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ABSTRACT

While neutron activation analysis is widely used in many areas, sensitivity of the

analysis depends on how the analysis is conducted. Even though the sensitivity of the

techniques carries error, compared to chemical analysis, its range is in parts per million or

sometimes billion. Due to this sensitivity, the use of neutron activation analysis becomes

important when analyzing bio-samples. Artificial neural network is an attractive technique

for complex systems. Although there are neural network applications on spectral analysis,

training by simulated data to analyze experimental data has not beenmade. This study offers

an improvement on spectral analysis and optimization on neural network for the purpose.

The work considers five elements that are considered as trace elements for bio-samples.

However, the system is not limited to five elements. The only limitation of the study comes

from data library availability onMCNP. A perceptron network was employed to identify five

elements from gamma spectra. In quantitative analysis, better results were obtained when

the neural fitting tool in MATLAB was used. As a training function, Levenberg-Marquardt

algorithm was used with 23 neurons in the hidden layer with 259 gamma spectra in the

input. Because the interest of the study deals with five elements, five neurons representing

peak counts of five isotopes in the input layer were used. Five output neurons revealed mass

information of these elements from irradiated kidney stones. Results showing max error

of 17.9% in APA, 24.9% in UA, 28.2% in COM, 27.9% in STRU type showed the success

of neural network approach in analyzing gamma spectra. This high error was attributed

to Zn that has a very long decay half-life compared to the other elements. The simulation

and experiments were made under certain experimental setup (3 hours irradiation, 96 hours

decay time, 8 hours counting time). Nevertheless, the approach is subject to be generalized

for different setups.



iv

ACKNOWLEDGMENTS

I would like to express the deepest appreciation to my adviser, Dr. Xin Liu and

Nuclear Engineering Department at MST.

As an appreciation, I also would like to dedicate my PhD degree to my father,

Mustafa Sahiner, who passed away during preparation of my dissertation defense.



v

TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

SECTION

1. INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. ELEMENTS IN BIO-SAMPLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. NEUTRON ACTIVATION ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.1. Neutron Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2. Suitable Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.3. Sample Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.4. Experimental Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.5. Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.6. Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3. ARTIFICIAL NEURAL NETWORK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1. Training Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.2. Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.3. Perceptron Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4. REVIEW .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2. METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20



vi

2.1. WORKFLOW .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.1. Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.2. Quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2. MCNP SIMULATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1. Neutron Activation Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.2. Surface Current (F1) Tally . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.3. Pulse Height (F8) Tally. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3. CINDER’90 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4. ROOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5. IDENTIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.1. Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.2. Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.3. Perceptron Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6. QUANTIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6.1. Experimental Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6.2. Simulated Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6.3. Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3. RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1. IDENTIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2. QUANTIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

APPENDICES

A. NEUTRON ACTIVATION SIMULATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

B. PULSE HEIGHT TALLY SIMULATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



vii

C. CINDER’90 INPUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

D. MATLAB CODE FOR HIDDEN LAYER SIZES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



viii

LIST OF ILLUSTRATIONS

Figure Page

1.1 Nuclear steps of neutron activation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Gamma spectrum example from APA type kidney stone. . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Representation of a single neuron in ANN [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Representation of an ANN [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Speed and memory dependency of the algorithms.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Flow chart for identification analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Flow chart for ANN analysis of gamma spectra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Experimental setup for kidney stone samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Three-layer Neural Network with 23 neurons in the hidden layer . . . . . . . . . . . . . . . . . 32

3.1 MCNP F1 tally simulation of delayed gammas from NaCl sample . . . . . . . . . . . . . . . . 34

3.2 MCNP F8 tally simulation of delayed gammas fromNaCl sample when no GEB
card present. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 FWHM function fitting for the parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 MCNP F8 tally simulation of delayed gammas from NaCl sample when GEB
card applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Experimental and simulated gamma spectrum from APA kidney stone. . . . . . . . . . . 39

3.6 ROOT analysis of the APA spectrum for background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.7 Background subtraction from the spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.8 Confusion matrix for linear perceptron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.9 Construction for perceptron network representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.10 LM error with different number of neurons in the hidden layer. . . . . . . . . . . . . . . . . . . . 45

3.11 BR error with different number of neurons in the hidden layer. . . . . . . . . . . . . . . . . . . . 46

3.12 SCG error with different number of neurons in the hidden layer. . . . . . . . . . . . . . . . . . . 47

3.13 LM error with different size of training data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48



ix

3.14 Regression plot for training, validation, and test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.15 Regression plot for training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.16 Regression plot for validation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.17 Regression plot for test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.18 MSE values during training with purelin function in the output layer. . . . . . . . . . . . . 53

3.19 MSE values during training with logsig function in the output layer . . . . . . . . . . . . . . 53



x

LIST OF TABLES

Table Page

1.1 Commonly used activation functions [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 Parent and daughter isotopes in simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 A portion of training data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Corresponding portion of target data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 FWHM parameters for the GEB card in MCNP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 APA type kidney stone test for identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 External validation of the neural network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Neural network analysis of experimental spectra for relative error in %.. . . . . . . . . . 54

3.5 Summary of the optimum neural network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



1. INTRODUCTION

1.1. ELEMENTS IN BIO-SAMPLES

With changing nutrition habit, there is an increase in kidney stone diseases [3].

Scientists are interested in explaining the formation of these stones. In recent studies, trace

elements were found to be crucial in formation of the stones [4, 5, 6]. Elements that have

mg/kg or µg/kg or less concentration in a human body are called trace elements. Some

trace elements play as inhibitors in human metabolism, such as Co, Cr, Cu, Fe, I, Mn, Mo,

Se, As, F, Ni, Si, Sn, V. Some of them are toxic, such as As, Be, Cd, Hg, Pb, Se, Tl, Cr,

Mn, Ni, Sb, Si. There are more elements that are not classified, such as Ag, Al, Au, B,

Ba, Br, Ce, Cs, Ga, Ge, Li, Np, Pt as well as rare earth elements, including Ru, Sc, Sr, Te,

Th, Ti, U, W, Zr [7]. In fact, four elements (As, Cr, Mn, Ni, Si) can be found as common

elements in inhibitors and toxicants classes. Although the elements are inhibitors, more

than an adequate level of them may be toxicants in metabolisms. Thus, precise detection of

trace elements is important.

Bio-samples are widely analyzed by chemical techniques. However, nuclear-physics

techniques such as X-ray fluorescence analysis and neutron activation analysis are more

sensitive in quantifying the amount of these trace elements [8].

1.2. NEUTRON ACTIVATION ANALYSIS

If a neutron is captured by a nucleus, the nucleus becomes unstable because neutron-

proton balance is deformed. The nucleus might suffer β−/β+ decay or γ decay or both to

become stable again. By detecting the activity of the unstable isotope, information about
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incoming neutron flux and the parent of radioisotopes can be obtained. This process is

called neutron activation analysis (NAA) [9]. Figure 1.1 is a representation of nuclear

processes of neutron activation [10].

Figure 1.1. Nuclear steps of neutron activation.

The analysis was first used in 1938 for 32S(n, p)32P reaction to determine sulfur in

bio-samples [11]. Neutron activation allows qualitative and quantitative analysis for target

nuclei. Analysis can be conducted based on the type of radiation, energy of radiation, inten-

sity of radiation, and half-life of produced radioisotopes [9]. Radiation energy (especially

gamma) is characteristic for absorbing nuclei [12]. Analysis of gamma rays, which are

emitted immediately after neutron irradiation, is called prompt neutron activation analysis,

while analysis after beta decay with some time is called delayed neutron activation analysis

[13].

Neutron activation is used for many purposes. Isotope production is one of them

and produces radioisotopes for nuclear medicine usage. Highly radioactive waste also

can be transformed into less radioactive nuclei through neutron activation. Beside these

uses, neutron activation is also used for material analysis as NAA. NAA has a critical role
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detecting explosives in safeguard, archeology, forensic science, etc. In this study, analysis

of biological samples using NAA was the major focus. Specifically kidney stones were

taken into consideration to support formation studies.

Four types of kidney stones (Apatite "APA", CalciumOxalateMonohydrate "COM",

Struvite "STRU", Uric Acid "UA") were received from Mayo Clinic. Identification and

concentration analysis of selected elements that were believed to have higher impact on

stone formation were analyzed by Sahiner et al [14]. Number of kidney stone samples were

not enough to draw a solid conclusion. Nonetheless, results of the analysis were enough to

confirm the correlations with the literature. As an example, a positive correlation between

Zn and Ca was confirmed as suggested by Srivastava et al and Lin et al [3, 15]. Figure 1.2

is an example of gamma spectrum for 8 hour counting.

Figure 1.2. Gamma spectrum example from APA type kidney stone.
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In neutron activation analysis, there are certain experimental considerations that

have high impacts on sensitivity of the measurements. Deviation from optimum choice for

the source, suitable reactions, saturation time for activations, detection time, detector types,

etc., may cause a loss of information. If an element in a sample was not irradiated long

enough, the isotope which is the signature of that element may not appear on a detector.

1.2.1. Neutron Source. In NAA, neutrons are required to cause activation of a

sample. The strength of the source determines the attainable activity. Reaction probabilities

to activate an irradiated sample differ with energies of incoming neutrons. The interaction

probability is due to the binding energy of the target nuclei. Quantum states of the target

nuclei causes resonances in interaction probabilities over a range of energy. Neutrons can

be classified in two groups based on their energies, either fast neutrons or thermal neutrons.

Some sources may use an epithermal category in-between. Thermal neutrons are the

neutrons that have energy about 0.025 eV and an average velocity of 2200 m/s [8, 16]. Fast

neutrons are able to penetrate through material with a large thickness. Thus, fast neutrons

are suitable to activate bulk material [17].

