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INTRODUCTION 

In the pa.st 10 years, magnetic ampli:fi.ers have received 

much attention 1n many. di:ff°erent fields of: engineering. Al­

t.hough the pr1nc1pl:aa or thi'i: ampl1:f"1et- have been know since 

1915·, 1 t haa been :ro~eed :lnto th:e backgrotind ~Y ·the develop­

ment Of the vacuum t _ube aillpli_f"ier. the need o:L better co're 

ma ter1a1, and better d·l9y disk redt1Yiers. 

The basic magnetic ampl1:f1er, or aatura.ble :rea.ctor, ie 

nothing more than an iron core react$nce ~oil who&e. a.-o im­

pedance ·is controlled by a d-e· premagnet,1za.tio'n of the core. 

Thi~ d-c premagne~1za tion may be obt.a1.ned in a number of way$, 

the j1mplest of wh.ieb.. is a separate d-c source. 

The name amplifier. applies because, or a -small variation 

or the d-c control e.urrent, a 18.rg4'-r variation or the a.-c 

output current m~y be -obtaillad. ·The ratio of these currents 

is' known as current gai"n and 1.s a very importcmt quant1 ~7 in 

the study of magnetic amplifiers. It will be shown that with 

certain refinemen:ts, namely that ot teedba·clt, it is possi~le 

to greatly increase this gain. 

The main pui:-pose o-r this thesis is to analyze a aeries 

type magnetic ampl1t1er ~n two different ways and then to 
•. 

compare these analyses. 

More specifically, a half wave magnetic a:dlJ;>lif'ier cir­

cu1 t Wilt first be consldered .in which an at'.tempt is made to 

consider all aspects of the problem. This a.ntllysis will be 

shown tO be impractical because or mathematical complica­

tiom:and will then be abandoned. A new approach to the 
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probl·em .with'. certa~n s.1Iiipll:01ng assumptions will . be made that 
~ . . . . . . . 

will lead to an app~-tt-e: mathemati'c~l solution. 

A full•wave series magnetic o:ircui t will then be ana­

lyzed assuming a . pow~r : ser1es. approxfmat1on of the B-H char• 

acteristiC • '.f;his type O.t t.-· approac~'_-hS.8·\11;8 :stJ.6z-"tCOm1DgB ~· llOW~ . 

ever·, but _serves quite .ni'cely · to yield information which 

other approaches fail~ .. to give:. 

Finally, an approach t() the prob~em will be made by ae­

sUin1ng stra1ght line magneti~l&~1on · curve.e. · this analysis 

g1 ves q~ta . a lot . Qf us.eful 1nfbrma.t1on as will · be 'shO~- la­

ter in this thes1a ~ ... · Tbese analyses will then be compared · as 

to accuracy of results, assumptions made, _and validity ot tbe 

. initial assumptions • . 

. A short .d1s·euss1on on magnetic. amplifTera used· as mixers 

and a.s audio ~plf.'.tlers. will be· given·. 
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REVIEW OF LITERli.TURE 

Although much material has been published in periodicals 

under the heading of . magnetic ampli:fier~, very little has 

been released in the analytic~l approach to the problem. The 

great majority .of material being published at the present 

time is qualitative. 

Some of the articles professing to be of an analytical 

nature are in fact a collection of empirical formuJJE and ex-

perimenta.1 results which were obtained from a pP.rticular set-

U? and specific operating conditions. 

A. G. ~Tilnes (l) ( 2 ) of the Royal Aircra.:rt Establishment 

(1) Miln~s~ ~ Ao: -· G~ A New Theory on the Magnetic Amplifier. 
Proceedings of the Institute of Electrical EJlgineers. 
Vol. 97, pp. 460-497 (1950) 

· (2) Milnes, A. G. Magnetic A.mpl1:fiers. ~ Proceedings o:f 
the Institute of Electrical En~ineers. Vol. 96 pp. 
329-338 (1~49) -

hae published some art1cies wh~Oh are quite good as far as 

giving an accura.te picture of· the mechanics of operation is 

· conce.rned. 

In any mathematical discussion o:f a non-linear element, 

such as the ~agnetic ampli:fier, it becomes necessary to make 

certain simplifying assumptions if a_ny results are to be ob-

tained which are useful. 

Dr. Uno Lam.~ has published a book on the magnetic ampli-

fier ·which, un:fort1mately, is not published in the United 

Statee. and is not written in English. 



The only book on magnetic amplifiers which is presently 

being published _ in Engl1sh(3) is by Mr. J. H. Reyner and, 
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(3) Reynor,.·· J ·. :H. The Magnetic Amplifier. 1st ed. Lon­
don, Stuart and Richards, 1948. 120 p. 

unfortunately, contains no analytic discussion of the subject. 

Several art1cles( 4)(5) have been written, giving an ac-

(4) Cohen, Sidney B. Analysis and Design of Self-Satura­
ble Magnetic Amplifiers. Proceedings of the In.sti­
tute of Radio Engineers. Vol. 39. pp. 1009-1020 
(1951) 

(5) Smith, E. J. Self-Saturating Magneti.c Amplifiers. 
Transactions of the American Institute of Electrical 
Engineers. Vol. 69. pt. 2. pp. 1309-1317 (1950) 

curate picture of the half-wave circuit. One, the article by 

s. B. Cohen, has been used in this thesis. 

At the present time, the Carnegie Institute of Technolo­

gy is actively engaged in investigating magnetic amplifiers 

but is not releasing very much for publicat~on. 

A number of companies, such as Westinghouse and General 

Electric, are do:ing theoretical research on this problem but 

are not releasing any information because of the military use 

to which these amplifiers are being put. 



LIS'l' OF SYMBOLS 

#=number o:f turns on eoil, specified by subscript; a for 
output circuit, b for feedback circuit, and c for con­
trol circuit. 

r/> = total flux in core a-s ca:qsed by w1nd1ng, ape_ci:fied by 
subscript (lines or maxwe1ls). 

i = inductance (henrys)• 

5 

G = instantaneous current in winding, specified by subscript; 
a for output circuit, b :for :feedback circuit, and c for 
control circuit ,,. (amperes) o. 

~~=load resistance (ohms). 

~c.: control circuit resistance (ohms). 

J =effective length of :flux path in each core (meters). 

W = a.ngul.ar frequency . (radiane/$econd). 

" :reactance o:f a-c cireuita .2.No.""~Hl (ohms). 
~ · · l~o 
~ = absolute penneabili ty of core. 

~-,= average value of current in · a-c circlll. t . (amperes). 

Xe-= d-c component of" current in control circuit (amperes) • 

A = cross section of a single core (square meters). 

'R '= total resistance in output circuit of half-wave magnetic 
amplifier (ohms). 

G, = a specific d-c current in control winding of half-wave 
c1rcu1t (amperes). 

Kr: average power ampli:fication. 

o<1 :- ang\llar position at which core 0(. . saturates. ( rad1ans). 

fl ·.· s ang1Jl.ar position at which the current in the output cir­
cuit is zero (radians). 

~ : saturation flux per single core (lines or maxwel1s). 

£.,,,,.:maximum value of a-c supply voltage (volts). 

15 : :flux dens1ty, ~as a function· of time, /3 
0 

as evalu­
ated at t:.:: o (lines/square meter). 

/( .. % is defined as £,,.,, ·/I f' 
A/Vaw rp., 

fl: magnetic intensity (ampere turns per meter) 



DISCUSSION OF SIMPLE HALF-WAVE SERIES 
MAGNETIC AMPLIFIER CIRCUIT 

6 

The magnetic amplifier. in -its 'most e1emen~ry form is 

the well-known aaturable circuit shown in Figure - ~a. The 

' output of' this- simple seri'es magnetic ti.reU.1 t consists of' a 

source ·of' alternating voltag(!t in aer.ies with a load resist­

ance. dry disk rect.1'!1-er, an4 on-. · side ot" a reactor. The 

other side of the reactor is in · series with a source of' d-c 

voltage, a control res·1sta.nce, and a large inductor (L) which 

serves to smo~~th out the d-o control current and to keep_ the 

9utipu'b:'· of' the .reactor -from 1nduc1ng current into the control 

winding. 

There will be oniy Qne assumption to begin with, nameiy 

that the B-H curve can be represented by a single curve aa 

shown in Figure lb. ·This means that the hyste~is et:fects 

are neglected. This ia · not an unreasonable a8sUDH>tion con­

sidering the high~permeablllty core mater1a1~ in present-day 

use. During the paat twenty years, much actvancement has been 

made< 6 H7) in the processing o:r magnetic material, making it 

(6) Storm, "H. F. Ser1es,<~onnected Saturable .Reactor with 
Control Source of' Od!npe.ra.t1vely ~w Impedanc,e. Pro­
ceedlnge of ~he Amer1ean Inst1ttit.e of.-:Jlleetr1cal En­
gineers. . Vo-1. 69. pt. 2. PP• 756~76.1•f'f 1950) · . 

(7) Ver Blanck, D. W., Fin#, L. A~, ~utnar1age, D. C. ~ . 
Analytical Dtrterin1nat1on o'f Chara.c1.:rer1st1cs of Mag­
netic Amplifier~ with Feedbac~. P-''~ .. ~dings of the 
American Institute o-r Electrical Engineers. Vol. 68, 
pt. 1. pp. 565-570 (1949) 

possible to assume a single-valued B-H curve with vecy little 

error. 
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The · assumed B.;;.H cU:rve shown 1n Fisure ib can .be repre­

sented by a sinh curve quite well for ~11 practical purposes. 

