
Scholars' Mine Scholars' Mine

Doctoral Dissertations Student Theses and Dissertations

2015

Privacy-preserving power usage control in smart grids Privacy-preserving power usage control in smart grids

Huchun

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

 Part of the Computer Sciences Commons

Department: Computer Science Department: Computer Science

Recommended Citation Recommended Citation
Huchun, "Privacy-preserving power usage control in smart grids" (2015). Doctoral Dissertations. 2609.
https://scholarsmine.mst.edu/doctoral_dissertations/2609

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2609&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2609&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/2609?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2609&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

PRIVACY-PRESERVING POWER USAGE CONTROL IN SMART GRIDS

by

HUCHUN

A DISSERTATION

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

2015

Approved by

Dr. Wei Jiang, Advisor

Dr. Bruce M. McMillin

Dr. Maggie Cheng

Dr. Dan Lin

Dr. Xuerong (Meggie) Wen

Copyright 2015

HUCHUN

All Rights Reserved

iii

ABSTRACT

The smart grid (SG) has been emerging as the next-generation intelligent power

grid system because of its ability to efficiently monitor, predicate, and control energy gener-

ation, transmission, and consumption by analyzing users’ real-time electricity information.

Consider a situation in which the utility company would like to smartly protect against

a power outage. To do so, the company can determine a threshold for a neighborhood.

Whenever the total power usage from the neighborhood exceeds the threshold, some or

all of the households need to reduce their energy consumption to avoid the possibility

of a power outage. This problem is referred to as threshold-based power usage control

(TPUC) in the literature. In order to solve the TPUC problem, the utility company is

required to periodically collect the power usage data of households. However, it has been

well documented that these power usage data can reveal consumers’ daily activities and

violate personal privacy. To avoid the privacy concerns, privacy-preserving power usage

control (P-PUC) protocols are proposed under two strategies: adjustment based on maxi-

mum power usage and adjustment based on individual power usage. These protocols allow

a utility company to manage power consumption effectively and at the same time, pre-

serve the privacy of all involved parties. Furthermore, the practical value of the proposed

protocols is empirically shown through various experiments.

iv

ACKNOWLEDGMENTS

I would like to express the deepest appreciation to my my advisor, Dr. Wei Jiang,

who helped me continuously to overcome various obstacles. Without his guidance and

persistent help this dissertation would not have been possible.

I would also like to thank the members of my Ph.D. committee, Dr. Bruce M.

McMillin, Dr. Maggie Cheng, Dr. Dan Lin, and Dr. Xuerong (Meggie) Wen, for their

great suggestions and encouragement.

I appreciate the advice and support of Yousef Elmehdwi, Bharath Samanthula,

Renjie Wang, Wenyong Lu, and Quanmin Ye. I also thank the staff members of the

computer science department and Amy Ketterer, in the graduate editing services, for their

great assistance.

I owe a deep sense of gratitude to my father Shuanglong, to whom I would like to

dedicate this work for his undying love and faith in me, my mother Shuqing, my dear wife

Wuriyihan, my parents-in-law Wulijibayaer and Gaowa, and my lovely kid, Daniel, and all

other family members. With their support over the years, I have defeated the difficulties

in my study and life. Thank you all.

v

TABLE OF CONTENTS

Page

ABSTRACT . iii

ACKNOWLEDGMENTS . iv

LIST OF ILLUSTRATIONS . viii

LIST OF TABLES . ix

SECTION

1. INTRODUCTION . 1

1.1. PROBLEM DEFINITION . 4

1.1.1. Basic Setting . 4

1.1.2. Multi-Server Setting . 6

1.2. ASSUMPTIONS . 7

2. RELATED WORK . 10

2.1. SPOOFING ATTACKS . 12

2.2. SMART METER AUTHENTICATION SCHEMES . 14

2.3. PRIVACY PRESERVATION . 16

3. BACKGROUND. 19

3.1. SMART GRID SYSTEM MODEL . 19

3.2. PRELIMINARIES . 20

3.2.1. Security Definition . 21

3.2.2. Additive Homomorphic Probabilistic Encryption . 22

3.2.3. Yao’s Garbled Circuit. 23

3.2.4. Notations . 23

4. PRIVACY-PRESERVING POWER USAGE CONTROL. 25

4.1. PRIVACY-PRESERVING POWER USAGE CONTROL PROTOCOLS 25

4.1.1. Implementations of Secure Primitives. 27

vi

4.1.2. The P-PUC1 Protocol . 28

4.1.3. The P-PUC2 Protocol . 28

4.2. SECURITY ANALYSIS. 31

4.3. EXPERIMENTAL RESULTS . 31

5. PRIVACY-PRESERVING POWER USAGE CONTROL WITH MINIMUM IN-
FORMATION DISCLOSURE . 34

5.1. PRIVACY-PRESERVING POWER USAGE CONTROL WITH MINIMUM
INFORMATION DISCLOSURE PROTOCOLS . 35

5.1.1. The P-PUC∗1 Protocol . 38

5.1.2. The P-PUC∗2 Protocol . 52

5.2. SECURITY ANALYSIS. 55

5.3. EXPERIMENTAL RESULTS . 57

5.3.1. Performance of P-PUC∗1 and P-PUC∗2 . 58

5.3.2. Performance Comparison with P-PUC1 and P-PUC2 59

6. OUTSOURCEABLE PRIVACY-PRESERVING POWER USAGE CONTROL . . . 61

6.1. OUTSOURCEABLE PRIVACY-PRESERVING POWER USAGE CON-
TROL PROTOCOLS . 61

6.1.1. The First Stage of OP-PUC . 62

6.1.2. The Second Stage of OP-PUC . 63

6.1.3. The Third Stage of OP-PUC Based on Strategy 1. 64

6.1.4. The Third Stage of OP-PUC Based on Strategy 2. 65

6.1.5. Complexity Analysis . 66

6.1.6. Security Analysis . 68

6.2. EXPERIMENTAL RESULTS . 68

6.2.1. Performance of OP-PUC and OP-PUC2 . 69

6.2.2. Performance Comparison with Existing Work . 70

7. PRIVACY-PRESERVING POWER SUPPLY CONTROL. 72

7.1. PROBLEM DEFINITION FOR PRIVACY-PRESERVING POWER SUP-
PLY CONTROL: OP-PSC . 73

vii

7.1.1. Threat Model . 74

7.1.2. Our Contribution . 74

7.2. THE PROPOSED OP-PSC PROTOCOL . 74

7.3. EXPERIMENTAL RESULTS . 76

8. CONCLUSIONS . 78

BIBLIOGRAPHY. 80

VITA . 87

viii

LIST OF ILLUSTRATIONS

Figure Page

3.1. An Overview of Smart Grid Control System . 20

4.1. TTP-based P-PUC protocol . 26

4.2. Complexity of P-PUC1 for n = 50. 32

5.1. Empirical results of P-PUC∗1 and P-PUC∗2 based on Paillier cryptosystem for
K =1024.. 60

6.1. Complexity of OP PUC for n = 50 . 69

6.2. Complexity of OP PUC2 for n = 50 . 71

6.3. Complexity: OP PUC Vs. OP PUC2 . 71

7.1. Complexity of OP-PSC for n = 10 . 77

7.2. Complexity of OP-PSC for m = 10. 77

ix

LIST OF TABLES

Table Page

3.1. Common Notations. 24

4.1. A Comparison of Secure Division Protocols . 33

1. INTRODUCTION

In recent years, there has been a rapid growth in the use of smart grid technology

[1, 2, 3, 4, 5], which is envisioned as the future’s energy-efficient and self-monitoring power

system. As the smart grid offers tremendous benefits, it has attracted a significant amount

of attention from researchers across academia, industry, and government agencies. Much

work has been done to address various issues and implementation details related to the

deployment of smart grids in various sectors [5, 6, 7]. A lot of telecommunication, power,

and IT companies are already enjoying the benefits of smart grid technology by deploying

it in their daily business operations. Nevertheless, more research needs to be done to

address the various open challenges such as security and privacy issues [8, 9, 10].

This dissertation primarily focuses on the power outage issue in the smart grid

environment. Consider a utility company that self-monitors the power supply to a neigh-

borhood (i.e., uses smart grid technology) by collecting the power usage data of each

household in the neighborhood. When the total power usage from the neighborhood is

extremely high, the physical components in a smart grid could be overloaded, which would

lead to a long-lasting regional power failure (i.e., the power outage of the entire system) and

huge financial losses. Therefore, preventing this kind of power outage by controlling the

power usage of households (especially in an electricity peak demand time) is an important

task since it is beneficial for both the utility company and its customers.

In order to prevent the failure of these physical components, one kind of power usage

control is to dynamically adjust the consumers’ power consumption. For each servicing

neighborhood, the utility company can determine a power usage threshold beyond which

the physical components of a smart grid may work dangerously above their expected

capacities. The threshold can be compared with the total power usage of a neighborhood at

a particular time, which can be computed based on the power usage readings from the smart

meters of individual households. Whenever a neighborhood’s total power usage exceeds its

related threshold, some or all of the households in the neighborhood need to reduce their

energy consumption based on their current usage. To effectively achieve this threshold-

2

based power usage control (TPUC), the utility company should first provide consumers

with incentives to participate. Then, the utility company needs to frequently collect and

analyze the power usage data from each household in the participating neighborhood. To

attract participation, the utility company can reduce the rate for participating consumers.

In return, the consumers agree to reduce their power consumption when necessary, i.e.,

household with more power consumption in the neighborhood needs to reduce more of its

energy consumption to bring down the total power usage of the neighborhood when the

total usage exceeds the threshold.

However, existing research [11] has shown that specific types of appliances and

generators can be identified through their signatures exhibited in the electric usage data

(collected from a meter) when the collection frequency is very high (when the collection

period is less than 1 hour) compared to the monthly-based collections. Similar research

[12] also demonstrated that the usage patterns of most major home appliances can be de-

termined by analyzing 15-minute interval aggregate household energy consumption data.

More detailed power consumption information increases the likelihood of discovering con-

sumers’ private information because activities of daily living (ADL) can be inferred (such

as how many people are in the building, when household owners are asleep, etc) from

appliance usage patterns. Therefore, customer privacy might be disclosed to the utility

company through the frequently collected power usage data. Even if the utility company

is allowed to hold customers’ personal information, it may still not want to store or use

these data directly because the company is liable to the negative consequences if the data

are disclosed to a malicious party. If those pieces of sensitive information are disclosed to

adversaries, malicious attacks can be launched more easily. In addition, the threshold set

by the utility company can reveal its operational capacity and its number of customers

in a neighborhood. To preserve a competitive advantage, any information regarding the

threshold values should not be disclosed to the public. Thus, it is beneficial or even nec-

essary to develop a protocol that achieves TPUC without individual households disclosing

their power usage data or the company disclosing its threshold values. This process is

called a privacy-preserving TPUC, denoted as P-PUC.

3

Secure protocols to solve the P-PUC problem under different power adjusting strate-

gies are proposed [13, 14]. Those protocols are executed directly between a utility company

and its household customers. However, at least one of the following limitations appears in

those protocols:

• Not very efficient when the threshold values are from a large domain.

• Leak certain intermediate information that can be used to infer knowledge about the

private power usage data of individual households and the threshold values set by

the utility companies.

• Incur heavy computations between the households and the utility company.

To eliminate these problems, a novel P-PUC protocol that allows computations to

be completely outsourced to cloud servers is also considered. Recently, cloud computing has

emerged as an approach that offers cost efficiency and operational flexibility for entities to

outsource their data and computations for on-demand services. Because the power usage

data can be very large in quantity (especially when these data are collected with high

frequency), it is beneficial for a utility company to outsource the data and computations

related to P-PUC protocols to a cloud.

As discussed before, the power usage data and threshold values are sensitive infor-

mation, so these data should not be disclosed to the cloud. Thus, before outsourcing, the

data need to be encrypted, so the cloud would only be storing and processing the encrypted

data. When the data are encrypted with fully homomorphic encryption schemes, the cloud

can perform any arbitrary computations over the encrypted data without ever decrypt-

ing them. Nevertheless, fully homomorphic encryption schemes have yet to be practical

due to their extremely high computational cost. As a result, a multi-server framework to

securely and efficiently implement the proposed protocol is also developed and termed as

outsourceable P-PUC (OP-PUC) [15].

4

1.1. PROBLEM DEFINITION

This dissertation contains a proposal for P-PUC protocols under both basic setting

and multiple cloud servers setting. Therefore, the basic setting comes first and is followed

by the multi-server setting. Some other overall assumptions appear last.

1.1.1. Basic Setting. Without loss of generality, let A1, . . . , An be n households

from a neighborhood with a1, . . . , an as their power consumption in a specific time interval,

respectively (e.g., 15 minutes). In addition, let t denote the threshold for the neighborhood

that is commonly determined by the utility company C (note that the threshold value

may vary from different neighborhoods), and let a denote the total power usage for the

neighborhood during the same time interval (i.e., a =
∑n

i=1 ai). Whenever a > t, some

or all consumers are required to reduce their power consumption in order to prevent the

possibility of a power outage in the neighborhood. Suppose δi is the reduction in power

consumption for consumer Ai, for 1 ≤ i ≤ n. In general, the δi values can be zero∗,

and the actual reduction in power consumption for each Ai depends on either ai (i.e.,

power consumed by Ai during a fixed period) or its current usage (the user might sign an

agreement to reduce the power of devices that appear on a list). This purely depends on

the underlying strategy used.

The literature presents several strategies to prevent a power outage in a smart grid.

Nevertheless, such techniques assume the availability of household power consumption

data to the utility company (or intermediate substation or data concentrator) to perform

diagnostics in order to predict and prevent power outages. In the proposed problem setting,

each user’s power consumption data are treated as his/her private information. Under such

a scenario, the standard schemes are not applicable. Therefore, this dissertation gives two

strategies described below:

• Strategy 1 - Adjustment Based on Maximum Power Usage: Whenever a > t, the

consumer with the maximum power usage is requested to reduce his/her power con-

sumption. After this, if the updated average total power usage a is still greater than

∗Observe that whenever t ≥ a, δi = 0, for 1 ≤ i ≤ n.

5

t, then the above process is repeated in an iterated fashion. In each iteration, the

consumer with the maximum power usage is requested to cut down the power for

some devices that do not affect his/her daily life, such as shutting down the dryer or

washer or adjusting the temperature of the air conditioner.

• Strategy 2 - Adjustment Based on Individual Power Usage: Under this strategy, each

consumer Ai computes the lower bound on the amount of power usage to be reduced

(i.e., δi) locally based on his/her last usage ai. Whenever a > t, Ai computes his/her

least amount of energy to be reduced as follows:

δi =
ai
a
∗ (a− t)

= ai ∗
(

1− t

a

)

Under Strategy 2, after the reductions are made by each consumer, the updated total

power usage a will always be less than t.

It is straightforward to develop TPUC protocols based on the previous two strate-

gies. However, building a P-PUC protocol by taking a user’s privacy into consideration

is a challenging task. Though the two strategies are different, a P-PUC can be formally

defined as follows:

(〈A1, δ1〉, . . . , 〈An, δn〉)← P-PUC(〈A1, a1〉, . . . , 〈An, an〉, 〈C, t〉) (1)

In general, for any given P-PUC protocol, the following requirements need to be satisfied

to preserve the user’s privacy:

• The user’s average power consumption ai should not be revealed to the other con-

sumers or C.

• The threshold t is private to C, and it should not be revealed to the consumers

(t might be used to infer the power capacity of the power plant or other private

knowledge of the neighborhood).

6

• The intermediate results, which are different for the above two strategies, should not

be released to either consumers or C (to avoid any inference attacks).

First of all, the input values ai and t are private information of Ai and C, respectively;

therefore, they should be protected from other parties for obvious security reasons. In

addition, under a secure multi-party computation (MPC) framework, a protocol is consid-

ered secure against semi-honest adversaries if the intermediate results seen by a party are

either random or pseudo-random. This is an inherent security property that is required to

prevent any inference attacks. For example, consider the intermediate result a =
∑n

i=1 ai.

For simplicity, let n = 2. Now, revealing the value of a to Ai’s will also reveal one party’s

private input to the other party. This clearly violates the user’s privacy. Therefore, all the

intermediate results must be protected while constructing the secure protocols to satisfy

the security definition of MPC. More details about the security definition adopted in this

dissertation are given in Section 3.2.1.. At the end of the P-PUC protocol, a ≤ t. During

this process, only consumer Ai knows δi (as his/her output), and nothing else is revealed

to C and Ai, for 1 ≤ i ≤ n.

1.1.2. Multi-Server Setting. When an outsourcing environment is considered,

the input values a1, . . . , an and t should be hidden from the cloud servers because these

cloud servers cannot be trusted. That is, before outsourcing, these values need to be

either encrypted or secretly shared. In the proposed OP-PUC protocols, an additive secret

sharing scheme is adopted to hide the original values. The proposed OP-PUC protocol

can be formulated as follows:

(〈A1, δ1〉, . . . , 〈An, δn〉)← OP-PUC(〈A1, a1〉, . . . , 〈An, an〉, S1, S2, 〈C, t〉) (2)

According to the above formulation, there are three types of participating entities: n

households, two cloud service providers S1 and S2, and a utility company C. The input for

each household or customer Ai is its average power consumption ai within a specific period

of time, and the input of C is a threshold t. The two cloud servers perform the necessary

computations, and there are no explicit inputs for the two servers. After the execution of

7

the OP-PUC protocol, each Ai receives a value denoted by δi for the minimum amount of

the energy consumption that needs to be reduced by Ai. The other participating entities

do not receive any outputs.

During the execution of the OP-PUC protocol, ai is private to Ai and should not

be disclosed to the other households. In addition, ai should not be known to the two cloud

servers and the utility company. Since t is private to the utility company C, t should not

be known to the other participating entities.

• ai is only known to Ai, for 1 ≤ i ≤ n, and

• t is only known to C.

1.2. ASSUMPTIONS

In this dissertation, choosing an optimal value for t is not discussed. In general,

the value of threshold t is set by the utility company C. Approaches based on threshold

are not new and have been commonly used in various problems within the smart grid

environment (e.g., [16, 17, 18]). Nevertheless, deciding the value of t is an important step

in threshold-based approaches, including the proposed protocols. The existing threshold-

based approaches do not address how to decide the value of t. In particular to the proposed

protocols, the value of t may vary between the neighborhoods. Some important factors

that decide the value of t are (i) number of households in the neighborhood, (ii) percentage

of residential, industrial, or commercial consumers in the neighborhood, and (iii) time and

location of the neighborhood. These three factors will enable C to set an appropriate

value of t for a given neighborhood. Alternatively, the utility company can use the existing

historical dataset available from the neighborhood to predict a suitable t value using the

data mining techniques.

Since the usages are random, even when the total power usage exceeds the threshold,

there may not be an outage (as the usage may fall below the threshold shortly). This is

termed as false alarm. Even in the case of false alarm, reducing the power consumed by

households will only act as a precautionary step, and there are no negative consequences

8

in doing so. The goal of this dissertation is to develop P-PUC protocols. Therefore,

estimating the false alarm probability, which itself is a separate and interesting problem,

is outside the scope of this dissertation.

Also, in this dissertation, network delays were not considered. First of all, the

threshold value t is not an upper-bound on power consumption. Instead, t was chosen

to help the utility company efficiently manage and distribute the power for any given

neighborhood. Therefore, even if there is a delay, there will be a sufficient gap between t

and the upper-bound on power consumption. Nevertheless, the network delays in smart

grid environments are usually in milliseconds. Hence, even in the case of network delays,

the households will shortly cut down their usages if necessary (assuming a > t) and the

total power usage will fall below t.

The threat model adopted for the dissertation is the commonly accepted security

definition of secure multiparty computation (SMC). More specifically, the participating en-

tities are assumed to be semi-honest; that is, the entities follow the prescribed procedures

of the protocol. Under the semi-honest model, it is implicit that the participating entities

do not collude. Another adversary model of SMC is the malicious model. Under the ma-

licious model, the entities can behave arbitrarily. Most efficient SMC-protocols are secure

under the semi-honest model since fewer steps are needed to enforce honest behaviors. The

following are motivations to adopt the semi-honest model:

• The P-PUC protocols need to be sufficiently efficient. Between the semi-honest model

and the malicious model, the semi-honest model always leads to much more efficient

protocol.

• Smart meters can be made tamper proof, so the households cannot modify the read-

ings from smart meters or the messages sent from the smart meters to the power

company. Thus, the semi-honest model fits this problem domain well regarding the

households.

9

• The cloud service providers and the utility company are legitimate business. It is hard

to see they collude and initiate any malicious act to discover the private smart meter

readings. For well-known and reputable cloud servers (e.g., Amazon and Google), it

makes sense to assume they follow the protocol and behave semi-honestly.

