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ABSTRACT

To avoid the curse of dimensionality, and to help us better understand the structure

of the high dimensional data, methods for dimension reduction are clearly called for. The

common linear dimension reduction techniques for single population include principal

component analysis (PCA) which is unsupervised in regression and supervised Partial

Least Squares (PLS). Modern sufficient dimension reduction techniques, like the ones we

consider, constitute a form of supervised linear dimension reduction which outperform

PCA and PLS without the underlying model assumptions.

In practice, we often deal with situations where the same variables are being mea-

sured on objects from different groups, and we would like to know how similar the groups

are with respect to some set of overall features. Common PCA and partial dimension

reduction methods are extant methods for multiple groups. Note however that common

PCA is unsupervised and doesn’t take into account the information in Y and partial di-

mension reduction ignores the population-specific effects. Most importantly, these meth-

ods can not tell us if the same set of directions serve for all populations.

To determine these common directions, we first propose a link-free procedure for

testing whether two multi-index models share identical indices via the sufficient dimension

reduction approach. Then a general method is introduced for two or more models based

on modified partial dimension reduction. We present our test statistics, with associated

asymptotic distributions and simulation studies. Applications to the well-known AIS

data and the beta-carotene data are also used to demonstrate our methods. Furthermore,

simulation studies are used to compare the various methods we consider.
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1. INTRODUCTION

1.1. DIMENSION REDUCTION

Regression analysis investigates the dependence of a response Y on a vector X =

(X1, . . . , Xp)
T . The general object of interest is the conditional distribution of Y |X, as a

function of the value assumed by input X. A parametric model is often used to guide the

analysis. When there are no persuasive models available, nonparametric regression tech-

niques can be used. If there are sufficiently many data points, local smoothing (Eubank

1988) is a successful approach. However, nonparametric regression is known to perform

poorly in high dimensions due to the curse of dimensionality (Bellman, 1961). This phe-

nomenon is manifest in practice due to the limited sample size of most real data sets. The

curse of dimensionality refers to the fact that as the dimension of input X increases, the

volume of the input space increases exponentially and as such the available data becomes

increasingly sparse, see for instance Hastie et al. (2011, Section 2.5). Fortunately, it is very

common for the input space X to essentially lie in a lower dimensional manifold or sur-

face. This input space could be non-linear as is the case for manifold learning techniques

(Izenman, 2013, Chapter 16) or linear as we shall assume here. Dimension reduction is

a very common way to avoid the curse of dimensionality. Furthermore, many graphical

tools can only help us to view low-dimension data directly. Even three-dimensional scat-

ter plots must be constructed via a computer program, and the third dimension can only

be visualized by rotating the coordinate axes. One tool for visualizing high dimensional

data is the plots from section 6.3 of Hastie et al. (2011). These plots are of two variables

conditional on the value of some other variables. However, when X is high-dimensional,

it becomes increasingly challenging to construct and visually interpret conditional plots

without reducing the dimension of data. Therefore, even in terms of data visualization,

methods for dimension reduction are clearly called for.

The most common linear dimension reduction technique for X is principal com-

ponent analysis (PCA) (Jolliffe, 2002), which performs a linear mapping of the data to a

lower-dimensional space in such a way that the variance of the data in the low-dimensional
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representation is maximized. In practice, the correlation matrix of the data is constructed

and the eigenvectors on this matrix are computed. The eigenvectors that correspond to

the largest eigenvalues (the principal components) can now be used to reconstruct a large

fraction of the variance of the original data. The input space has been reduced to the

space spanned by a few eigenvectors. Typically, the first several of these principal compo-

nents account for a large proportion of the total variance of the original p variables. As a

result, one may achieve dimension reduction with little loss of information by simply work-

ing with those principal components. Such components frequently have interpretations,

biological or otherwise, that provide valuable insights into the mechanisms generating

the data. However, for a typical regression problem with a univariate response Y and a

p-dimensional random vector predictor X, PCA and other related methods such as in-

dependent components analysis often yield inferior results, when one aims to reduce the

dimension of X. This is because PCA, which is said to be an unsupervised dimension

reduction technique, does not take into account the information in Y .

In contrast, a supervised dimension reduction technique takes into account Y when

forming linear combination of the inputs (Hastie et al., 2011, Section 3.5.2). For example,

Partial Least Squares (PLS) defines a relationship between Y and X which is determined

by the values of both X and Y (Abdi, 2003, and Maitra and Yan, 2008). The PLS tech-

nique works by successively extracting factors from X and Y such that covariance between

the extracted factors is maximized. However, in practice, it tends to yield results very

similar to unsupervised principal component regression of Y onto principal components

of X.

Modern sufficient dimension reduction techniques to be discussed next, constitute

a form of supervised linear dimension reduction which out perform PLS and PCA without

the underlying model assumptions. It is a very active area of research.

1.2. SINGLE POPULATION SUFFICIENT DIMENSION REDUCTION

Li (1991) and Cook (1998) proposed sufficient dimension reduction that aims at

reducing the dimension of X while preserving the regression relationship between Y and X.
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Sufficient dimension reduction could be applied on a lot of models. Consider the

following generalized multi-index model

Y = g(βT1 X, · · · ,βTdX; ε), (1.1)

where g(·) is an unknown link function, β = (β1, . . . ,βd) is a p×d matrix, d ≤ p, and the

random error ε is independent of X. Model (1.1) is a very general semiparametric model

which includes the multi-index model (Härdle and Stoker, 1989; Xia, 2008) and the single-

index model (Härdle, Hall and Ichimura, 1993; Xue and Zhu, 2006) with Y = g(βTX) + ε

as special cases. Specifically, the scope of sufficient dimension reduction is to seek a set

of linear combinations of X, say βTX, such that

Y X|βTX, (1.2)

where denotes stochastic independence. When this is the case, the pro-

jection of the p-dimensional explanatory variable X onto the d dimensional subspace

(βT1 X, · · · ,βTdX)T contains all the information contained in the regression of Y on X.

Any linear combination of the β’s is called an effective dimension-reduction (e.d.r.) di-

rection, and the linear space generated by the β’s is the e.d.r. space Sedr (Li, 1991) which

is also known as the dimension reduction subspace (Cook, 1998).

Note that, the e.d.r. space is not unique since any space that contains the e.d.r.

space is also an e.d.r. space. So one desires the smallest one which corresponds to the

intersection of all the e.d.r. spaces satisfying Y X|βTX, which is defined as SY |X =

∩Sedr, and is called the central subspace (Cook, 1998). The dimension of the central

subspace:

dim(SY |X) = d

is called the structural dimension of the regression. The goal of sufficient dimension

reduction is to make inference about the central subspace and its dimension d.

The central subspace is well defined under very mild conditions (Cook, 1994, 1996,

1998b; Yin, Li and Cook, 2008). Specifically, if X has density f(a) > 0 for all a ∈ Ω
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and f(a) = 0 everywhere else, where Ω is the support of X, Ω = {x‖f(x) > 0}, then the

existence central subspace is guaranteed. We shall make the reasonable assumption that

the central subspace exists throughout this dissertation.

A short example is given below which demonstrates the concepts of central sub-

space and the structural dimension. Suppose the true model is:

Y = exp((X1 +X2 + 1)(2X3 −X4) + 1) + ε

where X = (X1, X2, . . . , X15)
T , and ε X. Then, the central subspace is the space

spanned by the column vectors of β and

β =

 1 1 0 0 0 . . . 0

0 0 2 −1 0 . . . 0

T

and the structural dimension d is equal to 2. Sufficient dimension reduction tells us that we

can replace the original 15-dimensional predictors X with the two linear combinations of

the predictors βTX without the loss of information about the regression. In this example,

βTX =

 X1 +X2

2X3 −X4

 .

Sufficient dimension reduction has received considerable interest in recent years due

to the ubiquity of large high-dimension data sets which are now more readily available than

in the past. Many methods have been developed, including sliced inverse regression (SIR;

Li, 1991), sliced average variance estimator (SAVE; Cook and Weisberg, 1991), minimum

average variance estimators (MAVE; Xia et al., 2002), directional regression (DR; Li

and Wang, 2007), and likelihood acquired directions (LAD; Cook and Farzani, 2009).

Recently, Li et al. (2011) and Lee et al. (2013) proposed a form of nonlinear sufficient

dimension reduction which seeks an arbitrary function φ(.) from Rp to Rd satisfying
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Y X|φ(X), which greatly generalizes condition (1.2). Ma and Zhu (2012, 2013), and

Luo et al. (2014) also investigate the dimension reduction problem in a semiparametric

estimation framework and derive the associated estimating equations.

Let µ = E(X), Σ = Var(X), and Z = Σ−1/2(X− µ) be the standardized predic-

tor. As Yu et al. (2012) points out, many moment based sufficient dimension reduction

methods can be formulated as an eigen-decomposition problem:

Mηi = λiηi, i = 1, · · · , p, (1.5)

where M is the Z scale method-specific candidate matrix. Assuming the linearity condi-

tion (Li, 1991) holds, which is a mild condition imposed on the marginal distribution of

the predictors alone, the eigenvectors (η1, · · · ,ηd) corresponding to the non-zero eigenval-

ues λ1 ≥ · · · ≥ λd form a basis of the Z scale central subspace SY |Z. Then, by invariance,

and SY |X = Σ−1/2SY |Z as described by Cook (1998), β = Σ−1/2(η1, · · · ,ηd) forms a basis

of SY |X. The linearity condition, which basically requires that E(X|βTX) be a linear

function of βTX, is a common assumption in dimension reduction methods and holds for

elliptically contoured predictors (Eaton, 1986). Additionally, Hall and Li (1993) showed

that as the number of predictors p increases, the linearity condition holds to a reasonable

degree of approximation in many problems.

Since most of the commonly used sufficient dimension reduction methods that

target SY |Z, make use of candidate matrices satisfying the above eigen-decomposition, we

list some as follows:

Sliced Inverse Regression: M = Var{E(Z|Y )};

Sliced Average Variance Estimation: M = E{Ip − Var(Z|Y )}2;

Directional Regression: M = 2E{E2(ZZT |Y )}+ 2E2{E(Z|Y )E(ZT |Y )}

+ 2E{E(ZT |Y )E(Z|Y )}E{E(Z|Y )E(ZT |Y )}

− 2Ip.
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1.3. MULTIPLE POPULATION SUFFICIENT DIMENSION REDUCTION

In practice, we often deal with situations where the same variables are being mea-

sured on objects from different groups, and we would like to know how similar the groups

are with respect to some set of overall features.

For example, consider the AIS dataset discussed by Weisberg (2005), which con-

tains information on the lean body mass L and other physical and hematological mea-

surements, from 102 male and 100 female elite Australian athletes who trained at the

Australian Institute of Sport. In section 2, we investigate how the relationship between

body fat and various predictors varies across gender. Various attempts have been made

to develop valid analyses for multiple data sets, including common principal component

analysis (Common PCA; Flury, 1984 and 1988).

Flury (1984, 1988) proposed a method called the common PCA, a type of simulta-

neous principal component analysis for several groups. It estimates principal components

simultaneously in different groups and results in a joint dimension reducing transforma-

tion. The common principal components model has been employed in genetics, climatol-

ogy, ontogeny and other fields (Biok, 2002). Flury (1987) extended the common PCA to

partial common PCA. Other common space models also have been proposed (Krzanowski,

1979; Schott, 1988, 1991; Biok, 2002). The drawback of common PCA is that it is un-

supervised and doesn’t take into account the information in Y , as is the case for single

population PCA.