A neutron source to irradiate a sample can be a research reactor, a neutron generator,

or an isotropic neutron source. Research reactors are commonly used for research, education,

and training purposes. They are usually the most suitable neutron source for NAA due to

high neutron flux ≈ 1010 − 1015ns−1cm−2 in the reactor core [18, 19]. Neutrons including

prompt neutrons and delayed neutrons are produced by fission reactions in nuclear reactors.

They have energies ranging from the thermal level of few meV to the relativistic level of

≈ 20 MeV [20]. This wide energy range may result in complex gamma spectra from an

irradiated sample.

Neutron generators are compact in size and can manage neutron flux up to 1011

s−1cm−2. They are commonly employed for radiography and neutron activation [21].

Neutron generators produce neutrons by fusion reactions, such as Deuterium-Deuterium

(DD) reaction, Deuterium-Tritium (DT) reaction, and Tritium-Tritium (TT) reaction. DD
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generators produce almost monoenergetic neutrons with 2.45MeV. Similarly, DT generators

are able to generate ≈ 14 MeV monoenergetic neutrons. With the disadvantage of lowest

relative intensity, TT generators have wider spectrum between 0-10 MeV [22].

Isotropic neutron sources are another type of neutron sources. This include (n, α)

reactions such as an alpha emitter embedded with Boron or Beryllium. This reaction

produces neutron flux about 106ns−1cm−2 with an energy range from 2.4 MeV to 4.5 MeV.

The source strength is subject to decay over time. A spontaneous-fission source such as

californium is also subject to produce neutrons [19].

Overall, the choice of neutron source can be made by reaction selection based on

a specific purpose. These sources have advantages and disadvantages depending on the

required flux and energy (monoenergetic or spectrum). As an example, some of the light

elements cannot be detected through classical NAA unless 14 MeV neutrons are used [22].

1.2.2. Suitable Reactions. Selection of the reactions is dependent on the choice

of neutron sources as well as target samples. Fast neutrons may lead to interference

reactions because they may interact with matters through endothermic reactions with a few

exceptions. As an example, fast neutrons may interact with aluminum via 27 Al(n, p)27Mn,
27 Al(n, α)24Na, 27 Al(n, γ)28 Al. If there is silicon in irradiated material, 28Si(n, p)28 Al

reaction is possible. Both 27 Al and 28Si result in 28 Al radioisotope. This may cause false

analysis. Furthermore, radiative capture (n, γ) of thermal neutron interaction with target

nuclei is a dominant reaction because (n, α) reaction is endothermic with a few exceptions.

Radiative capture reaction is possible with all nuclei without threshold energy. Its cross-

section is usually higher for thermal neutrons than fast neutrons [9]. Both (n, α) and (n, p)

reactions are endothermic reactions with energy of 1-5 MeV. Neutron multiplication (n, 2n)

reactions are also endothermic with energy of about 10 MeV and higher [12]. Absence of

interfering reactions improves the sensitivity and accuracy of the gamma spectra. Depending

on the choice of the reaction, thermal neutrons can be filtered by using neutron absorbers in

either sample capsule or reactor channel that is installed permanently. Cd (σth = 199910b)
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and 10B (σth = 3838b) are commonly used absorbers in NAA. Neutron cutoff energy 0.55

eV can be provided by 1 mm thick Cd sheet. This allows only fast neutrons to pass through

the absorber. Finally, most of the trace elements in human body are detectable through

(n, γ) reaction [8, 12].

1.2.3. Sample Preparation. Samples to be irradiated should be prepared with care

because neutron activation is very sensitive. Hand contact may contaminate the sample by

introducing enough amount of human sweat that contains sodium and chlorine. Dry boxes

and a clean room with clean tools are necessary during sample preparation. Samples can be

prepared in solid form (larger piece or powder) or liquid form. Samples must be measured

for mass accurately [9]. A small amount of the sample due to high activity might cause

exposure risk. In this case, a homogeneous solution might be prepared. Afterwards, a

portion of the solution can be taken to contain a very small amount of the sample. A small

amount of the solution will contain a smaller amount that is not directly measurable with

sensitive weight measuring devices. In order to use this preparation, the sample should be

soluble. An example of this is a salt sample. As sodium might cause high activation for a

long irradiation time, a small amount can be adjusted. High activation is a disadvantage for

the detector causing a large amount of dead time.

1.2.4. Experimental Setup. For experimental setup, there are certain cautions to

be taken. Irradiation time, decay time, and counting time have important effects on detection.

As an example, if irradiation time is not long enough, then some of the elements that have

a small amount of reaction with neutrons may cause a gamma signal to be lost in the

background of a spectrum. Similarly, longer decay time may cause loss in detecting short

half-life radioisotopes [14]. After a long irradiation, samples may have high reactivity level

that will result high dead time in detectors as well exposure for technicians. Preliminary

activity measurements with a counter can be helpful for choosing decay time. High activity

decay away in this time period such that detectors can measure gamma rays with a negligible

dead time. The decay time reduces the exposure rate of the sample. Then the technicians
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can handle the irradiated sample within allowable radiation dose limit. Although there are

automated hydraulic systems to transfer samples from where they are irradiated to where

they are measured, the use of the systems is not wide. Additionally, shorter detection time

results a spectrum that is dominated by radioisotopes that have shorter half-life. Likewise,

longer detection time results a spectrum that is dominated by radioisotopes that have longer

half-life.

1.2.5. Detectors. The use of various detector sizes and types is significantly impor-

tant for sensitivity, resolution, and efficiency. The desired detector capability is to be highly

efficient with maximum energy resolution. However, the detector choice is in-between

sodium iodine (NaI) detectors and high purity germanium (HPGe) detectors. While NaI

detectors have high efficiency, HPGe detectors have high energy resolution [9, 16]. The

choice is a trade-off for a primary purpose. If irradiated sample results in a simple gamma

spectrum (a few separate gamma peaks), the choice can be made for efficiency by using

NaI detector. In contrast, if a sample results in highly complex gamma spectrum, then the

high energy resolution is necessary to distinguish gamma peaks. The stone samples from

the human body generate highly complex spectra [14]. Therefore, an HPGe detector gives

higher energy resolution ( 2 keV).

During prompt neutron activation analysis, the detector crystal is subject to be

damaged by high neutron flux. For this purpose, n-type HPGe detectors are suggested

because they are less sensitive to neutron damage than p-type.

As an addition to the detector choice, the standard electronics are capable of col-

lecting data with negligible error [12]. Detector response cannot be as fast as electronic

signals. There is a time limit for all detectors to separate two events. This time limit is called

"dead time" and is different for detector types. This dead time ranges from microseconds to

milliseconds. Since dead time caused by electronics is so small (10−7 second) compared to

detector dead time, "dead time" refers to detector dead time only. If there is large dead time

loss in the spectrum, there must be a dead time correction to obtain true counts from the
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spectrum [9, 16]. There is no exact representation of dead time despite the fact that good

models exist in the literature. Thesemodels consist of paralyzable model or non-paralyzable

model or combination of both.

1.2.6. Data Analysis. Data analysis is classified into two categories as quantitative

and qualitative analysis. Qualitative analysis is mainly for identification of parent elements

in irradiated sample through their daughter products with characteristic gamma rays in a

spectrum. Quantitative analysis ismore detailed analysis to calculate element concentrations

in the sample through obtained spectra [13].

Although data analysis can be made manually, analytical software is very helpful for

specific purposes. Especially in identification, it gives start-up suggestions. When analysis

with a commercial software is made, peaks might be labeled with all possible radioisotopes.

Some of the radioisotopes that have a very short half-life, in reality, may not survive over

long decay and counting time. Nevertheless, software still labels impossible choices on

gamma spectra. 82Br and 82Rb have several overlapping gamma peaks. While 82Rb has a

short half-life (1.2 min), 82Br has a long half-life (35.3 hour). Although 82Rb would not

survive for long decay and counting time, commercial software may result in labeling 82Rb

as well as 82Br on spectra. Since the software does not know the experimental setup to rule

out all the possibilities, using it might be a good start, but not an actual result. Humans

can identify and simplify the identification by taking irradiation time, decay time, counting

time, natural abundance, half-life etc., into account. As an example, short-lived isotopes

decay quickly and do not survive for long decay times and long counting times.

Due to penetration ability of fast neutrons in a bulk material, the neutrons are able

to activate thick targets. Even though thick material causes a self-shielding problem, it has

an advantage when only identification of elements is the concern [17].

Identification analysis can be made by finding the peak gamma energy and cross-

checking with a pre-developed table. One good source can be found in [23] for identification

purposes.
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Quantitative analysis is more complicated. This consists of peak information into

a formulation. Equation 1.1 allows necessary calculation to find the mass of interest. In

Equation 1.1 Pk is net counts under the peak, Ai is atomic mass of the element of interest,

λi+1 is decay constant of radioisotope produced, ε(Ek) is absolute full-energy detector

efficiency, ek is probability of photon emission, ai is atomic abundance of element with

Ai, NA is the Avogadro number, σi is cross-section that makes the reaction, t0 is irradiation

time, and (t2 − t1) is counting time. In essence, Equation 1.1 summarizes the precision of

mass calculation. Error in the parameters propagates through the mass calculation as well.

Determining these parameters accurately affects the final mass calculation through error

propagation [9].

m =
Pk Aiλi+1

ε(Ek)ekaiNAσiφ(1 − e−λi+1t0)(e−λi+1t1 − e−λi+1t2)
(1.1)

Very precise mass calculations can be done by comparing a standard sample with

known material. Known sample means known mass and content. Sometimes known

samples are referred as standard samples. When known and unknown samples are irradiated

under the same experimental condition, all terms in Equation 1.1 for the same isotopes cancel

out. Only peak counts are left, as in Equation 1.2.

m
mstandard

=
Pk

PStandard
(1.2)

In the end, the only error source is from net counts under the peaks. However, this

is not always the case because elements in the sample of interest are unknown. In other

words, the standard sample may not contain the same elements with the unknown sample.