10

2. RELATED WORK

A smart grid is more efficient, more resilient, and more affordable to manage and

operate than a traditional power grid. In the smart grid, the power company can not

only gather power consumption information from power users (as in a traditional power

grid), but also send information flow to power users for smart control and emergency

services. However, big benefits come along with tremendous risks. The smart grid could

also be vulnerable to various cyber security threats. New functions (e.g. smart control of

household devices) provide many opportunities for cyber attacks such as spoofing attacks

[19] and man-in-the-middle attacks [20]. Those vulnerabilities, when mastered by malicious

attackers, could be used to launch cyber attacks to steal energy, affect the quality of service

(QoS) of a power grid, or even lead to cascading failures of the whole power network, which

could result in huge financial losses.

At the same time, to achieve smart control and better load balancing, a smart

grid needs to frequently collect and analyze energy consumption data of individual power

users. However, the existing literature showed that with the collection of 15-minute in-

terval household energy consumption data, major home appliances will be detected with

accuracy rates of over 90 percent [12]. In addition, it has been shown that the identifi-

cation success rate is nearly perfect regarding larger two-state household appliances such

as dryers, refrigerators, air conditioners, water heaters, and well pumps[21]. A survey on

different types of information that can be inferred from the power consumption data is

given in [22]. For example, using the household power consumption data, other household

activities such as how many people are at home, sleeping routines, and eating routines can

also be inferred [19, 23].

Because of these security and privacy risks, the National Institute of Standards and

Technology (NIST) rolled out guidelines [6] for some security and privacy issues, which

could be classified into three categories: Integrity, Confidentiality and Availability. In this

dissertation, customer privacy issues are the main focus. Privacy issues are included in

Confidentiality. However, in this dissertation, Privacy is highlighted as one distinct point.

11

That is because Confidentiality is to protect information against unauthorized parties,

whereas Privacy can also be violated by authorized parties:

• Integrity: Protecting against the unauthorized modification or destruction of infor-

mation. In the smart grid, data should not be modified without authorization; the

source of data should be authenticated; the time stamp associated with the data

should be known and authenticated; and the quality of the data should be known

and authenticated. Loss of Integrity would lead to unauthorized modification or de-

struction of the information. For example, if a malicious customer alters his meter

readings, he can commit energy theft to gain profit. On the other hand, if an attacker

successfully controls a group of meters and injects fake data, the state estimation

made by the controllers will be incorrect so that failures might happen in the power

grid.

• Confidentiality: Protecting privacy and proprietary information by authorized re-

strictions on information access and disclosure. In the smart grid, customer infor-

mation, power consumption data, and network topology information should not be

disclosed to unauthorized parties. Loss of confidentiality would disclose the informa-

tion to unauthorized parties. For example, robbers who learn the individual power

consumption data can infer the daily lifestyle of the customer so as to rob the house

when nobody is there. Attackers who gain control of the network topology can have a

view of the entire network and find weak points for invasion. Competitor companies

who control the customer information can make opposite strategies to seize markets.

• Privacy: Partly included in Confidentiality. On the other hand, authorized parties in

the smart grid (e.g. utility companies) cannot be fully trusted. With Confidentiality

breaks, attackers who master customer information can make inferences about indi-

viduals’ daily living. Authorized parties like utility companies are also potential risks

for users’ privacy. Utility companies may sell customer data to third party advertis-

ers to gain profit, or the employees of utility companies can get the customer data

by chance. If individuals’ time-series collections of power usage data are disclosed to

12

adversaries, bad things might happen. Therefore, the privacy requirement is high-

lighted: high frequently collection of power consumption data cannot be disclosed,

even to authorized parties.

• Availability: Ensuring timely and reliable access to information and services. Avail-

ability will not be discussed further here, since the issue is far from privacy.

Some survey papers have already studied the security and privacy issues in a smart

grid. Cyber security in the smart grid: Survey and challenges [24] gave a review of security

issues in the smart grid. This paper discussed many potential attacks and made a use case

study for their critical security requirements. Next, it went through existing counter attack

solutions from both networking (including attack detection and attack mitigation mech-

anisms) and cryptography (including encryption, authentication, and key management).

This paper also proposed research challenges from different aspects.

A survey on cyber security for smart grid communications [25] is another survey

focusing on the cyber security issues of smart grid communications. The authors proposed

security requirements of smart grid communications among confidentiality, availability, and

integrity. Then they showed the challenges such as internetworking, security policy and

operations, and security services. They studied the current solutions of privacy, integrity,

authentication, and trusted computing as well.

At the rest of this chapter, existing works about spoofing attacks in smart grid

communication networks will be reviewed at first. Then, existing security authentication

schemes to keep smart grid system integrity will be studied. Literature that addresses

privacy problems will be demonstrated last.

2.1. SPOOFING ATTACKS

A spoofing attack is a scenario in which an attacker successfully pretends to be

another and gains unauthorized access. In a smart grid network, the goal for a spoofing

attack might be:

13

• Smart meter spoofing: The attacker masquerades as a smart meter and can send

fake data to the readers and collectors. The purpose of the attack can be energy

theft or even to mislead power grid state estimation.

• Data reader/collector spoofing: The attacker acts as a data collector and learns

the users’ private information, which might be used in other inference attacks (e.g.

robbery).

• Controller spoofing: The attacker pretends to be a controller and learns messages

between other controllers and smart meters to make inference attacks; or even worse,

the attacker can gain access to modify network packets to launch Denial of Service

(DoS) attacks.

Although the smart meters are assumed to be protected from physical damages

(tamper-resistant) in many existing works, since legacy meters will still be part of the

power grid system in the near future, old meters are vulnerable points for the whole grid.

Unlike traditional power grid, a smart grid introduces new features (for example, smart

meters also have storage and computation abilities and can send and receive messages from

other smart devices) in order to make smart control and demand requests. To fulfill these

new tasks, smart devices are connected to the network and utilize different communication

methods such as zig-bee and wireless, which leads to various vulnerabilities. For instance,

the authors of Neighborhood watch: security and privacy analysis of automatic meter read-

ing systems [19] showed that automatic meter reading (AMR) systems are vulnerable to

spoofing attacks. They studied the wireless signals sent by AMR meters and found that

no encryption mechanism was applied, so adversaries could decode the signal easily to get

the real message information. Besides, adversaries can also act as meters to send fake mes-

sages to the readers, possibly to commit energy theft. Considering so many AMR meters

had already been deployed in the US, the authors in [19] suggested a ”Jammer add-on”

solution, which required attaching an extra hardware device to every AMR meters to jam

the original signal. Whenever a reader device came, it would temporally close the jammer

device so that real data would be read. The authors claimed that this method did not

14

require updating the whole AMR meter system from either software or hardware. Yet a

new problem came: the new jammer devices also needed to be tamper-resistant.

Another paper Man-in-the-middle attack test-bed investigating cyber-security vul-

nerabilities in smart grid scada systems [20] showed a man-in-the-middle attack test-bed

to the supervisory control and data acquisition (SCADA) system of the smart grid. To-

day, the SCADA system’s architecture is open standard and protocols and distributes

functionalities across a wide area network (WAN), which allows more and more interop-

erability, connectivity, and compatibility. However, these new features make the systems

more vulnerable to various unintentional or malicious cyber attacks. Introduced in Man-

in-the-middle attack test-bed investigating cyber-security vulnerabilities in smart grid scada

systems [20], the attacker can first launch an ARP spoofing attack to associate a malicious

host’s MAC address with the IP of a target host. Then he could perform a man-in-the-

middle attack and gain access to confidential information.

2.2. SMART METER AUTHENTICATION SCHEMES

One way to address the aforementioned problems is to provide concrete and effi-

cient authentication schemes for communications in the smart grid. Existing smart meter

authentication schemes are reviewed next since smart meters are usually plotted at the

users’ houses and more vulnerable than other smart grid infrastructures. The computa-

tion ability of smart meters is also highly restricted. Therefore, the authentication scheme

adopted needs to be significantly efficient.

A lightweight message authentication scheme for smart grid communications [26]

talks about a situation in which Internet Protocol (IP)-based communication technolo-

gies are considered to set up smart grid communication networks. In this kind of smart

grid communication network, a wide variety of malicious attacks that existed in IP-based

schemes, such as replay, traffic analysis, and denial of service attacks, also need to be

addressed in the smart grid. Considering the limited resources (i.e., low memory and com-

putational capacity) of the smart meters, when facing some time-critical demand request

15

and keeping the quality of service, the smart grid needs an efficient authentication mech-

anism. Therefore, the authors proposed a lightweight message authentication scheme for

securing communication amongst various smart meters at different points of the SG based

on the Diffie-Hellman key establishment protocol and hash-based message authentication

code.

Multicast authentication in the smart grid with one-time signature [27] proposed a

multicast authentication scheme in the smart grid using a one-time signature. Compared

with the existing multicast authentication scheme, HORS, their scheme reduced the stor-

age overhead of the receivers by a factor of 8. Their scheme could also flexibly allocate

the increased computations between the sender and receiver based on their computing

resources. However, they assumed an adversary could eavesdrop some valid signatures to

make a signature forgery attack and compare the possibility to link those signatures to the

real message with their scheme, whereas the possibility of this link is really insignificant.

In A privacy preserving and secure authentication protocol for the advanced me-

tering infrastructure with non-repudiation service [28], the authors proposed an ID-based

authentication protocol for the advanced metering infrastructure. This protocol can pro-

vide source authentication, data integrity, and non-repudiation services while preserving

the end-customer’s privacy.

Considering the security issues happen during the data transmission between smart

meters and utility servers, Authentication and key management for advanced metering in-

frastructures utilizing physically unclonable functions [29] proposed an approach based on

PUF (physically unclonable function) technology for providing a hardware-based authenti-

cation of smart meters and an efficient key management scheme. Their major advantage by

using PUFs was that there was no need to modify the existing smart meter communication

system (no software or hardware upgrades were needed).

Multilayer consensus ecc-based password authenticated key-exchange (mcepak) pro-

tocol for smart grid system [30] considered a situation in which different layers were shown

in the smart grid communication infrastructure: home area networks (HANs), building area

networks (BANs), neighbor area networks (NANs), and SG central controllers (SGCC),

16

and each layer had separate controllers. Those controllers were connected from layer to

layer, and each adjacent layers shared the same password for secure communication. HAN

controllers were linked to smart appliances so that smart control from HAN controllers

could be done directly. However, the control command from the upstream controllers of

HAN had to go through different layers’ re-encryptions which made it much too costly. To

address this problem, the authors of Multilayer consensus ecc-based password authenticated

key-exchange (mcepak) protocol for smart grid system [30] presented a multilayer consen-

sus elliptic curve cryptography based password authenticated key exchange (MCEPAK)

protocol that allowed each new smart meter to be authenticated and share a password

with every upstream controller in an efficient way.

The authors of A privacy-preserving smart metering scheme using linkable anony-

mous credential [31] tried to build a scheme that could not only authenticate the messages

sent from smart meters, but also preserve the user’s privacy. They used Camenisch-

Lysyanskaya (CL) signature to build a linkable anonymous credential protocol and pro-

posed a privacy-preserving smart metering scheme based on the new linkable anonymous

credential. Their protocol also had the property to trace the fault meters. However, it was

not clear in their authentication scheme if meter credentials were used.

2.3. PRIVACY PRESERVATION

Even if messages in smart grid communication are authenticated and fully pro-

tected, there are potential privacy implications that arise from the collection and usage

of smart grid data [32, 33]. As mentioned before in this chapter, fine-grained collections

of power usage data can be used to identify most household appliances. It is clear that

there is a strong need to develop privacy-preserving frameworks for various problems in the

smart grid infrastructure. There have been considerable works along privacy-preserving

smart grids from different aspects:

• Power Consumption Data Aggregation: A number of papers [34, 35, 36, 37, 38, 39,

40, 41, 42] utilized data aggregation techniques to hide the sensitive information.

17

Basically, the power consumption data of a group of customers were aggregated

together so that even fine-grained data collection would not leak an individual cus-

tomer’s private information. However, the extent to which those data could be used

for analysis to keep the quality of service (e.g., the state estimation decided from

aggregated data may not be accurate enough) was not clear. At the same time, the

aggregation technique could not totally overcome the privacy issues either.

• Dynamic Energy Management through Battery: Another big category of works in-

volves using rechargeable battery algorithms [43, 44, 45, 46, 47, 48, 49] to mask the

real household usage patterns. Typically, those batteries were combined with power

controllers and deployed for each individual household. Their function was to make

the meter load close to constant. The battery was deployed between the meter and

the household, so the meter would record the energy charging the battery in each

time-series. When household appliances needed more energy, the battery would dis-

charge more; on the contrary, the battery will recharge. Yet, those methods usually

need to have the prior knowledge of household activities in hand to make perfect

masks. These methods are not safe if the adversaries already know the algorithms

power controllers use.

• Power Usage Data Anonymization: Power usage data anonymization is another di-

rection for preserving the user’s privacy. For example, in Smart grid privacy via

anonymization of smart metering data [50] an anonymization technique was studied.

Smart meters were set with two IDs by a trusted third party (e.g., the manufactur-

ers). One ID was known by the utility company, and the other ID was anonymous.

The known ID was attached to low frequency data message packets that were used

for billing purpose while the anonymous ID was attached to high frequency data

message packets that were used for analysis. Even the utility company didn’t know

the relation between the two IDs. However, in Smart metering depseudonymiza-

tion [51] the authors showed an attack model in which the knowledge of anonymous

consumption traces and some recent activities of a household allowed attackers to

18

link the household’s identity to its consumption trace so they could launch inference

attacks.

• State Estimation Vector Obfuscation: In Cooperative state estimation for preserv-

ing privacy of user behaviors in smart grid [52], a privacy-preserving cooperative

state estimation technique was investigated. Based on an unbiased linear estimation

scheme [53], the authors developed a protocol that enabled each smart meter to add

a distributed obfuscation vector to mask an individual’s original measurements and,

later, keep the result of estimation same. However, the authors didn’t give a concrete

security proof, so the privacy-preserving property might not be guaranteed.

Although many works had been posted to use privacy-preserving technologies in a

smart grid system, they do not address the P-PUC problem in particular. The protocols

presented in [13, 14] are the only existing work related to the proposed problem. The first

two P-PUC protocols proposed in [13] were built based on two strategies. The protocols

were efficient, whereas the total energy consumption was leaked to one of the households,

and the maximum energy consumption among the households was also revealed. In addi-

tion, the secure division protocol utilized before was among several proposed protocols in

[54], which were either not secure or not efficient.

In [14], another two P-PUC protocols were developed to address the security issues

of the earlier P-PUC protocols. The protocols were more secure and practical. Secure

sub-protocols were built to be used as basic generic secure primitives for other privacy-

preserving problems.

19

3. BACKGROUND

This chapter include a brief review of a basic smart grid control system model.

Some preliminaries that are highlighted include: the security definition of this work under

the semi-honest model and the cryptography techniques adopted in this dissertation.

3.1. SMART GRID SYSTEM MODEL

Figure 3.1. gives a typical view of the smart grid control system. In this system,

each household is equipped with a smart meter that links to every smart device in the

household through a home area network (HAN). The smart meters deployed under the

same neighborhood, combined with a substation/data-concentrator, compose a neighbor-

hood area network (NAN). At the same time, substations connect to the utility company

through the wide area network (WAN). For each level of network, there are different priv-

ilege levels of controllers that manage data flow and make smart controls. To assist with

the work of the controllers, the smart meters not only read or deliver normal power con-

sumption information in a very high frequency (e.g., 15-minute intervals), but also have

some computation abilities to help higher level controllers (e.g., deployed in the utility

company) to make smart controls. Here are the functionalities of the main components in

a smart grid control system:

• Utility company: has the central controller, is in charge of analyzing data and billing.

The utility company connects to multiple substations through the WAN. Sometimes

the utility company would handle data analysis tasks in order to make smart controls

for household appliances. They could also give these jobs to third party service

providers. Alarms and alerts are also the responsibilities of utility company. It could

send the highest level control signals during an emergency condition.

• Substation/data-concentrator: has a data collector that collects data from the smart

meters in a neighborhood. The link between the substation/data-concentrator and

the smart meter could be wired or wireless connections (e.g., in some existing AMR

20

Figure 3.1. An Overview of Smart Grid Control System

systems, meter data could be gathered by car-carried readers remotely). After ac-

cumulation, the substation/data-concentrator transfers the processed data to the

utility company. It could also route the messages between smart meters and the

utility company.

• Smart meter: has a micro-controller and limited power, storage, and computation

ability. Smart meters can engage in two-way communications with substations and

household devices. They may also have the functionality to enable utility companies

or customers to remotely connect or disconnect home appliances and services.

3.2. PRELIMINARIES

This section includes a discussion of the security definition of this dissertation. The

tools of this study, additive homomorphic encryption that forms the core of P-PUC and

Yao’s garbled circuit that used to build the secure division protocol for OP-PUC are also

21

introduced. A definition and some notations that are used throughout this paper are

presented at the end of this section.

3.2.1. Security Definition. The security definition adopted in this paper is from

the field of secure multi-party computation (MPC). The notion of MPC was first introduced

by Yao who also proposed a provably secure solution for the well-known Millionaires’

problem (under two-party setting). Briefly, the Millionaires’ problem involves two parties,

holding their private wealths, who want to know which one is richer without revealing their

actual wealth to the other party [55, 56]. This work was later extended to the multi-party

case by Goldreich et al. [57], and it was shown that any computation that can be done in

polynomial time by a single party can also be done securely by multiple parties. Since then,

there have been many theoretical advancements as well as practical frameworks developed

for the multi-party case [58, 59, 60, 61, 62, 63].

In this paper, it is assumed that the parties are semi-honest, often referred to as

honest-but-curious, where each party follows the rules of the specified protocol but is free

to later deduce any additional information by using the intermediate results the party sees

during the execution of the protocol. Under the semi-honest model, whatever a party can

infer from its private input and output is not considered as a privacy violation. More

specifically, this paper adopts the semi-honest security definition from the field of MPC

[64]. Briefly, the following definition captures the security definition under the semi-honest

model.

Definition 1. Let ai be the input of party Ai, V IEWi(π) be Ai’s execution image of

the protocol π and δi be the output for Ai computed from π. Then, π is secure if V IEWi(π)

can be simulated from 〈ai, δi〉 and distribution of the simulated image is computationally

indistinguishable from V IEWi(π).

In this definition, an execution image generally includes the input, the output,

and the messages communicated during an execution of a protocol. To prove a protocol

is secure under the semi-honest model, one generally needs to show that the execution

image of a protocol does not leak any information regarding the private inputs of the

22

participating parties [64]. The reader may refer to The Foundations of Cryptography [64]

for more detailed security definitions and their proofs.

3.2.2. Additive Homomorphic Probabilistic Encryption. This paper uti-

lizes an additive homomorphic and probabilistic public key encryption system (denoted by

HEnc), such as Paillier cryptosystem [65], for constructing our secure protocols. Let Epk

and Dpr be the encryption and decryption functions based on the HEnc system with public

key pk and private key pr. It is then impossible for a computationally bounded adversary

to decrypt any given ciphertext successfully in polynomial time without the private key

pr. In addition, let N denote the group size or RSA modulus (which is usually of 1024

bits). For any two given plaintexts m1,m2 ∈ ZN , the HEnc system exhibits the following

properties [66].

• Homomorphic Addition:

Epk(m1 +m2)← Epk(m1) ∗ Epk(m2);

• Homomorphic Multiplication:

Epk(m1 ∗m2)← E(m2)m1 ;

• Semantic Security: The encryption scheme is semantically secure as defined in [67,

68]. Given a set of ciphertexts, an adversary cannot deduce any additional informa-

tion about the plaintext. This further implies that the ciphertexts are statistically

indistinguishable under chosen-plaintext attack (IND-CPA).

Any HEnc system can be used to implement the proposed protocols. Depending on the

underlying HEnc system used, the homomorphic additions or multiplications are followed

by modulo operations for security reasons. For example, in the Paillier cryptosystem

[65], operations on ciphertexts are always followed by a modulo N2 operation in order to

ensure that the resulting ciphertext is still in ZN2 and uniformly random. For presentation

purposes, the modulo operations are simply omitted in the rest of this paper.

23

3.2.3. Yao’s Garbled Circuit. In order to implement an efficient secure division

protocol for OP-PUC in which all input values are promised to be encrypted, the garbled

circuit approach introduced by Yao [69] is adopted. Yao’s garbled circuit is a method

Proposed by Andrew Yao in 1986 for Secure multi-party computation[69]. Basically, this

protocol evaluate a function between two-party under semi-honest adversaries, and at the

end of the protocol, the value of function is outputted without leaking any information

to each party except the output value. In more detail, there is one party called garbler

and another party called evaluator. At first, the garbler builds a ‘garbled’ version of

circuit computing function. Then this function along with garbler ’s input values (garbled

corresponding to garbler ’s real input values) are given to the evaluator. Upon receiving

these, the evaluator obliviously obtains the garbled corresponding inputs of him by using

1-out-of-2 oblivious transfer protocol[70, 71, 72]. After this, the evaluator have all the

inputs to calculate the function.

