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ABSTRACT 

 

This research attempts to provide fundamental understanding into the relationship 

between perceived sustainability of mineral projects and community acceptance. The main 

objective is to apply agent-based modeling (ABM) and discrete choice modeling to understand 

changes in community acceptance over time due to changes in community demographics and 

perceptions. This objective focuses on: 1) formulating agent utility functions for ABM, based on 

discrete choice theory; 2) applying ABM to account for the effect of information diffusion on 

community acceptance; and 3) explaining the relationship between initial conditions, topology, 

and rate of interactions, on one hand, and community acceptance on the other hand.  

To achieve this objective, the research relies on discrete choice theory, agent-based 

modeling, innovation and diffusion theory, and stochastic processes. Discrete choice models of 

individual preferences of mining projects were used to formulate utility functions for this 

research. To account for the effect of information diffusion on community acceptance, an agent-

based model was developed to describe changes in community acceptance over time, as a 

function of changing demographics and perceived sustainability impacts. The model was 

validated with discrete choice experimental data on acceptance of mining in Salt Lake City, Utah. 

The validated model was used in simulation experiments to explain the model’s sensitivity to 

initial conditions, topology, and rate of interactions. The research shows that the model, with the 

base case social network, is more sensitive to homophily and number of early adopters than 

average degree (number of friends). Also, the dynamics of information diffusion are sensitive to 

differences in clustering in the social networks. Though the research examined the effect of three 

networks that differ due to the type of homophily, it is their differences in clustering due to 

homophily that was correlated to information diffusion dynamics. 
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1. INTRODUCTION 

 

1.1. BACKGROUND 

Mining provides the raw materials for human development. It is worth noting that 

minerals and metals are crucial to all services and infrastructure that are used by society 

(ICMM, 2012a; Martens & Rattmann, 2001). World demand for minerals will be affected 

by three broad factors: uses for mineral commodities, the level of population consuming 

these mineral commodities, and the standard of living, which determines how much is 

consumed per a person (Kesler, 2007). For instance, population growth and the speed of 

urbanization in China and other Asian countries, together with current demand in the 

developed world have resulted in an unprecedented demand for minerals and metals.  

Mining operations can result in several economic impacts including: job 

opportunities and income increase for individuals in the host region.  Job opportunities 

and related economic impacts created by mining operations are well documented in the 

literature. Increases in income as a result of higher paying jobs and/or the jobless joining 

the mine’s supply chain is another significant impact of mining (ICMM, 2012a; Petkova 

et al., 2009; Que, 2015). In the United States (U.S.), for instance, the economic 

contribution made by U.S. mining in 2015 through employment, labor income, 

contribution to gross domestic product (GDP) and taxes is presented in Table 1.1. In 

2015, U.S. mining directly and indirectly created nearly 1.7 million full-time and part-

time jobs. In addition, U.S. labor income associated with mining exceeded $100 billion, 

which includes wages and salaries, other employee benefits and owner-operator business 

income (National Mining Association, 2016). At both national and local levels, mining 

generates government revenues, foreign and domestic investment. National Mining 
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Association (2016) reports that U. S. mining activity generated about $18 billion in 

federal, state and local taxes in 2015, and that supported direct, indirect and induced taxes 

of $ 44 billion. U.S. mining contributed about $220 billion to the GDP in 2015 (National 

Mining Association, 2016). 

 

Table 1.1. Economic Contribution of U.S. Mining, 2015 

Item Direct 
Indirect and 

Induced 
Total 

Employment 565,548 1,122,816 1,688,364 

Labor Income (billions 

of dollars) 
$39.8 $63.9 $103.7 

Contribution to GDP 

(billions of dollars) 
$100.4 $120.0 $220.4 

Taxes Paid (billions of 

dollars) 
$18.0 $26.0 $44.0 

Source: National Mining Association (2016) 

 

Regardless of the fact that mining benefits the society, mining now and in the 

future has to take place in an economically, ecologically and socially acceptable manner. 

Besides, society expects that mining operations meet more exacting environmental, social 

and cultural standards of performance. Thus, mining and metals companies have a major 

role to play in a sustainable world. Project development cycles for mining and metals 

companies require a plan for how the operation will be carried out in a sustainable 

manner. Communities, civil society, investors or governments will not accept 

unsustainable mining, so a proactive response is extremely important (ICMM, 2012a; 

Martens & Rattmann, 2001; World Economic Forum, 2014). By and large, concerns 
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regarding corporate sustainability have increased globally over the years (Freeman & 

Gilbert, 1998; Friedman & Miles, 2001; Gao & Zhang, 2006; Mathews, 1997; Rotheroe 

et al., 2003; Rowe& Enticott, 1998; Schaefer, 2004; Shrivastava, 1995).  Poor 

sustainability performance affects the profitability of a business. Businesses should have 

an interest and a responsibility to incorporate sustainable development into their long-

term business plans (Elkington, 1998; Gao & Zhang, 2006; Russo & Fouts, 1997).  

Community acceptance of mineral projects is an important concern, if these 

projects are to be carried out in a sustainable manner. Regulatory bodies, engineers, 

related professionals and investors in the mineral extraction business need to gain more 

insight into the drivers of community acceptance. More importantly, professionals need a 

better understanding of approaches to designing more sustainable projects, which can 

influence community acceptance. 

Communities around the world are increasingly requesting a greater portion of 

benefits from local mining projects, more involvement in decision making, and 

assurances that mineral development will be conducted safely and responsibly (Prno, 

2013). At the same time, full legal compliance with state environmental regulations has 

become an increasingly insufficient means of satisfying society’s expectations of mining. 

There is now a recognized need for mineral developers to gain a social license to operate 

(SLO) to avoid potentially costly conflict and exposure to business risks (Bridge, 2004; 

Prno, 2013). Lack of social license to operate (SLO) for natural resource projects 

constitutes a major risk to the success of these projects. A SLO can be said to exist when 

a mining project is perceived to have the broad, ongoing approval and acceptance of 

society to conduct its activities (Joyce & Thomson, 2000; Thomson & Boutilier, 2011). 
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In other words, SLO refers to the level of acceptance that the local community and other 

stakeholders constantly give to an organization’s operations or project (Black, 2013). The 

lack of community acceptance leads to political and social unrest, which increases 

security and public relations trepidations for mining companies. These concerns reduce 

the value of the project through increasing costs as a result of delays or temporal 

shutdowns and can even dent the corporate image to render the project unattractive to the 

capital markets. 

