, reads

E1S;1S(R) =− 23

4πR7

~c
(4πε0)2

α1S(0)α1S(0). (5.8)

Note that, the interaction energy has the R−7 dependence in this range. Both hy-

drogen atoms are in the 1S-state which is the nondegenerate ground state. From
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Eq. (5.6), the interaction energy E1S;1S(R) for the 1S-1S system can be written as

E1S;1S(R) =− 23

4πR7

~c
(4πε0)2

α1S(0)α1S(0)

=− 23

4πR7

~c
(4πε0)2

(
9e2~2

2α4m3c4

)2

=− 1863

16

Eh
απ

(a0

R

)7

, (5.9)

which implies

C7(1S; 1S) =
1863

16

Eh
απ

(a0)7 . (5.10)

5.3. CALCULATION OF THE 1S-1S DIRAC-δ PERTURBATION EvdW

The perturbation of the CP energy for two neutral hydrogen atoms both in

the ground state |1S〉 is computed using

δE1S;1S(R) =− ~
πc4(4πε0)2

∫ ∞
0

dω δα1S(iω) α1S(iω)
ω4e−2ωR/c

R2

×
[
1 + 2

( c

ωR

)
+ 5

( c

ωR

)2

+ 6
( c

ωR

)3

+ 3
( c

ωR

)4
]
. (5.11)

It should be noted that in the close range of the interatomic separation a0 � R �

a0/α, the fourth term under the square bracket [ ] i.e. 3(c/ωR)4 dominates other

terms and the exponential approaches unity. Thus, the Dirac delta perturbed energy

δE1S;1S(R) obeys the power law R−6 such that

δE1S;1S(R) = −δD6(1S; 1S)

R6
, (5.12)
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where the Dirac-delta-perturbed vdW coefficient δD6(1S; 1S) is given by

δD6(1S; 1S) =
3~

π(4πε0)2

∫ ∞
0

dω δα1S(iω) α1S(iω). (5.13)

The quantity δα1S(iω) is the Wick-rotated Dirac-delta perturbed polarizability of the

ground state hydrogen atom. Computation of the vdW coefficient becomes simpler

if we separate the total contribution into two parts, namely the wave function contri-

bution δDψ
6 (1S; 1S) and the energy contribution δDE

6 (1S; 1S) which are respectively

given by

δDψ
6 (1S; 1S) =

3~
π(4πε0)2

∫ ∞
0

dω δαψ1S(iω) α1S(iω), (5.14)

δDE
6 (1S; 1S) =

3~
π(4πε0)2

∫ ∞
0

dω δαE1S(iω) α1S(iω). (5.15)

Each of the wave function part and the energy part of the perturbed vdW coefficient

has only the nondegenerate contribution as the ground state hydrogen atom does not

have any degenerate neighbor.

5.3.1. δDψ
6 (1S; 1S) Coefficient. We first look at the modification on the

P -matrix element due to the Dirac-delta perturbation potential action on the wave

function.

δPψ
1S(t) =

2α4m3c4e2

3~2
〈1S|xi g`(r1, r2, t)x

i|δ(1S)〉

=
2e2

3

∫ ∞
0

r2
1dr1

∫ ∞
0

r2
2dr2 R10(r1) r1 g`(r1, r2, t) r2 δR10(r2). (5.16)

We first change the variables to their dimensionless forms and integrate using the

standard integral (3.37). The perturbed P -matrix element due to the wave function
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correction reads

δPψ
1S(t) =

~2 e2

α2m3c4

[
t2

9(t− 1)6(t+ 1)7

[
609t11 + 2369t10 + 2561t9 + 1569t8 − 730t7

−570t6 + 270t5 + 366t4 − 183t3 − 183t2 + 33t+ 33
]

+
128 t9

3(t− 1)5(t+ 1)4
ln

(
2t

t+ 1

)
+

256

3(t− 1)(t+ 1)9
F244(t)− 32t7

9(t− 1)6(t+ 1)6 2F1

(
1,−t; 1− t; (t− 1)2

(t+ 1)2

)
×
[
3− 2t2 + 95t4 + 24

(
t2 − 1

)
t2ln

(
2t

t+ 1

)]
+

32 t7

(t− 1)4(t+ 1)4 2F1

(
1,−t; 1− t; t− 1

t+ 1

)]
, (5.17)

where the function F244(t)

F244(t) =
∞∑
k=0

t10
(
t−1
t+1

)k
2F

(0,1,0,0)
1

(
−k, 4, 4, 2

t+1

)
k − t+ 2

, (5.18)

can not be simplified to a closed-form expression. However, we can calculate this term

numerically. In terms of the parameter t, the vdW coefficient δDψ
6 (1S; 1S) reduces

to

δDψ
6 (1S; 1S) =

3α2mc2

2π(4πε0)2

1∫
0

dt

t3
δαψ1S(t)α1S(t). (5.19)

Let us say the parameter t before and after the Wick rotation is t and T1 respectively.

Then, for the 1S state, T±1 are given as

T+
1 =

t√
i + t2(1− i)

and T−1 =
t√

−i + t2(1 + i)
. (5.20)
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In the new variables the integral (5.19) takes the following form

δDψ
6 (1S; 1S) =

3α2mc2

2π(4πε0)2

1∫
0

dt1
t31

(
δPψ

1S(T+
1 (t)) + δPψ

1S(T−1 (t1))
)

×
(
P1S(T+

1 (t)) + P1S(T−1 (t))

)
. (5.21)

We divide the integration into two different regions. (I) The non-asymptotic

region for which t is close to 0 and (II) The asymptotic region for which t is close to 1.

In the non-asymptotic region, we use the exact form of the expressions, however, in

the asymptotic region, the exact expressions are replaced by the corresponding series.

In the non-asymptotic region, the Fabc(t) term converges very slowly. We compute

this slowly convergent series using the convergence acceleration technique discussed

in Ref. [47; 48] . We first take a general series Fabc(t) which gives F244(t) as a special

case. We first express Fabc(t) as the following partial sums

Fabc(t, n) =
n∑
k=0

F s
abc(t, k). (5.22)

We perform the Van Wijngaarden transformation of the series as follows.

FVW
abc (t, n) =

n∑
k=0

(−1)k
∞∑
q

2qF s
abc (t, 2q(k + 1)− 1) . (5.23)

We now use the recursive Weniger transformation on FVW
abc (t, n). Let us define

gabc(t, n, k, β) and habc(t, n, k, β) as given below

gabc(t, n, k, β) =
FVW
abc (t, n)

RVW
abc (t, n)

, (5.24)
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and

habc(t, n, k, β) =
1

RVW
abc (t, n)

, (5.25)

such that

FWen
abc (t, n, k, β) =

gabc(t, n, k, β)

habc(t, n, k, β)
, (5.26)

where FWen
abc (t, n, k, β) stands for the series, we obtained from Weniger transformation.

In Eq. (5.24), RVW
abc (t, n) is the remainder term. The remainder can be estimated as

RVW
abc (t, n) = RVW

abc (t, n+ 1). (5.27)

We use the following three terms recursion relations as explained in Ref. [49; 50]

habc(t, n, k, β) =habc(t, n+ 1, k − 1, β)

− (β + n+ k − 1)(β + n+ k − 2)

(β + n+ 2k − 2)(β + n+ 2k − 3)
habc(t, n, k − 1, β), (5.28)

gabc(t, n, k, β) =gabc(t, n+ 1, k − 1, β)

− (β + n+ k − 1)(β + n+ k − 2)

(β + n+ 2k − 2)(β + n+ 2k − 3)
gabc(t, n, k − 1, β). (5.29)

In the asymptotic region, as P (1S, t) and δP (1S, t) contain (−1 + t) in the

denominator, they converge very slowly when the parameter t approaches to 1. To

compute P (1S, t) and δP (1S, t) and hence the vdW coefficient in the asymptotic

region, we replace all the condensed expressions by their corresponding series. Let us
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now discuss the term containing F244(t) first:

δP̆ (1S, t) =
~2e2

α2m3c4

256 t10

3(t− 1)(t+ 1)9
F244(t)

=
~2e2

α2m3c4

∞∑
k=0

256 t10
(
t−1
t+1

)k
2F

(0,1,0,0)
1

(
−k, 4, 4, 2

t+1

)
3(t− 1)(t+ 1)9(k − t+ 2)

. (5.30)

Here δP̆ (1S, t) denotes the term containing F244(t) in δP (1S, t). Let us now calculate

2F
(0,1,0,0)
1 (−k, b; c; z) for a general case.

2F
(0,1,0,0)
1 (−k, b; c; z) = lim

n→∞

∂

∂b

n∑
m=0

(−k)m(b)m
(c)m

zm

m!

=
k∑

m=0

(−k)m
(c)m

zm

m!

∂

∂b

Γ(b+m)

Γ(b)

=
k∑

m=0

(−k)m
(c)m

zm

m!

[
Γ′(b+m)

Γ(b)
− Γ(b+m)

Γ(b)
Γ′(b)

]

=
k∑

m=0

(−k)m
(c)m

zm

m!

Γ(b+m)

Γ(b)

[
Γ′(b+m)

Γ(b+m)
− Γ′(b)

Γ(b)

]
. (5.31)

Let us use the following standard equation for the derivative of Gamma function:

Γ′(m) = −(m− 1)!

(
1

m
+ γ

E
−

m∑
j=1

1

j

)
. (5.32)

Then, Eq. (5.31) gives the following

2F
(0,1,0,0)
1 (−k, b; c; z) =

k∑
m=0

(−k)m
(c)m

zm

m!

Γ(b+m)

Γ(b)

[
−
(

1

m+ b
+ γ

E
−

m+b∑
j=1

1

j

)

+

(
1

b
+ γ

E
−

b∑
j=1

1

j

)]

=
k∑

m=0

(−k)m(b)m
(c)m

zm

m!

[
1

b
− 1

b+m
−

b∑
j=1

1

j
+

b+m∑
j=1

1

j

]
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=
k∑

m=0

(−k)m(b)m
(c)m

zm

m!

[
−

b−1∑
j=1

1

j
+

b+m−1∑
j=1

1

j

]
. (5.33)

For our special case

2F
(0,1,0,0)
1

(
−k, 4; 4;

2

1 + t

)
=

k∑
m=0

(−k)m(4)m
(4)m

1

m!

(
2

1 + t

)m[
−

3∑
j=1

1

j
+

3+m∑
j=1

1

j

]

=
k∑

m=1

(−1)m
k!

(k −m)!

1

m!

(
2

1 + t

)m[ 3+m∑
j=4

1

j

]
. (5.34)

Substituting 2F
(0,1,0,0)
1

(
−k, 4; 4; 2

1+t

)
in Eq. (5.30), we get

δP̆ (1S, t) =
~2e2

α2m3c4

N∑
k=1

k∑
m=1

256 t10

3(t− 1)(t+ 1)9

(
−1 + t

1 + t

)k (
2

1 + t

)m
× 1

k − t+ 2

k!

(k −m)!

1

m!

[ 3+m∑
j=4

1

j

]
. (5.35)

We take N = 50 and expand the series about t = 1. This yields

lim
t→1

δP̆ (1S, t) =
~2e2

α2m3c4

[
− 1

96
− 19(t− 1)

360
− 691(t− 1)2

6912
− 1188151(t− 1)3

14515200

−20018237(t− 1)4

870912000
− 1496035033(t− 1)5

365783040000
− 1316337316397(t− 1)6

153628876800000

]
+O(t− 1)7. (5.36)

We now numerically calculate the quantity δPψ
6 (1S; 1S) in both the asymptotic and

non-asymptotic region and add them up which yields

δDψ
6 (1S; 1S) = 27.286 919 180 724α2Eh a

6
0. (5.37)
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5.3.2. δDE
6 (1S; 1S) Coefficient. Let us recall the energy correction on the

P -matrix element

δP̃E
nS(t) =

n2t3

α2mc2

∂[P̃ (nS, t)]

∂t
〈nS|δV|nS〉. (5.38)

For the 1S state, we have

δPE
1S(t) =

t3

α2mc2

∂[P (1S, t)]

∂t
α4mc2 = α2t3

∂

∂t
P (1S, t)

=
4t4

3 (t2 − 1)6

[
3− 18t2 + 48t4 − 118t6 − 288t7 − 171t8 + 96t9 + 64t10−

192t9 2F1

(
1,−t; 1− t; (t− 1)2

(t+ 1)2

)
+ 64t8

(
t2 − 1

)
2F

(0,0,1,0)
1

(
1,−t; 1− t; (t− 1)2

(t+ 1)2

)
+

576t7 2F1

(
1,−t; 1− t; (t− 1)2

(t+ 1)2

)
+ 64t8

(
t2 − 1

)
2F

(0,1,0,0)
1

(
1,−t; 1− t; (t− 1)2

(t+ 1)2

)]
.

(5.39)

The integral

δDE
6 (1S; 1S) =

3α2mc2

2π(4πε0)2

1∫
0

dt1
t31

(
δPE

1S(T+
1 (t)) + δPψ

1S(T−1 (t1))

)

×
(
P1S(T+

1 (t)) + P1S(T−1 (t))

)
, (5.40)

which measures the energy contribution to the delta perturbed vdW coefficient con-

verges sufficiently fast for t→ 0. However, the convergence is slower as we approach

t = 1. For t→ 1 we express the hypergeometric function and its derivatives in series.

The series expansion of a hypergeometric function 2F1(a, b; c; z) is given by

2F1(a, b; c; z) = lim
N→∞

N∑
m=0

(a)m(b)m
(c)m

zm

m!
. (5.41)
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Moreover, the first order derivative of the hypergeometric function 2F1(a, b; c; z) with

respect to its second and third arguments are given, in the series form, by the following

formulas:

2F
(0,1,0,0)
1 (a, b; c; z) = lim

N→∞

N∑
m=0

(a)m(b)m
(c)m

zm

m!

[ n+b−1∑
j=b

1

j

]
, (5.42)

2F
(0,0,1,0)
1 (a, b; c; z) = lim

N→∞

N∑
m=0

(a)m(b)m
(c)m

zm

m!

[
−

n+c−1∑
j=c

1

j

]
. (5.43)

We now choose a finite value of N and substitute the corresponding arguments to

get the respective series. At the end, we calculate the vdW coefficient δDE
6 (1S; 1S)

numerically which yields

δDE
6 (1S; 1S) = 7.398 625 218 232α2Eh a

6
0. (5.44)

The total Dirac delta perturbed van der Waals coefficient D6(1S; 1S) is the sum of

the wave contribution and the energy contribution. More explicitly

δD6(1S; 2S) =δDψ
6 (1S; 1S) + δDE

6 (1S; 1S)

=34.685 544 398 957α2Eh a
6
0. (5.45)

5.4. CALCULATION OF δC7(1S; 1S) IN THE LAMB SHIRT RANGE

In the long-range interatomic distance, the contribution of the non-vanishing

frequencies in the polarizabilities δαnS(iω) is heavily repressed by the exponential

term e−2ωR. Thus, in a good approximation, the Dirac-delta perturbed Wick-rotated
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polarizability, δαnS(iω), is given by

δαnS(iω) ≈ δαnS(0). (5.46)

In this work, in the long range, we are concentrating only on the 1S-1S and 1S-2S

systems. The Dirac-delta perturbed interaction energy, in this range, reads

δE1S;nS(R) ≈− ~
πc4(4πε0)2

α1S(0) δαnS(0)

∫ ∞
0

dω
ω4e−2ωR/c

R2

×
[
1 + 2

( c

ωR

)
+ 5

( c

ωR

)2

+ 6
( c

ωR

)3

+ 3
( c

ωR

)4
]
. (5.47)

Making use of the integral (8.81) and relation

δα2S(0) = δαEnS(0) + δαψnS(0), (5.48)

equation (6.196) can be expressed as

δE1S;nS(R) ≈− 23

4π

~c
(4πε0)2R7

α1S(0)
(
δαEnS(0) + δαψnS(0)

)
. (5.49)

For 1S-1S system, Eq. (6.198) for interaction energy reads

δE1S;1S(R) ≈− 23

4π

~c
(4πε0)2R7

α1S(0)
(
δαE1S(0) + δαψ1S(0)

)
=− 23

4π

~c
(4πε0)2R7

α1S(0) δαE1S(0)− 23

4π

~c
(4πε0)2R7

α1S(0) δαψ1S(0)

=δEE
1S;1S(R) + δEψ

1S;1S(R). (5.50)

The energy type correction of δ-perturbed polarizability, δαE1S(0), and the wave func-

tion type correction of δ-perturbed polarizability, δαψ1S(0), are

δαE1S(0) =
43 e2~2

23m2c2
, and δαψ1S(0) =

81 e2~2

46m2c2
. (5.51)
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Hence, the interaction energy, δE1S;1S(R), becomes

δE1S;1S(R) =− 23

4π

~c
(4πε0)2R7

α1S(0)
(
δαE1S(0) + δαψ1S(0)

)
=− 23

4π

~c
(4πε0)2R7

(
9e2~2

2α4m3c4

) (
43 e2~2

23m2c2
+

81 e2~2

46m2c2

)
=− 1503

16π

(
e2

4πε0~c

)2
1

R7

(
~

αmc

)7

αmc2

=− 1503

16

α

π
Eh

(a0

R

)7

. (5.52)

From Eq. (5.52), the δC7(1S; 1S) coefficient is given by

δC7(1S; 1S) =
1503

16

α

π
Eha

7
0. (5.53)
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6. LONG-RANGE INTERACTION IN THE 2S-1S SYSTEM

6.1. 2S-1S SYSTEM IN THE vdW RANGE

Recall the vdW range of the interatomic distance. The interatomic distance,

R, in the vdW range, satisfies the condition

a0 � R� a0/α, (6.1)

where a0 is Bohr radius and a0/α is the wavelength of the typical optical transition.

As explained in Section 2, in the vdW range, the interaction energy E2S;1S(R) can

be written as

E2S;1S(R) = −(D6(2S; 1S)±M6(2S; 1S))

R6
, (6.2)

where D6(2S; 1S) and M6(2S; 1S) are the direct and the mixing vdW coefficients of

the 2S-1S system.

6.1.1. Calculation of the 2S-1S Direct vdW Coefficient. If one of the

atoms is in the ground state and the other is in the first excited state, the 1S-state has

none but the 2S-state has 2P -states as its quasi-degenerate neighbors as indicated in

Figure 6.1. The dipole polarizability, in such cases, has two contributions, namely,

(i) the Lamb shift L2 i.e. energy shift between |2P1/2〉 and |2S〉 and fine-structure

F2 i.e. energy shift between |2P3/2〉 and |2S〉 [51].

E(2P1/2)− E(2S1/2) ≡ L2 = 1.61× 10−7Eh,

E(2S1/2)− E(2P3/2) ≡ F2 = 1.51× 10−6Eh ≈ 10L2. (6.3)
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E
n
er

gy

Bohr Level Dirac fine structure Lamb shift

n=1

1S1/2

43.52 GHz

8.70 GHz

1S1/2

n=2 2P3/2
2P3/2

2S1/2, 2P1/2

F2 = 9.911GHz

2P1/2

2S1/2

L2 = 1.058GHz

Figure 6.1: Energy levels of the hydrogen atom for n=1 and n=2. L2 and
F2 stand for the Lamb shift energy and the fine structure respectively. The
Dirac fine structure lowers the ground state energy and resolves the degeneracy
corresponding to the first excited state. The degenerate 2S1/2 and 2P1/2 level
is a low-lying energy level than 2P3/2 [1]. The degeneracy of the 2S1/2 and
2P1/2 levels is resolved by the Lamb shift, which is in the order of α5 [2; 3].
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where Eh = α2mc2 = 4.35974434× 10−18J is the Hartree energy. and (ii) the contri-

butions due to nP states with principal quantum number n ≥ 3.

The oscillator strength of |2P1/2〉 and |2P3/2〉 states with respect to 2S are

distributed in a ratio 1
3
÷ 2

3
[52]. The dynamic polarizability is the sum of the con-

tribution α2S(ω) of the quasi-degenerate level and that α̃2S(ω) of the non-degenerate

levels. Each α2S(ω) is the sum of the corresponding matrix elements for ω and −ω

α2S(ω) = α2S(ω) + α̃2S(ω),

α2S(ω) = P 2S(ω) + P 2S(−ω),

α̃2S(ω) = P̃2S(ω) + P̃2S(−ω).

The contribution of the quasi-degenerate levels to the P-matrix element corresponding

to Schrödinger-Coulomb propagator for position operators is given as

P 2S(ω) =
e2

9

3∑
i=1

∑
µ

|〈2, 0, 0|xi|2, `,m〉|2

−L2 + ~ω − iε
+

2e2

9

3∑
i=1

∑
µ

|〈2, 0, 0|xi|2, `,m〉|2

F2 + ~ω − iε

=
e2

9

3∑
i=1

∑
µ

|〈2S|xi|2P (m = µ)〉|2

−L2 + ~ω − iε
+

2e2

9

3∑
i=1

∑
µ

|〈2S|xi|2P (m = µ)〉|2

F2 + ~ω − iε

(6.4)

and the contribution of the non-degenerate level to the P-matrix element is

P̃2S(ω) =
e2

3

∑
n≥3

3∑
i=1

∑
µ

|〈2S|xi|nP (m = µ)〉|2

En − E2 + ~ω − iε
. (6.5)

All sums are taken over the nonrelativistic nP states with magnetic projection quan-

tum numbers µ = −1, 0, 1. Let us now evaluate P 2S(ω).

We use the following form for |2S〉, |2P (m = µ)〉 and xj:

Ψ200 =
1

4
√

2πa
3/2
0

[
2− r

a0

]
e
− r

2a0 ,
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Ψ210 =
1

4
√

2πa
3/2
0

r

a0

e
− r

2a0 cosθ,

Ψ21±1 =
1

8
√
πa

3/2
0

r

a0

e
− r

2a0 sinθe±iφ,

x1 = x = rsinθ cosφ, x2 = y = rsinθ sinφ , x3 = z = rcosθ. (6.6)

Here,

〈2S|x|2P (m = 0)〉 =

∫ ∞
0

r2dr

∫ π

0

sinθdθ

∫ 2π

0

dφ

(
1

4
√

2πa
3/2
0

)2(
2− r

a0

)
×
(
r

a0

)
cosθ r sinθcosφ

=
1

32πa0
4

∫ ∞
0

dr r4

(
2− r

a0

)
e
− r

a0

∫ π

0

sin2 θcosθdθ

∫ 2π

0

cosφdφ,

(6.7)

and

〈2S|y|2P (m = 0)〉 =
1

32πa0
4

∫ ∞
0

dr r4

(
2− r

a0

)
e
− r

a0

∫ π

0

sin2 θcosθdθ

∫ 2π

0

sinφdφ.

(6.8)

Both of these above integrals work out to zero as
∫ 2π

0
cosφdφ = 0 and

∫ 2π

0
sinφdφ = 0.

On the other hand

〈2S|z|2P (m = 0)〉 =
1

32πa0
4

∫ ∞
0

dr r4

(
2− r

a0

)
e
− r

a0

∫ π

0

sinθ cos2θdθ

∫ 2π

0

dφ. (6.9)

The r−integral is

∫ ∞
0

dr r4

(
2− r

a0

)
e
− r

a0 = 2

∫ ∞
0

dr r4e
− r

a0 −
∫ ∞

0

dr r4

(
r

a0

)
e
− r

a0

= 2a5
0Γ(5)− a5

0Γ(6)

= −72a5
0. (6.10)
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The θ−integral is given by

∫ π

0

sinθcos2θdθ =

∫ 1

−1

d(cosθ)

(
cosθ

)2

=
2

3
. (6.11)

While the φ−integral is given by
∫ 2π

0
dφ = 2π. Hence,

〈2S|z|2P (m = 0)〉 =
1

32πa0
4
×
(
− 72a5

0

)
× 2

3
× 2π = 3a0. (6.12)

Let us now evaluate 〈2S|xj|2P (m = µ)〉 for µ = ±1. Here,

〈2S|x|2P (m = ±1)〉 =

∫ ∞
0

r2dr

∫ π

0

sinθdθ

∫ 2π

0

dφ

(
1

4
√

2πa
3/2
0

)(
2− r

a0

)
e
− r

2a0

× r sinθ cosφ
1

8
√
πa

3/2
0

r

a0

e
− r

2a0 sinθ e±iφ

=
1

32π
√

2a0
4

∫ ∞
0

dr r4

(
2− r

a0

)
e
− r

a0

∫ π

0

sin3θdθ

∫ 2π

0

cosφ e±iφ dφ

=
1

32π
√

2a0
4
×
(
− 72a5

0

)
×
(

4

3

)
×
(
± π

)
= ∓ 3√

2
a0. (6.13)

Similarly,

〈2S|y|2P (m = ±1)〉 =

∫ ∞
0

r2dr

∫ π

0

sinθdθ

∫ 2π

0

dφ

(
1

4
√

2πa
3/2
0

)(
2− r

a0

)
e
− r

2a0

× r sinθ sinφ
1

8
√
πa

3/2
0

r

a0

e
− r

2a0 sinθ e±iφ

=
1

32π
√

2a0
4

∫ ∞
0

dr r4

(
2− r

a0

)
e
− r

a0

∫ π

0

sin3θdθ

∫ 2π

0

sinφ e±iφ dφ

=
1

32π
√

2a0
4
×
(
− 72a5

0

)
×
(

4

3

)
×
(
± iπ

)
= ∓i 3√

2
a0. (6.14)

Furthermore,

〈2S|z|2P (m = ±1)〉 =

∫ ∞
0

r2dr

∫ π

0

sinθdθ

∫ 2π

0

dφ

(
1

4
√

2πa
3/2
0

)(
2− r

a0

)
e
− r

2a0
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× r cosθ
1

8
√
πa

3/2
0

r

a0

e
− r

2a0 sinθ e±iφ

=
1

32π
√

2a0
4

∫ ∞
0

dr r4

(
2− r

a0

)
e
− r

a0

∫ π

0

sin2 θcosθdθ

∫ 2π

0

e±iφ dφ = 0. (6.15)

Hence,

3∑
i=1

∑
µ

|〈2S|xi|2P (m = µ)〉|2

= (3a0)2 +

(
3√
2
a0

)2

+

(
− 3√

2
a0

)2

+ |i 3√
2
a0|2 + | − i

3√
2
a0|2

= 27a2
0, (6.16)

and we can write

P 2S(ω) =
e2

9

3∑
i=1

∑
µ

|〈2S|xi|2P (m = µ)〉|2

−L2 + ~ω − iε
+

2e2

9

3∑
i=1

∑
µ

|〈2S|xi|2P (m = µ)〉|2

F2 + ~ω − iε

=
e2

9

3∑
i=1

∑
µ

|〈2S|xi|2P (m = µ)〉|2
(

1

−L2 + ~ω − iε
+

2

F2 + ~ω − iε

)
=
e2

9

(
27a2

0

)(
1

−L2 + ~ω − iε
+

2

F2 + ~ω − iε

)
=

3~2e2

α2m2c2

(
1

−L2 + ~ω − iε
+

2

F2 + ~ω − iε

)
. (6.17)

For the 2S-1S interaction, the vdW coefficient D6(2S; 1S) is given by

D6(2S; 1S) =
3~

π(4πε0)2

∞∫
0

dω α2S(iω)α1S(iω)

=
3~

π(4πε0)2

∞∫
0

dω [α2S(iω) + α̃2S(iω)]α1S(iω)

=
3~

π(4πε0)2

∞∫
0

dω α2S(iω)α1S(iω) +
3~

π(4πε0)2

∞∫
0

dω α̃2S(iω)α1S(iω)

= D6(2S; 1S) + D̃6(2S; 1S), (6.18)
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where

D6(2S; 1S) =
3~

π(4πε0)2

∞∫
0

dω α2S(iω)α1S(iω), (6.19)

is the contribution due to degenerate states and

D̃6(2S; 1S) =
3~

π(4πε0)2

∞∫
0

dω α̃2S(iω)α1S(iω), (6.20)

is the contribution due to non-degenerate states. Let us first evaluate D6(2S; 1S).

D6(2S; 1S) =
3~

π(4πε0)2

∞∫
0

dω α1S(iω) α2S(iω)

=
3~

π(4πε0)2

∞∫
0

dω α1S(iω)

(
P 2S(iω) + P 2S(−iω)

)

=
3~

π(4πε0)2

3~2e2

α2m2c2

∞∫
0

dω α1S(iω)

(
1

−L2 + i~ω − iε
+

1

−L2 − ~iω − iε

+
2

F2 + i~ω − iε
+

2

F2 − i~ω − iε

)
=

9 ~ a2
0e

2

π(4πε0)2

∞∫
0

dω α1S(iω)

(
−2L2

(−L2 − iε)2 + (~ω)2
+

4F2

(F2 − iε)2 + (~ω)2

)
.

(6.21)

Residue calculation at the poles of the integrand follows as given below. The first

integrand −2L2/[(−L2 − iε)2 + (ω)2] has poles at ~ω = ±i(−L2 − iε) and the second

integrand 4F2/[(F2 − iε)2 + (ω)2] has poles at ~ω = ±i(F2 − iε). These poles lie in

the first quadrant and the third quadrant. We close the contour in the upper half
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plane and evaluate integrals.

lim
L2→0

lim
ε→0

∞∫
0

dω
−2L2 α1S(iω)

(−L2 − iε)2 + (~ω)2

= lim
L2→0

lim
ε→0

(
πi

(
−2L2

~

)
Res

~ω=i(−L2−iε)

α1S(iω)

(−L2 − iε)2 + (~ω)2

)

= lim
L2→0

lim
ε→0

(
−2πiL2

~
α1S(iω)

i(−L2 − iε) + (~ω)

∣∣∣∣
~ω=i(−L2−iε)

)

= lim
L2→0

lim
ε→0

(
−2πL2

~
α1S(iω)

2(−L2 − iε)

)
=
π

~
α1S(ω = 0). (6.22)

Likewise,

lim
F2→0

lim
ε→0

( ∞∫
0

dω
α1S(iω)4F2

(F2 − iε)2 + (~ω)2

)
= lim
F2→0

lim
ε→0

(
(πi)

(
4F2

~

)
Res

~ω=i(F2−iε)

α1S(iω)

(F2 − iε)2 + (ω)2

)
= lim
L2→0

lim
ε→0

(
4πiF2

~
α1S(iω)

i(F2 − iε) + (ω)

∣∣∣∣
~ω=i(F2−iε)

)

= lim
F2→0

lim
ε→0

(
4πF2

~
α1S(iω)

2(F2 − iε)

)
=

2π

~
α1S(ω = 0). (6.23)

Substituting Eqs. (6.22) and (6.23) in Eq. (6.21), we get the contribution of the

degenerate part on the van der Waals coefficient,

D6(2S; 1S) =
9 ~ a2

0e
2

π(4πε0)2

(
π

~
+

2π

~

)
α1S(ω = 0). (6.24)
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The ground state polarizability α1S(iω) is given by

α1S(iω) =
~2

α4m3c4

(
P (1S, iω) + P (1S,−iω)

)
. (6.25)

In the static limit, lim
ω→0

P (1S, ω) = lim
ω→0

P (1S,−ω) = 9e2/4. Thus, the atomic

polarizability in the static limit is given by

α1S(0) =
9

2

(
~

αmc

)2
e2

α2mc2
. (6.26)

Substituting α1S(0) in D6(2S; 1S) we get,

D6(2S; 1S) =
27 a2

0e
2

(4πε0)2
× 9

2

(
~

αmc

)2
e2

α2mc2

=
243

2
a4

0

(
e2

4πε0~c

)2( ~
αmc

)2

mc2

=
243

2
a6

0 α
2mc2 =

243

2
a6

0Eh, (6.27)

where we have used the following expressions for the fine-structure constant α, the

Bohr radius a0, and the Hatree energy Eh:

α =
e2

4πε0~c
, a0 =

~
αmc

, and Eh = α2mc2. (6.28)

The contribution of the non-degenerate states to D6(2S; 1S) reads

D̃6(2S; 1S) =
3~

π(4πε0)2

∞∫
0

dω α̃2S(iω)α1S(iω). (6.29)

The dynamic polarizability due to the non-degenerate states α̃2S(ω) is

α̃2S(ω) = P̃ (2S, ω) + P̃ (2S,−ω). (6.30)
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We substitute t =
(

1 + 2i~ω/(α2mc2)
)−1/2

in Eq. (3.44) to get P̃ (1S, iω). And

P̃ (1S,−iω) is obtained through the relation t =
(

1 − 2i~ω/(α2mc2)
)−1/2

. Simi-

larly, substitution of t =
(

1 + 8i~ω/(α2mc2)
)−1/2

and t =
(

1 − 8i~ω/(α2mc2)
)−1/2

in P̃ (2S, t) gives P̃ (2S, iω) and P̃ (2S,−iω) respectively. We evaluate α̃2S(iω) and

α̃1S(iω) using the following equations

α̃2S(iω) = P̃ (2S, iω) + P̃ (2S,−iω),

α1S(iω) = P̃ (1S, iω) + P̃ (1S,−iω). (6.31)

Now we evaluate D̃6(2S; 1S) numerically. A numerical integration of Eq. (6.29) then

yields the following value for D̃6(2S; 1S),

D̃6(2S; 1S) = 55. 252 266 285Eha
6
0. (6.32)

The total vdW coefficient D6 for the 1S-2S interaction is thus

D6(2S; 1S) = D6(2S; 1S) + D̃6(2S; 1S)

=

(
243

2
+ 55.252266285

)
Eha

6
0

= 176.752 266 285Eha
6
0. (6.33)

6.1.2. Calculation of the 2S-1S vdW Mixing Coefficient. We first

determine the matrix element of the Schrödinger Coulomb propagator between the

1S state and the 2S state.

P (2S1S, ω) =
e2

3
〈1S|xj 1

Hs − Eν + ~ω
xj|2S〉. (6.34)
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Eν in Eq. (6.34), given by Eν = −α2mc2/(2n2
ref) , is the energy of reference. The

generalized quantum number ν depends on the selection of the reference energy.

Namely, ν = t when 1S state is the reference state, and ν = 2t when 2S state is the

reference state. The matrix element in (6.34) takes the following integral form

P (2S1S, ν) =
e2

3

∫ ∞
0

dr1 r
2
1

∫ ∞
0

dr2 r
2
2 R10(r1)r1 g`=1(r1, r2, ν) r2R20(r2). (6.35)

We substitute the radial part of wave functions i.e. R10(r1) and R20(r2) for the 1S

state and the 2S state respectively and the radial part of the reduced Green function

g`=1(r1, r2, ν) in Eq. (6.36). Then we integrate it which yields

P (2S1S, ν) =
e2~2

α4m3c4

[
512
√

2 ν2

729(ν − 2)3(ν + 2)2 (ν2 − 1)2

(
419ν7 + 134ν6 − 15ν5 + 30ν4

+ 60ν3 − 120ν2 − 32ν + 64
)
−

4096
√

2 ν9
2F1

(
1,−ν; 1− ν; ν

2−3ν+2
ν2+3ν+2

)
3 (ν2 − 4)3 (ν2 − 1)2

]
.

(6.36)

Taking 1S state as the reference state, the series expansion of the matrix element

P (2S1S, ν) in terms of ω when ω is very large is

P (2S1S, ω) = −512
√

2 e2~2

729α2m2c2

1

~ω
+

32
√

2 e2~2

243m

1

~2ω2
+O

(
ω−3

)
. (6.37)

One way of checking the expression (6.36) is expanding the matrix element

P (2S1S, ω) for large ω and comparing the result with Eq. (6.37). For large ω, (H −

E1S)/(~ω)� 1. Thus ,

P (2S1S, ω) =
e2

3
〈1S|rj 1

H − E1S + ~ω
rj|2S〉

=
e2

3~ω
〈1S|rj

(
1 +

H − E1S

~ω

)−1

rj|2S〉
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=
e2

3~ω
〈1S|r2|2S〉 − e2

3~2ω2
〈1S|rj(H − E1S)rj|2S〉+O

(
ω−3

)
=

e2

3~ω
〈1S|r2|2S〉 − e2

3~2ω2
〈1S|rj

[
(H − E1S) + (E2S − E1S)

+ (H − E2S)

]
rj|2S〉+O

(
ω−3

)
=

e2

3~ω
〈1S|r2|2S〉 − e2

6~2ω2

((
E2S − E1S

)
〈1S|r2|2S〉

+ 〈1S|rj[(H − E1S), rj]|2S〉+ 〈1S|rj[(H − E2S), rj]|2S〉
)

+O

(
ω−3

)
=

e2

3~ω
〈1S|r2|2S〉 − e2

6~2ω2

[(
E2S − E1S

)
〈1S|r2|2S〉

− i~
m

(
〈1S|r1p1]|2S〉+ 〈1S|r2p2]|2S〉

)]
+O

(
ω−3

)
. (6.38)

The orthonormality condition of the wave functions requires that 〈1S|2S〉 = 0. Hence,

P (2S1S, ω) =
e2

3~ω
〈1S|r2|2S〉 − e2

6~2ω2

(
E2S − E1S

)
〈1S|r2|2S〉+O

(
ω−3

)
. (6.39)

Let us now evaluate 〈1S|r2|2S〉 and (E2S − E1S).

〈1S|r2|2S〉 =

∫ ∞
0

r2 dr 2
(αmc

~

)3/2

e−αmcr/~ r2 2
(αmc

2~

)3/2 (
1− αmcr

2~

)
e
−αmcr

2~

=
√

2
(αmc

~

)3
∫ ∞

0

r4 dr e
−3αmcr

2~
(

1− αmcr

2~

)
=

25 ~2
√

2

35 α2m2c2

(∫ ∞
0

dx x4e−x − 1

3

∫ ∞
0

dx x5e−x
)

; x =
−3αmcr

2~

=
32
√

2

243

~2

α2m2c2

(
Γ(5)− Γ(6)

3

)
= −512

√
2

243

~2

α2m2c2
. (6.40)

And

E2S − E1S = −α
2mc2

8
+
α2mc2

2
=

3α2mc2

8
. (6.41)
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Substituting the values of 〈1S|r2|2S〉 and (E2S − E1S) in Eq. (6.39), we get

P (2S1S, ω) = −512
√

2 e2~2

729α2m2c2

1

~ω
+

32
√

2 e2~2

243m

1

~2ω2
+O

(
ω−3

)
. (6.42)

This verifies our expression for P (2S1S, ν) given by Eq. (6.36).

Now we want to compute the 2S-1S mixing vdW coefficient M6(2S; 1S). The

total mixing vdW coefficient has two contributions, namely, the non-degenerate con-

tribution and the degenerate contribution of mixing terms. The non-degenerate con-

tribution to the vdW coefficient M̃6(2S; 1S) is given by

M̃6(2S; 1S) =
3~

π(4πε0)2

∞∫
0

dω α̃2S1S(iω)α2S1S(iω), (6.43)

where α2S1S(iω) and α̃2S1S(iω) represent the Wick-rotated form of the non-degenerate

polarizability α̃2S1S(ω) when we take the energy level of the 1S state and the 2S state

respectively as the reference level. We do not use the tilde α2S1S(ω) when the 1S-state

is taken as the reference level as 1S-state does not have any degenerate neighbor. We

numerically evaluate the expression (6.43) which gives

M̃6(2S; 1S) = −18. 630 786 870 a6
0Eh. (6.44)

Similarly, the degenerate contribution to the mixing vdW coefficient for 1S and 2S

states is

M6(2S; 1S) =
3~

π(4πε0)2

∞∫
0

dω α2S1S(iω)α2S1S(iω). (6.45)

As in non-degenerate contribution, α2S1S(iω) refers to the Wick-rotated polarizability

of α2S1S(ω) when we take energy level of the 2S state as the reference level. Each
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α2S1S(iω) is the sum of the two matrix elements
∑
±
P 2S1S(±iω). Thus,

α2S1S(iω) = P 2S1S(iω) + P 2S1S(−iω). (6.46)

The mixing matrix element taking energy of the 2S state as the reference level,

P 2S1S(iω), is given as

P 2S1S(iω) =
e2

9

3∑
j=1

∑
µ

〈2S|xj|2P 〉〈2P |xj|1S〉
−L2 + i~ω − iε

+
2e2

9

3∑
j=1

∑
µ

〈2S|xj|2P 〉〈2P |xj|1S〉
F2 + i~ω − iε

=
e2

9

3∑
j=1

∑
µ

〈2S|xj|2P 〉〈2P |xj|1S〉
(

1

−L2 + i~ω − iε
+

2

F2 + i~ω − iε

)

=
e2

9

(
− 128

√
2~2

27α2m2c2

)(
1

−L2 + i~ω − iε
+

2

F2 + i~ω − iε

)
. (6.47)

Substituting the value of P 2S1S(iω) and P 2S1S(−iω) Eq. (6.46) follows

α2S1S(iω) =− 128
√

2 e2~2

243α2m2c2

(
1

−L2 + i~ω − iε
+

1

−L2 − i~ω − iε
+

2

F2 + i~ω − iε
+

2

F2 − i~ω − iε

)
=− 128

√
2e2~2

243α2m2c2

(
−2L2

(−L2 − iε)2 + (~ω)2
+

−4F2

(F2 − iε)2 + (~ω)2

)
. (6.48)

The degenerate contribution of the mixing term M6(2S; 1S) is thus given as

M6(2S; 1S) =
3~

π(4πε0)2

∞∫
0

dω α2S1S(ω)

(
− 128

√
2e2~2

243α2m2c2

( −2L2

(−L2 − iε)2 + (~ω)2

+
−4F2

(F2 − iε)2 + (~ω)2

))]

= −384
√

2

243π

e2

(4πε0)2

~2

α2m2c2
α2S1S(ω = 0)(π + 2π). (6.49)
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In the static limit,

α2S1S(ω = 0) = −3584
√

2 e2~2

729α4m3c4
. (6.50)

Substituting the value of α2S1S(ω = 0) in Eq. (6.49), we get

M6(2S; 1S) = −384
√

2

243π

(
−3584

√
2

729

)
(3π)

(
~

αmc

)6

α2mc2

= 46.614 032 414 a6
0Eh. (6.51)

The total contribution of the mixing term to the vdW coefficient is the sum

M6(2S; 1S) = M̃6(2S; 1S) +M6(2S; 1S)

= −18. 630 786 870 a6
0Eh + 46. 614 032 414a6

0Eh

= 27.983 245 543 a6
0Eh. (6.52)

Following calculation which follows the Chibisov approach [53] verifies the result we

just calculated for M6(2S; 1S).

Let us now come back again to the Eq. (6.36). Take the average energy of

the 1S level and 2S level as the reference energy . Calculate ν for this system as

ν = nref t, where nref is the effective quantum number associated with the reference

energy level.

Eref = −α
2mc2

2 n2
ref

=
E1 + E2

2
=

1

2

(
−α

2mc2

2
− α2mc2

8

)
= − 5

16
α2mc2. (6.53)

Let us simplify Eq. (6.53) for nref

nref =

√
8

5
Thus, ν =

√
8

5
t. (6.54)
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We now calculate Wick-rotated α2S1S(iω) using the sum.