Recently, an intermediate language for describing and executing garbled circuits -

the GCParser [73] has been proposed. This framework can implement any optimizations

at both the high level and the low level, and it has already been applied to optimizing free

XOR-gates and pipelining circuit generation and execution. We adopt this framework to

build a garbled circuit for secure division.

3.2.4. Notations. Some common notations that are used extensively in this paper

are shown in Table 3.1..

Definition 2. Let a1, . . . , an be the average power consumptions of n households in

a given neighborhood. We define amax as the maximum value out of the n power usages,

i.e., amax = max(a1, . . . , an). In addition, for any given integer x such that 0 ≤ x < l and

2m−1 ≤ l < 2m, we define [x] as a vector of encryptions of the individual bits of x. More

formally, we define [x] as follows:

[x] = 〈Epk(Bx[1]), . . . , Epk(Bx[m])〉

24

Table 3.1. Common Notations

SMC Secure Multi-Party Computation

P-PUC Threshold-Based Power Usage Control

OP-PUC Outsourceable P-PUC

HEnc An additive homomorphic probabilistic encryption system

〈Epk, Dpr〉 A pair of encryption and decryption functions based on the

HEnc system with 〈pk, pr〉 as the public-private key pair

C The utility company

n Number of households in a given neighborhood

Ai ith household in the neighborhood

S1 and S2 Two independent cloud servers

ai Average power consumption for household Ai

a′i and a′′i Secret shares of ai between two parties

a Sum of average power consumption in the neighborhood

a′ and a′′ Secret shares of a between two parties

t Threshold value for the neighborhood

t′ and t′′ Secret shares of t between two parties

Amax User with the maximum average power consumption in the neighborhood

amax Maximum average power consumption in the neighborhood

l Domain size for a and t

m Bit length of domain size l

Bx Binary representation vector for integer x

δi The lower bound of power user Ai has to cut off if a > t

where l is the domain size of x and m is the minimum number of bits required to

represent l. Bx is the vector denoting the binary representation of x such that Bx[1] and

Bx[m] are the most and least significant bits of x respectively.

For example, let us assume that x = 5 and m = 4. Then [x = 5] is given by

〈Epk(0), Epk(1), Epk(0), Epk(1)〉. Also, if r is a random number chosen from group ZN , it

is denoted by r ∈R ZN .

25

4. PRIVACY-PRESERVING POWER USAGE CONTROL

The first attempt at building P-PUC protocols, which are privacy-preserving power

usage control protocols, is proposed in Privacy-Preserving Power Usage Control in the

Smart Grid [13]. This chapter introduces the details of these protocols. A naive way

to implement privacy-preserving power usage control is to utilize a trusted third party

(TTP). As shown in Figure 4.1., each participating user Ai sends ai to a TTP, and the

utility company sends t to the TTP. Then, the TTP compares t with a =
∑n

i=1 ai. If

t < a, the TTP computes δi and sends it to Ai. Under this TTP-based P-PUC protocol,

the privacy-preserving requirements can be easily achieved. However, such a TTP hardly

exists in practice. Therefore, the goal of this chapter is to develop P-PUC protocols without

utilizing a TTP so that the protocols achieve a similar degree of privacy protection as if

there were a TTP.

The rest of the chapter is organized as follows: Section 4.1. proposes two P-PUC

protocols suitable for different adjustment strategies, Section 4.2. discusses the security

issues regarding the proposed protocols, and Section 4.3. gives some experimental results.

4.1. PRIVACY-PRESERVING POWER USAGE CONTROL PROTOCOLS

According to the two power usage adjustment strategies discussed in Section 1.1.,

two privacy-preserving TPUC protocols: P-PUC1 and P-PUC2 for strategy 1 and strategy

2, respectively, are proposed. The following assumptions must be made before introducing

these two protocols:

• Following the previous notations: A1, . . . , An denote n users in a participating neigh-

borhood, and a1, . . . , an denote the average power usage during a fixed time interval

set by their utility company C.

• Let a =
∑n

i=1 ai, and amax ∈ {a1, . . . , an} denotes the maximum individual energy

usage of user Amax ∈ {A1, . . . , An}. Without loss of generality and for illustration

purpose, it is assumed that amax is unique and a1, . . . , an are integer values. In

26

Utility

company

An

A1

TTP

a1

an

t

Figure 4.1. TTP-based P-PUC protocol

practice, a1, . . . , an can be fraction numbers. Before using the proposed protocols,

they need to be scaled up to become integers. At the end, the final results returned

from the protocols are divided by the scaling factor to obtain the appropriate values.

• The ideal privacy-preserving requirements presented in Section 1.1. are difficult to

achieve without using a trusted third party. In the proposed protocols, the privacy-

preserving requirements are relaxed a little bit:

– Under strategy 1: Only a and amax can be disclosed to A1, . . . , An.

– Under strategy 2: Only a can be disclosed to A1, . . . , An.

The relaxed requirements allow more efficient protocols to be developed.

• One of the consumers (say A1) plays an important role in performing some inter-

mediate operations on handling some overall tasks of the neighborhood. Since every

user in the neighborhood is equivalent, A1 can also be chosen in an equal probability

based on any leader election algorithm.

• It is assumed that the consumers and the utility company are semi-honest. That

is, each party (either Ai or C) behaves as per the rules of the protocol; however,

he/she is free to later deduce any additional information by utilizing the messages

seen during the execution of the protocol [64]. This further implies that there is no

collusion between the parties.

Both P-PUC1 and P-PUC2 protocols require several secure primitive protocols as

subroutines, and these secure primitive protocols are defined as follows:

27

• Secure Sum(a1, . . . , an)→ a

There are n (at least three) parties participating in this protocol, and each party

Ai has ai as the input to the protocol. At the end of the protocol, summation a is

known only to A1.

• Secure Max(a1, . . . , an)→ amax

There are n parties participating in this protocol, and each party Ai has ai as the

input to the protocol. At the end of the protocol, amax is known to every participating

party, but ai is only known to Ai.

• Secure Compare(a, t)→ 1 if a > t, and 0 otherwise

There are 2 participants in this protocol. At the end, both parties know if a > t.

• Secure Division((x1, y1), (x2, y2))→ x1+x2
y1+y2

There are 2 participants in this protocol. The private inputs (x1, y1) are from party

1, and (x2, y2) are the private inputs from party 2. At the end, both parties know

x1+x2
y1+y2

.

All these primitives have privacy-preserving properties in which the private input values

are never disclosed to other participating parties. Next, let us discuss the implementations

of these primitives based on existing research.

4.1.1. Implementations of Secure Primitives. There are several ways to im-

plement the Secure Sum protocol. In this chapter, a randomization approach is adopted,

and the main steps of the protocol are given below (N indicates a very large integer):

1. A1 randomly selects r ∈ {0, N − 1}, computes s1 = a1 + r mod N , and sends s1 to

A2.

2. Ai, for 1 < i < n, receives si−1, computes si = si−1 + ai mod N , and sends si to

Ai+1.

3. An receives sn−1, computes sn = sn−1 + an mod N , and sends sn to A1.

4. A1 receives sn, computes a = sn − r mod N .

28

Because r is randomly chosen, s1 is also a random value from A2’s perspective. Therefore,

from s1, A2 is not able to discover a1. Following the same reason, a1, . . . , an are never

disclosed to the other users during the computation process. Because A1 is the only party

who knows r, a can be derived correctly by A1.

The steps proposed in [74] are adopted to implement the Secure Max protocol. For

Secure Compare, we can use the generic solution given in [60]. Different solutions from [54]

and [75] are considered to implement Secure Division. An efficiency and security trade-off

analysis between different Secure Division sub-protocols are proposed in Section 4.3..

4.1.2. The P-PUC1 Protocol. Once all the primitives described before are ob-

tained, the P-PUC1 protocol can be easily implemented. Key steps are given below:

1. A1 obtains a← Secure Sum(a1, . . . , an)

2. A1 and the utility company jointly perform the Secure Compare protocol.

If Secure Compare(a, t) = 1, then

(a) Each Ai obtains amax ← Secure Max(a1, . . . , an)

(b) Amax (self-identified via amax) reduces his or her energy consumption

3. Repeat these steps until Secure Compare(a, t) = 0

Since A1 has the value a, the Secure Compare protocol at step 2 can only be executed

between A1 and the utility company. However, any user can become A1, and this can be

achieved through a leader election process among the users to determine who wants to be

A1. Alternatively, A1 could be randomly chosen before each execution of the protocol.

4.1.3. The P-PUC2 Protocol. In this protocol, A1 is also responsible for the

secure summation and secure comparison operations. An additive homomorphic proba-

bilistic public key encryption (HEnc) system is used as the building block in the proposed

protocol. The private key is only known to the utility company, and the public key is

known to all the participating users. Let Epk and Dpr be the encryption and decryption

functions in an HEnc system with public key pk and private key pr. Without pr, no one

29

can discover x from Epk(x) in polynomial time. When the context is clear, the pk and pr

subscripts in Epk and Dpr are omitted. The HEnc system has the following properties:

• The encryption function is additive homomorphic: Epk(x1)×Epk(x2) = Epk(x1 +x2);

• Given a constant c and Epk(x), Epk(x)c = Epk(c · x);

• The encryption function has semantic security as defined in The knowledge complexity

of interactive proof systems [67], i.e., a set of ciphertexts do not provide additional

information about the plaintext to an adversary or Epk(x) 6= Epk(x) with a very high

probability.

• The domain and range of the encryption system are suitable.

Any HEnc system is applicable, but in this paper Paillier’s public-key homomorphic en-

cryption system [65] is adopted due to its efficiency. Informally speaking, the public key in

the system is (g,N), where N is resulted from multiplication of two large prime numbers

and g ∈ Z∗N2 is randomly chosen.

To implement the P-PUC2 protocol according to Equation 3, each user Ai needs to

calculate ai·t
a

between Ai and the utility company C so that ai is not disclosed to C and t

is not disclosed to Ai. The Secure Division primitive and an HEnc system will be adopted

to solve this problem.

δi =
ai
a

(a− t) = ai −
ai · t
a

(3)

Assume that E(t) is broadcasted by the utility company initially. The main steps of the

P-PUC2 protocol are given below:

1. A1 obtains a← Secure Sum(a1, . . . , an)

2. A1 and the utility company C jointly perform the Secure Compare protocol.

If Secure Compare(a, t) = 1, then

(a) A1 randomly selects r from {0, N − 1}

– Set y1 = N − r and y2 = a+ r mod N

30

– Send y1 to A2, . . . , An and y2 to C

(b) Each Ai (2 ≤ i ≤ n) randomly selects ri from {0, N − 1}

– Compute E(t)ai to get E(ai · t)

– Set x1i = N − ri and si = E(ai · t)× E(ri) = E(ai · t+ ri)

– Send si to C

(c) The utility company C sets x2i = D(si) for 2 ≤ i ≤ n

(d) For 2 ≤ i ≤ n, Ai with input (x1i, y1) and C with input (x2i, y2)

jointly perform the Secure Division protocol

– Ai obtains κi = Secure Division((x1i, y1), (x2i, y2))

– Ai sets δi = ai − κi

– Ai reduces his or her power consumption according to δi

A1 in the P-PUC2 protocol is a designated user in the participating neighborhood who is

responsible for computing a and distributing N − r to the other users and a + r mod N

to the utility company. Note that a computed at step 1 should not include the value a1,

(This can easily be achieved through a small modification to the Secure Sum protocol)

and A1 does not adjust his or her energy consumption. This prevents the disclosure of t

to A1. For instance, if A1 obtains a δ1, A1 can derive t based on Equation 3. To be fair,

A1 can be randomly selected among the participating users before each execution of the

protocol.

The purpose of step 2(a) is to hide a from the utility company and the other

users. Since r is randomly chosen, y1 and y2 are randomly distributed in {0, N − 1}. As

a result, the other users A2, . . . , An cannot discover a from y1, and similarly, the utility

company cannot discover a from y2. The goal of step 2(b) is to hide ai from the utility

company and t from Ai. Since the encryption scheme is semantically secure, from E(t) and

without the private key, the users cannot learn anything about t. In addition, because ri is

randomly chosen, the x2i value computed at step 2(c) does not reveal anything regarding

ai. The operations performed at steps 2(b) and 2(c) are based on the aforementioned

31

additive homomorphic property of the encryption function E. Since x1i + x2i = ai · t and

y1 + y2 = a, κi = ai·t
a

, the protocol correctly returns δi for each Ai, except for A1.

4.2. SECURITY ANALYSIS

Regarding the P-PUC1 protocol, a is disclosed to A1 and amax is disclosed to all the

participating users. Since a is aggregated information, the disclosure of a can hardly cause

any privacy violations. Although amax is disclosed, no one can link amax to a particular

user. Thus, the disclosure risk of the P-PUC1 protocol is not significant.

The P-PUC2 protocol only discloses a to A1, so it is more secure compared to the

P-PUC1 protocol. However, because the Secure Division protocol needs to be executed

between every user and the utility company, the protocol is less efficient than P-PUC1.

Therefore, depending on whether security or efficiency is more important, both proposed

protocols are applicable in practice.

4.3. EXPERIMENTAL RESULTS

The protocols were implemented in C using the Paillier encryption scheme [65].

All experiments were conducted on a Linux machine running Ubuntu 10.04 LTS with

Intel R© Xeon R© Six-CoreTM 3.07GHz and 12GB RAM.

For P-PUC1, the main components are Secure Sum, Secure Compare, and Se-

cure Max. Since the Secure Sum protocol only performs additions, and the size of the

input from each party is 1, the protocol is very efficient. For Secure Max, a probabilistic

scheme [74] is adopted in which multiple rounds of communications and computations are

involved. The computation complexity of this part is very neglectable since there are only

several simple operations for each party. On the other hand, one must consider the com-

munication. Since the result accuracy of this protocol increases steadily with the number

of rounds performed and introduced in [74], accuracy is nearly 100% when 5 rounds of

computation are performed. In this computation, 5 rounds are adopted. As the input size

for each party in every round is still 1, this protocol is also acceptable. Considering the

32

Secure Compare protocol, the total computation time for m = 10 is 1.12 seconds. Even

for the larger m = 50, the computation time is still less than 6 seconds. Figure 4.2. gives

the overall computation time of P-PUC1 for every involved party in one iteration. The use

of Ai denotes the average cost for Ai. As shown in Figure 4.2., the computation costs of

A1, C, and Ai are 0.36, 0.76, and <0.01 second, respectively, for m = 10. The computation

times of A1 and C are linear, expanding with the bit length of domain size increasing as

expected, whereas the portion of computations of each individual Ai is small and con-

stant. This is because individual Ai only makes simple computations during Secure Sum

and Secure Max, while the most time consuming part, Secure Compare, is executed by

A1 and C. This approach is really suitable for the condition in which the smart meter

has a very limited processing ability compared to other devices in the network. And in

such condition, the work of A1 could also be given to a data concentrator deployed in the

neighborhood area network that has a better computation ability.

 0

 1

 2

 3

 4

 0 10 20 30 40 50

T
im

e
 (

s
e

c
o

n
d

s
)

Bit length of domain size (m)

A
1

C

A
i

Figure 4.2. Complexity of P-PUC1 for n = 50

The P-PUC2 protocol is composed of Secure Sum, Secure Compare, and Secure

Division. The Secure Sum and Secure Compare protocols are studied in the last para-

graph. For Secure Division, there is a trade-off between security and efficiency, as shown

in Table 4.1.. Two division protocols are adopted from [54]. The protocol using Oblivious

Transfer takes 2.15 seconds for 50 divisions (compare to a neighborhood size of n = 50),

33

Table 4.1. A Comparison of Secure Division Protocols

Secure Division Protocol Fully Secure Time (for n = 50)

Division using Oblivious Transfer [54] No 21.5 seconds

Division using Homomorphic Encryption [54] No 6.92 seconds

Division using Bit Representation [75] Yes more than 50 hours

and the Homomorphic Encryption based protocol takes 6.92 seconds for the same data

size. However, those protocols are not fully secure. A more secure protocol [75] may take

more than an hour for 1 division. A Secure Division protocol that is both fully secure and

efficient is needed for P-PUC2.

34

5. PRIVACY-PRESERVING POWER USAGE CONTROL WITH
MINIMUM INFORMATION DISCLOSURE

The solutions shown in Chapter 4. revealed intermediate results such as the average

total power usage a and the maximum power usage among ai’s to consumers and/or C. In

addition, the primitives that were used as building blocks in Chapter 4. are either insecure

or inefficient. Therefore, in Secure and threshold-based power usage control in smart grid

environments [14], two new P-PUC protocols based on the same two strategies are intro-

duced. This chapter gives the details of these novel protocols. The main contributions of

this chapter can be summarized as follows:

• Security - The proposed protocols provide better security than the protocols in Chap-

ter 4. in terms of protecting the individual parties’ private inputs as well as the

intermediate results. More specifically, the protocols’ security is followed from the

standard semi-honest security definition in the field of secure multi-party computa-

tion (MPC) [55, 56, 64].

• Efficiency - Efficient sub-protocols are developed for performing binary conversion,

comparison, maximum, and division operations in a privacy-preserving manner. Note

that the existing protocols in Chapter 4. utilize an inefficient generic circuit method

in order to perform the basic secure comparison operation. In addition, the existing

Secure Division protocol [75] required in P-PUC2 is very costly, which leads to the

overall inefficiency.

• Generality - The newly proposed set of sub-protocols acts as a generic solution;

therefore, the protocols can also be utilized in many other MPC applications, such

as secure electronic voting and private auctioning.

With respect to user utility, the utility company is not assumed to automatically cut off

the power supply for a user. It is assumed that users are responsible, and when they receive

an indication of using too much electricity, they can turn off one or more appliances that

are not crucial for their well-being. The threshold t is determined by the utility company

35

based on its historical data, and t is generally larger than the total energy usage for a

given neighborhood. Thus, when the neighborhood’s power usage exceeds the predefined

threshold t, some households are using more energy than they normally need. Cutting off

or reducing the power usage of these households will likely not affect their daily activities.

As a result, the negative impact of reducing power consumption of these households is

minimal. Plus, as a positive impact, the proposed protocols will help these households to

effectively manage their power consumption to save on utility costs.

Since the main goal of this chapter is to develop secure P-PUC protocols, the basic

characteristics of the smart grid were not taken into consideration while developing the

protocols. Nevertheless, due to expensive encryption costs in the proposed protocols, the

communication delays (which are usually in milliseconds) and the other basic smart grid

factors will not affect the computation costs much. Hence, the proposed protocols can

easily be deployed on top of the smart grids without incurring significant overhead costs

due to the underlying smart grid models or factors.

The rest of this chapter is organized as follows. The proposed P-PUC protocols

along with the newly proposed set of sub-protocols are discussed in detail in Section 5.1..

Section 5.2. makes some security analysis, and Section 5.3. presents various experimental

results based on the proposed protocols under different parameter settings and demon-

strates their practical value.

5.1. PRIVACY-PRESERVING POWER USAGE CONTROL WITH MINI-
MUM INFORMATION DISCLOSURE PROTOCOLS

This section presents the proposed P-PUC protocols, which are based on the two

strategies mentioned in Section 1.1.. The first protocol (following from Strategy 1) is an

iterative approach and is based on reducing the power usage for the household with the

maximum power consumption during the last time interval. Whereas, the second protocol

(following from Strategy 2) involves the computation of power reduction by each consumer,

independently. Most assumptions from the previous chapter are followed, while some of

them are updated:

36

• A1 is still playing as a coordinator. However, at this time, it is assumed that A1

holds a public-private key pair (pkA1 , prA1) based on the HEnc system mentioned

in Section 3.2.. Similarly, the utility company C holds (pkC , prC). Note that the

private keys prA1 and prC are kept as secret by A1 and C, respectively.

Under the above assumption, A1 has to play a bigger role than other consumers in

the proposed protocols. Since it is not possible to perform arbitrary computations

over encrypted data by C alone, the proposed protocols require a second party (A1

in this case) to evaluate the desired functionalities in a privacy-preserving manner

(two-party secure computations). It is worth pointing out that the role of the second

party can be played by any one of the consumers. This further implies that the

second party can vary in each protocol execution. In general, before the execution

of each protocol, all the consumers can have an agreement and decide who will be

playing the role of the second party. A simple and straightforward solution is to

choose the second party in a ring topology. That is, A1 in the 1st execution, A2 in

the 2nd execution, and so on. For simplicity, A1 is treated as the second party in

the rest of this chapter.