Another method is the partial dimension reduction, as proposed by Chiaromonte

et al. (2002), can also be adapted to perform analysis for multiple data sets. Partial

dimension reduction was originally proposed to facilitate dimension reduction in regres-

sions with both continuous predictors (X ∈ Rp) and a categorical predictor (W ) with

W = 1, . . . , G which can play the role of a group identifier. The partial central subspace

is defined as the intersection of all subspaces S satisfying

Y X | (PSX,W ), (1.6)
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where W ∈ {1, . . . , G} is a categorical predictor and P(�) stands for a projection operator

with respect to the standard inner product. The partial central subspace, which is as-

sumed to exist and is denoted as S(W )
Y |X, allows for reduction of the vector X of continuous

predictors simultaneously across all subpopulations determined by W . This subspace is

defined as

S(W )
Y |X =

⊕G

w=1
SY w|Xw (1.7)

where (Y w,Xw) represents a generic pair of (Y,X) when W = w and SY w|Xw is the central

subspace within each subpopulation. Here,
⊕

denotes the direct sum among subspaces.

There are several methods developed in the literature to infer about the partial

central subspace, such as the partial SIR (Chiaromonte et al., 2002), partial SAVE (Shao

et al., 2009) and partial IRE (partial inverse regression estimator; Wen and Cook, 2007).

We will discuss these methods in Section 3. As we will see, the partial central subspace

approach comprises the related directions for all populations which is a direct sum of all

the marginal central subspaces, but there are still some drawbacks of this method. First,

the population-specific effects are ignored by this method. Second, this approach cannot

test if the same set of directions serve for all populations.

1.4. TESTING COMMON INDICES FOR MULTI-INDEX MODELS

In this dissertation, we generalize the sufficient dimension reduction paradigm from

a single population (dataset) to several populations. Specifically, we focus on testing the

hypothesis that the central subspace of a particular group is the same as that of any other

group:

SY 1|X1 = SY 2|X2 = . . . = SY G|XG , (1.8)

where (Y g,Xg) is a generic pair of (Y,X) for the gth group, g = 1, · · · , G.

Let’s consider the AIS dataset, as previously discussed. The goal was to investigate

how the relationship between the body fat and various predictors varies across gender.

Suppose that subject matter knowledge and prior modeling experiences suggest that a
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d-dimensional multi-index model of the form Y = g(βT1 X, · · · ,βTdX; ε) applies to both

female and male groups, naturally, we would like to know if the equivalent set of indices

of the hematological measurements serve for both genders. If null hypothesis is true,

then there is a common lower dimensional representation for the male and female groups.

Informal comparisons such as graphical methods can of course be carried out. However,

such comparisons might become unwieldy when d is greater than two, and the resulting

conclusions could be overly subjective. Hence, a formal test is necessary here.

In Section 2, we will propose a link-free test statistic and its asymptotic distribution

for testing (1.8) with G = 2 populations and apply our method to the numerical studies.

Modified partial dimension reduction methods are introduced in Section 3. Based on the

modified methods, we present our test statistics, which associated asymptotic distribution,

simulation studies and an application which tests null hypothesis (1.8) for G ≥ 2 in Section

4. Conclusions, future work and drawbacks of our proposed methods will be illustrated

in Section 5.
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2. TESTING COMMON INDICES FOR TWO MULTI-INDEX MODELS

For a regression problem with a univariate response Y and p-dimensional predictors

X = (X1, . . . , Xp)
T , we consider the following generalized multi-index model

Y = g(βT1 X, · · · ,βTdX; ε),

where ε is the random error which is independent of X. One is usually concerned with

estimation of indices β, the total number of indices d and the link function g(·) (Feng

and Zhu, 2012). We, however, focus on testing if two multi-index models share identical

indices (subspaces). Specifically, consider two d-dimensional multi-index models for two

populations (groups):

Y = g1(β
T
1 X, · · · ,βTdX; ε1), for group 1;

Y = g2(ξ
T
1 X, · · · , ξTdX; ε2), for group 2. (2.1)

Since the identifiable parameters here are the subspaces spanned by the columns of β and

ξ = (ξ1, · · · , ξd), rather than β and ξ themselves, we develop a test of null hypothesis

H0 : span(β) = span(ξ), (2.2)

where both β and ξ are p × d matrices. This hypothesis is similar in nature to the null

hypothesis of common principal component subspaces for Common PCA considered in

Schott (1991).

A hypothesis test of type (2.2) might be of special interest in many applications

involving two datasets, where the same variables are being measured on objects from two

different groups, and for which it is of interest to determine how similar the two groups

are with respect to the span of the indices of predictor vectors regardless of the unknown

link functions.
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Recall the AIS dataset from Section 1. It contains information on the lean body

mass L and other physical and hematological measurements (X), from 102 male and 100

female elite Australian athletes who trained at the Australian Institute of Sport. It is of

interest to determine how the relationship between the body fat and various predictors

varies with gender. Naturally, we would like to know if the equivalent set of indices of the

hematological measurements serve for both genders. This question is the motivation for

our development of a test statistic for the null hypothesis in (2.2).

We propose a link-free test for testing hypothesis of (2.2) via a sufficient dimension

reduction approach (Li, 1991; Cook, 1998). As we discussed in Section 1, there are

numerous suffcient dimension reduction approaches considered in the literature.

The rest of this section is organized as follows. In Section 2.1, we give a brief

review of sufficient dimension reduction methods. Specifically, we focus on those methods

based upon spectral decomposition approach (Wen and Cook, 2007). In Section 2.2, we

present our link-free test statistic for null hypothesis (2.2). The asymptotic distribution

of our test statistic is also discussed. We illustrate the performance of our method with

Monte Carlo studies in Section 2.3. We then apply our method to the AIS dataset in

Section 2.4. Brief conclusions are given in Section 2.5. For ease of exposition, we defer

some technical details in Section 2.6.

2.1. THE SPECTRAL DECOMPOSITION APPROACH

In this section, we give a brief review on how to use sufficient dimension reduction to

make inference about span(β) in model (1.4). In particular, we consider three commonly

used sufficient dimension reduction methods: SIR, SAVE and DR.

Recall from Section 1.2 that Σ = Var(X), µ = E(X), Z is the standardized

predictor Σ−1/2(X − µ) and that many moment based sufficient dimension reduction

methods may be formulated as the solution to an eigen-decomposition problem:

Mzηi = λiηi, i = 1, · · · , p,

where Mz is the Z scale method-specific candidate matrix.
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For sufficient dimension reduction methods SIR, SAVE and DR, candidate matrices

are

Sliced Inverse Regression: Mz = Var{E(Z|Y )};

Sliced Average Variance Estimation: Mz = E{Ip − Var(Z|Y )}2;

Directional Regression: Mz = 2E{E2(ZZT )}+ 2E2{E(Z|Y )E(ZT |Y )};

+ 2E{E(ZT |Y )E(Z|Y )}E{E(Z|Y )E(ZT |Y )} − 2Ip.

Although in the literature, people tend to work with standardized predictors, for

our purpose, it is easier to describe the candidate matrices in terms of the original pre-

dictor X. Since we will make use of the eigenprojection corresponding to the non-zero

eigenvalues, the βi = Σ−1/2ηi provided by the above approach are orthonormal under

the weighted inner-product of < a,b >= aTΣb, and not the regular dot product, which

induces unnecessary difficulty to the development of our test statistic. In this section,

we work directly with the orginal predictor X, and, as such, use the following symmetric

candidate matrices M.

SIR: M = Σ−1Var{E(X|Y )}Σ−1;

SAVE: M = Σ−1E{Σ− Var(X|Y )}2Σ−1;

DR: M = Σ−1E{2Σ− E
(
(X̃−X)(X̃−X)T |Y, Ỹ

)
}2Σ−1,

where (Ỹ , X̃) is an independent copy of (Y,X). The eigenvectors β1, . . . ,βd correspond-

ing to the first d nonzero eigenvalues of M form a basis of SY |X, and are orthonormal

with respect to the regular inner-product. The corresponding sample version of M, M̂

can then be spectrally decomposed to obtain an estimate of span(β). Notice that these

symmetric candidate matrices are not exactly the same as those traditionally used in the

sufficient dimension reduction literature. Their symmetry facilitates the derivation of the

asymptotic distribution of our test statistic. Interested readers may refer to Li and Dong

(2009), and Li et al. (2010) for further details.
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2.2. A LINK-FREE TEST FOR COMMON INDICES

Throughout this article, we assume that Model (2.1) holds for the two populations

under consideration. Let (Y g
j ,X

g
j ), j = 1, . . . , ng be a simple random sample of size

ng from the gth population (Y g,Xg), g = 1, 2. Also, let X̄g = 1
ng

ng∑
i=1

Xg
i , and Σ̂g =

1
ng

ng∑
i=1

(Xg
i−X̄g)(X

g
i−X̄g)

T , g = 1, 2. LetMg denote the method-specific candidate matrix

for the gth population, λg1 ≥ λg2 . . . ≥ λgd > λg,(d+1) = . . . = λgp = 0 be the eigenvalues of

Mg, and ηgi be the normalized eigenvector corresponding to λgi. Define eigenprojections

Pgd = ηg1η
T
g1 + · · ·+ηgdη

T
gd, Qgd = Ip−Pgd, and let η̂gi denote the corresponding sample

version of ηgi, then Pgd can be estimated by P̂gd = η̂g1η̂
T
g1 + · · ·+ η̂gdη̂

T
gd. Let A+ denote

the Moore-Penrose generalized inverse of matrix A, from the perturbation theory (Kato,

1966) and Tyler (1981), we then have

P̂gd = Pgd +
d∑
i=1

[ηgiη
T
giAg(λgiI −Mg)

+ + (λgiI −Mg)
+Agηgiη

T
gi] + op(n

− 1
2 )

where Ag = M̂g −Mg.

Note that the approach we take is similar to that in Yu et al. (2012) but is

motivated by a set of methodologies developed in Schott (1988, 1991, 1997) for making

inference about common principal component subspaces.

Let W = trace(P1dQ2dP1d), then we have the following proposition:

Proposition 1. Assume that the data (Xg
j , Y

g
j ), for j = 1, . . . , ng, g = 1, 2, are a simple

random sample from (Xg, Y g) with finite fourth order moments, then the null hypothesis

(2.2) is true if and only if W = 0.

Proof:

W = 0 ⇐⇒ trace(P1dQ2dQ2dP1d) = 0

⇐⇒ trace((P1dQ2d)(P1dQ2d)
T ) = 0

⇐⇒ P1dQ2d = 0



13

P1dQ2d = 0 implies that span(P1d) ⊆ span(P2d). Because span(P1d) and span(P2d) have

common dimension d, P1d = P2d and hence (2.2) is true.

On the other hand, span(β) = span(η) if and only if P1d = P2d, which (2.2) im-

plies that P1dQ2d = 0, and hence W = 0. 2

We consider P̂1dQ̂2d, where Q̂2d = Ip − P̂2d =
p∑

l=d+1

η̂glη̂
T
gl, and let T = nŴ ,

where Ŵ = trace(P̂1dQ̂2dP̂1d). Let n = n1 + n2, a1 = n
n1

, a2 = n
n2

. As Yu et al.