The excitation, H, is directly proportional to the sum of the 

control -current and ~lie output _-current • . '!'he equation of the 

B-H curve may ~ow· be written·~ as 
i: a.~· b' ,,. • • • • • • • • • •• (1) 

where a and b are constant.a or" the' part1cula.r co:r-e material.. 

Writing the differential .equation for the output circu1~ 

gives 

.L J-i . ~I• . • .,L· ' Ji.+- A.' (- =,&,,,,,, · ~ w ·~~ . . . . . .• •• ( 2) 

• • . . . . . • · • . • ( 3) 

Solving for +from. -f!lq9ation (1) 
~=i...L.. A • ,_-I~ 
"" • ~- Q.­

J.. t; is the v'oltage 'drop across the reactor a.nd may also be 
- . rd. ~a . 

written ae#a ·/O . Taking the time derivative of equa-

tion J .. ~J, . . ~d. multi;Plying by N~/t{~ives 
, .· . ti-JD-~ ti 

·a--u15stftutlng equ~t1ori ·' f/,'~~i: ~rfu.ation (2). 

• • • • • • ( 4) 

H· 10-I ~.£ + R'i :t:r..;_ JL:.wl:. (5) J,f/Za.-1ai: J , ~r-r~ • • • • • • • 

Th1s equation 1s· v~lid only :forl<Ls.nf.-<-ffbeca.use the .rectifier 

prohibits current f'low on the negative hal.f'-cycle of' the sup-
- . . . I " 

' ply voltage. I~ should be noted the .. t R is th'e total forward 

ztesistance of the _ output circuit. This inclu'dee the resist­

ance o:f the rectif'ier whi.ch, strictly speaking, 1s a :function 

o 'f the current through· 1 t. 

The only omission in the previous disous$ion is the e:f­

fect:·5 o'f the control · c1rcu1 t. The added eff'ect of' the con­

trol circ11i t will be simply to shift the operating point a­

long the B-H cury-e. The currents induced into the control 



wind1n~ are assumed too small for consideration due to the . 

inductor, L. 
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The difficu1 ty of this type or approach is that the re­

sultant differential equation ls unsolvable by ordinary meth­

ods and a point-by-point,,or m'echanica.1._ integration is the on­

ly type of solution po·ss·1ble. 

Because of this, cert~n · simpl~fy1ng assumptions · must be 

made in order to obtain a sati.sfactory. solution. An analysis 
__, 

based on these assumptions is given in the following section. 



DISCUSSION OF SIMPLE H4LF~WAVE SERIES MAGNETIC 
AMPLIFIER CIRCUIT WITH SIMPLIFYING ASSUMPTIONS 
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As diecussed in the preeed1.h-g ~ a.nalys1.s, s1mpli:fying as­

sumptions are necessary to gain an- approa~h to the problem o:f 

magnetic amplifiers. The '.following th"sumptions will be made 

in the analysis of this eireuit. 

1. The rectifier has aero forward resistance and in:fi­
ni te back-war~ res1$tai:lce. 

2. Hysteresis ef:fects anO. eddy currents are neglected. 
__ , 

3. The reactor winding resistances are small and are 
lumped in w1 th the load resistance ( RL)and control 
resista.nce(ftc.). · 

4. All magnetic leakage ef:fects are neglected. 

5~ A B-H curve is assumed as shown in · Figure le. 

It is obvious from the B-H curve that the reactor can 

exb1l:d.t two different values of inductance. The reason for 

t.his is shown below. From Lenz's Law, e:: J.li a NJl-10-! 
where L is inductance in henrys and N is the number of turns-. 

From _this relation, .L. • Jllj4~~ but dt/>= A"B where A is the 

area of the iron and Bis -the flux density. Now 

~:: /V!lf-,, HA .J B • NA d. j'f · 
J,'tor · fiJ l ·10' "II • . :' I• -~ 

where H is the magnetic intensity. 1n the iron · core. · The ra-

tio:: is the slope of the B-H curve and is the permeability:· 

o.f the magnetic material. When the reactor operate's td. the 
~~"t:. : ·~~-· .,_ .... . t. 

right of point b in Figure le, the 111'«-uetance_· is zero since 

the core permeability is zero. When the reactor is operated 

in the region between _b' ahd b, then the ~~Ei&cte;ttee -' ; is large 

and depends upon the number of turns on the ree.ctor, frequen­

cy of applied voltage, and core dimensions. 



Ha1f-Wave Magnetic Amplifier 
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~~en e 1s negative, the entire supply voltage must nec-

.essarily appear across the rectif'ier, assuming ~nfinite back­

ward resistance, a.rid hence n~ output current . will f'1ow~ When 

the supply voltage, e, 1s posit1.ve h it will either appear 

across the reactor f as an induced vo1tageH,fJ. or as an i....R1.. 

drop a.cross the output resistor, depending on the value of' 

Lo.. 

Let us now assume that the reactor is pre-excited (bi­

ased) by a control current ,;, such that. /Ve. i., : -flo.. . The 

out·:Jut c1rcuit· su:p~y volt.age; e, is assumed . to be a sine 

wave and is shown 1n., Figure ld. Bef'ore the point 0 is 

rea.ched, the a-c supply is ~ega.tive and, therefore, 1s com­

pletely absorbed by the rectifier, the output current being 

zero. As AJ'i;: proceeds :from O to 0(, , the time rate of" 

f'l'UX change is very gr~e.t and the majority of" the B'-:1-PPlY 

voltage Will appear across .the reactor as~ with only a 

small ve..lue o:f o~tput current flowing. This small value of 

output current will caµse an additional f"1ux in the core un­

til at wi_=.ot.. 1 the knee or point b of the B-H curye, Figure 

le, reached and most of the suppl.y vol tR.ge will ap!)ee.r across 

the out'!.)ut resistor as io.. 7t"- drop. From ..(. 
1 
to slightly before 

7T , the reactor is saturated and ca~ no lonser support a 

voltage across i tsel:f. At"-.> -J:.• 'fT". the supply voltage r ·eversee 

polarity and appears across the rectifier as inverse voltage. 

The output voltage wave for~ is shown also in Figure ld. 

A small current flows from 7r to o{,._ since the energy 

stored in the magnetic f'ield during the interval 0- .,, must 
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be returned to the circuit. A:fter -~ ~= .2 iT is reached, the 

same cyc1e o:f events again takes p1ace. 

The point 0(. 1 is o:f"t~n called the point o:f :firing or 

the :firing angle and can be varied by the magnitude of' the . 
control current, 'c . If' the :foregoing events were assumed 

to take place when the core is bias_ed at H=-fi._, then when 

it is biased at+H-..the point o:f :firing, ~. , will take 

place sooner in the cycle. The output current needs only to 

supply an intensity o:f /16-Ho. be:fore the core is saturated 

wh:i.le previously it had .to stipplyJ/ 6 7-i/4 • 

The point · O{ ~will b~ ca11ed the extinction angle since 

it is the point where the load current and hence the 1oad 

voltage return to zero. It .also is dependent upon the ·cur­

rent in the control. winding. The extinc·tion angle is obvi­

ously equal to or greater than 1800. 

·The :firing ang1e may be calculated as :follows: The .dif'-

:ferential equation :for the outout circuit is: 
- ~<Ii .. + R1..ia. = E;._, ~ w-t:. 

d"£ 
From 0- o<. 1 , the majority o:f the supply voltage is across 

th t i Ldi.A. ~-z> ., it b id e reac or, • e. d.* .::>,...... nA-· L .._ . so may e sa 

I ife. = £,_,,, ~ W * : /V ~,111,./1) -· 
JI- d'I:. - d~ 

J<J>.1 £~·IO 8 ~wt t:l.t.:. but cl"'.t. A cJ13 so 
N -

d 73 = .£. ~ · /D 
8 ~ w-t=. cit:. 

l'rN 'I: . 

°Bl :c:itl :: £....., ·/O • J ~ {,.) -/::.cit:. 
-:J • AN o · 

where o< w'i:.~ < o<., 

B-~ ::. £ 1117 • / () 
8 (I - c........ '4J %;_) 

NAW 
The i3 0 term !.f:l ._~p._e ___ y~):~§ .. _qJ' ___ f_::l:~?C . ___ der.i_~i ty evaluated 

when time is zero. This ter--JJ. is co 1;n-9osed o:f two parts. The 

:first is the ~lux density caused by the d-c in the control 
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winding, and the second is the d-c component of current which 

f'lows in the output circuit. When t<J'i;., = «. 1 , the firing. an­

gle, Bet.), is equal to the flux density of :firing, 13(f). So 
6 

Let the we have "Bf .:. ~. 1-E,._,, ·/O (I- CG.A> 0( 1) 

& NAW 
quantity e.z'~~ be called B~ which is the maximum value 

+ ~~ (1- ~o<.) or o:f flux density. Now Bf= ~o 
«.:: ~ _,[e,,._ t ~. - 811 

~~ ..J Because of the rect1fi.er 

actionO ~ o<., -<. 7T 

In closing the analysis of this hal:f-wave circuit type 

of nagnetic amplifier, an expression for current will be de-

rived which will be good until the point o:f firing, 

0 'S w"t -<-o<,. The general differential equation 1s· 

L di a. 'R , ..L 
J.--J:.. + L £,0. :.6""' ~W~ 

1. e. for 

• • • ( 6) 

where the rectifier forward voltage drop (if any is assumed) 

is ·included in~" i, o. along with any a.ssumed drop 1n the coil 

resistan~e. P 
-~~ 

The solution for equation .(6) is lfl. Ci:.) =A e. J.. 1- ~·I' 

where A is a constant to be determined and lf' is the par­

ticu.1.ar solution which will be solved :for now: 

Lt,= C, ~~i. -tCJ... ~ cui. 