As a result of the fact that there have been significant consequences because of 

lack of community acceptance, regulations in many regions clearly demand that the 

project is accepted by the affected community or community of interest (COI), during the 

permitting of resource projects ( Joyce & Macfarlane, 2001). Some regulators encourage 

free prior and informed consent (FPIC) of the affected communities or indigenous 

populations. This aims to ensure that these communities express their right in the decision 

making regarding the project. For example, Canada has endorsed the FPIC approach by 

providing the affected communities and indigenous peoples the right to partake in 

decision making and the right to say “yes” or “no” to development decisions and 

activities affecting their lands and resources (Hart, 2012). Nevertheless, stakeholders 

including private companies, government agencies, regulators, and NGOs still have no a 

quantitative approach to incorporate community acceptance into designing and planning 

new mining projects, and even into expanding existing mining projects. Primarily, these 

stakeholders need to gain better insight into design choices and their impacts on 

community acceptance and eventual sustainability of the project. For example, designing 

a project to use over-head conveyor systems as opposed to overland conveyor systems 
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might add to design complexities and extra cost to the project. However, the community 

may be more likely to accept the project because this option allows them space, and does 

not cause any undesirable traffic issues. Also, stakeholders need a means to understand 

how information transfer within these communities can cause changes in community 

acceptance. Research is required to explore the nature and dimensions of such 

information transfer. This dissertation seeks to address these questions and concerns. 

 

1.2. STATEMENT OF PROBLEM 

It is important to understand the relationship between sustainability and 

community acceptance in order to facilitate design and execution of sustainable resource 

projects that provide raw materials for industrial activity. “Community acceptance” in 

this context means individuals in the mining community prefer the proposed mining 

project over the status quo. This may be more than “acceptance” but less than “approval” 

in social license to operate (SLO) parlance (Thomson and Boutilier, 2011).  Community 

acceptance is affected by factors such as the impacts of the mine on the environment and 

host community, the mine owner (corporate reputation, etc) and governance issues, and 

demographics of the community (Que, 2015; Wang et al., 2016). 

Community acceptance has direct and major implications on sustainability. 

Mining projects impact social, environmental and economic characteristics of the host 

communities and as such affect the community's acceptance of the mining project. The 

capability of the project team to successfully execute a sustainable mining project is 

dependent on the community’s acceptance of the project. Besides, project risks can be 

influenced by community acceptance. For example, several conflicts in mining regions 
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are partially due to companies’ inability to reliably predict community acceptance, and 

incorporate it early into the project planning and design. These conflicts can potentially 

be handled by a methodical and reproducible modeling framework, which defines the 

relationships between community acceptance and sustainability, on one hand, and 

engineering design and project execution decisions, on the other hand. Such a framework 

can be applied, in addition to current tools, to highlight issues related to emergent 

(grassroots) behavior that is difficult to understand with these other approaches. 

The literature does not contain any such framework that can be used to evaluate 

the effect of information diffusion on the changing level of acceptance over time. This 

research is aimed at filling the gap by providing a framework that can be applied to 

understand community acceptance of mining over time given changes in community’s 

demographics and perceptions. The framework would assist mine managers and 

stakeholders to make more informed decisions to promote sustainable mining. 

The system under consideration is complex, adaptive and dynamic (state variables 

change with time) (Figure 1.1). Therefore, there is the need to develop a dynamic 

community acceptance model with a complex-adaptive system framework. Over time, the 

mining project characteristics and impacts change. These impacts affect community 

demographics (people migrate and immigrate in search of jobs, quality of life changes, 

among others), which may in turn affect individual perceptions and decisions in relation 

to acceptance of the mine. Consequently, community acceptance is affected by 

demographics and project characteristics and impacts. As presented on the right side of 

Figure 1.1, the people in the community (agents) interact with one another which may 

influence their decisions to accept the project (“Yes”) or not (“No”). Ultimately, the 
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agent makes its own decision to accept or not based on its utility function. It is essential 

to integrate the dynamic interactions between the technical/manufacturing system (i.e. the 

mine) and the enviro-socio-economic impacts, demographics, and project characteristics 

(Halog & Manik, 2011). This task can be accomplished through complex-adaptive 

system modeling techniques like agent-based modeling (also referred to as multi-agent 

modeling). This dissertation is focused on developing such a framework to understand 

how perceived project sustainability affects community acceptance over time. Eventually, 

this framework will help mine managers and other stakeholders better understand and 

evaluate dynamic community acceptance.  

 

 

Figure 1.1. System Interactions for Community Acceptance Model 

 

Literature review shows that there is no established framework for quantitatively 

understanding community acceptance of mining projects over time. A good framework 

would make mine design and permitting, and policy decisions by stakeholders less 
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challenging than it is, presently. A reliable model, capable of quantitatively assessing 

changes in community acceptance over time will help stakeholders do a better job in 

evaluating options and, therefore, make better decisions. 

The application of agent-based modeling has been extensive and successful in 

modeling economic and other social behavior (Aguirre & Nyerges, 2014; Bonabeau, 

2002; North & Macal, 2007). ABM describes “agent” interaction in a way that captures 

dynamic and emergent behavior (Bonabeau, 2002; Macal & North, 2010). A complex 

adaptive system, such as the community acceptance of mineral projects can be modeled 

using ABM. The current ABM work in mining community/stakeholder modeling 

(Berman et al., 2004; Li & Liu, 2008; Nakagawa et al., 2013) does not offer a rigorous 

(i.e. routed in decision theory) theoretical basis for the agent utility function. The 

candidate believes that application of discrete choice theory will advance the science of 

ABM application to mining community/stakeholder modeling by incorporating sound 

decision theory to describe individual motivation to support or oppose a mining project. 

This study is, therefore, at the intersection of mining community/stakeholder analysis, 

discrete choice theory and complex-adaptive system modeling using ABM. 