This approach requires preliminary analysis. To do the most accurate analysis, an unknown

sample should be irradiated for identification. Known samples can be chosen based on the

results of the preliminary analysis. The standard sample which contains the same elements

can be irradiated under the same setup. Then, the analysis will have very precise results.
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Furthermore, the work required for precise results is not always favorable. It requires

very good calibration of a detector, very precise mass measurement of the standard sample

as well as the unknown sample, and very precise neutron flux distribution. Detector should

be calibrated throughout the spectrum range. Experiments should be made under the same

conditions where the calibration was made. Calibration is affected by detector temperature,

applied voltage, and gain settings. Sample preparation is another challenge due to the facts

that are explained earlier. A precise measurement for a very small sample is not possible

due to measurement device capability and susceptibility to humidity. Detector resolution

and efficiency is a further concern during analysis because efficiency and resolution is not

a linear response of a detector. The response is different throughout the spectrum for every

energies. The analysis made by commercial software may require elimination of impossible

elements such as rare earth elements or very short half-life isotopes. Therefore, researchers

look for more practical solutions for the same or better precision.

1.3. ARTIFICIAL NEURAL NETWORK

With the increasing computer technology and mathematical algorithms, scientists

tend to use computers to solve complex problems that are not possible to solve by hand.

Some of the complex real-life problems can be represented by linear functions or non-linear

functions or a combination of both. Not all of the real-life problems can be represented

mathematically. Nevertheless, researchers might have input corresponding to an output data

set of a system. In this case, computers with improved algorithms can reveal similarities

or correlations between input parameters and corresponding outputs. Making computers

to adapt or modify their responses based on the known input and output data can be called

"Machine learning." Machine learning has become an attractive technique to researchers.

Different learning algorithms offer solutions to a variety of problems. Supervised learning

is one of the algorithms used most often, whereas unsupervised learning, reinforcement

learning, and evolutionary learning are used depending on the problem type. The choice
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depends on deciding how the computers are learning to improve results for a given task.

In supervised learning, the computer trains itself through a known set of input data with

corresponding outputs of a system. In unsupervised learning, target data is not provided to

the machine. Instead, the machine finds similarities in the input to categorize the input data

[24].

Machine learning has many approaches, such as boosted decision trees, supported

vector machines, radial basis functions, multivariate analysis, etc [25, 26]. Artificial neural

network (ANN) is another class of machine learning. It solves problems in engineering,

science, mathematics, economics and many other disciplines. ANNmimics how the human

brain works. The human brain learns things from experience. For instance, babies start

learning objects by touching to decide soft or solid, hot or cold. Toddlers learn smell, shape,

and color of the objects for identification. Learning is carried out by neuron cells (1011

elements) and their connections (104 connections per element). The signals from human

receptors pass through chemical processes in-between neurons. Although this process is

slow compared with electronics, the main advantage of the human neurons is so many

connections. When a neuron receives signals from neighboring neurons, the signals are

summed and passed through a threshold. If the signal is higher than a threshold, then the

neuron fires a signal towards next connections. If not, the signal is not passed.

Some sources may refer to training as "learning process." ANN is a mathematical

representation of this process. Whereas a small size ANN can be calculated by hand, a

larger size ANN that has so many connections and features requires computers. Figure 1.3

shows a single neuron with incoming connections. The activation function is the threshold

for the summed signal to decide whether the signal passes or not. During the learning

process, ANN finds the correct weights in-between connections. Correct weights mean the

weights that result minimum error between known outputs and calculated outputs. Once

the weights are found, the neural network can analyze an unknown input [2, 27].
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Figure 1.3. Representation of a single neuron in ANN [1].

Usually an ANN contains one input layer, one or more hidden layers, and one output

layer. In these layers, there might be one or more neurons. There is no solid guide for a

neural network structure because it is problem-dependent. The number of neurons in the

input layer and output layer is externally constrained by the problem. Figure 1.4 represents

a sample neural network that has 10 input neurons in the input layer, 4 neurons in the hidden

layer, and 2 neurons in the output layer with their connections. The sample networks find

the weights of the connections with known input and output.

Adaption of a constant threshold to a neural network can be made as an additional

input in a layer. This additional weight is called "bias."With a bias, initial weight vector size

increases by one. A neural network can be constructed with or without a bias. However,

addition of a bias is suggested for better results. For instance, neural networks may result

zero outputs for zero inputs. That is not desirable. To overcome this problem, biases are

used as a mathematical trick. The biases have a constant value of one.

The biggest time consumption occurs during training. Once the neural network is

trained, it gives an instant response regardless of problem complexity [2, 27].
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Figure 1.4. Representation of an ANN [1].

1.3.1. Training Algorithms. During training (learning), the neural network up-

dates the weights based on a performance function to the direction where the gradient

decreases the most. The standard performance function is usually mean squared error

(MSE). The neural network finds optimum weights when this error is minimized. Mini-

mization of MSE is validated by the gradient of the performance function. Training data is

usually divided to train, validate, and test the network.

Simply, the neural network iterates Equation 1.3 for converged weights between

neurons (nodes):

xk+1 = xk − αkgk (1.3)
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Where xk is vector of current weights, gk is current gradient, αk is learning rate. Training al-

gorithms use either gradient or Jacobian methods to reduce the error in the iteration process.

Equation 1.3 is an example for gradient descent method. The choice of training algorithms

depends on the complexity of the problem, targeted error, problem type (regression or

pattern recognition), and number of data points [2].

In order to find the correctweights between connections, there are several algorithms.

For testing gradient and the Jacobian approach, the focus was narrowed down to three

algorithms. Levenberg-Marquardt (LM) algorithm, and Bayesian regularization (BR) are

the most common algorithms. The Scaled conjugate gradient (SCG) algorithm is gaining

popularity in addition to the two algorithms.

The LM algorithm uses a numerical approach to find weights. LM is also known

as the fastest algorithm in many cases. However, it is found to be less efficient for large

networks due to memory requirements for the Newtonian approach. This algorithm is used

for nonlinear regression problems rather than pattern recognition problems.

Since LM is the Newtonian approach for performance index, which is a sum of

squares function, the final equation for the algorithm has a form of Equation 1.4:

xk+1 = xk − [JT(xk)J(xk) + µkI]−1JT(xk)v(xk) (1.4)

J is Jacobian matrix, xk is vector of weights, JTJ is Hessian matrix, v represents the error,

I is identity matrix µ is a parameter to avoid an invertible problem in the Hessian matrix. If

µ is decreased to zero, the algorithm becomes the Gauss-Newton approach.

Bayesian regulation uses a probabilistic approach to minimize the performance

index. According to Bayes’ theorem, if there are two random events (A and B), conditional

probability that one event occurs is represented with Equation 1.5.

P(A\B) =
P(B\A)P(A)

P(B)
(1.5)
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Starting with the theory, BR assumes the weights are random and distributed with

Gaussian distribution. Since it is a probabilistic approach, BR algorithm prevents the over-

fitting problem. The over-fitting problemmay be caused by a use of too many neurons in the

network. When the BR algorithm is used, validation data is not needed. For high amounts

of training data, BR and LM result in the same error since one approach is numerical and

the other is probabilistic [2].

In addition to the previous two methods, the SCG method is preferable for a large

data set due to small memory requirements. The SCGmethod is efficient for large networks

for pattern recognition. This algorithm is a modified version of conjugate gradient, which

works only for positive definite value of the Hessian function. Equation 1.6 estimates the

term sn for non-zero input quantity xn = pT
n sn.

sn =
E′(w̃n + σn p̃n) − E′(w̃n)

σn
− λn p̃n (1.6)

p is non-zero weight vectors, E is error function, λ is adjusted scaler in each iteration to

find estimated term, and σ can be a positive value very close to zero. SCG is validated

by first degree of the gradient while LM is validated by second degree of the gradient as

in Jacobian. As a result, SCG linearly converges faster than the other standard gradient

methods [28].

Since there is no solid guide for ANN systems, determining the best algorithm

for a specific purpose is important. the guiding information above might be helpful to

choose the better algorithm based on the problem type. As the focus is not to improve

any algorithms, the information was held brief with enough information to compare them.

More detailed information can be found in [1, 2, 28]. Figure 1.5 summarizes speed and

memory dependency of three algorithms.

1.3.2. Activation Functions. In the definition of a single neuron, the sum of

weighted inputs are passed through an activation (transfer) function. Activation func-

tions form the output of a neuron. Thus, for the output layer, the choice of the activation
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Figure 1.5. Speed and memory dependency of the algorithms.

functions is semi-dependent on problem specifics. The most used activation functions

are tabulated in Table 1.1, though users can choose their own functions—either linear or

nonlinear. Feedforward networks use linear activation functions, while backpropagation

networks use smooth differentiable functions. Moreover, the choice of activation functions

for a hidden layer might require care. The logistic (sigmoid) function, which results in

interval of [0,1], may cause systematic bias [1, 2]. A feedforward network calculates output

from input in one pass. Backpropagation calculates the derivations in the last layer and

propagates the derivatives backward with chain rule. Backpropagation is used for multilayer

networks.

1.3.3. Perceptron Network. While a network can be very complex with multi-

ple layers to solve complex problems, it can also be a very simple layer network called

"perceptron." A perceptron network can solve a very narrow range of problems, usually

classification problems. A perceptron network is an old ANN. It started to be used in

pattern recognition problems. However, it did not solve pattern recognition problems that
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were not linearly separable. Nonetheless, it still solves classification problems powerfully.

A perceptron network uses the hard limit as a transfer function and perceptron learning.

During learning, the perceptron network solves correct weights in Equation 1.7:

a = hardlim(W p + b) (1.7)

a is the output of the network, W is a weight matrix, p is the input, b is the bias. In

Equation 1.7, hardlim function results in one if inner product ofW and p is greater than or

equal to −b. If the product is less than −b, it results in zero. The network separates input

space into two region with a decision boundary. Perceptron network guaranties convergence

with finite number of iterations if the solution exists [2, 29]. A perceptron network can be

constructed as one layer or multilayer network. However, for the focus of this study, one

layer perceptron network can solve the linearly separable binary condition for identification.