(2012) pointed out, Ag = M̂g −Mg can be expressed via influence function approach

as: Ag = M̂g −Mg = Eng [M∗
g(X

g, Y g)] + op(n
−1/2), where En{�} = 1

n

n∑
i=1

{�} denotes

the empirical expectation. This approach is key for the further development of our test

statistic. The explicit formulas for M∗
g in the modified SIR, SAVE and DR are given in

Section 2.6. Let vec(A) denote the vec operator which stacks the columns of matrix A to

form a vector. The following lemma gives the asymptotic distribution of
√
n vec(P̂1dQ̂2d).

Lemma 2.1. Assume that the data (Xg
i , Y

g
i ), for i = 1, . . . , ng, are a simple random

sample from (Xg, Y g) with finite fourth order moments, then under null hypothesis (2.2),

we have
√
n vec(P̂1dQ̂2d)

D−→ N(0,Ψ),

where Ψ = a1Ψ1 + a2Ψ2, Ψg = UgΦgU
T
g , Φg = E{ vec(M∗

g(X
g, Y g)) vec(M∗

g(X
g, Y g))T}

is the asymptotic covariance matrix of
√
ng vec(Ag), and Ug =

d∑
i=1

p∑
k=d+1

λ−1gi (ηgkηgk
T ) ⊗

(ηgiηgi
T ).

Proof:

Let Rg =
d∑
i=1

[ηgiη
T
giAg(λgiI −Mg)

+ + (λgiI −Mg)
+Agηgiη

T
gi] for g = 1, 2.

Therefore

P̂1d = P1d + R1 + op(n
− 1

2 )

P̂2d = P2d + R2 + op(n
− 1

2 )
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vec(P̂1dQ̂2d) = vec((P1d + R1)(Q2d −R2)) + op(n
− 1

2 )

= vec(P1dQ2d −P1dR2 + R1Q2d) + op(n
− 1

2 ).

According to the null hypothesis (2.2), P1d = P2d, hence P1dQ2d = 0. Then

vec(P̂1dQ̂2d) = vec(−P1dR2 + R1Q2d) + op(n
− 1

2 ).

Since (λgiI −Mg)
+ =

p∑
k=1,λgk 6=λgi

(λgi − λgk)−1ηgkηTgk and λgk = 0 when k ≥ d+ 1,

we have

Rg =
d∑
i=1

p∑
k=d+1

ηgiη
T
giAgλ

−1
gi ηgkη

T
gk +

d∑
i=1

p∑
k=d+1

ηgkη
T
gkAgλ

−1
gi ηgiη

T
gi.

Hence,

vec
(
P̂1dQ̂2d

)
= vec

(
−

d∑
i=1

p∑
k=d+1

η2iη2i
TA2λ

−1
2i η2kη2k

T +
d∑
i=1

p∑
k=d+1

η1iη1i
TA1λ

−1
1i η1kη1k

T
)

=
d∑
i=1

p∑
k=d+1

λ−11i (η1kη1k
T ⊗ η1iη1i

T ) vec(A1)

−
d∑
i=1

p∑
k=d+1

λ−12i (η2kη2k
T ⊗ η2iη2i

T ) vec(A2).

By the Multivariate Central Limit Theorem, we can conclude

√
ng

( d∑
i=1

p∑
k=d+1

λ−1gi (ηgkηgk
T ⊗ ηgiηgi

T ) vec(Ag)
)

D−→ N(0,Ψg),

so

√
ag
√
ng

( d∑
i=1

p∑
k=d+1

λ−1gi (ηgkηgk
T ⊗ ηgiηgi

T ) vec(Ag)
)

D−→ N(0, agΨg)

that is
√
n
( d∑
i=1

p∑
k=d+1

λ−1gi (ηgkηgk
T ⊗ ηgiηgi

T ) vec(Ag)
)

D−→ N(0, agΨg).
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Since group 1 and group 2 are independent, we then have the following conclusion

in the lemma:
√
n vec(P̂1dQ̂2d)

D−→ N(0,Ψ).

2

This result leads to following result concerning the asymptotic distribution of our

test statistic T = nŴ .

Theorem 2.2. Assume the conditions of Proposition 1 hold, then under null hypothesis

(2.2), we have

T
D−→

d(p−d)∑
i=1

ωiχ
2
i (1),

where ω1 ≥ · · · ≥ ωd(p−d) are the eigenvalues of Ψ.

Proof:

T = ntrace((P̂1dQ̂2d)(P̂1dQ̂2d)
T ) = n vec(P̂1dQ̂2d)

T vec(P̂1dQ̂2d)

= (
√
n vec(P̂1dQ̂2d)

T )(
√
n vec(P̂1dQ̂2d))

By Lemma 2.1, under null hypothesis (2.2), the conclusion is obvious. 2

A consistent estimate of Ψ, Ψ̂ can be obtained by substituting sample estimates

for the unknown quantities. The weights ωi’s can be consistently estimated using the

eigenvalues of Ψ̂. In the simulation studies which follow we compare the observed value

of the test statistic T to the percentage points of
d(p−d)∑
i=1

ω̂iχ
2
i (1) to approximate the p-value

of our test. We may also use the modified test statistics proposed by Bentler and Xie

(2000) to approximate the tail probabilities.

2.3. SIMULATION STUDIES

Throughout our simulation studies, the random error ε is assumed to be standard

normal and independent of X. The dimension of the predictor vector p is taken to be

4 and 8, the number of slices h = 4. We summarize the results over 1000 replications
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for each simulation study. We compare the performance of our proposed tests among the

three sufficient dimension reduction methods with different choices of n and p.

2.3.1. Estimated Test Levels. In this subsection, we evaluate the performance

of our test statistic under three different models when the null hypothesis (2.2) holds.

2.3.1.1. Model I. We first consider the following model with one dimensional

structure for both groups. The predictor vector X = (X1, · · · , Xp) is generated from

standard multivariate normal.

Y =

 exp(X1 +X2 +X3) + ε1, for group 1;

10 sin(X1 +X2 +X3) + ε2, for group 2.

Table 2.1 shows the estimated test levels for our three test statistics. The test levels are

given in terms of percentages. As the group sizes n1 and n2 increase, the estimated levels

are closer to the nominal levels. For example, when p = 4 and the nominal level is 1%,

the estimated levels for modified SIR are 1.5%, 0.8% and 1.1% respectively for sample

sizes 200, 400 and 600. Also it is not a surprise that the performance of our tests slightly

deteriorate as p increases. All three dimension reduction methods perform reasonably

well for all combinations of p and n.
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Table 2.1. Estimated Test Levels (in percentages) for Model I

Model I with p = 4 Model I with p = 8

Nominal Level (%) Nominal Level (%)

Sample Size Test 1 5 10 Test 1 5 10

SIR 1.50 5.50 9.30 SIR 1.20 4.50 9.10

n1 = n2 = 200 SAVE 0.90 4.60 10.6 SAVE 1.40 5.30 9.60

DR 1.40 5.30 10.8 DR 1.60 4.60 9.50

SIR 0.80 4.60 9.40 SIR 1.30 4.50 10.5

n1 = n2 = 400 SAVE 0.80 4.70 10.4 SAVE 1.40 5.50 9.50

DR 0.80 5.20 9.70 DR 0.70 4.70 10.3

SIR 1.10 4.90 10.3 SIR 0.90 5.20 9.80

n1 = n2 = 600 SAVE 0.90 5.20 9.90 SAVE 1.10 4.90 10.1

DR 1.10 5.00 9.80 DR 1.20 5.10 10.1

2.3.1.2. Model II. In this model, the predictor vector X = (X1, · · · , Xp) follows

a multivariate normal distribution with mean 0, and the correlation between Xi and Xj

is 0.5|i−j|, i = 1, · · · p, j = 1, · · · p. The two groups share common indices and d = 1.

Y =

 exp(2X1 +X2) + ε1, for group 1;

X1 + 0.5X2 + ε2, for group 2.

Table 2.2 presents the estimated significance levels for Model II. Even though the compo-

nents of independent variables are correlated, significance levels are still close to nominal

levels which means our methods work well for models with correlated predictors. When

n1 = n2 = 600, method DR performs the best.
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Table 2.2. Estimated Test Levels (in percentages) for Model II

Model II with p = 4 Model II with p = 8

Nominal Level (%) Nominal Level (%)

Sample Size Test 1 5 10 Test 1 5 10

SIR 1.20 4.70 10.4 SIR 0.80 5.40 9.60

n1 = n2 = 200 SAVE 0.80 4.50 9.50 SAVE 1.30 5.50 10.9

DR 0.90 5.40 9.50 DR 0.80 4.70 10.3

SIR 1.20 4.60 10.3 SIR 1.40 4.50 9.70

n1 = n2 = 400 SAVE 1.30 5.20 9.70 SAVE 0.80 4.70 9.70

DR 0.80 4.70 10.3 DR 1.30 4.60 9.70

SIR 1.10 5.20 9.90 SIR 0.90 4.90 10.1

n1 = n2 = 600 SAVE 1.00 4.90 9.80 SAVE 1.20 4.80 9.80

DR 1.00 5.00 9.80 DR 0.90 5.10 10.1

2.3.1.3. Model III. We now consider a two-dimensional model as follows:

Y =

 1.5(5 +X1)(2 +X2) + 0.5ε1, for group 1;

2(1 +X1)(3 +X2) + 0.5ε2, for group 2.

X1 = W , X2 = V + 0.5W where W and V are independent with V drawn from a t(5)

distribution and W from a standard exponential distribution. The rest of predictors are

independent and identically distributed standard normals. Several versions of this model

were studied by Li (1991), Wen and Cook (2009) and others. This is a difficult test case

for dimension reduction since some predictors are skewed or heavy tailed, and so are prone

to outliers. As shown in Table 2.3, the performance of our test statistics for all of the

three dimension reduction approaches is acceptable.
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Table 2.3. Estimated Test Levels (in percentages) for Model III

Model III with p = 4 Model III with p = 8

Nominal Level (%) Nominal Level (%)

Sample Size Test 1 5 10 Test 1 5 10

SIR 1.20 5.40 10.3 SIR 0.80 4.60 10.5

n1 = n2 = 200 SAVE 0.80 4.50 9.80 SAVE 0.80 5.30 9.60

DR 0.70 4.70 10.5 DR 1.30 4.60 10.8

SIR 1.20 5.20 10.2 SIR 0.80 5.40 10.2

n1 = n2 = 400 SAVE 0.80 5.40 10.3 SAVE 1.40 4.70 9.60

DR 0.70 4.90 9.70 DR 1.20 4.70 9.50

SIR 1.10 4.90 9.90 SIR 0.90 4.90 10.3

n1 = n2 = 600 SAVE 0.90 5.10 10.0 SAVE 1.10 4.80 9.70

DR 1.10 4.90 9.80 DR 1.00 5.20 9.70

2.3.1.4. Model IV.

Y =

 X1
2 + 1 + 0.5ε1, for group 1;

2X1
2 + ε2, for group 2.