α2S1S(iω) = P (2S1S, iω) + P (2S1S,−iω). (6.55)

The mixing vdW coefficient M6(2S; 1S) is now calculated numerically using

M6(2S; 1S) =
3~

π(4πε0)2

∞∫
0

dωα2S1S(iω)α2S1S(iω), (6.56)

which yields

M6(2S; 1S) = 27.983 245 543Eha
6
0. (6.57)

The total interaction energy in the vdW range can be written as

E2S;1S(R) = − (176.752 266 285± 27.983 245 543)Eh

(a0

R

)6

. (6.58)

The direct vdW coefficient for 2S-1S system is larger than that of the mixing one.

Thus the symmetry-dependent vdW coefficient

C6(2S; 1S) = D6(2S; 1S)±M6(2S; 1S) (6.59)

is positive and hence the interaction is attractive in nature.

6.2. 2S-1S SYSTEM IN THE INTERMEDIATE RANGE

The interatomic distance, R, in the intermediate range, satisfies

a0/α� R� ~c/L. (6.60)
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Obviously, L for 2S-1S system is L2 = E(2S1/2) − E(2P1/2), the energy splitting

between |2S1/2〉 and |2P1/2〉. The interaction energy of atoms, keeping in mind that

the polarizability of the atom which is in 2S-state has two types of contributions

which come from the non-degenerate state and the states degenerate to 2S-state, can

be expressed as

E
(direct)
2S;1S (R) =− ~

πc4(4πε0)2

∫ ∞
0

dω α1S(iω)α̃2S(iω)
ω4e−2ωR/c

R2

×
[
1 + 2

( c

ωR

)
+ 5

( c

ωR

)2

+ 6
( c

ωR

)3

+ 3
( c

ωR

)4
]

− ~
πc4(4πε0)2

∫ ∞
0

dω α1S(iω)α2S(iω)
ω4e−2ωR/c

R2

×
[
1 + 2

( c

ωR

)
+ 5

( c

ωR

)2

+ 6
( c

ωR

)3

+ 3
( c

ωR

)4
]

=W̃(direct)
2S;1S (R) +W(direct)

2S;1S (R). (6.61)

Here, the superscript ‘direct’ stands for the direct contribution. The contribution

of the non-degenerate state to the interaction energy W̃(direct)
2S;1S (R) is exponentially

suppressed in the CP region. Furthermore, we can approximate the polarizability

due to the non-degenerate states by its static value. This leads us to the following

general expression for the non-degenerate contribution to the interaction energy in

the CP range

W̃(direct)
2S;1S (R) =− ~

πc4(4πε0)2
α1S(ω = 0)α̃2S(ω = 0)

∫ ∞
0

dω
ω4e−2ωR/c

R2[
1 + 2

( c

ωR

)
+ 5

( c

ωR

)2

+ 6
( c

ωR

)3

+ 3
( c

ωR

)4
]

=− 23

4πR7

~c
(4πε0)2

α1S(ω = 0) α̃2S(ω = 0). (6.62)
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In the last line of Eq. (6.62), we have used

∫ ∞
0

dω
ω4e−2ωR/c

R2

[
1 + 2

( c

ωR

)
+ 5

( c

ωR

)2

+ 6
( c

ωR

)3

+ 3
( c

ωR

)4
]

=
23c5

4R7
.

(6.63)

The ground state static polarizability is α1S(ω = 0) = 9e2~2/(2α4m3c4) and for the

2S state, the static polarizability α2S is proportional to e2~2/(α4m3c4). This clearly

indicates that

W̃(direct)
2S;1S (R) ∼ Eh

α

(
a0

R

)7

. (6.64)

However, we can still approximate the degenerate contribution W2S;1S(R) of the

interaction energy as

W(direct)

2S;1S (R) = − 3α2

πR6

∫ ∞
0

dω α1S(iω)α2S(iω)

= −D6(2S; 1S)

R6
. (6.65)

In the CP region, the interatomic distance R� a0/α� a0, thus the interac-

tion energy E2S;1S(R) can be approximated as

E
(direct)
2S;1S (R) =W(direct)

2S;1S (R) + W̃(direct)
2S;1S (R) ≈ W(direct)

2S;1S (R) = −D6(2S; 1S)

R6
. (6.66)

The behavior of the degenerate and the non-degenerate contributions to the interac-

tion energy due to the mixing terms is similar to that of the direct terms in the CP

region. More precisely,

Emixing
2S;1S (R) =W(mixing)

2S;1S (R) + W̃(mixing)
2S;1S (R) ≈ W(mixing)

2S;1S (R) = −M6(2S; 1S)

R6
. (6.67)
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Thus the C6(2S; 1S) coefficient, in the intermediate range, is given by

C6(2S; 1S) =C6(2S; 1S) = D6(2S; 1S)±M6(2S; 1S)

= (243/2± 46. 614 032 413 758)Eha
6
0; a0/α� R� ~c/L. (6.68)

The interaction energy is thus reads

E2S;1S(R) =− (243/2± 46. 614 032 413 758)Eh

(a0

R

)6

. (6.69)

The negative sign in Eq. (6.69) indicates that the long-range interaction is of attrac-

tive nature. The long-range interaction fine-tune the 2S-1S transition frequency and

the 2S hyperfine splitting frequency [54].

6.3. 2S-1S SYSTEM IN THE LAMB SHIFT RANGE

Here, by the Lamb shift range, we mean R � ~c/L. In this range, the

integrand in

E
(direct)
2S;1S (R) =− ~

πc4(4πε0)2

∫ ∞
0

dω α1S(iω)αnS(iω)
ω4e−2ωR/c

R2

×
[
1 + 2

( c

ωR

)
+ 5

( c

ωR

)2

+ 6
( c

ωR

)3

+ 3
( c

ωR

)4
]
. (6.70)

is damped by oscillations in ω. The contribution of the non-vanishing frequencies in

the polarizabilities is exponentially suppressed which yields

E
(direct)
2S;1S (R) =− ~

πc4(4πε0)2
α1S(0)α2S(0)

∫ ∞
0

dω
ω4e−2ωR/c

R2

×
[
1 + 2

( c

ωR

)
+ 5

( c

ωR

)2

+ 6
( c

ωR

)3

+ 3
( c

ωR

)4
]
. (6.71)
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Recall the already calculated value of the integral present in the Eq. (6.71) which we

have done in section 5.1 and we got

∫ ∞
0

dω
ω4e−2ωR

R2

[
1 + 2

( c

ωR

)
+ 5

( c

ωR

)2

+ 6
( c

ωR

)3

+ 3
( c

ωR

)4
]

=
23c5

4R7
, (6.72)

which leads equation (6.71) to

E
(direct)
2S;1S (R) =− 23

4π

~c
(4πε0)2R7

α1S(0)α2S(0). (6.73)

Eq. (6.79) shows the R−7 dependence of the interaction energy, which depicts a much

famous CP interaction. Recall that α2S(0) = α2S(0) + α̃2S(0). Substituting

α1S(0) =
9e2~2

2α4m3c4
, α2S(0) = 6 e2

(
− 1

L2

+
2

F2

)
, α̃2S(0) =

120e2~2

α4m3c4
, (6.74)

we get

E
(direct)
2S;1S (R) = − 621

4πα

(
−Eh
L2

+
2Eh
F2

)
Eh

(a0

R

)7

− 3105

παR7
Eh

(a0

R

)7

. (6.75)

However, there is also a R−2 dependent cosine pole term as discussed in Ref. [29].

AS explained in section 2.5, the direct pole term for 2S-1S system reads

P(direct)
2S;1S (R) =− 2

3(4πε0)2R6

∑
µ

|〈2S|e~r|2P (m = µ)|2 α1S

(
E2P,2S

~

)

×

{
cos

(
2E2P,2SR

~c

)[
3− 5

(
E2P,2SR

~c

)2

+

(
E2P,2SR

~c

)4
]

+
2E2P,2SR

~c
sin

(
2E2P,2SR

~c

)[
3−

(
2E2P,2SR

~c

)2 ]}
. (6.76)

The interatomic distance, R, is sufficiently large, for example, a cruel approximation

could be R→∞. So, cos (2E2P,2SR/(~c)) cannot be approximated by unity, however,
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cos (2E2P,2SR/(~c))×(E2P,2SR/(~c))4 is dominant to the other cosine and sine terms.

P(direct)
2S;1S (R) ≈− 2 e2

3(4πε0)2R6

∑
µ

|〈2S|~r|2P (m = µ)|2 α1S

(
E2P,2S

~

)

×

{
cos

(
2E2P,2SR

~c

)(
E2P,2SR

~c

)4
}
. (6.77)

To a good approximation, α1S (E2P,2S/~) can be replaced by the static value α1S(0).

Furthermore, considering that comparatively |2P3/2〉 is displaced a lot than the |2P1/2〉

from |2S1/2〉, the energy shift E2P,2S can be approximated by the Lamb shift L2.

P(direct)
2S;1S (R) ≈− 2 e2

3(4πε0)2R2
α1S (0)

(
L2

~c

)4

cos

(
2L2R

~c

)∑
µ

|〈2S|~r|2P (m = µ)|2 .

(6.78)

Let us follow some parametric analysis of these two terms , namely CP and the pole

terms with the very large interatomic distance. Let us recall a0 = ~/(αmc) and

L = α5mc2 ln(α−2)/(6π). Thus, at the transition R/a0 ∼ ~c/L2 ∼ ~c/(α5mc2) ∼

a0/α
4. Thus, keeping in mind that the dominant contribution on the polarizability

α2S(0) comes from the 2P -states which are quasi-degenerate with the 2S-state, i.e.,

α2S(0) ≈ α2S(0), we have

E
(direct)
2S;1S (R) ∼ 1

R7

(~c)3

(4πε0~c)2

e2a2
0

Eh

e2a2
0

L2

∼ a4
0

R7

(
e2

4πε0~c

)2 ~2c2

α2mc2

~c
L2

. (6.79)

Recognizing e2/(4πε0~c) = α and ~/(αmc) = a0, we get,

E
(direct)
2S;1S (R) ∼ a

4
0

R7
α2mc2

(
~

αmc

)2
a0

α4
∼ Eh
α4

(a0

R

)7

∼ α24Eh. (6.80)
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On the other hand,

P(direct)
2S;1S (R) ∼ 1

R2

e2

(4πε0~c)2
~2c2 e

2a2
0

Eh

(
L2

~c

)4

a2
0

∼
(a0

R

)2
(

e2

4πε0~c

)2 ~2c2

α2mc2

(
L2

~c

)4

a2
0

∼
(a0

R

)2

α2mc2

(
~

αmc

)2(
α4

a0

)4

a2
0

∼
(
α4
)2
Eh a

2
0

α16

a4
0

a2
0 ∼ α24Eh. (6.81)

We can thus conclude that E
(direct)
2S;1S (R) and P(direct)

2S;1S (R) are on the same order. How-

ever, if the experimental relevance is concerned, the frequency shift in this region,

ν ∼ α24Eh
h

∼ 4.359× 10−18

(137)24 × 6.626× 10−34
∼ 10−36 Hz, (6.82)

is too small to consider.

Similar to the direct term contribution, the CP type mixing term contribution

to the interaction energy E
(mixing)
2S;1S (R) also follows a R−7 power law and it can be

expressed as

E
(mixing)
2S;1S (R) =− 23

4πR7

~c
(4πε0)2

α2S1S(0)α2S1S(0). (6.83)

Substituting the value of α2S1S(0) and α2S1S(0), we get

E
(mixing)
2S;1S (R) =

216 × 7× 23

311 πα

(
−Eh
L2

+
2Eh
F2

)
Eh

(a0

R

)7

+
217 × 52 × 7× 23

312 πα
Eh

(a0

R

)7

. (6.84)

The first term in Eq. (6.84) is the direct-type and the second term is the mixing-type

contribution to E
(mixing)
2S;1S (R). And similar to the direct pole term, the mixing pole
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term for the 2S-1S system in the very large range of interatomic distance reads

P(mixing)
2S;1S (R) ≈− 2 e2

3(4πε0)2R2
α2S1S(0)

(
L2

~c

)4

cos

(
2L2R

~c

)
∑
µ

〈1S|~r|2P (m = µ)〈2P (m = µ)|~r|2S〉. (6.85)

where E = E1S in the polarizability indicates that we are taking 1S-state as the

reference state. The parametric analysis for the mixing term contribution is same to

that of the direct term contribution. We notice that

E
(mixing)
2S;1S (R) ∼ P(mixing)

2S;1S (R) ∼ α24Eh. (6.86)

The frequency shift corresponding to them is in the order of 10−36 Hz, which is too

small to consider in an experimental point of view.

6.4. 2S-1S-DIRAC-δ PERTURBATION TO EvdW

The perturbation of the CP energy for two neutral hydrogen atoms in which

the atom A is at |2S〉 and the atom B is at |1S〉. reads

δE2S;1S(R) =
~

πc4(4πε0)2

∫ ∞
0

dω δα2S(iω) α1S(iω)
ω4e−2ωR/c

R2

×
[
1 + 2

( c

ωR

)
+ 5

( c

ωR

)2

+ 6
( c

ωR

)3

+ 3
( c

ωR

)4
]
. (6.87)

The 2S-1S-Dirac-delta-perturbed vdW coefficient in the vdW range of interatomic

interaction can be evaluated using the integral

δD6(2S; 1S) =
3~

π(4πε0)2

∫ ∞
0

dω δα2S(iω) α1S(iω). (6.88)
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Let us concentrate on the detailed calculation of the contribution of the energy part

and the wave function part on δD2S;1S(R).

6.4.1. δDE
6 (2S; 1S) Coefficient. The correction to the van der Waals co-

efficient from the direct term due to the Dirac-delta perturbation to the energy can

be approximated by

δDE
6 (2S; 1S) =

3~
π(4πε0)2

∫ ∞
0

dω δαE2S(iω) α1S(iω), (6.89)

where δαE2S(iω) is the Wick-rotated energy correction on polarizability for |2S〉. For

the 2S state, the modification of the P -matrix element can be deduced from Eq. (6.92)

substituting n = 2 and using 〈2S|δV|2S〉 = α4mc2/23,

δPE
2S(t) =

22t3

α2mc2

∂[Q̃(2S, t)]

∂t
〈2S|δV|2S〉

=
22t3

α2mc2

∂[Q̃(2S, t)]

∂t

α4m

23
. (6.90)

Differentiating P (2S, t) derived in section 3.4.2 with respect to the parameter t, and

substituting the result in Eq. (6.90), after some algebra, we get

δPE
2S(t) =

8t4~2e2

3α2m3c4 (t2 − 1)7

[
8192t12 + 14336t11 − 9129t10 − 25088t9 − 5947t8

+ 4608t7 + 950t6 − 294t4 + 99t2 − 15 + 2048(4t4 − 5t2 + 1)t8

× 2F
(0,0,1,0)
1

(
1,−2t, 1− 2t,

(t− 1)2

(t+ 1)2

)
+ 2048

(
4t4 − 5t2 + 1

)
t82F

(0,1,0,0)
1

(
1,−2t, 1− 2t,

(t− 1)2

(t+ 1)2

)
− 1024(9− 49t2 + 28t4) 2F1

(
1,−2t; 1− 2t;

(t− 1)2

(t+ 1)2

)]
. (6.91)

In the above expression 2F
(0,1,0,0)
1 represents the first order derivative of 2F1 with

respect to its second argument and 2F
(0,0,1,0)
1 represents the first order derivative
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with respect to its third argument.

Substituting the value of parameter t in terms of ω and expanding the series for large

ω, Eq. (6.91) gives the following.

δPE
2S(ω) =

7α6m2c4e2

4~2ω2
− α8m3c6e2

8~3ω3
+O

(
ω−4

)
. (6.92)

Let us now examine the large ω asymptotic behavior of the matrix element QE
2S(ω)

δPE
2S(ω) =

α4m3c4e2

3~2
〈2S|xj δE

(H − E2S + ~ω)2x
j|2S〉

=
α4m3c4

3~2
δE〈2S|xj 1

~2ω2
[
1 + H−E2S

~ω

]2xj|2S〉
=
α4m3c4e2

3~2
δE〈2S|xj 1

~2ω2

[
1− 2(H − E2S)

~ω

]
xj|2S〉+O

(
ω−4

)
=
α4m3c4e2

3~2
δE
〈2S|r2|2S〉

~2ω2
− 2α4m3c4e2

3~2

δE

~3ω3
〈2S|xj(H − E2S)xj|2S〉+O

(
ω−4

)
=
α4m3c4e2

3~2
δE
〈2S|r2|2S〉

~2ω2
+

2α4m3c4e2

3~5ω3

i

2m
[xj, pj]δE +O

(
ω−4

)
=
α4m3c4e2

3~2
δE
〈2S|r2|2S〉

~2ω2
+ i

α4m2c4e2

3~5ω3
(3i)δE +O

(
ω−4

)
=
α4m3c4e2

3~2
δE
〈2S|r2|2S〉

~2ω2
− α4m2c4e2

~5ω3
δE +O

(
ω−4

)
. (6.93)

Here,

〈r2〉2S = 〈2S|r2|2S〉 =

∫ ∞
0

r4|R20(r)|2dr =
42 ~2

α2m2c2
, (6.94)

and

δE = 〈δV 〉 =
α4mc2

8
. (6.95)
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Let us substitute Eqs. (6.94) and (6.95) in Eq. (6.93):

δPE
2S(ω) =

7α6m2c4e2

4~2ω2
− α8m3c6e2

8~3ω3
+O

(
ω−4

)
. (6.96)

Eq. (6.96) is identical to equation (6.92). This confirms the expression for δPE
2S(t)

given by Eq. (6.91). Thus, in terms of the parameter t, Eq. (6.91) takes the following

form

δDE
6 (2S; 1S) =

3α2mc2

8π(4πε0)2

1∫
0

dt
1

t3
δαE2S(t) α1S(t). (6.97)

Taking the average energy, (E1S +E2S)/2 as the reference state energy, the reference

quantum number for the system is 2
√

2/
√

5. Implementing the reference quantum

number and integrating Eq. (6.97) numerically we get,

δDE
6 (2S; 1S) = 49.733 193 536Eh a

6
0. (6.98)

6.4.2. δDψ
6 (2S; 1S) Coefficient. In this section, we put the detailed calcu-

lation of the direct vdW coefficient arising from the modification of the wave function.

The Dirac-delta perturbed interaction energy due to the wave function correction

reads

δEψ
2S;1S(R) =− ~

πc4(4πε0)2
lim
η→0

∞∫
0

dω δαψ2S(iω)α1S(iω)
ω4e2ωR/c

R2

×
[
1 + 2

( c

ωR

)
+ 5

( c

ωR

)2

+ 6
( c

ωR

)3

+ 3
( c

ωR

)4
]
. (6.99)
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As the polarizability is the sum of the non-degenerate and the degenerate polariz-

ability, the wave function type correction to polarizabilility can be expressed as

δαψ2S(ω) = δαψ2S(ω) + δα̃ψ2S(ω), (6.100)

and hence the interaction energy can be written as

δEψ
2S;1S(R) = δE

ψ

2S;1S(R) + δẼψ
2S;1S(R), (6.101)

where

δẼψ
2S;1S(R) = − ~

πc4(4πε0)2
lim
η→0

∞∫
0

dω δα̃ψ2S(iω) α1S(iω)
ω4e2ωR/c

R2

×
[
1 + 2

( c

ωR

)
+ 5

( c

ωR

)2

+ 6
( c

ωR

)3

+ 3
( c

ωR

)4
]
, (6.102)

is the non-degenerate contribution to δEψ
6 (2S; 1S) and

δE
ψ

2S;1S(R) = − ~
πc4(4πε0)2

lim
η→0

∞∫
0

dω δαψ2S(iω) α1S(iω)
ω4e2ωR

R2

×
[
1 + 2

( c

ωR

)
+ 5

( c

ωR

)2

+ 6
( c

ωR

)3

+ 3
( c

ωR

)4
]
, (6.103)

is the degenerate contribution. Let us first concentrate on the non-degenerate con-

tribution to δD̃ψ
6 (2S; 1S). In the vdW range of interaction, we can approximate

Eq. (6.102) as

δẼψ
2S;1S(R) ≈ −δD̃

ψ
6 (2S; 1S)

R6
. (6.104)
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Here, δD̃ψ
6 (2S; 1S) is the non-degenerate contribution to the vdW coefficient due to

the Dirac-delta perturbation potential on the wave function and is given by

δD̃ψ
6 (2S; 1S) =

3~
π(4πε0)2

∞∫
0

dω δα̃ψ2S(iω) α1S(iω). (6.105)

The wave function correction to the polarizability reads

δα̃ψ2S(ω) = δPψ
2S(ω) + δPψ

2S(−ω). (6.106)

One can evaluate the modification in the matrix element δP (2S, ω) due to the

wave function correction using the following relation:

δPψ
2S(ω) =

2e2

3
〈2S|xi 1

H − E2S + ~ω
xi|δ(2S)〉, (6.107)

where 〈r, θ, φ|δ(2S)〉 = 1√
4π
δR20(r). The radial part δR20(r) of the Dirac-delta-

modified wave function δΨ200(r, θ, φ) is given in Eq. (4.27b). Let us rewrite δR20(r)

as a sum of six terms as follows.

δϕ1 = −α
5/2m1/2 e−αmr/2

2
√

2 r
, (6.108a)

δϕ2 =
γ

E
α7/2m3/2 e−αmr/2√

2
− 3α7/2m3/2 e−αmr/2

4
√

2
, (6.108b)

δϕ3 =
13α9/2m5/2 r e−αmr/2

8
√

2
− γ

E
α9/2m5/2 r e−αmr/2

2
√

2
, (6.108c)

δϕ4 = −α
11/2m7/2 r2e−αmr/2

8
√

2
, (6.108d)

δϕ5 =
α7/2m3/2 e−αmr/2 ln(αmr)√

2
, (6.108e)

δϕ6 = −α
9/2m5/2 r e−αmr/2 ln(αmr)

2
√

2
. (6.108f)
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The contributions of δϕi, i = 1, 2, ..., 6 to the δP matrix element can be expressed as

δP
δ(ϕi)
2S (t) =

2e2

3

∫ ∞
0

r2
1dr1

∫ ∞
0

r2
2dr2 R20(r1) r1 g`(r1, r2, t) r2 δ[ϕi(r2)]. (6.109)

We first change the variables to their dimensionless forms and integrate using stan-

dard integral (3.37). For δϕ1, δϕ2, δϕ3 and δϕ4, the matrix elements can be easily

evaluated. We have,

δP
δ(ϕ1)
2S (t) =− ~2e2

α2m3c4

[
8t2 (305t6 − 98t5 − 19t4 + 8t3 − t2 − 6t+ 3)

3(t− 1)5(t+ 1)3

+
2048t7 (4t2 − 1) 2F1

(
1,−2t; 1− 2t;

(
1−t
1+t

)2
)

3 (t2 − 1)5

]
, (6.110a)

δP
δ(ϕ2)
2S (t) =

~2e2

α2m3c4

24 (4γ
E
− 3)t2

t2 − 1
, (6.110b)

δP
δ(ϕ3)
2S (t) =− ~2e2

α2m3c4

[
8192(4γ

E
− 13)t9 (4t2 − 1)α2

2F1

(
1,−2t; 1− 2t;

(
1−t
1+t

)2
)

3 (t2 − 1)6

+
16(4γ

E
− 13)t2

3(t− 1)6(t+ 1)4

(
586t8 − 148t7 + t6 − 110t5 + 7t4 + 96t3

− 33t2 − 30t+ 15

)]
, (6.110c)

δP
δ(ϕ4)
2S (t) =− ~2e2

α2m3c4

[
65536α2e2 t11 (4t2 − 1) 2F1

(
1,−2t; 1− 2t;

(
1−t
1+t

)2
)

3 (t2 − 1)7

+
8t2

3(t− 1)7(t+ 1)5

(
9331t10 − 2278t9 + 331t8 − 2480t7 − 338t6

+ 3156t5 − 618t4 − 1920t3 + 735t2 + 450t− 225
)]
. (6.110d)

Fifth and sixth terms contain the natural logarithm of r along with the Laguerre

polynomial and exponential of r. These terms require special consideration. The

replica trick helps us to handle them. The replica trick refers to the following identity:

ln(mrα) = lim
ε→0

(mrα)ε − 1

ε
=

d(mrα)ε

dε

∣∣∣
ε=0
. (6.111)
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As suggested by the replica trick [55], at first, we differentiate the expression with

respect to ε, and then we take the limit ε → 0. Besides the simpler looking terms,

δP
δ(ϕ5)
2S (t) contains 2F

(0,1,0,0)
1 (−k, 5; 4; 2/(1 + t)) and δP

δ(ϕ6)
2S (t) contains

2F
(0,1,0,0)
1 (−k, 6; 4; 2/(1 + t)). We now use the following identity for the hypergeo-

metric function Ref. [43].

2F1(a, b; c; z) =
(b− c− 1)2F1(a, b− 2; c; z)

(b− 1)(z − 1)

+
(−az + bz − 2b+ c− z + 2)2F1(a, b− 1; c; z)

(b− 1)(z − 1)
. (6.112)

We use the derivative of this identity with respect to the second argument, b, of the

hypergeometric function. This lowers the second arguments of the hypergeometric

functions and simplifies

2F
(0,1,0,0)
1 (−k, 5; 4; 2/(1 + t)) and 2F

(0,1,0,0)
1 (−k, 6; 4; 2/(1 + t)) (6.113)

in terms of 2F
(0,1,0,0)
1 (−k, 4; 4; 2/(1 + t)) and some simpler algebraic terms containing

t and k. δP
δ(φ5)
2S (t) contains two types of terms.

1. Terms free from the hypergeometric function.

2. Terms containing the derivative of the hypergeometric function with respect to its

second argument on the numerator.

The terms free from the hypergeometric function can be easily summed over k and

simplified. The terms containing the derivative of the hypergeometric function with

respect to its second argument in the numerator appear in the following form

∞∑
k=0

kq
(
−1 + t

1 + t

)k
2F

(0,1,0,0)
1 (−k, 4; 4;

2

t+ 1
); q = 1, 2, ...., 5. (6.114)
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All the terms which do not contain the derivative of the hypergeometric function can

be summed over k using the following identity.

∞∑
k=0

kn
sk

a+ k
=

1

a

n∑
j=0

{
n

j

}
sj
∂j2F1(1, a : a+ 1 : s)

∂sj
, (6.115)

where
{
n
j

}
is the Stirling number of the second kind which can be computed using

the following formula:

{
n

j

}
=

1

j!

j∑
q=0

(−1)j−q
(
j

q

)
, (6.116)

where
(
j
q

)
is a binomial coefficient. For terms which contain the derivative of the

hypergeometric function, we use the following identity

∞∑
k=0

knξk2F1(−k, b; c; z) =
∞∑
j=0

{
n

j

}
ξj
∂j

∂ξj

[
2F1(1, b; c;−−ξz

1−ξ )

1− ξ

]
, (6.117)

which is obtained from the following identity discussed in Ref. [42].

∞∑
k=0

ξk 2F1(−k, b; c; z) =
2F1

(
1, b; c;− ξz

1−ξ

)
1− ξ

. (6.118)

Substituting the corresponding sums, the result will be the sum of a number of terms

of the form 2F
(0,1,0,0)
1

(
a, 4; 4; 1−t

1+t

)
where a = 4, 5 and 6. We calculate the first order

derivative of hypergeometric function with respect to its second argument as follows:

2F
(0,1,0,0)
1

(
a, 4; 4;

1− t
1 + t

)
= lim

ε→0

2F1

(
a, 4 + ε; 4; 1−t

1+t

)
− 2F1

(
a, 4− ε; 4; 1−t

1+t

)
2ε

.

(6.119)
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To get rid of the indeterminate form which arises if we take the limit ε→ 0, we make

use of the L’Hospital rule:

lim
ε→0

g(ε)

h(ε)
= lim

ε→0

g′(ε)

h′(ε)
. (6.120)

In Eq. (6.120), g(ε) and h(ε) represent the numerator and the denominator of the

right-hand side of Eq. (6.119) and the prime denotes their first order derivative with

respect to ε. In Eq. (6.120), we first calculate the derivative of the numerator and

the denominator and determine their ratio. Only then we substitute ε = 0.

The contribution of δϕ5 to the matrix element is found to be

δP
δ(ϕ5)
2S (t) = − ~2e2

α2m3c4

[
8 t2

3 (t2 − 1)6

(
− 3715t10 − 6400t9 − 189t8 + 3328t7 + 242t6 + 950t4

− 447t2 + 87

)
− 8 γ

E
t2 (36t10 − 180t8 + 360t6 − 360t4 + 180t2 − 36)

3 (t2 − 1)6

−
8 t2 (−384t9 + 768t7 − 384t5) 2F1

(
1,−2t; 1− 2t; t−1

t+1

)
3 (t2 − 1)6

−
8 t2 (13184t9 − 7424t7 + 384t5) 2F1

(
1,−2t; 1− 2t; (t−1)2

(t+1)2

)
3 (t2 − 1)6

]
. (6.121)

In contrast to the first five δP
δ(ϕi)
2S (t), the δP

δ(ϕ6)
2S (t) not only contains the derivative

of hypergeometric function with respect to its second argument on the numerator but

also contains (2 + k − 2t) on the denominator which appear in the following form

t10

∞∑
k=0

ξk 2F1
(0,1,0,0)

(
−k, 4; 4; 2

t+1

)
2 + k − 2t

. (6.122)

and can not be simplified to a closed-form expression. We denote this function as

F244(t) and evaluate it numerically. The total expression is

δP
δ(ϕ6)
2S (t) =

~2e2

α2m3c4

[
16

9(t− 1)7(t+ 1)8

(
7185t15 + 36625t14 + 1275t13 − 43525t12
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− 62622t11 − 926t10 + 24470t9 + 10902t8 − 7515t7 − 7515t6 + 2847t5

+ 2847t4 − 456t3 − 456t2
)
− 64 γ

E

3(t− 1)6(t+ 1)4

(
586t10 − 148t9 + t8 − 110t7

+ 7t6 + 96t5 − 33t4 − 30t3 + 15t2
)

+
2048 2F1

(
1,−2t; 1− 2t; (t−1)2

(t+1)2

)
9(t− 1)7(t+ 1)7

×
[
192γ

E
t13 − 283t13 − 240γ

E
t11 + 566t11 + 48γ

E
t9 − 139t9

− 48
(
4t4 − 5t2 + 1

)
t9 ln

( 2t

t+ 1

)]
−

2048t9 2F1

(
1,−2t; 1− 2t; t−1

t+1

)
(t− 1)5(t+ 1)5

+
8192 (7t11 + t10 − 2t9) ln

(
2t
t+1

)
3(t− 1)6(t+ 1)5

+
65536 (4t2 − 1) F244(t)

3(t− 1)2(t+ 1)10

]
. (6.123)

We now add all these six terms to get the total correction due to the wave function:

δPψ
2S(t) = δP

δ(ϕ1)
2S (t) + δP

δ(ϕ2)
2S (t) + δP

δ(ϕ3)
2S (t) + δP

δ(ϕ4)
2S (t) + δP

δ(ϕ5)
2S (t) + δP

δ(ϕ6)
2S (t).

(6.124)

After a bit of work, Eq. (6.124) simplifies to

δPψ
2S(t) =

~2e2

α2m3c4

8

9(t− 1)7(t+ 1)10

{
12288

(
4t2 − 1

)
(t− 1)5F244(t) + t2(t+ 1)2

×

[
− 123− 123t+ 801t2 + 801t3 − 2124t4 − 1932t5 + 4002t6 + 11234t7

+ 3661t8 − 20979t9 + 2285t10 + 9645t11 + 26314t12 + 3402t13 − 576(t− 1)2t5(t+ 1)3

×
(
t2 + 1

)
2F1

(
1,−2t; 1− 2t;

t− 1

t+ 1

)
+ 3072t7 ln

(
2t

t+ 1

)
+ 4608t8 ln

(
2t

t+ 1

)
− 13824t9 ln

(
2t

t+ 1

)
− 27648t10 ln

(
2t

t+ 1

)
+ 23040t12 ln

(
2t

t+ 1

)
+ 10752t13 ln

(
2t

t+ 1

)
− 64t5(t+ 1) 2F1

(
1,−2t; 1− 2t;

(t− 1)2

(t+ 1)2

)
×
[
371t6 − 193t4 + 113t2 + 96

(
4t6 − 5t4 + t2

)
ln

(
2t

t+ 1

)
− 3

]]}
. (6.125)
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Let us now compare the coefficients of leading terms for large ω. Substituting

t in terms of ω in the final result obtained from Eq. (6.125), we get

δPψ
2S(ω) =

41

m2

1

ω
− 21α2

8m

1

ω2
+ · · · (6.126)

For large ω, we can expand the P -matrix element as given below

〈2S|rj 1

(H − E2S + ~ω)
rj|δ(2S)〉

=
1

~ω
〈2S|r2|δ(2S)〉+

i

m~2ω2
〈2S|[i pjrj]|δ(2S)〉+O(ω−3) (6.127)

= A1
1

~ω
+ A2

1

~2ω2
+O(ω−3), (say). (6.128)

The coefficient of (~ω)−1 is

A1 =

∫ ∞
0

r2dr R20(r) r2 δR20(r). (6.129)

We use the following expressions for R20(r) and δR20(r):

R20(r) =
(αm)3/2e−αmr/2

(
1− 1

2
αmr

)
√

2
, (6.130)

δR20(r) =− α5/2m1/2 e−αmr/2

2
√

2 r
+
γ

E
α7/2m3/2 e−αmr/2√

2
− 3α7/2m3/2 e−αmr/2

4
√

2

+
13α9/2m5/2 r e−αmr/2

8
√

2
− γ

E
α9/2m5/2 r e−αmr/2

2
√

2
− α11/2m7/2 r2e−αmr/2

8
√

2

+
α7/2m3/2 e−αmr/2 ln(αmr)√

2
− α9/2m5/2 r e−αmr/2 ln(αmr)

2
√

2
. (6.131)

The right-hand side of the Eq. (6.129) works out to 41/m2. i.e.

A1 =
41

m2
. (6.132)
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We now calculate coefficient of (ω)−2

A2 =
i

m

∫ ∞
0

r2dr i

(
∂R20(r)

∂r

)
r δR20(r). (6.133)

We first differentiate Eq. (6.130) with respect to r and then substitute the result and

the corrected wave function given by Eq. (6.131) in Eq. (6.133). Eq. (6.133) simplifies

to

A2 = −21α2

8m
. (6.134)

These coefficients verify the Eq. (6.126). We now replace ω by iω to find the Wick-

rotated form of the perturbed P -matrix.

In terms of the parameter t, Eq. (6.105) takes the following form

δD̃ψ
6 (2S; 1S) =

3α2mc2

8π(4πε0)2

1∫
0

dt

t3
δα̃ψ2S(t)α1S(t). (6.135)

Let us say the parameter t before and after the Wick rotation are tn and Tn respec-

tively. Then, for 1S state, Tn are given as

T+
1 =

t1√
i + t21(1− i)

and T−1 =
tn√

−i + t21(1 + i)
. (6.136)

Similarly for n = 2, we get the following

T+
2 =

t2√
i + t22(1− i)

√
−1 + (1 + i)t22
−4 + (4 + i)t22

, T−2 =
t2√

−i + t22(1 + i)

√
−i + (1 + i)t22
−4i + (4i + 1)t22

.

(6.137)
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In the new variables the integral (6.135) takes the following form

δD̃ψ
6 (2S; 1S) =

3α2mc2

8π(4πε0)2

1∫
0

dt1
t31

(
δP̃ψ

2S(T+
2 (t1)) + δP̃ψ

2S(T−2 (t1))

)

×
(
P1S(T+

1 (t1)) + P1S(T−1 (t1))

)
. (6.138)

Following the same procedure we followed for δDψ
6 (1S; 1S), we now numerically cal-

culate δD̃ψ
6 (2S; 1S) in both the asymptotic and non-asymptotic regions and add them

up. The total non-degenerate wave function contribution to the perturbed vdW co-

efficient is found to be

δD̃ψ
6 (2S; 1S) = 297.931 412 174 718α2Eh a

6
0. (6.139)

We now consider the degenerate contribution on δD6(2S; 1S) due to the wave

function correction.The degenerate contribution δDψ
6 (2S; 1S) comes from the quasi

degenerate 2P states. Let us recall the degenerate contribution on perturbation

energy due to the wave function correction δEψ
6 (2S; 1S) of CP interaction.

δE
ψ

2S;1S(R) = − ~
π(4πε0)2

lim
η→0

∞∫
0

dω δαψ2S(iω) α1S(iω)
ω4e2ωR/c

R2

×
[
1 + 2

( c

ωR

)
+ 5

( c

ωR

)2

+ 6
( c

ωR

)3

+ 3
( c

ωR

)4
]
. (6.140)

The P -matrix element for degenerate states in terms of frequencies in its Wick-rotated

form reads as below.

P 2S(±iω) =
e2

9

3∑
i=1

1∑
µ=−1

|〈2S|xi|2P (m = µ)〉|2
( 1

−L2 ± i~ω − iε
+

2

F2 ± i~ω − iε

)
,

(6.141)
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where L2 and F2 stand for the Lamb-shift energy and the fine structure interaction

respectively between 2S and 2P states. The Lamb shift energy L2 is in the order

of 10−7 times Hartree energy and the fine-structure energy F2 is in order of 10−6

times Hartree energy. To the first order approximation, the ket associated to wave

function corresponding to the nS-state can be expressed as |nS〉 → |nS + δ(nS)〉.

The P -matrix element also gets modified.

δP
ψ

2S(±iω) =
e2

9

3∑
i=1

∑
µ=1,0,−1

(
〈δ(2S)|xi|2P (m = µ)〉〈2P (m = µ)|xi|2S〉+

×〈2S|xi|2P (m = µ)〉〈2P (m = µ)|xi|δ(2S)〉
)( 1

−L2 ± i~ω − iε
+

2

F2 ± i~ω − iε

)
=

2e2

9

3∑
i=1

∑
µ=1,0,−1

〈2S|xi|2P (m = µ)〉〈2P (m = µ)|xi|δ(2S)〉

×
(

1

−L2 ± i~ω − iε
+

2

F2 ± i~ω − iε

)
. (6.142)

The wave function correction to the polarizability, δαψ2S(ω) is the sum

δαψ2S(ω) = δP
ψ

2S(ω) + δP
ψ

2S(−ω). (6.143)

Thus, we have

δαψ2S(iω) =
2e2

9

3∑
i=1

∑
µ=1,0,−1

〈2S|xi|2P (m = µ)〉〈2P (m = µ)|xi|δ(2S)〉

×
(

1

−L2 + i~ω − iε
+

1

−L2 − i~ω − iε
+

2

F2 + i~ω − iε
+

2

F2 − i~ω − iε

)
=

2e2

9

3∑
i=1

∑
µ=1,0,−1

〈2S|xi|2P (m = µ)〉〈2P (m = µ)|xi|δ(2S)〉

×
(

−2L2

(−L2 − iε)2 + ~2ω2
+

4F2

(F2 − iε)2 + ~2ω2

)
. (6.144)
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With the help of equations (6.140) and (6.144), we can evaluate δE
ψ

2S;1S(R) as

δE
ψ

2S;1S(R) = − ~
π(4πε0)2

α1S(0)
2e2

9

3∑
i=1

∑
µ=1,0,−1

〈2S|xi|2P (m = µ)〉

× 〈2P (m = µ)|xi|δ(2S)〉 lim
ε→0

lim
L→0

lim
F→0

∞∫
0

dω
ω4e2ωR/c

R2

(
−2L2

(−L2 − iε)2 + (~ω)2

+
4F2

(F2 − iε)2 + (~ω)2

)[
1 + 2

( c

ωR

)
+ 5

( c

ωR

)2

+ 6
( c

ωR

)3

+ 3
( c

ωR

)4
]

≈ − 3~
π(4πε0)2R6

α1S(0)
2e2

9

3∑
i=1

∑
µ=1,0,−1

〈2S|xi|2P (m = µ)〉

× 〈2P (m = µ)|xi|δ(2S)〉(π
~

+
2π

~
)

= − 2e2

(4πε0)2R6
α1S(0)

3∑
i=1

∑
µ=1,0,−1

∫ ∞
0

r2
1dr1

∫ ∞
0

r2
2dr2〈2S|~r1〉〈~r1|xi|2P (m = µ)〉

× 〈2P (m = µ)|xi|~r2〉〈~r2|δ(2S)〉

= − 2e2

(4πε0)2R6
α1S(0)

∫ ∞
0

r2
1 dr1

∫ ∞
0

r2
2 dr2R20(r1) r1R21(r1)R21(r2) r2 δR20(r2)

= − 2e2

(4πε0)2R6
α1S(0)

∫ ∞
0

dr1 r
3
1 R20(r1)R21(r1)

∫ ∞
0

dr2 r
3
2 R21(r2) δR20(r2).

(6.145)

The integration (6.145) evaluates to 9
4
α2a2

0 so that

δE
ψ

2S;1S(R) =− 2e2

(4πε0)2R6

9 e2~2

2α4m3c4

9

4
α2a2

0 = −81

4
α2Eh

a6
0

R6
. (6.146)

Comparing Eq. (6.146) with

δE
ψ

2S;1S(R) = −
δD

ψ

2S;1S(R)

R6
, (6.147)

we see that the vdW coefficient δD
ψ

2S;1S(R) is

δD
ψ

2S;1S(R) =
81

4
α2Eha

6
0. (6.148)
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The non-degenerate and the degenerate contributions of the wave function add up

to give the total wave function contribution to the direct vdW coefficient due to the

Dirac delta perturbation potential.

δDψ
6 (2S; 1S) = δD̃ψ

6 (2S; 1S) + δD
ψ

6 (2S; 1S)

= (297.931 412 174 718 +
81

4
)α2Eha

6
0

= 318.181 412 174 718α2Eha
6
0. (6.149)

The δ-perturbed direct vdW coefficient is the sum of the energy type contribution,

δDE
6 (2S; 1S) and the wave function type contribution , δDψ

6 (2S; 1S) , i.e.,

δD6(2S; 1S) = δDψ
6 (2S; 1S) + δDE

6 (2S; 1S) = 367.914 605 710α2Eha
6
0. (6.150)

Note that, in the vdW range, the wave function type contribution is dominant over

the energy type contribution.

6.5. 2S-1S-DIRAC-δ MIXING PERTURBATION TO EvdW

For n = 2, the mixing vdW coefficient can be written as

M6(2S; 1S) =
3~

π(4πε0)2

∫ ∞
0

dω α2S1S(iω)α2S1S(iω). (6.151)

The Wick-rotated polarizability α2S1S(iω) is the the sum of the mixing matrix ele-

ments

α2S1S(iω) = P (2S1S, iω) + P (2S1S,−iω). (6.152)

The probability density of P -states features by lobes emanated from the origin which

vanishes for r = 0. Thus, the modification to the Hamiltonian due to the Dirac-delta
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perturbation potential does not give any contribution to the mixing vdW coefficient.

However, the modification to the energy and the wave function, in general, have

non-vanishing contribution to the mixing vdW coefficient. Let δME
6 (2S; 1S) and

δMψ
6 (2S; 1S) be the contributions due to the modification to the energy and the

modification to the wave function respectively in the presence of the Dirac-delta

perturbation potential.