Therefore, details for multilayer perceptron is excluded here.

1.4. REVIEW

Artificial neural network has been used by few researchers for neutron activation

analysis. While the main use of NN was identification [30, 31, 32, 33, 34], it was employed

for detection of explosives [31, 35, 36], drug [35], uranium [37], radon contamination [38].

The NNwas also used to determine cement concentration [39, 40] as quantification analysis.

Besides these research, gamma spectra unfolding [30], uncertainty estimation in gamma

spectra [41], interaction identification [42], anomaly detection in gamma spectra [43], fast

neutron spectra detection [44] were analyzed by artificial neural network.

Matlab, NeuroShell, Neuroph, QuickNet were commonly used artificial neural net-

work toolboxes or software. Simple structures with a few neurons in layers as well as

complex structures of number of neurons in layers were employed. Sigmoid, tansig transfer

functions were used in identification problems. Variety size of training data were reported.
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Although small size of training data might be enough for identification or detection pur-

poses, larger training data size was required for quantification purpose. This was concluded

due to high relative error ( 3-12% by [39], 5-9% by [44], 14.5-49.7% by [33]) reported on

quantification analysis.

Training data for these neural networks has been prepared by Monte Carlo (MC)

simulations (MCNP and Geant4) [30, 31, 32, 33, 34, 36, 37, 38, 40, 45, 46, 47] and

experiments [32, 35, 37, 39, 41, 44, 48].

Some of the previous works have reported preparation of training data by simulation

and analysis of simulated cases. Even though simulations have an advantage to generate

large size of synthetic data, simulations do not represent real life detections. Some other

previous works have reported preparation of training data by experiments and analysis of

experimental data. As quantification analysis require very large training data (the suggested

size is reported in the result section of this thesis), experiments to prepare required size of

data would take months for a research reactor depending on availability of it. If it is an

institutional reactor for educational purposes, because of the availability, data preparation

will be extended to years. Due to the change of environment temperature, reactor core

behavior, detector conditions, etc., experimental setup will differ. Therefore, extra error

conditions will be added.

In order to cope with the disadvantages mentioned above, a new approach to neutron

activation analysis was conducted. The approach includes training the neural network with

simulated data that is large in size and analysis of experimental data.
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Table 1.1. Commonly used activation functions [2].

Function Name Input-Output Relation

Hard Limit a = 0 when n < 0
a = 1 when n ≥ 0

Symmetrical Hard Limit a = −1 when n < 0
a = +1 when n ≥ 0

Linear a = n

Saturating Linear
a = 0 when n < 0
a = n when 0 ≤ n ≤ 1
a = 1 when n > 1

Symmetric Saturating Linear
a = −1 when n = −1
a = n when −1 ≤ n ≤ 1
a = 1 when n > 1

Log-Sigmoid a = 1
1+e−n

Hyperbolic Tangent Sigmoid a = en−e−n
en+e−n

Positive Linear a = 0 when n < 0
a = n when n ≥ 0
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2. METHODOLOGY

Methodology of the work was divided into identification and quantification analysis

of gamma spectra. Although the main focus was quantification analysis, identification

analysis with neural network approach was made to avoid occurrences of elements due to

error margins from the neural network in quantitative analysis.

2.1. WORKFLOW

2.1.1. Identification. Identification of a spectrum was not primary focus of the

study. However, this work contributed quantification analysis. As ANN has associated

errors, they might result in elements being present with a very small fraction from the

spectrum although they are not there. Therefore, identification analysis was done before

conducting the ANN for quantification analysis. Figure 2.1 shows the steps of identification

analysis.

This problem could be reduced for classification problem by generating 32 cases

(different combinations) of 5 elements. Five elements and 32 cases were represented in

binary form to train the perceptron network for classification. Classification term in ANN

was used for identification term in NAA. Monte Carlo simulation and CINDER’90 were

used to generate gamma spectra to simulate extreme cases. The extreme cases were assumed

to be a very small and very large Gaussian energy broadening in the electronic signal, shift

in gamma spectra due to gain settings, a very small concentration of elements, and a very

small peak in the spectra. TSpectrum that is a ROOT [26] object was employed for peak

search and generation of results as a text file format. Both ROOT peak search results and

target data were prepared in binary format resulting in 1 if peak was found, 0 if not. Five
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Figure 2.1. Flow chart for identification analysis.

elements after neutron irradiation were searched for 13 unique gamma rays (four from Na,

six from Br, one from Zn, one from K, one from Au). ROOT codes to analyze a spectrum

is open-source and available online.

2.1.2. Quantification. Neural network analysis of gamma spectra consists of data

preparation, feature extraction from the data, calibration of prepared features, training, and

analysis of unknown samples. Figure 2.2 describes the flow chart of the system. Four

types of kidney stones including APA, COM, STRU, UA type were received from Mayo

Clinic for NAA. A Salt (NaCl) sample with known mass besides kidney stone samples was

prepared for irradiation. The same experimental setupwas used to produce simulated data in

order to train a neural network. Since Monte Carlo simulation assumes perfect conditions,

a correction between experimental data and simulated data was required. Rather than

introducing a whole spectrum into a neural network, peak features were obtained from
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the spectra. This can be done either manually or by using peak finder codes available in

MATLAB [29] or ROOT software. Correction factors for each energy bins are obtained

by comparing peaks from known mass and simulated spectra. Then, determined correction

factors were used on unknown samples. The Correction factors are energy dependent since

they implicitly depend on detector efficiency, which is energy dependent as well. After

preparation of data, a neural network can be structured and trained. As there is no solid

guide to prepare a neural network for specific applications, different training algorithms,

number of neurons in a hidden layer, and size of training data were compared to choose the

one fits the needs best.

Figure 2.2. Flow chart for ANN analysis of gamma spectra.
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2.2. MCNP SIMULATION

Monte Carlo N-Particle transport code (MCNP) is a Monte Carlo technique to solve

transport equation. It is distributed by Radiation Safety Information Computation Center

(RSICC). Tallies in MCNP provide history of particles during nuclear events that are in

terms of current, flux, and pulse height. Tally outputs can also bemodified during simulation

for dose and energy in a medium [49].

2.2.1. Neutron Activation Simulation. Newly introduced ACT card in MCNP 6.1

makes it possible to simulate neutron activation for emitted prompt and delayed gamma

rays. It is possible to simulate these gamma rays as multigroup or lines. Multigroup

simulation is limited in 25 bins currently. Even though the limitation exists, the results

allow good prediction for gamma dose analysis and speed in consecutive simulations [50].

Line emission data can be used in material identifications [14].

Real life neutron activation for prompt and delayed gamma simulation consists of

two consecutive simulations as if a sample is irradiated and moved to a detector to measure

gamma emission. To simulate both cases, MCNP provides results of the first simulation

as a source definition to the second simulation. SSW card in MCNP stores the results in

a separate file named as wssa. SSR card in MCNP simulation of latter reads the source

definition from wssa file once it is renamed as rssa. In the prior simulation, time card can be

used to simulate for demanded irradiation time, decay time, and measurement time [49, 50].

However, the disadvantage of SSW is that it does not store time dependent information.

Instead, it stores all designated particles of all time in the current MCNP release. Manually,

the results can be analyzed to prepare fixed source for the next simulation.

The only limitation to simulating NAAwithMCNP is due to the data library. MCNP

does not have a data library for some of the isotope decay products. Those isotopes usually

have with very short decay half-life. Nonetheless, those isotopes are not a concern in this

study.
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Table 2.1. Parent and daughter isotopes in simulations.

Natural Element Radioisotope Half-life

Na Na-24 14.9 h

Br Br-82 35.3 h

K K-42 12.4 h

Au Au-198 2.7 d

Zn Zn-65 244.3 d

By finding common isotopes in kidney stones, four elements (Br, Na, Au, K, Zn)

were selected for simulation. Primary reaction of these elements is thermal capture given

in Table 2.1. In order to simulate multiple delayed gamma spectra, mass concentration of

five selected elements were produced. A set of 260 mass concentrations was randomly

generated. Concentrations were used in input files for MCNP simulation within a material

card. Delayed gamma energies were simulated in the form of lines by using the ACT card.

The neutron source was modeled as a beam to irradiate the samples.

2.2.2. Surface Current (F1) Tally. Surface current (F1) tally was used to simulate

delayed gamma lines. MCNP simulation results for perfect conditions. Therefore, a

correction between simulated results and experimental measurements was required. If

terms in Equation 1.1 are divided into two groups, one group combining the exponential

decay terms, and the other group combining the rest of the terms, correction is to relative

ratio of the counts. As detector response would be different at different energies, the

correction had to be energy dependent and calculated accordingly.
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2.2.3. PulseHeight (F8)Tally. Pulse height (F8) tally is used tomimic real detector

response. It is used to simulate photon and electron interactions with detectors. With

neutrons, it does not work well because of its non-analog nature. With analog capture,

particles are killed with the probability of capture. On the contrary, in non-analog (implicit)

capture, particles are not killed immediately. Instead, their weights are reduced. The latter

does not represent the actual neutron capture interaction. Therefore, F8 tally works with

implicit capture to represent real detectors for photons and electrons for a better variance.

Pulse height tally cannot be directly used with time bins to simulate time-dependent detector

response. The work around this type of problem is to use energy deposition tally (F6) with

time bins and feed in F8 tally.

In order to simulate a detector response, F8 tally offers unique features such as

GEB (Gaussian energy broadening) [49]. With this function, it is possible to simulate

broadened signal in the detector caused by electronics of the detector. The GEB card can

help to simulate broadening with either build-in detectors or custom detectors. Simulation

for custom detectors requires calculations of Full width half maximum (FWHM) function

parameters in Equation 2.1.