Discrete choice theory, based on the Nobel winning work by McFadden 

(McFadden, 1974), and others (Brock & Durlauf, 2001; Gramming et al., 2005), has been 

successfully applied in econometrics and other disciplines to understand consumer 

behavior. For instance, discrete choice theory has been applied to evaluate community 

acceptance of renewable energy projects (Dimitropoulos & Kontoleon, 2009). Some 

researchers have also used discrete choice theory to model individuals’ choice concerning 

whether or not to support mining (Ivanova & Rolfe, 2011; Que & Awuah-Offei, 2014). 
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Discrete choice theory can be applied to formulate rigorous utility functions for agent-

based model (ABM) of community acceptance. For example, Hunt et al (2007) 

successfully used a discrete choice model and ABM to examine recreational behaviors so 

as to guide the choice and implementation of given scenarios.  Similarly, Lee et al (2014) 

used ABM, which relied on decision-making algorithm using discrete choice experiment 

(DCE) to simulate energy reduction situations of owner-occupied homes in the United 

Kingdom (UK).   In spite of the examples of the application of ABM and discrete choice 

experiments (DCEs), independently, to model consumer and individual  preferences 

(Brock & Durlauf, 2001; Gramming et al., 2005; McFadden, 1974;  Zhang et al., 2011), 

the combination of the two approaches to model community acceptance of mining project 

does not exist in the literature. Actually, ABM applications in resource exploitation 

wholly have not been supported by rigorous utility functions based on sound social 

science. Nevertheless, work done by researchers including (Hunt et al., 2007) attests to 

the possibility for these two approaches to be applied to model mining community 

acceptance over time.  

Also, the structure of a community’s social network can affect information 

diffusion within the community. For instance, the structure of a social network can favor 

or impede the diffusion of information in the network (Deroian, 2002; Kong & Bi, 2014). 

In order to use ABM to understand the effect of information diffusion on changes in 

community acceptance, social network and diffusion models have to be included in the 

agent-based models. However, there has been no work that used ABM and discrete 

choice theory in conjunction with diffusion models through social network to 

quantitatively understand dynamic community acceptance of mining. 
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Community acceptance is usually influenced by numerous factors, including 

effectiveness of local community engagement, individual preferences, and requirements 

for community acceptance, and perceptions of legitimate ownership of mineral rights 

(Ballard & Banks, 2003; Joyce & Macfarlane, 2001). In general, community acceptance 

is an essential element in the sustainability of a particular mining project. This presents 

several questions and concerns: How does new information change the community 

acceptance over time? Can an agent-based modeling framework that uses discrete choice 

theory be proposed to study this question? If so, what are the essential input parameters 

that the model is most sensitive to? What is the effect of social network on the dynamics 

of information diffusion and community acceptance? Based on the aforementioned 

complexities related to achieving perceived sustainability, further research is needed to 

explore these issues. Though combining ABM with rigorous decision science and 

incorporating social network structure is a promising method to investigate these issues, 

there are many challenges such as: (1) how to define valid agent utility functions using 

discrete choice theory; and (2) how to describe the interaction between perceptions of 

sustainability and community acceptance using an ABM diffusion model through social 

network. The main contribution of this dissertation is to overcome the above-mentioned 

challenges, and provide more understanding into changes in community acceptance over 

time due to changes in community demographics and perceptions. 

In this dissertation, the candidate uses the odds ratio as the utility function. The 

application of odds ratio has been wide in decision applications, especially in the field of 

medicine for selecting options and making decision. For example, it helps patients decide 

to accept or waive painful or expensive treatments, and thus, enables health care 
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providers to make treatment decisions (Mchugh, 2009). However, to the best of the 

candidate’s knowledge, it has never been used in ABM. This research is mainly aimed at 

providing better understanding of the relationship between perceived mine sustainability 

attributes and community acceptance. In other words, this study will provide engineers, 

stakeholders and regulatory bodies’ additional tools to assess the impact of various design 

options that affect community perception of sustainability on community acceptance. 

Ultimately, this will contribute to improving sustainability impacts of mining, and 

enhancing mining engineering practice and research. 

 

1.3. RESEARCH OBJECTIVES AND SCOPE 

The goal of this PhD research is to provide rudimentary understanding of the 

relationship between perceived sustainability of mineral projects and community 

acceptance. Particularly, the main objective of this research is to apply agent-based 

modeling (ABM) and discrete choice modeling to understand changes in community 

acceptance over time due to changes in community demographics and perceptions. This 

objective focuses on:  

1. Formulating agent utility functions for ABM, based on discrete choice theory;  

2. Applying ABM to account for the effect of information diffusion on community 

acceptance; and  

3. Explaining the relationship between initial conditions, topology, and rate of 

interactions, on one hand, and community acceptance on the other hand.  

To achieve this objective, this research relies on discrete choice theory, agent-

based modeling, innovation and diffusion theory, and stochastic processes. Discrete 
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choice models of individual acceptance of mining projects was used to formulate utility 

functions for this research. To account for the effect of information diffusion on 

community acceptance through social network, an agent-based model was developed to 

study changes in community acceptance over time, as a function of changing 

demographics and perceived sustainability impacts. The model’s utility function was 

validated with data from Salt Lake City, Utah, USA. 

This research has the following limitations that require clarification. Firstly, social 

network used in this research is only assumed to be representative of the mining 

community and has not been observed in the community. There is no information on the 

type of social network in a particular mining community in the literature even though 

some researchers have qualitatively discussed social networks in the mining 

communities. However, the general framework and the sensitivity analysis can be useful 

in providing stakeholders with a better understanding of how social networks of mining 

communities influence the rate of change in project acceptance because of information 

diffusion.   Secondly, the ABM model in this study does not account for the possibility of 

different roles (e.g. active or passive, resistant or receptive, and innovators or followers) 

of individuals during information diffusion.  Thirdly, the ABM model has not been fully 

validated with empirical data from a mining community or communities. Besides, the 

model assumes that the “local community” can be defined and isolated. This suggests that 

the system is thus bounded to a particular community and there is no significant 

interaction between individuals in the community under study and in other communities 

that can impact perceptions. Nevertheless, this research will offer better knowledge of the 

factors that influence community acceptance. The model will advance the application of 
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agent-based models to manage sustainable mineral projects and can be used for future 

research in sustainability. 

 

1.4. RESEARCH METHODOLOGY 

Table1.2 presents the research methodology adopted in this study. To begin with, 

a critical literature review was conducted to clearly understand current issues regarding 

sustainability and community engagement, various community engagement processes, 

factors affecting community, and existing tools to quantitatively understand community 

acceptance of mining over time. Although the literature review, by itself, does not 

accomplish any of the objectives, it is the basis of all the solutions proposed in this 

research. The literature review provided the required information and knowledge that 

guided the candidate to clearly understand the current challenges facing mining 

sustainability and the approaches (agent-based modeling, discrete choice theory, and 

social networks) to address these challenges. 