• Suppose that 1 ≤ a, t ≤ l, where l is the maximum domain size for the values of a

and t such that 2m−1 ≤ l < 2m. At least m bits are required to represent l. This is a

practical assumption due to the following reason. Because the values of a and t are

usually small in this problem domain, the value of l can be chosen appropriately to

satisfy the condition. Also, l and m are assumed to be public. However, t remains

private to C, and a should not be revealed to consumers or C.

• Again, the consumers and the utility company are semi-honest, and all the devices

in the smart grid are tamper-resistant. That is, there will be no collusion between

individual users and the utility company and no modification of data during the

communications. However, parties can make inference of anything from what they

have.

37

In the rest of this chapter, (pk, pr) are used as the public-private key pair to avoid

cluttering the presentation (in this chapter, depending on the context, (pk, pr) can be

either (pkA1 , prA1) or (pkC , prC)). Since the existing primitives used in Chapter 4. are

either insecure or inefficient, new solutions are developed to secure binary conversion,

comparison, maximum, and division problems (more details are provided later in this

section). More specifically, the proposed protocols utilize the following security primitives

as the building blocks.

• Sum Random Shares(a1, . . . , an)→ (s1, s2):

Each consumer, with his/her private input ai, participates in this protocol. At the

end of this protocol, A1 gets a random share s1 and C gets a random share s2 such

that s1 + s2 mod N = a. During this process, no other information is revealed to the

consumers or C.

• Secure Binary Conv(Epk(a))→ [a]:

C with input Epk(a) and A1 with private key compute the encryptions of the indi-

vidual bits of binary representation of a. At the end, the output [a] is known only

to C.

• Secure Comp([a], t)→ h

C with input ([a], t) and A1 with private key securely check whether a > t or not.

At the end of this protocol, only A1 knows the output h, where h = 1 if a > t, and

h = 0 otherwise.

• Secure 2P Max([x], y)→ [max(x, y)]

Consumer Ai with input ([x], y) and C with private key compute the encryptions

of the individual bits of maximum between x and y. During this process, x is not

revealed to Ai and C. In addition, y is not revealed to C. The output [max(x, y)] is

known only to Ai.

• Secure 2P Enc Max([x], [y])→ [max(x, y)]

One of the consumers, say Ai, holding ([x], [y]), and C, who has the private key,

38

are jointly involved in this protocol, where both x and y are regarded as private

information. That is, (x, y) should not be revealed to Ai and C. The output of this

protocol is the encryptions of the individual bits of maximum between x and y (i.e.,

[max(x, y)]). At the end, [max(x, y)] is revealed only to Ai.

• Secure MP Max(a1, . . . , an)→ [amax]

The n consumers (with their respective private inputs ai) and the utility company

C with private key are involved in this protocol. The output of this protocol is the

encryptions of the individual bits of max(a1, . . . , an) = amax. The output [amax] is

revealed to all consumers whereas no information is revealed to C.

• Secure Div(Epk(a), t)→ t
a

C, with input (Epk(a), t), and A1, with private key, securely compute the ratio of t
a
.

During this process, neither a nor t is revealed to A1. In addition, a is not revealed

to C. At the end of Secure Div, the output t
a

is known to all consumers.

5.1.1. The P-PUC∗1 Protocol. The first protocol, denoted as P-PUC∗1, is based

on Strategy 1 as discussed in Section 1.1.. The overall steps involved in P-PUC∗1 are

highlighted in Algorithm 7. Before going into the details of P-PUC∗1, and to make the

presentation more clear, the new solutions to various secure primitives, which are utilized

as building blocks in P-PUC∗1, are presented. A discussion of how they are combined

together in constructing the P-PUC∗1 protocol is then presented.

1) Sum Random Shares:

The main steps involved in the Sum Random Shares protocol are given in Algorithm

1. Initially, A1 chooses a random number r from ZN (note that here N is part of A1’s public

key) and sets his/her random share as s1 = N − r. Then, A1 randomizes his/her private

input by computing z1 = a1 + r mod N and sends it to A2. For 2 ≤ i ≤ n, each consumer

Ai, upon receiving the randomized partially aggregated value zi−1 from Ai−1, adds his/her

private input by computing zi = zi−1 + ai mod N , and sends zi to Ai+1. However, the last

consumer An sends zn to C. Finally, C sets his/her random share s2 to zn. Observe that

s1 + s2 mod N = a always holds.

39

Algorithm 1 Sum Random Shares(a1, . . . , an)→ (s1, s2)

Require: ai is private to Ai, for 1 ≤ i ≤ n; (pk, pr) = (pkA1 , prA1), where pr is known
only to A1. The consumers use a ring topology to communicate with each other.

1: A1:

(a). Pick a random number r ∈ ZN
(b). s1 ← N − r
(c). z1 ← a1 + r mod N ; send z1 to A2

2: Ai, for 2 ≤ i ≤ n do:

(a). Receive zi−1 from Ai−1

(b). zi = zi−1 + ai mod N

(c). if i = n then

• Send zi to C

else

• Send zi to Ai+1

3: C:

(a). Receive zn from An

(b). s2 ← zn

2) Secure Binary Conv:

It is assumed that C has Epk(a), where a is not known to either consumers or

C, and A1 holds the private key (i.e., (pk, pr) = (pkA1 , prA1)). The goal of the secure

binary conversion protocol is to compute the encryptions of the individual bits of binary

representation of a. That is, the output is [a] = 〈Epk(Ba[1]), . . . , Epk(Ba[m])〉, where Ba

denotes the binary representation vector of integer a with Ba[1] and Ba[m] as the most

and least significant bits of a, respectively. Here m denotes the minimum number of

bits required to represent the domain size l. Note that 1 ≤ a ≤ l and 2m−1 ≤ l <

2m. At the end, the output [a] is known only to C. The overall steps involved in the

Secure Binary Conv protocol are summarized in Algorithm 2.

To start with, C initially computes Epk(a− i) = Epk(a) ∗Epk(N − i), for 1 ≤ i ≤ l.

Note that N− i denotes “−i” under domain ZN . Then, C randomizes them by performing

homomorphic multiplications as P [i] = Epk(a− i)r̄i , where r̄i is a random number in ZN ,

for 1 ≤ i ≤ l. Observe that P [i] = Epk(0) iff i = a. After this, C permutes the encrypted

40

vector P using a random permutation function π and sends the resulting permuted vector

P ′ to A. Upon receiving P ′, A decrypts it component-wise to get τ [i] = Dpr(P
′[i]), for

1 ≤ i ≤ l. Then, A generates a new vector u depending on vector τ as follows:

u[i] =


1 if τ [i] = 0

0 otherwise

It is emphasized that τ [i] = 0 happens exactly once since Epk(a − i) = Epk(0) occurs

exactly once, for 1 ≤ i ≤ l. A encrypts u component-wise using his/her public key to get

U [i] = Epk(u[i]), for 1 ≤ i ≤ l, and sends the encrypted vector U to C. Upon receiving U ,

C performs inverse permutation on U to get V = π−1(U). Finally, C computes [a] locally

by performing the following homomorphic operations.

• Compute encrypted matrix S, where S[i][j] = V [i]Bi[j], for 1 ≤ i ≤ l and 1 ≤ j ≤ m.

Here, Bi denotes the binary representation vector of integer i with Bi[1] and Bi[m]

as the most and least significant bits of i, respectively.

• Compute the encryption of jth bit of a as Epk(Ba[j]) =
∏l

i=1 S[i][j], for 1 ≤ j ≤ m.

3) Secure Comp:

C, with private input ([a], t), and A1, with private key prA1 , are jointly involved in

the secure comparison protocol to decide whether a > t or not. The output h is revealed

only to A1, where h = 1 if a > t and 0 otherwise. The main steps involved in the

Secure Comp protocol are highlighted in Algorithm 3.

To start with, C computes the encrypted bit-wise XOR between the bits of a and

t as T [j] = Epk(Ba[j] ⊕ Bt[j]) for 1 ≤ j ≤ m using the following formulation (in general,

for any two bits x and y, the property x⊕ y = x+ y − 2xy always holds):

T [j] = Epk(Ba[j]⊕Bt[j]) = Epk(Ba[j]) ∗ Epk(Bt[j]) ∗ Epk(Ba[j] ∗Bt[j])
N−2

However, since t is known to C, if Bt[j] = 0, then T [j] = Epk(Ba[j]). Whereas, if Bt[j] =

1, then T [j] = Epk(1 − Ba[j]). In general, C can easily compute Epk(Ba[j] ∗ Bt[j]) by

41

Algorithm 2 Secure Binary Conv(Epk(a))→ [a]

Require: C has Epk(a), where 1 ≤ a ≤ l and 2m−1 ≤ l < 2m; (Note: The private key
pr = prA1 is known only to A1)

1: C:

(a). for i = 1 to l do:

• Epk(a− i)← Epk(a) ∗ Epk(N − i)
• P [i]← Epk(a− i)r̄i , where r̄i ∈R ZN

(b). P ′ ← π(P); send P ′ to A1

2: A1:

(a). Receive P ′ from C

(b). for i = 1 to l do:

• τ [i]← Dpr(P
′[i])

• if τ [i] = 0 then:

– u[i]← 1

else

– u[i]← 0

(c). U [i]← Epk(u[i]), for 1 ≤ i ≤ l; send U to C

3: C:

(a). Receive U from A1

(b). V ← π−1(U)

(c). for i = 1 to l do:

• S[i][j]← V [i]Bi[j], where Bi denotes the binary representation of i and Bi[j]
denotes the jth component of vector Bi, for 1 ≤ j ≤ m

(d). for j = 1 to m do:

• Epk(Ba[j])←
∏l

i=1 S[i][j]

performing homomorphic multiplication as Epk(Ba[j])
Bt[j]. Observe that T [j] = Epk(1)

only if exactly one of the bits, i.e., either Ba[j] or Bt[j], is 1. After this, C performs the

following homomorphic addition and multiplication operations for 1 ≤ j ≤ m:

• Compute an encrypted vector W such that W [j] = Epk(Ba[j])
1−Bt[j] = Epk(Ba[j] ∗

(1−Bt[j])). It is observed that W [j] = Epk(1) only if Ba[j] > Bt[j], otherwise W [j] =

Epk(0). In particular, W stores Epk(1) at those locations where the corresponding

bit of a is greater than that of t and Epk(0) otherwise.

42

Algorithm 3 Secure Comp([a], t)→ h

Require: C has [a] and t, where 1 ≤ a, t ≤ l; (Note: The private key pr = prA1 is known
only to A1)

1: C:

(a). for j = 1 to m do:

• T [j]← Epk(Ba[j]⊕Bt[j])

• W [j]← Epk(Ba[j])
1−Bt[j]

• X[j]← X[j − 1]rj ∗ T [j], where rj ∈R ZN and X[0] = Epk(0)

• Φ[j]← Epk(−1) ∗X[j]

• Y [j]← W [j] ∗ Φ[j]r
′
j , where r′j ∈R ZN

(b). Y ′ ← π(Y); send Y ′ to A1

2: A1:

(a). Receive Y ′ from C

(b). M [j]← Dpr(Y
′[j]), for 1 ≤ j ≤ m

(c). if ∃ k such that M [k] = 1 then:

• h = 1 (denoting a > t)

else

• h = 0 (denoting a ≤ t)

• Compute an encrypted vector X by preserving the first occurrence of Epk(1) (if one

exists) in T by initializing X[0] = Epk(0). The rest of the entries of X are computed

as X[j] = X[j − 1]rj ∗ T [j]. At most, one of the entries in X is Epk(1), and the

remaining entries are encryptions of either 0 or a random number. In addition, if ∃ k

such that X[k] = Epk(1), then index k is the first position (starting from the most

significant bit) at which corresponding bits of a and t differ.

• After this, C computes Φ[j] = Epk(−1)∗X[j]. From the above discussions, it is clear

that Φ[j] = Epk(0) once at most since X[j] is equal to Epk(1) once at most. Also, if

Φ[k] = Epk(0), then index k is the first position at which bits of a and t differ.

• Then, C computes an encrypted vector Y by combining W and Φ. (Note that

W [j] stores the result of Ba[j] > Bt[j] functionality.) Precisely, C computes Y [j] =

W [j] ∗ Φ[j]r
′
j , where r′j is a random number in ZN . The observation here is if ∃ an

index k such that Φ[k] = Epk(0) denoting the first flip in the corresponding bits of

43

a and t, then W [k] stores the corresponding information, i.e., whether Ba[k] > Bt[k]

or not.

Finally C permutes Y , and sends the resulting permuted vector Y ′ to A1. Upon receiving

Y ′, A1 decrypts it component-wise to get M [j] = Dpr(Y
′[j]), for 1 ≤ j ≤ m. Now,

depending on the existence of index k, A1 proceeds as follows. If there exists an index k

in M such that M [k] = 1, then Ba[k] > Bt[k] and also Ba[i] = Bt[i] = 0, for 1 ≤ i ≤ k− 1.

In this case, a > t; therefore, A1 sets the output h to 1. On the other hand, if M [k] = 0,

then a < t. However, if there exists no such index k, then t = a. In either of the last two

cases, A sets h to 0 (denoting a ≤ t).

4) Secure 2P Max:

In this protocol, consumer Ai, with the private input ([x], y), and C, with private

key pr = prC , securely compute the encryptions of the individual bits of max(x, y), i.e.,

the output is [max(x, y)]. At the end, the output [max(x, y)] is known only to Ai.

The basic idea of the proposed Secure 2P Max protocol is for Ai to randomly choose

the functionality f (by flipping a coin), where f is either x > y or y > x, and to obliviously

execute f with C using similar steps in Secure Comp protocol. Since f is randomly chosen

and known only to Ai, the output of functionality f is oblivious to C. After this, depending

on f , Ai securely computes [max(x, y)] using homomorphic properties.

The overall steps involved in the Secure 2P Max protocol are shown in Algorithm 4.

To start with, Ai initially chooses the functionality f as either x > y or x < y, randomly.

Then, depending on f , A proceeds as follows, for 1 ≤ j ≤ m:

• If f : x > y, A computes

W [j] = Epk(Bx[j]) ∗ Epk(Bx[j] ∗By[j])
N−1 = Epk(Bx[j] ∗ (1−By[j]))

Γ[j] = Epk(Bx[j]−By[j]) ∗ Epk(r̂j) = Epk(Bx[j]−By[j] + r̂j)

• Otherwise,

W [j] = Epk(By[j]) ∗ Epk(Bx[j] ∗By[j])
N−1 = Epk(By[j] ∗ (1−Bx[j]))

Γ[j] = Epk(By[j]−Bx[j]) ∗ Epk(r̂j) = Epk(By[j]−Bx[j] + r̂j)

44

• Observe that if f : x > y, then W [j] = Epk(1) only if Bx[j] > By[j], and W [j] =

Epk(0) otherwise. Similarly, if f : y > x, then W [j] = Epk(1) only if By[j] > Bx[j],

and W [j] = Epk(0) otherwise.

Then, Ai computes the encrypted vector Y based on the similar steps as mentioned in Step

1(a) of Secure Comp (i.e., Algorithm 3). Secure Comp protocol is based on the public-

private key pair of A1 whereas the Secure 2P Max protocol utilizes the public-private key

pair of the utility company C.

After this, Ai permutes the encrypted vectors Γ and Y using two random permu-

tation functions π1 and π2 (known only to Ai). Specifically, Ai computes Γ′ = π1(Γ) and

Y ′ = π2(Y), and sends them to C. Upon receiving, C decrypts Y ′ component-wise to

get M [j] = Dpr(Y
′[j]), for 1 ≤ j ≤ m, and checks for index k as mentioned in the Se-

cure Comp protocol. That is, if M [k] = 1, then C sets h to 1. Otherwise, C sets it to 0. In

addition, C computes a new encrypted vector M ′ such that M ′[j] = Γ′[j]h, for 1 ≤ j ≤ m,

and sends both M ′ and Epk(h) to Ai. After receiving M ′ and Epk(h), Ai computes the

inverse permutation of M ′ as M̃ = π−1
1 (M ′). Then, Ai performs the following homomor-

phic operations to compute the encryption of jth bit of max(x, y) (i.e., Epk(Bmax(x,y)[j])),

for 1 ≤ j ≤ m:

• Remove the randomness from M̃ [j] by computing

λ[j] = M̃ [j] ∗ Epk(h)N−r̂j

• If f : x > y, then compute the jth encrypted bit as Epk(Bmax(x,y)[j])) = Epk(By[j]) ∗

λ[j]. Otherwise, compute Epk(Bmax(x,y)[j]) = Epk(Bx[j]) ∗ λ[j].

In the Secure 2P Max protocol, one main observation (upon which one can also justify the

correctness of the final output) is that if f : x > y, then Bmax(x,y)[j] = h∗x[j]+(1−h)∗y[j]

always holds for 1 ≤ j ≤ m. Similarly, if f : y > x, then Bmax(x,y)[j] = h∗y[j]+(1−h)∗x[j]

always holds.

5) Secure 2P Enc Max:

45

Algorithm 4 Secure 2P Max([x], y)→ [max(x, y)]

Require: Ai has ([x], y) and (π1, π2), where 1 ≤ x, y ≤ l and 2m−1 ≤ l < 2m; the private
key pr = prC is known only to C

1: Ai:

(a). Randomly choose the functionality f

(b). for j = 1 to m do:

• if f : x > y then:

– W [j]← Epk(Bx[j]) ∗ Epk(Bx[j] ∗By[j])
N−1

– Γ[j]← Epk(Bx[j]−By[j]) ∗ Epk(r̂j), where r̂j ∈R ZN
else

– W [j]← Epk(By[j]) ∗ Epk(Bx[j] ∗By[j])
N−1

– Γ[j]← Epk(By[j]−Bx[j]) ∗ Epk(r̂j), where r̂j ∈R ZN
• T [j]← Epk(Bx[j]⊕By[j])

• X[j]← X[j − 1]rj ∗ T [j], where rj ∈R ZN and X[0] = Epk(0)

• Φ[j]← Epk(−1) ∗X[j]

• Y [j]← W [j] ∗ Φ[j]r
′
j , where r′j ∈R ZN

(c). Γ′ ← π1(Γ)

(d). Y ′ ← π2(Y); send Γ′ and Y ′ to C

2: C:

(a). Receive Γ′ and Y ′ from A1

(b). Decryption, for 1 ≤ j ≤ m do: M [j]← Dpr(Y
′[j])

(c). if ∃ k such that M [k] = 1 then: h← 1

else h← 0

(d). for 1 ≤ j ≤ m do: M ′[j]← Γ′[j]h

(e). Send M ′ and Epk(h) to A1

3: Ai:

(a). Receive M ′ and Epk(h) from C

(b). M̃ ← π−1
1 (M ′)

(c). for j = 1 to m do:

• λ[j]← M̃ [j] ∗ Epk(h)N−r̂j

• if f : x > y then: Epk(Bmax(x,y)[j])← Epk(By[j]) ∗ λ[j]

else Epk(Bmax(x,y)[j])← Epk(Bx[j]) ∗ λ[j]

In this protocol, it is assumed that both x and y are unknown to Ai and C (whereas

in Secure 2P Max y is known to Ai). More specifically, Ai with private input ([x], [y])

and C securely compute [max(x, y)]. The main steps involved in Secure 2P Enc Max are

46

Algorithm 5 Secure 2P Enc Max([x], [y])→ [max(x, y)]

Require: Ai has [x] and [y], where 1 ≤ x, y ≤ l and 2m−1 ≤ l < 2m; the private key
pr = prC is known only to C

1: Ai:

(a). for j = 1 to m do:

• X ′[j]← Epk(Bx[j]) ∗ Epk(rx,j), where rx,j ∈R ZN
• Y ′[j]← Epk(By[j]) ∗ Epk(ry,j), where ry,j ∈R ZN

(b). Send X ′ and Y ′ to C

2: C:

(a). for j = 1 to m do:

• x′[j]← Dpr(X
′[j])

• y′[j]← Dpr(Y
′[j])

• ω[j]← x′[j] ∗ y′[j] mod N

• Compute Ω[j]← Epk(ω[j])

(b). Send Ω to Ai

3: Ai:

(a). Receive Ω from C

(b). for j = 1 to m do:

• χ[j]← Epk(Bx[j])
ry,j ∗ Epk(By[j])

rx,j

• χ′[j]← χ[j] ∗ Epk(rx,j ∗ ry,j)
• Epk(Bx[j] ∗By[j])← Ω[j] ∗ χ′[j]N−1

4: Ai and C proceed with steps 1-3 of Algorithm 4

shown in Algorithm 5. The basic idea used in Secure 2P Enc Max is the same as in

Secure 2P Max protocol. However, since both x and y are unknown, one cannot directly

compute Epk(Bx[j] ∗ By[j]), which is required for the computation of W [j] and T [j], for

1 ≤ j ≤ m. Other than this, the rest of steps are pretty much the same as in Algorithm

4. Therefore, the steps involved in securely computing Epk(Bx[j] ∗ By[j]), for 1 ≤ j ≤ m

are provided here.