FWHM = a + b
√

E + cE2 (2.1)

Where E is the energy of incoming particles, and a, b, c are parameters used in the GEB

card to represent a custom detector response [46, 49, 51].

From kidney stone spectra, FWHM distribution can be driven by fitting spectral

features (energy and FWHM) to the Equation 2.1. These parameters were used in the GEB

option to represent broadening similar to that one of HPGe used to obtain the experimental

data. As annihilation, single escape, and double escape peaks are affected by particle
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interactions resulting in different tailing, they do not represent actual detector behavior.

Thus, in the GEB calculation, these peaks were not used. The detector consists of planar

geometry germanium crystal. A similar geometry that Fantinova [52] reported was used.

In order to produce gain for different settings, Equation 2.2 was used.

Energy = Shi f t + Gain ∗ Channel (2.2)

2.3. CINDER’90

CINDER’90 is a code which dates back to 1960 to calculate inventory of irradiation

of a sample. The inventory contains atom density and activity of nuclei over time by

destruction and production rates. Based on the purpose, it is also referred as activation code

or transmutation code. The code carries the density calculations with the Markovian chains

algorithm to solve the differential equation in Equation 2.3.

dNm(t)
dt

= −Nm(t)βm + Ȳm +
∑
k,m

Nkγk→m (2.3)

Nm(t) is atom density at time t, βm is total transmutation probability of nuclide m, Ȳ is

production rate, γk→m is the probability of nuclide k transmuting nuclide m. Solving the

differential equation in CINDER’90 is possible for 3400 nuclides with 1 ≤ Z ≤ 103. The

codeworks onlywith 63multigroup neutron fluxwith energy of En ≤ 20MeV . CINDER’90

simulation requires working MCNPX [53]. MCNPX is the Monte Carlo code to simulate

charge particle interactions. The current Monte Carlo code was combined for all particles

in MCNP with 6.1 version.

Due to the demand for an automated system in gamma spectroscopy with reduced

human error, this study has been conducted. Current use of ANN in gamma spectroscopy

includes training with simulated data and analysis of simulated spectra or training with

experimental data to analyze experimental data. The disadvantage of the former is that the
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simulation does not correspond to experimental results due to impurities in detecting. The

latter also has a disadvantage in obtaining experimental data. To obtain a large data set for

training purposes requires a very long use of the neutron source if detection of long half-life

isotopes is a concern. To eliminate these disadvantages, the focus is to use simulated data

for training in order to analyze experimental data.

This study has a focus on analysis of trace elements in bio-samples. However, it

can be generalized by changing the experimental and simulated data to another setup with

relevant changes in Equation 1.1.

Before using the pulse height (F8) Tally, Cinder’90 code was used to obtained the

highest number of isotopes produced for 8 hours measurement after irradiation. The highest

amount was obtained from thermal reaction (n,Îş) for the natural elements. The ratios of

the isotopes were used in F8 tally simulation of HPGe detector as source definition.

2.4. ROOT

ROOT is an object oriented scientific software. It has been widely used by particle

physicists to deal with large data. ROOT makes data processing, statistical analysis, visu-

alization and storage of large data possible where equivalent software struggles. ROOT is

well known with frequent updates as a consequence of being open source code. A large

number of scientists contributes to the coding. Although, the software has been written in

C + +, some other languages (Python and R) have been integrated. This feature is very

useful for pre-processing or post-processing.

TSpectrum is a class of spectrum analysis function. This class can perform back-

ground estimation, deconvolution, smoothing, peak searching, and fitting of a spectrum

[26]. It was found to be best to estimate Compton background in a spectrum.

TSpectrum can be used to locate peaks in a ROOT script that is in C ++. The script

can be written to prepare an output of certain peaks existence in binary format. However,

optimum sigma (for Gauss distribution) and threshold values have to be determined.



28

2.5. IDENTIFICATION

Training and target data can be prepared manually for identification analysis. Bi-

nary format representing the existence of 5 elements ease the analysis because identification

involves existence or absence of an element. Data processing is needed to convert exper-

imental spectra into a format that is similar to training data. This step can be handled by

ROOT.

2.5.1. Data Preparation. To represent combination of 5 elements, only 32 cases

exists in binary form. Br can be represented by six peaks in gamma spectra, even though

there are more. The peaks other than the six peaks have very low intensity in gamma

spectra. In order to avoid misidentification, the low intensity peaks were ignored. Similarly,

sodium can be represented four peaks (two gamma peaks, two escape peaks from the highest

energy). Zinc, potassium, and gold have single peaks with high intensity. These single

peaks have an energy lower than 1.022 MeV . Thus, there is not associated single and

double escape peaks. In total, 5 elements can be determined by 13 peaks in gamma spectra.

Table 2.2 shows a portion of 32 sets of 13-dimensional vector which is prepared manually.

Ones represents if there were associated peaks.

A combination of 5 elements is represented by 5-dimensional vector with binary

values. One is used if an element exist in the combination and zero if not. Table 2.3 shows

a corresponding portion of training data to target data.

2.5.2. Data Analysis. ROOT TSpectrum were used to search peaks and store their

information into a text file. In order to find out optimum values for sigma and threshold in

the search algorithm, extreme cases such as too low concentration, too low peak counts, too

much and too little Gaussian energy broadening in peak shapes can be considered. For low

concentrations and low peak counts cases, CINDER’90 was employed. As a consecutive

simulation, F8 tally could give the detector response that is similar what was expected from

a real detector. The source definition for F8 tally simulation was obtained from CINDER’90

tabulated outputs. For Gaussian broadening, variety of FWHM values were tested. Shift
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Table 2.2. A portion of training data

Br 0 0 1 1

0 0 1 1

0 0 1 1

0 0 1 1

0 0 1 1

0 0 1 1

Na 1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

Zn 1 1 0 0

K 1 1 0 0

Au 0 1 0 1

and gain settings also should be a concern in order to take environmental effects on detector

behavior into account. Defining maximum shift and gain setting is crucial for peak scoring

in the peak search. Rather than looking at a certain energy for a peak, it is more convenient

to look at a range of energy for a peak to cover changes in shift and gain settings of detectors.

2.5.3. Perceptron Network. Linear perceptron network was employed to identify

five elements from gamma spectra. Preliminary work turned out that optimization for the

network was not needed. Thus, the default perceptron learning and hard limit transfer

function were used in the identification step. The input layer of the network consists of 13

neurons for 13 peaks while the output layer has 5 neurons for 5 elements. As hardlimit

function is suggested for binary classification [29], it is used as the transfer function to

result in zeros and ones in the output. The reason that outputs are either zeros or ones is the

hardlimit function.
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Table 2.3. Corresponding portion of target data.

Br 0 0 1 1

Na 1 1 0 0

Zn 1 1 0 0

K 1 1 0 0

Au 0 1 0 1

2.6. QUANTIFICATION

2.6.1. Experimental Data. Samples were irradiated under 100 kW reactor power

at Missouri University of Science and Technology Reactor (MSTR). MSTR is a test reactor

with a limitation of 200 kW as maximum power. It has an open pool type moderator.

Neutron flux was

• Thermal neutrons f lux = 2.15x1012ns−1cm−2 100 kW

• Epithermal neutron f lux = 2.39x1010ns−1cm−2 100 kW

at the time of experiments.

The samples were prepared in powder form to reduce self-shielding and dried to

avoid humid pick-up. Prepared samples were irradiated for 3 hours. They were allowed to

decay and measured for different time periods. However, the best condition to detect the

trace elements was obtained when irradiated samples were let to decay for 96 hours and

measured for 8 hours. Delayed gamma was obtained by a high purity germanium (HPGe)

detector (Canberra BE3825). Prospect software stored the gamma spectra from the detector

in 16,384 channels and energy of range E ≤ 3MeV . For test and validation purposes, 5

mg NaCl sample with known impurities was irradiated under the same experimental setup.

Figure 2.3 outlines the experimental setup.
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Figure 2.3. Experimental setup for kidney stone samples.

2.6.2. Simulated Data. Monte Carlo simulation can generate required data set for

neutron activation of five elements. Number of particles emitted after irradiation can be

scored by F1 tally. After simulating variety concentrations of five elements, counts at certain

energies can be extracted. Selection of five peakswith themost count is adequate to represent

five elements. However, stored counts are the counts from perfect system. A perfect system

in MC simulations means 100% detector efficiency, no contamination, and no impurities.

Real detectors where impurities, contamination, and 20-40% efficiencies are associated

with, would result less counts from an irradiated sample compared with MC simulations.

Therefore, energy dependent correction for five peaks are needed. This correction can be

made with standard samples that are irradiated under the same experimental conditions as

unknown samples.

2.6.3. Neural Network. Three layers including input layer, hidden layer, and output

layer were used in quantitative analysis. To find out better structure of the neural network,

the number of neurons in the hidden layer were analyzed for three the most used algorithms.

When one algorithm which responded better or in acceptable error range was selected,

different sizes of training data were analyzed. Based on the result, the ideal size of the

training data could save time in a data preparation.
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Simulated delayed gamma lines with F1 tally results were collected to obtained 260

sets of data. Then, for the quantification purpose 5 peaks with the most count from 5

elements were extracted from 1024 bins of energy. This process is called feature extraction.

Rather than introducing 1024 bins to the data set, 5 peak counts were used to represent 5

elements in the neural network. One spectrum out of 260 spectra were left out in the analysis

to evaluate the neural network externally. Finally, training data input consisted of 259 sets

of 5-dimensional vector. Figure 2.4 is a representation for the network with 23 neurons in

the hidden layer. In the structure, hyperbolic tangent sigmoid function was shown for the

hidden layer and linear function for the output layer. In order to avoid zeros for zero outputs

for zero or very small inputs, bias was used in the layers as an additional weight.