With the first two objectives, the candidate developed an agent-based modeling 

framework for modeling the effect of information diffusion on community acceptance of 

mining. The candidate developed the information diffusion model by assuming that the 

probability of a person adopting the new perceptions of the mine’s sustainability depends 

on the number of friends that person has and a random process that is a function of the 

fraction of friends who have adopted the new perception. This research used the Bass 

model to describe word-of-mouth information transfer because it is consistent with this 

assumption (Jackson, 2008).  
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Table 1.2. Research Approach and Organization of this Dissertation 

Section Task 

Section 2 

Literature Review: 

1. Sustainability and community engagement 

2. Mining community engagement 

3. Mining community and social license to operate 

4. Factors that affect community acceptance 

5. Discrete choice theory and models 

6. Agent-based model (ABM) 

7. Social network 

8. Applications of ABM, social network and discrete 

choice theory to model community behavior 

 

Section 3 

(Objectives #1 and #2 

Agent-Based Modeling (ABM): 

1. Modeling framework 

2. Utility function validation 

3. Case study 

 

Section 4 

(Objective #3) 

Experiment and Sensitivity Analysis of the ABM: 

1. Sensitivity analysis of the ABM 

Section 5 

(Objective # 3) 

Effect of Social Networks on Information Diffusion 

and Community Acceptance of Mining 

1. Investigating social networks and their effects on 

information diffusion and community acceptance of 

mining 
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Many researchers have modeled word-of-mouth information transfer as a 

diffusion process. For instance, the model developed by Bass describes the diffusion of 

an innovation as a contagious process that is propelled by word-of-mouth (Kiesling et al., 

2012). Using data from the literature, a case study was used to illustrate the framework. 

The model, constructed in MatLab, defines individuals in the community as independent 

agents that interact with other agents via their social network for information. The agents' 

utility function was derived from discrete choice models. 

An individual’s utility (payoff) for an alternative and the odds of selecting an 

alternative over another can be estimated using discrete choice theory. This work uses the 

odds ratio, which is the ratio of the probability of an individual selecting one alternative 

over another, as the decision criteria to determine whether agents have accepted the 

proposed mining project or not. An agent accepts a proposed alternative over the status 

quo if its odds ratio is greater than one. The odds ratio is estimated for all agents 

participating in the decision at each time step in the simulation. The model then tabulates 

all agents’ state (accepted or not accepted) to determine the level of acceptance as a 

percentage of agents who have accepted. This approach is implemented in the framework 

presented in section 3. 

Third objective is achieved by conducting sensitivity analysis of the agent-based 

model (ABM). This is done in two parts, the first of which examines all sensitivity 

factors but the social network. This activity investigated how the ABM is sensitive to key 

input parameters of the model. Specifically, this task examined the sensitivity of the 

ABM to average degree (total number of friends) of the social network, close neighbor 

ratio (a measure of homophily in the social network) and number of early adopters 
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(“innovators”). A two-level full factorial experiment was used to investigate the 

sensitivity of the model to these parameters. The primary (main), secondary and tertiary 

effects of each parameter was estimated to evaluate the model’s sensitivity to these key 

input parameters. 

The second part of the third objective was to investigate the effect of social 

networks (topology) on information diffusion and its resultant effect on community 

acceptance of mining. The ABM built from the second objective, which incorporates 

social network to model community acceptance of mining projects, was employed to 

evaluate the effect of social network by simulating three different social networks: 

network with homophily based on social distance, network with homophily based on 

physical distance (propinquity) and network without homophily.  This work   further 

discusses the relationship between the simulated social networks and documented mining 

communities. 

 

1.5. STRUCTURE OF THE DISSERTATION 

This dissertation contains six sections, including this section. Section 2 presents 

relevant literature review. Section 3 presents an agent-based modeling framework for 

modeling the effect of information diffusion on community acceptance of mining. 

Section 4 discusses the sensitivity analysis of the agent-based models. The effect of social 

network on information diffusion and community acceptance is discussed in Section 5. 

Section 6 provides the conclusions of this dissertation and recommendations for future 

work. 
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2. LITERATURE REVIEW 

 

2.1. SUSTAINABILITY AND COMMUNITY ENGAGEMENT 

Sustainable development has been defined in various ways. However, the most 

frequently cited definition defines sustainable development as the ability of current 

generations to meet their needs without compromising the ability of future generations to 

meet their own needs (Brundtland, 1987). Sustainability as a business idea was 

introduced by John Elkington, who coined the phrase “triple bottom line” (TBL). TBL 

refers to a new approach of doing business accounting that considers social, economic, 

and environmental impacts and risks when making business decisions. Elkington advised 

the business world to adopt the TBL approach as a way to include social and 

environmental impacts in making business decisions. This has resulted in defining the 

“three pillars” of sustainability as the society, the economy and the environment 

(Elkington, 1998). In essence, sustainable development comprises social, economic and 

environmental impacts (Munashinge & Shearer, 1995).  Other definitions of 

sustainability have been proposed in recent times. These include sustainable development 

defined with regards to social, natural, human, physical, and financial capital (the five 

capitals) (Goodwin, 2003) and the concept of shared value (Porter & Kramer, 2011). 

Concerns regarding corporate sustainability have increased globally over the 

years (Freeman & Gilbert, 1998; Friedman & Miles, 2001; Gao & Zhang, 2006; 

Mathews, 1997; Rotheroe et al., 2003; Rowe& Enticott, 1998; Schaefer, 2004; 

Shrivastava, 1995). Poor sustainability performance impacts the triple-bottom 

profitability of a business. That is businesses should have an interest and a responsibility 
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to integrate sustainable development into their long-term business plan (Elkington, 1998; 

Gao & Zhang, 2006; Russo & Fouts, 1997). 

The real meaning of sustainable development can be captured by analyzing 

stakeholder opinions through a multi-stakeholder approach (Rotheroe et al., 2003). A 

stakeholder represents any group or individual who can affect or is affected by the 

achievement of the organization’s objectives (Freeman, 1984). The Institute of Social and 

Ethical Accountability (ISEA) defines stakeholder engagement as “the process of seeking 

stakeholder views on their relationship with an organization in a way that may 

realistically be expected to elicit them” (Cumming, 2001). The term “stakeholder 

engagement” is emerging as a means of describing a broader, more inclusive, and 

continuous process between a company and those potentially impacted its operations that 

comprises a range of activities and approaches, and spans the whole life of the project 

(IFC, 2007).  A mining project and its stakeholders are interdependent. Rotheroe et al 

(2003) suggest that industry has to engage stakeholders in the decision-making process 

and throughout the entire project to achieve sustainable development (Cheney & 

Christensen, 2001).  