Only the 2S state is perturbed. However, both E1S and E2S energy levels can

serve as the reference energy level. For the sake of simplicity, we take the average of

E1S and E2S as the reference energy level. The reference quantum number associated

with the reference energy level is given as

1

−2n2
ref

=
1

2
(−1

2
− 1

8
) =⇒ nref = 2

√
2

5
. (6.153)

The energy and the wave function parts of the perturbed vdW coefficient can be

written as

δME
6 (2S; 1S) =

6~ e2

π(4πε0)2

∫ ∞
0

dω α2S1S(iω) δαE2S1S(iω), (6.154)

and

δMψ
6 (2S; 1S) =

6~ e2

π(4πε0)2

∫ ∞
0

dω α2S1S(iω) δαψ2S1S(iω). (6.155)

The energy correction to the polarizability due to the Dirac-delta perturbation po-

tential can be expressed as

δαE2S1S(iω) =
∑
±

δPE
2S1S(±iω) = −

∑
±

∂

∂ω
P (2S1S, iω)

δE

2
. (6.156)
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where δPE
2S1S(iω) is the modification to the P -matrix element due to the Dirac-delta

perturbation. In terms of the parameter t, the perturbed P - mixing matrix element

due to the energy correction is given as

δPE
2S1S(t) =

~2e2

α2m3c4

t3n2
ref

23

∂

∂t
P (2S1S, t)

δE

2

=
~2e2

α2m3c4

64
√

2n4
reft

4

729 (n2
reft

2 − 4)
4

(n2
reft

2 − 1)
3

[
972n12

reft
12 + 2430n11

reft
11 − 6119n10

reft
10

−17010n9
reft

9 + 1975n8
reft

8 + 17496n7
reft

7 + 4384n6
reft

6 + 656n4
reft

4 − 1408n2
reft

2 + 512

−972n7
reft

7
(
5n4

reft
4 − 35n2

reft
2 + 36

)
2F1

(
1,−nreft; 1− nreft;

n2
reft

2 − 3nreft+ 2

n2
reft

2 + 3nreft+ 2

)
+972n8

reft
8
(
n4

reft
4 − 5n2

reft
2 + 4

)
2F

(0,0,1,0)
1

(
1,−nreft; 1− nreft;

n2
reft

2 − 3nreft+ 2

n2
reft

2 + 3nreft+ 2

)
+972n8

reft
8 (n4

reft
4 − 5n2

reft
2 + 4) 2F

(0,1,0,0)
1

(
1,−nreft; 1− nreft;

n2
reft

2 − 3nreft+ 2

n2
reft

2 + 3nreft+ 2

)]
.

(6.157)

The P (2S1S, ν) mixed-matrix element is given by

P2S1S(t) =
~2e2

α2m3c4

512
√

2n2
reft

2

729(nreft− 2)3(nreft+ 2)2 (n2
reft

2 − 1)
2

(
419n7

reft
7 + 134n6

reft
6

− 15n5
reft

5 + 30n4
reft

4 + 60n3
reft

3 − 120n2
reft

2 − 32nreft+ 64
)

−
4096
√

2n9
reft

9
2F1

(
1,−nreft; 1− nreft;

n2
reft

2−3nreft+2

n2
reft

2+3nreft+2

)
3 (n2

reft
2 − 4)

3
(n2

reft
2 − 1)

2 . (6.158)

In terms of the variable t, taking the average of E1S and E2S as the reference energy,

the Dirac delta perturbed mixing vdW coefficient δME
6 (2S; 1S) is given by

δME
6 (2S; 1S) =

3α2mc2

4π(4πε0)2

1∫
0

dt

t3

(
δPE

2S1S(T+
nref

(t)) + δPE
2S1S(T−nref

(t))

)

×
(
P2S1S(T+

nref
(t)) + P2S1S(T−nref

(t))

)
. (6.159)
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The numerical evaluation of the integral (6.159) yields

δME
6 (2S; 1S) = 12.556 663 546 763α2Eh a

6
0. (6.160)

The wave function correction on the P -mixed matrix element due to the Dirac-delta

perturbation potential acting on the 2S-1S system is

δPψ
2S1S(ν) =

2e2

3
〈1S|rjg`=1(r1, r2, ν)rj|δ(2S)〉

=
2e2

3

∫ ∞
0

r2
1dr1

∫ ∞
0

r2
2dr2 R10(r1)r1 g`=1(r1, r2, ν) r2 δR20(r). (6.161)

where ν = nref t is the generalized principal quantum number. For the 2S-1S system,

the reference quantum number is nref = 2
√

2/
√

5. We obtain

δPψ
2S1S(ν) =

~2e2

α2m3c4

[
4194304

√
2 F244(ν)

3(ν − 2)(ν + 1)4(ν + 2)5
+

32
√

2ν2

2187 (ν2 − 4)4 (ν2 − 1)3

[
12503ν12

+ 86994ν11 − 107796ν10 + 49572ν9 − 283245ν8 + 451008ν7 + 235472ν6 + 46656ν5

− 213216ν4 + 155904ν2 − 40192

]
−

32
√

2ν7 (ν2 + 4) 2F1

(
1,−ν; 1− ν; ν−1

ν+1

)
(ν − 2)2(ν − 1)3(ν + 1)3(ν + 2)2

−
32
√

2 ν7
2F1

(
1,−ν; 1− ν; ν

2−3ν+2
ν2+3ν+2

)
9(ν − 2)4(ν − 1)3(ν + 1)3(ν + 2)4

[
371ν6 − 772ν4 + 1808ν2 − 192+

384
(
ν4 − 5ν2 + 4

)
ν2ln

(
2ν

ν + 2

)]
+

512
√

2ν2ln(81)

243 (ν2 − 4)
+

2048
√

2ν2ln
(

ν
ν+2

)
243 (ν2 − 4)

+

512
√

2ν2 (419ν7 + 134ν6 − 15ν5 + 30ν4 + 60ν3 − 120ν2 − 32ν + 64) ln
(

2ν
ν+2

)
729(ν − 2)3(ν + 2)2 (ν2 − 1)2

−
128
√

2ν2 (23ν8 − 128ν6 + 1020ν4 − 992ν2 + 320) ln
(

3ν
ν+2

)
729 (ν2 − 4)2 (ν2 − 1)3

]
, (6.162)

where

F244(ν) =
∞∑
k=0

ν10
(
ν−1
ν+1

)k
2F

(0,1,0,0)
1

(
−k, 4, 4, 4

ν+2

)
1024(k − ν + 2)

, (6.163)
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is a term containing sum over k which does not take a closed form expression. The se-

ries convergence is extremely slow around ν = 0. We use the convergence acceleration

technique as discussed above in the Sec. 5.3.1.

Keeping in mind that nref is the reference quantum number, the wave function

correction to the mixing matrix element δPψ
2S1S(ν) can be expressed in terms of the

parameter t just by the substitution of ν = nref t. We now use the following formula

for the Delta perturbed mixing vdW coefficient due to the wave function correction

δMψ
6 (2S; 1S) =

3α2mc2

4π(4πε0)2

1∫
0

dt

t3

(
δPψ

2S1S(T+
nref

(t)) + δPψ
2S1S(T−nref

(t))

)

×
(
P2S1S(T+

nref
(t)) + P2S1S(T−nref

(t))

)
, (6.164)

and evaluate the integral numerically which yields

δMψ
6 (2S; 1S) = −70.652 014 640 246α2Eha

6
0. (6.165)

The total mixing vdW coefficient in the presence of the Dirac delta perturbation

potential is the sum

δM6(2S; 1S) = δMψ
6 (2S; 1S) + δME

6 (2S; 1S)

= −58.095 351 093 483α2Eha
6
0. (6.166)

The total δ-perturbed vdW coefficient δC6(2S; 1S) is the sum

δC6(2S; 1S) =δD6(2S; 1S)± δM6(2S; 1S)

= (367.914 605 710∓ 58.095 351 093)α2Eha
6
0. (6.167)
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Notice that, in the vdW range, the direct term contribution to the symmetry-dependent

δC6(2S; 1S) coefficient is dominant over mixing term contribution.

6.6. DIRAC-δ INTERACTION FOR 2S-1S SYSTEM IN THE CP RANGE

The Dirac delta perturbation potential has very interesting impacts on the

interaction energy. The perturbation potential gives rise to both the energy type and

the wave function type corrections. Both the energy and the wave function correc-

tions have contributions from the degenerate term and the non-degenerate term. If

we concentrate only on the non-degenerate part of the contribution, the interaction

potential would be proportional to R−7. However, the degenerate contribution is

expected to be in the order of R−6. In the CP range, the degenerate contribution

is dominant over the non-degenerate contribution. Let us separate the degenerate

contributions on the Dirac-delta perturbed interaction energy into two different cat-

egories, namely, wave function contribution and the energy contribution.

6.6.1. Wave Function Contribution. If we concentrate on the Dirac-delta

perturbed interaction energy due to the presence of the 2P -states which are degen-

erate with the 2S-state, the following expression provides the wave function type

contributions:

δE
ψ
(2S; 1S) = − 3~

π(4πε0)2R6

∫ ∞
0

dω α1S(iω) δαψ2S(iω)

= −δD
ψ

6 (2S; 1S)

R6
. (6.168)

As we already calculated in Section 4, the δD
ψ
(2S; 1S) coefficient is given by

δD
ψ

6 (2S; 1S) =
81

4
α2Eha

6
0. (6.169)
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On the other hand, the mixing terms contribution δE
ψ,mixing

(2S; 1S) reads

δE
ψ,mixing

(2S; 1S) = − 3~
π(4πε0)2R6

∫ ∞
0

dω

[
αE=E1S

2S1S (iω) δαψ,E=E2S

2S1S (iω)

+ δαE=E1S
2S1S (iω)αψ,E=E2S

2S1S (iω)

]
. (6.170)

where αE=E1S
2S1S (iω) and αE=E2S

2S1S (iω) are Wick-rotated polarizabilities taking 1S and

2S as the reference state respectively. Here, ψ in the superscript indicates the wave

function contribution. Recognizing that Eq. (6.170) is in the usual mathematical

form for CP interaction,

δE
ψ,mixing

(2S; 1S) = −δM
ψ

6 (2S; 1S)

R6
, (6.171)

the mixing coefficient δM
ψ

6 (2S; 1S) can be written as

δM
ψ

6 (2S; 1S) =
3~

π(4πε0)2

∫ ∞
0

dω αE=E1S
2S1S (iω) δαψ,E=E2S

2S1S (iω)

+
3~

π(4πε0)2

∫ ∞
0

dω δαE=E1S
2S1S (iω)αψ,E=E2S

2S1S (iω)

=
3~

π(4πε0)2

∫ ∞
0

dω αE=E1S
2S1S (iω)

e2

9

3∑
j=1

1∑
µ=−1

〈δ(2S)|xj|2P (m = µ)〉

× 〈2P (m = µ)|xj|1S〉
[ −2L2

(−L2 − iε)2 + ~2ω2
+

4F2

(F2 − iε)2 + ~2ω2

]
+

3~
π(4πε0)2

∫ ∞
0

dω δαE=E1S
2S1S (iω) e2

3∑
j=1

1∑
µ=−1

〈 2S|xj|2P (m = µ)〉

× 〈2P (m = µ)|xj|1S〉
[ −2L2

(−L2 − iε)2 + ~2ω2
+

4F2

(F2 − iε)2 + ~2ω2

]
. (6.172)

The integrands have poles of order one at ω = ±(−L2 − iε) and ω = ±(F2 − iε). We

complete the contour in the upper half of the complex plane such that the contributing

poles will be ω = −(−L2− iε) and ω = −(F2− iε). We now calculate residues about
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the poles enclosed by the contours and then take limits lim
L2→0

and lim
F2→0

which yields

δM
ψ

6 (2S; 1S) =
~ e2

3π(4πε0)2
αE=E1S

2S1S (0)
3∑
j=1

1∑
µ=−1

〈δ(2S)|xj|2P (m = µ)〉

× 〈2P (m = µ)|xj|1S〉(π
~

+
2π

~
) +

~ e2

3π(4πε0)2
δαE=E1S

2S1S (0)

×
3∑
j=1

1∑
µ=−1

〈 2S|xj|2P (m = µ)〉〈2P (m = µ)|xj|1S〉(π
~

+
2π

~
)

=
e2

(4πε0)2
αE=E1S

2S1S (0)
3∑
j=1

1∑
µ=−1

〈δ(2S)|xj|2P (m = µ)〉〈2P (m = µ)|xj|1S〉

+
e2

(4πε0)2
δαE=E1S

2S1S (0)
3∑
j=1

1∑
µ=−1

〈 2S|xj|2P (m = µ)〉〈2P (m = µ)|xj|1S〉. (6.173)

For the 2S-1S system, the perturbed mixing vdW coefficient arising from the wave

function correction due to the degenerate level reads

δM
ψ

6 (2S; 1S) =
e2

(4πε0)2
αE=E1S

2S1S (0)
3∑
j=1

1∑
µ=−1

〈δ(2S)|xj|2P (m = µ)〉〈2P (m = µ)|xj|1S〉

+
e2

(4πε0)2
δαE=E1S

2S1S (0)
3∑
j=1

1∑
µ=−1

〈 2S|xj|2P (m = µ)〉〈2P (m = µ)|xj|1S〉

=
e2

(4πε0)2

(
−3584

√
2 ~2e2

729α4m3c4

)(
−32
√

2α2~2

81α2m2c2

)

+
e2

(4πε0)2

(
9.295 890 768 1811 ~2e2α2

α4m3c4

)(
− 128

√
2~2

81α2m2c2

)

= − 58.439 051 900 100α2Eha
6
0. (6.174)

6.6.2. Energy Contribution. The Dirac-delta perturbed interaction en-

ergy due to the degenerate levels that come from the modification of the energy

reads

δE
E

(2S; 1S) = − 3~
π(4πε0)2R6

∫ ∞
0

dω α1S(iω)αE2S(iω). (6.175)
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Recognizing that the right-hand side of Eq. (6.175) is in the form −δDE

6 (2S; 1S)/R6,

the direct term contribution of the vdW coefficient δE
ψ
(2S; 1S) can be expressed as

δD
E

6 (2S; 1S) =
3~

π(4πε0)2

∫ ∞
0

dω α1S(iω) δαE2S(iω). (6.176)

Substituting the value of δαE2S(iω), we get

δD
E

6 (2S; 1S) =
3~

π(4πε0)2

∫ ∞
0

dω α1S(iω)
e2

9

3∑
j=1

1∑
µ=−1

|〈2S|xj|2P (m = µ)〉|2

× 〈2S|δV |2S〉

[
2(L2

2 − ~2ω2)[
(−L2 − iε)2 + (~ω)2

]2 +
4(F2

2 − ~2ω2)[
(F2 − iε)2 + (~ω)2

]2
]

=
~e2

3π(4πε0)2

3∑
j=1

1∑
µ=−1

|〈2S|xj|2P (m = µ)〉|2 〈2S|δV |2S〉

×
∫ ∞

0

dω α1S(iω)

[
∂

∂L2

−2L2

(−L2 − iε)2 + (~ω)2
+

∂

∂F2

−4F2

(F2 − iε)2 + (~ω)2

]

=
α2

3π

3∑
j=1

1∑
µ=−1

|〈2S|xj|2P (m = µ)〉|2 〈2S|δV |2S〉

×
[
α1S(L2)

∂

∂L2

(π
~

)
+ α1S(F2)

∂

∂F2

(
2π

~

)]
= 0. (6.177)

Let us now investigate contribution of the energy modification of the mixing coefficient

δM
E

6 (2S; 1S) which reads

δM
E

6 (2S; 1S) =
3~

π(4πε0)2

∫ ∞
0

dω αE=E1S
2S1S (iω) δαE,E=E2S

2S1S (iω). (6.178)

The superscript E in δM
E

(2S; 1S) and δαE=E1S
2S1S indicate that these contributions are

of the energy type and the E = E2S in the superscript tells us that we are taking E2S

as a reference energy level. Substituting the value for the Wick-rotated form of the
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perturbed mixing polarizability, we can rewrite Eq. (6.178) as

δM
E

6 (2S; 1S) =
3~

π(4πε0)2

∫ ∞
0

dω αE=E1S
2S1S (iω) δαE,E=E2S

2S1S (iω)

=
3~

π(4πε0)2

∫ ∞
0

dω αE=E1S
2S1S (iω)

e2

9

3∑
j=1

1∑
µ=−1

〈1S|xj|2P (m = µ)〉

× 〈2P (m = µ)|xj|2S〉〈2S|δV |2S〉

[
2(L2

2 − ~2ω2)[
(−L2 − iε)2 + (~ω)2

]2
+

4(F2
2 − ~2ω2)[

(F2 − iε)2 + (~ω)2
]2
]

=
~e2

3π(4πε0)2

3∑
j=1

1∑
µ=−1

〈1S|xj|2P (m = µ)〉〈2P (m = µ)|xj|2S〉〈2S|δV |2S〉

×
∫ ∞

0

dω αE=E1S
2S1S (iω)

[
∂

∂L2

−2L2

(−L2 − iε)2 + (~ω)2
+

∂

∂F2

−4F2

(F2 − iε)2 + (~ω)2

]

=
α2

3π

3∑
j=1

1∑
µ=−1

〈1S|xj|2P (m = µ)〉〈2P (m = µ)|xj|2S〉〈2S|δV |2S〉

×

[
αE=E1S

2S1S (L2)
∂

∂L2

(π
~

)
+ αE=E1S

2S1S (F2)
∂

∂F2

(
2π

~

)]
= 0. (6.179)

We conclude that not only the direct δD
E

6 (2S; 1S) but also the mixing δM
E

6 (2S; 1S)

term vanishes. Let us take a step back from the R−6 paradigm and go to the more

general expression. To the first order approximation, the modification of the P -matrix

due to the Dirac-delta perturbation on energy is

δP
E

2S(±iω) =
e2

9

3∑
i=1

1∑
µ=−1

|〈2S|xi|2P (m = µ)〉|2

×
(

1

[−L2 ± i~ω − iε]2
+

2

[F2 ± i~ω − iε]2

)
δE. (6.180)
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The Wick-rotated perturbed polarizability δαE2S(iω) which is the sum
∑
± δP

E

2S(±iω)

is given by

δαE2S(iω) =
e2

9

3∑
j=1

1∑
µ=−1

|〈2S|xj|2P (m = µ)〉|2
(

2(L2
2 − (~ω)2)

[(−L2 − iε)2 + (~ω)2]2

+
4(F2

2 − (~ω)2)

[(F2 − iε)2 + (~ω)2]2

)
〈2S|δV |2S〉. (6.181)

The perturbed interaction energy due to the modification of the energy which comes

from nP -states which are degenerate with nS-state can be written as

δE
E

2S;1S(R) =− ~
πc4(4πε0)2

lim
ε→0

lim
η→0

∞∫
0

dω α1S(iω)αE2S(iω, η)
ω4e−2ωR/c

R2

×
[
1 + 2

( c

ωR

)
+ 5

( c

ωR

)2

+ 6
( c

ωR

)3

+ 3
( c

ωR

)4
]]

, (6.182)

where η stands for the lamb shift L2 or the fine structure F2. We can approximate

the ground state atomic polarizability by its static value. This is because in the range

R � 1/η, the degenerate polarizability α2S(iω, η) varies very rapidly over the range

ω ∼ η and is suppressed for ω � η. The dominant contribution comes from the

frequency range ω ∼ η � 1/R, where we can approximate the non-degenerate polar-

izability by its static value i.e. ω = 0. This infers that the ground state polarizability

α1S(iω) can be approximated by its static value α1S(0) in the range R� 1/η . Thus,

the energy correction to the Dirac-delta perturbed interaction energy can be written

as

δE
E

2S;1S(R) = − ~
πc4(4πε0)2

e2

9

3∑
j=1

∑
µ=1,0,−1

|〈2S|xj|2P (m = µ)〉|2 〈2S|δV |2S〉

× lim
ε→0

lim
L2→0

lim
F2→0

∞∫
0

dω α1S(0)
ω4e−2ωR/c

R2
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×
(

2(L2
2 − (~ω)2)

[(−L2 − iε)2 + (~ω)2]2
+

4(F2
2 − (~ω)2)

[(F2 − iε)2 + (~ω)2]2

)
×
[
1 + 2

( c

ωR

)
+ 5

( c

ωR

)2

+ 6
( c

ωR

)3

+ 3
( c

ωR

)4
]]

=− ~
πc4(4πε0)2

α1S(0)
e2

9

3∑
j=1

∑
µ=1,0,−1

|〈2S|xj|2P (m = µ)〉|2 〈2S|δV |2S〉

×

[
lim
ε→0

lim
L2→0

∞∫
0

dω
2(L2

2 − (~ω)2)

[(−L2 − iε)2 + (~ω)2]2
ω4e−2ωR/c

R2

×
[
1 + 2

( c

ωR

)
+ 5

( c

ωR

)2

+ 6
( c

ωR

)3

+ 3
( c

ωR

)4
]

+ lim
ε→0

lim
F2→0

∞∫
0

dω
4(F2

2 − (~ω)2)

[(F2 − iε)2 + (~ω)2]2
ω4e−2ωR/c

R2

×
[
1 + 2

( c

ωR

)
+ 5

( c

ωR

)2

+ 6
( c

ωR

)3

+ 3
( c

ωR

)4
]]

=− ~
πc4(4πε0)2

α1S(0)
e2

9

3∑
j=1

∑
µ=1,0,−1

|〈2S|xj|2P (m = µ)〉|2

× 〈2S|δV |2S〉
[

I○ + II○
]
. (6.183)

where the integral

I○ = lim
ε→0

lim
L2→0

∞∫
0

dω
2(L2

2 − (~ω)2)

[(−L2 − iε)2 + (~ω)2]2
ω4e−2ωR/c

R2

×
[
1 + 2

( c

ωR

)
+ 5

( c

ωR

)2

+ 6
( c

ωR

)3

+ 3
( c

ωR

)4
]

= lim
ε→0

lim
L2→0

∂

∂L2

∞∫
0

dω
−2L2

(−L2 − iε)2 + (~ω)2

ω4e−2ωR/c

R2

×
[
1 + 2

( c

ωR

)
+ 5

( c

ωR

)2

+ 6
( c

ωR

)3

+ 3
( c

ωR

)4
]

=
11c3

2~2R5
, (6.184)
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and the integral

II○ = lim
ε→0

lim
F2→0

∞∫
0

dω
4(F2

2 − (~ω)2)

[(F2 − iε)2 + (~ω)2]2
ω4e−2ωR/c

R2

×
[
1 + 2

( c

ωR

)
+ 5

( c

ωR

)2

+ 6
( c

ωR

)3

+ 3
( c

ωR

)4
]

= lim
ε→0

lim
F2→0

∂

∂F2

∞∫
0

dω
−4F2

(F2 − iε)2 + (~ω)2]

ω4e−2ωR/c

R2

×
[
1 + 2

( c

ωR

)
+ 5

( c

ωR

)2

+ 6
( c

ωR

)3

+ 3
( c

ωR

)4
]]

=
11c3

~2R5
. (6.185)

In the above calculation of the terms I○ and II○, we first integrate the above

expressions over ω, then we carry out the respective derivatives. Only then we do set

lim
ε→0

, lim
L2→0

and lim
F2→0

which yields the above results. Substituting the values for I○
and II○ from Eqs. (6.184) and (6.185), we find a R−5 dependence of the degenerate

energy contribution on the interaction energy which is a distinct feature of Dirac-delta

perturbed interaction energy.

δE
E

2S;1S(R) = − ~
πc4(4πε0)2

α1S(0)
e2

9

3∑
j=1

∑
µ=1,0,−1

|〈2S|xj|2P (m = µ)〉|2

× 〈2S|δV |2S〉
[

11c3

2~2R5
+

11c3

~2R5

]
=− ~

πc4(4πε0)2

9 ~2e2

2α4m3c4

e2

9

3∑
j=1

∑
µ=1,0,−1

|〈2S|xj|2P (m = µ)〉|2α
4mc2

23

33c3

2~2R5

=− 33

32πR5

(
e2

4πε0~c

)2 ~3

α4m3c3

3∑
j=1

1∑
µ=−1

|〈2S|xj|2P (m = µ)〉|2 α2Eh

=− 33

32πR5
α2

(
a3

0

α

) 3∑
j=1

1∑
µ=−1

|〈2S|xj|2P (m = µ)〉|2 α2Eh. (6.186)
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Substituting
∑3

j=1

∑1
µ=−1 |〈2S|xj|2P (m = µ)〉|2 = 27a2

0 in Eq. (6.186), we get

δE
E

2S;1S(R) =− 33

32πR5
α3Eh a

3
0

(
27a2

0

)
= − 891

32π
α3Eh

(a0

R

)5

. (6.187)

The Eq. (6.186) is in the form

δE
E

2S;1S(R) = −D
E

5 (2S; 1S)

R5
, (6.188)

where the D
E

5 (2S; 1S) coefficient is given by

D
E

5 (2S; 1S) =
891

32π
α3Eh (a0)5 . (6.189)

Interestingly, the interaction energy δEE
a;b(R) has vanishing 1/R6 but non-vanishing

1/R5 dependence. This situation motivates us to present a model integral for the

energy type correction on the δ-perturbed interaction energy. We can model the

interaction energy δEE
a;b(R) as

K(a, η, R) ≡
∫ ∞

0

dx
a

(a− iε)2 + x2

∂

∂η

(−η)

(−η − iε)2 + x2

x4e−2Rx

R2

×
[
1 +

2

Rx
+

5

(Rx)2 +
3

(Rx)3 +
3

(Rx)4

]
. (6.190)

We choose the following numerical values for the parameters:

a = 1, η = 10−3, ε = 10−6. (6.191)

In Figure 6.2, we present a numerical model for energy type modification of the

interaction energy in three different interatomic ranges. The blue curve overlaps

with 1/R6 red-dashed curve in the vdW range, 1/R5 orange-dashed in the CP range

and 1/R7 green-dashed curve in the Lamb shift range.
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Figure 6.2: Asymptotics of the modification of the interaction energy due to
the energy type correction in all three ranges. The interaction energy follows
the 1/R6 power law in the vdW range, and the 1/R7power law in the Lamb
shift range. However, it follows the peculiar 1/R5 power law in the CP range.

Let us now examine the mixing terms contribution M
E

5 (2S; 1S) due to the

modification of the energy. The energy type correction to the interaction energy

arising from the degenerate 2S − 2P levels can be expressed as

δE
E,mixing

2S;1S (R) =− ~
πc4(4πε0)2

∫ ∞
0

dω αE=E1S
2S1S (iω) δαE,E=E2S

2S1S (iω)
ω4e−2ωR/c

R2

×
[
1 + 2

( c

ωR

)
+ 5

( c

ωR

)2

+ 6
( c

ωR

)3

+ 3
( c

ωR

)4
]

=− ~
πc4(4πε0)2

e2

9

3∑
j=1

1∑
µ=−1

〈1S|xj|2P (m = µ)〉〈2P (m = µ)|xj|2S〉

× 〈2S|δV |2S〉 lim
ε→0

lim
L2→0

lim
F2→0

∞∫
0

dω αE=E1S
2S1S (iω)
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×
(

2(L2
2 − ~2ω2)

[(−L2 − iε)2 + ~2ω2]2
+

4(F2
2 − ~2ω2)

[(F2 − iε)2 + ~2ω2]2

)
ω4e−2ωR/c

R2

×
[
1 + 2

( c

ωR

)
+ 5

( c

ωR

)2

+ 6
( c

ωR

)3

+ 3
( c

ωR

)4
]]

=− ~e2

9πc4(4πε0)2
αE=E1S

2S1S (0)
3∑
j=1

1∑
µ=−1

〈1S|xj|2P (m = µ)〉

× 〈2P (m = µ)|xj|2S〉〈2S|δV |2S〉

×

{
lim
ε→0

lim
L2→0

∞∫
0

dω
ω4e−2ωR/c

R2

2(L2
2 − ~2ω2)

[(−L2 − iε)2 + ~2ω2]2

×
[
1 + 2

( c

ωR

)
+ 5

( c

ωR

)2

+ 6
( c

ωR

)3

+ 3
( c

ωR

)4
]

+ lim
ε→0

lim
F2→0

∞∫
0

dω
4(F2

2 − ~2ω2)

[(F2 − iε)2 + ~2ω2]2
ω4e−2ωR/c

R2

×
[
1 + 2

( c

ωR

)
+ 5

( c

ωR

)2

+ 6
( c

ωR

)3

+ 3
( c

ωR

)4
]}

=− ~e2

9πc4(4πε0)2
αE=E1S

2S1S (0)
3∑
j=1

1∑
µ=−1

〈1S|xj|2P (m = µ)〉

× 〈2P (m = µ)|xj|2S〉〈2S|δV |2S〉
{

I○ + II○
}
. (6.192)

Substituting the values of I○ and II○ in Eq. (6.192), δE
E,mixing

2S;1S (R) is given by

δE
E,mixing

2S;1S (R) =− 33

18πR5

(
e2

4πε0~c

)
1

4πε0
αE=E1S

2S1S (0)
3∑
j=1

1∑
µ=−1

〈1S|xj|2P (m = µ)〉

× 〈2P (m = µ)|xj|2S〉 〈2S|δV |2S〉

=− 33α

18π(4πε0)R5
αE=E1S

2S1S (0)
3∑
j=1

1∑
µ=−1

〈1S|xj|2P (m = µ)〉

× 〈2P (m = µ)|xj|2S〉 α
4mc2

23

=− 33α3Eh
144πR5

αE=E1S
2S1S (0)

(4πε0)

3∑
j=1

1∑
µ=−1

〈1S|xj|2P (m = µ)〉

× 〈2P (m = µ)|xj|2S〉,
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which is in the form

δE
E,mixing

2S;1S (R) =− δM
E

5 (2S; 1S)

R5
, (6.193)

where the perturbed mixing vdW coefficient δM
E

5 (2S; 1S) is

M
E

5 (2S; 1S) =
11α3Eh

48π(4πε0)
αE=E1S

2S1S (0)
3∑
j=1

1∑
µ=−1

〈1S|xj|2P (m = µ)〉〈2P (m = µ)|xj|2S〉

=
11α3Eh

48π(4πε0)

(
−128

√
2

27

e2~2

α4m3c4

)(
−3584

√
2

729

~2

α2m2c2

)

= 10.682 382 428 153
α3

π
Eha

5
0. (6.194)

Above calculation leads us to the conclusion that for the CP regime, the energy type

contribution follows the R−5 asymptotic.

6.7. δE2S,1S(R) IN THE LAMB SHIFT RANGE

For R � ~c/L, the contribution of the non-vanishing frequencies in the po-

larizabilities δα2S(iω) is heavily repressed by the exponential term e−2ωR. Thus, in a

good approximation, the Dirac-delta perturbed Wick-rotated polarizability, δα2S(iω),

is given by

δα2S(iω) ≈ δα2S(0). (6.195)

The Dirac-delta perturbed interaction energy for the 2S-1S system, in this range,

reads

δEdirect
2S;1S(R) ≈− ~

πc4(4πε0)2
α1S(0) δα2S(0)

∫ ∞
0

dω
ω4e−2ωR/c

R2

×
[
1 + 2

( c

ωR

)
+ 5

( c

ωR

)2

+ 6
( c

ωR

)3

+ 3
( c

ωR

)4
]
. (6.196)
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Making use of the integral (8.81) and relation

δα2S(0) = δαE2S(0) + δαψ2S(0), (6.197)

equation (6.196) can be expressed as

δEdirect
2S;1S(R) ≈− 23

4π

~c
(4πε0)2R7

α1S(0)
(
δαE2S(0) + δαψ2S(0)

)
. (6.198)

The δ-perturbed polarizability has two contributions, namely, the non-degenerate and

the degenerate contributions. However, the most dominant contribution on the po-

larizability comes from the degenerate 2S state. Thus, δα2S(0) can be approximated

as

δα2S(0) = δαE2S(0) + δαψ2S(0) ≈ δαE2S(0) + δαψ2S(0). (6.199)

As,

δαE2S(0) ∼ |〈2S|e~r|2P 〉|2
[

1

L2
2

− 2

F2
2

]
〈2S|δV |2S〉, (6.200)

δαψ2S(0) ∼ 〈2S|e~r|2P 〉〈2P |e~r|δ(2S)〉
[
− 1

L2

+
2

F2

]
, (6.201)

and the energy type contribution dominates over the wave function type contribution,

the frequency shift does not exceed 1
L2 〈2S|δV |2S〉 × 10−36 Hz, which is too small to

measure from the experimental point of view.
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7. HYPERFINE-RESOLVED 2S-2S SYSTEM

7.1. ORIENTATION

In Ref. [56], S. Jonsell et al. studied the long-range interaction between two

hydrogen atoms when each atom is in the first excited state. They treated the dif-

ference between the total Hamiltonian of the 2S-2S hydrogen system and the sum

of the Hamiltonians of the atoms as a perturbation. They mentioned the necessity

of including further effects like the spin-orbit interaction and the Lamb shift in the

2S-2S interaction. However, we have noticed that no work has been done yet in this

regard. On the other hand, the hyperfine correction has been taken into account in

the vdW interaction between two atoms in Refs. [57; 58; 59; 60]. In these works,

the authors investigated the hyperfine pressure shift and vdW Interactions in the

hydrogen-helium, nitrogen-helium, and hydrogen-rare-gas systems. In 2003, Hänsch’s

group at the Max-Planck Institute of Quantum Optics in Garching, Germany mea-

sured the 2S hyperfine splitting frequency in hydrogen atom using an optical method

[61]. In 2009, Hänsch’s group measured the 2S hyperfine frequency again using an

ultra-stable optical frequency reference [5; 62]. This optical measurement of the 2S

hyperfine frequency interval boosted up our motivation to investigate the hyperfine

resolved 2S-2S system.

The 2S-2S interaction is fascinating as each of the 2S-state couples with their

quasi-degenerate neighbors (2P -states). We first write down the total Hamiltonian

of the system. The vdW, the Lamb shift, and the hyperfine energy splits are on same

order for R > 100a0. However, the fine structure splitting energy is much larger than

them for R > 100a0. Assuming that fine structure levels are sufficiently apart, we

do not take the fine structure splitting Hamiltonian into account. Thus, the total
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Hamiltonian of the system is the sum of the vdW, the Lamb shift, and the hyperfine

splitting Hamiltonians. More explicitly,

H = HLS +HHFS +HvdW, (7.1)

where HLS is the Lamb shift, HHFS is the hyperfine splitting, and HvdW is the vdW

Hamiltonians. If A and B are the two hydrogen atoms, at the first excited states,

interacting with each other, the Lamb shift Hamiltonian is given as

HLS = HLS,A +HLS,B =
4

3
α2mc2

(
~
mc

)3

ln

(
1

α2

) ∑
j=A,B

δ3(~rj), (7.2)

where α is the fine-structure constant, m is the mass of an electron, and ~rj is the

relative distance of an electron in an atom with respect to its nucleus. The Lamb

shift energy ELS shifts the nS1/2 state upwards relative to the Dirac position for the

corresponding j = 1/2 level, thereby splitting the nS1/2 and the nP1/2 states, which

are otherwise degenerate according to the Dirac theory of the hydrogen atom. It is

believed that the origin of the Lamb shift is the interactions of the electron and the

quantum vacuum fluctuations of the electromagnetic field within the atom [63]. The

HHFS in Eq. (7.1) represents the hyperfine splitting Hamiltonian given by

HHFS = HHFS,A +HHFS,B

=
~αgp

4mMc

∑
j=A,B

~Spj · ~Lj
r3
j

+
~αgp

2mMc

∑
j=A,B

1

r3
j

[
3(~Sej · r̂j)(r̂j · ~Spj)− ~Sej · ~Spj

]
+

4

3
gp
∑
j=A,B

(~Spj · ~Sej)
π~α
mMc

δ3(~rj), (7.3)

where ~Sej and ~Spj are the spin angular momenta of the electron and the proton of

the atoms A or B. M and gp = 5.585694702 are the mass and the g-factor of the

proton. ~Lj is the orbital angular momentum of the electron. The first term on the
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right-hand side of Eq. (7.3) has a zero contribution for S states as l = 0 for S-states

and the second term is zero for S-states as

〈
nS

∣∣∣∣ 3

r3
j

(~Sej . r̂j)(r̂j . ~Spj)

∣∣∣∣nS〉 =

〈
nS

∣∣∣∣∣ ~Sej . ~Spjr3
j

∣∣∣∣∣nS
〉
. (7.4)

Thus for S-states, the hyperfine splitting Hamiltonian is also the Dirac-δ type as

given below:

HHFS =
4

3
gp
∑
j=A,B

(~Spj · ~Sej)
π~α
mMc

δ3(~rj) (7.5)

=
4

3
gp
∑
j=A,B

m

M

(
~Spj
~
·
~Sej
~

)
αmc2

(
~
mc

)3

πδ3(~rj). (7.6)

HvdW in Eq. (7.1) denotes vdW hamiltonian of the system. Recalling the electrostatic

interaction between two hydrogen atoms, as discussed in Section2, we have

ĤvdW ≈
e2

4πε0

∑
ij

βij
r

(A)
i r

(B)
j

R3
, (7.7)

where βij is a second rank tensor given by

βij = δij −
3RiRj

R2
. (7.8)

Eq. (7.7) can equivalently be written as

ĤvdW ≈
e2

4πε0

(
~rA · ~rB
R3

− 3~rA · ~R ~rB · ~R
R5

)
. (7.9)
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Let us assume that the atomic separation ~R is along the quantization axis of the

system i.e., z-axis, we obtain

HvdW ≈
e2

4πε0

(
(xA xB + yA yB + zA zB)

R3
− 3 (zA zBR

2)

R5

)
= α~c

(xA xB + yA yB − 2zA zB)

R3
. (7.10)

7.2. CONSERVED QUANTITY

The total angular momentum of the system is the sum of the total angular

momentum of the atoms A and B.

~F = ~FA + ~FB. (7.11)

The total angular momentum of each atom is defined by the sum

~F = ~L+ ~Se + ~Sp, (7.12)

where ~L is the orbital angular momentum, ~S is the spin angular momentum of the

electron, and ~Sp is the spin angular momentum of the proton. The z-component of

the total angular momentum is thus given by

Fz = Lz,A + Lz,B + Sez,A + Sez,B + Spz,A + Spz,B. (7.13)

We are interested in the commutation relation [Fz, H].

Let us first compute the commutator [Lz,A + Lz,B, H]:

[Lz,A + Lz,B, H] = [Lz,A + Lz,B, HLS] + [Lz,A + Lz,B, HHFS] + [Lz,A + Lz,B, HvdW],

(7.14)
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where

[Lz,A + Lz,B, HLS] =
4

3
α2mc2

(
~
mc

)3

ln

(
1

α2

)[
Lz,A + Lz,B,

∑
j=A,B

δ3(~rj)

]
. (7.15)

The spatial distribution of the electron of an electrically neutral hydrogen atom in

its S-states is spherically symmetric. The position operator ~r of the electron in such

a spherically symmetric distribution commutes with the orbital angular momentum

operator of the same electron. This implies

[Lz,A + Lz,B, HLS] = 0. (7.16)

Furthermore,

[Lz,A + Lz,B, HHFS] =
4

3
gp
π~α
mMc

[
Lz,A + Lz,B,

∑
j=A,B

(~Spj · ~Sej)δ3(~rj)

]
. (7.17)

As explained earlier for commutation relation (7.15), the orbital angular momentum

commutes with the position operator. Moreover, the orbital angular momentum and

the spin commutes. Thus, we have

[Lz,A + Lz,B, HHFS] = 0. (7.18)

Let us now examine the commutator of Lz,A + Lz,B with HvdW:

[
Lz,A+Lz,B, HvdW

]
=

[
Lz,A + Lz,B, α~c

(xA xB + yA yB − 2zA zB)

R3

]
=
α~c
R3

[Lz,A + Lz,B, xA xB + yA yB − 2zA zB]

=
α~c
R3

(
[Lz,A, xA xB + yA yB] + [Lz,B, xA xB + yA yB]

)
=
α~c
R3

(
[xAPy,A − yAPx,A, xA xB + yA yB]
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+ [xBPy,B − yBPx,B, xA xB + yA yB]
)

=
α~c
R3

(
xA (−i~yB)− yA (−i~xB)− yA (−i~xB)− xA (−i~yB)

)
= 0. (7.19)

To get the third line of Eq. (7.19), we have used the fact that [Lz, z] = 0. In the

fourth line, we have expressed the z-component of the orbital angular momentum in

terms of position components and the linear momenta as

Lz = xPy − yPx. (7.20)

To get the fifth line of Eq. (7.19), we have made use of the following commutation

relations:

[ri, ri] = 0, [Pi, Pi] = 0, [ri, Pj] = i~δij, and [A,B] = − [B,A] . (7.21)

The spin angular momentum commutes with the spherically symmetric function of

the position operator. Thus, we have

[Sez,A + Sez,B, HLS] = 0, (7.22a)

[Sez,A + Sez,B, HHFS] = 0, (7.22b)

[Sez,A + Sez,B, HvdW] = 0, (7.22c)

[Spz,A + Spz,B, HLS] = 0, (7.22d)

[Spz,A + Spz,B, HHFS] = 0, (7.22e)

[Spz,A + Spz,B, HvdW] = 0. (7.22f)

From Eqs. (7.16), (7.18), (7.19), and (7.22a)-(7.22f), we can conclude that the total

angular momentum of the system containing two electrically neutral hydrogen atoms



161

commutes with the total Hamiltonian of the system i.e.

[Fz, H] = 0. (7.23)

This clearly states that the total angular momentum Fz is a constant of motion [64].

7.3. HYPERFINE-RESOLVED BASIS STATES

The Hyperfine splitting and the Lamb shift are of the same order to the vdW

interaction for R > 100a0, where R is the interatomic distance. However, the fine

structure energy shift EFS is

EFS = E(2P3/2)− E(2S1/2) ≈ 10× ELS. (7.24)

In comparison to the 2P1/2-state, the 2P3/2-state is heavily displaced from the 2S1/2-

state (see Figure 7.1). Thus, we can neglect the influence of the 2P3/2-state. In other

words, we concentrate only on the effects of the hyperfine splitting, the fine structure,

and the vdW interaction on the 2S-2S system.