Figure 2.4. Three-layer Neural Network with 23 neurons in the hidden layer

The target contained masses of 5 elements that resulted in 5 neurons in the output

layer. The number of neurons in the hidden layer were chosen from 1 to 100 for three

LM, BR, SCG algorithms. The training data size also was analyzed for better results in

training algorithm. During training, the neural network analyzes the relation between input

and known output. Once the relationship (neuron connection weights) is found out, then,

the network can analyze input which is unknown to the network. Evaluation of an output

from the neural network result gives information about the quality of the network externally.

The quality of the network could be also analyzed by performance of the learning stage by

looking at performance index behavior. The performance index can be MSE, sum squared

error (SSE), sum absolute error (SAE), cross-entropy performance, etc.
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Identification and quantification analysis of a sample could be done in a sequential

manner. First, a network analyzes whether 5 elements were present in the sample or

not. Then, analyzed elements peak values extracted from the spectrum. Peak values were

corrected with correction parameters obtained earlier. The new values were used as input

to the other network that was trained for quantification. The results gave the total neutron

activation analysis of 5 elements in the end. Although 5 elements were used in this study,

it was not a limitation. More intensive and larger preparation could result in a sequential

neural network analysis of neutron activation up to Z ≤ 92 elements. This would require

very long time. Nevertheless, the advantage would be that the requirement is only for one

time preparation. This approach to generalize the analysis to variety decay time would

require classification of short half-life, medium half-life, and long half-life. If a neutron

activation of a sample requested, then three samples out of one given sample could be

prepared for three different experimental setups to observe short, medium, long half-life.
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3. RESULTS

Monte Carlo simulation with F1 tally resulted line distribution in a spectrum. Figure

3.1 shows delayed gamma spectrum with 8 hour counting after 3 hour irradiation and 96

hour decay time. After neutron capture by salt (NaCl) sample, Cl which has two naturally

occurring isotopes produced two radioisotopes. 36Cl has 3x105 year half-life and no known

gamma emission while 38Cl has short half-life (37 min) with 4 known gamma emissions.
38Cl radioisotope did not survive for the experimental setup that was simulated. Therefore,

only 24Na gamma emission was visible in the spectrum. Contaminating elements on NaCl

sample were not enough to produce peaks in the spectrum.

Figure 3.1. MCNP F1 tally simulation of delayed gammas from NaCl sample
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F1 tally did not represent the detector response. Nonetheless, it resulted only number

of particles emitted in the 8 hour decay time. Two peaks from 24Na that has emission with

100 and 99.9% intensity were shown in the spectrum equally. In real detector measurement,

due to single escape peaks, double escape peaks, two peaks did not have the same height.

The experimental spectrum also had annihilation peak, backscattering peak appeared on a

spectrum. As a consequence, F1 tally gives just number of photons coming from an origin.

On the other hand, escape peaks, annihilation peak and Compton Edge became

visible when F8 tally was used. Since both peaks from 24Na were greater than 1.022

MeV, escape peaks from the two energies appeared as well as annihilation peak. Figure 3.2

showed the features as a spectrum.

Figure 3.2. MCNP F8 tally simulation of delayed gammas from NaCl sample when no GEB
card present.



36

Yet, this representation was not enough to fully mimic a detector response. Broad-

ening effect on signal had to be taken into account. MCNP simulated the broadening with

a special treatment card with a, b, c parameters. To find out a, b, c, parameters in Equation

2.1 in order to use in the GEB card, wide range peaks were analyzed. MATLABwas used to

fit the function. Figure 3.3 shows the fitting plot. Table 3.1 represents the parameters with

their standard deviations. Although, the standard deviations were found large, especially

for c; simulation resulted suitable broadening in comparison with experimental data. a was

the dominant parameter in the equation. Thus, b and c values with large standard deviations

did not distorted the peaks much.

Figure 3.3. FWHM function fitting for the parameters.

Application of GEB parameters resulted in the gamma spectrum in Figure 3.4. In

the spectrum, two peaks which had almost same height in F1 tally appeared with different

height with F8 tally as they were observed experimentally. The higher energy peak caused
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Table 3.1. FWHM parameters for the GEB card in MCNP.

Parameters Value StDev

a 0.1204000000 0.0111037201

b -0.0000598559 0.0000665126

c -0.0003492000 15.410000000

single and double escape peaks within the detector material. The Compton edge also was

visible in the spectrum. After all these steps of MCNP calculation, the simulation setup

was ready for mimicking the detector measurements, thus, training data for neural network

for identification and quantification.

Both experimental and simulated gamma spectra from APA type kidney stone were

compared in Figure 3.5. Except the low energy region, both spectra were in a good

agreement. Experimental data had very big noise buildup especially in the X-ray energy

range. This was attributed to X-rays from detector and shielding materials as so many

gamma rays was emitted.

ROOT estimated the background of the spectra. An example to this background

estimation was given in Figure 3.6 from APA type kidney stone. Estimation resulted in a

good estimation for TheCompton region and high noise region appeared at low energy range.

The estimated background was subtracted from the original spectrum to obtain Gaussian

peaks only (Figure 3.7). A ROOT code searches the location of 13 peaks representing 5

elements. Then, the code produced a text file by scoring ones if peaks existed in defined

energy region and zeros if not.
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Figure 3.4. MCNP F8 tally simulation of delayed gammas from NaCl sample when GEB
card applied.

3.1. IDENTIFICATION

One layer perceptron network was constructed as described in Figure 3.9. Set of

32 vectors with dimension of 13 was used as input to calculate weights in the network

by comparing with set of 32 vectors with dimension of 5 for target values. The result

of confusion matrix in Figure 3.8 shows that there is a strong linear relationship between

training data and target values. The green boxes in the figure outlines the correct linear

relation. The red boxes meant mismatch in the training.

ROOT TSpectrum was used to search for peaks in gamma spectra. After real HPGe

detector simulation with F8 tally, proper settings for threshold, FWHM (2.355σ), and

energy range for a Gaussian peak were determined. Maximum peak number of 25 was
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Figure 3.5. Experimental and simulated gamma spectrum from APA kidney stone.

optimum to determine peaks of interest. The intention was to locate 13 peaks. However,

maximum peak number was chosen higher because experimental spectra had extra peaks.

These peaks were annihilation peak, peaks from other isotopes that were not trace elements

signature, and escape peaks from latter.

The settings were able to search for 13 peaks representing five elements. ROOT

was used to store the peaks if they were found. It also created an output as a text file with

ones and zeros with additional ROOT coding. Ones represented if peaks existed in the

energy range, and zeros represented no peak. In addition, various cases were simulated

with CINDER’90 and MCNP F8 tally. Example MCNP and CINDER’90 files were given

in the Appendices. Every possible combination for five elements resulted in 32 cases with
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Figure 3.6. ROOT analysis of the APA spectrum for background.

zero combination that does not have to be simulated. In the end, the training data would

consist 32 sets of 13 dimensional vector in binary form. The target included binary form of

32 sets with 4 digits.

The binary training data and target data was used in training linear perceptron

classification. Figure 3.9 shows linear perceptron structure with 13 dimensional input and

5 dimensional output vector.

Example of identification was made with the experimental data. Gamma spectra

from kidney stone samples were used. Table 3.2 summarizes the results for experimental

analysis. Analysis failed only testing Au in 8 hour spectrum. This was due to less counts for

Au in the spectrum. Although the spectrum analysis with ROOT failed storing two peaks
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Figure 3.7. Background subtraction from the spectrum.

from Br, storing other four peaks from Br was still recognized by perceptron network. The

network resulted correct analysis. If the false reading from a spectrum for a single gamma

emitting radioisotope happened, the network would result a false analysis.

3.2. QUANTIFICATION

Simulated data was prepared by using F1 tally to irradiate a sample. The direct use

of F8 tally resulted in erroneous spectra or spectra that were not exact representation of

detectors. Exact scenario of neutron activation has two step processes. First, the samples

are irradiated. Second, irradiated samples are moved to detectors to acquire gamma spectra.

The same procedure was meant to be followed by simulating F1 tally responses with time

information. The emitted particles after irradiation could be stored to use in the second

simulation with F8 tally to mimic the same response as detectors. However, SSW card
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Figure 3.8. Confusion matrix for linear perceptron.

used in the first simulation stored every particle including prompt gamma as well as delayed

gamma emissions. It was not enabling users to store only desired particles. As a result of

the fact that F1 tally results were compared with simulated data. And peak information was

used instead of whole spectrum in the neural network.

A starting point to find better training algorithm was comparing three algorithms

with varying the number of neurons in the hidden layer. Figures 3.10, 3.11, 3.12 show

the relative error for 5 elements. In Nuclear Engineering discipline, the results of neutron

activation analysis are reported as values and associated relative error. Thus, results were

interpreted according to relative error. Number of neurons in the hidden layer from 1

through 100 were simulated. Data was divided into three sections randomly as 70% for
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Figure 3.9. Construction for perceptron network representation.

training, 15% for test, 15% for validation. Mean squared error was used as performance

function during all neural network simulations. Maximum number of validation fails, µ,

and maximum gradient were used as default values offered by MATLAB.

LM algorithm resulted stable relative error distribution (Figure 3.10). The lowest

relative error for all elements was with 23 neurons in the hidden layer. Zn was resulting

the highest error almost for all hidden layer sizes. This was attributed to decay half-life of

Zn. Half-life of Zn is relatively higher than all other elements. Decay of Zn produced small

number of gamma emission for different Zn concentration. Therefore, the neural network

did not gain enough sensitivity to catch a change in the amount of Zn. The simulation of

varying sizes of the hidden layer took shorter time with LM algorithm.