Notably, the relationships between mining companies, local communities and 

other stakeholders begin long before mine construction begins, and companies should 

prudently invest in establishing good local relationships at the earliest stages possible 

(ICMM, 2012). From a mining perspective, ICMM (2012) defines stakeholders as a 

comprehensive list of people and groups who may be affected by, can affect, or have an 

interest in a project. The list of stakeholders for a project may include individuals, 

interested groups, government agencies, corporate organizations, politicians, labor 
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unions, media, public sector agencies and other groups. It is important to note that 

project’s stakeholders may change over time as the project goes through its life cycle, and 

thus, stakeholder  identification should be a dynamic process (ICMM, 2012b).  Local 

mining communities are the first stakeholder on the checklist of possible stakeholders 

proposed by International Council on Mining and Metals (ICMM) (ICMM, 2012b). The 

Ministerial Council on Mineral and Petroleum Resources (MCMPR) defines a 

community as a group of people living in a particular area or region. In mining industry 

terms, community is applied to the inhabitants of the immediate and surrounding areas 

who are affected by a company’s activities (MCMPR, 2005). The term local or host 

community usually refers to those living in the immediate vicinity of an operation, 

whether indigenous or nonindigenous people, who may have cultural affinity, claim, or 

direct ownership of an area in which a company has an interest. The term affected 

community applies to the members of the community affected by company’s activities 

(Evans & Kemp, 2011). 

Studies have indicated that mining community engagement is important for the 

success of mining operations and other industrial activities and inadequate engagement 

can result in disrupted projects (Browne et al., 2011; Davis & Franks, 2011; Moffat & 

Zhang, 2014; Prno &  Slocombe, 2012; Thomson & Boutilier, 2011). Communities must 

be acknowledged as legitimate participants in the decision-making about when mining is 

desirable and under what conditions. Only then can mineral development contribute to 

sustainable development (Keenan et al., 2003).  

Community engagement is necessary for acquiring permits before beginning 

mining project. Regulations in many regions clearly request that the project is “accepted” 
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by the affected or community of interest (COI), during the permitting of resource projects 

(Joyce & Macfarlane, 2001). Other regulators encourage free prior informed consent 

(FPIC) of the affected communities or indigenous populations. This is focused on 

allowing these communities to express their right in the decision making concerning the 

project. For instance, Canada has endorsed the FPIC approach, which provides the 

affected communities and indigenous peoples the right to participate in decision making 

and the  right to say ‘yes’ or ‘no’ to development decisions and activities affecting their 

lands and resources (Hart, 2012).  In the USA, the local community’s acceptance is not 

necessarily a requirement for issuing a permit. Nonetheless, public participation is 

required during environmental impact assessment (EPA, 1998).  

In the past decade, the concept of community approval of mining operations and its 

relationship to socio-political risk has been defined as the social license to operate 

(Thomson & Boutilier, 2011). Social license to operate (SLO) refers to a community’s 

perceptions of the acceptability of a company and its local operations (Thomson & 

Boutilier, 2011). However, other researchers have claimed that SLO is vague and question 

whether it is useful, as a practical matter (Owen & Kemp, 2013; Wang et al., 2016). For 

instance, Owen and Kemp (2013) argue that corporate goals to “obtain” or “retain” SLO 

assume that it can certainly be granted by communities in a manner similar to legally-

mandated permits, which have particular permit conditions and result in particular 

consequences if the conditions are violated by the company. Notwithstanding, this work 

uses SLO to describe the host or affected community’s level of approval. This is because 

SLO, conceptually, is a measure of community-related socio-political risk (Owen & Kemp, 

2013; Wang et al., 2016) and is applied in that context in this study.  
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Davis & Franks (2011) showed that one of the major non-technical risks 

responsible for project delays is community-associated risk. The cost of these delays can 

be substantial. For example, Davis and Franks (2011) estimate that the delay of a new mine 

at the exploration stage costs approximately US$ 10,000 per day. Good community 

engagement is the best way to mitigate these community-related risks (Que, 2015). Mines 

and mining companies still struggle to avoid community conflict despite increased effort. 

Actually, there seems to be an increase in conflicts in the presence of increased community 

engagement from mines (Hodge, 2014). This increase in conflicts could be the result of the 

dynamic nature of community issues and other factors affecting community acceptance, 

which reduce the efficacy of conventional engagement processes.  

 

2.2. MINING COMMUNITY ENGAGEMENT 

Characteristics of stakeholders, whether individuals, groups or organizations 

greatly impact the decision making-process. Stakeholder analysis is the tool to analyze 

this impact and has gained increasing popularity in the past decade (Que, 2015). 

Stakeholder analysis is a process that seeks to identify and describe the interests and 

relationships of all the stakeholders in a given project. It is a necessary precondition to 

participatory planning and project management (ICMM, 2012b). Other researchers also 

consider stakeholder analysis as a process for understanding the behavior and interests of 

a group of targeted stakeholders, who have the potential to influence an organization, 

project, or policy direction, through surveys and data analysis (Mason & Mitroff, 1981; 

Walt, 1994). The results of stakeholder analysis are employed to manage stakeholders by 
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knowing and satisfying their preferences and facilitating the decision making processes 

for management and policy-makers (Que, 2015). 

Bryson (1995) describes a basic analysis technique that provides a quick and 

useful method of: identifying stakeholders and their interests, clarifying stakeholders’ 

views of a local organization, identifying some key strategic issues and beginning the 

process of identifying coalitions of support and opposition. This technique involved nine 

steps, starting with brainstorming to find the list of potential stakeholders and ending with 

identifying and recording longer-term issues with individual stakeholders and with 

stakeholders as a group (Bryson, 1995).The most recently accepted stakeholder analysis 

method was proposed by Reed et al. (2009) and has three main steps: (i) identifying 

stakeholders; (ii) differentiating between and categorizing stakeholders; and (iii) 

investigating relationships between stakeholders (Que, 2015). 