Initially, Ai randomizes [x] and [y] component-wise to compute X ′[j] = Epk(Bx[j]+

rx,j) and Y ′[j] = Epk(By[j] + ry,j), for 1 ≤ j ≤ m, where rx,j, ry,j ∈R ZN . Then, A sends

X ′ and Y ′ to C. Upon receiving, C decrypts and multiplies them component-wise and

proceeds as follows for 1 ≤ j ≤ m:

47

• Compute ω[j] = x′[j] ∗ y′[j] mod N , where

x′[j] = Dpr(X
′[j]) and y′[j] = Dpr(Y

′[j]);

• Encrypt the result: Ω[j] = Epk(ω[j]).

After this, C sends Ω to Ai. Then, Ai performs the following homomorphic operations to

compute Epk(Bx[j] ∗By[j]) by removing extra random factors, for 1 ≤ j ≤ m:

• χ[j] = Epk(Bx[j])
ry,j ∗ Epk(By[j])

rx,j . Observe that, due to homomorphic properties,

χ[j] = Epk(Bx[j] ∗ ry,j +By[j] ∗ rx,j).

• Compute χ′[j] = χ[j] ∗ Epk(rx,j ∗ ry,j).

• Finally, compute Epk(Bx[j] ∗By[j]) as Ω[j] ∗ χ′[j]N−1.

Once Ai knows Epk(Bx[j] ∗ By[j]), for 1 ≤ j ≤ m, he/she can compute Y locally, as

mentioned in Algorithm 4. In addition, with the help of C, Ai can obliviously compute

[max(x, y)]. That is, Ai and C are involved in steps 1-3 of Algorithm 4 to obliviously

compute [max(x, y)].

6) Secure MP Max:

In this protocol, we consider n parties such that party Ai holds private input ai,

for 1 ≤ i ≤ n. The goal of the secure multi-party computation of maximum (denoted by

Secure MP Max) is to compute [max(a1, . . . , an)] = [amax] in a privacy-preserving manner.

Our protocol utilizes two sub-routines, namely Secure 2P Max and Secure 2P Enc Max as

the building blocks. The proposed Secure MP Max protocol is an iterative approach, and

it computes the desired output in a hierarchical fashion. In each iteration, the maximum

between a pair of values is computed and fed as input to the next iteration. Therefore,

a binary execution tree is generated in a bottom-up fashion, where leaf node i represents

party Ai holding his/her private input ai. The root node is A1 holding the final result

[amax], which is broadcasted to other parties (i.e., Ai’s, for 2 ≤ i ≤ n). Hence, at the end

of the Secure MP Max protocol, the output [amax] is known to all Ai’s, for 1 ≤ i ≤ n.

48

Algorithm 6 Secure MP Max(a1, . . . , an)→ [amax]

Require: ai is private to Ai, for 1 ≤ i ≤ n; (Note: pr = prC is known only to C)
1: num← n
2: for k = 1 to dlog2 ne:

(a). for 1 ≤ i ≤
⌊
num

2

⌋
:

• if k = 1 then:

– A2i sends [a2i] to A2(i−1)+1, where a2i is the private input of A2i

– A2(i−1)+1 and C are jointly involved in Secure 2P Max([a2i], a2(i−1)+1),
where a2(i−1)+1 is the private input of A2(i−1)+1

else

– A2ki−1 sends [xk,i] to A2k(i−1)+1, where [xk,i] is the output received by
A2ki−1 from iteration k − 1

– A2k(i−1)+1 and C are jointly involved in the Secure 2P Enc Max
([xk,i], [yk,i]), where [yk,i] is the output received by the party A2k(i−1)+1

from iteration k − 1

(b). num←
⌈
num

2

⌉
3: A1:

(a.) Send [amax] to Ai, for 2 ≤ i ≤ n

The main steps involved in the Secure MP Max protocol are highlighted in Algo-

rithm 6. Initially, each party of Ai assigns n to the global variable num, where num

represents the number of parties involved in each iteration. Since the Secure MP Max

protocol executes in a binary tree hierarchy (bottom-up fashion), we have dlog2 ne itera-

tions, and the number of involved parties varies in each iteration. In the first iteration

(i.e., k = 1), party A2i computes [a2i] and sends it to A2(i−1)+1, for 1 ≤ i ≤
⌊
num

2

⌋
(note

that, when k = 1, the number of non-overlapping pairs are
⌊
num

2

⌋
). More specifically, A2

sends [a2] to A1, A4 sends [a4] to A3, and so on. After this, A2(i−1)+1 and C are involved

in Secure 2P Max([a2i], a2(i−1)+1) protocol, for 1 ≤ i ≤
⌊
num

2

⌋
, where a2(i−1)+1 is the pri-

vate input of A2(i−1)+1. As mentioned earlier, at the end of the Secure 2P Max protocol,

only the party A2(i−1)+1 receives [max(a2i, a2(i−1)+1)], and nothing is revealed to C, for

1 ≤ i ≤
⌊
num

2

⌋
. Also, at the end of first iteration, the value of num is updated to

⌈
num

2

⌉
.

During the kth iteration, only the parties who received the output from the previous

iteration are involved, for 2 ≤ k ≤ dlog2 ne. For example, during the second iteration (i.e.,

49

k = 2), only A1, A3, and so on are involved. In kth iteration, A2ki−1 sends [xk,i] to A2k(i−1)+1,

where [xk,i] is the output received by A2ki−1 from the iteration k − 1, for 1 ≤ i ≤
⌊
num

2

⌋
.

Upon receiving, A2k(i−1)+1 and C are involved in the Secure 2P Enc Max([xk,i], [yk,i]) proto-

col, where [yk,i] is the output received by A2k(i−1)+1 from iteration k−1, for 1 ≤ i ≤
⌊
num

2

⌋
.

Note that in each iteration, num is updated to
⌈
num

2

⌉
. We observe that [xk,i] and [yk,i]

are the maximum values retrieved from the sub-trees rooted at A2ki−1 and A2k(i−1)+1 (in

iteration k), respectively, for 1 ≤ i ≤
⌊
num

2

⌋
and 2 ≤ k ≤ dlog2 ne.

At the end of the last iteration (i.e., k = dlog2 ne), only A1 receives [amax], which is

forwarded to Ai, for 2 ≤ i ≤ n.

Example: Without loss of generality, consider 5 households in a neighborhood (i.e.,

n = 5). Then, in the Secure MP Max protocol, num is initially set to 5 and we have

3 iterations (i.e., k runs from 1 to 3). Various intermediate steps of executing the Se-

cure MP Max protocol are summarized:

(i). k = 1

• A2 sends [a2] to A1. Then, A1, with private input ([a2], a1) , and C are involved

in Secure 2P Max. At the end of this step, A1 knows [max(a1, a2)].

• A4 sends [a4] to A3. After this, A3 computes [max(a3, a4)] by executing Se-

cure 2P Max with C. Note that A5 does not participate in this iteration.

• num =
⌈
num

2

⌉
= 3

(ii). k = 2

• A3 sends [max(a3, a4)] to A1. Then, A1, with private input ([max(a3, a4)],

[max(a1, a2)]), and C are jointly involved in Secure 2P Enc Max. At the end

of this step, A1 gets [max(a1, . . . , a4)]. Observe that A5 does not participate in

this iteration.

• num = 2

(iii). k = 3

50

• A5 sends [a5] to A1. Now, A1, with private input ([a5], [max(a1, . . . , a4)]), and

C are involved in Secure 2P Enc Max to compute [max(a1, . . . , a5)].

• num = 1

At the end of the third iteration, the final output [amax] = [max(a1, . . . , a5)] is known only

to A1 and forwarded to other parties. �

7) P-PUC∗1:

We now discuss how the above security primitives are used in constructing the

proposed P-PUC∗1 protocol. The main steps involved in P-PUC∗1 are shown in Algorithm

7.

To start with, the n consumers and the utility company C are initially involved

in the Sum Random Shares sub-routine to compute the random shares of a (step 1 of

Algorithm 7). Then, A1 encrypts his/her random share s1 (using pk = pkA1) and sends it

to C. Upon receiving, C computes Epk(a) using his/her random share s2 by computing

Epk(s1) ∗ Epk(s2) = Epk(s1 + s2 mod N) = Epk(a). Note that s1 + s2 mod N is always

equal to a. After this, C, with private input Epk(a), and consumer A1 are involved in the

Secure Binary Conv protocol (step 2(c) of Algorithm 7). At the end of this step, only C

knows [a]. Then, C, with private input ([a], t), and A1 engage involve in the Secure Comp

protocol to securely compare a and t. At the end, the output h (denoting whether a > t

or not) is revealed only to A1 and forwarded to other consumers (step 3(a) of of Algorithm

7). It is important to note that all consumers will know whether a > t or not, but

this information is expected to be revealed to the consumers by design; therefore, it is

considered to be acceptable.

If a > t (i.e., h = 1), then the consumers, with their respective private inputs ai’s,

and C, with private key prC (i.e., (pk, pr) = (pkC , prC)), engage in the Secure MP Max

protocol to securely compute [amax] (step 4(a) of Algorithm 7). At the end of this step,

the output [amax] is revealed to all consumers. After this, each Ai independently checks

whether the maximum value belongs to him/her (i.e., whether ai = amax or not) in an

51

Algorithm 7 P-PUC∗1
Require: ai is private to Ai, for 1 ≤ i ≤ n (Note: prC and t are known only to C, prA1

is known only to A1; pkC and pkA1 are public)
1: {For steps 1 & 2 (pk, pr) = (pkA1 , prA1)}
2: Sum Random Shares(a1, . . . , an)
3: A1 and C:

(a). A1 sends Epk(s1) to C

(b). C computes Epk(a)← Epk(s1) ∗ Epk(s2)

(c). A1 and C are involved in the secure comparison protocol:

• [a]← Secure Binary Conv(Epk(a)), here the output [a] is revealed only to C

• h← Secure Comp([a], t), here the output h is revealed only to A1

4: A1:

(a). Send h to Ai, for 2 ≤ i ≤ n

{For step 4 (pk, pr) = (pkC , prC)}
5: if h = 1 (denoting a > t) then:

(a). [amax]← Secure MP Max(a1, . . . , an)

(b). Ai, for i = 1 to n do:

• αi ← Secure Equality(ai, [amax])

• if αi = 1 (denoting ai = amax) then:

– Reduce ai

6: Repeat the steps until a ≤ t

oblivious manner with C by using the Secure Equality protocol (step 4(b) of Algorithm

7), for 1 ≤ i ≤ n. We adopt Secure Equality protocol steps shown below:

1. Initially, Ai computes Z[i] = Epk(r
′
i ∗ (amax − ai)), where r′i ∈R ZN , for 1 ≤ i ≤ n.

After this, Ai sends Z[i] to A1, for 2 ≤ i ≤ n.

2. A1 randomly permutes Z using a random permutation function π, i.e., he/she com-

putes Z1 = π(Z) and sends Z1 to C.

3. Then, C decrypts each entry in Z1 and computes a new vector H as follows. If

Dpr(Z1[i]) = 0, then H[i] = Epk(1). Else, H[i] = Epk(0). C sends H to A1.

4. A1 computes the inverse permutation on H to get L = π−1(H) and sends L[i] to Ai,

for 2 ≤ i ≤ n. Observe that L[i] = Epk(1) iff ai = amax. Otherwise, Epk(0).

52

5. Now Ai proceeds as follows, for 1 ≤ i ≤ n:

• Randomizes L[i] by computing L′[i] = L[i] ∗Epk(ri), where ri ∈R ZN , and sends

L′[i] to C.

• Upon receiving L′[i], C decrypts it to get βi = Dpr(L
′[i]) and sends the result to

Ai.

• Finally, Ai removes the randomization and gets his/her result as αi = βi − ri

mod N .

Note that since L[i] = Epk(1) iff ai = amax, the output αi = 1 always holds. Similarly, if

ai 6= amax, then αi = 0 always holds.

At the end of the Secure Equality protocol, each party knows whether his/her

private input is the maximum value. After this, only the self-identified consumer (i.e., for

which amax = ai) reduces his/her power usage accordingly. The process is repeated by

computing the new random shares of updated a in each iteration until a ≤ t.

5.1.2. The P-PUC∗2 Protocol. The second protocol, denoted as P-PUC∗2, is

based on Strategy 2 as mentioned in Section 1.1.. The basic idea of P-PUC∗2 is to se-

curely compute t
a

using a secure division protocol whenever a > t. Once consumers know

the value of t
a
, they will reduce their power consumption locally as mentioned in Strategy

2. Since the existing division protocols are inefficient, we present a new solution to the

two-party secure division problem (denoted by Secure Div).

1) Secure Div:

In the proposed Secure Div protocol, the utility company C, with private input

(Epk(a), t), and A1, with private key pr = prA1 , are involved (two-party computation).

The goal of the Secure Div protocol is to compute t
a

such that t and a are not revealed to

A1 and a is not revealed to C. This implies that the output t
a

is revealed only to A1 and

forwarded to Ai’s, for 2 ≤ i ≤ n. We emphasize that the output should not be revealed

to C because C can easily infer a from t
a

as t is already known to C. The overall steps

involved in the proposed Secure Div protocol are given in Algorithm 8.

53

Algorithm 8 Secure Div(Epk(a), t)→ t
a

Require: C has (Epk(a), t), where 1 ≤ a, t ≤ l, and θ is a scalar factor assumed to be
public; (Note: Here (pk, pr) = (pkA1 , prA1) and prA1 is known only to A1)

1: C:

(a). for i = 1 to l do:

• Epk(a− i)← Epk(a) ∗ Epk(N − i)
• P [i]← Epk(a− i)r̄i , where r̄i ∈R ZN
• Q[i]←

⌈
θ ∗ t

i

⌉
(b). P ′ ← π(P); send P ′ to A1

2: A1:

(a). Receive P ′ from C

(b). for i = 1 to l do:

• τ [i]← Dpr(P
′[i])

• if τ [i] = 0 then:

– u[i]← 1

else

– u[i]← 0

(c). U [i]← Epk(u[i]), for 1 ≤ i ≤ l; send U to C

3: C:

(a). Receive U from C

(b). V ← π−1(U)

(c). γ ←
∏l

i=1 V [i]Q[i]; send γ to A1

4: A1:

(a). Receive γ from C

(b). t
a
← Dpr(γ)

θ

(c). Send t
a

to Ai, for 2 ≤ i ≤ n

To start with, C initially computes Epk(a − i) and randomizes it by computing

P [i] = Epk(a− i)r̄i = Epk(r̄i ∗ (a− i)), where r̄i is a random number in ZN , for 1 ≤ i ≤ l.

Note that exactly one of the entries in P is an encryption of 0, namely P [a] = Epk(0).

In addition, C also computes vector Q such that Q[i] =
⌈
θ ∗ t

i

⌉
, for 1 ≤ i ≤ l, where θ

is a scalar factor that is treated as public information. It is emphasized that θ acts as a

precision parameter in computing t
a
. Then, C permutes P using a random permutation

function π (known only to C) and sends the resulting encrypted vector P ′ to A1. Upon

54

Algorithm 9 P-PUC∗2
Require: ai is private to Ai, for 1 ≤ i ≤ n (Note: prC and t are known only to C, prA1

is known only to A1, pkC and pkA1 are public)
Steps 1 - 3 are the same as in Algorithm 7
4. if a > t then:

(a). A1 and C:

• Secure Div(Epk(a), t) (note that the output t
a

is revealed only to Ai’s)

(b). Ai, for 1 ≤ i ≤ n do:

• δi ← ai ∗ (1− t
a
)

• Reduce ai using δi

receiving P ′, A1 decrypts it component-wise to get τ [i] = Dpr(P
′[i]). After this, he/she

computes a vector u based on τ such that u[i] = 1 if τ [i] = 0, and u[i] = 0 otherwise,

for 1 ≤ i ≤ l. Then A1 encrypts u component-wise to get U , i.e., U [i] = Epk(u[i]), for

1 ≤ i ≤ l, and sends U to C.

Upon receiving U , C performs inverse permutation to get V = π−1(U) and computes

γ =
∏l

i=1 V [i]Q[i]. After this, C sends γ to A1. Finally, A1 decrypts γ and divides the

result by the scalar factor θ to get t
a

(step 4(b) of Algorithm 8). Furthermore, A1 sends

the value of t
a

to other consumers.

2) P-PUC∗2:

Since the proposed P-PUC∗2 protocol is based on Strategy 2, it is non-iterative

(whereas P-PUC∗1 is iterative). The main steps involved in P-PUC∗2 are shown in Algorithm

9. The first three steps are the same as in the P-PUC∗1 protocol. Similar to P-PUC∗1, at the

end of Step 3, all consumers know the output of the Secure Comp protocol, i.e., whether

a > t or not.

Whenever a > t, C, with private input (Epk(a), t), and A1 engage in the Secure Div

protocol (Step 4(a) of Algorithm 9). We observe that some of the computations performed

in the Secure Binary Conv protocol can be re-used in the Secure Div protocol. This is

because the encrypted vector V that needs to be computed in the Secure Div protocol

is the same as in Secure Binary Conv. Therefore, during the actual implementation of

55

Secure Div, C can directly proceed to Step 3(c) to compute γ using V , which was al-

ready computed in the Secure Binary Conv protocol. Therefore, the overall computation

complexity of P-PUC∗1 is reduced.

At the end of the Secure Div protocol, each consumer knows the value of t
a
. We

emphasize that during this process, neither the value of t nor a is revealed to the consumers.

In addition, a is not revealed to C. After this, each consumer Ai performs the following

operations, for 1 ≤ i ≤ n:

• Compute δi, the least amount of power to be reduced, as ai ∗ (1 − t
a
). Note that,

since a > t, we always have 0 < t
a
< 1.

• Finally, Ai reduces his/her power usage based on δi.

5.2. SECURITY ANALYSIS

To prove a protocol’s security under the semi-honest model, we adopted the well-

known security definitions from the literature of secure multi-party computation (MPC).

First of all, since the Secure 2P Max protocol is more complex than other sub-protocols,

we are motivated to provide its security proof rather than providing proofs for each sub-

protocol. Therefore, we only include a formal security proof for the Secure 2P Max proto-

col based on the standard simulation argument [64]. Nevertheless, we stress that similar

proof strategies can be used to show that other sub-protocols are secure under the semi-

honest model. We now provide a formal security proof for Secure 2P Max under the

semi-honest model.

As mentioned in Section 3.2.1., to formally prove that Secure 2P Max is secure

[64] under the semi-honest model, we need to show that the simulated execution image

of Secure 2P Max is computationally indistinguishable from the actual execution image

of Secure 2P Max. An execution image generally includes the messages exchanged and

the information computed from these messages. Therefore, according to Algorithm 4, the

execution image of C can be denoted by ΠC , where

ΠC = {〈Γ′[j], µ[j] + r̂j mod N〉, 〈Y ′[j], h〉 | for 1 ≤ j ≤ m}

56

Observe that µ[j] + r̂j mod N is derived upon decrypting Γ′[j], where the modulo

operator is implicit in the decryption function. Also, C receives Y ′ from A1. Let h denote

the (oblivious) comparison result computed from Y ′. Without loss of generality, suppose

the simulated image of C be ΠS
C , where

ΠS
C = {〈s1[j], s2[j]〉, 〈s3[j], h′〉 | for 1 ≤ j ≤ m}

Here s1[j] and s3[j] are randomly generated from ZN2 , and s2[j] is randomly generated

from ZN . In addition, h′ is a random bit. Since Epk is a semantically secure encryption

scheme with resulting ciphertext size less than N2, Γ′[j] and Y ′[j] are computationally

indistinguishable from s1[j] and s3[j]. Also, as r̂j is randomly generated, µ[j] + r̂j mod N

is computationally indistinguishable from s2[j]. Furthermore, because the functionality

is randomly chosen by A1 (at step 1(a) of Algorithm 4), h is either 0 or 1 with equal

probability. Thus, h is computationally indistinguishable from h′. Combining all these

results allows us to conclude that ΠC is computationally indistinguishable from ΠS
C . This

implies that, during the execution of Secure 2P Max, C does not learn anything about x,

y, and the actual comparison result. Intuitively speaking, the information P2 has during

an execution of Secure 2P Max is either random or pseudo-random, so this information

does not disclose anything regarding x and y. Additionally, as f is known only to A1, the

actual comparison result is oblivious to C.