If `, j, and F are the orbital angular momentum quantum number, the total

electronic angular quantum number, and the total atomic quantum number, j is 1
2

and ` takes value ` = 0 for the 2S1/2 and ` = 1 for the 2P1/2. However, F holds

∣∣∣∣12 − 1

2

∣∣∣∣ ≤ F ≤
∣∣∣∣12 +

1

2

∣∣∣∣ , (7.25)

which indicates that F takes either 0 or 1. By the definition of the multiplicity,

g
F

= 2F + 1, (7.26)
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Figure 7.1: Fine and hyperfine levels of the hydrogen atom for n=1, 2. Here, L and
F represent the Lamb shift and fine structure, F stands for the hyperfine quantum
number and Fz indicates the z-component of the hyperfine quantum number, where
z-axis is the axis of quantization. The numerical values presented in this figure are
taken from Refs. [4; 5; 6; 7; 8; 9]. The spacing between the levels is not well scaled.
In other words, some closed levels are also spaced widely for better visibility.
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the (F = 0)-state is a singlet and the (F = 1)-state is a triplet. There are 8 states

per atoms, viz. one state corresponding to the 2S1/2-state with F = 0, three states

corresponding to the 2S1/2-state with F = 1, one state corresponding to the 2P1/2-

state with F = 0, and three states corresponding to the 2P1/2-state with F = 1. For

the two-hydrogen atoms system, there are 8× 8 = 64 states. Let Fz = Fz,A +Fz,B be

the total hyperfine quantum number of the 64-dimensional Hilbert space. As Fz of

either atom can have values 1, 0, or −1, the total hyperfine quantum number takes

values

Fz = −2, −1, 0, +1, +2. (7.27)

Let us denote the eigenstates of the unperturbed Hamiltonian

H0 = HHFS,A +HHFS,B +HLS,A +HLS,B, (7.28)

of the system as |`, F, Fz〉. Let us first analyze the basis sets considering only the

electronic contribution. The total angular quantum number j and the total magnetic

projection quantum number µ are given by

j = `+
1

2
and µ = m± 1

2
, (7.29)

where ` is 0 for S-state and 1 for P -state. The magnetic projection quantum number

m ranges from −` to `. Let us denote the electronic basis state by |j, `, µ〉 which

can be expressed in terms of the orbital angular momentum and the spin angular

momentum with the help of Clebsch-Gordan coefficients as

|j, `, µ〉 =
∑̀
m=−`

∑
σ=± 1

2

C
1
2
µ

`m 1
2
σ
|`,m〉|1

2
, σ〉. (7.30)
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As we ignore the influence of the 2P3/2-state, we consider only the value j = 1
2
. We

then have

|1
2
, `, µ〉 =

∑̀
m=−`

∑
σ=± 1

2

C
1
2
µ

`m 1
2
σ
|`,m〉|1

2
, σ〉. (7.31)

For ` = 0, the total magnetic projection number µ can take either +1
2

or −1
2
.

|1
2
, 0,

1

2
〉 = C

1
2

1
2

00 1
2

1
2

|0, 0〉|1
2
,
1

2
〉 = |0, 0〉|1

2
,
1

2
〉 ≡ |0, 0〉e|+〉e. (7.32a)

|1
2
, 0,−1

2
〉 = C

1
2
− 1

2

00 1
2
− 1

2

|0, 0〉|1
2
,−1

2
〉 = |0, 0〉|1

2
,−1

2
〉 ≡ |0, 0〉e|−〉e. (7.32b)

For ` = 1, m can have any one value of 1, 0, or -1. However, the condition m± 1
2

= µ

is satisfied.

|1
2
, 1,

1

2
〉 =

1∑
m=−1

C
1
2

1
2

1m 1
2
σ
|1,m〉|1

2
, σ〉

= C
1
2

1
2

10 1
2

1
2

|1, 0〉|1
2
,
1

2
〉+ C

1
2

1
2

11 1
2
− 1

2

|1, 1〉|1
2
,−1

2
〉

= − 1√
3
|1, 0〉|1

2
,
1

2
〉+

√
2

3
|1, 1〉|1

2
,−1

2
〉

≡ − 1√
3
|1, 0〉e|+〉e +

√
2

3
|1, 1〉e|−〉e. (7.33a)

|1
2
, 1,−1

2
〉 =

1∑
m=−1

C
1
2
− 1

2

1m 1
2
σ
|1,m〉|1

2
, σ〉

= C
1
2
− 1

2

1−1 1
2

1
2

|1,−1〉|1
2
,
1

2
〉+ C

1
2
− 1

2

10 1
2
− 1

2

|1, 0〉|1
2
,−1

2
〉

= −
√

2

3
|1,−1〉|1

2
,
1

2
〉+

1√
3
|1, 0〉|1

2
,−1

2
〉

≡ 1√
3
|1, 0〉e|−〉e −

√
2

3
|1,−1〉e|+〉e. (7.33b)

We add the proton spin to compute the hyperfine basis set of a single atom. As the

spin of the proton of the hydrogen atom exerts a torque on the electron revolving
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around it producing magnetic dipole field, the set of observables (J, Sp,mJ ,mp) can

not be the CSCO anymore. Here, J and Sp are the total electronic angular momentum

and the spin angular momentum of the proton whereas mJ and mp are the magnetic

projections of J and Sp. On the other hand, the total angular momentum of the

system ~F = ~J + ~Sp and its z-component are conserved. In our case, the allowed

values of F are

F =

∣∣∣∣12 − Sp
∣∣∣∣ , ..., ∣∣∣∣12 + Sp

∣∣∣∣
= 0 and 1, (7.34)

whereas Fz varies from −F , −F + 1, ...., F . Let us denote the state vectors by

|`, F, Fz〉. In our system, ` = 0 and ` = 1 refer to the 2S1/2 and 2P1/2 states respec-

tively. F = 0 and F = 1 respectively indicate the hyperfine singlet and hyperfine

triplet whereas Fz, the z-component of the total angular momentum of the system,

is the magnetic projection of F . Then we have

|`, F, Fz〉 =

j∑
µ=−j

i∑
β=−i

CFFz
jµiβ|j, `, µ〉e|

1

2
, β〉p

=
∑
µ=± 1

2

∑
β=± 1

2

CFFz
1
2
µ 1

2
β
|1
2
, `, µ〉e|

1

2
, β〉p, (7.35)

provided 1
2

+ µ = F is satisfied. For S-states |`, F, Fz〉 = |0, F, Fz〉.

For ` = 0, F = 0 and Fz = 0,

|0, 0, 0〉 =
∑
µ=± 1

2

∑
β=± 1

2

C00
1
2
µ 1

2
β
|1
2
, 0, µ〉e|

1

2
, β〉p

= C00
1
2

1
2

1
2
− 1

2
|1
2
, 0,

1

2
〉e|

1

2
,−1

2
〉p + C00

1
2
− 1

2
1
2

1
2
|1
2
, 0,−1

2
〉e|

1

2
,
1

2
〉p

= − 1√
2
|1
2
, 0,

1

2
〉e|

1

2
,−1

2
〉p +

1√
2
|1
2
, 0,−1

2
〉e|

1

2
,
1

2
〉p
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≡ 1√
2

(
|+〉e|−〉p − |−〉e|+〉p

)
|0, 0〉e. (7.36)

For ` = 0, F = 1 and Fz = 1,

|0, 1, 1〉 =
∑
µ=± 1

2

∑
β=± 1

2

C11
1
2
µ 1

2
β
|1
2
, 0, µ〉e|

1

2
, β〉p = C11

1
2

1
2

1
2

1
2
|1
2
, 0,

1

2
〉e|

1

2
,
1

2
〉p

=|1
2
, 0,

1

2
〉e|

1

2
,
1

2
〉p ≡ |+〉e|+〉p|0, 0〉e. (7.37)

For ` = 0, F = 1 and Fz = 0,

|0, 1, 0〉 =
∑
µ=± 1

2

∑
β=± 1

2

C10
1
2
µ 1

2
β
|1
2
, 0, µ〉e|

1

2
, β〉p

= C00
1
2

1
2

1
2
− 1

2
|1
2
, 0,

1

2
〉e|

1

2
,−1

2
〉p + C00

1
2

1
2

1
2

1
2
|1
2
, 0,

1

2
〉e|

1

2
,
1

2
〉p

=
1√
2
|1
2
, 0,

1

2
〉e|

1

2
,−1

2
〉p +

1√
2
|1
2
, 0,

1

2
〉e|

1

2
,
1

2
〉p

≡ 1√
2

(
|−〉e|+〉p + |+〉e|−〉p

)
|0, 0〉e. (7.38)

For ` = 0, F = 1 and Fz = −1,

|0, 1,−1〉 =
∑
µ=± 1

2

∑
β=± 1

2

C1−1
1
2
µ 1

2
β
|1
2
, 0, µ〉e|

1

2
, β〉p = C1−1

1
2
− 1

2
1
2
− 1

2

|1
2
, 0,−1

2
〉e|

1

2
,−1

2
〉p

=|1
2
, 0,−1

2
〉e|

1

2
,−1

2
〉p ≡ |−〉e|−〉p|0, 0〉e. (7.39)

For ` = 1, F = 0 and Fz = 0,

|1, 0, 0〉 =
∑
µ=± 1

2

∑
β=± 1

2

C00
1
2
µ 1

2
β
|1
2
, 1, µ〉e|

1

2
, β〉p

=C00
1
2

1
2

1
2
− 1

2
|1
2
, 1,

1

2
〉e|

1

2
,−1

2
〉p + C00

1
2
− 1

2
1
2

1
2
|1
2
, 1,−1

2
〉e|

1

2
,
1

2
〉p

=
1√
2
|1
2
, 1,

1

2
〉e|

1

2
,−1

2
〉p −

1√
2
|1
2
, 1,−1

2
〉e|

1

2
,
1

2
〉p
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=
1√
2

(
− 1√

3
|1, 0〉e|+〉e +

√
2

3
|1, 1〉e|−〉e

)
|1
2
,−1

2
〉p

− 1√
2

(
1√
3
|1, 0〉e|−〉e −

√
2

3
|1,−1〉e|+〉e

)
|1
2
,
1

2
〉p

≡ 1√
3
|+〉e|+〉p|1,−1〉e −

1√
6
|−〉e|+〉p|1, 0〉e

+
1√
3
|−〉e|−〉p|1, 1〉e −

1√
6
|+〉e|−〉p|1, 0〉e. (7.40)

There are four P -states in which |`, F, Fz〉 = |1, F, Fz〉. For ` = 1, F = 1 and Fz = 1,

|1, 1, 1〉 =
∑
µ=± 1

2

∑
β=± 1

2

C11
1
2
µ 1

2
β
|1
2
, 1, µ〉e|

1

2
, β〉p

=C11
1
2

1
2

1
2

1
2
|1
2
, 1,

1

2
〉e|

1

2
,
1

2
〉p = |1

2
, 1,

1

2
〉e|

1

2
,
1

2
〉p

=

(
− 1√

3
|1, 0〉e|+〉e +

√
2

3
|1, 1〉e|−〉e

)
|1
2
,
1

2
〉p

≡− 1√
3
|+〉e|+〉p|1, 0〉e +

√
2

3
|−〉e|+〉p|1, 1〉e. (7.41)

For ` = 1, F = 1 and Fz = 0,

|1, 1, 0〉 =
∑
µ=± 1

2

∑
β=± 1

2

C10
1
2
µ 1

2
β
|1
2
, 1, µ〉e|

1

2
, β〉p

=C10
1
2

1
2

1
2
− 1

2
|1
2
, 1,

1

2
〉e|

1

2
,−1

2
〉p + C10

1
2
− 1

2
1
2

1
2
|1
2
, 1,−1

2
〉e|

1

2
,
1

2
〉p

=
1√
2
|1
2
, 1,

1

2
〉e|

1

2
,−1

2
〉p +

1√
2
|1
2
, 1,−1

2
〉e|

1

2
,
1

2
〉p

=
1√
2

(
− 1√

3
|1, 0〉e|+〉e +

√
2

3
|1, 1〉e|−〉e

)
|1
2
,−1

2
〉p

+
1√
2

(
1√
3
|1, 0〉e|−〉e −

√
2

3
|1,−1〉e|+〉e

)
|1
2
,
1

2
〉p

≡− 1√
3
|+〉e|+〉p|1,−1〉e +

1√
6
|−〉e|+〉p|1, 0〉e

+
1√
3
|−〉e|−〉p|1, 1〉e −

1√
6
|+〉e|−〉p|1, 0〉e. (7.42)
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Finally, for ` = 1, F = 1 and Fz = −1,

|1, 1,−1〉 =
∑
µ=± 1

2

∑
β=± 1

2

C1−1
1
2
µ 1

2
β
|1
2
, 1, µ〉e|

1

2
, β〉p

=C1−1
1
2
− 1

2
1
2
− 1

2

|1
2
, 1,−1

2
〉e|

1

2
,−1

2
〉p

=|1
2
, 1,−1

2
〉e|

1

2
,−1

2
〉p

=

(
1√
3
|1, 0〉e|−〉e −

√
2

3
|1,−1〉e|+〉e

)
|1
2
,−1

2
〉p

≡ 1√
3
|−〉e|−〉p|1, 0〉e −

√
2

3
|+〉e|−〉p|1,−1〉e. (7.43)

These 8 states, namely 4 S-states and 4 P -states given by Eqs. (7.36) - (7.43), serve

as the single-atom hyperfine basis states.

7.4. MATRIX ELEMENTS OF ELECTRONIC POSITION OPERATORS

We use the definition of the spherical unit vectors as defined in Ref. [65].

ê+ = − 1√
2

(êx + iêy) (7.44a)

ê0 = êz (7.44b)

ê− =
1√
2

(êx − iêy) (7.44c)

Let us evaluate few r-matrix elements.

〈0, 0, 0|~r|1, 1, 0〉 =

[
1√
2

(
e〈+|p〈−| − e〈−|p〈+|

)
e〈00|

]
~r

[
− 1√

3
|+〉e|+〉p|1,−1〉e

+
1√
6
|−〉e|+〉p|1, 0〉e +

1√
3
|−〉e|−〉p|1, 1〉e +

1√
6
|+〉e|−〉p|1, 0〉e

]
=

1√
2

(
− 1√

6

)
e〈00|~r|1, 0〉e −

1√
2

(
1√
6

)
e〈00|~r|1, 0〉e

=− 1√
3
e〈00|~r|1, 0〉e = − 1√

3
(−3 a0êz) =

√
3a0 êz. (7.45)
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〈0, 0, 0|~r|1, 1,±1〉 =

[
1√
2

(
e〈+|p〈−| − e〈−|p〈+|

)
e〈00|

]
~r

[
∓ 1√

3
|+〉e|+〉p|1, 0〉e

±
√

2

3
|−〉e|+〉p|1± 1〉e

]
= − 1√

3
e〈00|~r|1± 1〉e = − 1√

3

(
3a0√

2
êx ±

3a0i√
2
êy

)
=
√

3a0 ê±. (7.46)

〈0, 1, 0|~r|1, 0, 0〉 =

[
1√
2

(
e〈−|p〈+|+ e〈+|p〈−|

)
e〈00|

]
~r

[
1√
3
|+〉e|+〉p|1,−1〉e

− 1√
6
|−〉e|+〉p|1, 0〉e +

1√
3
|−〉e|−〉p|1, 1〉e −

1√
6
|+〉e|−〉p|1, 0〉e

]
=− 1√

12
e〈00|~r|1, 0〉e −

1√
12

e〈00|~r|1, 0〉e

=− 1√
3
e〈00|~r|1, 0〉e = − 1√

3
(−3 a0êz) =

√
3a0 êz. (7.47)

〈0, 1,±1|~r|1, 0, 0〉 =

[
e〈±|p〈±|e〈00|

]
~r

[
1√
3
|+〉e|+〉p|1,−1〉e −

1√
6
|−〉e|+〉p|1, 0〉e

+
1√
3
|−〉e|−〉p|1, 1〉e −

1√
6
|+〉e|−〉p|1, 0〉e

]
=

1√
3
e〈00|~r|1∓ 1〉e =

1√
3

3a0√
2

(∓êx + iêy)

=
√

3a0

[
∓ 1√

2
(êx ∓ iêy)

]
=
√

3a0 (ê±)∗ . (7.48)

〈0, 1,±1|~r|1, 1,±1〉 =

[
e〈±|p〈±|e〈00|

]
~r

[
∓ 1√

3
|+〉e|+〉p|1, 0〉e ±

√
2

3
|−〉e|+〉p|1± 1〉e

]
=∓ 1√

3
e〈00|~r|1, 0〉e = ∓ 1√

3
(−3a0êz) = ±

√
3a0 êz. (7.49)

〈0, 1,±1|~r|1, 1, 0〉 =

[
e〈±|p〈±|e〈00|

]
~r

[
− 1√

3
|+〉e|+〉p|1,−1〉e +

1√
6
|−〉e|+〉p|1, 0〉e

+
1√
3
|−〉e|−〉p|1, 1〉e +

1√
6
|+〉e|−〉p|1, 0〉e

]
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=∓ 1√
3
e〈00|~r|1∓ 1〉e = ∓ 1√

3

3a0√
2

(∓êx + iêy) = ±
√

3a0 ê∓. (7.50)

〈0, 1, 0|~r|1, 1,±1〉 =

[
1√
2

(
e〈−|p〈+|+ e〈+|p〈−|

)
e〈00|

]
~r

[
∓ 1√

3
|+〉e|+〉p|1, 0〉e

±
√

2

3
|−〉e|+〉p|1± 1〉e

]
=± 1√

3
e〈00|~r|1± 1〉e = ± 1√

3

3a0√
2

(
± êx + iêy

)
=∓
√

3a0

(
− 1

2
(±êx + iêy)

)
= ∓
√

3a0 ê±. (7.51)

All the other r-matrix elements are zero. For example,

〈1, 1,±|~r|1, 1,±1〉 =

[
∓ 1√

3
e〈+|p〈+|e〈10| ±

√
2

3
e〈−|p〈+|e〈1± 1|

]
~r

[
∓ 1√

3
|+〉e|+〉p|1, 0〉e ±

√
2

3
|−〉e|+〉p|1± 1〉e

]
=

1

3
e〈10|~r|1, 0〉e +

2

3
e〈1± 1|~r|1± 1〉e = 0, (7.52a)

〈0, 0, 0|~r|0, 0, 0〉 =

[
1√
2

(e〈+|p〈−| − e〈−|p〈+|) e〈00|
]

~r

[
1√
2

(
|+〉e|−〉p − |−〉e|+〉p

)
|0, 0〉e

]
= e〈00|~r|0, 0〉e = 0, (7.52b)

and so on.

7.5. SCALING PARAMETERS

For the sake of simplicity, we define the following parameters

H ≡ α4

18
gp
m2

M
c2, (7.53)

L ≡ α5

6π
ln

(
1

α2

)
mc2, (7.54)

V ≡ α~c
a2

0

R3
, (7.55)
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which we use to scale the expectation values of the hyperfine Hamiltonian, the Lamb

shift and the vdW interaction. Substituting the values of the fine-structure constant,

g-factor of the proton, masses of the electron and the proton, and the speed of light,

the hyperfine splitting constant H works out to

H = 3.924 × 10−26J ≡ 5.921 × 107Hz. (7.56)

In terms of H, the Lamb shift L and the vdW interaction V are given as

L = 17.873H, (7.57a)

V =
4.942 × 10−23

R3
H. (7.57b)

The expectation value of the Lamb shift Hamiltonian amounts to L and it is nonzero

only if both atoms are in the S-states, i.e.,

〈`, F,MF |HLS|`, F,MF 〉 = L δ`0. (7.58)

The hyperfine triplets corresponding to the 2P1/2 are displaced from the corresponding

hyperfine singlet by H, whereas the hyperfine triplet corresponding to the 2S1/2 is

displaced by 3H from the corresponding hyperfine singlet. The triplet is lifted upward

and the singlet is pushed downward [66]. Thus, we have

〈0, 1,MF |HHFS|0, 1,MF 〉 =
3

4
H, (7.59a)

〈1, 1,MF |HHFS|1, 1,MF 〉 =
1

4
H, (7.59b)

〈0, 0, 0|HHFS|0, 0, 0〉 = −9

4
H, (7.59c)

〈1, 0, 0|HHFS|1, 0, 0〉 = −3

4
H. (7.59d)
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7.6. GRAPH THEORY (ADJACENCY GRAPH)

In the graph theory, an adjacency graph [67; 68] is a diagrammatic represen-

tation of a square matrix whose elements are boolean values. One vertex can be

connected to the other vertex by one, or more than one edge. A vertex can be con-

nected to itself as well. If each vertex is connected to every other vertex in some

number of steps, then the graph is said to be connected. However, if two vertices

are not connected at all, they do not talk with each other. The adjacency matrix

corresponding to the undirected graph is symmetric in nature. Note that the eigen-

values of a symmetric matrix are real and it is always possible to get orthonormal

eigenvectors [69].

The non-negative power Ak of an adjacency matrix tells us about the number

of paths of length k of its elements. For example, (Ak)mn is the count of paths of

length k from m to n. The sum
k∑
i=1

Ai, which depicts the number of paths of length

ranging from 1 to k between every pair of vertices, possesses impressive feature. If the

final matrix obtained from the sum contains all the nonzero entries, this means the

matrix is irreducible. In other words, if the sum contains any zero entries it indicates

that the matrix can be reduced into irreducible matrices.The power A2 is of particular

importance. It not only counts the number of paths of length 2 of its entries but also

tells us about the connectedness of the corresponding adjacency graph.

The adjacency graph G corresponding to an adjacency matrix A of order n is

disconnected if and only if there exists a square matrix S = A2 of order n such that

the matrix S can be written as

S =


Bk×k : 0

·· : ··

0 : C(n−k)×(n−k)

 . (7.60)
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Detailed mathematical proof of the statement of disconnectivity is given in theorem

1.6 of Ref. [70]. The adjacency matrix A containing two disconnected components

can be split-up as

A =


A(G1) : 0

·· : ··

0 : A(G2)

 , (7.61)

where A(G1) and A(G2) stand for the adjacency matrices of the components of the

adjacency graphs G1 and G2. The components G1 and G2 do not share any edges

between their vertices. Thus, there is no coupling between them. In later sections,

we will notice that the adjacency graph is very useful to express a hyperfine subspace

into two irreducible subspaces.

7.7. HAMILTONIAN MATRICES IN THE HYPERFINE SUBSPACES

As we already mentioned, the 64-dimensional Hilbert space has five manifolds

namely, Fz = +2, Fz = +1, Fz = 0, Fz = −1, and Fz = −2. The Fz = +2 and

the Fz = −2 manifolds are 4-dimensional, the Fz = +1 and the Fz = −1 manifolds

are 16-dimensional, and Fz = 0 manifold is 24-dimensional. We analyze all these

manifolds separately.

7.7.1. Manifold Fz = +2. The four states in the Fz = +2 manifold, in the

ascending order of quantum numbers, are

|φ1〉 = |(0, 1, 1)A(0, 1, 1)B〉, |φ2〉 = |(0, 1, 1)A(1, 1, 1)B〉,

|φ3〉 = |(1, 1, 1)A(0, 1, 1)B〉, |φ4〉 = |(1, 1, 1)A(1, 1, 1)B〉. (7.62)
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The first element of the matrix 〈φ1|H|φ1〉 is given by

〈φ1|H|φ1〉 =〈(0, 1, 1)A(0, 1, 1)B|H|(0, 1, 1)A(0, 1, 1)B〉

=e,A〈+| p,A〈+| e,A〈0, 0| e,B〈+| p,B〈+| e,B〈0, 0|H|+〉e,A

× |+〉p,A |0, 0〉e,A |+〉e,B|+〉p,B |0, 0〉e,B, (7.63)

where H = HLS, A +HLS, B +HHFS, A +HHFS, B +HvdW. The Lamb shift due to each

of the HLS, A and HLS, B is L and the hyperfine splitting due to each of the HHFS, A

and HHFS, B is 3
4
H, whereas the vdW interaction does not contribute anything to the

diagonal element. Thus, we have

〈φ1|H|φ1〉 =
3

2
H + 2L. (7.64)

The matrix element 〈φ1|H|φ2〉 is given by

〈φ1|H|φ2〉 =〈(0, 1, 1)A(0, 1, 1)B|H|(0, 1, 1)A(1, 1, 1)B〉

=e,A〈+| p,A〈+| e,A〈0, 0| e,B〈+| p,B〈+| e,B〈0, 0|H|+〉e,A|+〉p,A |0, 0〉e,A

×

[
− 1√

3
|+〉e,B |+〉p,B |1, 0〉e,B +

√
2

3
|−〉e,B |+〉p,B |1, 1〉e,B

]
, (7.65)

The orthogonality relation e,B〈0, 0|1, 0〉e,B = 0 requires that the right-hand side of

Eq. (7.68) should vanish.

〈φ1|H|φ2〉 = 0 = (〈φ2|H|φ1〉)∗ = 〈φ2|H|φ1〉 (7.66)

Swapping A and B in 〈φ1|H|φ2〉, we get 〈φ1|H|φ3〉. Thus, it is straightforward to

note that

〈φ1|H|φ3〉 = 0 = 〈φ3|H|φ1〉. (7.67)
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The matrix element 〈φ1|H|φ4〉 is given by

〈φ1|H|φ4〉 =〈(0, 1, 1)A(0, 1, 1)B|H|(1, 1, 1)A(1, 1, 1)B〉

=e,A〈+| p,A〈+| e,A〈0, 0| e,B〈+| p,B〈+| e,B〈0, 0|

H

[
− 1√

3
|+〉e,A |+〉p,A |1, 0〉e,A +

√
2

3
|−〉e,A|+〉p,A|1, 1〉e,A

]
[
− 1√

3
|+〉e,B|+〉p,B|1, 0〉e,B +

√
2

3
|−〉e,B|+〉p,B|1, 1〉e,B

]
=

1

3
e,A〈0, 0| e,B〈0, 0|HvdW|1, 0〉e,A|1, 0〉e,B

=− 2V = 〈φ4|H|φ1〉. (7.68)

In the similar manner, we determine all the element of the matrix H(Fz=+2),

which reads

H(Fz=+2) =



3
2
H + 2L 0 0 −2V

0 H + L −2V 0

0 −2V H + L 0

−2V 0 0 1
2
H


. (7.69)

The adjacency matrix associated to the Hamiltonian matrix H(Fz=+2) is

A(Fz=+2) =



1 0 0 1

0 1 1 0

0 1 1 0

1 0 0 1


, (7.70)

which is obtained by the replacement of the nonzero entries of the matrix H(Fz=+2) by

one. The adjacency graphs corresponding to adjacency matrix A(Fz=+2) is shown in

Figure 7.2. With the help of the adjacency graph, we see that the Fz = +2 manifold
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1 4 2 3

Figure 7.2: An adjacency graph of the matrix A(Fz=+2). The first diagonal
entry, i.e., first vertex is adjacent to the fourth diagonal entry, i.e., fourth
vertex and vice versa. The second diagonal element, i.e., the second vertex
is adjacent to the third diagonal element, i.e., third vertex and vice versa.
However, the two pieces of the graph do not share any edges between the
vertices.

can be decomposed into two subspaces. The subspace (I) is composed of the states

|φ(I)
1 〉 = |φ1〉 = |(0, 1, 1)A(0, 1, 1)B〉, (7.71)

|φ(I)
2 〉 = |φ4〉 = |(1, 1, 1)A(1, 1, 1)B〉, (7.72)

in which atoms are in S-S or P -P configuration while the subspace (II) is composed

of the states

|φ(II)
1 〉 = |φ2〉 = |(0, 1, 1)A(1, 1, 1)B〉, (7.73)

|φ(II)
2 〉 = |φ3〉 = |(1, 1, 1)A(0, 1, 1)B〉, (7.74)

in which atoms are in S-P or P -S configuration. These two subspaces do not couple

to each other. The Hamiltonian matrix corresponding to the subspace (I) reads

H
(I)
(Fz=+2) =

 3
2
H + 2L −2V

−2V 1
2
H

 . (7.75)

In the subspace (I), the energy levels are non degenerate. The energy eigenvalues

corresponding to the subspace (I) are given by

E(I) = H + L ± 1

2

√
16V2 + (H + 2L)2, (7.76)
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Or,

E
(I)
+ =

3

2
H + 2L+ 4

V2

H + 2L
+O(V4), (7.77a)

E
(I)
− =

1

2
H− 4

V2

H + 2L
+O(V4). (7.77b)

This clearly shows that the eigenvalues in the subspace (I) do not experience the first

order shift in the vdW interaction V , i.e., ∆E
(I)
± ∼ R−6. From Eqs. (7.77), one can

write

∆E
(I)
± ∼ 4

V2

H + 2L
. (7.78)

We have H ≡ 0.055949L, and in the atomic units V = 3/R3 and L → α3

6π
ln(α−2).

Thus,

∆E
(I)
± ∼

4× 9

(0.055949L+ 2L)R6
∼ 36× 6π

2.055949α3 ln (α−2)R6
∼ 8× 107

R6
. (7.79)

Recognizing E = −C6/R
6, we find that the vdW coefficient , C6, for 2S(F = 0) →

2S(F = 1) or 2P (F = 0) → 2P (F = 1) hyperfine transition is in the order of 107.

The normalized eigenvectors associated to the eigenvalues E
(I)
+ and E

(II)
+ are

|φ(I)
+ 〉 =

1√
a2

1 + a2
2

(
a1|φ(I)

1 〉+ a2|φ(I)
2 〉
)
, (7.80a)

|φ(I)
− 〉 =

1√
a2

1 + a2
2

(
a2|φ(I)

1 〉 − a1|φ(I)
2 〉
)
. (7.80b)

where a1 and a2 are given by

a1 = −
H + 2L+

√
16V2 + (H + 2L)2

4V

= −H + 2L
4V

[
1 +

(
1 +

16V2

(H + 2L)2

)1/2
]
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= −H + 2L
2V

(
1 +

4V2

(H + 2L)2

)
+O(V3), (7.81a)

a2 = 1. (7.81b)

Note that for very large interatomic separation, 4V2/(H + 2L)2 � 1 and hence,

|a1| ≈ (H+ 2L)/(2V)� a2 = 1. The Hamiltonian matrix associated to the subspace

(II) is

H
(II)
(Fz=+2) =

 H + L −2V

−2V H + L

 . (7.82)

The energy levels are degenerate and coupled by the vdW interaction V . The eigenen-

ergies and eigenvectors of the Hamiltonian matrix H
(II)
(Fz=+2) are

E
(II)
+ = H + L ± 2V , (7.83)

|φ(II)
± 〉 =

1√
2

(
|φ(II)

1 〉 ± |φ
(II)
2 〉
)
. (7.84)

The shift in the eigenenergies of the subspace (II) are linearly dependent with the

vdW interaction energy V . More explicitly,

∆E
(II)
± = 4V (7.85)

Thus, the hyperfine transition in the subspace (II) goes to R−3. See Figure 7.3 for

an evolution of energy levels as a function of interatomic distance in the Fz = +2

hyperfine manifold. For a sufficiently large interatomic distance, V → 0, and we have

only three energy levels as expected from unperturbed energy values. However, as

the interatomic distance decreases the vdW interaction comes into play and energy

levels split and deviate from unperturbed values. The energy levels do not cross in

the Fz = +2 hyperfine manifold.
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Figure 7.3: Energy levels as a function of interatomic separation R in the Fz =
+2 hyperfine manifold. The horizontal axis which represents the interatomic
distance is expressed in the unit of Bohr’s radius, a0, and the vertical axis,
which is the energy divided by the plank constant, is in hertz. The energy
levels in the subspace (I) deviate heavily from their unperturbed values 1

2
H

and 3
2
H+L for R < 500a0. The doubly degenerate energy level L+H splits up

into two levels, which repel each other as the interatomic distance decreases.

7.7.2. Manifold Fz = +1. The Fz = +1 manifold has 16 states as listed

below:

|ψ1〉 = |(0, 0, 0)A(0, 1, 1)B〉, |ψ2〉 = |(0, 0, 0)A(1, 1, 1)B〉,

|ψ3〉 = |(0, 1, 0)A(0, 1, 1)B〉, |ψ4〉 = |(0, 1, 0)A(1, 1, 1)B〉,

|ψ5〉 = |(0, 1, 1)A(0, 0, 0)B〉, |ψ6〉 = |(0, 1, 1)A(0, 1, 0)B〉,

|ψ7〉 = |(0, 1, 1)A(1, 0, 0)B〉, |ψ8〉 = |(0, 1, 1)A(1, 1, 0)B〉,
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|ψ9〉 = |(1, 0, 0)A(0, 1, 1)B〉, |ψ10〉 = |(1, 0, 0)A(1, 1, 1)B〉,

|ψ11〉 = |(1, 1, 0)A(0, 1, 1)B〉, |ψ12〉 = |(1, 1, 0)A(1, 1, 1)B〉,

|ψ13〉 = |(1, 1, 1)A(0, 0, 0)B〉, |ψ14〉 = |(1, 1, 1)A(0, 1, 0)B〉,

|ψ15〉 = |(1, 1, 1)A(1, 0, 0)B〉, |ψ16〉 = |(1, 1, 1)A(1, 1, 0)B〉. (7.86)

In Eq. (7.86), the 16 states are ordered in the ascending order of quantum numbers.

We calculate all the 256 elements of the Hamiltonian matrix for Fz = +1. Then we

replace all the nonzero off-diagonal element by 1 and all the diagonal elements by

zero. This results an adjacency matrix A(Fz=+1) of order 16 as given below:

A(Fz=+1) =



0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1

0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1

0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0

0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0

0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0

0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0

0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0

1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0



. (7.87)
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See Figure 7.4 for adjacency graph for the matrix A(Fz=+1) which shows the linkage

between neighboring vertices in the matrix (7.87). We notice that

16∑
i=1

Ai(Fz=+1) =



a 0 b 0 b b 0 0 0 c 0 d 0 0 d d

0 a 0 b 0 0 b b c 0 d 0 d d 0 0

b 0 a 0 b b 0 0 0 d 0 c 0 0 d d

0 b 0 a 0 0 b b d 0 c 0 d d 0 0

b 0 b 0 a b 0 0 0 d 0 d 0 0 c d

b 0 b 0 b a 0 0 0 d 0 d 0 0 d c

0 b 0 b 0 0 a b d 0 d 0 c d 0 0

0 b 0 b 0 0 b a d 0 d 0 d c 0 0

0 c 0 d 0 0 d d a 0 b 0 b b 0 0

c 0 d 0 d d 0 0 0 a 0 b 0 0 b b

0 d 0 c 0 0 d d b 0 a 0 b b 0 0

d 0 c 0 d d 0 0 0 b 0 a 0 0 b b

0 d 0 d 0 0 c d b 0 b 0 a b 0 0

0 d 0 d 0 0 d c b 0 b 0 b a 0 0

d 0 d 0 c d 0 0 0 b 0 b 0 0 a b

d 0 d 0 d c 0 0 0 b 0 b 0 0 b a



, (7.88)

where,

a = 12106896, b = 12106888, c = 4035624, and d = 4035632. (7.89)

The presence of zeros in
∑16

i=1 A
i
(Fz=+1) indicates that A(Fz=+1) can be reduced into

at least two irreducible matrices. It can be clearly seen from the adjacency matrix

(7.87) that 1 is adjacent to 12, 15, and 16. 16 is adjacent to 1, 3, and 5. 5 is adjacent

to 10, 12, and 16. 12 is adjacent to 1, 5, and 6. 6 is adjacent to 10, 12, and 15. 10
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(b) G
(I)
(Fz=+1)

6

15

12

10

3

5

16

1

(b) G
(II)
(Fz=+1)

Figure 7.4: An adjacency graph of the matrix A(Fz=+1). The graph for A(Fz=+1) is

disconnected having two components G
(I)
(Fz=+1) and G

(II)
(Fz=+1) which do not share any

edges between the vertices.

is adjacent to 3, 5, and 6. 3 is adjacent to 10, 15, and 16. 15 is adjacent to 1, 3,

and 6. However, these vertices are neither adjacent nor linked in any steps to the

remaining other vertices. At the same time, 2 is adjacent to 11, 13, and 14. 14 is

adjacent to 2, 4, and 7. 7 is adjacent to 9, 11, and 14. 11 is adjacent to 2, 7, and 8. 8

is adjacent to 9, 11, and 13. 13 is adjacent to 2, 4, and 8. 4 is adjacent to 9, 13, and

14. 9 is adjacent to 4, 7, and 8. The power A2
(Fz=+1) of the adjacency matrix A(Fz=+1)

contains two diagonal nonzero matrices of order 8 and two same sized off-diagonal

zero matrices, which verifies that the adjacency graph corresponding to the matrix

A(Fz=+1) has two disconnected components.

The graph 7.4 clearly indicates that the 16-dimensional Fz = +1 manifold can

be decomposed into two subspaces. These two subspaces do not talk with each other

as they are uncoupled. Thus we can analyze each subspace independently. Firstly,

we consider the subspace (I) of manifold Fz = +1. The subspace (I) is composed of
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|ψ2〉, |ψ4〉, |ψ7〉, |ψ8〉, |ψ9〉, |ψ11〉, |ψ13〉, and |ψ14〉. We rename these states as below:

|ψ(I)
1 〉 = |ψ2〉 = |(0, 0, 0)A(1, 1, 1)B〉, |ψ(I)

2 〉 = |ψ4〉 = |(0, 1, 0)A(1, 1, 1)B〉,

|ψ(I)
3 〉 = |ψ7〉 = |(0, 1, 1)A(1, 0, 0)B〉, |ψ(I)

4 〉 = |ψ8〉 = |(0, 1, 1)A(1, 1, 0)B〉,

|ψ(I)
5 〉 = |ψ9〉 = |(1, 0, 0)A(0, 1, 1)B〉, |ψ(I)

6 〉 = |ψ11〉 = |(1, 1, 0)A(0, 1, 1)B〉,

|ψ(I)
7 〉 = |ψ13〉 = |(1, 1, 1)A(0, 0, 0)B〉, |ψ(I)

8 〉 = |ψ14〉 = |(1, 1, 1)A(0, 1, 0)B〉.

(7.90)

The Hamiltonian matrix of the subspace (I) reads

H
(I)
(Fz=+1) =



L − 2H 0 0 0 0 −2V V −V

0 H+ L 0 0 −2V 0 −V V

0 0 L 0 V −V 0 −2V

0 0 0 H+ L −V V −2V 0

0 −2V V −V L 0 0 0

−2V 0 −V V 0 H+ L 0 0

V −V 0 −2V 0 0 L − 2H 0

−V V −2V 0 0 0 0 H+ L



. (7.91)

If A
(I)
(Fz=+1) is the adjacency matrix corresponding to H

(I)
(Fz=+1), we have

8∑
i

(
A

(I)
(Fz=+1)

)i
=



11135 10880 10880 10880 10710 10965 10965 10965

10880 11135 10880 10880 10965 10710 10965 10965

10880 10880 11135 10880 10965 10965 10710 10965

10880 10880 10880 11135 10965 10965 10965 10710

10710 10965 10965 10965 11135 10880 10880 10880

10965 10710 10965 10965 10880 11135 10880 10880

10965 10965 10710 10965 10880 10880 11135 10880

10965 10965 10965 10710 10880 10880 10880 11135



. (7.92)

As all of the elements of the
∑8

i

(
A

(I)
(Fz=+1)

)i
are nonzero, we confirm that all the

states are connected with each other.
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The energy level L − 2H and L are doubly degenerate and coupled with

the nonzero off-diagonal entries V . However, the energy level L + H is four-fold

degenerate. Consider the subspace spanned by |ψ(I)
1 〉 ≡ |ψ

(A)
1 〉 and |ψ(I)

7 〉 ≡ |ψ
(A)
2 〉.

The Hamiltonian matrix H
(A)
(Fz=+1) reads

H
(A)
(Fz=+1) =

 L − 2H V

V L − 2H

 . (7.93)

The eigenvalues and the corresponding eigenvectors of the Hamiltonian matrix (7.93)

are

E
(A)
± = L − 2H± V , (7.94a)

|χ(A)
± 〉 =

1

2

(
|ψ(A)

1 〉 ± |ψ
(A)
2 〉
)
. (7.94b)

The other doubly degenerate energy level L is spanned by |ψ(I)
3 〉 ≡ |ψ

(B)
1 〉 and |ψ(I)

5 〉 ≡

|ψ(B)
2 〉. The Hamiltonian matrix H

(B)
(Fz=+1) is

H
(B)
(Fz=+1) =

 L V

V L

 . (7.95)

The eigenvalues and the corresponding eigenvectors of the Hamiltonian matrix (7.95)

are

E
(B)
± = L ± V , (7.96a)

|χ(B)
± 〉 =

1√
2

(
|ψ(B)

1 〉 ± |ψ
(B)
2 〉
)
. (7.96b)
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The four-fold degenerate Hamiltonian matrix

H
(C)
(Fz=+1) =



H + L 0 0 V

0 H + L V 0

0 V H + L 0

V 0 0 H + L


(7.97)

is spanned by the following vectors

|ψ(I)
2 〉 ≡ |ψ

(C)
1 〉, |ψ(I)

4 〉 ≡ |ψ
(C)
2 〉, |ψ(I)

6 〉 ≡ |ψ
(C)
3 〉, |ψ(I)

8 〉 ≡ |ψ
(C)
4 〉. (7.98)

The Hamiltonian matrix H
(C)
(Fz=+1) can again be decomposed into two identical 2× 2

matrices.

H
(C),1
(Fz=+1) =

 L+H V

V L+H

 , and H
(C),2
(Fz=+1) =

 L+H V

V L+H

 . (7.99)

The Hamiltonian matrix H
(C),1
(Fz=+1) is associated with |ψ(C)

1 〉 and |ψ(C)
4 〉 while H

(C),2
(Fz=+1)

is associated with |ψ(C)
2 〉 and |ψ(C)

3 〉. The eigenvalues of both the matrix are given by

E
(C)
± = L+H± V , (7.100)

whereas the eigenvectors are given as

|χ(C)
±,1〉 =

1√
2

(
|ψ(C)

1 〉 ± |ψ
(B)
4 〉
)
, |χ(C)

±,2〉 =
1√
2

(
|ψ(C)

2 〉 ± |ψ
(B)
3 〉
)
. (7.101)

Figure 7.5 is a Born-Oppenheimer potential curve for subspace(I) of Fz = +1 hyper-

fine manifold. For large interatomic distance, V → 0, and as the interatomic distance

decreases, energy levels split, repel with each other, and experience V → R−3 shift.
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Figure 7.5: Evolution of the energy levels as a function of interatomic separation R
in the subspace (I) of the Fz = +1 hyperfine manifold. For infinitely long interatomic
distance, we observe three distinct energy levels same as in the unperturbed case.
However, for small interatomic separation, the energy levels split and deviate from
the unperturbed energies and become separate and readable.

Let us now focus on the subspace (II) of manifold Fz = +1. The subspace (II)

is spanned by |ψ1〉, |ψ3〉, |ψ5〉, |ψ6〉, |ψ10〉, |ψ12〉, |ψ15〉, and |ψ16〉. We rename these

states as below:

|ψ(II)
1 〉 = |ψ1〉 = |(0, 0, 0)A(0, 1, 1)B〉, |ψ(II)

2 〉 = |ψ3〉 = |(0, 1, 0)A(0, 1, 1)B〉,

|ψ(II)
3 〉 = |ψ5〉 = |(0, 1, 1)A(0, 0, 0)B〉, |ψ(II)

4 〉 = |ψ6〉 = |(0, 1, 1)A(0, 1, 0)B〉,

|ψ(II)
5 〉 = |ψ10〉 = |(1, 0, 0)A(1, 1, 1)B〉, |ψ(II)

6 〉 = |ψ12〉 = |(1, 1, 0)A(1, 1, 1)B〉,
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|ψ(II)
7 〉 = |ψ15〉 = |(1, 1, 1)A(1, 0, 0)B〉, |ψ(II)

8 〉 = |ψ16〉 = |(1, 1, 1)A(1, 1, 0)B〉.

(7.102)

The atoms in the subspace (II) are in S-S or P -P configurations. The Hamiltonian

matrix of the subspace (II) reads

H
(II)
(Fz=+1) =



2L − 3
2
H 0 0 0 0 −2V V −V

0 2L+ 3H
2

0 0 −2V 0 −V V

0 0 2L − 3
2
H 0 V −V 0 −2V

0 0 0 2L+ 3
2
H −V V −2V 0

0 −2V V −V −1
2
H 0 0 0

−2V 0 −V V 0 1
2
H 0 0

V −V 0 −2V 0 0 −1
2
H 0

−V V −2V 0 0 0 0 1
2
H



.