..slid' = - C, ~ ~ W i:. +C.i {,A) Co4> t.cJi: 
cl~ 

• (7) 

• ( 8) 

where C',· and C-l. are constants o:f integration. Substituting 

equation (8) and (7) into equation (6) gives 

[-c, w ~ tui= t c.a.w ~w-i. r ~c, ~~"I. 

+ ~ .t 5 :&. ~ 1 .. Jt:] :: ~ _.. A.t.M tv t. 
Equatin1=5 like coefficients of the terms ~1 ves -C, W -t f<~ Ci. = 

~Wt fl'-c, =O ~rom which c,~ -4wEm 8~d 
J_ RL~'fW ,_L '3... 

c~c 



Fina1ly 

when 'I::.= o i.{~) = O 
J Q. 

let I,.,, f £,,,,,,. 
' l~~.l.d a.~ 1-

then 

so 

·so- A= 

and 

This expression gives the.Qutput current for any t~me unt11 

(A,J;i.J:Ol.. 1, where the induct~mce (L) is a. constant.-

15 

A continuous increase of control current cannot produce 

an unlimited increase of output current. When the control · 

excitation completely saturates the core, the output vo1tage 

will appear across the . output resistor at the very beginning 

of the cycle so the maximurn power will be delivered to the 

output resistor. If a furt.her increase in control. current is 

real.ized, it is obvious that the maximum output power cannot 

be increa.sed further since ~e amplifier cannot fl re sooner 

than w 't.=O • At this point, the load current is limited on­

ly by the va.l.ue of circuit resistance. This region is ca.ll.ed 
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the resistance limited region. Actually, the value of' cur-

rent will be slightly lower because of' air-core reactance. 

The value of load current from oe, to .,.,- is c'a.,~ E,.,,, ~ wi 
'RI.. ' 

since the drop across the reactance part of the reactor is 

now zero. 

The · foregoing analysi-s was taken in part f'ro m two arti­

cles. (8) (9) The results of these art,icles have been expanded 

(8) Smith, E. 'J. Steady State Performance of Magnetic 
Amplifiers. Proceedings of the American Institute 
of Electrical Engineers. Vol. 69. pt. 2. pp. 1309-
1,17 (1950) . ' 

( 9) Cohen, Ql2o . cit., pp. 1009-1020 

in the previous section. 

Tne fi g ure below shows a ty9ical transfer curve f'or the 

he.lf- 1."!P .. ve magnetic circUi t just considered and was obtained 

by experimental.methods. 

D.c. Con~rol CIA..rrent- + 
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As can be seen f'rom the fip;ure, the output --o-s input is linear 

over a considerable portion of t.he curve. 

Al though this half-wave magnetic circui. t is. simple to · 

analyze, it is very seldom used in practice. One reason for 

this is the necess.1ty for using the large series inductor in 

t.he control winding. If' this were not used, the amplifier 

would act somewhat like a short-circuited transformer since 

the control circuit is generally of' very low impedance. The 

two-core reactor is in general use today since it can be made 

to handle greater amounts of' power and because the sensitivi­

ty can be improved. Also with two reactors, the control cir­

cuit can be so wound as to cancel out all odd harmonics of 

the supply 'frequency which eliminates the series inductor in 

the control circuit t.hus lowering cosh {lO). 

(10) Easelman; w. 'a. Steady State Analysis of Self-Satu­
rating Magnetic Amplifiers Based on .L1.n_ear Approxi­
mations of' th~ Magnetization Curve~ Tra.risactions 
of the .American Institute of E1ectr1ca1 Engineers. 
V-0"1. 70. pt. 1. p·~ 455 (1951) 



DISCUSSION OF A SERIF,S MAGNETIC AMPLIFIER CIRCUIT 
WITH FEEDBACK ASSUMING A POWER SERIES B-H CURVE 
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Consider the magnet1~ . amplifier shown in Figure 2a. 'fbi.s 

ampli:f"ier consists of two saturable. reactors, each wound with 

an ·a-c and a d-c winding. The d-c control windings are wound 

:ln series oppos.ition to cancel out the odd harmonic voltages. 
- ·· 

This does away with the series inductor (L) :1n the control 

circuit. In the first portion or this analysis the load re­

sistance will be neglected since considerable difficulty is 

encountered. if'. an attempt ie ma.de to include it. 

With a d-c excitation applied to the d-c coils and an 

a-c voltage (sinusoidal) applied to the output windings, the 

wave o -r :flux density in the e( core can ·be written as 

B,.. ~ w i:. +- a. . . . . • • .. . • • ( 9,) 