This model considers a one-dimensional model with symmetric structure in X

which is drawn from standard multivariate normal distribution. Table 2.4 presents the

estimated significance levels for Model IV. Because SIR is known to fail when the response

surface is symmetric about the origin, it comes as no surprise that the estimated test levels

for this model using SIR are relatively far from nominal levels, while test methods using

SAVE and DR candidate matrices both perform well.
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Table 2.4. Estimated Test Levels (in percentages) for Model IV

Model IV with p = 4 Model IV with p = 8

Nominal Level (%) Nominal Level (%)

Sample Size Test 1 5 10 Test 1 5 10

SIR 0.90 7.50 17.2 SIR 0.80 6.80 18.2

n1 = n2 = 200 SAVE 1.40 4.50 9.50 SAVE 0.60 4.20 9.40

DR 0.70 5.60 9.60 DR 1.60 5.60 11.2

SIR 1.30 6.00 15.4 SIR 0.70 7.80 16.0

n1 = n2 = 400 SAVE 0.90 5.30 9.60 SAVE 1.30 5.60 9.60

DR 0.90 5.30 10.2 DR 0.80 4.70 9.70

SIR 0.90 7.80 14.4 SIR 0.80 8.20 15.8

n1 = n2 = 600 SAVE 1.10 4.90 9.80 SAVE 0.90 5.10 10.2

DR 1.00 4.90 9.90 DR 1.00 5.20 10.1

2.3.2. Estimated Power. We examine the power of our test under the alternative

hypotheses defined in this subsection. Two models are considered. The predictors X for

both models follow the standard multivariate normal.

2.3.2.1. Model V.

Y =

 exp(X1 +Xp)sign(X2 +Xp−1) + 0.5ε1, for group 1;

(2X1 − 3Xp)/(0.5 + (1 + 3X2 −Xp−1)
2) + 0.5ε2, for group 2.

The two populations in this model have the same structural dimension d = 2,

however, they don’t share the same set of indices. We can see from Table 2.5 that when

d is correctly specified as 2, the power in percentages, of different settings of n and p for

our test statistic using the three dimension reduction methods, are all reasonably good.

When d is underspecified, unreported simulation studies show that the power of our test

is also good.
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Table 2.5. Estimated Power at 5% Nominal Levels for Model V

SIR SAVE DR

Sample Size p = 4 p = 8 p = 4 p = 8 p = 4 p = 8

n1 = n2 = 200 0.887 0.901 0.910 0.920 0.935 0.960

n1 = n2 = 400 0.965 0.935 0.980 0.956 0.980 0.996

n1 = n2 = 600 0.998 0.995 0.993 0.978 0.994 0.998

2.3.2.2. Model VI.

Y =

 exp(X1 +Xp)sign(X2 +Xp−1) + 0.5ε1, for group 1;

(X1 +Xp)/(0.5 + (1 +X3 −Xp−1)
2) + 0.5ε2, for group 2.

Model VI is two-dimensional when p > 4. However, in this model, the two populations

share one set of common index X1 +Xp, and only differ with respect to the second set of

index. Table 2.6 shows that the power of our test with d = 2. As we can see, the power

of our test increases as the sample size n increases which was also the case for Model

V. Again, our tests perform reasonably well and are able to detect the different indices

between the two populations for a very high percentage of simulated data sets.

Table 2.6. Estimated Power at 5% Nominal Levels for Model VI

SIR SAVE DR

Sample Size p = 4 p = 8 p = 4 p = 8 p = 4 p = 8

n1 = n2 = 200 0.889 0.915 0.932 0.935 0.905 0.925

n1 = n2 = 400 0.905 0.940 0.935 0.960 0.920 0.950

n1 = n2 = 600 0.925 0.956 0.968 0.965 0.954 0.940
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2.4. APPLICATION TO THE AIS DATA

We return to the AIS dataset discussed in Section 1. This data set was originally

introduced by Nevill and Holder (1995), and studied by Cook and Weisberg (1999b),

Chiaromonte, Cook and Li (2002) and others. As previous noted, we are interested in

investigating how the relationship between the lean body mass L and various predictors

including the logarithms of height, weight, red cell count, white cell count and hemoglobin

vary across gender. Studies in Chiaromonte et al. (2002) show that there is only one

relevant linear combination of predictors for both male and female groups, so a one-

dimensional multi-index model of the form (1.4) can be applied to both groups. We then

conduct our link-free tests via SIR, SAVE and DR to AIS data. All three methods suggest

that we cannot reject the null hypothesis (2.2) at significance level 0.05 (p-values are 0.76,

0.54 and 0.65 for SIR, SAVE and DR, respectively).

Figure 2.1. AIS Data: v̂T1mX vs. v̂T1fX, × for females, ◦ for males.
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Our result is consistent with that of Chiaromonte et al. (2002) where the same

conclusion was drawn via an informal analysis. The authors also applied SIR to the condi-

tional regression of L on X for males and females separately, identifying only one relevant

predictor in each group, v̂T1mX and v̂T1fX. The sample correlation between the two esti-

mated SIR predictors is 0.96, suggesting that relevant linear combinations for males and

females are the same. Figure 2.1 shows the summary plot of the estimated SIR predictors

for males and females.

2.5. SUMMARY

In this section, we consider a test for common indices in multi-index models with

unknown link functions via sufficient dimension reduction approach. Specifically, we focus

on testing if two different multi-index models share identical indices. This hypothesis is

of particular interest in practice where data from both populations share a common set of

explanatory variables. Although common PCA and partial dimension reduction methods

can be adopted to make inference in multi-population dimension reduction problems, they

both have drawbacks. Common PCA does not take into account the information from

dependent variable Y , and partial dimension reduction methods focus on obtaining the

direct sum of all the conditional central subspaces which could not deal with testing for

a set of common indices across the populations.

Finally, we develop a method of determining how similar the two groups are with

respect to the span of the indices of predictors vectors. The method provides us a conve-

nient way to compare two groups. The idea we presented here also opens the way for the

comparison for more groups.

We propose a link free test via SIR, SAVE and DR. The asymptotic distribution

of our test statistic is also derived. Numerical studies indicate that our method works

well in practice, both in terms of test level and power, and in particular works best when

applied with the DR candidate matrix. Furthermore, we applied our method to the AIS

data and found that men and female populations share the same set of common indices

which is consistent with work in Chiaromonte et al. (2002).
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2.6. EXPLICIT CANDIDATE MATRIX FORMULAS

The explicit formulas of candidate matrices for SIR, SAVE and DR are given in

this section. It suffices to derive the expansion of M̂g for the gth population and as such

for ease of exposition, we drop the subscript g in the discussion which follows. Also notice

that our kernel matrices are different from those used in Yu et al. (2012).

First we divide the range of Y into h slices {J1, · · · , Jh}. Let pk = E{I(Y ∈ Jk)},

µ = E(X), Uk = E{(X − µ)I(Y ∈ Jk)} and Vk = E{(X − µ)(X − µ)T I(Y ∈ Jk)}.

Denote p̂k = En{I(Y ∈ Jk)}, µ̂ = En(X), Ûk = En{(X − µ̂)I(Y ∈ Jk)} and V̂k =

En{(X− µ̂)(X− µ̂)T I(Y ∈ Jk)} be the corresponding sample estimators.

The following lemma is useful for deriving the asymptotic expansion of M̂.

Lemma 2.3. Consider Frechet derivatives Σ∗ = (X−µ)(X−µ)T−Σ, Σ̂
∗−1

= −Σ̂
−1

Σ∗Σ̂
−1

,

µ∗ = X−µ, p∗k = I(Y ∈ Jk)− pk, U∗k = XRk−Uk−Xpk−µRk +µpk, V∗k = XXTRk−

E
[
XXTRk

]
−E [XRk] X

T−(XRk − 2E [XRk])µ
T−XE

[
XTRk

]
−µ

(
XTRk − 2E

[
XTRk

])
+

(X− µ)µTE [Rk] + µ (X− µ)T E [Rk] + µµT (Rk − E [Rk]).

Then we have the following Von-mises expansions:

Σ̂ = Σ + En{Σ∗}+ op(n
− 1

2 );

Σ̂
−1

= Σ−1 + En{Σ∗−1}+ op(n
− 1

2 );

µ̂ = µ + En(µ∗) + op(n
−1/2); p̂k = pk + En(p∗k) + op(n

−1/2);

Ûk = Uk + En(U∗k) + op(n
−1/2); V̂k = Vk + En(V∗k) + op(n

−1/2);

p̂−1k = p−1k − En(p2kp
∗
k) + op(n

−1/2); p̂−2k = p−2k − En(2p3kp
∗
k) + op(n

−1/2);

p̂−3k = p−3k − En(3p4kp
∗
k) + op(n

−1/2).

Proof:

Most of these asymptotic expansions can be derived by the Von-mises expansion

in combination with Theorem 6.6.30 in Horn and Johnson (1991), and Li and Wang (2007).
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Following the latter, we use S∗(F ) to indicate the Frechet derivative; for example,

E∗g(X,F ) denotes the Frechet derivative of
∫
g(X,F )dF . Here we just validate expres-

sions for U∗k and V∗k . Let Rk = I (Y ∈ Jk), we have:

U∗k = E∗ [(X− µ)Rk]

= XRk − E [XRk]−Xpk − E [X] (Rk − 2pk)

= XRk − E [(X− µ + µ)Rk]−Xpk − E [X] (Rk − 2pk)

= XRk − E [(X− µ)Rk]− µpk −Xpk − µRk + 2µpk

= XRk −Uk −Xpk − µRk + µpk

Also,

V∗k = E∗
[
(X− µ) (X− µ)T Rk

]
= E∗

[
XXTRk

]
−E∗

[
XµTRk

]
−E∗

[
µXTRk

]
+E∗

[
µµTRk

]
.

Note that

E∗
[
XXTRk

]
= XXTRk − E

[
XXTRk

]
,

and E∗
[
XµTRk

]
is the Frechet derivative of

E
[
XµTRk

]
= E [XRk]µ

T .

So,

E∗
[
XµTRk

]
= E [XRk] (X− µ)T + (XRk − E [XRk])µ

T

= E [XRk] X
T + (XRk − 2E [XRk])µ

T .

E∗
[
µXTRk

]
is the Frechet derivative of E

[
µXTRk

]
= µE

[
XTRk

]
.

So it follows that

E∗
[
µXTRk

]
= (X− µ) E

[
XTRk

]
+ µ

(
XTRk − E

[
XTRk

])
= XE

[
XTRk

]
+ µ

(
XTRk − 2E

[
XTRk

])
.
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E∗
[
µµTRk

]
is the Frechet derivative of E

[
µµTRk

]
= µµTE [Rk] , so that

E∗
[
µµTRk

]
= (X− µ)µTE [Rk] + µ (X− µ)T E [Rk] + µµT (Rk − E [Rk])

All of this yields

E∗
[
(X− µ) (X− µ)T Rk

]
= XXTRk − E

[
XXTRk

]
− E [XRk] X

T − (XRk − 2E [XRk])µ
T

−XE
[
XTRk

]
− µ

(
XTRk − 2E

[
XTRk

])
+ (X− µ)µTE [Rk] + µ (X− µ)T E [Rk] + µµT (Rk − E [Rk]) .

2

2.6.1. Asymptotic Expansion of M̂SIR. Define ΛSIR =
∑h

l=1 plE(X −

µ|Y ∈ Jl){E(X − µ|Y ∈ Jl)}T =
∑h

l=1 p
−1
l UlU

T
l . Then MSIR = Σ−1ΛSIRΣ−1. The

corresponding sample estimators are Λ̂SIR =
∑h

l=1 p̂
−1
l ÛlÛ

T
l and M̂SIR = Σ̂

−1
Λ̂SIRΣ̂

−1
.

The explicit expansion forms of Λ̂SIR and M̂SIR follow,

Lemma 2.4. Let Λ∗SIR =
∑h

l=1

(
− p∗l UlU

T
l

p2l
+

U∗
l U

T
l

pl
+

UlU
∗T
l

pl

)
, then we have the expansion

Λ̂SIR = ΛSIR + En(Λ∗SIR) + op(n
−1/2).