BR algorithm resulted higher relative error shown in Figure 3.11. Even though

lower relative error than LM algorithm appeared in between 10 to 15 neurons range in the

hidden layer, the error distribution was not stable. After several trials, large changes in the

error was observed. In other words, the optimum neuron numbers are different at every

run. BR algorithm took relatively longer time than LM algorithm. If size of training data

was very large, BR results were expected to be similar to those from LM algorithm. The

probabilistic approach was expected to result the same as numeric approach. This is due to

the nature of the algorithms. LMwas numeric approach to find correct weights whereas BR
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Table 3.2. APA type kidney stone test for identification

3 hour spectrum 8 hour spectrum 12 hour spectrum

Elements Estimated Present Estimated Present Estimated Present

Br 1 1 1 1 0 0

Na 1 1 1 1 0 0

K 1 1 0 0 0 0

Zn 0 0 1 1 1 1

Au 0 0 0 1 0 0

was probabilistic approach. Main advantage of BR was memory requirement was small.

However, it took more time. LMwas preferred over BR with confidence because overfitting

was not a concern.

SCG which is used mostly in pattern recognitions resulted in very high relative

errors. The error distribution was unstable with an increasing trend as the number of

neurons in the hidden layer was increased. Figure 3.12 shows the unstable nature of the

error distribution based on neuron numbers. The results were noted as suspicious. SCG

did not take time as much as BR; but, it took longer than LM algorithm.

Comparison of three algorithms with different size of hidden layers suggested to use

LM algorithm with 23 neurons in the hidden layer.
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Figure 3.10. LM error with different number of neurons in the hidden layer.

Next step was to observe the response dependency of the network based on the size

of the training data. LM algorithm was used with 23 neurons in the hidden layer to test

training data size. Figure 3.13 shows the result of different training data sizes.

The average relative error of 5 elements would introduce bias to the evaluation

because a very high and a very low error might result an acceptable error when averaged.

Thus, highest relative error from 5 elements was stored and plotted to validate the training

data size. Figure 3.13 suggested that 220 set of input vectors were required if the goal was

less than 10% relative error. Since 259 set of input vectors were available, the study was

carried using all the data set.
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Figure 3.11. BR error with different number of neurons in the hidden layer.

Finally, LM algorithm was used with 259 sets of 5-dimensional input vectors and

23 neurons in the hidden layer. Figure 3.14 represented high correlation (R=0.99669)

between input and output of the network for all cases. The figure also showed that random

generations of concentration of five elements were highly homogeneous. The dashed line

stood for perfect results. The solid green line represented fitted results. Because of the high

correlation, fitted line and dashed line overlapped.

Training data due to random selection had high correlation between target and the

neural network output. High concentration values were observed to serve quality response

even though less data was observed in the region. The correlation value (R = 0.99759) was

higher than for all cases together. The distribution was shown in Figure 3.15.
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Figure 3.12. SCG error with different number of neurons in the hidden layer.

Figure 3.17 and Figure 3.16 also showed high correlation in fitting. The validation

and test processes had almost homogeneous random choice. The circles were distributed

along the fitted line (green line). This choice was different for every run as data separation

for training, validation, and test was randomly selected. The distribution could be selected

to provide more homogeneous distribution. However, the accuracy was at desired level such

that further improvement was not required.

The target that consisted of concentration of 5 elements were divided by mass of the

sample in the simulation. As a result, the unit of target was element concentration per unit

mass.
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Figure 3.13. LM error with different size of training data.

Mean squared error (MSE) was used for the performance. When validation started

to fail the training was stopped by LM algorithm. The behavior is shown in Figure 3.18.

The validation was stopped when MSE was found as minimum. The validation was carried

on for six more iteration to ensure the error was not getting any better. The test curve (red

line) did not show any increase before the validation curve (green line) in the figure. Thus,

it was confirmed that there was no overfitting problem occurred in the training step. By

analyzing the regression fitting and the MSE plot, it was concluded that random choice of

70% training data, 15% validation data, 15% test data was a suitable configuration for the

data. MSE performance function resulted in better training compared with other type of

performance functions.
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Figure 3.14. Regression plot for training, validation, and test.

The output of the network was giving both positive and negative values. Because the

mass concentration values should be between 0 to 1, logarithmic sigmoid (logsig) function

was used to constrain the output to [0,1] range. However, this constrain forced the network

to end up with bad MSE during training. The hyperbolic tangent sigmoid (tansig) function

was also used as well. As the tansig function resulted in almost same response, the default

option for the output layer was taken as purelin transfer function.



50

Figure 3.15. Regression plot for training.

Table 3.3 is a summary of external validation for the NN with 5-23-5 (5 neurons in

the input layer, 23 neurons in the hidden layer, 5 neurons in the output layer). According

to the results, the highest error was obtained as 5.4% from Zn. This was previously

attributed to the longer half-life of Zn in the simulation. Less decay in the simulation

produced less particle that the network during training looses its sensitivity to Zn to some

extent. Nonetheless, the tabulated values are still in high precision when compared with

the literature that have reported results from simulation only.
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Figure 3.16. Regression plot for validation.

Table 3.4 shows the relative error on the analysis of kidney stone spectra with the

neural network. As it was expected, there were high relative error associated with Zn.

Some errors were above 10%. This was attributed to the correction between simulated

spectrum and experimental spectrum. Although large error occurred, simulated analysis

results in Table 3.3 says that if better correction was obtained between simulated spectra

and experimental spectra, the error can be as low as 5.4%.
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Figure 3.17. Regression plot for test.

Artificial neural network was successfully applied to neutron activation analysis.

Increase in number of element for analysis requires larger training data for future studies.

However, five elements were enough to perform activation analysis for bio-samples for the

purpose stated earlier. Overall, the neural network parameters and functions for accurate

analysis of trace elements in gamma spectra were summarized in Table 3.5 in detail.
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Figure 3.18. MSE values during training with purelin function in the output layer.

Figure 3.19. MSE values during training with logsig function in the output layer
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Table 3.3. External validation of the neural network.

Elements Concentration NN result Relative error %

Br 0.066025834 0.0648 1.8

Na 0.171845192 0.1661 3.4

Zn 0.091106226 0.0960 5.4

K 0.122679246 0.1261 2.8

Au 0.071942503 0.0708 1.6

Table 3.4. Neural network analysis of experimental spectra for relative error in %.

Elements APA COM UA STRU

Br 5.3 10.1 16.0 14.6

Na 7.2 12.3 8.7 9.0

Zn 17.9 28.2 24.9 27.9

K N/A N/A 21.1 N/A

Au 5.2 9.9 5.4 16.1
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Table 3.5. Summary of the optimum neural network.

Features Assigned Value

Train function: Levenberg-Marquardt

Number of layers: 3 (input-hidden-output)

Number of neurons in the hidden layer: 23

Number of neurons in the input layer: 5

Number of neurons in the output layer: 5

Devide mode: Random

Performance function: MSE

Bias connections: [1;1]

Maximum number of Epochs: 1000

Maximum number of fails: 6

µ: [0.001 − 1e10]
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4. CONCLUSIONS

Artificial neural network has been successfully implemented to the analysis of

gamma spectra for qualitative and quantitative analysis. The biggest advantage of neural

network is that it takes time only

Monte Carlo simulationwas successfully used to generated gamma peak information

from neutron capture reactions of irradiated samples. 5 elements which were common in

kidney stones were the research focus. Randomly generated mass concentration of these

5 elements were prepared in order to use in the material card of MCNP. Concentrations

were normalized to mass of samples that resulting unit was g/g per unit mass. CINDER’90

code was used to simulate radioactive isotopes under the experimental setup. CINDER’90

working with MCNPX generates radioisotope densities over time. The densities were used

in further simulations.

Current (F1) tally and PulseHeight (F8) tallywere employed to prepare data. F1 tally

generates how many particles were emitted during detection time. There was significant

difference between detected particles and emitted particles due to detector area, dead time,

detector efficiency, etc. Therefore, an energy dependent correction was made for the counts

from experimental data. The energy depended corrections for 5 elements were obtained by

comparing known samples with their masses and simulated values. 5 peaks were chosen

to represent 5 elements. Some of the elements emit gamma particles with more than one

energy. In such a case, only the peaks with most count were taken into account. Simulated

data was stored to use in quantification analysis in the neural network.

Decay densities tabulated by CINDER’90 were used in F8 tally to mimic gamma

spectra from a detector. Application of GEB function with different parameters produced

spectra for different detector responses. Different gain and shift settings were applied to

obtain different voltage and temperature effects on the spectra.
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Several scenarios with different gain and broadening settings were conducted and

analyzed with ROOT. Peak search specifics were obtained to search for peaks from ex-

perimental gamma spectra with Canberra HPGe detector. Main specifics were sigma of

a Gaussian peak, threshold to separate signal from noise, and maximum peak number to

search.

Linear perceptron was successfully employed for identification purpose. To train the

perceptron network, occurrences of five elements were prepared in binary representation.

Then optimized ROOT search algorithm with TSpectrum was used to search for desired

peaks. ROOT also was capable of generating a text file in a required format. Output file

was generated as in binary format by ROOT. When ROOT found desired peaks, it stored

ones to represent the presence of peaks. It stored zeros if desired peaks were not found in a

spectrum.

Three layer neural network was employed for quantification analysis. Levenberg-

Marquardt algorithm found to be better for the quantification purpose. 23 neurons in the

hidden layer was used to get low relative error. 259 set of 5-dimensional vectors were used

for training purpose. 5-23-5 Neural Network, trained with LM algorithm, resulted very low

error on determination of element concentrations. Maximum relative error was found to

be 5.4%. The analysis of experimental spectra resulted error in-between 5.2% and 28.2%.

The error was attributed to accuracy of correction parameters between simulated data and

experimental data. The techniques promised that once the correction parameters found

with better accuracy, the error could be as low as 5.4% as in neural network evaluated with

simulated data.

Maximum error in quantification was found from Zn. Due to long half-life of

Zn, decay during measurement time (8 hours) was not enough to emit as compared to

other radioisotopes. Therefore, the neural network was not trained well for changes in Zn

concentrations.
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Pulse height (F8) tally was not suitable for quantification analysis due to time binning

issue with this type of tally. F8 tally cannot be used with time bins directly. It could be

coupled with F6 tally. This method did not mimic the detector representation. SSW card

cannot be used with time as in F8 tally. In addition, SSW card took more than 3 hours with

i7-quad-core-16GB memory pc for only one single simulation. Consecutive simulations

would take more time that was not effective. Besides the summarized limitations, main

limitation of data preparation for neural network application was data library of MCNP to

produced delayed particles from irradiated samples.