and the wave of nux density in the /3 core as 

~~~w~. -ao . . • • • • • • • . c10) 

since the d-c winding is in series opposition. A 
0

plot of the 

flux density vs time is shown in Figure 2b. 

Assume now that the B-H characteristic can be expressed 

as 
I ' 3 ' . $ 

H=-Cl"a~~~ +c~ . . . . . • • • (11) 

All the previous assumptions are made :ln this analysis; 

i.e. perfect rectifiers, negligible contr.ol circuit imped~ce, 

etc. By negligible control circuit impedance, it is meant 

that the control c1rcui t is supplied by a generato_r of negli­

gible impedance. 

Subst.ituting equation (9) into (11) we get the equation 

for the excitation in the 0( .core as 
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. - ~ ' 
Ha= a "(B ... ~w-/:..1- Bo)+ b

1 

(f>,..~tAJ-J:.+.~o)+c '(6 ... ~c.>~1-B~ (12) 

This gives (see ·Appendix 1): 

Ho< =(o. 'so tl.
1

8,,
3 

1-C: a:· 1i1,'e.s': t- sc '73; a.::; .,.. ~s-c 'noi3::_) 
. , , .. . , . ~ ·' ~~ ~ "- .a · .. . 

1' {a. 13/W"t + . .3k 80 ""A~~ . roe ~oliJ- ~- 25~ ~-:t c.. ~. ~ ~ ,,; 

C- I S) • -J.. 
1- '- :;-c B~ ~t-.J~ _ 

- {~b'~.6,.,-a.: t"oc'o: 8:. +f c'13,.13~) ~.{~~ 
I . . 

!2. . .3 e - ~ '1. . 3 . .S- ~ .&") ... -L 
- {II ~#¥> + ~ c 6e f&,,.,. -1-7' ~ f5~ .~ '3 lc..l ~ . 

Si ~ " . . . 
-t { Ee '30 /3,.,, ) Co.4J~wi:. 

+ (c;~:-) ~- S"w "i:. • (13) 

Writing the equation relating Ho( a.nd ampere turns 

gives 

• • • • • • • • ( 14) 

and 

f-//3 .,Q = Na. l c.. -/lie i c. . . . . . . • • (15) 
. I I I 

'The constants a, b, and c depend upon the particular core 

characteristics. 

cept 

Th~ expression :for flp is slmiliar to that of )/"'- ex­

that 13
0 

is replaced everywhere by - "'B0 • The expres­

sion :for JltJ · is given in Appendix 1. 

Adding equations (14) and (15) and solving for lo.. gives 

f - ..Q 
l 0. = ( f-1 o4 + 1-1.,& )Ttto.. • • • • • • • • • ( 16) 

Subt-r.actirig·. equation (15) :from equation (14) and solving for 

{, c gives 
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• • 0 • (17) 

Substituting for flo1... and fl.j!> in equation (16) we have 

J. [ 'B I /.l ).. ., . 1 t/ 3 (. = - o.. ...., -t 3b kJ no; /30 -rSc f.:J ~/IV' t- A- f3W1 
a.. /\lo... . 0 ~ 4 

f- _1 [ c I l:>.:1~s~t. 
No. I€:> . 

• • • • • • • (18) 

Similarly, from equation (17) we have 

le..:: _2. ~ '6 0 -f b f3 t) f c 'f!,
0 

t- z b /30 13~ t6c /~a (J#t.I\ 
' . o[ r .! s / 'Z. . 3 ~ 

Ne · ~ 

:I- fc' '5or-,,:J 
~E I '2.. I 3 ).- ~ ~ ~ 13.,,13,... t-Sc. r.,6 f.l.., ;': ~ c I ~ .. IS"']~ J..4JI: 

Ale ~ 

f- . .1 [5 c' f:J0 (j"" ""] ~ J./.w t: .. (19) 

/\le f . 
· Equation (19) shows that the current in the d"."'c circuit 

consists of ·a d-c component, a negative second harmonlc, and 

a forth harmonic. Thus, all odd harmonics are canceled in 

this winding by virtue of the manner in which 1 t is wound. 

The current in the output circuit consists of a fundamental, 

a he~ative third harmonic, and a fifth harmonic. 
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The d-c component of' (.c, could only have been caused by-a d-c 

current in ,tl'E control winding, which will be called Le . There­

:fore, the d-c exci ta.tion :for the O<\ core is 

I clVc, ~ l r o..'Ba +A> '130
3 

t c '13" s T :J b, f'.:>o 13~ r S-c / 130.3 {3~.,, 5c'60/J:1 . "J. . -<. K .~ 20) 

It is easily seen that this d-c excitation is influenced by 

the maximum value of' a-c fiux, 13,,,.,. This .is because of the 

non-1inear1 ty of the assumed B-H characteristic. Eque.tion 

(20) is ac·tua1ly the average value of' equation (13} between 

· o-:HT. Thia is true bec'auae fTt. J;::,, h tt.:> ~ d (4':L) = O 

0 

dcwiJ = o 

:i.Tf 

A1so -1. ~ Ne. d cw-L) ~TT_;~ 
0 

-i...17 

~~ f I,JVc-Jc wiJ( 

Referring to Figure 2b, it may be seen that the exci ta.-

tion curve o:f the o{ core during the , interval 0 - 7T1s iden­

tical to that o:f the /3 core during the interva'i 7T-~1T. The 

output current excitation can now be obtained by taking the 

average of equation (13) over a period o:f 0-:lT and subtract­

ing the d-c excitation. The same result may be obtained by 

averaging the to t.B,l exci ta ti on in the /3 co re :from u-.i. 7T and 

then subtracting the d-c excitation. 

r;,_"""'!- No. = ,; f 14 <1- cJ cw i) -Tc/Vr:.. 
\) . 

• .. .. .. ( 21) 
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But, ·as was' just shown, LIV~ 1~$, :~e average 'O_f Ho( over a 

p:o::::~:~ :sfk.f~J(~ij ~~ p;~~. • (22) 

. . o. . , · ... o , ~ 
·a.ubstitut1.ng ' the ~al.ue ot·: . 

,:# • rf4.,,"' dc~~s 
, ~T 
of equation (22) into 

.. .. , 

' -z.71' . 

-l; .. v3 Af ,, ~_z:-.,_ -}.£. H,,,;Jc~-J.) . 
~ 

• (23) 

· From F1gur~: _2b 1 t · ml:l,y be· seen that the exc:tta, t!on of · tb,e 

~ core from#~J..,.,-is m~C~' less than that from 0-q • The 

term ,..,,-

.,;.£ H .. dc""'~J . 
. .,,-

is actual.ly the· product or H-. and '--' t:' during .the interval. 

7T-J..:ir. Fro.~ Figure 2b _it may ~st> be see~ that a.a the ini-

tial. slope of the J?-H curve · increases, the integral w111 ~e­

come very small. If 1~ were possible to have an infinite 

slope, the integral would :become · ~qual to O_. At this condi­

tion an 1nf1n1tes1mal a.mount of: exci-tation · woul.d cause the 

reactor ta saturate. A B-H curve o'f infinite'"~ siope can never 

. be :realized, o·f course; but in most magnetic amplifier mate­

rial.a such . _as· Mu Meta:l, Hipersil, and H1pernik, the 1n1 ti.al 

slope is ·very steep so that equation · (23) reduce·s to 

. . . . ... (24) . 
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. If a th:lrd wi.ndi.ng :ls ad~¢·, the r.es~t is a circu1 t of' 

e type .shown in :Figure 3. The · third winding is called a 

:feedback windingo The outn~t current is rectif'led by t~e 

bridge-type f'ull;wave recti_tier. and. fed back through the 

:feedback windings. The ~eedback winding · on e'ach reactor has 

. Nb turns and is wound· so that 1 ts IIlilJ;f' B:ids· the output cir~ 

. cu1 t mm:f. The equivalence of' ampere tur.n-a , 1n this amplif'ier 

circuit also holds true, i.e. 

. . 0 • • • • ( 2.5) ~a•/Va = -Z1.N6 1- .z;_ N'c. 
where .:z: was d.ef'ined previously and -Lh .~s the average value 

c. 
of' current in the feedback circuit. Re~rranging equation : : 

(25) giv·es 

where 
Ic;: Ale ::--Z:,a."a /\/a. -...I"N" =~a.11~/VQ. (1- <4) 

a _ is _z-
6 

/V_l> · · 

(26) 

_z:4v8 #0- . 
Now 

- /Ve 
Na. C 1-ct) • • • • • • • • (27) 

With the addition of the feedback winding, the ratio of' 

outpu.t current (average) to control curreht has been increru:ed 

by the :factor 1!_0- .• The current gain can easily be ma.de 
,.. 

in:fini te. by making a= I al thoug_h. the circuit tends to become 

unstable under these conditions. It will be noticed ~ that e­

quation (27) . is a general equation since the quantity, a, is 

a ratio of :feedback ampere turns to output ampere turns. In 

the ce,ae o:f the circuit in Fi5ure 3 the current through the 

:feedback winding is the seme as the current through the .out-
, ' 

put winding, i.e. £.e1r=l- _c::.2na.Lo.~"8 : Ic:.assuming perfect rec-



Re 
-------------1\1\/\,------------~ 

Ne 
+ ----------------roor~-----

Series Type Magnetic Amplifier 
with Feedback 

Figure 3 

25 



ti:f:1.ers. 

a.- fil. 
- /Jo. . 

In this c~se th.e teedback :factor, a, reduces to 

wh:1.ch will be defined as A . 
If" a resistive load 1,s .assumed in the outp~t c:1.rcuit, 

the average power ampli:ficat·ion can be defined as 

~ 
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~r = KL [~4-~-'] ~ - . . • • • • • ( 28) 

Re ~c: 
This is the ratio o-£ average power out to average power in-. 

Putting equation (27) into (28} and s'etting/l,: A gives 

"3-x f' = Ne:_ . R'--a.. ., . ' . • • • • 0 • (29) 
· No- (1-'1) Re 

rthere "\::. t!..~ This equation sh. ows that N• should. be large "' No- . - /\/A.. 
(close to imj_ ty) fo _r large power a.mpl.i:fications. It is also 

seen that :for the special case where. /{b~AIA , this equation 