Theorem 2.5. M̂SIR can be expanded asymptotically as M̂SIR =MSIR +En(M∗
SIR) +

op(n
−1/2), where M∗

SIR = Σ∗−1ΛSIRΣ−1 + Σ−1Λ∗SIRΣ−1 + Σ−1ΛSIRΣ∗−1.

Proof of Theorem 2.5.

With the expansion given in Lemma 2.3, the conclusion can be easily derived by

invoking Lemma 2.4. 2

2.6.2. Asymptotic Expansion of M̂SAV E. Let ΛSAV E = E{Σ−Var(X|δ(Y ))}2,

where δ(Y ) =
∑h

l=1 lI(Y ∈ Jl). Then MSAV E = Σ−1ΛSAV EΣ−1.
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Lemma 2.6. ΛSAV E = ΣΛSIR + ΛSIRΣ−Σ2 + Γ, where Γ =
∑h

l=1(Γ
1
l − Γ2

l − Γ3
l + Γ4

l )

with Γ1
l = Vl

2

pl
, Γ2

l =
VlUlU

T
l

p2l
, Γ3

l =
UlU

T
l Vl

p2l
and Γ4

l =
UlU

T
l UlU

T
l

p3l
.

Proof of Lemma 2.6.

ΛSAV E = Σ2 −ΣE[Var(X|Y )]− E[Var(X|Y )]Σ + E[Var(X|Y )2]

= Σ2 −Σ(Σ− ΛSIR)− (Σ− ΛSIR)Σ +
h∑
l=1

pl

(
Vl

pl
− UlU

T
l

pl2

)2

.

With more algebraic calculations, one can easily derive the stated result. 2

Let Γ̂
1

l , Γ̂
2

l , Γ̂
3

l , Γ̂
4

l and Λ̂SAV E be the sample estimators of Γ1
l , Γ2

l , Γ3
l , Γ4

l and

ΛSAV E, respectively. The associated Frechet derivatives are

(
Γ1
l

)∗
= −p

∗
lV

2
l

p2l
+

V∗l Vl

pl
+

VlV
∗
l

pl
,

(
Γ2
l

)∗
= −2

p∗lVlUlU
T
l

p3l
+

V∗l UlU
T
l

p2l
+

VlU
∗
lU

T
l

p2l
+

VlUlU
∗T
l

p2l
,

(
Γ3
l

)∗
= −2

p∗lUlU
T
l Vl

p3l
+

U∗lU
T
l Vl

p2l
+

UlU
∗T
l Vl

p2l
+

UlU
T
l V∗l
p2l

,

(
Γ4
l

)∗
= −3

p∗lUlU
T
l UlU

T
l

p4l
+

U∗lU
T
l UlU

T
l

p3l
+

UlU
∗T
l UlU

T
l

p3l
+

UlU
T
l U∗lU

T
l

p3l
+

UlU
T
l UlU

∗T
l

p3l
.

Lemma 2.7. Let Γ∗ =
∑h

l=1{(Γ
1
l )
∗ − (Γ2

l )
∗ − (Γ3

l )
∗ + (Γ4

l )
∗} and

Λ∗SAV E = ΣΛ∗SIR + Σ∗ΛSIR + ΛSIRΣ∗ + Λ∗SIRΣ − ΣΣ∗ − Σ∗Σ + Γ∗. Then we have

Λ̂SAV E = ΛSAV E + En(Λ∗SAV E) + op(n
−1/2).

Proof of Lemma 2.7.

The conclusion can be derived by Lemmas 2.3, 2.4 and 2.6. Details are omitted.

2



28

Theorem 2.8. M̂SAV E can be expanded asymptotically as

M̂SAV E =MSAV E + En(M∗
SAV E) + op(n

−1/2),

where M∗
SAV E = Σ∗−1ΛSAV EΣ−1 + Σ−1Λ∗SAV EΣ−1 + Σ−1ΛSAV EΣ∗−1.

Proof of Theorem 2.8.

With the expansion in Lemma 2.3, the conclusion can be easily derived by invoking

Lemma 2.7. 2

2.6.3. Asymptotic Expansion of M̂DR. The candidate matrix of directional

regression is

MDR = Σ−1

{
2

h∑
l=1

pl

(
Vl

pl
−Σ

)2

+ 2

(
h∑
l=1

UlU
T
l

pl

)2

+ 2

(
h∑
l=1

UT
l Ul

pl

)(
h∑
l=1

UlU
T
l

pl

)}
Σ−1

We first rewrite MDR as given in the following lemma.

Lemma 2.9. MDR can be reformulated as MDR = Σ−1ΛDRΣ−1, where

ΛDR = 2
h∑
l=1

Γ1
l − 2Σ2 + 2

(
h∑
l=1

UlU
T
l

pl

)2

+ 2

(
h∑
l=1

UT
l Ul

pl

)(
h∑
l=1

UlU
T
l

pl

)
.

Proof of Lemma 2.9. The conclusion can be derived by further algebraic calculations.

We omit the details here. 2

Let Λ̂DR and M̂DR be the sample estimators of ΛDR and MDR respectively.
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Lemma 2.10. Define Frechet derivative

Λ∗DR = 2
h∑
l=1

Γ1
l

∗ − 2ΣΣ∗ − 2Σ∗Σ− 2
h∑
l=1

h∑
k=1

p∗lUlU
T
l UkU

T
k

p2l pk
− 2

h∑
l=1

h∑
k=1

p∗kUlU
T
l UkU

T
k

plp2k

+2
h∑
l=1

h∑
k=1

U∗lU
T
l UkU

T
k

plpk
+ 2

h∑
l=1

h∑
k=1

UlU
∗T
l UkU

T
k

plpk
+ 2

h∑
l=1

h∑
k=1

UlU
T
l U∗kU

T
k

plpk

+2
h∑
l=1

h∑
k=1

UlU
T
l UkU

∗T
k

plpk
− 2

h∑
l=1

h∑
k=1

p∗lU
T
l UlUkU

T
k

p2l pk
− 2

h∑
l=1

h∑
k=1

p∗kU
T
l UlUkU

T
k

plp2k

+2
h∑
l=1

h∑
k=1

U∗Tl UlUkU
T
k

plpk
+ 2

h∑
l=1

h∑
k=1

UT
l U∗lUkU

T
k

plpk
+ 2

h∑
l=1

h∑
k=1

UT
l UlU

∗
kU

T
k

plpk

+2
h∑
l=1

h∑
k=1

UT
l UlUkU

∗T
k

plpk
.

Then we have the expansion Λ̂DR = ΛDR + En(Λ∗DR) + op(n
−1/2).

Proof of Lemma 2.10. The conclusion can be derived by Lemmas 2.3, 2.4 and 2.9.

Details are omitted. 2

Theorem 2.11. M̂DR can be expanded asymptotically as

M̂DR =MDR + En(M∗
DR) + op(n

−1/2),

where M∗
DR = Σ∗−1ΛDRΣ−1 + Σ−1Λ∗DRΣ−1 + Σ−1ΛDRΣ∗−1.

Proof of Theorem 2.11. With the expansion given in Lemma 2.3, the conclusion can

be easily derived by invoking Lemma 2.10. 2
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3. PARTIAL DIMENSION REDUCTION

For a random sample of size ng from the gth population (Y g,Xg), g = 1, . . . , G,

let X̄g = 1
ng

ng∑
i=1

Xg
i , Σ̂g = 1

ng

ng∑
i=1

(Xg
i − X̄g)(X

g
i − X̄g)

T , and n =
G∑
g=1

ng. Standardize the

predictor, Zg
i = Σ̂

− 1
2

g (Xg
i − X̄g), i = 1, · · · , ng, g = 1, · · · , G. Following the common

practice in sufficient dimension reduction, we partition the range of Y g into hg slices, and

calculate the intraslice mean vectors as

Z̄gs =
1

ngs

∑
j|s

Zg
j , s = 1, · · · , Hg, g = 1, · · · , G, (3.1)

where the sum is over indices j of response observations Y g
j that fall into slice s, and ngs

is the number of observations in slice s, for population g. With a little abuse of notation,

in the following discussions, we use {Y g = s} as short for {Y g is in slice s}.

3.1. MODIFIED PARTIAL SLICED INVERSE REGRESSION

The original partial SIR proposed by Chiaromonte et al. (2002) requires the fol-

lowing homogeneous predictor covariance condition across the populations:

Σ1 = Σ2 = . . . = ΣG.

Experience has shown that this homogeneous covariance condition restricts application

of partial SIR in practice, and that its failure can result in misleading conclusions. Here,

we propose a modified partial SIR without the homogeneous covariance constraint, which

we still call partial SIR. Throughout this section, the partial SIR we used refer to the

modified version.

For partial SIR, the sample version of Mg for population g is given by

M̂sir
g =

hg∑
s=1

ngs
ng

Z̄gsZ̄
T
gs, g = 1, · · · , G. (3.2)
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Define ag = Pr(G = g), αg =
√
ag, âg = ng/n, α̂g =

√
âg, φgs = Pr(Y g = s),

fgs =
√
φgs, φ̂gs = ngs/ng, f̂gs =

√
φ̂gs. Also, let Ĥg = (f̂g1Z̄g1, . . . , f̂ghgZ̄ghg). Then

M̂sir
g = ĤgĤ

T
g . Averaging the sample candidate matrices over each population, we obtain

M̂sir =
G∑
g=1

ng
n
M̂sir

g = ĤĤT ,

where Ĥ = (α1Ĥ1, . . . , αGĤG). Let λ̂1 ≥ · · · ≥ λ̂p be the singular values of Ĥ, and define:

Tsir(m) = n

p∑
k=m+1

λ̂2k.

Let H be the population version of Ĥ, we first construct the singular value decom-

position of H:

H =
(
Γ1 Γ0

)D 0

0 0

ΨT
1

ΨT
0

 ,

where
(
Γ1 Γ0

)
is a p× p orthogonal matrix in which Γ1 and Γ0 have dimensions p×m

and p × (p − m),
(
Ψ1 Ψ0

)
is an h × h orthogonal matrix, in which Ψ1 and Ψ0 have

dimensions h×m and h×(h−m), and D is an m×m diagonal matrix of positive diagonal

elements. Following Eaton and Tyler (1994), under the null hypothesis d = m, Tsir(m)

has the same asymptotic distribution as

vecT [
√
nΓT

0 (Ĥ−H)Ψ0] vec[
√
nΓT

0 (Ĥ−H)Ψ0].

Thus we only need to derive the asymptotic distribution of
√
nΓT

0 (Ĥ −H)Ψ0, which is

provided by the following lemma.

Lemma 3.1.
√
nvec[ΓT

0 (Ĥ−H)Ψ0]
D→ Normal(0,Ω),

where ⊗ denotes the Kronecker product, Ω = (ΨT
0 ⊗ΓT

0 )diag(∆1, . . . ,∆G)(Ψ0⊗Γ0), ∆g,

g = 1, . . . G, are defined by Equation (8) in Bura and Cook (2001), and diag(�) denotes a

positive definite block diagonal matrix.
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Proof: By Equation (8) of Bura and Cook (2001), we have the following result:

√
ng vec[(Ĥg −Hg)]

D→ Normal(0,∆g), (3.3)

where ∆g is defined in Bura and Cook (2001). Hence:

√
nvec[ΓT

0 (Ĥ−H)Ψ0]
D→ Normal(0,Ω).

2

In sufficient dimension reduction, estimation of d is often based on testing a se-

quence of hypotheses H0 : d = m versus Ha : d > m, with m incremented by 1 until the

hypothesis is not rejected. At which point d̂ is the last value of m tested. For partial SIR,

the following theorem provides a test statistic for testing H0 : d = m versus Ha : d > m.