From mining standpoint, organizations such as the International Council on 

Mining & Metals (ICMM) and the International Finance Corporation (IFC) have 

discussed stakeholder engagement (ICMM, 2008, 2009, 2010, 2012b; IFC, 1998, 2007, 

2009). The academic literature also contains several works that discuss stakeholder 

engagement from mining perspective (Azapagic, 2004; Davis & Franks, 2011; Jenkins & 

Yakovleva, 2006; Kempe, 1983; Moffat & Zhang, 2014; O’Faircheallaigh, 2012; 

Thomson & Boutilier, 2011). By and large, the stakeholder engagement method in the 

mining industry comprises the three key parts suggested by Reed et al. (2009): 

stakeholder identification, stakeholder analysis and iterative consultation (ICMM, 2012b; 

IFC, 2007). 
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The local communities, as prominent stakeholders, do not attract special attention 

in the stakeholder analysis procedure as they should (Que, 2015). Compared to other 

stakeholders (such as government, internal company stakeholders like employees and 

unions, and regulators), the local community is the most unrepresented group but, 

frequently, has the most varied views and diversity in demands. This is intensified in 

situations where mines operate on land belonging to indigenous people (Native 

Americans), and poor and disadvantaged communities. As a result, community 

engagement in mining becomes difficult, needing special attention and unique methods 

for stakeholder analysis (IFC, 2007; Que, 2015). 

Existing stakeholder analysis processes for engaging local communities (ICMM, 

2012b; IFC, 2014; Ivanova & Rolfe, 2011; Moffat & Zhang, 2014; Nakagawa et al., 

2013; Prno, 2013; Que, 2015; Que & Awuah-Offei, 2014; Thomson & Boutilier, 2011) 

are mainly qualitative, using public forums, surveys, analysis of comments to public 

announcements of permit application and others. Current qualitative community analysis 

approaches alone lack the capacity to provide enough understanding into the 

community’s trepidations, expectations, and particularly level of acceptance to achieve 

the project’s sustainability. Generally, community acceptance is influenced by several 

factors, such as effectiveness of local community engagement, individual preferences, 

and requirements for community acceptance, and perceptions of legitimate ownership of 

mineral rights (Ballard & Banks, 2003; Joyce & Macfarlane, 2001).  

Additionally, current approaches (qualitative or quantitative) do not easily predict 

the level of community acceptance over time. For example, these approaches require 

repeated surveys administered frequently and over time to capture changes in the level of 
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community acceptance over time. Other approaches that can be useful in providing 

understanding into the level of community acceptance over time, and the correlation 

between community acceptance and sustainability of mineral project are not currently 

available. Developing such approaches could transform mining engineering practice by 

providing tools for considering social acceptance of mining during the design and 

planning phase, which has the potential to contribute to successful permitting and 

management. This is because it will provide policymakers, engineers, and regulators 

quantitative tools to incorporate sustainability and social requirements into design 

choices. 

Decision theory and complex adaptive system modeling can be employed to 

understand the correlation between community acceptance and sustainability of mineral 

project. A complex adaptive system, such as the community acceptance of mineral 

resources can be modeled using ABM (Aguirre & Nyerges, 2014; Bonabeau, 2002; North 

& Macal, 2007). The current ABM work in mining community and stakeholder modeling 

(Berman et al., 2004; Li & Liu, 2008; Nakagawa et al., 2013) does not offer a rigorous 

(i.e. routed in decision theory) theoretical basis for the agent utility function nor account 

for the connection between the mine’s sustainability impacts and community acceptance 

over time. The application of discrete choice theory in this work advances the frontier by 

incorporating sound decision theory to describe individual preferences for a mining 

project. This research is the first attempt to apply discrete choice theory and agent based 

modeling (ABM) to understand the dynamic relationship between perceived project 

sustainability attributes and community acceptance. The only other study the candidate is 

aware of that applies discrete choice to generate ABM utility functions (Hunt et al., 2007) 
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addresses preferences for recreational activities. This study is, therefore, at the 

intersection of mining community and stakeholder analysis, discrete choice theory and 

complex-adaptive system modeling using ABM. 

 

2.3. MINING COMMUNITY AND SOCIAL LICENSE TO OPERATE 

In the 1990s, the global mining industry experienced unprecedented expansion, 

establishing a presence in nations with no prior history of commercial mining particularly 

in the global south.  Also, West Africa and Southeast Asia experienced rapid growth in 

mining activity. The expansion, which was motivated by increasing mineral prices in 

response to growing demand and promoted by the policies of the international financial 

institutions, imposed significant environmental and social costs on communities (Keenan 

et al., 2003). In some situations, mining threatens the very existence of local subsistence 

economies. As a result, conflict between mining companies and communities has grown 

in parallel with the industry. Communities seek to impede the development of mining 

projects in their regions, judging them to be irreconcilable with local development. In 

some cases, communities have accepted the existence of mining activity and have tried to 

form a new, more equitable relationship with industry that integrates mining with local 

strategies for sustainable development (Keenan et al., 2003). 

Communities around the world are increasingly requesting a greater share of 

benefits from local mining projects, more involvement in decision making, and 

assurances that mineral development will be conducted safely and responsibly (Prno, 

2013). At the same time, full legal compliance with state environmental regulations has 

become an increasingly insufficient means of satisfying society’s expectations of mining. 
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There is now a recognized need for mineral developers to gain a social license to operate 

(SLO) to avoid potentially costly conflict and exposure to business risks (Bridge, 2004; 

Prno, 2013). 

The concept of social license to operate (SLO) was initially used by mining 

industry practitioners in the late 1990s after it was coined by a Canadian mining 

Executive, Jim Cooney. Its use and operationalization in the mining industry have only 

recently attracted meaningful attention from researchers (Prno, 2013). A SLO can be said 

to exist when a mining project is perceived to have the broad, ongoing approval and 

acceptance of society to conduct its activities (Joyce & Thomson, 2000; Thomson & 

Boutilier, 2011). Social license to operate refers to an intangible and unwritten, tacit, 

contract with a society, or a social group, allowing a mining operation to enter a 

community, start, and continue operations (Franks et al., 2010). Some researchers have 

shown that SLO is linked to a mine’s effectiveness in addressing social and other 

sustainability-oriented considerations in mineral development planning (Que et al., 2015).  

Irrespective of the fact that SLO can be “granted” by different elements and scales of 

society such as communities, regions, and the general public, local communities are often 

a main arbiter in the process by virtue of their proximity to projects, sensitivity to effects, 

and ability to affect project outcomes (Prno, 2013). 