During mass concentration preparation for MCNP material card, the concentration

of elements that had low interaction rates or long half-life can be focused to prepare more

variety of them. High variation rather than small changes will improve the sensitivity of

the neural network for these elements.

In NAA, preparation of training data withMonte Carlo simulation to examine exper-

imental data was the first time approach. Current researchers analyzed simulated data with

neural network trained by simulated data. This use is not very practical because simulation

represents perfect conditions. However, real life measurements have imperfections. In

another use of neural networks, experimental data was used for both training and analysis.

This approach also is not found practical because for large training data neutron source as

well as detectors should be occupied for long use under the same experimental conditions.

Keeping experimental conditions same is almost not possible or so expensive. Tempera-

ture, voltage settings, neutron source capability, etc. were some conditions that were not

controllable.

In this study, error occurs only in determination of correction parameters between

simulated peaks and experimental peaks. Error did not propagate during analysis on the

contrary of hand calculations.
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Once the neural network was trained, further analysis did not take time while manual

calculations would cost the same time during every analysis. Hand calculation with a use

of commercial software requires additional feature checking for radioisotopes that emit

overlapping energies. That was handled by the trained neural network. The simulated data

could also be trained for different experimental setups instead of generating another 260 set

of simulated data. This require a careful check on dead time. The experimental data for

different experimental conditions should not have significant dead time.

Finally, it is shown that artificial neural network coupled with MCNP was applied

successfully on identification and quantification of experimental gamma spectra.
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NEUTRON ACTIVATION SIMULATION
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Thermal neutrons into activation sample

1 1 -1.0 -1 imp:n,p=1

2 2 -0.001205 -2 1 imp:n,p=1

3 0 2 imp:n,p=0

1 so 0.5

2 so 5

mode n p

m1 nlib=.80c

c 35079 0

c 35081 0

11023 -1.0

c 30064 0

c 30066 0

c 30067 0

c 30068 0

c 19039 0

c 19041 0

c 79197 0

m2 7014 -0.756 8016 -0.231 18000 -0.013

act nonfiss=p dg=lines \$ Line data

sdef par=n erg=2.53e-8 wgt=2.15e12 tme=d1

si1 H

0e8 10800e8

sp1 0 1

c ssw 1 pty=p
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lca 7j -2

f12:p 1

e12 0 1022i 3.0

t12 10800e8 356400e8 385200e8

nps 1000000

c sd11 1



APPENDIX B

PULSE HEIGHT TALLY SIMULATION
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PHT from BE HpGe detector

c Created on: Wednesday, November 19, 2014 at 20:52

c 1 1 -1 -1 imp:p=1 $ Kidney stone (water)

2 2 -0.92 -4 -2 3 imp:p=1 $Carbon window

3 3 -2.7 7 -8 -2 (10 :-6 :5 )(10 :-5 :3 )(-10 :5 :9 :-6 )

(4 :-3 :2 ) imp:p=1

4 4 -5.32 12 -11 -10 imp:p=1 $Ge detector

5 5 -8.96 (-17 15 -13 (10 :-14 :13 )):(-18 19 16 -15 ) imp:p=1

6 6 -0.001205 -20 22 -21 (8 :-7 :2 ) imp:p=1

7 0 -10 14 -12 imp:p=1

8 0 (((6 -9 -5 ):(-10 -3 5 ))(17 :-15 :11 )

(18 :-16 :-19 :14 )):(13 -17 -11 10 ) imp:p=1

9 0 20 :21 :-22 imp:p=0 $outside

c 1 so 0.5

2 px -3

3 px -3.06

4 cx 3.75

5 px -3.15

6 px -14.7

7 px -15

8 cx 4.45

9 cx 4.3

10 cx 3.5

11 px -3.56

12 px -6.06

13 px -3.71
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14 px -8.86

15 px -9.01

16 px -10.01

17 cx 3.65

18 cx 3.2

19 cx 3.05

20 cx 9.45

21 px 5

22 px -20

mode p e

m2 6000. 1 $carbon window

m3 13000. 1 $Aluminum

m4 32000. 1 $germanium

m5 29000. 1 $cupper for the lateral wall

m6 6000 -0.00039 7000 -0.78081 8000 -0.2095 18000 -0.0093 $air

sdef erg=d1 par=2 pos 0 0 0

# si1 sp1

L D

1.368633 0.357491233

2.754028 0.357291038

1.115546 0.065367718

1.29709 0.031449016

0.776517 0.019747113

0.554348 0.01674366

0.619106 0.010263769

0.698374 0.006737668
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0.827828 0.005682912

1.044002 0.006439687

1.317473 0.006262318

1.47488 0.003859555

0.396329 0.042859122

0.282522 0.020157181

0.113805 0.012589867

0.158379 0.02042807

0.411 0.006128421

0.197957 0.004085669

0.177214 0.002529006

0.10318 0.008511662

0.33624 0.006833894

0.5279 0.004086937

f8:p,e 4

c e8 0 0.005 16382i 3.0

e8 0 0.005 2046i 3.02

ft8 GEB 0.00670897 -0.0025548 -0.00032

c ft8 GEB 0.00686532 -0.00266048 -0.0004

c ft8 GEB 0.00584912 -5.98559e-5 -0.0003492

c f6:e 4

c f18:p 4

c e18 0 0.0001 0.00056 1019i 3.0

c ft18 phl 1 6 1 0 hpg-1 GEB 5.86828e-4 3.95113e-4 7.46793

nps 1000000000
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CINDER’90 INPUT
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MCNPX CODE FOR IRRADIATION

MSTR irradiation simulation for Neural Network Data

1 2 -1.0 -1 imp:n=1

2 0 -2 1 imp:n=1

3 0 2 imp:n=0

1 so 1.0

2 so 10

mode n

phys:n 25 3j 5

totnu no

print

nps 1000000

sdef erg=d1 pos 0 0 0 par=1 wgt=2.175e12

c ******** MSTR neutron flux ***********

si1 H 0 1.0e-6 0.01 20

sp1 D 0 0.9885 0.011 0.0005

c

c m1 6000 -0.00039 7000 -0.78081 8000 -0.2095 18000 -0.0093

m2 nlib=.80c

f4:n 1

e0 5.000e-09 1.000e-08 1.500e-08 2.000e-08 2.500e-08

3.000e-08 3.500e-08 4.200e-08 5.000e-08 5.800e-08 6.700e-08
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8.000e-08 1.000e-07 1.520e-07 2.510e-07 4.140e-07 6.830e-07

1.125e-06 1.855e-06 3.059e-06 5.043e-06 8.315e-06 1.371e-05

2.260e-05 3.727e-05 6.144e-05 1.013e-04 1.670e-04 2.754e-04

4.540e-04 7.485e-04 1.234e-03 2.035e-03 2.404e-03 2.840e-03

3.355e-03 5.531e-03 9.119e-03 1.503e-02 1.989e-02 2.554e-02

4.087e-02 6.738e-02 1.111e-01 1.832e-01 3.020e-01 3.887e-01

4.979e-01 0.639279 0.82085 1.10803 1.35335 1.73774 2.2313

2.86505 3.67879 4.96585 6.065 10.00 14.9182 16.9046 20.0 25.0

CINDER’90 CODE FOR ISOTOPE CREATION

title_lines

Irradiation at MSTR for Neural Network

act04 MSTR irradiation

files

bigza_file bigza

mcnpx_outp act04o

cinder_options

tst 1e-5

signif 1e-16

kchn 0

klib 0

nfe 3

nosame 0
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russ 1

run_options

dcounter 41

splprods 0

tabular 1

normalization

snorm 1.0

history

1 1.0

3 h

2 0.0

96 h 8 h

cell_list

cell 1

1
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MATLAB CODE FOR HIDDEN LAYER SIZES
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function neural232_lm()

% Solve an Input-Output Fitting problem with a Neural Network

% This script needs input and output data to be read from an

% excel file

% input: input data read from excel file

% target: corresponding target data from excel file

% conc: element concentrations for testing outside from

% neural network

% spec: spectrum to use as an input to test conc

filename1=’dat232.xlsx’;

input=xlsread(filename1);

filename2=’target232.xlsx’;

target=xlsread(filename2);

%target=tar’;

filename3=’spec232.xlsx’;

spec=xlsread(filename3);

c=[0.066025834 0.171845192 0.091106226 0.122679246 0.071942503];

conc=c’;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Construct Fitting Network

trainFcn = ’trainlm’; % Levenberg-Marquardt

for i=1:100;

hiddenLayerSize=i;

net=fitnet(hiddenLayerSize,trainFcn);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% Setup Division of Data for Training, Validation, Testing

net.divideParam.trainRatio=70/100;

net.divideParam.valRatio=15/100;

net.divideParam.testRatio=15/100;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Train the Network

[net,tr]=train(net,input,target);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Test the Network

y(:,i)=net(spec);

e=gsubtract(target,y(:,i));

performance=perform(net,target,y(:,i));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Relative error from expected values

error(:,i)=(abs(conc-y(:,i))./conc);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Write results to excel files

filename4=’nn_results_lm.xlsx’;

filename5=’nn_errors_lm.xlsx’;

xlswrite(filename4,y);

xlswrite(filename5,error);

y; % Uncomment if the output is required to the screen
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error; % Uncomment if the output is required to the screen

%%%%%%%%%%%%%%%%%%%%%%% Plots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Uncomment these lines to enable various plots.

%figure, plotperform(tr)

%figure, plottrainstate(tr)

%figure, plotfit(net,x,t)

%figure, plotregression(t,y)

%figure, ploterrhist(e)
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