Theorem 3.2. Assuming the linearity condition for Xg, g = 1, . . . , G, under the null

hypothesis of H0 : d = m, the limiting distribution of Tsir(m) is the same as that of

(h−m)(p−m)∑
i=1

ωiKi,

where h =
G∑
g=1

hg is the total number of slices, the Ki
′s are iid χ2

1, and ω1 ≥ · · · ≥

ω(h−m)(p−m) are the ordered eigenvalues of Ω.

The proof of Theorem 3.2 is straight forward following Lemma 3.1, hence is omit-

ted here.

3.2. PARTIAL SLICED AVERAGE VARIANCE ESTIMATION

For partial SAVE, the sample version of Mg for population g is given by

M̂save
g =

hg∑
s=1

ngs
ng

[Ip − ĉov(Zg|Y g = s)]2, (3.4)

where ĉov(Zg|Y g = s) is the sample variance in population g, with Y g falling into the s

slice, s = 1, . . . , hg.
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Averaging the sample candidate matrices over each population, we obtain M̂save =
G∑
g=1

ng

n
M̂save

g , which can be spectrally decomposed as:

M̂save =

p∑
k=1

λ̂kη̂kη̂
T
k ,

where λ̂1 ≥ · · · ≥ λ̂p ≥ 0 are the ordered eigenvalues of M̂save, and η̂k, k = 1, . . . , p are

the corresponding eigenvectors. Let η̂ = (η̂m+1, · · · , η̂p), define

Tsave(η̂) =
1

2

G∑
g=1

hg∑
s=1

ngstr[(η̂
T (Ip − ĉov(Zg|Y g = s))η̂)2].

The following theorem (Shao et al. 2009) provides a test statistic for testing

H0 : d = m versus Ha : d > m.

Theorem 3.3. Assume that X′gs are normally distributed with the same covariance, then,

under null hypothesis H0 : d = m, Tsave(η̂) follows chi-squared distribution with degrees

of freedom of (h−G)(p− d)(p− d+ 1), where h =
G∑
g=1

hg.

3.3. PARTIAL DIRECTIONAL REGRESSION

Within the context of dimension reduction, Li and Wang (2007) proposed direc-

tional regression (DR) for a single population. In this subsection, we extend their result

to multiple populations. Let (Z̃g, Ỹ g) be an independent copy of (Zg, Y g), the sample

version of Mg for population g is given by:

M̂dr
g = 2

hg∑
s=1

E2
n[Ẑg(Ẑg)T − Ip|Y g = s)]φ̂gs

+2[

hg∑
s=1

En(Ẑg|Y g = s)En((Ẑg)T |Y g = s)φ̂gs]
2

+2

hg∑
s=1

En((Ẑg)T |Y g = s)En(Ẑg|Y g = s)φ̂gs

×
hg∑
s=1

En(Ẑg|Y g = s)En((Ẑg)T |Y g = s)φ̂gs, (3.5)
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where notations such as En(Ẑg|Y g = s) stand for sample conditional moments, Z̄gs.

We may rewrite M̂dr
g = ĤgĤ

T
g , where Ĥg = (Ĥg

11, · · · , Ĥ
g
1hg

; Ĥg
2; Ĥ

g
31, · · · , Ĥ

g
3hg

)

is a p × (hp + h + p) matrix, see Li and Wang (2007) for details. Averaging the sample

candidate matrices over each population, we obtain

M̂dr =
G∑
g=1

ng
n
M̂dr

g = ĤĤT ,

where Ĥ = (α̂1Ĥ1, . . . , α̂GĤG). Let λ̂1 ≥ · · · ≥ λ̂p be the singular values of Ĥ, and define:

Tdr(m) = n

p∑
k=m+1

λ̂2k.

Theorem 3.4. Assuming the linearity condition for Xg, g = 1, . . . , G, the common co-

variance condition, and the coverage condition (See Li and Wang (2007) for details),

under the null hypothesis of H0 : d = m, the limiting distribution of Tdr(m) is the same

as that of
(hp+p+h−m)(p−m)∑

i=1

ωiKi.

where h =
G∑
g=1

hg is the total number of slices, the Ki
′s are iid χ2

1,

Ω = (ΨT
0 ⊗ ΓT

0 )diag(∆1, . . . ,∆G)(Ψ0 ⊗ Γ0), with ∆g defined by Equation (14) of Li and

Wang (2007), and ω1 ≥ · · · ≥ ω(hp+p+h−m)(p−m) are the ordered eigenvalues of Ω.

The proof of Theorem 3.4 is straightforward following Theorem 5 of Li and Wang

(2007), hence is omitted here.
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4. TESTING COMMON INDICES FOR MULTI-INDEX MODELS

In this section, we focus on testing the hypothesis that the central subspace of a

particular group is the same as that of any other group:

SY 1|X1 = SY 2|X2 = . . . = SY G|XG , (4.1)

where (Y g,Xg) is a generic pair of (Y,X) for the gth group, g = 1, · · · , G, G ≥ 2. Hence,

we are interested in testing if the spaces spanned by the first d linear combinations of X

are sufficient for each group. In Section 2, we considered an analogous testing procedure

for two populations. The test statistics we propose in this section are, however, different

from the previously discussed method even when G = 2.

Under the framework of the partial central subspace, our testing hypothesis (4.1)

is equivalent to

SY 1|X1 = SY 2|X2 = . . . = SY G|XG = S(W )
Y |X. (4.2)

Notice that although partial dimension reduction can be adapted to infer about multi-

population dimension reduction problems, the partial central subspace it obtains is a

direct sum of all the marginal central subspaces (Chiaromonte et al., 2002), which cannot

deal with testing hypotheses such as (4.1).

The rest of this section is organized as follows. In Section 4.1, we give a quick

review of sufficient dimension reduction methods for multiple populations. In Section 4.2

and Section 4.3, we present our test statistics for testing (4.1) for G = 2 and G > 2.

The asymptotic distributions of these test statistics are also discussed. We illustrate the

performance of our methods via simulation studies in Section 4.4. We then apply our

method to the plasma retinol and beta-carotene data in Section 4.5. Brief conclusions are

given in Section 4.6.
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4.1. PARTIAL DIMENSION REDUCTION

For the methods of the partial dimension reduction, the following key equation

connects the marginal central subspaces SY g |Xg with the partial central subspace S(W )
Y |X:

S(W )
Y |X =

⊕G

g=1
SY g |Xg , (4.3)

where
⊕

indicates the direct sum between two subspaces. Chiaromonte et al. (2002)

and Wen and Cook (2007) proposed estimation methods for the partial central subspace

based on (4.3).

Under the null hypothesis (4.2), it is reasonable to assume that the dimensions

of all the marginal central subspaces are equal to d = SY g |Xg , g = 1, · · · , G. We shall

assume that d is known in what follows. An estimate of d can be easily obtained via any

partial dimension reduction method including those discussed in Section 3 or the single

population dimension reduction method discussed in Section 2.

For the multiple population setting, let (Y g
j ,X

g
j ), j = 1, . . . , ng be a simple random

sample of size ng from the gth population (Y g,Xg) for g = 1, . . . , G. Let X̄g = 1
ng

ng∑
i=1

Xg
i ,

and Σ̂g = 1
ng

ng∑
i=1

(Xg
i − X̄g)(X

g
i − X̄g)

T . In the following subsections, we propose test

statistics for testing (4.1) with G = 2 populations and G > 2 populations.

4.2. TEST STATISTIC WITH TWO POPULATIONS

All the notation and symbols defined in Section 2 will be adopted in this section.

We consider P̂(P̂gd−Pgd), where P̂ is the eigenprojection of M̂(W ) corresponding

to its largest d eigenvalues (detailed expressions of M̂(W ) are given in Chapter 3).

Following Section 2, we expand Ag = M̂g−Mg via the influence function approach

as:

Ag = M̂g −Mg = Eng [M∗
g(X

g, Y g)] +Op(n
−1),

where En{.} = 1
n

n∑
i=1

{.}. The following lemma gives the asymptotic distribution of

√
ng vec[P̂(P̂gd −Pgd)]:
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Lemma 4.1. Assume that the data (Xg
i , Y

g
i ), for i = 1, . . . , ng, are a simple random

sample from (Xg, Y g) with finite fourth order moments, then under null hypothesis (4.1),

we have:

√
ng vec[P̂(P̂gd −Pgd)]

D−→ N(0,Ψg),

where Ψg = UgΦgU
T
g , Φg = E{ vec(M∗

g(X
g, Y g)) vec(M∗

g(X
g, Y g))T} is the asymptotic

covariance matrix of
√
ng vec(Ag), and Ug =

d∑
i=1

p∑
k=d+1

λ−1gi (ηgkηgk
T )⊗ (ηgiηgi

T ).

Proof: Under the null hypothesis (4.1), the expected value of P̂ is Pgd, and

λgk = 0, for g = 1, . . . , G and k = d+ 1, . . . , p, so we have

P̂(P̂gd −Pgd) = P̂
d∑
i=1

[ηgiη
T
giAg(λgiI −Mg)

+ + (λgiI −Mg)
+Agηgiη

T
gi] + op(n

−1/2)

=
d∑
i=1

P̂ηgiη
T
giAg(λgiI −Mg)

+ +
d∑
i=1

P̂(λgiI −Mg)
+Agηgiη

T
gi + op(n

−1/2)

=
d∑
i=1

p∑
k=d+1

λ−1gi ηgiη
T
giAgηgkη

T
gk + op(n

− 1
2 ).

Then the asymptotic distribution of
√
ng vec[P̂(P̂gd − Pgd)] is easily shown to be multi-

variate normal.

2

Let t = vec[P̂(P̂1d − P̂2d)], c = n1n2

n1+n2
, c1 = n1

n1+n2
, c2 = n2

n1+n2
, Ψ = c2Ψ1 + c1Ψ2.

Theorem 4.2 provides the asymptotic result concerning the test statistic T = ctT Ψ̂+t,

where Ψ̂ is the sample estimate of Ψ.

Theorem 4.2. Assume that the data (Xg
i , Y

g
i ), for g = 1, 2, i = 1, . . . , ng, are a simple

random sample from (Xg, Y g) with finite fourth order moments, then under null hypothesis

(4.1), T follows an asymptotically chi-squared distribution with degree of freedom of d(p−

d).

4.3. TEST STATISTIC FOR G > 2

Let tg = vec[P̂(P̂gd −Pgd)], g = 1, . . . , G, t̄ =
G∑
i=1

ni

n
ti and P̂ =

G∑
i=1

ni

n
P̂id, then
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tg − t̄ = vec[P̂(P̂gd − P̂)− P̂(Pgd −
G∑
i=1

ni
n

Pid)].

Also, let mg ≡ vec[P̂(P̂gd − P̂)], then, under null hypothesis (4.1), mg has the

same asymptotic distribution as tg − t̄.

Define t = ((t1 − t̄)T , . . . , (tG − t̄)T )T and m = (mT
1 , . . . ,m

T
G)T . We have:

√
nt =

√
n(Ip2G −

1

n
(n1, · · · , nG)⊗ 1G ⊗ Ip2)(t1

T , · · · , tGT )T

=

(
diag

(√
n

n1

, · · · ,
√

n

nG

)
− 1√

n
(
√
n1, · · · ,

√
nG)⊗ 1G

)
⊗ Ip2

(
√
n1(t1)

T , · · · ,
√
nG(tG)T )T ,

where 1G is the G-dimensional vector of all ones.