The conditions of a social license are different from the explicit, regulatory 

requirements set by governments, such as environmental approvals, because they are 

tacit, intangible and context specific (Franks et al., 2010; Owen & Kemp, 2013; Thomson 

& Boutilier, 2011). A social license cannot be issued, but it has to be earned (Lacey et al., 

2012). Social license to operate can only be sought from project stakeholders (Franks et 
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al., 2010). The conditions of a social license change over time, based on people’s ongoing 

experiences of an operation and changes in their perceptions and opinions (Thomson & 

Boutilier, 2011). The procedure by which social license is expressed is contextually 

specific, dynamic and non-linear. Community perceptions of mining activities and how 

they affect them depend on the community and current operation, and can change over 

time (Franks et al., 2010) . The level of support ‘granted’ depends on society’s 

expectations of the operation and the extent to which those expectations are met. Such 

expectations can be about social, economic and environmental impacts of a company’s 

operations, and benefits that flow to the local communities and the region (Gunningham 

et al., 2004; Nelsen & Scoble, 2006). Additionally, the local communities usually have 

expectations about how the company interacts and engages with local inhabitants. At the 

community level, a social license suggests a type of perceived acceptance of a company’s 

activities (Thomson & Boutilier, 2011). 

Nonetheless, others  argue  that SLO is unclear and question whether it is useful 

to accomplishing real sustainability outcomes because it cannot be really granted like a 

permit and other approvals (Owen & Kemp, 2013; Wang et al., 2016). Regardless of 

these objections, many others agree that as a business goal and a framework, SLO helps 

mining companies and other companies engage their stakeholders and operate in a more 

sustainable manner (Que et al., 2015; Thomson & Boutilier, 2011). 

 Levels of SLO have been widely discussed based on the “pyramid” model 

introduced by Thomson and Boutilier (2011). The model considers four potential levels 

of support: withheld, acceptance, approval and identification as shown in Figure 2.1 

(Williams & Walton, 2013). The host community will say an operation that is considered 
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by interest groups to have a minimum level of social license has legitimacy. This reflects 

a perception that there is some probability that their concerns may be addressed and that 

they may experience some benefits from the operation. If an operation is perceived to 

have credibility (i.e. company demonstrates behaviors such as listening, keeping 

promises, reciprocity and dealing fairly), then the level of social license is approval. If 

relationships between interest groups and the company develop to the stage where there 

are high levels of trust, it is suggested that people may come to identify with the company 

and realize their future is connected to the future of the operation. Trust is fundamental to 

moving through the levels (Williams & Walton, 2013).  

 

Figure 2.1. The 'Pyramid' Model of the SLO (after Thomson & Boutilier (2011)) 

 

 

A range of factors influence a company’s capacity to earn a social license. These 

factors are a combination of external and internal factors, and are affected by the 

company’s management style and performance (Gunningham et al., 2003).  
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Regardless the current work in the area of SLO, key conceptual questions remain. 

For instance, what does it actually mean to have a SLO? What level of community 

support is required to say it has been issued? What indications and methods are most 

appropriate for the analysis and measurement of SLO? (Prno, 2013).  Admittedly, 

knowing and understanding the factors affecting community acceptance of mining project 

can be useful in addressing these key questions. 

 

2.4. FACTORS THAT AFFECT COMMUNITY ACCEPTANCE 

Several factors can affect an individual’s perception of a mining project and, 

subsequently, affects whether such an individual accepts the mine or not. It is important 

to understand these factors because they motivate the community’s perception, which is a 

summation of the individual’s perceptions. The community’s perception of the project 

directly affects the mine’s social license to operate (Wang et al., 2016). The factors that 

affect community acceptance include the impacts of the mine on the environment and 

host community, the mine owner (corporate reputation etc.) and governance issues, and 

demographics of the community (Que, 2015; Wang et al., 2016).  

2.4.1. Environmental Impacts.  Environmental impacts are a leading cause of 

anti-mining campaign and a leading reason for communities to reject mining projects. 

Environmental impacts of mining include water use and pollution, and air, land, and 

noise pollution (Que, 2015). Regarding water use, for instance, the United States 

Geological Survey (USGS) estimates that the water table around areas surrounding open-

pit mines in Nevada has dropped 300 meters due to water demand from mining 

(Rockwell, 2000).  According to Solley et al. (1999), the Betze-Post mine alone pumps 

out 380,000 cubic meters (100 million gallons) of groundwater daily.  
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There are numerous sources of contaminants at a mine site that can pollute nearby 

water bodies. These include sediments from exposed soil, diesel fuel and process 

chemicals. Acid mine drainage (AMD) is recognized as one of the more serious 

environmental problems in the mining industry due to the number of watersheds affected 

and the costs incurred for remediation (Akcil & Koldas, 2006; Wang et al., 2016). For 

example, acid mine drainage from the Summitville gold mine in Colorado destroyed all 

the biological life within seventeen miles of the Alamosa River. The place was 

designated a Federal Superfund site and the Environmental Protection Agency (EPA) 

spent $30,000 daily in handling the drainage (Earthworks and Oxfam America, 2004). In 

2000, a truck transporting mercury from the Yanacocha mine in Peru spilled its load. The 

spill resulted in poisoning at least a thousand people in the small village of Choropampa 

(Keenan et al., 2003). Challengers of mining are concerned about potential environmental 

impacts, especially, possible water contamination (ICMM, 2010). 

Contamination also often results from inadequate containment of mine tailings. 

Tailings disposal has been a historical problem for the mining industry. For example, in 

1995, the Omai gold mine in Guyana recorded a failure of a dam wall on its tailings 

holding pond. This led to discharging over three billion liters of cyanide and heavy metal-

laced effluent into the Essequibo River, the country’s main waterway and a source of 

livelihood (Keenan et al., 2003). Mining activity can possibly affect terrestrial 

ecosystems. For instance, contaminated water can affect terrestrial ecosystems, including 

accumulation of toxic elements in soil, soil acidification, and damage to soil biota, loss of 

soil fertility, plant contamination, plant toxicity and food chain contamination (Dudka & 

Adriano, 1997; Wang et al., 2016). Solid waste is another big concern, since mining 
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products are, mostly, a small fraction of total mined mass. As it pertains to surface gold 

mining, for example, one ton of ore is likely to yield less than one gram of gold, with the 

remaining ending up as tailings. Also, several tons of barren rock may be excavated to 

expose the ore (Wang et al., 2016). 

Air pollution, resulting from mining activities is another significant impact. The 

main concern is dust, from excavation and transportation, causing air quality degradation 

(Que, 2015; Wang et al., 2016). Besides, processing activities such as refining and 

smelting of material generate pollutants that pollute the air. Globally, smelters add about 

142 million tons of sulfur dioxide to the atmosphere every year, 13 percent of global 

emissions (Earthworks and Oxfam America, 2004). 