On the other hand, the execution image of A1, denoted by ΠA1 , is given by

ΠA1 = {M ′[j], Epk(h) | for 1 ≤ j ≤ m}

Here, M ′[j] is an encrypted value, which is random in ZN2 , received from C (at Step 3(a)

of Algorithm 4). Let the simulated image of A1 be ΠS
A1

, where

ΠS
A1

= {s4[j], b | for 1 ≤ i ≤ m}

Both s4[j] and b are randomly generated from ZN2 . Since Epk is a semantic se-

cure encryption scheme with resulting ciphertext size less than N2, M ′[j] and Epk(h) are

57

computationally indistinguishable from s4[j] and b. Therefore, ΠA1 is computationally

indistinguishable from ΠS
A1

. This implies that A1 does not learn anything about the com-

parison result or x. We can say Secure 2P Max is secure under the semi-honest model

when combined with the previous analysis. In a similar way, we can formally prove that

all our sub-protocols are secure under the semi-honest model.

Based on the previous discussions, it is clear that the intermediate values in each

of the proposed sub-protocols are either random or pseudo-random. Therefore, no infor-

mation is revealed to the involved parties other than the expected output. Additionally,

in the proposed P-PUC protocols, the output of a sub-protocol fed as an input to the next

sub-protocol. Therefore, the sub-protocols are independent from one another, but they are

the building blocks for the proposed P-PUC protocols. In addition, to maximize security

protection, it is emphasized that the outputs in all our sub-protocols are either random or

pseudo-random values. For example, the output of Secure Binary Conv, which is an en-

crypted value Epk(a), is passed as an input to the Secure Comp protocol. Therefore, based

on the well-known Composition Theorem [64], we claim that a sequential composition of

the sub-protocols leads to our new proposed P-PUC protocols that are secure under the

semi-honest model.

5.3. EXPERIMENTAL RESULTS

In this section, we first empirically analyze the computation costs of the proposed

protocols based on different parameters. Then, we compare the computation costs of the

protocols in Chapter 4. with our new proposed protocols in this chapter. We emphasize

that P-PUC1 and P-PUC2 are not fully secure.

The protocols were implemented in C using the Paillier encryption scheme [65].

All experiments were conducted on a Linux machine running Ubuntu 10.04 LTS with

Intel R© Xeon R© Six-CoreTM 3.07GHz and 12GB RAM. For the rest of this section, we fix

the Paillier encryption key size K to 1024 bits (for both C and A1) since it is the commonly

used key size in practice (Under the Paillier cryptosystem, a 1024-bit encryption key results

58

in 2048-bit ciphertexts, which are sufficiently secure for most applications). Nevertheless,

we observed that for any given fixed parameters, the computation costs of the proposed

protocols are increased by a factor of nearly 7 whenever K is doubled. In our experiments,

we randomly generate the values of ai’s and t such that a > t and 1 ≤ a, t ≤ l, where l is

the domain size.

5.3.1. Performance of P-PUC∗1 and P-PUC∗2. We first compute the compu-

tation costs of different parties involved in the P-PUC∗1 protocol for n = 50 and varying

values of l. That is, the running times of A1, C, and Ai, where i 6= 1, are analyzed for

one iteration. Note that the costs of individual parties in P-PUC∗1 do not vary between

iterations for any given fixed parameters (assuming a > t holds under different iterations).

Therefore, we present the computation costs of the individual parties in a given iteration.

Since the computation costs of Ai’s are different, for 2 ≤ i ≤ n, we present the average

cost for Ai. As shown in Figure 5.1.(a), the computation costs of A1, C, and Ai are 7.78,

4.32, and 3.17 seconds, respectively, for l = 1000. As expected, the computation times of

every involved parties increase with l, but the trend of computation times increasing for

Ai is very small. For example, the computation time of A1 increases from 7.78 to 27.37

seconds while that of C increases from 4.32 to 14.91 seconds when l is changed from 1000

to 5000. However, the cost of Ai increases slightly from 3.17 to 4.18 seconds when l is

changed from 1000 to 5000. The high computation costs of A1 and C come from two

sub-protocols, namely Secure Binary Conv and Secure MP Max. We emphasize that Ai

does not participate in the Secure Binary Conv protocol. Also, not all Ai’s participate

in the Secure MP Max protocol; therefore, resulting in small computation costs for Ai’s,

where 2 ≤ i ≤ n.

In a similar manner, the computation costs of A1 and C in the P-PUC∗2 protocol

are analyzed for varying l with n = 50 and θ = 100, where θ is the scalar factor (note that

the computation time of P-PUC∗2 is independent of θ). The computation costs of different

parties in P-PUC∗2 are as shown in Figure 5.1.(b). We emphasize that the computation costs

of Ai’s in P-PUC∗2 are negligible since they do not participate in any of the corresponding

sub-protocols. On the other hand, for l = 1000, the computation costs of A1 and C are

59

9.21 and 5.65 seconds, respectively. We observe that the costs (i.e., both computation and

communication) of A1 and C grow linearly with l. For example, the computation time

of A1 increases from 9.21 to 46.19 seconds when l is varied from 1000 to 5000 (i.e., the

computation time increases by a factor of nearly 5). In addition, the computation cost of

C increases from 5.65 to 25.34 seconds when l is changed from 1000 to 5000, resulting in

a similar trend.

We now compare the total computation costs of P-PUC∗1 (for one iteration) and

P-PUC∗2 for l = 1000 and varying n, where n denotes the number of households from a

given neighborhood. As shown in Figure 5.1.(c), the total running time of P-PUC∗1 varies

from 12.12 to 19.3 seconds when n is changed from 50 to 250. On the other hand, the

total running time of P-PUC∗2 remains around 14.9 seconds since it is independent of n.

Following from Figure 5.1.(c), P-PUC∗1 works better than P-PUC∗2 when the neighborhood

size is below 100. After 100, P-PUC∗2 gives a better performance.

In general, the power usage control process is performed once every 30 minutes.

Therefore, based on the above results, we conclude that the proposed protocols are very

practical. Besides practicality, the main advantage of the proposed protocols is that they

execute the entire TPUC process in a privacy-preserving manner. In addition, following

from our empirical analysis, P-PUC∗1 and P-PUC∗2 provide similar performance in small

neighborhood. When the neighborhood size is greater than 100, P-PUC∗2 is more steady

and efficient than P-PUC∗1.

The U.S. Energy Information Administration (EIA) reported in 2010 that the av-

erage electricity consumption for an American household was 958 kWh per month, i.e.,

roughly 32 kWh per day or 2 kWh per hour [76]. Assuming the power consumption data

is collected (in encrypted form) every 30 minutes, the aggregated value a will always be

less than 5000, even for a neighborhood of 500 households. Therefore, under our problem

domain, l = 5000 is sufficient in satisfying the requirement of 1 ≤ a ≤ l.

5.3.2. Performance Comparison with P-PUC1 and P-PUC2. Finally, we

compare the computation costs of the protocols here with the protocols in Chapter 4.. For

n = 50, the computation cost of P-PUC1 is less than 2 seconds. P-PUC1 is more efficient

60

 0

 5

 10

 15

 20

 25

 30

 0 1000 2000 3000 4000 5000
T

im
e
 (

s
e
c
o
n
d
s
)

Domain size (l)

A1

C

A
i

(a) Complexity of P-PUC∗
1 for n = 50

 0

 10

 20

 30

 40

 50

 0 1000 2000 3000 4000 5000

T
im

e
 (

s
e
c
o
n
d
s
)

Domain size (l)

A1

C

(b) Complexity of P-PUC∗
2 for n = 50

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250

T
im

e
 (

s
e
c
o
n
d
s
)

Number of households (n)

P-PUC1
*

P-PUC2
*

(c) Complexity: P-PUC∗
1 Vs. P-PUC∗

2

Figure 5.1. Empirical results of P-PUC∗1 and P-PUC∗2 based on Paillier cryptosystem for
K =1024.

than P-PUC∗1. For example, when n = 50 and l = 1000, P-PUC∗1 takes 12.12 seconds (i.e,

P-PUC1 is 6 times more efficient than P-PUC∗1). Nevertheless, this efficiency gain comes

at the expense of putting the user’s privacy at risk in P-PUC1 whereas P-PUC∗1 protects

the user’s privacy.

On the other hand, the computation cost of P-PUC2 is roughly around 50 hours

for n = 50 because the existing secure division protocol [75] utilized in P-PUC2 is very

inefficient. More specifically, a single execution of the secure division protocol [75] took

around an hour, and we need to execute it n number of times in P-PUC2. Hence, P-PUC∗2

is significantly more efficient than P-PUC2. In particular, for n = 50 and l = 1000, P-PUC∗2

(which takes 12.12 seconds) is around 14851 times more efficient than P-PUC2.

In summary, P-PUC∗1 is more secure but less efficient than P-PUC1. However,

P-PUC∗2 is more secure as well as efficient when compared to P-PUC2.

61

6. OUTSOURCEABLE PRIVACY-PRESERVING POWER USAGE
CONTROL

In Outsourceable Privacy-Preserving Power Usage Control in a Smart Grid [15], we

develop an efficient OP-PUC protocol that incurs almost no computations on the house-

holds, since the computations are completely outsourced to the cloud servers. Details will

be provided in this chapter. The proposed protocol is secure under the semi-honest model

and satisfies all the security requirements discussed in Section 1.1.2.. Due to the fact that

all computations are outsourced to the cloud servers and are only performed on encrypted

data, the existing P-PUC protocols cannot be applied to this problem setting. In addition,

the proposed protocol is more efficient because it takes advantage of both secret sharing

based secure computation and Yao’s garbled circuit [69]. The proposed protocol consists of

three stages: (1) collecting and integrating data, (2) comparing a and t, and (3) computing

the δi values. At the first stage, the two cloud servers collect the average power consump-

tion data ai from each household Ai and the threshold value t from the utility company.

This stage utilizes additive secret sharing, which is extremely efficient, to securely com-

bine the data together to generate secret shares of the total power consumption a of the

neighborhood. The second stage determines the comparison result between a and t. The

third stage computes the δ values using the garbled circuit. The key functionality involved

in this stage is secure division. The existing secure division protocols are very inefficient,

and our work provides a new and more efficient implementation of secure division. Details

regarding our proposed protocol are given in Section 6.1..

The rest of this chapter is organized as follows: Section 6.1. provides the detailed

implementation of the proposed OP-PUC protocol, and Section 6.2. presents empirical

results to show the practicality of OP-PUC.

6.1. OUTSOURCEABLE PRIVACY-PRESERVING POWER USAGE CON-
TROL PROTOCOLS

In this section, the same notations from the previous chapters, summarized in Table

3.1., are adopted. As shown in Section 1.1., the proposed OP-PUC protocol adopts the

62

following two power usage control strategies when a > t: (1) reducing the power usage for

the user who uses the maximum amount of energy among all users, and (2) providing the

specific power reduction amount for each individual user in a particular neighborhood.

6.1.1. The First Stage of OP-PUC. In this problem setting, the protocol is

executed by two cloud servers. First, the cloud servers need to gather the necessary data

from power customers and the utility company. Then, the cloud servers must compare the

total power consumption of those customers a with the threshold given by utility company

t. If a > t, users need to reduce their power usage for the next period. The first stage of

OP-PUC is data collection.

During the first stage, data must be hidden before it is outsourced. In the previous

P-PUC protocols, homomorphic encryptions were utilized to encrypt the power usage

data. However, if the homomorphic encryption approach is extended to this outsourced

environment, huge computations would be incurred on the cloud servers. For example, in

previous P-PUC protocols the coordinator (party that is in duty of computation) deals

with one input of cypher-text and one input of plain-text algorithm, whereas remote server

(counterpart of coordinator) in the new OP-PUC protocols need to deal with two cypher-

text inputs. When this algorithm has multiplications of inputs involved, there are far more

computation costs for the second algorithm than the first one. This is not applicable in

our case. Therefore, to have a more efficient protocol, a secret sharing approach is adopted

for the data collection stage.

To get shared inputs, the Secure Split protocol presented in Algorithm 10, where

N is assumed to be a large number, is used. In this protocol, A splits its input value α to

two random values α′ and α′′, so that α′ + α′′ = α mod N , and sends them to S1 and S2,

respectively. At the end, S1 holds α′ and S2 holds α′′. They do not know anything about

α except for N .

Algorithm 11 gives the main steps for the data collection stage of OP-PUC. For

each user Ai, the power consumption value ai is split into a′i and a′′i and sent to servers S1

and S2 using Secure Split. At the same time, the utility company C also uses Secure Split

to send the secret shares of t to the two cloud servers. At the end, S1 and S2 compute

63

Algorithm 10 Secure Split(α)→ (α′, α′′)

Require: A has α and N where α < N
1: A:

(a) α′ ← α + r mod N , where r ∈R ZN
(b) α′′ ← N − r
(c) Send α′ to S1 and send α′′ to S2

2: S1 and S2:

(a) Receive α′ and α′′ respectively

Algorithm 11 Data Collection→ {(a′1, a′′1), . . . , (a′n, a
′′
n), (a′, a′′), (t′, t′′)}

Require: Ai has ai where 1 ≤ i ≤ n, C has t, and N is publicly known
1: Ai: Secure Split(ai)
2: C: Secure Split(t)
3: S1: a′ =

∑n
i=1 a

′
i

4: S2: a′′ =
∑n

i=1 a
′′
i

a′ =
∑n

i=1 a
′
i and a′′ =

∑n
i=1 a

′′
i separately. It is easy to see a = a′+a′′ mod N is the total

power usage at a specific period. Since each server has one secret share of each value, they

do not know anything about the original values.

6.1.2. The Second Stage of OP-PUC. The main task for the second stage of

the proposed protocol is to securely determine whether a > t or not; thus, a secure compar-

ison protocol is needed to compare a and t with secret shares of each value as inputs. Use of

a garbled circuit to securely perform the comparison task is considered because the existing

secure comparison protocols [77, 78, 79, 80, 81] are not directly applicable in this problem

domain. These protocols require that the inputs are the actual values. In addition, the

garbled circuit is known for its efficiency in securely evaluating simple functionalities such

as secure comparison. A garbled circuit has only one round of communication. Details

about constructing and evaluating a garbled circuit are given in Faster secure two party

computation using garbled circuits [82]. In this paper, it is assumed that the secure compar-

ison protocol built by a garbled circuit is denoted by Secure Comparison(a′, a′′, t′, t′′)→ b.

The protocol is performed by S1 and S2, where a′ and t′ are the inputs of S1, and a′′ and t′′

64

Algorithm 12 Secure Maximum{(a′1, a′′1), ..., (a′n, a
′′
n)} → (amax

′, amax
′′)

Require: A has a′1, ..., a
′
n, B has a′′1, ..., a

′′
n, N is public

1: ai = a′i + a′′i mod N for 1 ≤ i ≤ n
2: num← n
3: for k = 1 to log2 n:

(a) for 1 ≤ i ≤ num/2:

• a2k(i−1)+1 ←Secure Maxof2(a2k(i−1)+1, a2ki)

(b) num← num/2

are the inputs of S2. The protocol returns a bit b to the servers. If b = 1, the total power

usage exceeds the threshold, and the OP-PUC protocol will proceed to the next stage.

6.1.3. The Third Stage of OP-PUC Based on Strategy 1. For Strategy 1,

the user with the highest power consumption is selected and ordered to reduce his power

usage. During the process, the cloud servers are not allowed to know which user has been

chosen. Basically, in this stage, a Secure Maximum protocol is used to securely pick out

the maximum value among n shared values. The garbled circuit approach is utilized to

implement Secure Maximum.

To implement Secure Maximum, the protocol Secure Maxof2(a, b) is easy to derive

from a simple Secure Comparison protocol introduced in the last subsection. That is,

firstly compute a comparison between those two values, then use the result (either 0 or 1)

to multiply the first value, plus the multiplication of the second value and reverse of the

result. Explicitly, to judge the maximum of value a and b, firstly we compare those two

and get the 1-bit result c. After this we can compute max(a, b) = c× a+ c× b.

For maximum among multiple values, the protocol becomes an iterative approach

to compute maximum number in a hierarchical fashion. In each loop, maximum between

two values is computed and are treat as input to the next iteration. Algorithm 12 gives a

thought of how to compute Secure Maximum. We emphasis that this algorithm could be

paralleled performed such that it should be more efficient under more servers settings.

At the end, the maximum value is known by each user. The user with the maximum

energy consumption reduces his or her power consumption. As stated in the existing work,

65

the amount by which the energy consumption needs to be reduced is hard to decide. Thus,

the second strategy is more practical.

6.1.4. The Third Stage of OP-PUC Based on Strategy 2. When the total

energy consumption exceeds the threshold t, each user needs to reduce his or her power

usage. Deciding a reasonable power reduction amount for everybody is really important.

The function from the prior work, which is shown in Equation 1 is adopted here. Using this

equation, every user Ai will reduce at least δi power, which is decided by ai and weighted

in a. Since party Ai has its own power consumption value ai,
t
a

needs to be calculated at

the servers.

To securely compute t
a
, two secure division protocols that use additive homomor-

phic encryption schemes are introduced in [14, 83]. However, a garbled circuit approach

should be more efficient. The reason is that in the outsourced environment, inputs to the

secure protocols are hidden from the cloud servers. Thus, it is not easy to extend the

prior solutions to fit this problem domain. In particular, when both t and a are hidden,

computing division between two encrypted values under homomorphic encryption is very

expensive. In the garbled circuit approach, the secret shares of t and a can be directly

used as inputs to the circuits.

The division circuit was built based on the “shift and subtract” non-restoring

method. Algorithm 13 gives a detail of this method. In general, to calculate the quo-

tient of l-bit number t and m-bit number a, one must first expand t with m + 1 bits and

perform an iterative algorithm. In each loop, t makes a left shift and a is subtracted or

added from the lth bit to the (l+m− 1)th bit based on the value of tl+m: if tl+m = 0, then

subtraction is performed. Otherwise, addition is performed. After m rounds, the latest t0

to tl−1 store the quotient q.

An example of how this method works is provided. To calculate the quotient of

11 (e.g., 1011 in binary format) divided by 3 (i.e., 0011 in binary format), first one must

expand 1011 to 000001011 and shift this number to the left. Then, 00001011x1 is obtained

using the left most l + m − 1 = 5 bits to subtract 0011. The result is 11110011x1. Now

the first bit is 1, so one would set x1 = 0 and shift left again. Then, the most 5 bits of

66

Algorithm 13 Division(t, a)→ q

Require: Bit representation of t is t0, . . . , tl−1 and bit representation of a is a0, . . . , am−1

from the least to the most significant bits. Expand dividend t with m bits and set
ti = 0 where l ≤ i < l +m and expand another bit tl+m = 0 as sign bit of dividend.

1: for 1 ≤ i ≤ m:

(a) Shift left t for 1 bit

(b) if tl+m = 0 subtract tl+m−1 . . . tl with a

(c) else add tl+m−1 . . . tl with a

2: q ← tl−1 . . . t0

Algorithm 14 OP-PUC-Stage-3(ai, t
′, t′′, a′, a′′)→ δi

Require: S1 has a′ and t′, S2 has a′′ and t′′, Pi has ai for 1 ≤ i ≤ n, N is public
1: S1 and S2:

(a) do Secure Division(t′, t′′, a′, a′′)→ (q′, q′′)

(b) Send q′ and q′′ to every power users

2: Ai:

(a) Calculate δi = ai ∗ (1− t
a
) and reduce at least δi power usages

11100110x2 are used to add 0011 since x1 = 0. The result is 11111110x2, and one would set

x2 = 0. One would then shift and add again for x2 = 0. This round results in 00010100x3,

x3 = 1 because 0 is the most significant bit. For next and last round, one must shift and

subtract. The final result is 00010001x4, x4 = 1. Thus, the quotient of this example is 3

(i.e., 0011 in binary format).

The presented garbled division circuit follows the basic rules of the “shift and sub-

tract” non-restoring method, and it is denoted by Secure Division(t′, t′′, a′, a′′) → (q′, q′′).

The inputs of the circuit are secret shares of t and a from S1 and S2. The outputs are

secret shares of q so that S1 and S2 cannot infer anything about a and t. In the end, every

power user will get q = q′ + q′′ mod N so as to compute δi using equation 1. Algorithm

14 summarizes the main steps of the third stage of the OP-PUC protocol.

6.1.5. Complexity Analysis. In this section both computation and communica-

tion complexities of the proposed OP-PUC protocol are analyzed. First, the computation

complexity for different sub-protocols is analyzed at each stage. At the first stage, each

user Ai and C perform the Secure Split protocol, which just has two addition operations.

67

Servers S1 and S2 perform summations of n values, so the computation complexity of the

first stage is bounded by O(n) summations.

For the second stage, one must consider the secure comparison protocol. For the

garbled circuit approach, the inputs are two random shares with the size bounded by N ,

so O(logN) gates are needed in the initial phase of the garbled circuit to add the shares.