Let rg = ng

n
, g = 1, . . . , G. Assuming that as n goes to infinity, rg is a constant.

Based on the asymptotic distribution of
√
ng vec[P̂(P̂gd − Pgd)] obtained in Lemma 4.1,

we could derive the asymptotic distribution of
√
nm which is the same as that of

√
nt.

Theorem 4.3. Assume that the data (Xg
i , Y

g
i ), for g = 1, 2, i = 1, . . . , ng, are a sim-

ple random sample from (Xg, Y g) with finite fourth order moments. Then under null

hypothesis (4.1), we have:
√
nm

D−→ N(0,BWBT ),

where B =

(
diag

(√
1
r1
, · · · ,

√
1
rG

)
−(
√
r1, · · · ,

√
rG)⊗1G

)
⊗Ip2 and W = diag(Ψ1, · · · ,ΨG).

Proof:

Lemma 4.1 tells us that under null hypothesis (4.1),

√
ngtg

D−→ N(0,Ψg).

And since P̂(P̂gd − Pgd) =
d∑
i=1

p∑
k=d+1

λ−1gi ηgiη
T
giAgηgkη

T
gk + op(n

− 1
2 ) is just related to the

gth population, tg, g = 1, · · · , G are independent with each other. Then the asymptotic
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covariance of (
√
n1t1

T , · · · ,√nGtG
T )T is W = diag(Ψ1, · · · ,ΨG), that is

(
√
n1t1

T , · · · ,
√
nGtG

T )T
D−→ N(0,W).

Hence,
√
nt

D−→ N(0,BWBT ).

Because
√
nm and

√
nt have the same asymptotic distribution, we could conclude that

√
nm

D−→ N(0,BWBT ).

Theorem 4.4 provides the asymptotic result concerning our test statistic T =

nmTm.

Theorem 4.4. Assume the conditions of Lemma 4.1 hold, then under null hypothesis

(4.1), we have

T
D−→

(G−1)d(p−d)∑
i=1

ωiχ
2
i (1),

where ω1 ≥ · · · ≥ ω(G−1)d(p−d) are the eigenvalues of BWBT .

Proof:

Since B =
(
diag(

√
1
r1
, · · · ,

√
1
rG

) − (
√
r1, · · · ,

√
rG) ⊗ 1G

)
⊗ Ip2 , then rank(B) =

(G− 1)× p2.

Also, W = diag(Ψ1, · · · ,ΨG), where Ψg = UgΦgU
T
g . Hence, rank(Ψg) = rank(Ug) =

d(p− d), and rank(W) = d(p− d)G. By the elementary row and column operations, we

may rewrite B as

B = Q(B1, · · · ,BG−1,O),

where Q represents the composition of all elementary operations, Bi is a p2G×p2 column

full rank matrix, for i = 1, · · · , G− 1, and O is a p2G× p2 matrix of zeros. Hence,

rank(BWBT ) = rank((B1, · · · ,BG−1,O)W(B1, · · · ,BG−1,O)T )

= rank((B1, · · · ,BG−1)diag(Ψ1, · · · ,ΨG−1)(B1, · · · ,BG−1)
T ).



40

Because (B1, · · · ,BG−1) is a column full rank matrix, there exists an invertible matrix D

such that (B1, · · · ,BG−1) = D

Ip2(G−1)

O

.

So, we have

rank
(
(B1, · · · ,BG−1)diag(Ψ1, · · · ,ΨG−1)(B1, · · · ,BG−1)

T )
)

= rank(Ψ1, · · · ,ΨG−1) = d(p− d)(G− 1).

Then, the conclusion just follows naturally. 2

4.4. SIMULATION STUDIES

Throughout our simulation studies, the random error ε is assumed to be standard

normal and independent of X. The dimension of the predictor vector p is taken to be

5 or 10, the number of slices is h = 5. We summarize our results over 1000 replications

for each simulation study. We compare the performance of our proposed tests among the

three sufficient dimension reduction methods with different choices of n and p.

4.4.1. Estimated Test Levels. In this subsection, we evaluate the performance

of our test statistics under different models when null hypothesis (4.1) holds.

4.4.1.1. Model I. We first consider the following model with one-dimensional

structure for all three groups. The predictor vector X = (X1, · · · , Xp) is generated from

the standard multivariate normal.

Y =


exp(X1 +X2 +X3) + ε1, for group 1;

sin(X1 +X2 +X3) + ε2, for group 2;

X1 +X2 +X3 + ε3, for group 3.

Table 4.1 shows the estimated test levels for our test statistics. As the group size increases,

the estimated levels approach nominal levels. For example, when p = 5 and the nominal

level is 1%, the estimated levels for modified SIR are 1.8%, 1.4% and 1.1% respectively

for sample sizes 400, 600 and 800. Also it comes as no surprise that the performance
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of our tests slightly deteriorates as p increases. Although, SIR-based method generates

simulation results greater than the true nominal levels, results at p = 10 are more far

away from the true value. All three dimension reduction methods perform reasonably

well for all combinations of p and n.

Table 4.1. Estimated Test Levels (in percentages) for Model I

Model I with p = 5 Model I with p = 10

Nominal Level (%) Nominal Level (%)

Sample Size Test 1 5 10 Test 1 5 10

SIR 1.80 6.80 13.30 SIR 2.20 7.10 14.10

n1 = n2 = n3 = 400 SAVE 0.50 4.50 6.90 SAVE 0.30 2.70 5.20

DR 1.50 7.80 12.10 DR 0.80 3.80 7.20

SIR 1.40 6.20 10.40 SIR 2.00 6.60 11.90

n1 = n2 = n3 = 600 SAVE 0.60 4.10 7.80 SAVE 0.30 3.20 6.70

DR 0.90 7.30 12.3 DR 0.70 4.20 7.80

SIR 1.10 5.40 10.4 SIR 0.90 6.20 10.80

n1 = n2 = n3 = 800 SAVE 0.70 5.10 8.90 SAVE 0.50 4.20 8.30

DR 1.20 5.80 10.90 DR 0.80 4.20 7.90

4.4.1.2. Model II. We consider a two-dimensional model with X generated in the

same way as those in Model I. All three groups have the same two-dimensional structure.

Y =


exp((X1 +X2)(X2 +X3)) + ε1, for group 1;

(X1 +X2)(X2 +X3) + ε2, for group 2;

sin(X1 +X2) + exp(X2 +X3) + ε3, for group 3.
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Table 4.2. Estimated Test Levels (in percentages) for Model II

Model II with p = 5 Model II with p = 10

Nominal Level (%) Nominal Level (%)

Sample Size Test 1 5 10 Test 1 5 10

SIR 0.20 1.20 3.60 SIR 0.00 1.00 2.30

n1 = n2 = n3 = 400 SAVE 2.40 7.80 12.3 SAVE 3.20 6.50 14.00

DR 0.70 4.10 11.60 DR 0.60 3.10 7.20

SIR 0.80 3.90 9.10 SIR 0.20 1.30 3.20

n1 = n2 = n3 = 600 SAVE 1.60 6.70 11.50 SAVE 1.80 6.80 12.60

DR 0.90 6.30 8.80 DR 0.70 3.70 8.20

SIR 0.60 3.20 10.3 SIR 0.40 1.50 4.00

n1 = n2 = n3 = 800 SAVE 1.40 5.20 10.10 SAVE 1.50 5.80 11.8

DR 0.90 5.40 9.00 DR 0.80 4.10 8.30

As shown in Table 4.2, our method based on the SAVE and DR candidate matrix

performs better than those based on SIR, in this model. For example with sample size

800, p = 5 and the nominal level is 5%, the estimated test levels of methods SIR, SAVE

and DR are 3.20%, 5.20% and 5.40%, respectively. Most of the simulation results for

SIR-based methods are much less than the true nominal levels. It seems that SIR-based

method is more sensitive to the choices of sample sizes and number of variables (p) here.

For example, when p = 10 and sample size is 400, the estimation level under nominal

level 1% is even equal to 0.

4.4.1.3. Model III. In this model, the predictor vector X ′is are independent and

t distributed with degrees of freedom 1.

Y =


(X1 + 5)/(X2 + 2) + ε1, for group 1;

X1 + 1/(X2 + 3) + ε2, for group 2;

X1 + exp(X2 + 2) + ε3, for group 3.
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Table 4.3. Estimated Test Levels (in percentages) for Model III

Model III with p = 5 Model III with p = 10

Nominal Level (%) Nominal Level (%)

Sample Size Test 1 5 10 Test 1 5 10

SIR 3.1 7.9 15.6 SIR 0.30 3.40 6.60

n1 = n2 = n3 = 400 SAVE 2.20 7.40 15.0 SAVE 3.50 7.40 15.20

DR 1.60 6.40 11.40 DR 1.80 6.40 11.70

SIR 2.80 7.50 13.20 SIR 0.50 3.70 6.90

n1 = n2 = n3 = 600 SAVE 1.80 6.60 12.90 SAVE 2.40 6.90 13.10

DR 1.40 6.00 11.10 DR 1.50 5.90 10.90

SIR 1.60 6.40 11.70 SIR 0.60 3.50 7.10

n1 = n2 = n3 = 800 SAVE 1.40 5.50 11.5 SAVE 1.70 6.70 12.50

DR 1.30 5.20 10.20 DR 1.30 5.70 10.60

From table 4.3, we could tell that SIR-based method is strongly affected by value

of p. When p is 5, the estimation test levels based on SIR tend to be greater than the

nominal levels, while they tilt to the other direction when p is 10. But generally speaking,

the performance of our methods seems reasonable when the independent variables are not

normally distributed.

4.4.1.4. Model IV. We now consider a one-dimensional model as follows:

Y =


exp(X1 +X2) + ε1, for group 1;

sin(X1 +X2) + ε2, for group 2;

X1 +X2 + ε3, for group 3.

In this model, the predictor vector X = (X1, · · · , Xp) follows a multivariate normal dis-

tribution with mean 0, and the correlation between Xi and Xj as 0.5|i−j|, i = 1, · · · p,

j = 1, · · · p. Different groups share common indices and d = 1. It seems that the corre-
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lation among the predictors doesn’t substantially affect the performance of our methods.

The DR-based method performs best among our three test procedures.

Table 4.4. Estimated Test Levels (in percentages) for Model IV

Model IV with p = 5 Model IV with p = 10

Nominal Level (%) Nominal Level (%)

Sample Size Test 1 5 10 Test 1 5 10

SIR 2.00 7.00 16.20 SIR 2.30 7.20 17.20

n1 = n2 = n3 = 400 SAVE 1.60 6.20 12.4 SAVE 2.70 6.80 12.5

DR 1.50 5.70 11.50 DR 0.70 5.90 11.90

SIR 1.70 6.70 13.70 SIR 1.90 7.00 14.90

n1 = n2 = n3 = 600 SAVE 1.60 5.90 12.00 SAVE 2.10 6.20 11.80

DR 0.80 5.50 10.30 DR 0.80 5.70 11.30

SIR 1.30 5.80 12.2 SIR 1.60 6.20 13.5

n1 = n2 = n3 = 800 SAVE 1.50 5.30 11.50 SAVE 1.70 5.90 11.40

DR 1.10 5.40 9.60 DR 1.10 5.70 10.40

4.4.1.5. Model V. In this model, the predictor vector X = (X1, · · · , Xp) is also

generated from standard multivariate normal. We can see from Table 4.5 that SIR-based

testing method fails for the symmetric model. Its estimated nominal levels are much

higher than the true values. But methods based on SAVE and DR still work reasonably

well, which is in line with our expectations.