gives,· in:flni te :power ga:1.n. In general, the :feedbaok turns 

NJ, on a magnetic ampl1:f1er are less than the output turns 

Nt"A.... A value o:f A= a Cf is the general order o:f magnitude 

in actual amplifier circuits.(11) 

(11) Milnes, A. G. In reply to a.discussion o:f his arti­
cle, Magnetic Amplifiers. Proceedings o:f the In­
s·t:t tute o:f Electrical Engineers. Vol. 96. pp. 
362-363 (1949) . 

It .. will be noted that the second term on the right hand 

side o:f equation (23), i.e. 
62-'TT 

.,-:- j H._ cJc~tJ 
1T . 

was ne~lected~ If, however, this were not neglected, t...h.e ex­

pression :for current and power gain wo 1Jld not give a value o:f' 

infinity for 100% reedback. Actual experiments have shown 
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~ · c12r that ·. 1ihi·s term cannot be neg1ected . e.t high val.ues o'f A 

(12) Milnes, ibid·. 
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Consider the circui~ .sh§iWn. 1,n. l!'~gure 4 ·. · This~_ · 1s 1dent1-

~ai -to the ,c1rcu,it of" Figµr.e . ~· -
...... 

"· 'rh~ Pr.1µ.A _+P~l dif"f'erE?n~~ - 1n thfs an~:lys:1s and the :l>.re,vi- · 

9us anaJ..y'~~·s , . is in the asa~~ - B~H cu~-~-~-· , .. ·1!1 : tb1.s, ana:tys1s ·.· a · · 

stra,.1;gh1' '..<l.· 1!le.:< -r1~H characteristic will-" b·e - afiJslinied..-
- . -. • 1~/.,,: - -. •' · - . l . ., ···.: ; 

. . . . . . 

Ir·. a: ca,r·eful study :? ·:f ~c·tu~~ operating 9on9.i tions is 

made, it .will -be round, in generai .~. that· the reactance of the 
. . . . . ··, ·"' -. · · • ., · ; -,. _ . . .· ··, . 

. outuut c·1rcuit J.n .the una·aturated .Portion· of .\he B"'"H curve is - -:· . . . -- . . . · . . ~ - ,,· . . . 
. . . 

much greater than the output {qp : ~ lm~.d} res~~stance • .. This is 

an assumption which will be used pres·ent·ly. · :I -t -..will als,o( be 

assumed that the imp·edance o"l: the source· o ,:f:_;:'c~o~trol signal is 

negligible. If this is true, only a very sinal.I , ~7c.volta.ge 

is_ required in the output c ·:trcui t tq 1nduce · '.ev:en _ l'i'atmonfc_ .. 

vol.tag ea ·into the ·control circuit • 

. '.!'he stra1.ght line Ji-H curve· will be s·1m.il.ar.'. to the one 

shown in .. Figure l.c ~ The first . portion ·nas·. a very· ateep sl:ope 

which represents a high induc.tanee. · Tfi1:s is -:followed by. a 

horizontal portion Wh1ch· · repr.es~n:t;;s :tthEr · sa.tu~:tEicl condition. 

The :feedback circuit is coupled cl'o$·e1y to 't;pe control 

circuit, which has negligible ~pedari.ce1 and. 1s .:fed by the 

· "perf'ect" rect1f'iers. Because of" · the ·low _imped'aric.e_ of" these 

circuits, . . ~ven harmonic current·a will circul~ te :freely through 

them. This· · wa~- shown 'for the control circu1-t _ 1._n . the ·previous 

analysis. This cireu1atlo11 of' even ha.rmon1c currents results 

in vol ta,ge .waveforms as shown in Figure 5a and 5b • . 
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Since the contro l circ uit is connected in s eries opposi­

tion , this ca us es c o r e o<. to s a turate at W~ ~ o<,, and co re 

~ to s a tura.te in the opposite direction 180° l e,ter e .. t 

. (,u t.: o< 1 -1 7T (see Figure 5). During . the interva l O-<. ~~-to<, , 

the supply voltag e applied .to core ~ produce~ a n output cur-

rent which has an mm f in the s a me direction as the control 

mm:f. During the s a me interva.l , this outpu t current produc e s 

an mmf in core/' which is in opp osition to the control mm:f. / 

During this inte~ral, the supp ly voltage is increasing until 

co re o< s a tura tes a t wL-:::.~, . Core o< h a s no impeda nce 

when ~ s;turated; and , therefore, all winding s on this core a re 
,;:,: 

eff'ect.i vely short circuited. ' The total a -c induced currents 

during this i n terva l, O<.wi:-<°'-1, a re then induced across the 

winding s o n core ,t!J which h a s the e ffect of reducing the im~ 

peda nce of a ll windlng s o n tha t core. Thus, in ef:fect, the 
. ~ 

whole s upply vol t a.ge between ~' and H appe a rs a cross the 

out~ut resistor, f /-. . 
Thus, i n the i n ter·val O to ff , the o n ly usef'ul output 

current which flo ws is from o<'' to The :firing a n g le, 

o<, ~ ma y b e d e cre .:=t sed or inc r e a s ed b y increa s i n g or de­

crec,, s i ng the d-c c on t ro l current r e s p ectiv e l y. · This condition 

is with i n k e ep i n g of the orig ina l a ssump t i o n tha t :from 0 to 

o( 1 , the rea,cta n c e is l a r g e a s c omp a red v;i th the resi s t a nce, 

wh i l e :from o<, to 0-, .the resi s t e,nce is much g rea,ter than the 

rea,cta nce ( which is essentia lly zero). 

Betw·e e n the intervallr<w~~-1.· 77, the s ame cycle of' e-

ven ts i s rep e a ted , t h is t i me with core jJ 
the opposite d i rection. 

satur~ting a nd in 



30 

----------------~----------------
--~~~R_c __ ~ ~ c I ~ + 

.., 
-~ 

-....... 

> 

~ 
~ 
0 

.,) -~ 
- ' ) 

.,., "1 
~ •J -.... ·~ ..... 
f) -? 

.:> ,-, 
'-' 
\.... 
J 

~ 

Series Ty9e 

0( Tl , ' • ' l\ 

~ 

', --

Nb 

--.i th F eedback 

w ·::.. 
"~ / lo. .:), e.. 

~ 

4 i1 d L o "c:J 'Jo lia ~ ~ ~a v" i~ r~~ 
~pplied Volt~.ge a nd Lo ad Voltage 
~ aveforms f or Circ uit of F i gu r e 4 

Fig u re 5a 

.i. n-
co re /J .:ia f11rc,A..f~ d 

Core o( s (A. t"IA rJ.. fe.. d 
Plots of Reacto~ Volta g es 

Fi gure 5b 



31 

r- .s --1 . 
Flux Waveforms in th·e Cores 

Fi gure b 



The analvsis·· of .. · this circuit :wi1:1:: be· made by breaking 

each .,h?-~t; ~,gy~3:-e_: , i;nto .. ·two parts"; <) >The }."_ft~_t _ portion. 1 s .. 
>- . . -'? ~ 

°'<~~~' , 1Tf<~~.(.7T~.' . •. 6tc.'i Theatcond8?jticm is 

· - ::::~~~~.Z-~i~~~~~~ ;1~:;t~{:~:~~ \¥~- ·~t~rvai. O~ .~X~ot.• 
I'~ ' I<• 
,.;.· .. 

and 

.· • lYc;4~t1· _7.iJ§J:;'.'.o •. . . · . (31) ·. 

where . -4'~ and · 4,, arethe . totai 'inatantmi~qua ' :,,.aJ!~e~ ()t' :q.wc 
·1n . the :CX. · and, ; A )·'.. cores · respec~t1vely. -. .. Equa t1on113oy :ts s1mply 

a loop·- equation relatinp; the · app11ed · ,v61t~ge e; t.o -i:,ne voltage 

drops~·: :: EquatiQl'.1:<:{31} at~tes that· the rate ·o:r :: fiux changE) 

. :linking'<th,e . cqnt~l win~Ung on·the, ~ .. cq~e . 18 the ·same as '.· 

' the· rat·e · ot: ~~x. - change ; l.inking - .:the .control. "'1~a1ng - on ~- the_· -1 

core. , 
--~= ~ '~ . _: . --·~ 

'.-It will be< found · convenient·.· :1n thE) ·:rollowing 'discussion 
.. . . ~ 

- to let · 

requir~d to" satur~te . either. core. ' 
• T~~ ,va1ufits () 1' .. ';6o( .. ,,and . <fi1 . m~y now .. be . t'ouhd . f'rom ~qua-

tion " c38)'. .-by_', ncitfng . tha~ .. 

during the interval . O < ·~ ~.<-' 1 • 
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••••.•. l32) 

Integration of equation (32) give~ 

. . . . . ( 33) 

/o tt 
where -/e 

1 
is a constant of integration to b.e determined. It 

was asswned originally in this analysis. that c:/>ot is at the 

saturation value, </J.s , when .w/::::..(;11(, • With this informa;.. 

. tion, the constant of integration in equation (33) may be de-

termined. 

. . . . ( 34) 

Solving for ~, from equation (34), substituting in :l,nto e­

quation (33), and solving for · ~ o<. gives 

8 . 

<Pv. ~J-J~/: J~wi: f- ~s-l-£~-10.8~. • • <
35

> 
, ~No... lA.J 

but 

so 

0 • • . • ( 36) 

It has been shovm also that _ <}>p :::. ¢~ when wf: ~Tr-to<, • 

Since the flux waves are periodical, c/J! must also be equal 

to - cf .:s at wL=- 0 . From equation (30) 

• • • • • ( 37) 



Integration gives 

~No. cPI> 
/08 

34 

= 

where ki.. is another constant of integration. When 4J i.= o , 

</JRJ = - r/>-5 so 

i.,. = o1. !'lo.. cPs t- £t:n 
-10 8 '1tJ 

p(JV4 ~11 :::. G;v, -- ~wi:. - :i /'/4 d.s i- £~ 
/o e w /0 I' w 

• • • • • • ( 38) 

Figure 6 shows the flux wave shapes in the two c,ores. 

The flux in core/' starts from a negative saturation value 

when AJi:~ 0 , and the flux in core o( is at a maximum half 

a cycle later. From equation (31) it may be seen that if 

either flux is not changing, the other flux must also remain 

constanto This accounts for the flat looking portion of the 