(7.103)

In this subspace, no two degenerate levels are coupled by V in first order. Thus, all

the energy levels experience R−6 vdW shift as shown in Figure 7.6. Thus the states

listed in Eq. (7.102) serve as eigenstates of the Hamiltonian matrix, H
(II)
(Fz=+1), of the

system. The hyperfine transition goes second order in V . If A
(II)
(Fz=+1) is the adjacency

matrix of H
(II)
(Fz=+1), then the sum

∑8
i

(
A

(II)
(Fz=+1)

)i
is identical to Eq. (7.92).

7.7.3. Manifold Fz = 0. The Fz = 0 hyperfine manifold is composed of

|Ψ1〉 = |(0, 0, 0)A(0, 0, 0)B〉, |Ψ2〉 = |(0, 0, 0)A(0, 1, 0)B〉,

|Ψ3〉 = |(0, 0, 0)A(1, 0, 0)B〉, |Ψ4〉 = |(0, 0, 0)A(1, 1, 0)B〉,

|Ψ5〉 = |(0, 1,−1)A(0, 1, 1)B〉, |Ψ6〉 = |(0, 1,−1)A(1, 1, 1)B〉,

|Ψ7〉 = |(0, 1, 0)A(0, 0, 0)B〉, |Ψ8〉 = |(0, 1, 0)A(0, 1, 0)B〉,
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Figure 7.6: Evolution of the energy levels as a function of interatomic separa-
tion R in the subspace (II) of the Fz = +1 hyperfine manifold. For infinitely
long interatomic distance, we observe four distinct energy levels same as in
the unperturbed case. However, for small interatomic separation, the energy
levels split and deviate from the unperturbed energies and become distinct
and readable.

|Ψ9〉 = |(0, 1, 0)A(1, 0, 0)B〉, |Ψ10〉 = |(0, 1, 0)A(1, 1, 0)B〉,

|Ψ11〉 = |(0, 1, 1)A(0, 1,−1)B〉, |Ψ12〉 = |(0, 1, 1)A(1, 1,−1)B〉,

|Ψ13〉 = |(1, 0, 0)A(0, 0, 0)B〉, |Ψ14〉 = |(1, 0, 0)A(0, 1, 0)B〉,

|Ψ15〉 = |(1, 0, 0)A(1, 0, 0)B〉, |Ψ16〉 = |(1, 0, 0)A(1, 1, 0)B〉,

|Ψ17〉 = |(1, 1,−1)A(0, 1, 1)B〉, |Ψ18〉 = |(1, 1,−1)A(1, 1, 1)B〉,

|Ψ19〉 = |(1, 1, 0)A(0, 0, 0)B〉, |Ψ20〉 = |(1, 1, 0)A(0, 1, 0)B〉,
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|Ψ21〉 = |(1, 1, 0)A(1, 0, 0)B〉, |Ψ22〉 = |(1, 1, 0)A(1, 1, 0)B〉,

|Ψ23〉 = |(1, 1, 1)A(0, 1,−1)B〉, |Ψ24〉 = |(1, 1, 1)A(1, 1,−1)B〉. (7.104)

The Hamiltonian matrix H(Fz=0) is a square matrix of order 24. We first evaluate

H(Fz=0), and then replace each of the off-diagonal nonzero entries by 1 and each of

the diagonal elements by 0. Thus constructed square matrix, whose entries are of

boolean values, is an adjacency matrix A(Fz=0) which reads

A(Fz=0) =

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1 0

0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0



. (7.105)

Figure 7.7 is an adjacency graph corresponding to A(Fz=0). The sum
∑24

i=1A
i
(Fz=0),

which counts the number of neighbors of length(d) given by 1 ≤ d ≤ 24 that by every
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pair of nodes shares, satisfies

24∑
i=1

Ai(Fz=0) =

P Q 0 0 S 0 Q Q 0 0 S 0 0 0 V V 0 W 0 0 V X 0 W

Q P 0 0 S 0 Q Q 0 0 S 0 0 0 V V 0 W 0 0 X V 0 W

0 0 P Q 0 S 0 0 Q Q 0 S V V 0 0 W 0 V X 0 0 W 0

0 0 Q P 0 S 0 0 Q Q 0 S V V 0 0 W 0 X V 0 0 W 0

S S 0 0 Z 0 S S 0 0 A 0 0 0 W W 0 B 0 0 W W 0 C

0 0 S S 0 Z 0 0 S S 0 A W W 0 0 B 0 W W 0 0 C 0

Q Q 0 0 S 0 P Q 0 0 S 0 0 0 V X 0 W 0 0 V V 0 W

Q Q 0 0 S 0 Q P 0 0 S 0 0 0 X V 0 W 0 0 V V 0 W

0 0 Q Q 0 S 0 0 P Q 0 S V X 0 0 W 0 V V 0 0 W 0

0 0 Q Q 0 S 0 0 Q P 0 S X V 0 0 W 0 V V 0 0 W 0

S S 0 0 A 0 S S 0 0 Z 0 0 0 W W 0 C 0 0 W W 0 B

0 0 S S 0 A 0 0 S S 0 Z W W 0 0 C 0 W W 0 0 B 0

0 0 V V 0 W 0 0 V X 0 W P Q 0 0 S 0 Q Q 0 0 S 0

0 0 V V 0 W 0 0 X V 0 W Q P 0 0 S 0 Q Q 0 0 S 0

V V 0 0 W 0 V X 0 0 W 0 0 0 P Q 0 S 0 0 Q Q 0 S

V V 0 0 W 0 X V 0 0 W 0 0 0 Q P 0 S 0 0 Q Q 0 S

0 0 W W 0 B 0 0 W W 0 C S S 0 0 Z 0 S S 0 0 A 0

W W 0 0 B 0 W W 0 0 C 0 0 0 S S 0 Z 0 0 S S 0 A

0 0 V X 0 W 0 0 V V 0 W Q Q 0 0 S 0 P Q 0 0 S 0

0 0 X V 0 W 0 0 V V 0 W Q Q 0 0 S 0 Q P 0 0 S 0

V X 0 0 W 0 V V 0 0 W 0 0 0 Q Q 0 S 0 0 P Q 0 S

X V 0 0 W 0 V V 0 0 W 0 0 0 Q Q 0 S 0 0 Q P 0 S

0 0 W W 0 C 0 0 W W 0 B S S 0 0 A 0 S S 0 0 Z 0

W W 0 0 C 0 W W 0 0 B 0 0 0 S S 0 A 0 0 S S 0 Z



,

(7.106)

where

P =13185279766584, Q = 13185279766572, R = 17374576685400,

S =18646800486300, T = 13185279766572, U = 18646800486300,

V =3444045886572, W = 4870616940000, X = 3444045886584,

Y =4870616940000, Z = 26370559533156, A = 26370559533144,

B =6888091773156, and C = 6888091773144. (7.107)

Not all the elements of
∑24

i=1A
i
(Fz=0) are nonzero. Thus, the matrix H(Fz=0) can be

reduced into irreducible sub-matrices. The adjacency matrix squared A2
(Fz=0) takes
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Figure 7.7: An adjacency graph of the matrix A(Fz=0). The graph for

A(Fz=0) has two disconnected components G
(I)
(Fz=0) and G

(II)
(Fz=0) which do

not share any edges between the vertices.

the form

A2
(Fz=0) =


B12×12 : 012×12

·· : ··

012×12 : C12×12

 , (7.108)

where B12×12 and C12×12 are nonzero matrices of order 12 while 012×12 represents a

null matrix of order 12. Eq. (7.108) confirms that the adjacency graph corresponding

to the adjacency matrix A(Fz=0) has two disconnected components. Each component

G
(I)
(Fz=0) and G

(II)
(Fz=0) of the adjacency graph has 12 vertices. Eq. (7.108) and Figure 7.7

imply that we can partition the Hamiltonian matrix H(Fz=0) of the Fz = 0 hyperfine
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manifold as

H(Fz=0) =


H

(I)
(Fz=0) : 0

·· : ··

0 : H
(II)
(Fz=0)

. (7.109)

Thus, our 24-dimensional hyperfine manifold Fz = 0 reduces into two irreducible 12-

dimensional sub-manifolds. The subspace (I) of the Fz = 0 manifold is composed of

|Ψ1〉, |Ψ2〉, |Ψ5〉, |Ψ7〉, |Ψ8〉, |Ψ11〉, |Ψ15〉, |Ψ16〉, |Ψ18〉, |Ψ21〉, |Ψ22〉, and |Ψ24〉. Thus,

|Ψ(I)
1 〉 = |Ψ1〉 = |(0, 0, 0)A(0, 0, 0)B〉, |Ψ(I)

2 〉 = |Ψ2〉 = |(0, 0, 0)A(0, 1, 0)B〉,

|Ψ(I)
3 〉 = |Ψ5〉 = |(0, 1,−1)A(0, 1, 1)B〉, |Ψ(I)

4 〉 = |Ψ7〉 = |(0, 1, 0)A(0, 0, 0)B〉,

|Ψ(I)
5 〉 = |Ψ8〉 = |(0, 1, 0)A(0, 1, 0)B〉, |Ψ(I)

6 〉 = |Ψ11〉 = |(0, 1, 1)A(0, 1,−1)B〉,

|Ψ(I)
7 〉 = |Ψ15〉 = |(1, 0, 0)A(1, 0, 0)B〉, |Ψ(I)

8 〉 = |Ψ16〉 = |(1, 0, 0)A(1, 1, 0)B〉,

|Ψ(I)
9 〉 = |Ψ18〉 = |(1, 1,−1)A(1, 1, 1)B〉, |Ψ(I)

10 〉 = |Ψ21〉 = |(1, 1, 0)A(1, 0, 0)B〉,

|Ψ(I)
11 〉 = |Ψ22〉 = |(1, 1, 0)A(1, 1, 0)B〉, |Ψ(I)

12 〉 = |Ψ24〉 = |(1, 1, 1)A(1, 1,−1)B〉, (7.110)

are the corresponding basis vectors. The Hamiltonian matrix H
(I)
(Fz=0) reads

H
(I)
(Fz=0) =

2L − 9H
2

0 0 0 0 0 0 0 −V 0 −2V −V

0 2L − 3H
2

0 0 0 0 0 0 V −2V 0 −V

0 0 2L+ 3H
2

0 0 0 −V V 2V −V V 0

0 0 0 2L − 3H
2

0 0 0 −2V −V 0 0 V

0 0 0 0 2L+ 3H
2

0 −2V 0 V 0 0 V

0 0 0 0 0 2L+ 3H
2

−V −V 0 V V 2V

0 0 −V 0 −2V −V − 3
2
H 0 0 0 0 0

0 0 V −2V 0 −V 0 −H
2

0 0 0 0

−V V 2V −V V 0 0 0 H
2

0 0 0

0 −2V −V 0 0 V 0 0 0 −H
2

0 0

−2V 0 V 0 0 V 0 0 0 0 H
2

0

−V −V 0 V V 2V 0 0 0 0 0 H
2



.

(7.111)
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No two degenerate levels of the matrix (7.111) are coupled. Thus, the states listed

in (7.110) serve as the eigenvectors of the matrix (7.111). Figure 7.8 is a Born-

Oppenheimer potential curve for Fz = 0 in subspace (I). For a very large value of

R, V → 0, however, the interaction energy experiences a R−6 type energy shift as R

decreases. Surprisingly, we notice several level crossings and the level crossings are

unavoidable. According to the no-crossing rule, this is an unusual outcome.

On the other hand, if A
(I)
(Fz=0) is the adjacency matrix corresponding to the

Hamiltonian matrix H
(I)
(Fz=0), the sum

∑12
i=1

(
A

(I)
(Fz=0)

)i
is given by

12∑
i=1

(
A

(I)
(Fz=0)

)i
=



α β γ β β γ δ δ ε δ ζ ε

β α γ β β γ δ δ ε ζ δ ε

γ γ η γ γ θ ε ε ι ε ε κ

β β γ α β γ δ ζ ε δ δ ε

β β γ β α γ ζ δ ε δ δ ε

γ γ θ γ γ η ε ε κ ε ε ι

δ δ ε δ ζ ε α β γ β β γ

δ δ ε ζ δ ε β α γ β β γ

ε ε ι ε ε κ γ γ η γ γ θ

δ ζ ε δ δ ε β β γ α β γ

ζ δ ε δ δ ε β β γ β α γ

ε ε κ ε ε ι γ γ θ γ γ η



, (7.112)

where

α = 12697599, β = 12693504, γ = 17881088, δ = 12618606, ε = 17918537,

ζ = 12622701, η = 25391103, θ = 25387008, ι = 25241307, κ = 25237212. (7.113)
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Figure 7.8: Evolution of the energy levels as a function of interatomic sepa-
ration R in the subspace (I) of Fz = 0 hyperfine manifold. The energy levels
are asymptotic for large interatomic separation. Although at the large sepa-
ration, there are six unperturbed energy levels, the degeneracy is removed in
small separation and hence, the energy levels spread widely. The small figure
inserted on the right top of the main figure is the magnified version of a small
portion as indicated in the figure. The figure shows several level crossings.
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The absence of the zero in the sum
∑12

i=1

(
A

(I)
(Fz=0)

)i
indicates that the matrix H

(I)
(Fz=0)

can not be reduced anymore.

Now we focus on the subspace (II) of manifold Fz = 0. The subspace (II) of

the Fz = 0 manifold is composed of |Ψ3〉, |Ψ4〉, |Ψ6〉, |Ψ9〉, |Ψ10〉, |Ψ12〉, |Ψ13〉, |Ψ14〉,

|Ψ17〉, |Ψ19〉, |Ψ20〉, and |Ψ23〉. Let us rename these states as

|Ψ(II)
1 〉 = |Ψ3〉 = |(0, 0, 0)A(1, 0, 0)B〉, |Ψ(II)

2 〉 = |Ψ4〉 = |(0, 0, 0)A(1, 1, 0)B〉,

|Ψ(II)
3 〉 = |Ψ6〉 = |(0, 1,−1)A(1, 1, 1)B〉, |Ψ(II)

4 〉 = |Ψ9〉 = |(0, 1, 0)A(1, 0, 0)B〉,

|Ψ(II)
5 〉 = |Ψ10〉 = |(0, 1, 0)A(1, 1, 0)B〉, |Ψ(II)

6 〉 = |Ψ12〉 = |(0, 1, 1)A(1, 1,−1)B〉,

|Ψ(II)
7 〉 = |Ψ13〉 = |(1, 0, 0)A(0, 0, 0)B〉, |Ψ(II)

8 〉 = |Ψ14〉 = |(1, 0, 0)A(0, 1, 0)B〉,

|Ψ(II)
9 〉 = |Ψ17〉 = |(1, 1,−1)A(0, 1, 1)B〉, |Ψ(II)

10 〉 = |Ψ19〉 = |(1, 1, 0)A(0, 0, 0)B〉,

|Ψ(II)
11 〉 = |Ψ20〉 = |(1, 1, 0)A(0, 1, 0)B〉, |Ψ(II)

12 〉 = |Ψ23〉 = |(1, 1, 1)A(0, 1,−1)B〉.

(7.114)

The Hamiltonian matrix H
(II)
(Fz=0) of the subspace (II) reads

H
(II)
(Fz=0) =

L − 3H 0 0 0 0 0 0 0 −V 0 −2V −V

0 L − 2H 0 0 0 0 0 0 V −2V 0 −V

0 0 L+H 0 0 0 −V V 2V −V V 0

0 0 0 L 0 0 0 −2V −V 0 0 V

0 0 0 0 L+H 0 −2V 0 V 0 0 V

0 0 0 0 0 L+H −V −V 0 V V 2V

0 0 −V 0 −2V −V L − 3H 0 0 0 0 0

0 0 V −2V 0 −V 0 L 0 0 0 0

−V V 2V −V V 0 0 0 L+H 0 0 0

0 −2V −V 0 0 V 0 0 0 L − 2H 0 0

−2V 0 V 0 0 V 0 0 0 0 L+H 0

−V −V 0 V V 2V 0 0 0 0 0 L+H



.

(7.115)
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It is interesting to note that if A
(II)
(Fz=0) is the adjacency matrix corresponding to

H
(II)
(Fz=0), then the sum

∑12
i=1

(
A

(II)
(Fz=0)

)i
is identical to

∑12
i=1

(
A

(I)
(Fz=0)

)i
. Notice that,

there are four degenerate subspaces in the H
(II)
(Fz=0). The two-fold degenerate level

L−3H has vanishing off-diagonal elements. Thus, the degeneracy remains unresolved

in the first order correction. The states |Ψ(II)
1 〉 and |Ψ(II)

7 〉 serve as eigenvectors.

The energy level L − 2H is two-fold degenerate. The Hamiltonian matrix of

this degenerate subspace is

H
(A)
(Fz=0) =

 L − 2H −2V

−2V L − 2H

 , (7.116)

which is spanned by

|Ψ(A)
1 〉 = |Ψ(II)

2 〉 and |Ψ(A)
2 〉 = |Ψ(II)

10 〉. (7.117)

The eigenvalues and the eigenvectors are

E
(A)
± = L − 2H± 2V , (7.118a)

|χ(A)
± 〉 =

1√
2

(
|Ψ(A)

1 〉 ± |Ψ
(A)
2 〉
)
. (7.118b)

The third degenerate subspace with doubly degenerate energy L is spanned by

|Ψ(B)
1 〉 = |Ψ(II)

4 〉 and |Ψ(B)
2 〉 = |Ψ(II)

8 〉. (7.119)

The Hamiltonian matrix reads as

H
(B)
(Fz=0) =

 L −2V

−2V L

 . (7.120)
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The eigenvalues and the eigenvectors of the system are

E
(B)
± = L ± 2V , (7.121a)

|χ(B)
± 〉 =

1√
2

(
|Ψ(B)

1 〉 ± |Ψ
(B)
2 〉
)
. (7.121b)

The fourth degenerate subspace is spanned by the states

|Ψ(C)
1 〉 = |Ψ(II)

3 〉, |Ψ(C)
2 〉 = |Ψ(II)

5 〉,

|Ψ(C)
3 〉 = |Ψ(I)

6 〉, |Ψ(C)
4 〉 = |Ψ(II)

9 〉,

|Ψ(C)
5 〉 = |Ψ(II)

11 〉, |Ψ(C)
6 〉 = |Ψ(II)

12 〉, (7.122)

with the 6-fold degenerate Hamiltonian matrix

H
(C)
(Fz=0) =



H + L 0 0 2V V 0

0 H + L 0 V 0 V

0 0 H + L 0 V 2V

2V V 0 H + L 0 0

V 0 V 0 H + L 0

0 V 2V 0 0 H + L


. (7.123)

The eigenvalues of the Hamiltonian matrix (7.123) are

E
(C)
±,1 = L+H± 2V , (7.124a)

E
(C)
±,2 = L+H±

(√
3 + 1

)
V , (7.124b)

E
(C)
±,3 = L+H±

(√
3− 1

)
V . (7.124c)
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The degeneracy is completely removed and the energy shifts are first order in V . The

corresponding normalized eigenvectors are

|χ(C)
±,1〉 =

1

2

(
∓|Ψ(C)

1 〉 ± |Ψ
(C)
3 〉 − |Ψ

(C)
4 〉+ |Ψ(C)

6 〉
)
, (7.125a)

|χ(C)
±,2〉 =

1

2
√

3−
√

3

(
± |Ψ(C)

1 〉 ±
(√

3− 1
)
|Ψ(C)

2 〉 ± |Ψ
(C)
3 〉+ |Ψ(C)

4 〉

+
(√

3− 1
)
|Ψ(C)

5 〉+ Ψ
(C)
6 〉
)
, (7.125b)

|χ(C)
±,3〉 =

1

2
√

3 +
√

3

(
∓ |Ψ(C)

1 〉 ±
(√

3 + 1
)
|Ψ(C)

2 〉 ∓ |Ψ
(C)
3 〉+ |Ψ(C)

4 〉

−
(√

3 + 1
)
|Ψ(C)

5 〉+ Ψ
(C)
6 〉
)
. (7.125c)

As interatomic distance decreases, the unperturbed L−3H energy level experience an

energy shift which is second order in V i.e. ∼ R−6, whereas rest of other unperturbed

energy levels experience R−3 type energy shift (see Figure 7.9).

7.7.4. Manifold Fz = −1. The Fz = −1 hyperfine manifold has 16 states.

We write the 16 states in this manifolds in the ascending order of quantum numbers

as given below:

|ψ′1〉 = |(0, 0, 0)A(0, 1,−1)B〉, |ψ′2〉 = |(0, 0, 0)A(1, 1,−1)B〉,

|ψ′3〉 = |(0, 1,−1)A(0, 0, 0)B〉, |ψ′4〉 = |(0, 1,−1)A(0, 1, 0)B〉,

|ψ′5〉 = |(0, 1,−1)A(1, 0, 0)B〉, |ψ′6〉 = |(0, 1,−1)A(1, 1, 0)B〉,

|ψ′7〉 = |(0, 1, 0)A(0, 1,−1)B〉, |ψ′8〉 = |(0, 1, 0)A(1, 1,−1)B〉,

|ψ′9〉 = |(1, 0, 0)A(0, 1,−1)B〉, |ψ′10〉 = |(1, 0, 0)A(1, 1,−1)B〉,

|ψ′11〉 = |(1, 1,−1)A(0, 0, 0)B〉, |ψ′12〉 = |(1, 1,−1)A(0, 1, 0)B〉,

|ψ′13〉 = |(1, 1,−1)A(1, 0, 0)B〉, |ψ′14〉 = |(1, 1,−1)A(1, 1, 0)B〉,

|ψ′15〉 = |(1, 1, 0)A(0, 1,−1)B〉, |ψ′16〉 = |(1, 1, 0)A(1, 1,−1)B〉. (7.126)
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Figure 7.9: Evolution of the energy levels as a function of interatomic separation
R in the subspace (II) of Fz = 0 hyperfine manifold. The vertical axis is the
energy divided by the plank constant, and the horizontal axis is the interatomic
distance in the unit of Bohr’s radius a0. The energy levels are asymptotic for
large interatomic separation. Although at the large separation, there are six
unperturbed energy levels, the degeneracy is removed in small separation and
hence, the energy levels spread widely. We observe two level crossings for small
atomic separation. The arrow, ‘ ↑ ′, shows the location of crossings.

The Hamiltonian matrix for Fz = −1 hyperfine manifold is a square symmetric matrix

of order 16. We replace all the nonzero off-diagonal element of the Hamiltonian matrix

by 1 and all the diagonal elements by zero to construct corresponding undirected
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adjacency matrix A(Fz=−1) which reads

A(Fz=−1) =



0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1

0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0

0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1

0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0

0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0

0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0

0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0

1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0

0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0

1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0



. (7.127)

Figure 7.10 is an adjacency graph corresponding to A(Fz=−1). The sum
∑16

i=1A
i
(Fz=−1)

counts the number of neighbors of length(d) given by 1 ≤ d ≤ 16 which is shared by

every pair of nodes. Interestingly, we find

16∑
i=1

Ai(Fz=−1) =
16∑
i=1

Ai(Fz=+1). (7.128)

Thus, similar to the H(Fz=+1) matrix, the H(Fz=−1) matrix can also be reduced into ir-

reducible sub-matrices. The square of the adjacency matrix A(Fz=−1) can be expressed
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(I)
(Fz=−1)
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16
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(b) G
(II)
(Fz=−1)

Figure 7.10: An adjacency graph of the matrix A(Fz=−1). The graph for

A(Fz=−1) is disconnected having two components G
(I)
(Fz=−1) and G

(II)
(Fz=−1) which

do not share any edges between the vertices.

as

A2
(Fz=−1) =


B8×8 : 08×8

·· : ··

08×8 : C8×8

 , (7.129)

where B8×8 and C8×8 are nonzero matrices of order 8 while 08×8 represents a null

matrix of order 8. Eq. (7.129) confirms that the adjacency graph corresponding to

the adjacency matrix A(Fz=−1) has two disconnected components. Each component

G
(I)
(Fz=−1) and G

(II)
(Fz=−1) of the adjacency graph has 8 vertices (see Figure 7.10). The

graph clearly indicates that the 16-dimensional Fz = −1 manifold can be decomposed

into two subspaces each of dimension 8. These two subspaces are uncoupled to each

other. The first subspace, subspace (I) of the manifold Fz = −1, is composed of |ψ′2〉,
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|ψ′5〉, |ψ′6〉, |ψ′8〉, |ψ′9〉, |ψ′11〉, |ψ′12〉, and |ψ′15〉. We rename these states as below:

|ψ′(I)1 〉 = |ψ′2〉 = |(0, 0, 0)A(1, 1,−1)B〉, |ψ′(I)2 〉 = |ψ′5〉 = |(0, 1,−1)A(1, 0, 0)B〉,

|ψ′(I)3 〉 = |ψ′6〉 = |(0, 1,−1)A(1, 1, 0)B〉, |ψ′(I)4 〉 = |ψ′8〉 = |(0, 1, 0)A(1, 1,−1)B〉,

|ψ′(I)5 〉 = |ψ′9〉 = |(1, 0, 0)A(0, 1,−1)B〉, |ψ′(I)6 〉 = |ψ′11〉 = |(1, 1,−1)A(0, 0, 0)B〉,

|ψ′(I)7 〉 = |ψ′12〉 = |(1, 1,−1)A(0, 1, 0)B〉, |ψ′(I)8 〉 = |ψ′15〉 = |(1, 1, 0)A(0, 1,−1)B〉.

(7.130)

The Hamiltonian matrix of the subspace (I) reads

H
(I)
(Fz=−1) =



L − 2H 0 0 0 0 V V 2V

0 L 0 0 V 0 2V V

0 0 L+H 0 V 2V 0 V

0 0 0 L+H 2V V V 0

0 V V 2V L 0 0 0

V 0 2V V 0 L − 2H 0 0

V 2V 0 V 0 0 L+H 0

2V V V 0 0 0 0 L+H



.

(7.131)

Notice that, there are three degenerate subspaces. The energy levels L−2H and L are

doubly degenerate whereas the energy level L+H is four-fold degenerate. Consider

the subspace spanned by |ψ′(I)1 〉 ≡ |ψ
′(A)
1 〉 and |ψ′(I)6 〉 ≡ |ψ

′(A)
2 〉. The Hamiltonian

matrix H
(A)
(Fz=−1) reads

H
(A)
(Fz=−1) =

 L − 2H V

V L − 2H

 . (7.132)
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The eigenvalues and the corresponding eigenvectors of the Hamiltonian matrix (7.132)

are

E
(A)
± = L − 2H± V , (7.133a)

|χ(A)
± 〉 =

1√
2

(
|ψ′(A)

1 〉 ± |ψ′(A)
2 〉

)
. (7.133b)

The doubly degenerate energy level L is spanned by |ψ′(I)2 〉 ≡ |ψ
′(B)
1 〉 and |ψ′(I)5 〉 ≡

|ψ′(B)
2 〉. The Hamiltonian matrix H

(B)
(Fz=−1) is

H
(B)
(Fz=−1) =

 L V

V L

 . (7.134)

The eigenvalues and the corresponding eigenvectors of the Hamiltonian matrix (7.134)

are

E
(B)
± = L ± V , (7.135a)

|χ(B)
± 〉 =

1√
2

(
|ψ′(B)

1 〉 ± |ψ′(B)
2 〉

)
. (7.135b)

The four-fold degenerate Hamiltonian matrix

H
(C)
(Fz=−1) =



L+H 0 0 V

0 L+H V 0

0 V L+H 0

V 0 0 L+H


(7.136)

is spanned by the following vectors

|ψ′(I)3 〉 ≡ |ψ
′(C)
1 〉, |ψ′(I)4 〉 ≡ |ψ

′(C)
2 〉, |ψ′(I)7 〉 ≡ |ψ

′(C)
3 〉, |ψ′(I)8 〉 ≡ |ψ

′(C)
4 〉.

(7.137)
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The Hamiltonian matrix H
(C)
(Fz=−1) can again be decomposed into two identical 2× 2

sub-matrices.

H
(C),1
(Fz=−1) =

 L+H V

V L+H

 , and H
(C),2
(Fz=−1) =

 L+H V

V L+H

 .

(7.138)

The Hamiltonian matrix H
(C),1
(Fz=−1) is associated with |ψ′(C)

1 〉 and |ψ′(C)
4 〉 while H

(C),2
(Fz=−1)

is associated with |ψ′(C)
2 〉 and |ψ′(C)

3 〉. The eigenvalues for both the matrix are given

by

E
(C)
± = L+H± V , (7.139)

whereas the eigenvectors are given as

|χ(C)
±,1〉 =

1√
2

(
|ψ′(C)

1 〉 ± |ψ′(B)
4 〉

)
, (7.140a)

|χ(C)
±,2〉 =

1√
2

(
|ψ′(C)

2 〉 ± |ψ′(B)
3 〉

)
. (7.140b)

See Figure 7.11 for an evolution of energy levels as a function of interatomic separa-

tion, R, in the subspace (I) of the Fz = −1 hyperfine manifold. As the interatomic

distance increases, each of the unperturbed energy levels experience a R−3 type en-

ergy shift. In contrast to the Fz = 0 hyperfine manifold, there is no level-crossing in

the subspace (I) of the Fz = −1 hyperfine manifold. Notice that, energy curves for

subspace (I) of Fz = ±1 are alike.

The subspace (II) of the Fz = −1 manifold is spanned by |ψ′1〉, |ψ′3〉, |ψ′4〉, |ψ′7〉,

|ψ′10〉, |ψ′13〉, |ψ′14〉, and |ψ′16〉. Let us rename these state vectors as below:

|ψ′(II)1 〉 = |ψ′1〉 = |(0, 0, 0)A(0, 1,−1)B〉, |ψ′(II)2 〉 = |ψ′3〉 = |(0, 1,−1)A(0, 0, 0)B〉,
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Figure 7.11: Energy levels as a function of interatomic separation R in the
subspace (I) of the Fz = −1 hyperfine manifold. For infinitely long inter-
atomic separation, there are three distinct energy levels, as expected from
the unperturbed energy values of the Hamiltonian matrix, H

(I)
(Fz=−1), given

by Eq. (7.131). However, for small interatomic separation, the energy levels
split.

|ψ′(II)3 〉 = |ψ′4〉 = |(0, 1,−1)A(0, 1, 0)B〉, |ψ′(II)4 〉 = |ψ′7〉 = |(0, 1, 0)A(0, 1,−1)B〉,

|ψ′(II)5 〉 = |ψ′10〉 = |(1, 0, 0)A(1, 1,−1)B〉, |ψ′(II)6 〉 = |ψ′13〉 = |(1, 1,−1)A(1, 0, 0)B〉,

|ψ′(II)7 〉 = |ψ′14〉 = |(1, 1,−1)A(1, 1, 0)B〉, |ψ′(II)8 〉 = |ψ′16〉 = |(1, 1, 0)A(1, 1,−1)B〉.

(7.141)
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The Hamiltonian matrix of the subspace (II) reads

H
(II)
(Fz=−1) =

2L − 3
2
H 0 0 0 0 V V 2V

0 2L − 3
2
H 0 0 V 0 2V V

0 0 3
2
H + 2L 0 V 2V 0 V

0 0 0 3
2
H + 2L 2V V V 0

0 V V 2V −1
2
H 0 0 0

V 0 2V V 0 −1
2
H 0 0

V 2V 0 V 0 0 1
2
H 0

2V V V 0 0 0 0 1
2
H



. (7.142)

In this subspace, no two degenerate levels are coupled to each other. Thus, the diago-

nal elements serve as the eigenvalues, and the state vectors serve as the eigenvectors.

An evolution of energy levels as a function of interatomic distance is presented in

Figure 7.12. As interatomic distance decreases, energy levels experience the second

order shift in V and evolve as R−6 type shift.

Analysis shows very interesting feature in the comparison of the Fz = +1 and

Fz = −1 manifolds. The components of the adjacency graph corresponding to the

matrix A(Fz=+1) and A(Fz=−1) look identical though ordering of the vertices is not

identical. Furthermore, the Hamiltonian matrix H(Fz=+1) is not exactly same to that

of H(Fz=−1). However, they do have the same eigenvalues.

7.7.5. Manifold Fz = −2. Similar to the Fz = +2 hyperfine manifold, the

Fz = −2 manifold is also a 4-dimensional subspace. It is composed of

|φ′1〉 = |(0, 1,−1)A(0, 1,−1)B〉, |φ′2〉 = |(0, 1,−1)A(1, 1,−1)B〉,

|φ′3〉 = |(1, 1,−1)A(0, 1,−1)B〉, |φ′4〉 = |(1, 1,−1)A(1, 1,−1)B〉. (7.143)
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Figure 7.12: Energy levels as a function of interatomic separation R in the
subspace (II) of the Fz = −1 hyperfine manifold. For infinitely long inter-
atomic separation, there are four distinct energy levels, as expected from the
unperturbed energy values of the Hamiltonian matrix, H

(II)
(Fz=−1), given by

Eq. (7.142). However, for small interatomic separation, the energy levels split
and deviate from the unperturbed values.

The Hamiltonian matrix of the Fz = −2 reads

H(Fz=−2) =



3
2
H + 2L 0 0 −2V

0 H + L −2V 0

0 −2V H + L 0

−2V 0 0 1
2
H


. (7.144)
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This is same to that of the Fz = +2 manifold. The Hamiltonian matrix H(Fz=−2) can

be decoupled into two 2× 2 matrices H
(I)
(Fz=−2) and H

(II)
(Fz=−2) which read

H
(I)
(Fz=−2) =

 3H
2

+ 2L −2V

−2V H
2

 and H
(II)
(Fz=−2) =

 H + L −2V

−2V H + L

 . (7.145)

The subspace (I) with the Hamiltonian matrix H
(I)
(Fz=−2) is spanned by

|φ′(I)1 〉 = |φ′1〉 = |(0, 1,−1)A(0, 1,−1)B〉, and |φ′(I)2 〉 = |φ′4〉 = |(1, 1,−1)A(1, 1,−1)B〉.

(7.146)

The eigenvalues of the Hamiltonian matrix H
(I)
(Fz=−2) are

E
(I)
± = H + L ± 1

2

√
16V2 + (H + 2L)2, (7.147)

Or,

E
(II)
+ =

3

2
H + 2L+ 4

V2

H + 2L
+O(V4), (7.148a)

E
(I)
− =

1

2
H− 4

V2

H + 2L
+O(V4), (7.148b)

with the corresponding eigenvectors

|φ′(I)+ 〉 =
1√

α2
1 + α2

2

(
α1|φ′(I)1 〉+ α2|φ′(I)2 〉

)
, (7.149a)

|φ′(I)− 〉 =
1√

α2
1 + α2

2

(
α2|φ′(I)1 〉 − α1|φ′(I)2 〉

)
, (7.149b)

where α1 and α2 are given by

α1 = −
√

16V2 + (H + 2L)2 +H + 2L
4V

≡ a1, (7.150a)
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α2 = 1 ≡ a2. (7.150b)

The subspace(II) is composed of

|φ′(II)1 〉 = |φ′2〉 = |(0, 1,−1)A(1, 1,−1)B〉, and |φ′(II)2 〉 = |φ′3〉 = |(1, 1,−1)A(0, 1,−1)B〉.

(7.151)

with the hamiltonian matrix H
(II)
(Fz=−2) given in Eq. (7.145). The eigenenergies and

eigenvectors of the Hamiltonian matrix H
(II)
(Fz=−2) are given by

E
(I)
+ = H + L ± 2V , (7.152)

|φ′(II)± 〉 =
1

2

(
|φ′(II)1 〉 ± |φ′(II)2 〉

)
. (7.153)

See Figure 7.13 for evolution of energy levels as a function of interatomic separation

R in the Fz = −2 hyperfine manifold. Note that, the eigenvalues of the Fz = −2

manifold are identical to that of Fz = +2 and eigenvectors of one manifold can be

acquired from the other one just by swapping |φj〉 ↔ |φ′j〉.

7.8. REPUDIATION OF NON-CROSSING RULE

The non-crossing theorem for a polyatomic system [71] says that for a system

with N atoms, there will be 3N − 6 coupling parameters, as a result, level-crossing

would occur, however, the number of level-crossing does not exceed 3N − 6, where

N ≥ 2. For example, for a system containing three atoms, there are three coupling

parameters. Thus the potential curves can have maximum three level-crossings. Sim-

ilarly, a four-atom system can have maximum six level-crossings. On the other hand,

a system containing two atoms has just one coupling parameter. In the long-range

interaction, this coupling parameter is the interatomic distance R. Thus, the two
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Figure 7.13: Energy levels as a function of interatomic separation R in the
Fz = −2 hyperfine manifold. For large interatomic separation, there are
three distinct energy levels. However, for small interatomic separation, the
degenerate energy level L+H splits into two, and the level repulsion occurs.

atom system is supposed not to have any level-crossing, which requires no level cross-

ings also in our system of two neutral hydrogen atoms both of them being in the first

excited states.

For Fz = ±2 hyperfine manifolds of the 2S-2S system, each of the irreducible

subspaces is of dimension two. As expected from the non-crossing rule, we also do

not see the level crossings in either of the four subspaces. In the Fz = ±1 hyperfine

manifolds, each of irreducible subspaces is of dimension 8. There is no level crossing

within the irreducible subspaces although some of the energy curves from different

irreducible subspaces cross. Peculiar things happen in the Fz = 0 hyperfine sub-

space. In the subspace in which the atoms are in S-P or P -S configurations, we
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witness two level crossings. On the other subspace in which the atoms are either

in S-S or P -P configurations, several level crossings occur. In our work, we have

employed an extended-precision arithmetic near the crossing point and confirmed

that the crossing points are not due to the numerical insufficiency [72]. This find-

ing confirms that the level crossings do present and are unavoidable, which indicates

that the non-crossing theorem discussed in the literature so far does not hold true

in higher dimensional quantum mechanical systems. Taking the example of water

dimer, authors in Ref. [73] also have shown possibility of the curve crossings between

two Born-Oppenheimer potential energy surfaces. Interestingly, they also found sev-

eral curve crossings of potential energy surfaces. Their results also favor our findings.

The following rewording seems appropriate: “A system with two energy levels follows

non-crossing theorem. However, the higher-dimensional irreducible matrices do not

always follow the non-crossing theorem”.

7.9. HYPERFINE SHIFT IN SPECIFIC SPECTATOR STATES

In this section, we investigate the energy differences of 2S singlet and triplet

hyperfine sub levels. The spectator can be in any arbitrary atomic state. We present

detailed calculation of the Hamiltonian matrices, the normalized eigenvectors and

the corresponding eigenvalues in all three possible hyperfine manifolds, viz. Fz = +1,

Fz = 0 and Fz = −1.

7.9.1. Manifold Fz = +1. The atom A, in the following states

|ψ(II)
1 〉 = |(0, 0, 0)A(0, 1, 1)B〉 and |ψ(I)

1 〉 = |(0, 0, 0)A(1, 1, 1)B〉 (7.154)

is in the hyperfine singlet whereas the atom B is in the hyperfine triplet in the states

|ψ(II)
2 〉 = |(0, 1, 0)A(0, 1, 1)B〉 and |ψ(I)

2 〉 = |(0, 1, 0)A(1, 1, 1)B〉. (7.155)
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The spectator atom, i.e., the atom B is in 2S1/2 state in the transition |ψ(II)
1 〉 → |ψ

(II)
2 〉

while the spectator atom B is in the 2P1/2 state in the transition |ψ(I)
1 〉 → |ψ

(I)
2 〉. Note

that the state |ψ(I)
1 〉 is same to that of |ψ(I)

7 〉 = |(1, 1, 1)A(0, 0, 0)B〉 and the state |ψ(I)
2 〉

is also same to that of |ψ(I)
8 〉 = |(1, 1, 1)A(0, 1, 0)B〉 under the interchange of the

subscripts A and B. Thus, the state |ψ(I)
1 〉 is energetically degenerate to |ψ(I)

7 〉 and

the state |ψ(I)
2 〉 is energetically degenerate to |ψ(I)

8 〉 which are coupled with each other

through the off-diagonal elements V . We have

〈ψ(I)
1 |HvdW|ψ(I)

7 〉 = V , (7.156a)

〈ψ(I)
2 |HvdW|ψ(I)

8 〉 = V . (7.156b)

Eqs. (7.156a) and (7.156b) tell us that, in the Fz = +1 manifold, if the spectator

atom is at 2P1/2-state, the hyperfine transition is linear to V . On the other hand,

|ψ(II)
1 〉 and |ψ(II)

2 〉 are not coupled to any other energetically degenerate level. This

implies that there is no first order vdW shift proportional to V . The absence of the

first order shift does not guarantee that |ψ(II)
1 〉 and |ψ(II)

2 〉 are completely decoupled.

Let us define the effective Hamiltonian Heff as

Heff = lim
ε→0

H
(ε)
eff = lim

ε→0
H1 ·

(
1

E0,ψ −H0 + ε

)
·H1, (7.157)

where H1 is the off-diagonal part of the Hamiltonian matrix of respective hyperfine

manifold and E0,ψ is the energy corresponding to the reference state |ψ〉. We take

the limit ε→ 0 at the end of the calculation.

Interchanging the subscripts A and B in the state |ψ(II)
1 〉, we get the state

|ψ(II)
3 〉 = |(0, 1, 1)A(0, 0, 0)B〉. This implies that the state |ψ(II)

1 〉 with energy L− 3
2
H is
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energetically degenerate with respect to |ψ(II)
3 〉. The Hamiltonian matrix H1,3 reads

H1,3 = lim
ε→0

 〈ψ(II)
1 |H

(ε)
eff |ψ

(II)
1 〉 〈ψ

(II)
1 |H

(ε)
eff |ψ

(II)
3 〉

〈ψ(II)
3 |H

(ε)
eff |ψ

(II)
1 〉 〈ψ

(II)
3 |H

(ε)
eff |ψ

(II)
3 〉

 . (7.158)

Let us now evaluate the elements of the matrix H1,3.

(H1,3)11 = lim
ε→0
〈ψ(II)

1 |H
(ε)
eff |ψ

(II)
1 〉 = lim

ε→0
〈ψ(II)

1 |H1 ·

(
1

E
0,ψ

(II)
1
−H0 + ε

)
·H1|ψ(II)

1 〉.