This step results in much smaller values than N , so the total number of gates for the

comparison circuit is bounded by O(logN).

Protocols for the two strategies become different at the third stage. For Strategy 1,

the maximum value among the n values needs to be found. This is achieved by a number

of secure comparison circuits. Thus, there are at least O(n logN) gates in the initial

stage. Since the numbers involved are much less than N , the total number of gates is

bounded by O(n logN). Each gate of the garbled circuit is encrypted by AES encryption.

Therefore, the computation complexity of Stage 2 and Stage 3 under Strategy 1 is bounded

by O(n logN) AES encryptions. The total computation complexity of OP-PUC under

Strategy 1 is bounded by O(n) summations plus O(n logN) AES encryptions.

Under Strategy 2 of Stage 3, the secure division circuit needs to be built and

evaluated. As before, the computation complexity of the initial stage is also bound by

O(logN). Since the bit lengths of the dividend and divisor are much less than N , the

computation complexity of the division circuit is also bound by O(logN). Each gate of

the garbled circuit is encrypted by AES encryption. Therefore, the computation complexity

of Stage 2 and Stage 3 is bounded by O(logN) AES encryptions. The total computation

complexity of OP-PUC under Strategy 2 is bounded by O(n) summations plus O(logN)

AES encryptions.

To analyze the communication complexity, one must know the size of the secret

shares. Since the value of each share is bounded by N , logN bits are needed to represent

each share. Thus, at the first stage, the total communication complexity is bounded by

O(n · logN) bits. Because the AES key size is a constant value, varying from 128 to 256,

the communication complexity for both Stage 2 and Stage 3 is bounded by O(logN) bits

and O(n · logN) bits under Strategy 1 and Strategy 2 respectively. Therefore, regardless

68

the strategies, the total communication complexity of OP-PUC is bounded by O(n · logN)

bits.

6.1.6. Security Analysis. The security proof of the proposed protocols is straight-

forward. Only a high level discussion is provided here. In the second and third stages,

comparison and division of the garbled circuit, which is proved secure under the semi-

honest model [82], are used. Since all the intermediate outputs of these protocols are

random shares, based on the sequential composition theorem [84], the OP-PUC protocols

are also secure under the semi-honest model.

6.2. EXPERIMENTAL RESULTS

This section contains a discussion of the performance of the OP-PUC protocols

in detail under different parameter settings. Then, the computation costs of the existing

methods [14] are evaluated and compared with the proposed protocols.

In the OP-PUC protocols, each Ai and C only interact with the cloud servers for one

round: sending their inputs and receiving the final outputs. Between the two cloud servers,

S1 and S2, a garbled circuit can be evaluated in about two rounds of communication.

Therefore, regardless of different strategies and stages, the total number of interactions

between the two cloud servers is constant or just several rounds.

Since the communication complexity of the proposed protocol is very small, and the

communications between the individual users and the cloud servers at the first stage are

parallelizable, the communication complexity is ignored here. The computation complexity

is simulated on a Linux machine with an Intel R© Xeon R© Six-CoreTM CPU 3.07 GHz

processor and 12GB RAM running Ubuntu 12.04 LTS. Since the main part of the protocol

is based on the garbled circuits method, the protocol is implemented on top of a FastGC

[82], a Java-based framework that allows users to define Boolean circuits. After the circuits

are constructed, the framework encrypts the circuits, performs an oblivious transfer, and

evaluates the garbled/encrypted circuits. The size of inputs is fixed for cloud servers to a

1024-bit modulus. In these experiments, the values of ai’s and t are randomly generated

69

such that a > t and 1 ≤ a, t ≤ 2m, where m is an upper bound bit length of the domain

size.

6.2.1. Performance of OP-PUC and OP-PUC2. Let OP-PUC2 denote the

proposed protocol based on the second strategy. The computation costs of different parties

involved in the OP-PUC protocol are first computed for n = 50 and varying values of m.

That is, the running time of cloud servers A and B (or S1 and S2) is analyzed for one

iteration (the same as the existing work). The costs of individual users and the power

company are not considered since almost all the computations are outsourced to the cloud

servers. As shown in Figure 6.1., the computation costs of A and B are 6.043 and 7.767

seconds, respectively, for m = 10. Although the computation times of A and B increase

with m, the portion of increase is very small in comparison with the expansion of the

domain size. For example, even when m = 50, the computation costs of A and B are

6.123 and 7.854 seconds, respectively, and they are pretty close to what they were when

m = 10. This is due to the inner structure of the maximum circuit: with the domain size

expanding, many new xor gates are plotted, which are free for evaluation, whereas the

number of costly and gates does not increase significantly.

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50

T
im

e
 (

s
e

c
o

n
d

s
)

Bit length of domain size (m)

S
1

S
2

Figure 6.1. Complexity of OP PUC for n = 50

In a similar manner, the computation costs of A and B in the OP PUC2 protocol

are analyzed for varying values of m and with n = 50 and θ = 10, where θ is the bit

70

length of a scalar factor. Note that the output of the division circuit is an integer, and a

and t might be very close, so a scalar factor is needed to come up with a more accurate

quotient. Therefore, the inputs of the division circuit are one m+ θ-bit dividend and one

m-bit divisor. The computation costs of different parties in OP PUC2 are shown in Figure

6.2.. As in OP PUC, the computation costs of individual users and the power company

are negligible and not counted. On the other hand, for m = 10, the computation costs of

A and B are 2.497 and 4.195 seconds, respectively. Similarly, the costs of A and B grow

slightly with the increase of m. For instance, the computation time of A is 2.688 seconds

when m = 50, and it is only increased by 0.191 seconds with a 40-bit size expansion.

The total computation costs of cloud providers A and B are now compared in

OP PUC (for one iteration) and OP PUC2 for m = 10 and varying values of n, where n

denotes the number of households from a given neighborhood. As shown in Figure 6.3.,

the total running time of OP PUC varies from 13.81 to 62.635 seconds when n is changed

from 50 to 250. On the other hand, the total running time of OP PUC2 remains nearly

constant at 6.692 seconds in average since t is independent of n. Following from Figure

6.3., it is clear that the total run time of OP PUC (even for one iteration) is always greater

than that of OP PUC2. According to the above analyses, that the proposed protocols are

very practical, especially for OP PUC2. Besides, there is nearly no computation cost for

the individual users and the utility company.

6.2.2. Performance Comparison with Existing Work. Finally, the compu-

tation costs of these protocols are compared with the existing work [14]. For n = 50 and

m = 10 (note that when m = 10, the domain size is 210 = 1024, which is already slightly

bigger than l = 1000 from the previous paper), the performance of OP PUC is close to

P-PUC∗1, which is roughly 13-15 seconds. The running time of OP PUC increases quickly

when number of households increases. However, according to the domain size, OP PUC

is more scalable: the running time is nearly stable (e.g., even when the domain size is

increased by a factor of 104, with the size of the neighborhood fixed to 50, the running

time of OP PUC increases just less than 1 second). Note that in P-PUC∗1, the execution

time is significantly increased with the increase of the domain size. Experiments showed

71

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50

T
im

e
 (

s
e

c
o

n
d

s
)

Bit length of domain size (m)

S
1

S
2

Figure 6.2. Complexity of OP PUC2 for n = 50

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250

T
im

e
 (

s
e

c
o

n
d

s
)

Number of households (n)

OP-PUC

OP-PUC
2

Figure 6.3. Complexity: OP PUC Vs. OP PUC2

that when the domain size changes from 1024 to 4096, and the number of neighborhood

is fixed to 50 users, the running time of P-PUC∗1 increases from 11.02 seconds to 33.75

seconds. Also, OP PUC2 is more efficient and scalable than P-PUC∗2. For example, when

the domain size is 5000, OP PUC2 is faster than P-PUC∗2 by a factor of 3 to 4. Although

the problem definition of this work is different from the existing work, these protocols

achieve the same power usage control in a more efficient way.

72

7. PRIVACY-PRESERVING POWER SUPPLY CONTROL

In this chapter, solutions for another situation – power shortage – is considered.

When the regional power demand is greater than power supply ability of the utility com-

pany, then a power shortage situation is going to happen. Interestingly, threshold power

usage control protocols can be applied for this situation, however, it needs the end users

to sign an agreement with utility company for smartly power control anywhere anytime.

If end users insist consuming much when regional power consumption level is high, the

utility company needs to buy additional power supplies from other energy sources to meet

the high demand.

1) Electricity Market

Just as other traditional commodities, electricity is also bought and re-sold many

times before being consumed. These transactions are composing the wholesale electricity

market. Anyone who obtaining necessary approvals, even without owning any generation

or serving any end-use customers, can participant the power market in buying and selling

powers [86]. An auction process can be used to decide the electricity price in which elec-

tricity suppliers place bids with an independent market administrator or a utility company

for a particular time period. The independent administrator then chooses the lowest bids

and tries to meet the electricity demand [87].

2) Second Price Auction

Here we consider an privacy-preserving auction process that helps the electricity market

administrator to choose the best price properly, without loss of bidders’ (or suppliers’)

privacy. Under our problem domain, we consider the price from each supplier is private

information. For one, it is in the best interest of the suppliers not to disclose their prices

publicly to lose competitive advantages. In addition, for the auction process to be per-

formed properly and fairly, the prices should not be disclosed to the buyers or the utility

company under our context. Specially, the auction is a sealed bid second price auction or

73

Vickrey auction [88]. In this type of auction the lowest bider wins with paying the second

lowest bid. We choose this auction scheme because it has an important property that the

optimal strategy of bidders is to simply bid their true valuation of the goods [89, 90]. At

the same time, the sealed-bid second price auction requires less interaction and easier to

run automatically in a smart grid.

The auctioneer is normally treated as trusted party in an auction process. However,

this is not always true. A corrupt auctioneer may take advantage of bidders’ information.

To solve this problem, the value of each bid needs to be hidden from auctioneer. Let us

consider the ideal model: the auctioneer opens the auction and bidders take part in it.

Then there is a trusted third party help the auctioneer to decide which bidder wins, and

tell him to pay the second lowest bid. During this process, only who wins and the second

lowest price will be disclosed, nothing else will be learned by the auctioneer. This chapter

proposes a scheme that reaches a solution to this problem with two cloud servers, and do

not need a trusted third party.

7.1. PROBLEM DEFINITION FOR PRIVACY-PRESERVING POWER SUP-
PLY CONTROL: OP-PSC

Suppose there are n energy suppliers E1, . . . , En. For 1 ≤ i ≤ n, let ei denote the

price or bid under which Ei is willing to sell to the utility company. The proposed out-

sourceable privacy-preserving power usage control (OP-PSC) protocol can be formulated

as follows:

〈U, (E∗, e∗)〉 ← OP-PSC(〈Ei, ei〉1≤i≤n, S1, S2, U) (4)

According to the above formulation, there are three types of participating entities: n energy

companies or suppliers, two cloud service providers S1 and S2, and the utility company

U . The input for each supplier Ei is its bid price ei. The two cloud servers perform the

necessary computations, and there are no explicit inputs for the two servers. After the

execution of the OP-PSC protocol, the utility company knows who won the auction and

the price, and the utility company passes this information to the corresponding supplier.

The other participating entities do not receive any outputs.

74

7.1.1. Threat Model. In the chapter, we adopt secure multiparty computation

(SMC) again. More specifically, we assume the participating entities are semi-honest; that

is, the entities follow the prescribed procedures of the protocol. Under the semi-honest

model, it is implicit that the participating entities do not collude. Another adversary

model of SMC is the malicious model. Under the malicious model, the entities can behave

arbitrarily. Most efficient SMC-protocols are secure under the semi-honest model since less

number of steps are needed to enforce honest behaviors. We have the following motivations

to adopt the semi-honest model:

• The OP-PSC protocol needs to be sufficiently efficient. Between the semi-honest

model and the malicious model, the semi-honest model always leads to much more

efficient protocol.

• The cloud service providers and the utility company are legitimate business. It is hard

to see they collude and initiate any malicious act to discover the private smart meter

readings. For well-known and reputable cloud servers (e.g., Amazon and Google), it

makes sense to assume they follow the protocol and behave semi-honestly.

7.1.2. Our Contribution. The contribution in this chapter is to develop a novel

OP-PSC protocol that allows a utility company to purchase additional power from other

energy companies in a privacy-preserving manner. The OP-PSC protocol is a secure im-

plementation of the second price auction model.

The rest of the chapter is organized as follows: Section 7.2. provides implementation

details regarding the proposed OP-PSC protocol. Section 7.3. presents empirical results

to show the practicality of OP-PSC protocols.

7.2. THE PROPOSED OP-PSC PROTOCOL

In our problem domain, the utility company and n power suppliers E1,. . . ,En engage

in a second price sealed-bid process. After the utility company starts the process, each

power supplier Ei submits a bid ei for 1 ≤ i ≤ n, respectively, showing how much he wants

75

Algorithm 15 OP-PSC(〈E1, e1〉, . . . , 〈En, en〉, S1, S2, U)→ 〈U, (E∗, e∗)〉
Require: pk is known to all parties and S2 has pr
1: Ei (1 ≤ i ≤ n):

(a) [ei]← Epk(e
0
i), . . . , Epk(e

m
i)

(b) Send 〈Ei, [ei]〉 to S1

2: S1 and S2:

(a) 〈S1, (Ej, ej)〉 ←SMINn(〈E1, [e1]〉, . . . , 〈En, [en]〉), where ej = min(e1, . . . , en)

(b) 〈S1, (E∗, e∗)〉 ←SMINn−1(〈E1, [e1]〉, . . . , 〈Ej−1, [ej−1]〉, 〈Ej+1, [ej+1]〉, . . . ,
〈En, [en]〉), where e∗ = min(e1, . . . , ej−1, ej+1, . . . , en)

3: S1: send 〈E∗, [e∗]〉 to U and E∗

for selling a unit power. After all, the power supplier that gave the lowest bid wins and

is paid by the second lowest price. Besides, we want the whole process secure, which is to

say, the utility company will only know the winner and the price he is going to be paid,

and the bidder will learn nothing about the others’ bids except that the winner learns

the second lowest price. Also, this protocol is build in an outsourced environment. Two

non-collude cloud servers S1 and S2 jointly perform the needed computations.

The detailed steps are given in Algorithm 15. In the first stage, the cloud servers

need to collect price information. We emphasize that during this process, the servers

should learn nothing about the price. To achieve this requirement, the server S2 firstly

publishes the homomorphic encryption public key pk [65], and each bidder Ei encrypts his

bidding price ei bit-wisely to get [ei] ← Epk(e
0
i), . . . , Epk(e

m
i). Note that the bit length of

ei is bounded by m. Then Ei sends those encrypted values to S1.

In the next stage, S1 and S2 jointly decide who is the winner and the price he will

be paid. First, S1 and S2 engage in a secure minimum among n items protocol (SMINn)

introduced in [91] for the n encrypted prices and ID pairs 〈E1, e1〉, . . . , 〈En, en〉. The result

is that S1 learns the lowest price with its bidder ID 〈Ej, ej〉. Since those values are under

encrypted format, S1 only knows the lowest price. After that, S1 removes this tuple from

〈E1, e1〉, . . . , 〈En, en〉 and performs SMINn−1 jointly with S2 again for the remaining data

pairs. This time S1 will learn 〈E∗, e∗〉 which will be delivered to U .

76

The complexity and security of OP-PSC is determined by the SMINn protocol.

Detailed complexity and security analyses can be found in [91].

7.3. EXPERIMENTAL RESULTS

In this section, we discuss the performance of the OP-PSC protocols in details

under different parameter settings. Since the communication complexity of the proposed

protocol is very small, and the communications between the individual users and the cloud

servers at the first stage are parallelizable. Here we ignore the communication complexity.

We simulate the computation complexity on a Linux machine with an Intel R© Xeon R© Six-

CoreTM CPU 3.07 GHz processor and 12GB RAM running Ubuntu 12.04 LTS. We im-

plement the protocol based on Pailliar’s additive homomorphic encryption scheme using

C and GMP library. We also fix the encryption key size of inputs for cloud servers to a

1024-bit. In our experiments, we randomly generate the values of inputs prices.

In the OP-PSC protocol, the main component and performance bottleneck is the

SMINn protocol, which will return the minimum value among n values, under encrypted

form. In all, the SMINn protocol that we adopted here will be executed twice and find the

minimum and second minimum values from the input group. We implement the protocol

using C and GMP library based on Pailier’s additive homomorphic encryption scheme [65].

We also follow the same rules as before: encryption key size is fixed to 1024 bit. The input

bid values are generated randomly.

In our experiments, we mainly compare the performance of S1 and S2, since the

computation overhead for other participating parties are negligible. In Figure 7.1., we fix

the number of bidders or suppliers n = 10 and compare the running time for various bit

length of domain size m from 10 to 50. The time linearly increases with the increasing of

bit length m. This is because in the protocol, the number of exponentiation functions that

needs to be performed is based on m. Figure 7.2. gives us another comparison between

S1 and S2 when m is fixed to 10 and n is varied. The range of n is between 10 and 50.

The running time is expanded from 〈3.97, 0.88〉 to 〈17.15, 3.86〉 for 〈S1, S2〉, respectively.

77

 0

 5

 10

 15

 20

 0 10 20 30 40 50
T

im
e

 (
s
e

c
o

n
d

s
)

Bit length of domain size (m)

S
1

S
2

Figure 7.1. Complexity of OP-PSC for n = 10

 0

 5

 10

 15

 20

 0 10 20 30 40 50

T
im

e
 (

s
e

c
o

n
d

s
)

Number of bidders (n)

S
1

S
2

Figure 7.2. Complexity of OP-PSC for m = 10

The trend is also linear-like since the sub-protocols of SMINn are composed of n − 1

times secure minimum between two values. Overall, the running time of the protocol is

acceptable: when the bit length of the domain size becomes 50, the total running time for

one cloud server is still less than 20 seconds.

78

8. CONCLUSIONS

The smart grid system has been emerging as the next-generation’s intelligent power

system. In particular, the utility company in a smart grid environment can periodically

record the power usage of household to efficiently manage its power supply to the house-

holds in a neighborhood. The power consumption data is useful in preventing power outage

issues in the given neighborhood. However, due to the user’s privacy concerns, direct col-

lection of the user’s power consumption data by the utility company is not allowed at first

place. Along this direction, this dissertation proposes four novel and secure threshold-

based power usage control protocols using two strategies discussed in Section 1.1. as a

baseline.

At first, two efficient P-PUC protocols are proposed in Chapter 4.. However, since

the adopted building blocks are not fully secure, some information will be disclosed during

the execution of these protocols. Therefore, more secure and efficient protocols are pro-

posed in Chapter 5.. Efficient and novel solutions to the basic security primitives, namely

secure binary conversion, comparison, maximum, and division operations, are also con-

structed. We emphasize that these new sets of sub-protocols can also be used in other

secure multi-party computation (MPC) based applications, such as secure clustering and

classification. Furthermore, we have empirically shown the practical applicability of the

proposed protocols through various experimental results.

As the emerging of cloud computing with its various advantages, protocols which is

outsourceable to the cloud, are developed in Chapter 6. and 7.. On one hand, comparing

with the previous four solutions, the proposed protocols in Chapter 6. are more efficient

and as secure. On the other hand, one novel solution for power shortage is also proposed

in Chapter 7.. More importantly, the computation costs for the users and the utility

company are negligible. As a future research direction, we will develop OP-PUC and OP-

PSC protocols secure under the malicious model and utilize more than two cloud servers

to further improve the computation costs.

79

If there are at least three cloud servers, all secure computations can be performed

on secure shares. Secret sharing based secure computations can be more efficient than the

garbled circuit. We will investigate if the efficient of the OP-PUC and OP-PSC proto-

cols can be improved under the secret sharing model. To develop OP-PUC and OP-PSC

protocols secure under the malicious model, we may adopt threshold homomorphic en-

cryption [92] or Shamir secret sharing [93]. We will investigate the pros and cons under

each direction.

80

BIBLIOGRAPHY

[1] T Baumeister. Literature review on smart grid cyber security, December 2010.

[2] C. Shuyong, S. Shufang, L. Lanxin, and S. Jie. Survey on smart grid technology.
Power System Technology, 33:1–7, 2009.

[3] R. Hassan and G. Radman. Survey on smart grid. IEEE SoutheastCon, pages 210–213,
2010.

[4] G. F. Reed, P. A. Philip, A. Barchowsky, C. J. Lippert, and A. R. Sparacino. Sample
survey of smart grid approaches and technology gap analysis. IEEE Energy, pages
1–10, 2010.

[5] X. Fang, S. Misra, G. Xue, and D. Yang. Smart grid - the new and improved power
grid: A survey. IEEE Communications Surveys and Tutorials, 2011.

[6] NIST 7628. Guidelines for smart grid cyber security the smart grid interoperability
panel – cyber security working group, August 2010.