flux curves when either core is saturated. 

From Figure 6 1 t may be seen that the average value of 

flux, , in co re · o( is · 

where ~.s and ~a are sho\Am on the figure. 

obvious, it may be seen by integrating the 

• (39) 

If this is not 

¢~ wave over a 

period of d . to ~ 7( and dividing by ~ H To do this 

will require the derivation of c:/>o1.... during the _ interval 
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7T<wt.,(1T-l-O(, ; but knowing that .</>-.::: </>.$ when Ai/:~ ff , this 

is easily ' don~. 

The equa ti-on :for I;>, ~~Y . eas:1~y _be. obtaineC71 ~i ther by 

lettin~ ·- /Jjt;;~ o _: in equation (36)' ' or_ by · 1:,et:t1Ilg - ""~ .. ~.-~, J in 

equa.~ioh :, ( 38-) • - E:1ther way -

, <A· =:'~J<:· ~~ eo.o,.~. ~(1.'f:/:() '</>i: . •·.. . . . (40) . 

t/>a,,~ may ·.~~ written 8.$ 

cfo,u:i "Jf 9J> + K ~~ ~~· f c1~~r<t>.,.J 

. : . ..L· J -, ( (_ .. - .~: , 1<.J f. .'i.. Ct.41 ci_J-._ _ 
.t -'P.s L ~. " . . . -. . . • • ( 41) 

A·""13imf'lar expre,.E;Jsion<-holds true for the average flux in core 

that 

. ,• . • _o_ • 

. . . • '. • · - • ( 43) 

~ddin~ eq~a·t~ons . ( 42) arid. (4 3) and 

gives 

• (44) 
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By subtracting the sa"'.lle equations·, 

. . 

(36) and (38). are sub~ti tuted into - ~qu~tions (43) and (44) , -
' -

the result is·, 

. to._ /Vo. ':: ~ '1 t4(1i~.)~k<A:, c,;, w~]· , 4A/J~ · ·. · . ·~· · ·· 
. and 

•• (46) 

~quation (46) may be rewritten as 

· ic.fll, . t- c'1o Nb, : };~f .2-J<)t-J( eo.ooeJ 
but from. equation (.41 )" . 

~"@' = ~f {:1.-l<J f-J( Co40{J 
so equa.tion t46) may be expressed as 

·• • • • •·,• •. .••• ~ :• • • • ( 47) 

Thus, the· combined mmf . oi ~the ~ont~ol· and :feedbao~ circuit is 

constant · durirl·g the interiVaJ.;O<~~lf-t· o<, ., and the »out.put c-ir~ 

cui t mmf is a. "cosine ' run·ct;~'on :of' ~·1me, 

The previous . equations _in this aJ.1alys1s apply . only dur­

ing the unsaturated regions, 1.·e · •. ·.dur1:qg the interval · 0 to 

o(~ :· , 7'"::C··t• IT~~,, , )etc.. '?he· equ?-tions\ for .~he · saturated 
. . 

regions , 1. e. °'I to 71' , T~ °"' " to ;. ,,.·{. ;·, . et.c wi1r now be 

developed. 



Whep core o( , is saturated from . c<, to ·?J , the total 

supply voltage must appear across the output res-1stor,-- 7<4. • 
The a-c output current during ~his interva1 ·1s then 

) . - .&;._ . ...... ~. ~ ..... -"- , ... ' ·· ~ .. · . ' a - , 7<1- ,.,...,.,-.. ~, ,,.,, 
•• . 0 (48) 

or by m~l t1p1y1ng oo·th., side.~·\py do . .' 
t.A#14. ::_ G~ fit .. ~· IAJ.·-f:. -

7<'- . . ' . • • ' . • • '• • • ~ ( 49) 

but 

$;.-, = ;. w· Al.. 1<. 4>.s · 
10 a · 

so 
. . L 

ta, /\14 :: . t:2 W · NA K d>.s ~ 4J~ 
fl~ -jo • 

Let H,,;,. be d.e:fin~d as :i.." t.,,J · ~a~ k <J:s- · 
~'~·/pl 

then 

. . .. .. • (50). 

Since the rate 9f. flux change in core o( . . · 1s the same 

as the rate ·of' . f'lux change in core f , by equation ·c 31) , 

both . core fluxes are constant sine.~ core o( is saturated. 

It will be noted that in the tmsaturated region of" the B-H 

curve tha. t the magnetic intensity _ 1-.:~ a:i.rectly proportional' to· 

the nux in -the core, 1..e. /I= ,q~ , whHe during the satu­

rated portiqn the magnetic intensity is independent of the 

flux. 
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Dtiring the por-cion o:f the cycle :from ~. to Tl , the 

:flux level in core ~ is equal to 

core o( is the saturation .fl~x, 

~0 while .the :flux in 

<i>..i . , see Figure 6. · The 

flux in core I can remain constan~ only so long as all the 

mmf's acting on that core remain constant. Hence, for core /1 
//>YI~ wt ---( t~tl,.,..,·,#,) -=- ~ i ... (51) 

. A'A-

or 

0 • • • (52) 

. 
During the same period, the combined contro1 and feedback am-

pere turns on core o( is the same but of' oppos.i te sign and · 

is 

{l"r1" flc:Nc.) = -1-( llw.~tJt-A.1\ 
.PA ) 

. . . . • ( 53) 

If the rectifiers are perfect and Hb:. Alt:c.. , them the 

feedback mmf is at all times equal to the output circuit mmf. 

In general, though, the number of' feedback turns in the f'eed­

baclt winding are not equal ·to the number of turns on the out-
ft/o 

put winding. The ratio of' #~ has been defined as the 

feedback factor or degree of self-excitation and will be used 
'• 

in the following discussion. 

From Figure 7a, the average value of the Ol.l;tput circu.i t 

ampere turns is as follows: 
TT 

.I /II._~ .L fie.. Na J{w~) 
0 •• ., .,.,- ../ ... 

. b 

• • • • • ( 54) 
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Plot of Output Ampere Turns 
for Series Circuit 

Figure 7 a 

Plot of Combined Control 
and Feedback Ampere Turns 
for Series Circuit 

b'igure r(b 

.... ----------------~'-----------------\..--__.i;J~ ~,,-

con fro I a-">~ t:: ~d ~A ~-"'' t~ if fr.,,(C. cn·;b,,1...; d) . 

.Plot of Feedback Ampere 
Turns for Series Circuit 

Fi ~ure 7c 

t------___..;;x._ ______________ ~~--------4--~IAJ~ 

a 

Con lro I 

(]+IT °' .,..,,- ~ 11 

l+ff 014.'f-fr "'-ff'" 
~ ~ c: i ta tic:---·1 

Plot of Control Ampere 
Turns for Series Circuit 

Figure 7d 
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(55) 

where 6 is the value of W i. at which La::::..'/) • 

When equation (55) is integrated and the value 

1-1_ = ~~[ ~"::/] 
inserted, the result is 

• ( 56) 

(see Appendix 2). It will be noted :from equation (56) that 

the output current is independent of the feedback ra.tio, A 
The value of f} used in equation (56) may be obtained from 

equation ( 45) · by letting IAJ /: = f:I when io. Na.: C1 • . This 

gives 

. . . . • ( 57) 

I:f an expression :for the average value of control ampere 

turns is written, the result is (see Appendi~ 3) 

-,,-
L_ /V, =.;. fc.N, J(wi:.) • • • • • • ( 58) 

C) 
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9 ~. 

I,/\I,. =if f!~a~~ i _,~/vj JtwA) ~,1./f !:; '-i1.nj Jrwt.) 

rr 

f #j(l/IM~t..J/;)(l-;l)-!:}}1tw'=) .. (59) 

By in tegra ti on of' equation ( 59) the result ~s 

.L,~ -[O:' -nj[ /-Cb4ot~ r [ 

-A[t i' -e)( 11-c-oc,) :1-(.)~e-~O{.)] 

+{/-}..il (If-~<>'.)_] 
.. • • 0 • • • ( 60) 

Equations (56) and (60) relate the average control cur­

rent and the average output current. It should be nbted that 

this is the average output current instead of the R.M.S. out-. 

put current. 

so·rne typical plots of output ampere turns, control am­

pere turns, and feedback . ampere turns are shovm in Figure 7. 

Ther~· a re t\m special cases o:f i\ , namely )\ = O and 

/} ~ / , whlch represent the two extreme c a ses of' sel:f-

exci tation. When /) =- O , the c a se of no self-excitation ex-

ists. Conversely, when A= / , the number of turns in the 

feedback ·winding is the s ame a s the number of turns · on the 

output windi.ng; -.an.d, since the currents in these t wo windings . 

are equal, the mmf' s a re · equal. ~-!hen 1\ = o , eque.tion ( 60) 

reduces to 
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/AA7T]LAl. =/o<. -- 7T) /. /---Ce/.bo<_·· ,,\ + ,,- f)J. ( l+~o(.- ) LK: ¢.s; -c. _ _ t :.t < ' _ _- J J( _ _ t<'"" . _ • ~ 61 > 

and when_/\= I 

. ~ AlT]-....1,~ = [~ o<, --~ ~--- B. l- ·.(1r~ 9 .-o<. . . ) · ~0( - -
LK~l . '' \ I 

- (lT-9) + ¥J . . . • • • . . • • (62) 

One method of' expressing the circuit 
' ' · . . ' cl{ .. ,,~ 

,sens it i V'i ty_ ). s by 

the current amplification, i.e. ·J. • 
- ' Ic. ' 

talring the derivatives of' equations (56) 

l"espec t to o(, and -di vi ding, i. e • . 

cl[I;~utJIY11.] I 
Jo<, J [-Tc:~] 

' . ' ~ .- cl. o(' 

.This gives (see .Appendix 4) 

l 

· T~is i .s done by 

and . (60) with . 

r:J f:r •• :J NJ 
c;l[~Alc] . 

-fl.. f 7T- '1}~0(, +t(1.c C.-o<,)--i\ [!l + ';'-9] ~o<. -~(J- C-,«,) 

. ' . ' ' • • • • ( 63) 

It is -obvious that_ this equation is much too complicated 

_to . be of -much use. It would be very desirable if a more si;n­

plified equa~ion e~pressing this ratio could be obtained. 
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· By . plotting equation (56) .. vs· (60) it, _ is easily seen that 