(7.159)

Let us introduce a completeness relation:

∑
β

|β〉〈β| = 1. (7.160)

This is the so-called spectral decomposition of unity [74]. Using relation (7.160) in

Eq. (7.159), we get

(H1,3)11 = lim
ε→0

∑
m

∑
n

〈ψ(II)
1 |H1|m〉〈m|

1

E
0,ψ

(II)
1
−H0 + ε

|n〉〈n|H1|ψ(II)
1 〉

= lim
ε→0

[
〈ψ(II)

6 |
1

E
0,ψ

(II)
1
−H0 + ε

|ψ(II)
6 〉〈ψ

(II)
1 |H1|ψ(II)

6 〉〈ψ
(II)
6 |H1|ψ(II)

1 〉

+ 〈ψ(II)
7 |

1

E
0,ψ

(II)
1
−H0 + ε

|ψ(II)
7 〉〈ψ

(II)
1 |H1|ψ(II)

7 〉〈ψ
(II)
7 |H1|ψ(II)

1 〉

+ 〈ψ(II)
8 |

1

E
0,ψ

(II)
1
−H0 + ε

|ψ(II)
8 〉〈ψ

(II)
1 |H1|ψ(II)

8 〉〈ψ
(II)
8 |H1|ψ(II)

1 〉
]

=
4V2

2L − 3
2
H− 1

2
H

+
V2

2L − 3
2
H + 1

2
H

+
V2

2L − 3
2
H− 1

2
H

=
5V2

2(L −H)
+

V2

2L −H
. (7.161)
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(H1,3)12 = lim
ε→0
〈ψ(II)

1 |H
(ε)
eff |ψ

(II)
3 〉 = lim

ε→0
〈ψ(II)

1 |H1 ·

(
1

E
0,ψ

(II)
1
−H0 + ε

)
·H1|ψ(II)

3 〉

= lim
ε→0

∑
m

∑
n

〈ψ(II)
1 |H1|m〉〈m|

1

E
0,ψ

(II)
1
−H0 + ε

|n〉〈n|H1|ψ(II)
3 〉

= lim
ε→0

[
〈ψ(II)

1 |
1

E
0,ψ

(II)
1
−H0 + ε

|ψ(II)
1 〉〈ψ

(II)
1 |H1|ψ(II)

1 〉〈ψ
(II)
1 |H1|ψ(II)

3 〉

+ 〈ψ(II)
6 |

1

E
0,ψ

(II)
1
−H0 + ε

|ψ(II)
6 〉〈ψ

(II)
1 |H1|ψ(II)

6 〉〈ψ
(II)
6 |H1|ψ(II)

3 〉

+ 〈ψ(II)
7 |

1

E
0,ψ

(II)
1
−H0 + ε

|ψ(II)
7 〉〈ψ

(II)
1 |H1|ψ(II)

7 〉〈ψ
(II)
7 |H1|ψ(II)

3 〉

+ 〈ψ(II)
8 |

1

E
0,ψ

(II)
1
−H0 + ε

|ψ(II)
8 〉〈ψ

(II)
1 |H1|ψ(II)

8 〉〈ψ
(II)
8 |H1|ψ(II)

3 〉
]

=0 +
(−2V)(−V)

2L − 3
2
H− 1

2
H

+ 0 +
(−V)(−2V)

2L − 3
2
H− 1

2
H

=
2V2

L −H
. (7.162)

To obtain the second last line of Eq. (7.162), we substituted the values 〈ψ(II)
1 |H1|ψ(II)

3 〉 =

0, 〈ψ(II)
7 |H1|ψ(II)

3 〉 = 0 and then we took ε = 0. The Hamiltonian matrix H
(II)
(Fz=+1) is

symmetric. Thus, we have

(H1,3)12 = (H1,3)21 . (7.163)

Similarly,

(H1,3)22 = lim
ε→0
〈ψ(II)

3 |H
(ε)
eff |ψ

(II)
3 〉 = lim

ε→0
〈ψ(II)

3 |H1 ·

(
1

E
0,ψ

(II)
3
−H0 + ε

)
·H1|ψ(II)

3 〉

= lim
ε→0

∑
m

∑
n

〈ψ(II)
3 |H1|m〉〈m|

1

E
0,ψ

(II)
3
−H0 + ε

|n〉〈n|H1|ψ(II)
3 〉

= lim
ε→0

[
〈ψ(II)

3 |
1

E
0,ψ

(II)
3
−H0 + ε

|ψ(II)
3 〉〈ψ

(II)
3 |H1|ψ(II)

3 〉〈ψ
(II)
3 |H1|ψ(II)

3 〉

+ 〈ψ(II)
5 |

1

E
0,ψ

(II)
3
−H0 + ε

|ψ(II)
5 〉〈ψ

(II)
3 |H1|ψ(II)

5 〉〈ψ
(II)
5 |H1|ψ(II)

3 〉
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+ 〈ψ(II)
6 |

1

E
0,ψ

(II)
3
−H0 + ε

|ψ(II)
6 〉〈ψ

(II)
3 |H1|ψ(II)

6 〉〈ψ
(II)
6 |H1|ψ(II)

3 〉

+ 〈ψ(II)
8 |

1

E
0,ψ

(II)
3
−H0 + ε

|ψ(II)
8 〉〈ψ

(II)
3 |H1|ψ(II)

8 〉〈ψ
(II)
8 |H1|ψ(II)

3 〉
]

=
V2

2L − 3
2
H + 1

2
H

+
V2

2L − 3
2
H− 1

2
H

+
4V2

2L − 3
2
H− 1

2
H

=
5V2

2(L −H)
+

V2

2L −H
. (7.164)

The matrix H1,3 given in Eq. (7.158) reads

H1,3 =

 5V2

2(L−H)
+ V2

2L−H
2V2

L−H

2V2

L−H
5V2

2(L−H)
+ V2

2L−H

 . (7.165)

The matrix (7.165) has the following eigenvalues and eigenvectors:

E±1,3 =
5V2

2(L −H)
+

V2

2L −H
± 2V2

L −H
, (7.166a)

|ψ(II)±
1,3 〉 =

1√
2

(
|ψ(II)

1 〉 ± |ψ
(II)
3 〉
)
. (7.166b)

Let us now discuss the reference state |ψ(II)
2 〉. The state |ψ(II)

2 〉 is degenerate

with the state |ψ(II)
4 〉. The unperturbed energy corresponding to these states is 2L+

3
2
H. The Hamiltonian matrix H2,4 is given by

H2,4 = lim
ε→0

 〈ψ(II)
2 |H

(ε)
eff |ψ

(II)
2 〉 〈ψ

(II)
2 |H

(ε)
eff |ψ

(II)
4 〉

〈ψ(II)
4 |H

(ε)
eff |ψ

(II)
2 〉 〈ψ

(II)
4 |H

(ε)
eff |ψ

(II)
4 〉

 . (7.167)

The first diagonal element (H2,4)11 is given by

(H2,4)11 = lim
ε→0
〈ψ(II)

2 |H
(ε)
eff |ψ

(II)
2 〉 = lim

ε→0
〈ψ(II)

2 |H1 ·

(
1

E
0,ψ

(II)
2
−H0 + ε

)
·H1|ψ(II)

2 〉

= lim
ε→0

∑
m

∑
n

〈ψ(II)
2 |H1|m〉〈m|

1

E
0,ψ

(II)
2
−H0 + ε

|n〉〈n|H1|ψ(II)
2 〉
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= lim
ε→0

∑
k=5,7,8

〈ψ(II)
k |

1

E
0,ψ

(II)
2
−H0 + ε

|ψ(II)
k 〉〈ψ

(II)
2 |H1|ψ(II)

k 〉〈ψ
(II)
k |H1|ψ(II)

2 〉

=
5V2

2(L+H)
+

V2

2L+H
. (7.168)

The next diagonal element (H2,4)22 is given by

(H2,4)22 = lim
ε→0
〈ψ(II)

4 |H
(ε)
eff |ψ

(II)
4 〉 = lim

ε→0
〈ψ(II)

4 |H1 ·

(
1

E
0,ψ

(II)
4
−H0 + ε

)
·H1|ψ(II)

4 〉

= lim
ε→0

∑
k=5,6,7

〈ψ(II)
k |

1

E
0,ψ

(II)
4
−H0 + ε

|ψ(II)
k 〉〈ψ

(II)
4 |H1|ψ(II)

k 〉〈ψ
(II)
k |H1|ψ(II)

4 〉

=
5V2

2(L+H)
+

V2

2L+H
. (7.169)

The off-diagonal elements are given by

(H2,4)12 = lim
ε→0
〈ψ(II)

2 |H
(ε)
eff |ψ

(II)
4 〉 = lim

ε→0
〈ψ(II)

2 |H1 ·

(
1

E
0,ψ

(II)
2
−H0 + ε

)
·H1|ψ(II)

4 〉

= lim
ε→0

∑
k=5,7

〈ψ(II)
k |

1

E
0,ψ

(II)
2
−H0 + ε

|ψ(II)
k 〉〈ψ

(II)
2 |H1|ψ(II)

k 〉〈ψ
(II)
k |H1|ψ(II)

4 〉

=
2V2

L+H
= (H2,4)21 . (7.170)

The Hamiltonian matrix H2,4 thus reads

H2,4 =

 5V2

2(L+H)
+ V2

2L+H
2V2

L+H

2V2

L+H
5V2

2(L+H)
+ V2

2L+H

 (7.171)

which has the eigenvalues

E±2,4 =
5V2

2(L+H)
+

V2

2L+H
± 2V2

L+H
(7.172)
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with eigenvectors

|ψ(II)±
2,4 〉 =

1√
2

(
|ψ(II)

2 〉 ± |ψ
(II)
4 〉
)
. (7.173)

The first order vdW shift V is proportional to R−3, where R is the interatomic dis-

tance. This clearly indicates that the transition energies are R-dependent. In the

|ψ(II)
1 〉 → |ψ

(II)
2 〉 transition, the energy difference between the symmetric superposi-

tions 1√
2

(
|ψ(II)

1 〉+ |ψ(II)
3 〉
)

and 1√
2

(
|ψ(II)

2 〉+ |ψ(II)
4 〉
)

and the energy difference between

the antisymmetric superposition 1√
2

(
|ψ(II)

1 〉 − |ψ
(II)
3 〉
)

and 1√
2

(
|ψ(II)

2 〉 − |ψ
(II)
4 〉
)

are

given in the Table 7.1. In the |ψ(I)
1 〉 → |ψ

(I)
2 〉 transition, the energy difference be-

Table 7.1: The energy differences between the symmetric superposition ∆E
(+)
II

and the antisymmetric superposition ∆E
(−)
II in the unit of the hyperfine split-

ting constant H. In this transition, the spectator atom is in the 2S1/2 state.

R ∆E
(+)
II ∆E

(−)
II

∞ 0 0
750 a0 -0.007 01 -0.00133
500 a0 0.383 31 0.043 94
250 a0 37.042 26 22.835 56

tween the symmetric superpositions 1√
2

(
|ψ(I)

1 〉+ |ψ(I)
7 〉
)

and 1√
2

(
|ψ(I)

2 〉+ |ψ(I)
8 〉
)

and

the energy difference between the antisymmetric superposition 1√
2

(
|ψ(I)

1 〉 − |ψ
(I)
7 〉
)

and 1√
2

(
|ψ(I)

2 〉 − |ψ
(I)
8 〉
)

are given in the Table 7.2.

7.9.2. Manifold Fz = 0. The 24-dimensional Fz = 0 hyperfine manifold has

4 states having atom A in the 2S singlet level as given below:

|Ψ(I)
1 〉 = |(0, 0, 0)A(0, 0, 0)B〉, |Ψ(I)

2 〉 = |(0, 0, 0)A(0, 1, 0)B〉,

|Ψ(II)
1 〉 = |(0, 0, 0)A(1, 0, 0)B〉, |Ψ(II)

2 〉 = |(0, 0, 0)A(1, 1, 0)B〉. (7.174)
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Table 7.2: The energy differences between the symmetric superposition ∆E
(+)
I

and the antisymmetric superposition ∆E
(−)
I in the unit of the hyperfine split-

ting constant H. In this transition, the spectator atom is in the 2P1/2 state.

R ∆E
(+)
I ∆E

(−)
I

∞ 0 0
750 a0 2.637 62 2.817 36
500 a0 13.267 84 13.322 29
250 a0 125.041 24 125.042 34

The atom A is in the hyperfine triplet in the following 4 states:

|Ψ(I)
4 〉 = |(0, 1, 0)A(0, 0, 0)B〉, |Ψ(I)

5 〉 = |(0, 1, 0)A(0, 1, 0)B〉,

|Ψ(II)
4 〉 = |(0, 1, 0)A(1, 0, 0)B〉, |Ψ(II)

5 〉 = |(0, 1, 0)A(1, 1, 0)B〉. (7.175)

The spectator atom B is in the state |2S1/2〉, which is preserved in the transitions

|Ψ(I)
1 〉 → |Ψ

(I)
4 〉 and |Ψ(I)

2 〉 → |Ψ
(I)
5 〉 whereas the state |2P1/2〉 of the spectator atom B

is preserved in the transitions |Ψ(II)
1 〉 → |Ψ

(II)
4 〉 and |Ψ(II)

2 〉 → |Ψ
(II)
5 〉. The state |Ψ(II)

4 〉

is energetically degenerate with |Ψ(II)
8 〉 and coupled each other by the first order vdW

interaction −2V , i.e.,

〈Ψ(II)
4 |HvdW|Ψ(II)

8 〉 = −2V . (7.176)

Same thing happens for |Ψ(II)
2 〉 which is degenerate to |Ψ(II)

10 〉 and |Ψ(II)
5 〉 which is

degenerate to |Ψ(II)
9 〉 and |Ψ(II)

12 〉, i.e.,

〈Ψ(II)
2 |HvdW|Ψ(II)

10 〉 = −2V , (7.177)

〈Ψ(II)
5 |HvdW|Ψ(II)

9 〉 = 〈Ψ(II)
5 |HvdW|Ψ(II)

12 〉 = −2V . (7.178)



219

Interesting thing happens in the transition |Ψ(I)
1 〉 → |Ψ

(I)
4 〉 as the state |Ψ(I)

1 〉 is non-

degenerate. Here is the detailed calculation of the energy ∆E
Ψ

(I)
1

.

∆E
Ψ

(I)
1

= lim
ε→0
〈Ψ(I)

1 |H
(ε)
eff |Ψ

(I)
1 〉 = lim

ε→0
〈Ψ(I)

1 |H1 ·

(
1

E
0,Ψ

(I)
1
−H0 + ε

)
·H1|Ψ(I)

1 〉

= lim
ε→0

∑
m

∑
n

〈Ψ(I)
1 |H1|m〉〈m|

1

E
0,Ψ

(I)
1
−H0 + ε

|n〉〈n|H1|Ψ(I)
1 〉

= lim
ε→0

∑
k=9,11,12

〈Ψ(I)
k |

1

E
0,Ψ

(I)
1
−H0 + ε

|Ψ(I)
k 〉〈Ψ

(I)
1 |H1|Ψ(I)

k 〉〈Ψ
(I)
k |H1|Ψ(I)

1 〉

=
(−V)2

2L − 9
2
H− 1

2
H

+
(−2V)2

2L − 9
2
H− 1

2
H

+
(−V)2

2L − 9
2
H− 1

2
H

=
6V2

2L − 5H
. (7.179)

The state |Ψ(I)
4 〉 is energetically degenerate to the |Ψ(I)

2 〉. However, the degenerate

states are not coupled directly. So, the first order vdW shift is absent. We want to

determine the matrix H2,4 given by

H2,4 = lim
ε→0

 〈Ψ(I)
2 |H

(ε)
eff |Ψ

(I)
2 〉 〈Ψ

(I)
2 |H

(ε)
eff |Ψ

(I)
4 〉

〈Ψ(I)
4 |H

(ε)
eff |Ψ

(I)
2 〉 〈Ψ

(I)
4 |H

(ε)
eff |Ψ

(I)
4 〉

 . (7.180)

Here, we have used a new symbol H to denote the Hamiltonian matrix H2,4 instead

of H2,4 just to distinguish the matrix (7.180) from (7.167). The new symbol does

not carry new physical meaning. Following the same procedure which we applied

to calculate H2,4 in the subspace (II) of the Fz = +1 manifold, we can easily the

calculate the Hamiltonian matrix H2,4 in the subspace (I) of the Fz = 0 manifold

which yields

H2,4 =

 V2

L−H + 4V2

2L−H
V2

−L+H

V2

−L+H
V2

L−H + 4V2

2L−H

 . (7.181)
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The eigenvalues and the eigenvectors corresponding to the Hamiltonian matrix H2,4

are

E±2,4 =
V2

L −H
+

4V2

2L −H
± V2

−L+H
, (7.182a)

|Ψ±2,4〉 =
1√
2

(
|Ψ(I)

2 〉 ± |Ψ
(I)
4 〉
)
. (7.182b)

Let us now analyze the state |Ψ(I)
5 〉 corresponding to the unperturbed energy 2L+ 3

2
H,

which is degenerate to the states |Ψ(I)
3 〉 and |Ψ(I)

6 〉. The Hamiltonian matrix H3,5,6 is

given by

H3,5,6 = lim
ε→0


〈Ψ(I)

3 |H
(ε)
eff |Ψ

(I)
3 〉 〈Ψ

(I)
3 |H

(ε)
eff |Ψ

(I)
5 〉 〈Ψ

(I)
3 |H

(ε)
eff |Ψ

(I)
6 〉

〈Ψ(I)
5 |H

(ε)
eff |Ψ

(I)
3 〉 〈Ψ

(I)
5 |H

(ε)
eff |Ψ

(I)
5 〉 〈Ψ

(I)
5 |H

(ε)
eff |Ψ

(I)
6 〉

〈Ψ(I)
6 |H

(ε)
eff |Ψ

(I)
3 〉 〈Ψ

(I)
6 |H

(ε)
eff |Ψ

(I)
5 〉 〈Ψ

(I)
6 |H

(ε)
eff |Ψ

(I)
6 〉

 . (7.183)

The elements of the matrix H3,5,6 can be calculated in a similar way to H1,3 in the

subspace (II) of the Fz = +1 manifold. We have,

(H3,5,6)11 = lim
ε→0
〈Ψ(I)

3 |H1 ·

(
1

E
0,Ψ

(I)
3
−H0 + ε

)
·H1|Ψ(I)

3 〉

= lim
ε→0

∑
k=7,8,9,10,11

〈Ψ(I)
k |

1

E
0,Ψ

(I)
3
−H0 + ε

|Ψ(I)
k 〉〈Ψ

(I)
3 |H1|Ψ(I)

k 〉〈Ψ
(I)
k |H1|Ψ(I)

3 〉

=
V2

2L+ 3H
+
V2

L+H
+

5V2

2L+H
. (7.184)

(H3,5,6)12 = lim
ε→0
〈Ψ(I)

3 |H1 ·

(
1

E
0,Ψ

(I)
3
−H0 + ε

)
·H1|Ψ(I)

5 〉

= lim
ε→0

∑
k=7,9

〈Ψ(I)
k |

1

E
0,Ψ

(I)
3
−H0 + ε

|Ψ(I)
k 〉〈Ψ

(I)
3 |H1|Ψ(I)

k 〉〈Ψ
(I)
k |H1|Ψ(I)

5 〉

=
2V2

2L+ 3H
+

2V2

2L+H
= (H3,5,6)21 . (7.185)
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(H3,5,6)13 = lim
ε→0
〈Ψ(I)

3 |H1 ·

(
1

E
0,Ψ

(I)
3
−H0 + ε

)
·H1|Ψ(I)

6 〉

= lim
ε→0

∑
k=7,8,10,11

〈Ψ(I)
k |

1

E
0,Ψ

(I)
3
−H0 + ε

|Ψ(I)
k 〉〈Ψ

(I)
3 |H1|Ψ(I)

k 〉〈Ψ
(I)
k |H1|Ψ(I)

6 〉

=
V2

2(L+H)
− V2

2(L+H)
− V2

2L+H
+

V2

2L+H

=0 = (H3,5,6)31 . (7.186)

(H3,5,6)22 = lim
ε→0
〈Ψ(I)

5 |H1 ·

(
1

E
0,Ψ

(I)
5
−H0 + ε

)
·H1|Ψ(I)

5 〉

= lim
ε→0

∑
k=7,9,12

〈Ψ(I)
k |

1

E
0,Ψ

(I)
5
−H0 + ε

|Ψ(I)
k 〉〈Ψ

(I)
5 |H1|Ψ(I)

k 〉〈Ψ
(I)
k |H1|Ψ(I)

5 〉

=
4V2

2L+ 3H
+

2V2

2L+H
. (7.187)

(H3,5,6)23 = lim
ε→0
〈Ψ(I)

5 |H1 ·

(
1

E
0,Ψ

(I)
5
−H0 + ε

)
·H1|Ψ(I)

6 〉

= lim
ε→0

∑
k=7,9,12

〈Ψ(I)
k |

1

E
0,Ψ

(I)
5
−H0 + ε

|Ψ(I)
k 〉〈Ψ

(I)
5 |H1|Ψ(I)

k 〉〈Ψ
(I)
k |H1|Ψ(I)

6 〉

=
2V2

2L+ 3H
+

2V2

2L+H
= (H3,5,6)32 . (7.188)

(H3,5,6)33 = lim
ε→0
〈Ψ(I)

6 |H1 ·

(
1

E
0,Ψ

(I)
6
−H0 + ε

)
·H1|Ψ(I)

6 〉

= lim
ε→0

∑
k=7,8,10,11,12

〈Ψ(I)
k |

1

E
0,Ψ

(I)
6
−H0 + ε

|Ψ(I)
k 〉〈Ψ

(I)
6 |H1|Ψ(I)

k 〉〈Ψ
(I)
k |H1|Ψ(I)

6 〉

=
V2

2L+ 3H
+
V2

L+H
+

5V2

2L+H
. (7.189)
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The matrix H3,5,6 takes the following form

H3,5,6 =


V2

2L+3H + V2

L+H + 5V2

2L+H
2V2

2L+3H + 2V2

2L+H 0

2V2

2L+3H + 2V2

2L+H
4V2

2L+3H + 2V2

2L+H
2V2

2L+3H + 2V2

2L+H

0 2V2

2L+3H + 2V2

2L+H
V2

2L+3H + V2

L+H + 5V2

2L+H

 .

(7.190)

If we apply the additional approximation H � L in Eq. (7.190), the matrix H3,5,6

reduces to the following simpler form:

H3,5,6 ≈


4V2

L
2V2

L 0

2V2

L
3V2

L
4V2

L

0 2V2

L
4V2

L

 . (7.191)

The eigenvalues of the the matrix (7.191) are

E
(1)
3,5,6 =

(
7 +
√

33
)
V2

2L
, (7.192a)

E
(2)
3,5,6 =

4V2

L
, (7.192b)

E
(3)
3,5,6 =

(
7−
√

33
)
V2

2L
, (7.192c)

with the corresponding eigenvectors

|Ψ(1)
3,5,6〉 =

1√
2(33−

√
33)

(
4|Ψ(I)

3 〉+ (
√

33− 1)|Ψ(I)
5 〉+ 4|Ψ(I)

6 〉
)
, (7.193a)

|Ψ(2)
3,5,6〉 =− 1√

2

(
|Ψ(I)

3 〉 − |Ψ
(I)
6 〉
)
, (7.193b)

|Ψ(3)
3,5,6〉 =

1√
2(33 +

√
33)

(
4|Ψ(I)

3 〉 − (
√

33 + 1)|Ψ(I)
5 〉+ 4|Ψ(I)

6 〉
)
. (7.193c)
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In the |Ψ(I)
1 〉 → |Ψ

(I)
4 〉 transition, the energy difference between the symmetric super-

positions 1√
2

(
|Ψ(I)

1 〉+ |Ψ(I)
2 〉
)

and 1√
2

(
|Ψ(I)

1 〉+ |Ψ(I)
4 〉
)

and the energy difference be-

tween the antisymmetric superpositions 1√
2

(
|Ψ(I)

1 〉 − |Ψ
(I)
2 〉
)

and 1√
2

(
|Ψ(I)

1 〉 − |Ψ
(I)
4 〉
)

are given in the Table 7.3). In the |Ψ(II)
1 〉 → |Ψ

(II)
4 〉 transition, the energy difference

Table 7.3: The energy differences between the symmetric superposition ∆E (+)
I

and the antisymmetric superposition ∆E (−)
I in the unit of the hyperfine split-

ting constant H. In this transition, the spectator atom is in the 2S1/2 state.

R ∆E (+)
I ∆E (−)

I

∞ 0 0
750 a0 0.054 21 0.018 16
500 a0 -0.249 93 -0.077 32
250 a0 21.732 18 -2.882 35

between the symmetric superpositions 1√
2

(
|Ψ(II)

1 〉+ |Ψ(II)
7 〉
)

and 1√
2

(
|Ψ(II)

4 〉+ |Ψ(I)
8 〉
)

and the energy difference between the antisymmetric superposition 1√
2

(
|Ψ(I)

1 〉 − |Ψ
(I)
7 〉
)

and 1√
2

(
|Ψ(I)

4 〉 − |Ψ
(I)
8 〉
)

are given in the Table 7.4.

Table 7.4: The energy differences between the symmetric superposition ∆E (+)
II

and the antisymmetric superposition ∆E (−)
II in the unit of the hyperfine split-

ting constant H. In this transition, the spectator atom is in the 2P1/2 state.

R ∆E (+)
II ∆E (−)

II

∞ 0 0
750 a0 -1.586 70 2.186 39
500 a0 -2.571 28 12.317 98
250 a0 -2.938 37 38.704 42

7.9.3. Manifold Fz = −1. The difference in the Hamiltonian matrix be-

tween the Fz = +1 and Fz = −1 manifolds tells us that we need a detailed analysis

of the Fz = −1 manifold as well. We have the following two states, in which the atom

A is in the hyperfine singlet

|ψ′(I)1 〉 = |(0, 0, 0)A(1, 1,−1)B〉 and |ψ′(II)1 〉 = |(0, 0, 0)A(0, 1,−1)B〉 (7.194)
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whereas the atom A is in the hyperfine triplet in the states

|ψ′(I)4 〉 = |(0, 1, 0)A(1, 1,−1)B〉 and |ψ′(II)4 〉 = |(0, 1, 0)A(0, 1,−1)B〉. (7.195)

The spectator atom, i.e., the atom B is in 2S1/2 state in the transition |ψ′(II)1 〉 → |ψ′(II)4 〉

while the spectator atom B is in the 2P1/2 state in the transition |ψ′(I)1 〉 → |ψ
′(I)
4 〉.

Interchanging the subscripts A and B of the states |ψ′(I)1 〉 and |ψ′(I)4 〉 we get |ψ′(I)6 〉 =

|(1, 1,−1)A(0, 1, 0)B〉 and |ψ′(I)7 〉 = |(1, 1,−1)A(0, 1, 0)B〉. Thus, the state |ψ′(I)1 〉 is

energetically degenerate to |ψ′(I)6 〉 and the state |ψ′(I)4 〉 is energetically degenerate to

|ψ′(I)7 〉. These states are coupled with each other through the off-diagonal elements V

indicating that the interaction energy is proportional to R−3. We have

〈ψ′(I)1 |HvdW|ψ′(I)6 〉 = V , (7.196a)

〈ψ′(I)4 |HvdW|ψ′(I)7 〉 = V . (7.196b)

The state |ψ′(II)1 〉 and |ψ′(II)4 〉 are not coupled to any other energetically degenerate

levels which implies that the first order vdW shift is absent. Hence we expect the

leading order shift to be of second order in V . Exchanging the subscripts A and B,

in the state |ψ′(II)1 〉, we get, |ψ′(II)2 〉. We now calculate the Hamiltonian H ′1,2 as we did

for H1,3 in Fz = +1 manifold.

H ′1,2 = lim
ε→0

 〈ψ′(II)1 |H(ε)
eff |ψ

′(II)
1 〉 〈ψ′(II)1 |H(ε)

eff |ψ
′(II)
2 〉

〈ψ′(II)2 |H(ε)
eff |ψ

′(II)
1 〉 〈ψ′(II)2 |H(ε)

eff |ψ
′(II)
2 〉

 . (7.197)

where

H
(ε)
eff = H1 ·

(
1

E
0,ψ
′(II)
1
−H0 + ε

)
·H1. (7.198)
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The elements of the matrix H ′1,2 can be calculated as we did for H1,3, which yields

H ′1,2 =

 5V2

2(L−H)
+ V2

2L−H
2V2

L−H

2V2

L−H
5V2

2(L−H)
+ V2

2L−H

 . (7.199)

This is same to that of matrix H1,3. The unperturbed energy corresponding to the

states |ψ′(II)1 〉 and |ψ′(II)2 〉 is 2L− 3
2
H. The matrix (7.199) has the following eigenvalues

and eigenvectors:

E ′±1,2 =
5V2

2(L −H)
+

V2

2L −H
± 2V2

L −H
, (7.200a)

|ψ′(II)±1,2 〉 =
1√
2

(
|ψ′(II)1 〉 ± |ψ′(II)2 〉

)
. (7.200b)

Let us now turn to the reference state |ψ′(II)4 〉. The state |ψ′(II)4 〉 is degenerate with

the state |ψ′(II)3 〉. The Hamiltonian matrix H ′4,3 is found to be identical to H2,4 which

reads

H ′4,3 =

 5V2

2(L+H)
+ V2

2L+H
2V2

L+H

2V2

L+H
5V2

2(L+H)
+ V2

2L+H

 (7.201)

with eigenvalues

E ′±4,3 =
5V2

2(L+H)
+

V2

2L+H
± 2V2

L+H
(7.202)

and eigenvectors

|ψ′(II)±4,3 〉 =
1√
2

(
|ψ′(II)4 〉 ± |ψ′(II)3 〉

)
. (7.203)

In the |ψ′(II)1 〉 → |ψ′(II)4 〉 transition, the symmetric superpositions are 1√
2

(
|ψ′(II)1 〉+ |ψ′(II)2 〉

)
and 1√

2

(
|ψ′(II)4 〉+ |ψ′(II)3 〉

)
whereas 1√

2

(
|ψ(II)

1 〉 − |ψ
(II)
2 〉
)

and 1√
2

(
|ψ′(II)4 〉 − |ψ′(II)3 〉

)
are
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the antisymmetric superpositions. The energy differences between the symmetric lev-

els ∆E
′(+)
II and the antisymmetric levels ∆E

′(−)
II can be read from the Table 7.2 with

the substitutions

|ψ(II)
1 〉 → |ψ

′(II)
1 〉, |ψ(II)

3 〉 → |ψ
′(II)
2 〉, |ψ(II)

2 〉 → |ψ
′(II)
4 〉, |ψ(II)

4 〉 → |ψ
′(II)
3 〉. (7.204)

Similarly, in the case of |ψ′(I)1 〉 → |ψ
′(I)
4 〉 transition, the energy differences between

the symmetric superposition 1√
2

(
|ψ′(I)1 〉+ |ψ′(I)6 〉

)
and 1√

2

(
|ψ′(I)4 〉+ |ψ′(II)7 〉

)
as well as

the antisymmetric superposition 1√
2

(
|ψ′(I)1 〉 − |ψ

′(I)
6 〉
)

and 1√
2

(
|ψ′(I)4 〉 − |ψ

′(II)
7 〉

)
can

be read from Table 7.1 with the substitutions

|ψ(I)
1 〉 → |ψ

′(I)
1 〉, |ψ

(I)
7 〉 → |ψ

′(I)
6 〉, |ψ

(I)
2 〉 → |ψ

′(I)
4 〉, |ψ

(II)
8 〉 → |ψ

′(II)
7 〉. (7.205)
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8. LONG-RANGE INTERACTION IN nS-1S SYSTEMS

8.1. DIRECT INTERACTION ENERGY IN THE vdW RANGE

In this Section , we concentrate on the interaction between two hydrogen atom

in which one of them is in the ground state, and the other one is in the higher excited

state of the atom. In such a system, an extra contribution to the interaction energy

naturally arises as the Wick-rotated contour enclosed poles. The source of the poles

is the low-lying virtual states of the reference atom available by a dipole transition.

We here focus on the nS-1S system with n = 3, 4, 5. We refer to Ref. [75] for a

detailed analysis of nS-1S systems for 3 ≤ n ≤ 12.

The 1S-state is a nondegenerate state while the nS-state has nP -states as its

quasi-degenerate neighbors. The state corresponding to the |nP1/2〉 is shifted from

the nS-state by the Lamb shift Ln and the state corresponding to the |nP3/2〉 is

shifted from the nS-state by the fine structure Fn i.e.

E(nS1/2)− E(nP1/2) ≡ Ln, (8.1a)

E(nP3/2)− E(nS1/2) ≡ Fn. (8.1b)

The Lamb shift and the fine structure of hydrogen for n = 3, 4, and 5 can be found

in Refs. [76; 77; 78]. In the units of Hartree energy, Eh, Ln and Fn, for 3 ≤ n ≤ 5,

are given as

L3 = 4.78× 10−8Eh , F3 = 4.46× 10−7Eh , (8.2a)

L4 = 2.02× 10−8Eh , F4 = 1.88× 10−7Eh , (8.2b)

L5 = 9.82× 10−9Eh , F5 = 9.45× 10−8Eh. (8.2c)
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A few more values of Ln and Fn can be found in Refs. [6; 51]. Notice that, Fn ≈ 10Ln.

Furthermore, both the Lamb shift, Ln and the fine structure splittings, Fn decreases

approximately as 1/n3 as the principal quantum number n increases.

As oscillator strength of |nP1/2〉 and |nP3/2〉 states with respect to the nS

state are distributed in a ratio 1
3
÷ 2

3
, the matrix element P nS(ω) is given by

P nS(ω) =
e2

9

3∑
i=1

∑
µ

|〈n, 0, 0|xi|n, `,m〉|2

−Ln + ~ω − iε
+

2e2

9

3∑
i=1

∑
µ

|〈n, 0, 0|xi|n, `,m〉|2

Fn + ~ω − iε

=
e2

9

3∑
i=1

∑
µ

|〈n, 0, 0|xi|n, `,m〉|2
(

1

−Ln + ~ω − iε
+

2

Fn + ~ω − iε

)
. (8.3)

The polarizability to the nS state αnS(ω) is the sum of the matrix elements PnS(ω)

and PnS(−ω), thus the Wick-rotated form of the degenerate polarizability αnS(iω)

can be written as

αnS(iω) = P nS(iω) + P nS(−iω)

=
e2

9

3∑
i=1

∑
µ

|〈nS|xi|nP (m = µ)〉|2
(

−2Ln
(−Ln − iε)2 + (~ω)2

+
4Fn

(Fn − iε)2 + (~ω)2

)
.

(8.4)

We substitute Eq. (8.4) in the following expression

Wdirect

nS;1S(R) = − 3~
π(4πε0)2R6

 ∞∫
0

dω αnS(iω)α1S(iω)

 , (8.5)

to determine the degenerate contribution to the interaction energy in vdW range,

Wdirect

nS;1S(R). Namely,

Wdirect

nS;1S(R) =− e2

3

~
π(4πε0)2R6

3∑
i=1

∑
µ

|〈nS|xi|nP (m = µ)〉|2
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×
∞∫

0

dω

(
−2Ln

(−Ln − iε)2 + (~ω)2
+

4Fn
(Fn − iε)2 + (~ω)2

)
α1S(iω)

=− e2

3

3∑
i=1

∑
µ

|〈nS|xi|nP (m = µ)〉|2 ~
π(4πε0)2R6

α1S(0)

(
π

~
+

2π

~

)

=−
3∑
i=1

∑
µ

|〈nS|xi|nP (m = µ)〉|2 e2

(4πε0)2R6

9

2

(
~

αmc

)2
e2

α2mc2

=− 9

2

3∑
i=1

∑
µ

|〈nS|xi|nP (m = µ)〉|2
(

e2

4πε0~c

)2

mc2 1

R6

(
~

αmc

)4

=− 9

2

3∑
i=1

∑
µ

|〈nS|xi|nP (m = µ)〉|2Eh
a4

0

R6
. (8.6)

Here, we have used α = e2/(4πε0~c) and a0 = ~/(αmc). The nondegenerate con-

tribution to vdW interaction W̃nS;1S(R) arising due to the virtual kP states, where

k ≥ n, can be calculated numerically using

W̃direct
nS;1S(R) = − 3~

π(4πε0)2R6

∞∫
0

dω α̃nS(iω)α1S(iω). (8.7)

Then, we get the Wick-rotated contribution as the sum

Wdirect
nS;1S(R) =Wdirect

nS;1S(R) + W̃direct
nS;1S(R). (8.8)

In the short range limit, the direct pole term, Pdirect
nS;1S(R), is given by

Pdirect
nS;1S(R) = − 2e2

(4πε0)2R6

∑
m

α1S

(
ω =

EmP − EnS
~

)∑
i

|〈nS|xi|mP 〉|2. (8.9)

The pole term also follows the R−6 power law in the vdW range.

8.1.1. 3S-1S System. For the 3S-1S system, we have

3∑
i=1

∑
µ

|〈3S|xi|3P (m = µ)〉|2 = 162a2
0. (8.10)
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Thus, the degenerate contribution Wdirect

3S;1S(R) reads

Wdirect

3S;1S(R) = −9

2
× 162 a2

0Eh
a4

0

R6
= −729Eh

(a0

R

)6

. (8.11)

The nondegenerate contribution W̃direct
3S;1S(R) is calculated numerically using

W̃direct
3S;1S(R) = − 3~

π(4πε0)2R6

∞∫
0

dω α̃3S(iω)α1S(iω). (8.12)

As usual, α̃3S(iω) is the sum α̃3S(iω) = P̃3S(iω)+P̃3S(−iω), where the matrix element

Q3S(±iω) in terms of frequency, can be acquired replacing t = (1± i18~ω/(α2mc2))
−1/2

in the matrix element derived in section (3.4.3). The numerical calculation yields

W̃direct
3S;1S(R) = −180.320 073 947Eh

(ao
R

)6

. (8.13)

The sum of the Wdirect

3S;1S(R) and W̃direct
3S;1S(R) is the total contribution due to the Wick-

rotated term, Wdirect
3S;1S(R), which reads

Wdirect
3S;1S(R) =Wdirect

3S;1S(R) + W̃direct
3S;1S(R) = −729Eh

(a0

R

)6

− 180.320 073 947Eh

(a0

R

)6

= −909.320 073 947Eh

(a0

R

)6

. (8.14)

The pole term, Pdirect
3S;1S(R), arises due to the presence of the virtual 2P state, which

reads

Pdirect
3S;1S(R) = − 2 e2

3(4πε0)2R6

∑
±,k

e2〈3S|xi|2P 〉〈2P |xi|3S〉〈1S|xj|k〉〈k|xj|1S〉
E1S ± (E2P − E3S)

= − 2e2

(4πε0)2R6
α1S

(
ω =

E2P − E3S

~

) ∑
i

〈3S|xi|2P 〉〈2P |xi|3S〉

= − 2e2

(4πε0)2R6
α1S(ω = −5α2mc2

72~
)
∑
i

|〈3S|xi|2P 〉|2
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= − 2e2

(4πε0)2R6

(
Q1S(t =

6√
41

) +Q1S(t =
6√
31

)

)
215 × 38 ~2

512 α2m2c2

= − 2

R6
~2c2α2 × 4.632338310 ~2

α4m3c4
× 215 × 38 a2

0

512

= −8.158497517Eh

(a0

R

)6

. (8.15)

In the second line of Eq. (8.15), we have used ω = −α2mc2/(8~) + α2mc2/(18~) =

−5α2mc2/(72~) for ω in the expression t = 1/
√

1± E(n=1)/(~ω) to calculate the

corresponding values of the P-matrix element. On the fifth line of Eq. (8.15), we

have used Eh = α2mc2 and a0 = ~/(αmc) to express our result in terms of the

Hartree energy and the Bohr radius.

The total vdW interaction to direct term, Edirect
3S;1S(R), is the sum

Edirect
3S;1S(R) =Wdirect

3S;1S(R) + Pdirect
3S;1S(R)

= −909.320 073 947Eh

(a0

R

)6

− 8.158497517Eh

(a0

R

)6

= −917.478 571 464Eh

(a0

R

)6

. (8.16)

8.1.2. 4S-1S System. For the 4S-1S system, we have

3∑
i=1

∑
µ

|〈4S|xi|4P (m = µ)〉|2 = 540a2
0. (8.17)

Thus, the degenerate contribution Wdirect

4S;1S(R) reads

Wdirect

4S;1S(R) =− 9

2

3∑
i=1

∑
µ

|〈4S|xi|4P (m = µ)〉|2Eh
a4

0

R6

=− 9

2
× 540 a2

0Eh
a4

0

R6
= −2430Eh

(a0

R

)6

. (8.18)
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The nondegenerate contribution W̃direct
4S;1S(R) is calculated numerically using

W̃direct
4S;1S(R) = − 3~

π(4πε0)2R6

∞∫
0

dω α̃4S(iω)α1S(iω), (8.19)

which yields

W̃direct
4S;1S(R) == −415.860 208 974Eh

(a0

R

)6

. (8.20)

On the other hand, the pole term, Pdirect
4S;1S(R), is given by

Pdirect
4S;1S(R) =− 2e2

(4πε0)2R6

∑
2≤k<4

α1S

(
ω =

EkP − E4S

~

)
×
∑
i

|〈4S|xi|kP 〉|2

=− 2e2

(4πε0)2R6
α1S

(
ω =

E2P − E4S

~

)
221 a2

0

315

− 2e2

(4πε0)2R6
α1S

(
ω =

E3P − E4S

~

)
229 × 37 × 132 a2

0

716

=− 55.313 793 349Eh

(a0

R

)6

. (8.21)

Finally, the total contribution, Edirect
4S;1S(R), reads

Edirect
4S;1S(R) =Wdirect

4S;1S(R) + Pdirect
4S;1S(R) =Wdirect

4S;1S(R) + W̃direct
4S;1S(R) + Pdirect

4S;1S(R)

= −2901.174 002 323Eh

(a0

R

)6

. (8.22)

8.1.3. 5S-1S System.

Wdirect

5S;1S(R) =− 9

2

3∑
i=1

∑
µ

|〈5S|xi|5P (m = µ)〉|2Eh
a4

0

R6

=− 9

2
× 1350 a2

0Eh
a4

0

R6
= −6075Eh

(a0

R

)6

. (8.23)
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The nondegenerate contribution W̃direct
5S;1S(R) is calculated numerically using

W̃direct
5S;1S(R) = − 3~

π(4πε0)2R6

∞∫
0

dω α̃5S(iω)α1S(iω), (8.24)

which yields

W̃direct
5S;1S(R) = −797.620 619 336Eh

(a0

R

)6

. (8.25)

On the other hand, the pole term, Pdirect
5S;1S(R), is given by

Pdirect
5S;1S(R) =− 2e2

(4πε0)2R6

∑
2≤k<5

α1S

(
ω =

EkP − E5S

~

)
×
∑
i

|〈5S|xi|kP 〉|2

=− 2e2

(4πε0)2R6
α1S

(
ω =

E2P − E5S

~

)
215 × 33 × 59 a2

0

716

− 2e2

(4πε0)2R6
α1S

(
ω =

E3P − E5S

~

)
37 × 59 × 112 a2

0

239

− 2e2

(4πε0)2R6
α1S

(
ω =

E4P − E5S

~

)
222 × 510 × 14472 a2

0

339

=− 199.631 309 749Eh

(a0

R

)6

. (8.26)

The total contribution, Edirect
5S;1S(R), is the sum

Edirect
5S;1S(R) =Wdirect

5S;1S(R) + Pdirect
5S;1S(R) =Wdirect

5S;1S(R) + W̃direct
5S;1S(R) + Pdirect

5S;1S(R), (8.27)

which yields

Edirect
5S;1S(R) = −7072.251 929 086Eh

(a0

R

)6

. (8.28)

In this range, both the Wick-rotated and the pole term are of the R−6 type. However,

the Wick-rotated term dominates over the pole term. Notice that higher the principal
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quantum number of the atom interacting with the ground state atom, larger the direct

term contribution to the interaction energy.