Y =


exp(X1) + ε1, for group 1;

sin(X2
1 ) + ε2, for group 2;

X1 + ε3, for group 3.
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Table 4.5. Estimated Test Levels (in percentages) for Model V

Model V with p = 5 Model V with p = 10

Nominal Level (%) Nominal Level (%)

Sample Size Test 1 5 10 Test 1 5 10

SIR 4.80 18.70 31.50 SIR 5.10 18.00 30.60

n1 = n2 = n3 = 400 SAVE 1.80 6.70 13.50 SAVE 1.70 7.30 13.50

DR 0.60 5.70 7.90 DR 1.70 5.90 8.2

SIR 4.90 19.60 30.60 SIR 5.60 20.60 33.50

n1 = n2 = n3 = 600 SAVE 1.70 5.50 11.8 SAVE 1.60 6.40 11.40

DR 1.40 5.60 8.60 DR 1.70 5.50 11.2

SIR 3.80 20.50 34.60 SIR 4.80 19.90 33.50

n1 = n2 = n3 = 800 SAVE 1.10 4.80 10.70 SAVE 1.40 4.30 11.20

DR 1.30 4.80 9.40 DR 0.80 5.60 11.2

4.4.2. Estimated Power. We examine the power of our tests under the al-

ternative hypothesis in this subsection. The predictors X for the model again follow the

standard multivariate normal distribution.

4.4.2.1. Model VI.

Y =


exp(X1 +X2) + ε1, for group 1;

sin(X3 −X2) + ε2, for group 2;

X4 +Xp + ε3, for group 3.

Here each group has a different direction, that is SY g |Xg = 1 for g = 1, 2, 3. We

first set d = 1. Here, d = 1 is the dimension of each group. As shown in Table 4.6, for

all the sample sizes, p and choices of dimension reduction methods, SIR-based methods
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performed extremely well with 100% of power. The power of SAVE and DR is around

90% and 70% which is also acceptable.

Table 4.6. Estimated Power at 5% Nominal Levels for Model VI at d = 1

SIR (power×100) SAVE (power×100) DR (power×100)

Sample Size p = 5 p = 10 p = 5 p = 10 p = 5 p = 10

n1 = n2 = n3 = 400 100 100 77.90 98.60 70.60 74.6

n1 = n2 = n3 = 600 100 100 79.90 96.50 73.2 77.5

n1 = n2 = n3 = 800 100 100 81.30 92.40 77.5 79.4

If we use a different structural dimension for Model VI, say d = 3, which is the

dimension of partial central subspace. The power of our SIR-based method would greatly

decrease to values less than 50%, but the power of SAVE and DR remains around 70%. It

seems that the power of the SIR test method is quite sensitive to the choice of d. Based on

our simulation studies including some results not presented here, an estimate of d using

single population dimension reduction is recommended in practice.

4.4.3. Comparison of the Two Testing Methods for G = 2. In this section,

we compare simulation results of methods introduced in Section 2 and this section for

G = 2.

Recall that Model I from Section 2.3.1.1, where the predictor vector X = (X1, · · · , Xp),

is generated from standard multivariate normal.

Y =

 exp(X1 +X2 +X3) + ε1, for group 1;

10 sin(X1 +X2 +X3) + ε2, for group 2.

Table 4.7 and Table 4.8 compare the estimated test levels for the new method in this sec-

tion and the two-sample method proposed in Section 2 with p = 4 and p = 8 respectively.

The common sample size is taken to be 200, 400 and 600. We find that the performance
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of method in Section 2 is more stable, its estimated levels are closer to the true nominal

levels. Our new method also performs reasonably well here, though it seems that the

testing method proposed in Section 2 works better for G = 2.

Table 4.7. Estimated Test Levels for Model I in Section 2 with p = 4

New Method Method in Section 2

Nominal Level (%) Nominal Level (%)

Sample Size Test 1 5 10 Test 1 5 10

SIR 1.70 7.60 16.4 SIR 1.50 5.50 9.30

n1 = n2 = 200 SAVE 0.50 3.50 7.50 SAVE 0.90 4.60 10.6

DR 1.40 6.30 12.0 DR 1.40 5.30 10.8

SIR 1.50 7.50 12.10 SIR 0.80 4.60 9.40

n1 = n2 = 400 SAVE 0.70 3.80 7.70 SAVE 0.80 4.70 10.4

DR 1.40 5.90 10.80 DR 0.80 5.20 9.70

SIR 1.20 6.40 10.70 SIR 1.10 4.90 10.3

n1 = n2 = 600 SAVE 0.90 4.50 8.60 SAVE 0.90 5.20 9.90

DR 1.20 4.60 9.50 DR 1.10 5.00 9.80
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Table 4.8. Estimated Test Levels for Model I in Section 2 with p = 8

New Method Method in Section 2

Nominal Level (%) Nominal Level (%)

Sample Size Test 1 5 10 Test 1 5 10

SIR 3.20 8.60 18.60 SIR 1.20 4.50 9.10

n1 = n2 = 200 SAVE 0.40 3.00 7.30 SAVE 1.40 5.30 9.60

DR 1.70 7.20 12.60 DR 1.60 4.60 9.50

SIR 1.80 7.50 13.5 SIR 1.30 4.50 10.5

n1 = n2 = 400 SAVE 0.70 3.50 7.60 SAVE 1.40 5.50 9.50

DR 0.60 3.60 12.70 DR 0.70 4.70 10.3

SIR 1.30 6.80 11.2 SIR 0.90 5.20 9.80

n1 = n2 = 600 SAVE 0.80 3.90 8.90 SAVE 1.10 4.90 10.1

DR 0.80 6.10 8.90 DR 1.20 5.10 10.1

4.5. APPLICATION TO THE BETA-CATOTENE DATA

Numerous observational studies suggest that low dietary intake or low plasma

concentrations of retinol, beta-carotene, or other carotenoids are associated with increased

risk of developing certain types of cancer (Peto et al. 1981). It has been of interest to

determine those factors that may affect these concentrations, and so several studies have

been conducted in the past. For example, studies to investigate the effect of personal

characteristics and dietary factors on plasma concentrations in human serum, and to build

models using these variables to predict and evaluate plasma concentrations of retinol and

beta-carotene accurately were carried out in Nierenberg et al. (1989). Zhu et al. (2010b),

Yoo (2008b, 2010), and Hilafu and Yin (2013) also considered such factors.

Here, we apply our method to a dataset to determine how smoking status affects

the relationship between some personal characteristics, dietary factors and the concen-

tration of beta-carotene. The data “plasma-retinol” is available at the online library of

datafiles of Carnegie Mellon University (http://lib.stat.cmu.edu). Study objects contain-

ing 315 observations on 14 variables were patients who had an elective surgical procedure
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during a three-year period to biopsy or remove a lesion of the lung, colon, breast, skin,

ovary or uterus that was found to be non-cancerous. Note that subject 62 with an ex-

tremely high value of alcohol use is treated as outlier by Hilafu and Yin (2003), Zhu et

al. (2010b) and was deleted ahead of time. We also remove subject 62 from our data

analysis. Variables SEX, SMOKSTAT, VITUSE are categorical, BETAPLASMA and

RETPLASMA are continuous response variables and the remaining 9 variables are also

continuous. Detailed descriptions of our variables are given in Table 4.9 as below.

Table 4.9. Variable Names

Variable Name Brief Description

AGE Age (years)

SEX Sex (1=Male, 2=Female)

SMOKSTAT Smoking status (1=Never, 2=Former, 3=Current Smoker)

QUETELET Quetelet (weight/height2)

VITUSE Vitamin Use (1=Yes, fairly often, 2=Yes, not often, 3=No)

CALORIES Number of calories consumed per day

FAT Grams of fat consumed per day

FIBER Grams of fiber consumed per day

ALCOHOL Number of alcoholic drinks consumed per week

CHOLESTEROL Cholesterol consumed (mg per day)

BETADIET Dietary beta-carotene consumed (mcg per day)

RETDIET Dietary retinol consumed (mcg per day)

BETAPLASMA Plasma beta-carotene (ng/ml)

RETPLASMA Plasma Retinol (ng/ml)

We take one of the categorical variables, smoking status (SMOKSTAT) as the

group identifier and divide the study objects into 3 groups: nonsmoker, former smoker and

current smoker. The remaining 9 continuous variables (X1 = AGE, X2 = QUETELET,

X3 = CALORIES, X4 = FAT, X5 = FIBER, X6 = ALCOHOL, X7 = CHOLESTEROL,
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X8 = BETADIET, X9 = RETDIET) are the independent variables and plasma beta-

carotene is the dependent variable. We take the number of slices h of our methods to be

5, and the number of directions within each group to be d = 1 which is the dimension

of the partial central subspace S(W )
Y |X, with W = SMOKSTAT. We apply the SIR-based

test method since according to our simulation studies, it yields the most power among

all three test procedures. The observed test statistic is T = 259.15, which is greater than

224.20, the 95th percentile of the simulated weighted chi-square distribution. Hence, we

reject the null hypothesis which means that smoking status does affect how these dietary

factors and personal characteristics considered in this study influence the concentration

of beta-carotene in human serums.

The results of our analysis are consistent with those of Hilafu and Yin (2013) and

might shed light on the possible causal mechanisms between smoking and cancer risk. In

fact, many studies have shown that smoking increases the risk of many cancers other than

lung cancer. Our conclusion combined with the observational studies conducted by Peto

et al. (2008) could also help us better understand the relationships between smoking and

the risk of these cancers.

4.6. SUMMARY

In this section, we developed a new test statistic, and its asymptotic distribution,

for testing the common indices of more than two multi-index models. Simulation results

show that our new method is able to detect if different groups share the same dimension

reduction subspaces. In the real life, our method could also be used to check the signif-

icance of some categorical variable. Applying our method to the plasma beta-carotene

data set, we find that the dimension reduction subspaces of the three groups (nonsmoker,

previous smoker and current smoker) are not the same. This conclusion means that the

smoking status variable may significantly affect how those personal chacratersitics and

dietary factors influence the concentration of beta-carotene in human serums.
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5. FUTURE WORK

In this dissertation, we proposed novel testing procedures for testing if several

multi-index models share the same set of indices. When there are two populations (two

multi-index models), both of the methods discussed in Section 2 and Section 4 are ap-

plicable. Based on our experiences with extensive simulation studies, we recommend the

method proposed in Section 2 over that of Section 4 due to its better performance.

We also notice that the performance of our test procedures is somehow sensitive

to the choice of d when there are more than two populations. It seems that an estimate

of d based on the dimension reduction methods for a single population works the best.

More research on how to choose d seems necessary.

When the multi-index models share only partial common indices as illustrated by

the following example, in which all three groups share the same common index X1 +Xp,

and differ with respect to the second index.

Y =


exp(X1 +Xp)sign(X2 +Xp−1) + 0.5ε1, for group 1;

(X1 +Xp)/(1 +X3 −Xp−1) + 0.5ε2, for group 2;

(X1 +Xp)(X2 −Xp−1) + 0.5ε3, for group 3.

How to effectively detect this phenomenon is of special interest.

In our simulation studies, we also find that the choice of the number of slices h

may affect the test results. Based on the analysis of Li (1991), the selection of h is not

very crucial for SIR. SAVE, however, is pretty sensitive to the choice of h ( Li and Zhu,

2007). How to select h optimally is an open question in the field.
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