the plot of' output ampere ·turns vs the control ampere turns 

f'or various values of I( a~~ ~K.c.. as pa.ramfitter·a ;:( see. Fig­

ure 8) is. nearly a straight iine~ _ By obtaining the mean 

slope of this curve an expression ···much: less .conip11cated than 

that gi_ven in · ~quation (631 will result. It w~s stated .Pre­

viously . tha.t the angle o< 1 1e 'a tunction of' _ the contro1 cur-

rent and may be increased or decreased ·at will ?Y a variation 

of' this current. It is obvious that the limits of' of., are 
. . 

between 0 and .1T • . Fo·r . «,: 0 • · , (J e ·o .~ alsQ_, from 

the definition of fl given· in equation (57) •. Sim11ar1y at 

ol,: TT , 6 .:: -r- . Obtaining-, these end values from the two 

ampere turns equations: • for of,:: O 

(60) 

and 

f-MA7T. 1· L Na= 
~ <i.sJ. . ··"~ 

, 

x, 

• 
s~o _, in equation 

. . . .. . (64) 

where the quantities ~. , X>-, · ~, , Y '&..a.re. defined by 

their respective equations and are used to simplify the writ-

1ng. Th~se values are shoWn. on Figure 8. · 
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From Figure 8 the ampere turns ratio is obviously the slope 

of' the line and is 

This gives 

-~.::: 

_.z; .. "-' N .. 
.:r'- /\/<. 

-
f t114 ~ r F~f'- ~~'"J 

For the particular cases of' A::./ and 

for fl :. 0 

J: av~ N<c. 
e - -

I,N, 

and for i\ = I 

I • .,4l · No. :! )</R'- - ' 
- - ~ ,~JI Ic. c. -... 

• • • • • ••• (65) 

A · ~ D there. resul ta,., 

•••••••• (66) 

• • • • • • • • ( 67). 

With a resist! ve load, R L , in the output, the mean 

power gain·, 1. e. the ratio of average output power to average 

input power can be expressed as: for A·=- 0 

J<._f : h Nc. /I''L -112.-(( '- Na.... JY ,r .. .,. f 
and 'for il =-/ 



/J~:I £_.;, · 1 /ii 
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MAGNETIC .AMPLIFIERS .AS FREQUENCY MIXERS 

It is a well-knoW?l. fact that most .non-linear elements 

.have mixing propertie~- , the magn~tic amplifier being no ex­

,ception. Mixing is· the ability ~;f.. a device to -convert· two . ,or 
'.<~; · 

Uiore signals or di:fferent :frequ-E)ncy into· definite sums and 

di:fferencea of run4amental·: ·and_~ harmonic · frequ~ncies. Every 

home radio, .for instance, : has a mixing device in ··it which re­

duces the higher frequency signals to lower frequency for the 

purpose of amplification. 

The following is a dus,.mssion illustrating the minng 

properties of magnetic amplifie~s. Consider a circuit like 

the one in the previous analys:1s where the B-H curve can now 
"1;.: 

be represented by an expression such as 

. .:J 

l-1 =· ~I/.!) I- " , r.:, • • . • • • (68) 

It is obvious · that a straight · 1ine B-H analvsis wou19.·. not 

yield any mixing characteristics since it i "s then a linear 
....... 

element,. or ·'. Now assume that 13 for one 

core can be repr'eaented a.s 

• • • • (69) 

where W 1 ~nd WJ. a _re two ·.angular frequencies. -0.; is the 

mean value of flux density in the core, and ~. and 'ZS~ ar~ 
. . 

the ·respective. values of flux de~s:1ty associa~ed.w1th signals 

W 1 and . . fAJ A• That. this assu.'Ilption is not unreasonable 

may be seen from the previous analysis where . the flux wave 

was a constan_t plus a sinusoidal variation. A possible block 

dia~ram of such a mixer is shown in Figure 9. Tbe voltage, 
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1'109ne ftc_ 

'" A Mpli { ,·e..-, 

,, 
-

Fij u,-c, Cf 

e, ' is a :function, ~· ( f, ) 
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-, 

, of the :frequency, {, · ; 

and the voltage, e J. , is · a :runction; </>> r I~) , of· the fre-

quency, • The voltage, , is simply a d-c voltage 

associated with the ~o term and is a function of' the d•c 

bias. 'Subs ti tu ting equation ( 69) into equation ( 68) gives 

-.3 

t-b '[ f:Jo+/3, ~w. i:+ '31..~ ~ .. ~ J .... c10J 

It will be sufficient to ste,te that a mixing of' frequencies 

must come ab.out by a multiplication of terms .rather than an 

addition or subtraction. With this in mind, equation (70) 

.. 
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may be expanded as 

~ 

7 3/, '/!>, /!J a... ~ '- w, t: ~ w,_~ 

. • • • • ~ (71) 

Only the last three tems.: :'<:)f t:b.is ~&;!ls.ion are .products of 

different frequencies and have poss1b111ties. of m~xing. 

These terms may be written separately as 

• • • • • (72) 

• • • • • (73) 

and 
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' . "J-

• • (74) 341 l!>, lf~ ~w,J': _~~~~~-
By the use of certain. tr1go;r:iometr1'c reJ:ations, equations (72), 

(73) , and ( 7 l.f) may be· rew~1t¥en respe~::t1 vely ae.. eqµ.a tions , 

·(72a)·, (73a) , ::. and ' .. ,(74a) • .. Th~ae· are 

• (73a) 

3&' fJ, /j; [! ~~,i. -;J ~(Wd·.l."'o.) t:+~(W, -.U-'L)iJ] • (74a) 

If' bc>th signa.~ windings · are conne·cted ·in· ~e same way as 

tbe output· winding of -tlie previous:"· analysis, then the-total 
. -~ 

flux density -ior the other core may be written as 

- ~= l,~ --.B.,~w,i. -TS~ A-W-.w1o.I: 

and a similar ·expression f'or · lf;s' may be derived. 

The important thing is that with ·a certain type or flux 

wave, there exists def.inite mixing characteristics in this 

type of magrietic amplifier. It has just , been shown that the 

frequencies , £ , f:J.. , .f: f- ~- , . f, - fa.. ' f,._. + .1 /., . ' . 

f:) - J.. -&/ ·, are present in the exci ta tio_n wave of the core 

(where W =···~-(r/£·i:.: ) • It may be said that, in general, w1 th 

certain other tnres of circuits and inputs, different compo­

nents of frequency will appear in different magnitudes. 
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MAGNETIC AMPLIFIERS USED FOR AUDIO AMPLIFICATION 

It is possible to use magnetic amplifiers as audio am­

plifiers. The Navy is presently using one of these on one of 

·their ships aa a public~ddress system~ It is a :five-tho~ 

watt ampl1f'ier, and a possible schematic · diagram is shown in 

Figure 10. · 

/~A.c. 

Carrier 

l ·-------' 
/'110 J1A lo..fe. d &,.,, ... 1.f c. 

Fl,"re. Io · . 

In the magnetic amplifiers so far considered, th.e con-

trol voltage has been assumed constant so that the envel.ope 

of' the output voltage is a straight line. It, now, the con­

trol vo~tage fa caused to vary at 8.:Il audio rate, the envelope 

of the 15K.C. voltage a.cross the output resistor will be var-

. ied at the ·.audio rate. This; -in principle, is the operation 

of a magnetic audio amplifier. The modulated output may be 

detected in the conventional method. 
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VACUUM TUBE VS MAGNETIC .fu"ll'LIFIER 

A comparison or today Is vacuum tubes wi t.h present-day 

magnetic amplifiers is no more justifiable than a comparison 

of the magnetic a.mpli:fTers of 1980 with vacuum · tubes _ of 1920. 

The progress of vacuum tube&i is the reRult of many years 

or research arid. development. Ma.i:me:t.j_c· ·ampl:itiers, as such, 

have just come. into beinp: in the past "ten years and are a­

waiting similar years of' research and development. 

Magnetic amplifiers are not a sui tab1"e ·substitute for 

the vacuum tube; out they are, in many applications, a com­

petitor. 

Some special advantages or the magnetic amplifier a.re 

(1) a low stand-by power is possible,- ( 2) no output trans­

former-;_· is beeq-~d, (3) no d-c power supply :!a reqU.ired, (4) . 

the ampli:fier is as rugged as a transformer, and· ( 5) !to warm­

up time is requiredo 



A COMPARISON OF THE POWER SERIES ANALYSIS 
WITH THE STRAIGHT LINE ANALYSIS 
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Comparing the results obtained in the two preceeding a­

nalyses, it is found that for a condition of' . A= 0 , or no 

self-excitation, the current gains compare quite favorably. 

The analysis for a power series B-H qurve gives 

..:Z:o."~ • /\le 
Zc- /Yo-

f'orAa 0 while the straight ll~e analysis gives 