8.2. MIXING INTERACTION ENERGY IN THE vdW RANGE

Similar to the direct term, the mixing term contribution can be written as

Wmixing

nS;1S (R) =− αnS1S(0)
3∑
i=1

|〈nS|xi|nP 〉〈nP |xi|1S〉Eh
a4

0

R6
, (8.29)

W̃mixing
nS;1S (R) =− 3~

π(4πε0)2R6

∫ ∞
0

dω αnS1S(iω)α̃nS1S(iω), (8.30)

Pmixing
nS;1S (R) =− 2e2

(4πε0)2R6

∑
m

αnS1S

(
ω =

EmP − EnS
~

)
×
∑
i

〈nS|xi|mP 〉〈mP |xi1S〉, (8.31)

such that,

Emixing
nS;1S =Wmixing

nS;1S (R) + Pmixing
nS;1S (R) =Wmixing

nS;1S (R) + W̃mixing
nS;1S (R) + Pmixing

nS;1S (R). (8.32)

8.2.1. 3S-1S System. Proceeding as in the case of 2S-1S system, the mix-

ing P-matrix element between 1S and 3S states for the generalized energy variable

ν can be formulated as

P3S1S(ν) =
e2~2

α4m3c4

[
9
√

3ν2

64(ν − 3)4(ν + 3)3 (ν2 − 1)2

[
16975ν9 + 6419ν8 − 66744ν7

− 20952ν6 + 270ν5 − 810ν4 − 3888ν3 + 11664ν2 + 2187ν − 6561
]

−
2304
√

3ν9 (7ν2 − 27) 2F1

(
1,−ν; 1− ν; ν

2−4ν+3
ν2+4ν+3

)
(ν2 − 9)4 (ν2 − 1)2

]
, (8.33)

where ν = nref t. The quantum number nref is 1 for the E1S and 3 for the E3S. There

are three sources which contribute to the vdW interaction, namely, the nondegenerate
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contribution arising from the nP states with principal quantum number n ≥ 4, the

input from the 3P states which are degenerate with the 3S state, and the pole term

arises due to the presence of the 2P states which are accessible from 3S states by a

dipole transition. The first two of them are of Wick-rotated type contribution, and

the third one is the pole type contribution. The Wick-rotated mixing polarizability

α3S1S(iω) is the sum
∑
±
P3S1S(±iω). The contribution of the degenerate 3P levels to

the mixing interaction energy is given by

Wmixing

3S;1S (R) = − 3~
2π(4πε0)2R6

2e2

9

3∑
j=1

1∑
µ=−1

〈1S|xj|3P (m = µ)〉 · 〈3P (m = µ)|xj|3S〉

lim
ε→0

lim
L3→0

lim
F3→0

∫ ∞
−∞

dω α3S1S(iω)

[
−L3

(−L3 − iε)2 + (~ω)2
+

2F3

(F3 − iε)2 + (~ω)2

]
=− ~ e2

3π(4πε0)2R6

3∑
j=1

1∑
µ=−1

〈1S|xj|3P (m = µ)〉 · 〈3P (m = µ)|xj|3S〉

× α3S1S(0)(
π

~
+

2π

~
)

=− e2

(4πε0)2R6
α3S1S(0)

3∑
j=1

1∑
µ=−1

〈1S|xj|3P (m = µ)〉 · 〈3P (m = µ)|xj|3S〉

=− e2

(4πε0)2R6

(
− 621

√
3~2e2

512α4m3c4

)(
− 243

√
3~2

64α2m2c2

)
=− 39 × 23

215
Eh

(a0

R

)6

= −13.815 582 275Eh

(a0

R

)6

. (8.34)

The contribution due to nondegenerate nP states for n ≥ 4

W̃mixing
3S;1S (R) = − 3~

π(4πε0)2R6

∫ ∞
0

dω α3S1S(iω)α3S1S(iω), (8.35)

is evaluated numerically which gives

W̃mixing
3S;1S (R) = 5.588 159 518Eh

(a0

R

)6

. (8.36)
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Thus, the Wick-rotated type contribution is given by

Wmixing
3S;1S (R) =Wmixing

3S;1S (R) + W̃mixing
3S;1S (R)

=− 8.227 422 757Eh

(a0

R

)6

. (8.37)

The Wick-rotated contour enclosed a pole at ~ω = ± [(E2P − E3S)− iε] in the com-

plex plane. The pole term contribution reads

Pmixing
3S;1S (R) =− 2 e4

3(4πε0)2R6

∑
±,k

〈3S|xi|2P 〉 · 〈2P |xi|1S〉 〈1S|xj|k〉 · 〈k|xj|3S〉
E1S ± (E2P − E3S)

=− 2 e2

(4πε0)2R6
α3S1S

(
E2P − E3S

~

) 3∑
j=1

〈1S|xj|2P 〉 · 〈2P |xj|3S〉

=− 2 e2

(4πε0)2R6

(
−2. 159 394 992 5916 ~2e2

α4m3c4

)(
215 ~2

56
√

3α2m2

)
= 5.229 153 219Eh

(a0

R

)6

. (8.38)

The total contribution of the mixing vdW interaction is the sum

Emixing
3S;1S (R) =Wmixing

3S;1S (R) + Pmixing
3S;1S (R)

=− 2.998 269 538Eh

(a0

R

)6

. (8.39)

We do get the same result taking the average energy

Eavg =
E1S + E3S

2
, (8.40)

as the reference energy as we did for the 2S-1S system and calculating the mixing

vdW coefficient using the Chibisov approach.

8.2.2. 4S-1S System. We can now move on to the higher energy states.

For the 4S-1S system, the nondegenerate and the degenerate vdW interactions are
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given by

W̃mixing
4S;1S (R) = − 3~

π(4πε0)2R6

∫ ∞
0

dω α4S1S(iω)α4S1S(iω)

= 3.063 629 331 906Eh

(a0

R

)6

, (8.41)

and

Wmixing

4S;1S (R) =− 3~
2π(4πε0)2R6

2e2

9

3∑
j=1

1∑
µ=−1

〈1S|xj|4P (m = µ)〉

× 〈4P (m = µ)|xj|4S〉α4S1S(0)(3π)

=− 226 × 36

514
Eh

(a0

R

)6

= −8.015 439 766 487Eh

(a0

R

)6

. (8.42)

Thus, the Wick-rotated term of the interaction energy,Wmixing
4S;1S (R), in the vdW range

is given by

Wmixing
4S;1S (R) = W̃mixing

4S;1S (R) +Wmixing

4S;1S (R) = −4.951 810 434 581Eh

(a0

R

)6

. (8.43)

The Wick-rotated contour picks up the poles at ~ω = − (E2P − E4S) + iε and ~ω =

− (E3P − E4S) + iε, which give rise the pole term contributions, Pmixing
4S;1S (R). In the

short range limit, the Pmixing
4S;1S (R) also follows the R−6 power law. We have,

Pmixing
4S;1S (R) =− 2 e4

3(4πε0)2R6

∑
±,k

〈4S|xi|2P 〉 · 〈2P |xi|1S〉 〈1S|xj|k〉 · 〈k|xj|4S〉
E1S ± (E2P − E4S)

− 2 e4

3(4πε0)2R6

∑
±,k

〈4S|xi|3P 〉 · 〈3P |xi|1S〉 〈1S|xj|k〉 · 〈k|xj|4S〉
E1S ± (E3P − E4S)

=− 2 e2

(4πε0)2R6
α4S1S

(
E2P − E4S

~

) 3∑
j=1

〈1S|xj|2P 〉 · 〈2P |xj|4S〉

− 2 e2

(4πε0)2R6
α4S1S

(
E3P − E4S

~

) 3∑
j=1

〈1S|xj|3P 〉 · 〈3P |xj|4S〉
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=− 2 e2

(4πε0)2R6

(
−1.181 398 063 825 ~2e2

α4m3c4

)(
218 ~2

312 α2m2

)
− 2 e2

(4πε0)2R6

(
−1.135 676 172 453 ~2e2

α4m3c4

)(
28 × 37 × 13 ~2

78 α2m2

)
=4.033 187 464 293Eh

(a0

R

)6

. (8.44)

This yields

Emixing
4S;1S (R) =Wmixing

4S;1S (R) + Pmixing
4S;1S (R) = −0.918 622 970 288Eh

(a0

R

)6

. (8.45)

8.2.3. 5S-1S System. Similarly, for the 5S-1S system, we obtain

Wmixing

5S;1S (R) =− 3~
2π(4πε0)2R6

2e2

9

3∑
j=1

1∑
µ=−1

〈1S|xj|5P (m = µ)〉

× 〈5P (m = µ)|xj|5S〉α5S1S(0)(3π)

=− 2× 59 × 7

314
Eh

(a0

R

)6

= − 5.716 898 855 084Eh

(a0

R

)6

, (8.46)

W̃mixing
5S;1S (R) =2.006 704 605 106Eh

(a0

R

)6

. (8.47)

The contribution of the poles at ~ω = − (E2P − E5S) + iε, ~ω = − (E3P − E5S) + iε

and ~ω = − (E4P − E5S) + iε to the interaction energy is given by

Pmixing
5S;1S (R) = − 2 e4

3(4πε0)2R6

∑
m=2,3,4

∑
±,k

〈5S|xi|mP 〉〈mP |xi|1S〉〈1S|xj|k〉〈k|xj|5S〉
E1S ± (EmP − E5S)

=− 2 e2

(4πε0)2R6

∑
m=2,3,4

α5S1S

(
EmP − E5S

~

) 3∑
j=1

〈1S|xj|mP 〉 · 〈mP |xj|5S〉

=3.302 240 658 867Eh

(a0

R

)6

. (8.48)

The total mixing vdW coefficient for the 5S-1S system is the sum

Emixing
5S;1S (R) =Wmixing

5S;1S (R) + Pmixing
5S;1S (R) = −0.407 953 591 110Eh

(a0

R

)6

. (8.49)
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Calculation shows that higher the principal quantum number of the atom interacting

with the ground state atom the smaller the mixing type contribution to the interaction

energy.

8.3. DIRECT INTERACTION ENERGY IN THE CP RANGE

The degenerate contribution, Wdirect

nS;1S(R), calculated in the vdW range is still

valid in the CP range as well. However, the non-degenerate contribution, W̃direct
nS;1S(R),

and the pole term, Pdirect
nS;1S(R), change appreciably. The integrand in

W̃direct
nS;1S(R) =− ~

πc4(4πε0)2

∫ ∞
0

dω α1S(iω) α̃nS(iω)
ω4e−2ωR/c

R2[
1 + 2

( c

ωR

)
+ 5

( c

ωR

)2

+ 6
( c

ωR

)3

+ 3
( c

ωR

)4
]
. (8.50)

is damped by oscillations in ω. The contribution of the non vanishing frequencies in

the polarizabilities is exponentially suppressed which yields

W̃direct
nS;1S(R) =− ~

πc4(4πε0)2
α1S(0) α̃nS(0)

∫ ∞
0

dω
ω4e−2ωR/c

R2[
1 + 2

( c

ωR

)
+ 5

( c

ωR

)2

+ 6
( c

ωR

)3

+ 3
( c

ωR

)4
]

=− 23

4πR7

~c
(4πε0)2

α1S(0) α̃nS(0). (8.51)

Here, we have substituted the value of the integral

∫ ∞
0

dω
ω4e−2ωR

R2

[
1 + 2

( c

ωR

)
+ 5

( c

ωR

)2

+ 6
( c

ωR

)3

+ 3
( c

ωR

)4
]

=
23c5

4R7
. (8.52)

Let us now substitute

α1S(0) =
9e2~2

2α4m3c4
, α̃nS(0) =

e2~2

α4m3c4
× 〈α̃nS(0)〉a.u., (8.53)
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where 〈α̃nS(0)〉a.u. is the value of the static polarizability α̃nS(0) in atomic units.

Thus, Eq. (8.54) yields

W̃direct
nS;1S(R) =− 207

8πα
〈α̃nS(0)〉a.u.Eh

(a0

R

)7

. (8.54)

Note that, the nondegenerate contribution to the interaction energy in the CP range

has the R−7 dependence. The prefactor of the polarizabilities 〈α̃nS(0)〉a.u. are given

as

〈α̃3S(0)〉a.u. =
2025

2
, 〈α̃4S(0)〉a.u. = 4992, 〈α̃5S(0)〉a.u. =

35625

2
. (8.55)

Thus, the nondegenerate contribution to the direct interaction energy, W̃direct
nS;1S(R), for

n = 3, 4, 5 reads

W̃direct
3S;1S(R) =− 419175

16πα
Eh

(a0

R

)7

, (8.56a)

W̃direct
4S;1S(R) =− 129168

πα
Eh

(a0

R

)7

, (8.56b)

W̃direct
5S;1S(R) =− 7374375

16πα
Eh

(a0

R

)7

. (8.56c)

Introducing a new dimensionless variable ρ = R/a0, the Wick-rotated term for the

interaction energy are given as

Wdirect
3S;1S(R) =Wdirect

3S;1S(R) + W̃direct
3S;1S(R) =− 729

Eh
ρ6
− 419175

16πα

Eh
ρ7
, (8.57a)

Wdirect
4S;1S(R) =Wdirect

4S;1S(R) + W̃direct
4S;1S(R) =− 2430

Eh
ρ6
− 129168

πα

Eh
ρ7
, (8.57b)

Wdirect
5S;1S(R) =Wdirect

5S;1S(R) + W̃direct
5S;1S(R) =− 6075

Eh
ρ6
− 7374375

16 πα

Eh
ρ7
. (8.57c)

Let us now look into the pole term contribution, Pdirect
nS;1S(R), in the CP range. Below

the 3S energy level, we have a quasi-degenerate 3P and a low lying 2P levels. The
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Wick-rotation of the integration contour along the positive real axis to the imaginary

axis picks up two poles at ω = −E3P,3S/~ + iε and ω = −E2P,3S/~ + iε. The contri-

bution of the quasi degenerate level to the pole term is negligible in comparison to

the contribution coming from the low lying 2P level. Thus the direct term for 3S-1S

system reads

Pdirect
3S;1S(R) = − 2

3(4πε0)2R6

∑
µ

|〈3S|e~r|2P (m = µ)|2 α1S

(
E2P,3S

~

)

×

{
cos

(
2E2P,3SR

~c

)[
3− 5

(
E2P,3SR

~c

)2

+

(
E2P,2SR

~c

)4
]

+
2E2P,3SR

~c
sin

(
2E2P,3SR

~c

)[
3−

(
E2P,3SR

~c

)2 ]}

=− 2 e2

3(4πε0)2R6

215 × 38 a2
0

512
α1S

(
5Eh
72~

){
cos

(
5EhR

36 ~c

)[
3− 5

(
5EhR

72 ~c

)2

+

(
5EhR

72 ~c

)4 ]
+

5EhR

36 ~c
sin

(
5EhR

36 ~c

)[
3−

(
5EhR

72 ~c

)2 ]}

=− 215 × 38

512

e2a2
0

(4πε0)2R6
〈α1S〉a.u.

(
5Eh
72~

)
e2~2

α4m3c4

{
cos

(
5EhR

36 ~c

)[
3− 5

×
(

5EhR

72 ~c

)2

+

(
5EhR

72 ~c

)4 ]
+

5EhR

36 ~c
sin

(
5EhR

36 ~c

)[
3−

(
5EhR

72 ~c

)2 ]}
,

(8.58)

where 〈α1S〉a.u. represents value of the ground state polarizability in atomic units.

Recognizing that e2/(4πε0~c) = α, ~/(αmc) = a0, α2mc2 = Eh, and Eh/(~c) = α/a0,

we have

Pdirect
3S;1S(R) = −215 × 38

512

Eha
6
0

R6
〈α1S〉a.u.

(
5Eh
72~

){
cos

(
5αR

36 a0

)[
3− 5

(
5αR

72 a0

)2

+

(
5αR

72 a0

)4 ]
+

5αR

36 a0

sin

(
5αR

36 a0

)[
3−

(
5αR

72 a0

)2 ]}
, (8.59)
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In terms of the new variable ρ = R/a0, Eq. (8.59) gives

Pdirect
3S;1S(R) = −215 × 38

512

Eh
ρ6
〈α1S〉a.u.

(
5Eh
72~

){
cos

(
5αρ

36

)[
3− 5

(
5αρ

72

)2

+

(
5αρ

72

)4 ]
+

5αρ

36
sin

(
5αρ

36

)[
3−

(
5αρ

72

)2 ]}
. (8.60)

Figure 8.1 shows a comparison between an absolute value of the Wick-Rotated and

the pole term for direct type contribution of the 3S-1S system. Initially, the Wick-

rotated term dominates the pole term, however, as interatomic distance increases the

pole type contribution dominates the Wick-rotated type contribution.

Figure 8.1: Distance dependent direct-type interaction energy in the 3S-1S system in
the CP range. The vertical axis is an absolute value of the interaction energy divided
by the Plank constant. We have used the logarithmic scale on the vertical axis. The
horizontal axis is the interatomic separation in units of Bohr’s radius. The arrow
indicates the minimum distance where the pole term and the Wick-rotated term are
equal.

In the 4S-1S system, the Wick-rotated integration contour encloses three

poles, namely, ω = −E4P,4S/~ + iε, ω = −E3P,4S/~ + iε and ω = −E2P,4S/~ + iε.
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The 4P -level shifts only by the Lamb shift from the reference state, i.e., 4S-level.

Thus, the contribution of the quasi degenerate 4P -level to the pole term is negligible

in comparison to the contribution coming from the low lying 3P and 2P levels. Thus,

the direct pole term for 4S-1S system reads

Pdirect
4S;1S(R) = − 2

3(4πε0)2R6

∑
µ

|〈4S|e~r|3P (m = µ)|2 α1S

(
E3P,4S

~

)

×

{
cos

(
2E3P,4SR

~c

)[
3− 5

(
E3P,4SR

~c

)2

+

(
E3P,4SR

~c

)4
]

+
2E3P,4SR

~c
sin

(
2E3P,4SR

~c

)[
3−

(
E3P,4SR

~c

)2 ]}

− 2

3(4πε0)2R6

∑
µ

|〈4S|e~r|2P (m = µ)|2 α1S

(
E2P,4S

~

)

×

{
cos

(
2E2P,4SR

~c

)[
3− 5

(
E2P,4SR

~c

)2

+

(
E2P,4SR

~c

)4
]

+
2E2P,4SR

~c
sin

(
2E2P,4SR

~c

)[
3−

(
E2P,4SR

~c

)2 ]}

=− 2 e2

3(4πε0)2R6

229 × 37 × 132 a2
0

716
α1S

(
7Eh
288~

){
cos

(
7EhR

144 ~c

)[
3−

5

(
7EhR

288 ~c

)2

+

(
7EhR

288 ~c

)4 ]
+

7EhR

144 ~c
sin

(
7EhR

144 ~c

)[
3−

(
7EhR

288 ~c

)2 ]}

− 2 e2

3(4πε0)2R6

221 a2
0

315
α1S

(
3Eh
32~

){
cos

(
3EhR

16 ~c

)[
3− 5

(
3EhR

32 ~c

)2

+

(
3EhR

32 ~c

)4 ]
+

3EhR

16 ~c
sin

(
3EhR

16 ~c

)[
3−

(
3EhR

32 ~c

)2 ]}
. (8.61)

Using α1S(ω) = e2~2/(α4m3c4)×〈α1S〉a.u., replacing R/a0 by ρ, and recognizing that

e2/(4πε0~c) = α, ~/(αmc) = a0, α2mc2 = Eh, and Eh/(~c) = α/a0, we have

Pdirect
4S;1S(ρ) = −230 × 36 × 132

716

Eh
ρ6
〈α1S〉a.u.

(
7Eh
288~

){
cos

(
7αρ

144

)[
3−
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5

(
7αρ

288

)2

+

(
7αρ

288

)4 ]
+

7αρ

144
sin

(
7αρ

144

)[
3−

(
7αρ

288

)2 ]}

− 222

316

Eh
ρ6
〈α1S〉a.u.

(
3Eh
32~

){
cos

(
3αρ

16

)[
3− 5

(
3αρ

32

)2

+

(
3αρ

32

)4 ]
+

3αρ

16
sin

(
3αρ

16

)[
3−

(
3αρ

32

)2 ]}
. (8.62)

See Figure 8.2 for a comparison between the Wick-Rotated and the pole term for

direct type contribution of the 4S-1S system.

Figure 8.2: Distance dependent direct-type interaction energy in the 4S-1S system in
the CP range. The vertical axis is an absolute value of the interaction energy divided
by the Plank constant. We have used the logarithmic scale on the vertical axis. The
horizontal axis is the interatomic separation in units of Bohr’s radius. The arrow
indicates the point where the pole term becomes comparable to the Wick-rotated
term.
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We follow the same procedure as we did in the 4S-1S system to evaluate the

pole term contribution of the 5S-1S system, which yields

Pdirect
5S;1S(ρ) = −223 × 510 × 14472

340

Eh
ρ6
〈α1S〉a.u.

(
9Eh
800~

){
cos

(
9αρ

400

)[
3−

5

(
9αρ

800

)2

+

(
9αρ

800

)4 ]
+

9αρ

400
sin

(
9αρ

400

)[
3−

(
9αρ

800

)2 ]}

− 36 × 59 × 112

238

Eh
ρ6
〈α1S〉a.u.

(
8Eh
225~

){
cos

(
16αρ

225

)[
3−

5

(
8αρ

225

)2

+

(
8αρ

225

)4 ]
+

16αρ

225
sin

(
16αρ

225

)[
3−

(
8αρ

225

)2 ]}

− 216 × 32 × 59

716

Eh
ρ6
〈α1S〉a.u.

(
21Eh
200~

){
cos

(
21αρ

100

)[
3− 5

(
21αρ

200

)2

+

(
21αρ

200

)4 ]
+

21αρ

100
sin

(
21αρ

100

)[
3−

(
21αρ

200

)2 ]}
. (8.63)

See Figure 8.3 for a comparison between the Wick-Rotated and the pole term for

direct type contribution of the 5S-1S system.

Recall that the total interaction energy is the sum

Edirect
nS;1S(R) =Wdirect

nS;1S(R) + Pdirect
nS;1S(R). (8.64)

The Wick-rotated term is the sum of the degenerate part which follows R−6 and the

nondegenerate part which follows R−7 power law. The degenerate part dominates

over the nondegenerate one. On the other hand, the pole term has terms obeying

R−2, R−3, R−4, R−5,and R−6 power law. The pole term can also be expressed as

a sum of a cosine and a sine term. Notice that the contribution due to the pole

at ω = −E2P,nS/~ + iε is larger than the other pole at ω = −EmP,nS/~ + iε due

to the presence of low lying virtual mP -levels. So far the comparison between the

Wick-rotated term and the pole term is concerned, initially, the Wick-rotated term
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Figure 8.3: Distance dependent direct-type interaction energy in the 5S-1S system in
the CP range. The vertical axis is an absolute value of the interaction energy divided
by the Plank constant. We have used the logarithmic scale on the vertical axis. The
horizontal axis is the interatomic separation in units of Bohr’s radius. The arrow
indicates the point where the pole term becomes comparable to the Wick-rotated
term.

dominates the pole term. However, as the interatomic separation increases, the pole

term gradually becomes larger the Wick-rotated term as shown in Figures 8.1, 8.2

and 8.3. Not only nS-1S systems but also nD-1S systems have the same behavior

of Wick-rotated versus pole term dominance [79]. Notice the position of arrows in

Figures 8.1, 8.2 and 8.3. The arrow shifted to the larger value of R as the principal

quantum number of the atom interacting with the ground state increases. This leads

us to the conclusion that larger the value of n in nS-1S system longer it takes for the

pole term to dominate over the Wick-rotated term.
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8.4. MIXING INTERACTION ENERGY IN THE CP RANGE

Similar to the direct term contribution, the degenerate contribution,Wmixing

nS;1S (R),

calculated in the vdW range is still valid in the CP range as well. However, the non-

degenerate contribution, Ẽmaxing
nS;1S (R), and the pole term, Pdirect

nS;1S(R), are different than

the values in the vdW range. The approximation used for the nondegenerate polar-

izabilities for the direct term holds true also for the mixing term, i.e.,

αnS1S(ω) ≈ αnS1S(ω = 0), α̃nS1S(ω) = α̃nS1S(ω = 0). (8.65)

Thus the non-degenerate contribution, W̃maxing
nS;1S (R), reads

W̃mixing
nS;1S (R) =− ~

πc4(4πε0)2
αnS1S(ω = 0) α̃nS1S(ω = 0)

∫ ∞
0

dω
ω4e−2ωR/c

R2

×
[
1 + 2

( c

ωR

)
+ 5

( c

ωR

)2

+ 6
( c

ωR

)3

+ 3
( c

ωR

)4
]

=− 23

4πR7

~c
(4πε0)2

αnS1S(ω = 0) α̃nS1S(ω = 0). (8.66)

Writing

αnS1S(ω = 0) =
e2~2

α4m3c4
〈αnS1S〉a.u.(ω = 0), (8.67a)

α̃nS1S(ω = 0) =
e2~2

α4m3c4
〈α̃nS1S(0)〉a.u., (8.67b)

where 〈α̃nS1S(0)〉a.u. is the static nondegenerate the polarizability α̃nS1S(0) in atomic

units, Eq. (8.66) leads to

W̃mixing
nS;1S (R) =− 23

4πα
〈αnS1S〉a.u.(ω = 0) 〈α̃nS1S(0)〉a.u.Eh

(a0

R

)7

. (8.68)
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Substituting the corresponding polarizabilities, we have

W̃mixing
3S;1S (R) =− 23

4πα

(
−621

√
3

512

)
18225

√
3

512
Eh

(a0

R

)7

=
310 × 52 × 232

220

Eh
πα

(a0

R

)7

, (8.69)

W̃mixing
4S;1S (R) =− 23

4πα

(
−442368

390625

)
49348608

390625
Eh

(a0

R

)7

=
228 × 34 × 23× 251

516

Eh
πα

(a0

R

)7

, (8.70)

W̃mixing
5S;1S (R) =− 23

4πα

(
−4375

√
5

13122

)
1296875

√
5

13122
Eh

(a0

R

)7

=
511 × 7× 23× 83

24 × 316

Eh
πα

(a0

R

)7

. (8.71)

The total Wick-rotated contribution to the mixing term interaction is the sum

Wmixing
nS;1S (R) =Wmixing

nS;1S (R) + W̃mixing
nS;1S (R). (8.72)

Thus, we have

Wmixing
3S;1S (ρ) =− 39 × 23

215

Eh
ρ6

+
310 × 52 × 232

220

Eh
παρ7

, (8.73a)

Wmixing
4S;1S (ρ) =− 226 × 36

514

Eh
ρ6

+
228 × 34 × 23× 251

516

Eh
πα ρ7

, (8.73b)

Wmixing
5S;1S (ρ) =− 2× 59 × 7

314

Eh
ρ6

+
511 × 7× 23× 83

24 × 316

Eh
πα ρ7

. (8.73c)

Notice that the degenerate part which depends on ρ−6 dominates the nondegener-

ate part which follows R−7 power law. Determination of mixing type pole term,

Pmixing
nS;1S (R), follows the same type of algebra we used for the direct type pole term

Pdirect
nS;1S(R). For the 3S-1S system, the mixing type pole term Pmixing

3S;1S (R) is given by

Pmixing
3S;1S (R) = − 2

3(4πε0)2R6

∑
µ

〈3S|e~r|2P (m = µ)〉〈2P (m = µ)|e~r|1S〉
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× α3S1S

(
E2P,3S

~

){
cos

(
2E2P,3SR

~c

)[
3− 5

(
E2P,3SR

~c

)2

+

(
E2P,3SR

~c

)4 ]
+

2E2P,3SR

~c
sin

(
2
E2P,3SR

~c

)[
3−

(
E2P,3SR

~c

)2 ]}
. (8.74)

Substituting
∑

µ〈3S|~r|2P (m = µ)〉〈2P (m = µ)|~r|1S〉 = − 32768
46875

√
3
a2

0 and carrying out

few steps of algebra we get,

Pmixing
3S;1S (R) =

215
√

3

32 × 56

Eh
ρ6
αdl

3S1S

(
5Eh
72~

){
cos

(
5αρ

36

)[
3− 5

(
5αρ

72

)2

+

(
5αρ

72

)4 ]
+

5αρ

36
sin

(
5αρ

36

)[
3−

(
5αρ

72

)2 ]}
. (8.75)

The mixing type contribution to the pole term for 4S-1S system, Pmixing
4S;1S (R), reads

Pmixing
4S;1S (R) = − 2

3(4πε0)2R6

∑
µ

〈4S|e~r|3P (m = µ)〉〈3P (m = µ)|e~r|1S〉

×α4S1S

(
E3P,4S

~

){
cos

(
2E3P,4SR

~c

)[
3− 5

(
E2P,4SR

~c

)2

+

(
E3P,4SR

~c

)4 ]
+

2E3P,4SR

~c
sin

(
2
E3P,4SR

~c

)[
3−

(
E3P,4SR

~c

)2 ]}

− 2

3(4πε0)2R6

∑
µ

〈4S|e~r|2P (m = µ)〉〈2P (m = µ)|e~r|1S〉

×α4S1S

(
E2P,4S

~

){
cos

(
2E2P,4SR

~c

)[
3− 5

(
E2P,4SR

~c

)2

+

(
E2P,4SR

~c

)4 ]
+

2E2P,4SR

~c
sin

(
2
E2P,4SR

~c

)[
3−

(
E2P,4SR

~c

)2 ]}
. (8.76)

Substituting

∑
µ

〈4S|~r|3P (m = µ)〉〈3P (m = µ)|~r|1S〉 =
7278336

5764801
a2

0,

∑
µ

〈4S|~r|2P (m = µ)〉〈2P (m = µ)|~r|1S〉 =
262144

531441
a2

0,
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and carrying out few steps of algebra, we find

Pmixing
4S;1S (ρ) = −29 × 36 × 13

78

Eh
ρ6
〈α4S1S〉a.u.

(
7Eh
288~

){
cos

(
7αρ

144

)[
3− 5

(
7αρ

288

)2

+

(
7αρ

288

)4 ]
+

7αρ

144
sin

(
7αρ

144

)[
3−

(
7αρ

288

)2 ]}

− 219

313

Eh
ρ6
〈α4S1S〉a.u.

(
3Eh
32~

){
cos

(
3αρ

16

)[
3− 5

(
3αρ

32

)2

+

(
3αρ

32

)4 ]
+

3αρ

16
sin

(
3αρ

16

)[
3−

(
3αρ

32

)2 ]}
. (8.77)

Similarly, for the 5S-1S system, we have,

Pmixing
5S;1S (ρ) = −223 × 1447

319 × 5
√

5

Eh
ρ6
〈α5S1S〉a.u.

(
9Eh
800~

){
cos

(
9αρ

400

)[
3−

5

(
9αρ

800

)2

+

(
9αρ

800

)4 ]
+

9αρ

400
sin

(
9αρ

400

)[
3−

(
9αρ

800

)2 ]}

− 36 × 54 × 11
√

5

225

Eh
ρ6
〈α5S1S〉a.u.

(
8Eh
225~

){
cos

(
16αρ

225

)[
3−

5

(
8αρ

225

)2

+

(
8αρ

225

)4 ]
+

16αρ

225
sin

(
16αρ

225

)[
3−

(
8αρ

225

)2 ]}

− 216 × 54 ×
√

5

34 × 78

Eh
ρ6
〈α5S1S〉a.u.

(
21Eh
200~

){
cos

(
21αρ

100

)[
3− 5

(
21αρ

200

)2

+

(
21αρ

200

)4 ]
+

21αρ

100
sin

(
21αρ

100

)[
3−

(
21αρ

200

)2 ]}
. (8.78)

The mixing type contribution for nS-1S system decreases as n increases.

8.5. OSCILLATORY TAILS IN THE DIRECT TERM IN THE LAMB
SHIFT RANGE

We devote this subsection to the calculation of the interaction energy in the

long range of interatomic distance. By the long range interatomic distance, we mean
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the interatomic distances such that R� ~c/L, where L is the Lamb-shift energy. At

this interatomic range, the integrand in the Wick-rotated the interaction energy

Wdirect
nS;1S(R) =− ~

πc4(4πε0)2

∫ ∞
0

dω α1S(iω)αnS(iω)
ω4e−2ωR/c

R2[
1 + 2

( c

ωR

)
+ 5

( c

ωR

)2

+ 6
( c

ωR

)3

+ 3
( c

ωR

)4
]

(8.79)

is damped by oscillations in ω. The contribution of the non vanishing frequencies in

the polarizabilities is exponentially suppressed, which yields

Wdirect
nS;1S(R) =− ~

πc4(4πε0)2
α1S(0)αnS(0)

∫ ∞
0

dω
ω4e−2ωR/c

R2[
1 + 2

( c

ωR

)
+ 5

( c

ωR

)2

+ 6
( c

ωR

)3

+ 3
( c

ωR

)4
]

=− 23

4πR7

~c
(4πε0)2

α1S(0)αnS(0). (8.80)

Here, we have substituted the value of the integral

∫ ∞
0

dω
ω4e−2ωR/c

R2

[
1 + 2

( c

ωR

)
+ 5

( c

ωR

)2

+ 6
( c

ωR

)3

+ 3
( c

ωR

)4
]

=
23c5

4R7
. (8.81)

The static polarizibily αnS(0) is the sum

αnS(0) = αnS(0) + α̃nS(0), (8.82)

where αnS(0) is the degenerate and the α̃nS(0) is the nondegenerate polarizability.

Thus, Eq. (8.80), can be expressed as

Wdirect
nS;1S(R) =− 23

4πR7

~c
(4πε0)2

α1S(0)αnS(0)− 23

4πR7

~c
(4πε0)2

α1S(0) α̃nS(0)

=Wdirect

nS;1S(R) + W̃direct
nS;1S(R), (8.83)
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where

Wdirect

nS;1S(R) = − 23

4πR7

~c
(4πε0)2

α1S(0)αnS(0) (8.84)

is the degenerate contribution to the direct interaction energy and

W̃direct
nS;1S(R) = − 23

4πR7

~c
(4πε0)2

α1S(0) α̃nS(0) (8.85)

is the nondegenerate contribution to the direct interaction energy. The static polar-

izability due to the degenerate states, αnS(0), can be expressed as

αnS(0) =
2 e2

9

3∑
j=1

1∑
µ=−1

|〈nS|xj|nP (m = µ)〉|2
(

1

−Ln
+

2

Fn

)
. (8.86)

Substituting α1S(0) = 9e2~2/(2α4m3c4) and αnS(0) from Eq. (8.86), Eq. (8.84) yields

Wdirect

nS;1S(R) =− 23

4πR7

~c
(4πε0)2

α1S(0)αnS(0)

=− 23

4πR7

9~2

2α4m3c4

(
e2

4πε0~c

)2
2~3c3

9

×
3∑
j=1

1∑
µ=−1

|〈nS|xj|nP (m = µ)〉|2
(
− 1

Ln
+

2

Fn

)

=− 23

4παR7

(
~

αmc

)5 (
α2mc2

)2

×
3∑
j=1

1∑
µ=−1

|〈nS|xj|nP (m = µ)〉|2
(
− 1

Ln
+

2

Fn

)

=− 23 a5
0

4παR7
E2
h

3∑
j=1

1∑
µ=−1

|〈nS|xj|nP (m = µ)〉|2
(
− 1

Ln
+

2

Fn

)
. (8.87)

Substituting

3∑
j=1

1∑
µ=−1

|〈3S|xj|3P (m = µ)〉|2 = 162 a2
0, (8.88a)
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3∑
j=1

1∑
µ=−1

|〈4S|xj|4P (m = µ)〉|2 = 540 a2
0, (8.88b)

3∑
j=1

1∑
µ=−1

|〈5S|xj|5P (m = µ)〉|2 = 1350 a2
0, (8.88c)

in Eq. (8.87), Wdirect

nS;1S(R) results

Wdirect

3S;1S(R) =− 3726

4πα

(
−Eh
L3

+
2Eh
F3

)
Eh

(a0

R

)7

, (8.89a)

Wdirect

4S;1S(R) =− 12420

4πα

(
−Eh
L4

+
2Eh
F4

)
Eh

(a0

R

)7

, (8.89b)

Wdirect

5S;1S(R) =− 31050

4πα

(
−Eh
L5

+
2Eh
F5

)
Eh

(a0

R

)7

. (8.89c)

On the other hand, the nondegenerate polarizabilities α̃nS(0) are given by

α̃3S(0) =
2025 e2~2

2α4m3c4
, α̃4S(0) =

4992 e2~2

α4m3c4
, α̃5S(0) =

35625 e2~2

2α4m3c4
. (8.90)

Substituting nondegenerate polarizabilities form Eq. (8.90) and α1S(0) = 9e2~2/(2α4m3c4)

in Eq. (8.85), we get

W̃direct
3S;1S(R) =− 419175

16πα
Eh

(a0

R

)7

, (8.91a)

W̃direct
4S;1S(R) =− 129168

πα
Eh

(a0

R

)7

, (8.91b)

W̃direct
5S;1S(R) =− 7374375

16πα
Eh

(a0

R

)7

. (8.91c)

Thus the Wick-rotated part, Wdirect
nS;1S(R), which is the sum of the degenerate contri-

bution Wdirect

nS;1S(R) and the nondegenerate contribution W̃direct
nS;1S(R) are given by

Wdirect
3S;1S(ρ) =−

[
419175

4
+ 3726

(
−Eh
L3

+
2Eh
F3

)]
Eh

4παρ7
, (8.92a)

Wdirect
4S;1S(ρ) =−

[
516672

4
+ 12420

(
−Eh
L4

+
2Eh
F4

)]
Eh

4παρ7
, (8.92b)
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Wdirect
5S;1S(ρ) =−

[
7374375

4
+ 31050

(
−Eh
L5

+
2Eh
F5

)]
Eh

4παρ7
. (8.92c)

Both the degenerate and nondegenerate parts obey ρ−7 power law. However, the de-

generate part dominates the nondegenerate one. The Wick-rotated contours enclosed

the low lying virtual P -states which are available for a dipole transition from the ref-

erence state. The contribution of the pole in the long range limit can be written

as

Pdirect
nS;1S(R) = − 2 e2

3(4πε0)2R2

n∑
m=2

〈nS|~r|mP 〉 · 〈mP |~r|nS〉

× α1S

(
EmP,nS

~

)(
EmP,nS
~c

)4

cos

(
2
EmP,nSR

~c

)
. (8.93)

For n = 3, 4, 5, the direct pole terms are given as

Pdirect
3S;1S(ρ) =− 23

58

α4Eh
ρ2
〈α1S〉a.u.

(
5Eh
72~

)
cos

(
5αρ

36

)
, (8.94)

Pdirect
4S;1S(ρ) =− 222 × 32 × 132

712 × 194

α4Eh
ρ2
〈α1S〉a.u.

(
7Eh
288~

)
cos

(
7αρ

144

)
− 22

312

α4Eh
ρ2
〈α1S〉a.u.

(
3Eh
32~

)
cos

(
3αρ

16

)
, (8.95)

Pdirect
5S;1S(ρ) =− 23 × 52 × 14472

332

α4Eh
ρ2
〈α1S〉a.u.

(
9Eh
800~

)
cos

(
9αρ

400

)
− 5× 112

226 × 32

α4Eh
ρ2
〈α1S〉a.u.

(
8Eh
225~

)
cos

(
16αρ

225

)
− 24 × 36 × 5

712

α4Eh
ρ2
〈α1S〉a.u.

(
21Eh
200~

)
cos

(
21αρ

100

)
. (8.96)

See Figure 8.4 for a comparison between the Wick-rotated and pole type contributions

to the direct term in the Lamb-shift range for the 3S-1S system. The energy curves

of the 4S-1S and the 5S-1S systems are similar to that of the 3S-1S system. The

pole term contains an oscillatory cosine term whose amplitude goes as ρ−2. In this

range, the direct term of interaction energy for the nS-1S system is larger for the
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large value of n. As shown in Figure 8.4, in the very long range of inter atomic

distance, the pole type contribution dominates over Wick-rotated contribution.

Figure 8.4: Distance dependent direct-type interaction energy in the 3S-1S system in
the very long range. This is a semi-log plot. The vertical axis is an absolute value of
the interaction energy divided by the Plank constant. We have used the logarithmic
scale on the vertical axis. The pole-type contribution approaches to −∞ upon the
change of sign of the pole term contribution.

8.6. OSCILLATORY TAILS IN THE MIXING TERM IN THE LAMB
SHIFT RANGE

Similar to the direct term contribution, the mixing term contribution to the

Wick-rotated part of interaction energy can also be written as

Wmixing
nS;1S (R) =Wmixing

nS;1S (R) + W̃mixing
nS;1S (R), (8.97)
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where

Wmixing

nS;1S (R) = − 23

4πR7

~c
(4πε0)2

αnS1S(0)αnS1S(0) (8.98)

is the degenerate contribution to the mixing interaction energy and

W̃mixing
nS;1S (R) = − 23

4πR7

~c
(4πε0)2

αnS1S(0) α̃nS1S(0) (8.99)

is the nondegenerate contribution to the mixing interaction energy. Here, the degen-

erate part of the static polarizability, αnS1S(0), is

αnS1S(0) =
2e2

9

3∑
j=1

〈1S|xj|nP 〉 · 〈nP |xj|nS〉
(
− 1

Ln
+

2

Fn

)
. (8.100)

We have,

3∑
j=1

〈1S|xj|3P 〉 · 〈3P |xj|3S〉 = −243
√

3

64
a2

0, (8.101a)

3∑
j=1

〈1S|xj|4P 〉 · 〈4P |xj|4S〉 = −110592

15625
a2

0, (8.101b)

3∑
j=1

〈1S|xj|5P 〉 · 〈5P |xj|5S〉 = −2500
√

5

729
a2

0. (8.101c)

The static polarizability, αnS1S(0), with E1S as the reference energy are given as

α3S1S(0) =− 621
√

3

512

e2~2

α4m3c4
, (8.102a)

α4S1S(0) =− 442368

390625

e2~2

α4m3c4
, (8.102b)

α5S1S(0) =− 4375
√

5

13122

e2~2

α4m3c4
. (8.102c)
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Substituting the values of αnS1S(0) and αnS1S(0) in Eq. (8.98), we get

Wmixing

3S;1S (ρ) =− 37 × 232

216

(
− Eh
L3

+
2Eh
F3

)
Eh
παρ7

, (8.103a)

Wmixing

4S;1S (ρ) =− 225 × 34 × 23

514

(
− Eh
L4

+
2Eh
F4

)
Eh
παρ7

, (8.103b)

Wmixing

5S;1S (ρ) =− 59 × 7× 23

316

(
− Eh
L5

+
2Eh
F5

)
Eh
παρ7

. (8.103c)

As we calculated in the CP range, the nondegenerate contribution to the Wick-rotated

part of the interaction energy for 3S-1S, 4S-1S, and 5S-1S systems are given as

W̃mixing
3S;1S (ρ) =

310 × 52 × 232

220

Eh
παρ7

, (8.104a)

W̃mixing
4S;1S (ρ) =

228 × 34 × 23× 251

516

Eh
παρ7

, (8.104b)

W̃mixing
5S;1S (ρ) =

511 × 7× 23× 83

24 × 316

Eh
παρ7

. (8.104c)

Thus the total Wick-rotated part given by

Wmixing
nS1S (ρ) =Wmixing

nS1S (ρ) + W̃mixing
3S;1S (ρ), (8.105)

for nS-1S system with n = 3, 4, 5 reads

Wmixing
3S;1S (ρ) =−

[
37 × 232

216

(
− Eh
L3

+
2Eh
F3

)
− 310 × 52 × 232

220

]
Eh
παρ7

, (8.106a)

Wmixing
4S;1S (ρ) =−

[
225 × 34 × 23

514

(
− Eh
L4

+
2Eh
F4

)
− 228 × 34 × 23× 251

516

]
Eh
παρ7

,

(8.106b)

Wmixing
5S;1S (ρ) =−

[
59 × 7× 23

316

(
− Eh
L5

+
2Eh
F5

)
− 511 × 7× 23× 83

24 × 316

]
Eh
παρ7

. (8.106c)
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An extra contribution comes from the poles present in the Wick-rotated contours.