[7] He H. Haibo. Toward a smart grid: Integration of computational intelligence into
power grid. International Joint Conference on Neural Networks (IJCNN), pages 1–6,
July 2010.

[8] P.P. Parikh, M.G. Kanabar, and T.S. Sidhu. Opportunities and challenges of wireless
communication technologies for smart grid applications. In Power and Energy Society
General Meeting, pages 1–7. IEEE, 2010.

[9] V.C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, and G.P. Hancke.
Smart grid technologies: Communication technologies and standards. IEEE Transac-
tions on Industrial Informatics, 7(4):529–539, 2011.

[10] Shahram S. Heydari, Walid Rjaibi, Khalil El-Khatib, and Julie Thorpe. Privacy and
security of smart grid communication. In Proceedings of the 2011 Conference of the
Center for Advanced Studies on Collaborative Research, CASCON ’11, pages 345–346,
Riverton, NJ, USA, 2011. IBM Corp.

[11] E. L. Quinn. Smart metering & privacy: Existing law and competing policies., 2009.

[12] E. L. Quinn. Privacy and the new energy infrastructure, 2009.

[13] Chun Hu, Wei Jiang, and Bruce McMillin. Privacy-preserving power usage control in
the smart grid. In Critical Infrastructure Protection VI, volume 390 of IFIP Advances
in Information and Communication Technology, pages 127–137. Springer Berlin Hei-
delberg, 2012.

[14] Bharath K. Samanthula, Hu Chun, Wei Jiang, and Bruce M. McMillin. Secure and
threshold-based power usage control in smart grid environments. International Jour-
nal of Parallel, Emergent and Distributed Systems, 29(3):264–289, 2014.

81

[15] Hu Chun, Kui Ren, and Wei Jiang. Outsourceable privacy-preserving power usage
control in a smart grid. In Data and Applications Security and Privacy XXIX, pages
119–134. Springer, 2015.

[16] Iordanis Koutsopoulos and Leandros Tassiulas. Control and optimization meet the
smart power grid - scheduling of power demands for optimal energy management.
CoRR, abs/1008.3614, 2010.

[17] H. Wang, J. Huang, X. Lin, and H. Mohsenian-Rad. Exploring smart grid and data
center interactions for electrical power load balancing. In Greenmetrics workshop held
in conjunction with ACM SIGMETRICS, Pittsburgh, PA, 2013.

[18] P. Samadi, H. Mohsenian-Rad, V.W.S. Wong, and R. Schober. Tackling the load
uncertainty challenges for energy consumption scheduling in smart grid. IEEE Trans-
actions on Smart Grid, 4(2):1007–1016, 2013.

[19] Ishtiaq Rouf, Hossen Mustafa, Miao Xu, Wenyuan Xu, Rob Miller, and Marco
Gruteser. Neighborhood watch: security and privacy analysis of automatic meter
reading systems. In Proceedings of the 2012 ACM conference on Computer and com-
munications security, CCS ’12, pages 462–473, New York, NY, USA, 2012. ACM.

[20] Y. Yang, K. McLaughlin, T. Littler, S. Sezer, Eul Gyu Im, Z.Q. Yao, B. Pranggono,
and H.F. Wang. Man-in-the-middle attack test-bed investigating cyber-security vul-
nerabilities in smart grid scada systems. In Sustainable Power Generation and Supply
(SUPERGEN 2012), International Conference on, pages 1–8, Sept 2012.

[21] Steven Drenker and Ab Kader. Nonintrusive monitoring of electric loads. Computer
Applications in Power, IEEE, 12(4):47–51, 1999.

[22] Mikhail A. Lisovich, Deirdre K. Mulligan, and Stephen B. Wicker. Inferring personal
information from demand-response systems. IEEE Security and Privacy, 8(1):11–20,
January 2010.

[23] Andrés Molina-Markham, Prashant Shenoy, Kevin Fu, Emmanuel Cecchet, and David
Irwin. Private memoirs of a smart meter. In Proceedings of the 2nd ACM Workshop
on Embedded Sensing Systems for Energy-Efficiency in Building, BuildSys ’10, pages
61–66, New York, NY, USA, 2010. ACM.

[24] Wenye Wang and Zhuo Lu. Cyber security in the smart grid: Survey and challenges.
Computer Networks, 57(5):1344–1371, 2013.

[25] Ye Yan, Yi Qian, Hamid Sharif, and David Tipper. A survey on cyber security for
smart grid communications. Communications Surveys & Tutorials, IEEE, 14(4):998–
1010, 2012.

[26] M.M. Fouda, Z.M. Fadlullah, N. Kato, Rongxing Lu, and Xuemin Shen. A lightweight
message authentication scheme for smart grid communications. Smart Grid, IEEE
Transactions on, 2(4):675–685, Dec 2011.

[27] Qinghua Li and Guohong Cao. Multicast authentication in the smart grid with one-
time signature. Smart Grid, IEEE Transactions on, 2(4):686–696, Dec 2011.

82

[28] Chakib Bekara, Thomas Luckenbach, and Kheira Bekara. A privacy preserving and
secure authentication protocol for the advanced metering infrastructure with non-
repudiation service. In ENERGY 2012, The Second International Conference on
Smart Grids, Green Communications and IT Energy-aware Technologies, pages 60–
68, 2012.

[29] M. Nabeel, S. Kerr, Xiaoyu Ding, and E. Bertino. Authentication and key manage-
ment for advanced metering infrastructures utilizing physically unclonable functions.
In Smart Grid Communications (SmartGridComm), 2012 IEEE Third International
Conference on, pages 324–329, Nov 2012.

[30] Hasen Nicanfar and Victor CM Leung. Multilayer consensus ecc-based password
authenticated key-exchange (mcepak) protocol for smart grid system. Smart Grid,
IEEE Transactions on, 4(1):253–264, 2013.

[31] F. Diao, F. Zhang, and X. Cheng. A privacy-preserving smart metering scheme using
linkable anonymous credential. Smart Grid, IEEE Transactions on, 6(1):461–467, Jan
2015.

[32] Jing Liu, Yang Xiao, Shuhui Li, Wei Liang, and C. L. Philip Chen. Cyber security and
privacy issues in smart grids. Communications Surveys Tutorials, IEEE, 14(4):981–
997, 2012.

[33] Paria Jokar, Nasim Arianpoo, and Victor C. M. Leung. A survey on security issues
in smart grids. Security and Communication Networks, 2012.

[34] F. Borges and M. Muhlhauser. Eppp4sms: Efficient privacy-preserving protocol for
smart metering systems and its simulation using real-world data. Smart Grid, IEEE
Transactions on, 5(6):2701–2708, Nov 2014.

[35] Fenjun Li, Bo Luo, and Peng Liu. Secure information aggregation for smart grids
using homomorphic encryption. In Smart Grid Communications (SmartGridComm),
2010 First IEEE International Conference on, pages 327–332, Oct 2010.

[36] Fengjun Li and Bo Luo. Preserving data integrity for smart grid data aggregation.
In Smart Grid Communications (SmartGridComm), 2012 IEEE Third International
Conference on, pages 366–371. IEEE, 2012.

[37] Sushmita Ruj and Amiya Nayak. A decentralized security framework for data aggrega-
tion and access control in smart grids. IEEE transactions on smart grid, 4(1):196–205,
2013.

[38] Felix Gomez Marmol, Christoph Sorge, Osman Ugus, and Gregorio Mart́ınez Pérez.
Do not snoop my habits: preserving privacy in the smart grid. Communications
Magazine, IEEE, 50(5):166–172, 2012.

[39] Zekeriya Erkin and Gene Tsudik. Private computation of spatial and temporal power
consumption with smart meters. In Applied Cryptography and Network Security, pages
561–577. Springer, 2012.

83

[40] Rongxing Lu, Xiaohui Liang, Xu Li, Xiaodong Lin, and Xuemin Shen. Eppa: An
efficient and privacy-preserving aggregation scheme for secure smart grid communi-
cations. IEEE Transactions on Parallel and Distributed Systems, 23(9):1621–1631,
2012.

[41] Marc Joye and Benôıt Libert. A scalable scheme for privacy-preserving aggregation
of time-series data. In Financial Cryptography and Data Security, pages 111–125.
Springer, 2013.

[42] Elaine Shi, T-H Hubert Chan, Eleanor G Rieffel, Richard Chow, and Dawn Song.
Privacy-preserving aggregation of time-series data. In NDSS, volume 2, page 4, 2011.

[43] Lei Yang, Xu Chen, Junshan Zhang, and H Vincent Poor. Cost-effective and privacy-
preserving energy management for smart meters.

[44] Stephen McLaughlin, Patrick McDaniel, and William Aiello. Protecting consumer
privacy from electric load monitoring. In Proceedings of the 18th ACM conference on
Computer and communications security, pages 87–98. ACM, 2011.

[45] Georgios Kalogridis, Costas Efthymiou, Stojan Z Denic, Tim A Lewis, and Rafael
Cepeda. Privacy for smart meters: Towards undetectable appliance load signatures.
In Smart Grid Communications (SmartGridComm), 2010 First IEEE International
Conference on, pages 232–237. IEEE, 2010.

[46] Jinkyu Koo, Xiaojun Lin, and Saurabh Bagchi. Privatus: Wallet-friendly privacy
protection for smart meters. In Computer Security–ESORICS 2012, pages 343–360.
Springer, 2012.

[47] Onur Tan, Deniz Gunduz, and H Vincent Poor. Increasing smart meter privacy
through energy harvesting and storage devices. Selected Areas in Communications,
IEEE Journal on, 31(7):1331–1341, 2013.

[48] Zhi Chen and Lei Wu. Residential appliance dr energy management with electric
privacy protection by online stochastic optimization. 2013.

[49] Weining Yang, Ninghui Li, Yuan Qi, Wahbeh Qardaji, Stephen McLaughlin, and
Patrick McDaniel. Minimizing private data disclosures in the smart grid. In Proceed-
ings of the 2012 ACM conference on Computer and communications security, pages
415–427. ACM, 2012.

[50] Costas Efthymiou and Georgios Kalogridis. Smart grid privacy via anonymization of
smart metering data. In Smart Grid Communications (SmartGridComm), 2010 First
IEEE International Conference on, pages 238–243. IEEE, 2010.

[51] Marek Jawurek, Martin Johns, and Konrad Rieck. Smart metering de-
pseudonymization. In Proceedings of the 27th Annual Computer Security Applications
Conference, pages 227–236. ACM, 2011.

[52] Younghun Kim, EC Ngai, and Mani B Srivastava. Cooperative state estimation for
preserving privacy of user behaviors in smart grid. In Smart Grid Communications
(SmartGridComm), 2011 IEEE International Conference on, pages 178–183. IEEE,
2011.

84

[53] Allen J Wood and Bruce F Wollenberg. Power generation, operation, and control.
John Wiley & Sons, 2012.

[54] M. Atallah, M. Bykova, J. Li, K. Frikken, and M. Topkara. Private collaborative
forecasting and benchmarking. In Proceedings of the 2004 ACM workshop on Privacy
in the electronic society, WPES ’04, pages 103–114. ACM, October 2004.

[55] Andrew C. Yao. Protocols for secure computations. In the Annual Symposium on
Foundations of Computer Science, pages 160–164. IEEE Computer Society, 1982.

[56] Andrew C. Yao. How to generate and exchange secrets. In the Annual Symposium on
Foundations of Computer Science, pages 162–167. IEEE Computer Society, 1986.

[57] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game - a
completeness theorem for protocols with honest majority. In 19th ACM Symposium
on the Theory of Computing, pages 218–229, New York, New York, United States,
1987. ACM.

[58] D. Beaver. Foundations of secure interactive computing. In Advances in Cryptology -
CRYPTO ’91, pages 377–391. Springer-Verlag, 1991.

[59] R. Canetti. Universally composable security: a new paradigm for cryptographic pro-
tocols. In IEEE FOCS, pages 136 – 145. IEEE Computer Society, oct. 2001.

[60] Assaf Ben-David, Noam Nisan, and Benny Pinkas. Fairplaymp: a system for secure
multi-party computation. In Proceedings of the ACM Computer and Communications
Security Conference (ACM CCS), pages 257–266. ACM, 2008.

[61] Yehuda Lindell. General composition and universal composability in secure multiparty
computation. Journal of Cryptology, 22(3):395–428, 2009.

[62] Wilko Henecka, Stefan K ögl, Ahmad-Reza Sadeghi, Thomas Schneider, and Immo
Wehrenberg. Tasty: tool for automating secure two-party computations. In ACM
CCS, pages 451–462. ACM, 2010.

[63] Dan Bogdanov, Roman Jagomägis, and Sven Laur. A universal toolkit for cryp-
tographically secure privacy-preserving data mining. In PAISI ’12, pages 112–126.
Springer-Verlag, 2012.

[64] Oded Goldreich. The Foundations of Cryptography, volume 2, chapter General Cryp-
tographic Protocols. Cambridge University Press, 2004.

[65] P. Paillier. Public key cryptosystems based on composite degree residuosity classes.
In Advances in Cryptology - Eurocrypt ’99 Proceedings, LNCS 1592, pages 223–238.
Springer-Verlag, 1999.

[66] Wei Jiang, Mummoorthy Murugesan, Chris Clifton, and Luo Si. Similar document
detection with limited information disclosure. In Proceedings of the 24th International
Conference on Data Engineering (ICDE 2008), Cancun, Mexico, April 7-12 2008.
IEEE Computer Society.

85

[67] Shafi Goldwasser, Silvio Micali, and C. Rackoff. The knowledge complexity of inter-
active proof systems. In ACM STOC, pages 291–304. ACM, 1985.

[68] Oded Goldreich. The Foundations of Cryptography, volume 2, chapter Encryption
Schemes. Cambridge University Press, 2004.

[69] Andrew Chi-Chih Yao. How to generate and exchange secrets. In Foundations of
Computer Science, 1986., 27th Annual Symposium on, pages 162–167. IEEE, 1986.

[70] Yehuda Lindell and Benny Pinkas. A proof of security of yaos protocol for two-party
computation. Journal of Cryptology, 22(2):161–188, 2009.

[71] Michael O Rabin. How to exchange secrets with oblivious transfer. IACR Cryptology
ePrint Archive, 2005:187, 2005.

[72] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for
signing contracts. Communications of the ACM, 28(6):637–647, 1985.

[73] William Melicher, Samee Zahur, and David Evans. An intermediate language for
garbled circuits. In IEEE Symposium on Security and Privacy Poster Abstract, 2012.

[74] Li Xiong, Subramanyam Chitti, and Ling Liu. Topk queries across multiple private
databases. In Distributed Computing Systems, 2005. ICDCS 2005. Proceedings. 25th
IEEE International Conference on, pages 145–154. IEEE, 2005.

[75] Paul Bunn and Rafail Ostrovsky. Secure two-party k-means clustering. In ACM CCS,
pages 486–497. ACM, 2007.

[76] U.S. Energy Information Administration. http://www.eia.gov/tools/faqs/faq.

cfm?id=97&t=3.

[77] Ian F Blake and Vladimir Kolesnikov. One-round secure comparison of integers.
Journal of Mathematical Cryptology, 3(1):37–68, 2009.

[78] Ivan Damg̊ard, Martin Geisler, and Mikkel Krøigaard. Efficient and secure comparison
for on-line auctions. In Information Security and Privacy, pages 416–430. Springer,
2007.

[79] Ivan Damgard, Martin Geisler, and Mikkel Kroigard. Homomorphic encryption and
secure comparison. International Journal of Applied Cryptography, 1(1):22–31, 2008.

[80] Juan Garay, Berry Schoenmakers, and José Villegas. Practical and secure solutions for
integer comparison. In Public Key Cryptography–PKC 2007, pages 330–342. Springer,
2007.

[81] Ahmet Erhan Nergiz, Mehmet Ercan Nergiz, Thomas Pedersen, and Chris Clifton.
Practical and secure integer comparison and interval check. In Social Computing
(SocialCom), 2010 IEEE Second International Conference on, pages 791–799. IEEE,
2010.

[82] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster secure two-party
computation using garbled circuits. In USENIX Security Symposium, volume 201,
2011.

http://www.eia.gov/tools/faqs/faq.cfm?id=97&t=3
http://www.eia.gov/tools/faqs/faq.cfm?id=97&t=3

86

[83] Paul Bunn and Rafail Ostrovsky. Secure two-party k-means clustering. In Proceedings
of the 14th ACM conference on Computer and communications security, pages 486–
497. ACM, 2007.

[84] Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applications, vol-
ume 2. Cambridge university press, 2009.

[85] Chun Hu, Wei Jiang, and Bruce McMillin. Privacy-preserving power usage control
in the smart grid. In Jonathan Butts and Sujeet Shenoi, editors, Critical Infrastruc-
ture Protection VI, volume 390 of IFIP Advances in Information and Communication
Technology, pages 127–137. Springer Berlin Heidelberg, 2012.

[86] Phillip G Harris. The value of independent regional grid operators. The Electricity
Journal, 5(19):82–85, 2006.

[87] Electric Power Supply Association. https://www.epsa.org/industry/primer/?fa=
wholesaleMarket.

[88] William Vickrey. Counterspeculation, auctions, and competitive sealed tenders. The
Journal of finance, 16(1):8–37, 1961.

[89] Felix Brandt and Tuomas Sandholm. Efficient privacy-preserving protocols for multi-
unit auctions. In Financial Cryptography and Data Security, pages 298–312. Springer,
2005.

[90] Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy preserving auctions and
mechanism design. In Proceedings of the 1st ACM conference on Electronic commerce,
pages 129–139. ACM, 1999.

[91] Yousef Elmehdwi, Bharath K Samanthula, and Wei Jiang. Secure k-nearest neighbor
query over encrypted data in outsourced environments. In Data Engineering (ICDE),
2014 IEEE 30th International Conference on, pages 664–675. IEEE, 2014.

[92] Ronald Cramer, Ivan Damg̊ard, and Jesper Buus Nielsen. Multiparty computation
from threshold homomorphic encryption. In Advances in Cryptology – EUROCRYPT,
pages 280–299, 2001.

[93] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612 – 613,
November 1979.

https://www.epsa.org/industry/primer/?fa=wholesaleMarket
https://www.epsa.org/industry/primer/?fa=wholesaleMarket

87

VITA

Huchun received the bachelor’s degree in Software Engineering from Nankai Uni-

versity, Tianjin, P.R. China, in 2010. He received the Ph.D. degree in Computer Science

from Missouri University of Science and Technology, Rolla, Missouri, in December 2015.

	Privacy-preserving power usage control in smart grids
	Recommended Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF ILLUSTRATIONS
	LIST OF TABLES
	Introduction
	PROBLEM DEFINITION
	Basic Setting
	Multi-Server Setting

	ASSUMPTIONS

	Related Work
	SPOOFING ATTACKS
	SMART METER AUTHENTICATION SCHEMES
	PRIVACY PRESERVATION

	Background
	SMART GRID SYSTEM MODEL
	PRELIMINARIES
	Security Definition
	Additive Homomorphic Probabilistic Encryption
	Yao's Garbled Circuit
	Notations

	Privacy-Preserving Power Usage Control
	PRIVACY-PRESERVING POWER USAGE CONTROL PROTOCOLS
	Implementations of Secure Primitives
	The P-PUC1 Protocol
	The P-PUC2 Protocol

	SECURITY ANALYSIS
	EXPERIMENTAL RESULTS

	Privacy-Preserving Power Usage Control with Minimum Information Disclosure
	PRIVACY-PRESERVING POWER USAGE CONTROL WITH MINIMUM INFORMATION DISCLOSURE PROTOCOLS
	The P-PUC1* Protocol
	The P-PUC2* Protocol

	SECURITY ANALYSIS
	EXPERIMENTAL RESULTS
	Performance of P-PUC1* and P-PUC2*
	Performance Comparison with P-PUC1 and P-PUC2

	Outsourceable Privacy-Preserving Power Usage Control
	OUTSOURCEABLE PRIVACY-PRESERVING POWER USAGE CONTROL PROTOCOLS
	The First Stage of OP-PUC
	The Second Stage of OP-PUC
	The Third Stage of OP-PUC Based on Strategy 1
	The Third Stage of OP-PUC Based on Strategy 2
	Complexity Analysis
	Security Analysis

	EXPERIMENTAL RESULTS
	Performance of OP-PUC and OP-PUC2
	Performance Comparison with Existing Work

	Privacy-Preserving Power Supply Control
	PROBLEM DEFINITION FOR PRIVACY-PRESERVING POWER SUPPLY CONTROL: OP-PSC
	Threat Model
	Our Contribution

	THE PROPOSED OP-PSC PROTOCOL
	EXPERIMENTAL RESULTS

	CONCLUSIONS
	BIBLIOGRAPHY
	VITA