.r .... ~~ = !!: [~~ -'J re --N .. L ~~-1- ~ 
Howev.er, the rat.ioi is uaua1ly very 1arge, equa1 t.o or 

great.er t.han 10, so that. t.he current. gain, ~"'· is equa1 

t.o :/: in t.he . :first. case and a1moat. so iri t.he second case, 

The current gain f'or a condition of' A:/ is not 'as fa­

vorable since the nower series R:ives a value of ~ while the ..... .. . ·-· . 

other -does not. · Thls is because at larger values of' A ( clos~ 
to 1) the . magnetization current cannot be neglected as was 

done in the power se~ies analysis. The magnetization current 

is that porti_on of the control ampere-turns which produces 

the working flux. The assumption of equal ampere turns is 

valid only if the sa.turating ampere turns is much smaller 
· ·: .· . 

than the working ampere turns. As the control ampere turns 

approach zero, the output current can never be zero since 

this would require )( to approach infinity·. Thi~, of' course, 

is never realfzed. When the value of' A approaches one, 

this. means that . less and less . control current is required 

since the majority of the d-c excitation is being produced by 

the feedback .windings. The equiv~:tlence of ampere turns fails 



to hold at values of /\ approaching o. 95. ( 13) 

(13) Milnes, QE• cit., p. 363. 

The power gains for a condition of )s 0 also show very 

close agreement. For the power series solution,' a value of 

K = I' .&-[ Re 
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was obtained, while for the straight line B-H curve, a val.ue 

of 
~ ~ 

I<'° = flY..c-J b [ "VN - :r ] 
I L!Vo.. ~ c::, 'l' ~ 1- ~ 

was obtained. Again in this last equation if X/R. >-/t? the 

value of Kf in both ca,ses becomes very ne:irly equal to 

b f he _l -1--
7<c. Na. J 

Again the power gain for a condition of;\:./ is unfavorable 

for the reason mentioned previously. 

It is somewhat gratifying that there is any agreement 

whatsoever in. these two types of analyses. There c9 1Jld ha.nily 

have been mor&> difference in so far as the P.sswnption of the 

.original B-H curve is concerned. · It will be noted, however, 

that the validity of the flux density variation which ·was as­

sumed In the power series analysis holds true for the straight 

line analysis, namely that of a constant plu~ a sinusoidal 

va.ria.tion. The ·difference, however, lies in the :f8.ct that it 

is impossible to determine just what components go into the 

making of °?J
0 

, . the constant term or the power· series solu­

tion, while the components of the constant term of flux a.re 

fully known in the straight line analysis. 



In general, it seems that t.ne assumption o:f a straight 

line B-H curve is more straightforward and yields more in:for­

mation than does the power series analysis. In the straight 

line assumption, it was possible to derive expressions show­

ing :flux and ampere-tum wave:fonne, whi:,J..e in the other solu­

tion it was not. 

The power. series ana1ys1s, howeve~, sho.uld not be con­

demned as having no usefu1 value. I~ was quite readily shown 

in this· solution that all o.dd ~rmonics of' output circuit 

supply rr~quency are rejected from the control circu~t, while 

no even harmonics are allowed· 1n the output circuit. This 

same condition ~olds true ~n any circuit or this type regard­

less of the B-H curve but is perhaps more . easi]..y seen in the 

power series B-H curve analysis. 

Most present-day · authors (14) (15) (16.) assume a straight 

(14) Storm; 22• . cit., p. 756. 

(15) Smith, 212• cit., p. 1309. 

( 16) La.mm, A. Uno. Some Fundamentals of a Theory -(> :f the · 
. Transductor or Magnetic Amplifier. Transactions o:f 
the. American Institute o:f Electrical Engineers. 
Vol. 66. p. 1078 (1947) . 

line B-H curve ln any s.na.lytic discussion concernlng magnetic ... . .. 
amplifiers. SomeC17) even go so f'ar as .to assume an infinite 

(li°) Storm, 2R• cit., p. 756• 

1nitia1 slope. ·This puts the saturation :flux density at the 

value. of zero excfti?tion. ~l.s is the sam~ as saying the 

core saturates ·with negligible excitation.. In some special 

cases this may be quite accurate, dep~nding,of' course, on the . 

core mate~ial and on what that part1cu1ar analysis is supposai 

to show. 
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APPENDIX 1 

,} , .3 . s 
/-,D4 = a' '13 # /:, ~ f c;,' /3 . 

B = B~ ~ 0~ t-- ~o . 

.3 

II°' :=: a 1 
{ /3,-vf ~w~ 1-/!lo) 1-lo'(IS~~w~ ~60) 

Multiplying and ·collecting like sin terms 

3 -
llot -- C Cl' 13 o r-1. '/30 f c' 1.3,. .5) r(a Is ..... ~ 3.(, ~.13 ... t-S'c '6.A,..) ~-f: 

, . '1- . .3 ...__ 

7 (3b /5 0 /!J~ ~/oc'/30 /J~ J ~ ~t...J"i: 

r (l,'IJ: 1-/oc.'l5o/!,:. )~3Wi: -t {Sc~~0IJ~·) ~4Ji: 
t- ( c '13~.s') ~.!rt.JI=-

From trig. tables 

~~wt. :: · { - ~ Co4- ~w -I: 

.. ~3wf:. -= ~ ~-w~ -%t~3Gv~ 

~ 4 tv t. -= ~ -~ C04J .;J.w-1: +i ~~w~ 
~ .:rt..Ji " 78 ~wi --: ~ 3e...d "'.7/6 ~ 3te.d· 

f- /J ~ tc.J :C . f-__{_ ~ S-4.J~ -1- ..L ~CA.) i: 
6 ·. /(;., /6 



56 

81.milarly 
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ff 

. +;j. 1~~N*- Jtwi.J 

°'' 
'· 

The :fi~st and second integrals are evaluated by obtain-

ing t' Q. /\/ &. :from aqua. tion { 45) • The th1:·rd integral is e­

valuated .. by substituting (, o. /\114,. fros equation (50) ~ For 

the :f1rst ·integral we have 
. e " . . 

# f !!ABk~(l-f C.-11(,) -K,S""Cu.wiB du.vi.) 
b . 

. e 
= - Jf·· !:_la {It- C.,Oo<!)f wi.). ;_k 4 ~ r..:1-J:. 7 

AVA .Z " j 
b 

For the seconcl 1ntegra1 · · o<, . . 

ii-r~-- Jew/.)" . uf.rr /£ ~ <J~r1rc-oc,) -Kr/c ~wq Jew/.) 

II 



f-K".s~ ~ 9 f /( ¢.sJ (lf-~~.)(o<,-s) 
A ~ .,,- A ,u q- ;J... 

K t/J~J ( ~o<, -~ OJ 
AA,,(, rr 
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oit
1 

APPENDIX 3 

L/\lc. = ;j _!/;-;a ,e -~'-NjJtui) 
,, 

-1-n! ..,J<1-).)ll,..~4J-f. -!;/} c/(1Ji,J 

o/, 

</>a,, • .-' 
The oortion a is equal to t'c/\lc. 1 t'b~I. from e-- . ...UA 
quation (47) between 0-ot, ; and when Lb /../6 is subtracted 

f'rom this, it simply leaves t'c. /\le. • In the second integral, 

ref'ering to equation (52), the value of' Cc. Ne.. will be eqqal 

to 

but, in general, 

The integral between 0- o<., may be broken up into two inte­

grals, one be.tween 0- 9 , the other between GJ -OC..1 • So 

we can now write Q ., 

..J., /\/, = d: }ltJ i _ '4,/11:_; drwiJ 1!Ji '!;. i -"•Nj .Jc w i) 

0 • 
n-

1-;f.jl!1-)t)H~-4cMwi-!..:1 drwJi:) 

o'' 
' It may be seen :from Figure 7a that f'rom 0- IJ '-A-is nega-

tive and f'rom Figure 7c that l1t is positive. Since these 

currents are equal in magnitude but opposite in sign during 
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• 
the interval 0- 9 , we may say that ia.:. -~b . Also, 

..t\ ' I during 17 -o(., , (.,a. = {,IJ • We may write now that 
s . ~. -

.I,/V" ~if .[l ";~ 11-Ai.~~t"':iJ ~;f.jf-;;f!.ll -iJ ,·.111-J clt4Jt) 

" . " . . 

1.j ../J< 1-1.JH1o1 ~wi. -:h/J c:ltwl::) 

-'· . . 

4._j\I, = ~1..lT !flt& CJ.-K) :J1< t.<Jo<J '-151 {H44ot.)-1C,j,c..,,_,ijJ J(wJ;. 

°'• 
.,. 1 ([r_ l>.s (.:L-<) 1"k c-.u ot.1 -A I~ 4 (I~ C:-o<J-K I& C6o ""iil ai-JJ• 
MA~~ .. J L~ . ~ • • 

rr 

f--«4rrf!·K.'R.:<As ~<..Ji: .,.K(>.$ Cwot, 1-{1-K)¢j Jcw-i.) 
o(, 

When this is integrated between the indicated limits 
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APPENDIX 4 

Jiav:J/J .. f :tIJ = (.2~ ·-~oL.) 1-(u-c-vo<,)(';· -~) 

t-~ (lfc.,o~,) 
.W'L 

· ~ Co4,, °''· i- ~ (/I- ~«.) 

t-('S:' - 6) r-~ o< I )-1-;,_ ( 4.,. o<J 

: 1 ( 1-u.oo<,J f ( 9- ·r- -f..) ~o<, 

['ft)] I,/\/~ = (~' - n) (1- CoN °"~ 1- : 

- /\ ( ;· -0) (1:1- C4/JJ o< .) 

_ i\ (;3~ 8 - £oe,) + (1-A)~ · {1:1-~,oc,) 
. . . {14 

::. (~' -1T) ~o<, +-. {l-C1Y.Jo<J _.x_ 4.c.\i.o<·, 
~ · ~ 

t ).[('~' -11)~ot. -{/'/!'C.•cl-1) 
. .:l 
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f~ A 7T1. Jfk/VJ /t'l!:• -T--4·~. )~• .,.± (/-C:.O•,) 7 xfj..J J,o4, .;z A · · ~ ~ 
. . . . 

µ,,. .. :> ..v.J = 

c:J(r, N,J 

1-{t7-e+f)~· -~ t1-c..«,B 
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