The mixing pole term, in the long range limit, can be written as

Pmixing
nS;1S (R) = − 2 e2

3(4πε0)2R2

n∑
m=2

〈nS|~r|mP 〉 · 〈mP |~r|1S〉

× αnS1S

(
EmP,nS

~

)(
EmP,nS
~c

)4

cos

(
2
EmP,nSR

~c

)
. (8.107)

Substituting the corresponding matrix elements and the values of EmP,nS for n =

3, 4, 5, we have

Pmixing
3S;1S (ρ) =

23
√

3

310 × 52

α4Eh
ρ2

αdl
3S1S

(
5Eh
72~

)
cos

(
5αρ

36

)
, (8.108a)

Pmixing
4S;1S (ρ) =− 2× 32 × 13

74 × 194

α4Eh
ρ2
〈α1S〉a.u.

(
7Eh
288~

)
cos

(
7αρ

144

)
− 1

2× 39

α4Eh
ρ2
〈α1S〉a.u.

(
3Eh
32~

)
cos

(
3αρ

16

)
, (8.108b)

Pmixing
5S;1S (ρ) =− 23 × 1447

311 × 59 ×
√

5

α4Eh
ρ2
〈α1S〉a.u.

(
9Eh
800~

)
cos

(
9αρ

400

)
− 11

√
5

213 × 32 × 54

α4Eh
ρ2
〈α1S〉a.u.

(
8Eh
225~

)
cos

(
16αρ

225

)
− 24 ×

√
5

54 × 74

α4Eh
ρ2
〈α1S〉a.u.

(
21Eh
200~

)
cos

(
21αρ

100

)
. (8.108c)

The mixing part of the total interaction energy is the sum of the Wick-rotated term

and the pole term. The Wick-rotated term follows ρ−7 power law while the pole term

contains a cosine term whose magnitude falls off as ρ−2. Notice that the contribution

of the pole at ω = −E2P,nS/~ + iε is significantly larger than the other pole at

ω = −EmP,nS/~ + iε with m > 2.
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9. CONCLUSION

To study the long-range interaction between two neutral hydrogen atoms, we

have used the time ordered perturbation theory. We observed that the odd order

perturbations vanish and the second order terms correspond to the self-energy con-

tribution and talk only about the Lamb shift of the individual atoms. Thus, what

we care about here is the fourth order perturbation term, which finally gives the CP

interaction.

The functional form of the interatomic interaction depends on the range of

the interatomic distance. If both the interacting atoms are in the ground state, the

interaction follows the usual C6(1S; 1S)/R6 functional form for a0 ≤ R ≤ a0/α. The

distance R, which ranges from the Bohr radius a0 to the wavelength of the typical

optical transition a0/α is the so-called vdW range. For the 1S-1S system, we find

C6(1S; 1S) = 6.499 026 705Eha
6
0, which agrees with the previously reported result

[53; 80; 81; 82]. The interatomic interaction has the well known R−7 functional form

if the distance is larger than the wavelength of optical transition i.e. a0/α ≤ R. Thus,

when both atom are in ground state fourth-order time-ordered perturbation theory

is applied and retardation regime is achieved for a0/α� R

The situation is different if the atom interacting with the ground state atom

is in an excited state. For excited reference states, we match the scattering ampli-

tude and the effective Hamiltonian of the system. If the atom interacting with the

ground state atom is in the first excited state, quasi-degenerate levels are present.

In this case, we have to differentiate three ranges for the interatomic distance: vdW

range (a0 ≤ R ≤ a0/α), CP range (a0/α ≤ R ≤ ~c/L), and Lamb shift range

(R ≥ ~c/L). In the vdW range, the interatomic interaction between the atoms A

and B can be formulated in the functional form −C6(2S; 1S)/R6. A complication
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arises as |1S〉A|2S〉B and |2S〉A|1S〉B are energetically degenerate. Thus, we have the

mixing term contribution as well. We have thus expressed the vdW interaction as

the sum, C6(2S; 1S) = D6(2S; 1S) ±M6(2S; 1S), where D6(2S; 1S) represents the

direct term and M6(2S; 1S) depicts the mixing term contributions. For the 2S-1S

system, there is a clear discrepancy in the literature among various results. In Ref

[80], Tang and Chan reported that the direct coefficient D6(2S; 1S) is 56.7999Eha
6
0

and they did not calculate mixing terms contribution. In Ref [53], Chibisov pre-

sented the calculation of both the direct and the mixing term. Chibisov claimed

that D6(2S; 1S) = 55.5 (0.5)Eha
6
0 and M6(2S; 1S) = 27.9819 (2)Eha

6
0. In Ref.

[83], Deal and Young reported that D6(2S; 1S) = 176.7523Eha
6
0 and M6(2S; 1S) =

27.9832Eha
6
0. Our finding, ignoring the relativistic correction, shows C6(2S; 1S) =

(176.752 266 285± 27.983 245 543)Eha
6
0. We confirm all the significant figures of the

result reported in Ref [83], and we add few more significant figures. We noticed that in

both publications [80] and [53], authors did not include the contribution of the quasi-

degenerate 2P levels of the excited atom. In the CP range, the interaction is still of

the R−6 functional form. We find C6(2S; 1S) = (243/2∓ 46.614 032 414)Eha
6
0, which

is smaller than that of C6(2S; 1S) coefficient in the vdW range. For the very large in-

teratomic distance, the interaction energy is the sum of the CP type−C7(2S; 1S)/R−7

term and the pole term which has an oscillatory distance dependance whose ampli-

tude falls off as R−2. The pole term arises as the Wick-rotated contour of the complex

ω-plane picks up a pole at ω = L2 + iε, where L2 = E(2S1/2)−E(2P1/2) is the Lamb

shift.

We have examined the Dirac-δ perturbation to the interaction energy of the

1S-1S and 2S-1S system. The Dirac-δ perturbation is a local potential which is non-

zero only at the origin. It is the first time that the δ-perturbation to the interaction

energy for S-states have been studied. The Dirac-δ modification of the interaction

energy is of great interest as the fine structure, the hyperfine correction, and the
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leading radiative correction to the vdW interaction for S-states [84] are of Dirac-δ

type. The δ-perturbation has vanishing contribution to the Hamiltonian of the system

as the probability density of the P -states vanish at the origin. However, it modifies

both the energy and the wave function of the system. The Dirac-δ correction to the

interaction energy is in the order of α2 times the plain interaction. If both atoms

are in the ground state, there is no degenerate state to consider. The δ-perturbed

interaction energy for the 1S-1S system ignoring the relativistic correction is found to

be δE(1S; 1S) = −34.685 544 399
(
a0
R

)6
Eh. In the CP region, where the contribution

is chiefly due to the degenerate one, both the energy part and the wave function part

of the 1S-1S follow 1/R7 behavior which is negligible. On the other hand, the energy

part and the wave function part of perturbed interaction energy in the Lamb shift

range are found to be

δE
(E)
1S;1S(R) = −387

8

α

π

(a0

R

)7

Eh and δE
(ψ)
1S;1S(R) = −729

16

α

π

(a0

R

)7

Eh. (9.1)

For 2S-1S system, we observed that the δ-perturbed interaction energy, in the vdW

range, is

δE(2S; 1S) =− δD6(2S; 1S)± δM6(2S; 1S)

R6

=(367.914605710∓ 58.095351093)α2Eh

(a0

R

)6

, (9.2)

which is clearly in the 1/R6 functional form. A very peculiar behavior is observed

as the δ perturbed interaction energy follows the 1/R5 power law in the CP range.

The energy type contribution, δE(E)(2S; 1S), and the wave function type correction,

δE(ψ)(2S; 1S), both of them are solely the contributions given by the quasi-degenerate
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states, which are

δE(E)(2S; 1S) = −δD
(E)
5 (2S; 1S)± δM (E)

5 (2S; 1S)

R5

= −
(891

32
± 10.682382428

)α3

π
Eh

(a0

R

)5

, (9.3)

δE(ψ)(2S; 1S) = −δD
(ψ)
6 (2S; 1S)± δM (ψ)

6 (2S; 1S)

R6

= −
(

81

4
∓ 58.439051900

)
α2Eh

(a0

R

)6

. (9.4)

It is observed that, in the van der Waals range, the dominant contribution comes

from the wave function type correction, however, in the CP range, the energy type

correction is the dominant one. In the Lamb shift range, the interaction energy is

the sum of the CP term which follows a R−7 power law and the long range cosine

term with amplitude falling off as R−2 and it is in the order of 10−36 Hz. From the

experimental point of view, this is too small quantity to consider.

In this work, we have also analyzed the hyperfine resolved 2S-2S system com-

posed of two electrically neutral hydrogen atoms. The analysis of the 2S-2S system

involves fascinating interplay of degenerate and nondegenerate perturbations theory

with a full account of hyperfine splitting. Our approach to investigating the 2S-

2S system allows us to do the hyperfine calculation and to estimate the hyperfine

pressure shift for the 2S hyperfine interval measurement.

Each hydrogen atom has four hyperfine states for S-states, namely the hy-

perfine singlet for F = 0 and the hyperfine triplet for F = 1 and similarly the four

hyperfine states corresponding to P -states. Thus, the basis set of the two hydrogen

atom system has 64 states. The 64-dimensional Hilbert space corresponding to the

hyperfine resolved 2S-2S system decomposes into five manifolds. We noticed that

the adjacency graph serves as a great tool to study a higher dimensional matrix.

Interestingly, each manifold further decomposes into two sub-manifolds of the same
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dimension. In each of these sub-manifolds, the Hamiltonian matrix can be solved

analytically. In these sub-manifolds, there are several degenerate subspaces which

are first order in vdW shift, i.e., proportional to R−3. However, the hyperfine tran-

sition where both atoms are in S-states undergoes the second order in vdW shift,

i.e., proportional to R−6. We also study the evolution of the energy levels, which are

so-called the Born-Oppenheimer potential curves, in all the hyperfine subspaces. We

observed a strange but a highly impressive feature of level crossings in the hyperfine

resolved 2S-2S system. In Fz = +2 and Fz = −2 manifolds, no level crossing oc-

curs. However, in Fz = +1 and Fz = −1 manifolds, the level-crossings occur between

the levels of different irreducible sub-manifolds, while in the Fz = 0 manifolds, the

level-crossings present not only between the levels of different manifolds but also the

levels of the same irreducible manifolds may cross. We reveal that the crossings are

unavoidable, which repudiates the non-crossing theorem discussed in the literature

so far. Thus, we can conclude that the system with two energy levels follows non-

crossing theorem; however, the higher-dimensional irreducible matrices do not always

follow the non-crossing rule. We are not much aware of the applicability of such phe-

nomenon in spectroscopy; however, this certainly gives an insight understanding the

Born-Oppenheimer potential curves.

We also studied higher excited S-states of the hydrogen atom interacting with

the ground state atom. For excited reference states, interaction energy is calculated

matching the scattering amplitude and the effective hamiltonian of the system. For

mathematical simplicity, we have also employed the method of Wick-rotation, which

is one of a standard calculation tricks of rotating the integration contour. The Wick-

rotated integration contour enclosed poles at ω = −EmP,nS/~ + iε, where mP with

2 ≤ m ≤ n are the low lying virtual P -states of the atom which is at nS-state. The

pole term contribution to the interaction energy thus arises naturally. In the vdW

range, both the Wick-rotated and the pole terms of both the direct and the mixing
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type contributions to the interaction energy are of R−6 type, although the dominant

contribution comes from the Wick-rotated term. We notice that the higher principal

quantum number of the atom, larger the direct contribution E
(direct)
nS;1S (R) and smaller

the mixing contribution E
(mixing)
nS;1S (R) to the interaction energy. In the CP range, the

Wick-rotated type input is the sum of the R−6 and R−7 terms, and the pole type

contribution has cosine terms obeying the power law R−2, R−4, and R−6 and sine

terms obeying power law R−3 and R−5. An nS-1S system for a particular value of n

has n − 2 poles arising from the low-lying virtual mP -states, where 2P -states have

the dominant contribution.

In the Lamb shift range, the Wick-rotated term follows the R−7. In the case of

pole term, the dominant contribution comes from the cosine term whose magnitude is

of R−2 type. In this range, the Wick-rotated term and the pole term are of the same

order of magnitude. The interaction energy of the nS-1S systems in the vdW range is

negative, which indicates that there exists the electrostatic force of attraction between

the atoms which establishes a weak chemical bond between them in the vdW range.

However, in the CP and Lamb shift ranges, the electrostatic force is not necessarily

attractive. Indeed, its attractive and repulsive nature oscillates.

For excited reference states, in vdW range both the Wick-rotated and the

pole term follow the same R−6 functional form, in Casimir-Polder range, there is a

competition between Wick-rotated (R−6) and the oscillatory pole term, and in the

Lamb shift range, an oscillatory pole term whose magnitude falls off as R−2 dominates

the Wick-rotated term. In short, if an atom interacting with the other atom in the

ground state is in an excited state, the system never reach to the retardation regime.



APPENDIX A

DISCRETE GROUND STATE POLARIZABILITY
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A.1. DISCRETE RADIAL GREEN FUNCTION

With the help of the completeness relation in discrete representation, one can

write 〈~r1|~r2〉 as below:

〈~r1|1|~r2〉 =
∑
n`m

〈~r1|n`m〉〈n`m|~r2〉 =
∑
n`m

ψn`m(r1, θ1, ϕ1)ψ∗n`m(r2, θ2, ϕ2)

=
∑
n`m

Rn`(r1)Rn`(r2)Y`m(θ1, ϕ1)Y ∗`m(θ2, ϕ2)

=
∑
n`m

(n− `− 1)!

2n(n+ `)!

(
2

na0

)3

exp

(
−r1 + r2

na0

)(
2r1

na0

)`(
2r2

na0

)`
L2`+1
n−`−1

(
2r1

na0

)
L2`+1
n−`−1

(
2r2

na0

)
. (A.1)

Here, 〈~r|n`m〉 = ψn`m(r, θ, ϕ) is the complete eigenfunction for Schrödinger-Coulomb

Hamiltonian. We have used an ansatz which states that the total eigenfunctions can

be expressed as the product of a radial part and an angular part as

ψn`m(r, θ, ϕ) =Rn`(r)Y`m(θ, ϕ), (A.2)

where the radial wave function Rn`(r) is given by [85]

Rn`(r) =

[
(n− `− 1)!

(n+ `)!

]1/2
2`+1

n2

1

a
3/2
0

(
r

na0

)`
exp

(
− r

na0

)
L2`+1
n−`−1

(
2r

na0

)
, (A.3)

and the angular part Y`m(θ, ϕ) is the usual spherical harmonics given by

Y`m(θ, ϕ) =

[
(2`+ 1)(`−m)!

4π(`+m)!

]1/2

Pm
` (cos(θ)) eimϕ. (A.4)

Here, L2`+1
n−`−1

(
2r
na0

)
and Pm

` (cos(θ)) are respectively the associated Laguerre and the

associated Legendre polynomials. In what follows, we generalize this concept to derive
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discrete radial Green function. The total discrete Green function is given by

Gdis(~r1, ~r2, E) =〈~r1|
1

H − E
|~r2〉 =

∑
n`m

〈~r1|n`m〉
1

H − E
〈n`m|~r2〉

=
∑
n`m

ψn`m(r1, θ1, ϕ1)ψ∗n`m(r2, θ2, ϕ2)

En − E

=
∑
n`m

1

En − E
(n− `− 1)!

2n(n+ `)!

(
2

na0

)3

exp

(
−r1 + r2

na0

)(
2r1

na0

)`(
2r2

na0

)`
L2`+1
n−`−1

(
2r1

na0

)
L2`+1
n−`−1

(
2r2

na0

)
Y`m(θ1, ϕ1)Y ∗`m(θ2, ϕ2). (A.5)

Here, En is the energy eigenvalues corresponding to the eigenvalue equation

HRn`(r) =

(
− ~2

2me

~∇2 − α~c
r

)
Rn`(r) = EnRn`(r). (A.6)

Let us rewrite Rn`(r) as

Rn`(r) = Cn` r
` exp

(
− r

na0

)
L2`+1
n−`−1

(
2r

na0

)
, (A.7)

where

Cn` =

[
(n− `− 1)!

(n+ `)!

]1/2
2`+1

n2

1

a
3/2
0

(
1

na0

)`
, (A.8)

is a constant independent of r. In the following derivation, we will be using L in place

of L2`+1
n−`−1

(
2r
na0

)
just to save some space. Now, we have

HRn`(r) =

(
− ~2

2me

~∇2 − α~c
r

)
Cn` r

` exp

(
− r

na0

)
L

=

[
− ~2

2me

(
∂2

∂r2
+

2

r

∂

∂r
− `(`+ 1)

r2

)
− α~c

r

]
Cn` r

` exp

(
− r

na0

)
L

= − ~2

2me

Cn`
∂

∂r

[
`r`−1exp

(
− r

na0

)
L− r`

na0

exp

(
− r

na0

)
L + r`exp

(
− r

na0

)
∂

∂r
L

]
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− ~2

2me

Cn`
2

r

[
`r`−1exp

(
− r

na0

)
L− 1

na0

r`exp

(
− r

na0

)
L + r`exp

(
− r

na0

)
∂

∂r
L

]
− ~2

2me

Cn`

[
−`(`+ 1)

r2
+

2meαc

~ r

]
r` exp

(
− r

na0

)
L

= − ~2

2me

Cn`

[
`(`− 1)

r2
L− `

na0r
L +

`

r

∂

∂r
L− `

na0r
L +

1

(na0)2 L− 1

na0

∂

∂r
L

+
`

r

∂

∂r
L− 1

na0

∂

∂r
L +

∂2

∂r2
L

]
r` exp

(
− r

na0

)
− ~2

2me

Cn`
2

r

[
`

r
L− 1

na0

L +
∂

∂r
L

]
× r`exp

(
− r

na0

)
− ~2

2me

Cn`

[
−`(`+ 1)

r2
+

2meαc

~ r

]
r` exp

(
− r

na0

)
L

= − ~2

2me

Cn` r
`−1 exp

(
− r

na0

){
r
∂2

∂r2
L +

(
2`+ 2− 2r

na0

)
∂

∂r
L + (n− `− 1)L

}
− ~2

2me

Cn`

[
− 2`

na0r
− 2

na0r
+

1

(na0)2 +
2meαc

~ r
− 2n

na0r
+

2`

na0r
+

2

na0r

]
× r` exp

(
− r

na0

)
L. (A.9)

Using the fact that L ≡ L2`+1
n−`−1

(
2r
na0

)
satisfies the associated Laguerre differential

equation:

r
∂2

∂r2
L +

(
2`+ 2− 2r

na0

)
∂

∂r
L + (n− `− 1)L = 0, (A.10)

Eq. (A.9) reduces to

HRn`(r) =− ~2

2me

[
1

(na0)2 +
2meαc

~ r
− 2

a0r

]
Cn` r

` exp

(
− r

na0

)
L

=

[
− ~2

2men2a2
0

− ~αc
r

+
~2

mea0r

]
Cn` r

` exp

(
− r

na0

)
L

=− α2mec
2

2n2
Cn` r

` exp

(
− r

na0

)
L = −α

2mec
2

2n2
Rn`(r). (A.11)

Here, we have used a0 = ~/(αmec). From Eq. (A.11), the eigenvalues En can be

written as

En = −α
2mec

2

2n2
. (A.12)
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If we define a new quantum number k such that k = n−`−1, the associated Laguerre

polynomials L2`+1
n−`−1

(
2r
na0

)
becomes L2`+1

k

(
2r

(k+`+1)a0

)
and the energy eigenvalues, in

this condition, can be written as

Ek` = − α2mec
2

2 (k + `+ 1)2 . (A.13)

The energy difference En − E in Eq. (A.5) is thus given by

En − E =− α2mec
2

2n2
−
(
−α

2mec
2

2ν2

)
=
α2mec

2

2

(
1

ν2
− 1

n2

)
=

~2

2mea2
0

(
n2 − ν2

n2ν2

)
. (A.14)

Substituting the value of the energy difference En−E from Eq. (A.14) to Eq. (A.5),

we get

Gdis(~r1, ~r2, ν) =
2me

~2

∑
n`m

a2
0n

2ν2

n2 − ν2

(n− `− 1)!

2n(n+ `)!

(
2

na0

)3

exp

(
−r1 + r2

na0

)(
2r1

na0

)`
(

2r2

na0

)`
L2`+1
n−`−1

(
2r1

na0

)
L2`+1
n−`−1

(
2r2

na0

)
Y`m(θ1, ϕ1)Y ∗`m(θ2, ϕ2)

=
4me

~2

∑
n`m

ν2

n2 − ν2

(n− `− 1)!

n(n+ `)!

(
2

na0

)2`+1

exp

(
−r1 + r2

na0

)
(r1r2)`

L2`+1
n−`−1

(
2r1

na0

)
L2`+1
n−`−1

(
2r2

na0

)
Y`m(θ1, ϕ1)Y ∗`m(θ2, ϕ2). (A.15)

The total discrete Green function is defined as

Gdis(~r1, ~r2, ν) =
∑
n`m

gdis
` (r1, r2, ν)Y`m(θ1, ϕ1)Y ∗`m(θ2, ϕ2). (A.16)
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Comparing Eq. (A.16) with Eq. (A.15), we get the discrete radial Green function

gdis
` (r1, r2, ν) as

gdis
` (r1, r2, ν) =

4me

~2

∞∑
n=0

ν2

n2 − ν2

(n− `− 1)!

n(n+ `)!

(
2

na0

)2`+1

exp

(
−r1 + r2

na0

)
(r1r2)`

L2`+1
n−`−1

(
2r1

na0

)
L2`+1
n−`−1

(
2r2

na0

)
. (A.17)

The (`=1)-component of the discrete radial Green function gdis
`=1(r1, r2, ν) reads

gdis
`=1(r1, r2, ν) =

4me

~2

∞∑
n=2

ν2

(n2 − ν2)n2(n2 − 1)

(
2

na0

)3

exp

(
−r1 + r2

na0

)
(r1r2)

L3
n−2

(
2r1

na0

)
L3
n−2

(
2r2

na0

)
. (A.18)

The sum over n starts from 2 not from zero as L3
−2(x) = 0 = L3

−1(x).

A.2. DISCRETE GROUND STATE POLARIZABILITY

The ground state static polarizability due to discrete energy levels is given by

αdis
1S (ω = 0) =2P dis

1S (ω = 0) = 2
e2

3

〈
1S

∣∣∣∣r1
1

H − E
r2

∣∣∣∣ 1S〉
=

2 e2

3

∫ ∞
0

r2
1 dr1

∫ ∞
0

r2
2 dr2R10(r1) r1 g

dis
`=1(r1, r2, ν)R10(r2) r2

=
32me e

2

3~2a3
0

∫ ∞
0

r4
1 dr1

∫ ∞
0

r4
2 dr2 exp

(
−r1 + r2

a0

) ∞∑
n=2

1

n2 (n2 − 1)2(
2

na0

)3

exp

(
−r1 + r2

na0

)
L3
n−2

(
2r1

na0

)
L3
n−2

(
2r2

na0

)
. (A.19)

Here, we have used the value of gdis
`=1(r1, r2, ν) from Eq. (A.18) with ν = 1 and

substituted the radial part of ground state wave function of hydrogen which reads

R10(r) =
2 e−r/a0√

a3
0

. (A.20)
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Let us use dimensionless variables ρ defined as ρi = 2ri/(na0). Then Eq. (A.19)

becomes

αdis
1S (ω = 0) =

32me e
2

3 ~2a3
0

∞∑
n=2

1

n2 (n2 − 1)2

(na0

2

)7
∫ ∞

0

ρ4
1 dρ1

∫ ∞
0

ρ4
2 dρ2

exp

(
−ρ1n+ ρ2n

2

)
exp

(
−ρ1 + ρ2

2

)
L3
n−2 (ρ1)L3

n−2 (ρ2)

=
a4

0me e
2

12~2

∞∑
n=2

n5

(n2 − 1)2

∫ ∞
0

ρ4
1 exp

(
−(1 + n)ρ1

2

)
L3
n−2 (ρ1) dρ1∫ ∞

0

ρ4
2 exp

(
−(1 + n)ρ2

2

)
L3
n−2 (ρ2) dρ2. (A.21)

Interestingly, the ρ1-integral is identical to the ρ2-integral. Hence, one can write

Eq. (A.21) as

αdis
1S (ω = 0) =

e2 a2
0

12Eh

∞∑
n=2

n5

(n2 − 1)2

[∫ ∞
0

u4 e−(1+n)u/2 L3
n−2 (u) du

]2

. (A.22)

Here, we have also used α = ~/(a0mec), and Eh = α2mec
2, where α and Eh are

respectively the fine-structure constant and the Hartree energy. We can evaluate the

u-integral in Eq. (A.22) using the standard integral identity [43]

∫ ∞
0

dρ esρ ργLµn(ρ) =
Γ(γ + 1)Γ(n+ µ+ 1)

n!Γ(µ+ 1)
(−s)−(γ+1)

2F1

(
− n, γ + 1;µ+ 1;−1

s

)
,

(A.23)

which yields

∫ ∞
0

u4 e−(1+n)u/2 L3
n−2 (u) du =

Γ(5)Γ(n+ 2)

(n− 2)!Γ(4)

(
2

1 + n

)5

2F1

(
2− n, 5; 4;

2

1 + n

)
.

(A.24)
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Substituting the value of the integral in Eq. (A.22) and simplifying the expression

using standard integral identity [43]

2F1 (−k, a+ 1; a; z) = (1− z)k
(z − 1)a+ kz

a(z − 1)
, (A.25)

we get

αdis
1S (ω = 0) =

e2a2
0

Eh

∞∑
n=2

1024

3

n9

(n− 1)6 (n+ 1)8

(
n− 1

n+ 1

)2n

, (A.26)

which yields

αdis
1S (ω = 0) =0.362 240 952

e2a2
0

Eh
. (A.27)

Recalling the total ground state static polarizability of a hydrogen atom

α1S(ω = 0) =
9

2

e2a2
0

Eh
, (A.28)

we come to the conclusion that, the major contribution in the ground state static

polarizability comes from the continuum wave functions.
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B.1. ORIENTATION

The AC Stark shift, which is the shifting of spectral lines in the presence of an

oscillating electric field, can be used to trap neutral atoms. The AC Stark can also

be useful in optical lattice clock experiments [86; 87; 88]. We here concentrate only in

the trapping of the neutral hydrogen atoms. The AC Stark shift for the ground state

is different to that of the excited states of the transition. The AC Stark shift vanishes

if the trapping laser of particular wavelength called magic wavelength is turned on

[86; 89; 90]. The calculation involves the determination of the point, where the AC

Stark shift for the ground state is equal to that of the excited state, and the shifts

due to the laser cancel. In other words, the atom does not feel the presence of light

if the laser wavelength matches its magic wavelength value.

The AC Stark shift for the state |φ〉 of an atom depends on the intensity of

the laser field and the optical frequency of the photon which is given by

∆EAC = − IL
2 ε0c

α(φ, ωL), (B.1)

where IL stands for the intensity of the laser field. The IL is proportional to the square

of the amplitude of the electric field EL, mathematically, IL = 1
2
ε0cE2

L. α(φ, ωL) in

Eq. (B.1) represents the dipole polarizability of the state |φ〉 [91; 92; 93].

The magic wavelengths corresponding to the 2S-1S transition of a hydrogen atom

is computed in reference [94]. However, the author took only the discrete states

of the hydrogen atom into account. The fact is the contribution of the continuum

states can not be ignored. We already saw in Appendix A, for the ground state, the

dominant contribution comes from the continuum states, not from the discrete one.
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The following definition of the dipole polarizability

α(φ, ωL) =
e2

3

∑
±

〈
φ

∣∣∣∣~r 1

HA − E ± ~ωL
~r

∣∣∣∣φ〉 =
∑
±

Pφ(±ωL), (B.2)

includes the contributions of both discrete and continuous parts of the spectrum. The

HA = ~p 2/(2me)− (α~c)/r, E, and Pφ in Eq. (B.2) are the atomic Hamiltonian of the

system, the energy eigenvalues, and the P matrix element for the atomic reference

state φ. The P1S, P2S, P3S, P4S, and P5S matrix elements are given by Eqs. (3.44),

(3.56), (3.66), (3.73), and (3.74) respectively. The P6S matrix element reads

P (6S,t) =
~2e2

α4m3c4

[
432 t2

25(t− 1)14 (t+ 1)12

(
39439108405t24 − 3444722282t23

− 113551229560t22 + 9795349850t21 + 135698822058t20 − 11514250414t19

− 87425932088t18 + 7253828382t17 + 33018970995t16 − 2654366212t15

− 7439943344t14 + 569035620t13 + 971507820t12 − 65940540t11 − 67724400t10

+ 1350940t9 + 2692555t8 + 1404750t7 − 509400t6 − 501150t5 + 200650t4

+ 99850t3 − 45400t2 − 9050t+ 4525

)
− 442368 t9(−1 + 36t2)

25(−1 + t2)14

×
(
2023t8 − 2932t6 + 1410t4 − 260t2 + 15

)2
2F1

(
1,−6t; 1− 6t;

(t− 1)2

(t+ 1)2

)
− 68040 t2

1− t2

]
; where t =

(
1 +

72~ω
α2mc2

)−1/2

. (B.3)

The contribution of the degenerate P -states has been excluded from P (6S, t) sub-

tracting ~2e2
α4m3c4

[
68040 t2

(1−t2)

]
.

Work to the magic wavelengths for the 2S-1S and 3S-1S transitions in hydro-

gen atoms including the relativistic correction is presented in Ref. [95]. However, the

relativistic correction, which is in the order of α2 ∼ 10−4 depends on the laser-field

configuration. It is different for the different experimental setup. On the other hand,
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the dominant correction to the magic wavelengths in the non-relativistic one-particle

approximation comes from the reduced mass correction [96]. More explicitly, the

reduced mass correction to the wavelength is of order me/mp ∼ 10−3. The P matrix

elements are proportional to the square of Bohr radius, a0 = ~/(αmc), and inversely

proportional to the Hartree energy, Eh = α2mc2. Thus, the reduced mass correc-

tion on the dipole polarizability and hence the AC Stark shift has overall factor of

(me/mr)
3, where the reduced mass mr of the system is given by

mr =
memp

me +mp

, (B.4)

where me and mp are the masses of an electron and a proton respectively. In this

work, we also calculate the reduced mass correction of the magic wavelength, AC

Stark shift, and the slope of the AC Stark shift at the magic wavelengths.

B.2. MAGIC WAVELENGTHS AND AC STARK SHIFT

Let us recall the AC Stark shift corresponding to the nS-state, which reads

∆EAC(nS) = − IL
2 ε0c

α(nS, ωL). (B.5)

Then the difference in AC Stark shift between an excited state and the ground state,

i.e.,

∆EAC(nS)−∆EAC(1S) = − IL
2 ε0c

[α(nS, ωL)− α(1S, ωL)] , (B.6)

can be written as

∆EAC(nS)−∆EAC(1S) = − IL
2 ε0c

f1SnS(ωL), (B.7)
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Table B.1: Influence of the reduced-mass correction (RMC) on the magic wavelengths
λM , and the AC Stark shifts ∆EM for nS-1S transitions, where n = 2, 3, 4, 5, 6.

Quantity condition transitions
2S-1S 3S-1S 4S-1S 5S-1S 6S-1S

without RMC 514.366 1371.11 2811.24 4935.99 7588.47
λM (in nm)

with RMC 514.646 1371.86 2812.77 4938.68 7592.60
without RMC -221.222 -212.290 -211.249 -211.026 -210.964

∆EM (in IL
kW/cm2 Hz)

with RMC -221.584 -212.637 -211.595 -211.371 -211.309

where

f1SnS(ωL) = α(nS, ωL)− α(1S, ωL). (B.8)

The magic angular frequency satisfies the condition f1SnS(ωL = ωM) = 0, which is the

point of interaction of the polarizability of the ground state and that of the excited

state of interest. Alternatively, this is the point where the difference of AC Stark

shifts corresponding to the ground state, and the excited state vanishes nullifying the

systematic uncertainties (see Figures (B.1) - (B.5))

The magic wavelength, λM , for the hydrogen nS-1S transition is given as

~ωM = EM =
h c

λM
=⇒ λM =

h c

~ωM
. (B.9)

The magic wavelengths, λM , and the AC Stark shifts, ∆EAC , for the 2S-1S,

3S-1S, 4S-1S, 5S-1S, and 6S-1S transitions are listed in Table (B.1). The magic

wavelength λM = 514.646 nm for the 2S-1S transition lies in between the 2S-3P

transition (656.387 nm) and 2S-4P transition (486.213 nm) of a hydrogen atom. The

magic wavelength λM = 1371.86 nm for the 3S-1S transition lies in between the 3S-

4P transition (1875.39 nm) and 3S-5P transition (1282.01 nm) of a hydrogen atom.

The magic wavelength λM = 2812.77 nm for the 4S-1S transition lies in between
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Figure B.1: AC Stark shift coefficients for the 1S- and 2S-states for inten-
sity, IL = 10 kW/cm2 as a function of laser photon energy Eγ = ~ωL. In
Figure (a), the dashed line at ∆EAC ≈ 0 represents the AC Stark shift co-
efficient of the 1S-state while the solid curved lines represent the AC Stark
shift coefficient of the 2S-state. Figure (b) shows the AC stark shifts near
the magic wavelength, λM , for 2S-1S transition. The AC Stark shifts of the
1S-state (dashed line) and the 2S-state (solid line) intersect at (2.41043 eV,
-2.21222 kHz)).
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Figure B.2: AC Stark shift coefficients for the 1S- and 3S-states by a laser
light of intensity, IL = 10 kW/cm2 as a function of laser photon energy Eγ =
~ωL. In Figure (a), the dashed line at ∆EAC ≈ 0 represents the AC Stark shift
coefficient of the 1S-state while the solid curved lines represent the AC Stark
shift coefficient of the 3S-state. Figure (b) shows the AC Stark shifts near
the magic wavelength, λM , for 3S-1S transition. The AC Stark shifts of the
1S-state (dashed line) and the 3S-state (solid line) intersect at (0.904264 eV,
-2.12290 kHz/(kW/cm2)).
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Figure B.3: AC Stark shift coefficients for the 1S- and 4S-states for intensity,
IL = 10 kW/cm2 as a function of laser photon energy Eγ = ~ωL. In Figure
(a), the dashed line at ∆EAC ≈ 0 represents the AC Stark shift coefficient of
the 1S-state while the solid curved lines represent the AC Stark shift coeffi-
cient of the 4S-state. Figure (b) shows the AC Stark shifts near the magic
wavelength λM , for 4S-1S transition. The AC Stark shifts of the 1S-state
(dashed line) and the 4S-state (solid line) intersect at (0.441031 eV, -2.11249
kHz/(kW/cm2)).
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Figure B.4: AC Stark shift coefficients for the 1S- and 5S-states for intensity,
IL = 10 kW/cm2 as a function of laser photon energy Eγ = ~ωL. In Figure
(a), the dashed line at ∆EAC ≈ 0 represents the AC Stark shift coefficient of
the 1S-state while the solid curved lines represent the AC Stark shift coeffi-
cient of the 5S-state. Figure (b) shows the AC Stark shifts near the magic
wavelength λM , for 5S-1S transition. The AC Stark shifts of the 1S-state
(dashed line) and the 55-state (solid line) intersect at (0.251184 eV, -2.11026
kHz/(kW/cm2)).
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Figure B.5: AC Stark shift coefficients for the 1S- and 6S-states for intensity,
IL = 10 kW/cm2 as a function of laser photon energy Eγ = ~ωL. In Figure (a),
the dashed line at ∆EAC ≈ 0 represents the AC Stark shift coefficient of the 1S-
state while the solid curved lines represent the AC Stark shift coefficient of the
6S-state. Figure (b) shows the AC Stark shifts near the magic wavelength λM ,
for 6S-1S transition. The AC Stark shifts intersect at (0.163385 eV, -2.10964
kHz/(kW/cm2)).

the 4S-5P transition (4051.77 nm) and 4S-6P transition (2625.55 nm) of a hydrogen

atom. Similarly, the magic wavelength magic wavelength for 5S-1S, λM = 4938.68 nm

lies between the 5S-6P transition (7458.94 nm) and 5S-7P transition (4653.21 nm) of

a hydrogen atom. Likewise, the magic wavelength magic wavelength for 6S-1S, λM =

7592.60 nm lies between the 6S-7P transition (12370.4 nm) and 6S-8P transition

(7501.57 nm) of a hydrogen atom. It is evident from Figures (B.1), (B.2), and (B.3)

that, in addition to the magic wavelength tabulated above in Table ??, there are

few other magic wavelength as well for each transition. For example, for the 2S-

1S transition, other magic wavelengths with reduced mass correction are 443.212

nm, 414.484 nm, 399.451 nm and so on with AC Stark shifts −225.203 IL
(kW/cm2)

Hz,

−227.404 IL
(kW/cm2)

Hz, and −228.776 IL
(kW/cm2)

Hz respectively.

As shown in Figures (B.1) - (B.5), the AC Stark shift for 1S-state is almost

constant. The AC Stark shift for 1S-state, ∆EAC(1S), is almost a horizontal line at
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zero AC Stark shift. Numerically,

∆EAC(1S) = − IL
2 ε0c

α(1S, ωL). (B.10)

A lawful approximation to the dynamic polarizability of the ground state hydrogen is

that it is roughly equal to its static polarizability, i.e., α(1S, ωL) ≈ α(1S, ωL = 0) =

9e2a2
0/(2Eh). Thus, Eq. (B.10) yields

∆EAC(1S) ≈ −210.921
IL

kW/cm2
Hz. (B.11)

One of the most important features we observe in the AC Stark shift for the 4S, 5S,

and 6S reference states is the double pole structures in their energy versus AC Stark

shift plots. For the 4S-state, the AC Stark shift has a double pole at 0.661388 eV.

Similarly, for the 5S- and 6S- states, poles appear respectively at 0.306128 eV and

0.166292 eV.

Let us now discuss the origin of such double pole structures. As given by

Eq. (24) of Ref. [91], the AC Stark shift of the unperturbed state |φ, nL〉 reads

∆EAC(φ) = −e
2~ωL
2ε0V

∑
m

[
〈φ|z|m〉〈m|z|φ〉
Em − Eφ − ~ωL

nL +
〈φ|z|m〉〈m|z|φ〉
Em − Eφ + ~ωL

(nL + 1)

]
, (B.12)

which reduces to Eq. (B.5) in the classical limit, nL → ∞, V → ∞, and nL/V =

constant. Here, ωL, V , Em, and Eφ are the laser field frequency, normalization volume,

energy corresponding to a virtual intermediate state |m〉, and energy corresponding

to the reference state |φ〉 respectively. If the laser frequency is same to the energy

difference between the energy of the reference state and one of the virtual level, we

observe the pole structures as seen in the Figures. (B.3), (B.4), and (B.5) in the Stark

shifts. More interestingly, the double pole structure in the AC Stark shift of 4S-state
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can be eliminated by subtracting the following term

− IL
2 ε0c

e2

3

∑
µ

∑
j

〈4S|xj|3P (m = µ)〉〈3P (m = µ)|xj|4S〉
(E3P − E4S) + ~ω

. (B.13)

Similarly, the double pole structure in the Ac Stark shift of 5S- and 6S- states gets

eliminated if we subtract

− IL
2 ε0c

e2

3

∑
µ

∑
j

〈5S|xj|4P (m = µ)〉〈4P (m = µ)|xj|5S〉
(E4P − E5S) + ~ω

, (B.14)

and

− IL
2 ε0c

e2

3

∑
µ

∑
j

〈6S|xj|5P (m = µ)〉〈5P (m = µ)|xj|6S〉
(E5P − E6S) + ~ω

, (B.15)

respectively from the total AC Stark shifts of the respective states. This double

pole structure suggests that there exist a resonant emission into the laser field. The

emitted photon has energy,

∆E = ~ω = EnS − E(n−1)P , n ≥ 4. (B.16)

Our investigation shows that Eq. (B.16) exactly predict the position of the double

poles in the AC Stark shifts of 4S-, 5S-, and 6S- states.

B.3. SLOPE OF THE AC STARK SHIFTS

The slope η of the AC Stark shift at the magic wavelength is given by

η =
∂

∂ωL
(∆EAC(nS, ωL)−∆EAC(1S, ωL))

∣∣∣∣
ωL=ωM

, (B.17)

which measures how fast the difference of AC Stark shifts between the nS-state and
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Table B.2: Influence of the reduced-mass correction (RMC) on the slope of
Stark shifts at the magic wavelengths in unit of Hz

GHz(kW/cm2)
for 2S-1S, 3S-1S,

4S-1S, 5S-1S and 6S-1S transitions.

condition transitions
2S-1S 3S-1S 4S-1S 5S-1S 6S-1S

without RMC -0.215044 - 3.20155 - 28.4212 - 201.627 -8036.57
with RMC -0.215395 - 3.20679 - 28.4677 - 201.737 -8049.72

the 1S-state changes with the laser frequency. The slope of the AC Stark shifts at

magic wavelengths are presented in Table (B.2). The magic wavelengths listed in

Table (B.1) are the longest magic wavelengths for the corresponding transitions, and

the slope of these transitions in Table (B.2) are the minimum slopes. The value of η

with the reduced mass correction is 1.001637 times that of the η without the reduced

mass correction. This factor comes from (me/mr)
3. In the laser trapping process, a

large slope of the AC Stark shift should be avoided. With no surprise, the slope of

the AC Stark shift in nS-1S transition is larger for the higher value of n. So far the

feasibility of optical trapping [97] is concerned, difficulty increases as the value of n

and hence the value of η increases.
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precision optical measurement of the 2S hyperfine interval in atomic hydrogen,
Phys. Rev. Lett. 92, 033003 (2004).

[62] C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, Ground-state
cooling of a micromechanical oscillator: Comparing cold damping and cavity-
assisted cooling schemes, Phys. Rev. A 77, 033804 (2008).

[63] S. G. Karshenboim, F. S. Pavone, G. F. Bassani, M. Ingusci, and T. W. Hänsch,
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