Noise pollution results from traffic, blasting and operating heavy machinery (Que, 

2015; Wang et al., 2016). Noise pollution has been reported to be the sole largest type of 

community complaint (ICMM, 2009). For instance, BHP Billiton reports that their sites 

received 536 complaints in 2008, and the most common type of community complaint 

was noise-related (BHP Billiton, 2008). Also, Ivanova & Rolfe (2011) described noise 

impact, as well as vibration and dust, to be a significant factor at 90% confidence in 

elucidating community members’ preferences for mining developments. 

The aforementioned environmental issues impact how community members 

perceive a specific mining project. If members of the community perceive that a 

particular mine (e.g., due to its reputation for environmental violations) has a reputation 

for poor environmental performance, they are less likely to accept the mine and, thus, 

grant SLO (Moffat & Zhang, 2014; Wang et al., 2016). 
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2.4.2. Economic Impacts.  Mining operations can result in significant economic 

impacts, including job opportunities, income increases, increases in housing cost and 

shortage of labor.  Job opportunities and related economic impacts created by mining 

operations are well documented in the literature. Job opportunities is described as the first 

issue and most frequent question from members of the local community, when they learn 

that a mine may be developed in their community, is “how many jobs will go to their 

community members?” (ICMM, 2012a). Increases in income as a result of higher paying 

jobs and/or the jobless joining the mine’s supply chain is another significant impact of 

mining (ICMM, 2012a; Petkova et al., 2009; Que, 2015). 

 In the United States (U.S.), for instance, the economic contribution made by U.S. 

mining in 2015 through employment, labor income, contribution to gross domestic 

product (GDP) and taxes is presented in Table 2.1. In 2015, U.S. mining directly and 

indirectly created almost 1.7 million full-time and part time jobs. Besides, U.S. labor 

income associated with mining exceeded $100 billion, which includes wages and salaries, 

other employee benefits and owner-operated business income (National Mining 

Association, 2016). At both national and local levels, mining generates government 

revenues, and foreign and domestic investment. National Mining Association (2016) 

report indicates that U. S. mining activity generated about $18 billion in federal, state and 

local taxes in 2015 that supported direct, indirect and induced taxes of $ 44 billion. U.S. 

mining contributed about $220 billion to the GDP in 2015 (National Mining Association, 

2016). 
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Table 2.1. Economic Contribution of U.S. Mining, 2015 

Item Direct Indirect and Induced Total 

Employment 565,548 1,122,816 1,688,364 

Labor Income (billions of 

dollars) 
$39.8 $63.9 $103.7 

Contribution to GDP 

(billions of dollars) 
$100.4 $120.0 $220.4 

Taxes Paid (billions of 

dollars) 
$18.0 $26.0 $44.0 

Source: National Mining Association (2016) 

 

Additionally, mining can also result in increase in housing costs and labor 

shortages, particularly for those businesses in the local community that cannot compete 

with large mines for skilled labor (Ivanova & Rolfe, 2011; Petkova et al., 2009).  Petkova 

et al (2009) reported that in five out of six communities they studied in Australia, labor 

shortage for other businesses was recognized as a concern. 

2.4.3. Social Impacts.  Social impacts of mining have had a long history. Thus, 

mines sometimes required to conduct social impact assessment (SIA) studies prior to the 

approval of large projects in order to predict and mitigate major social issues (Dale et al., 

1997; Petkova et al., 2009) . Social impacts associated with mining activity include 

mining-induced displacement issues, crime increase and traffic increase. 

Mining displacement and the associated threat to human rights presently occurs in 

several countries globally (Aboagye, 2014). In some circumstances, communities are 

forcibly relocated to allow mine development (Keenan et al., 2003).  For example, in 

Ghana, many mining projects have induced   displacement. Between 1990 and 1998 in 
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the Tarkwa district of Ghana, more than 30,000 people were displaced due to gold mining 

operations (Aboagye, 2014). Mining-induced displacement issues affect acceptance of 

mining projects by community members. Also, international law and best practices frown 

on it. For instance, free prior and informed consent (FPIC) is mandatory in relation to 

resettlement or relocation and consequently, involuntary relocation of indigenous peoples 

is forbidden by international law. Resettlement should be avoided if possible and should 

not occur without FPIC of affected individuals (Miranda et al., 2005). 

Traffic and crime increase in host communities with the arrival of large-scale 

mining has been discussed in the literature. According to Lockie et al (2009), for 

instance, two social impact assessment (SIA) analysis of Central Queensland’s 

Coppabella coal mine indicates that residents observed an increasing trend in crime risk, 

general anti-social behavior and crimes against property in the community. Such an 

observation was confirmed by the police, and stating that they perceived that the criminal 

activity increase was proportional to population growth from 2003 to 2006. This 

connection between criminal activity and mining is supported by other research (Wang et 

al., 2016). Crime and domestic violence reflects serious social problems in mining 

communities (Hajkowicz et al., 2011). 

The SIA studies by Lockie et al (2009) also report traffic increase. Their studies 

show that inhabitants near the Coppabella coal mine in Australia believed that traffic 

congestion and accidents have increased, including the large trailers and mining 

equipment. An increase in traffic volumes was confirmed by road use data.  Similar 

studies (environmental impact assessments (EIAs)) in Bowen Basin, Australia, also show 

an increase in road traffic and traffic incidents.  The increased road traffic and incidence 
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of drivers travelling home while exhausted because of end of shift were documented in 

mining communities (Ivanova et al., 2007; Lockie et al., 2009). 

 

2.5. DISCRETE CHOICE THEORY AND MODELS 

Discrete choice analysis can be used to describe the influence of the attributes of 

alternatives and characteristics of decision makers (demographics) on choices they are 

presented with. The basic theory of discrete choice modeling is random utility 

maximization (Marschak, 1959). That is, the individual decision maker’s overall 

preference for a choice alternative is a function of the utility, which the alternative holds 

for the individual. Such individual’s utility (Uni ) for an alternative is divisible into two 

components, as presented in Equation (2-1): (i) the component which can be explained by 

the observed (by a researcher) variables; and (ii) the component, which can be explained 

by unobserved variables – often, considered random (Que, 2015). 

ni ni niU V                                                                                                                 (2-1) 

niU : Utility of alternative i  to individual n  

niV : observed component measured for alternative i  of individual n  

ni : unobserved random component for alternative i of individual n  

The theory suggests that an individual will prefer the choice alternative perceived to have 

the greatest utility to him/her. The probability that individual n  prefers the mining project 

or plan i  of choice set J, is described by Equation (2-2). 
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 Pr , ,
ni ini nj

ob j i and j JU UP      

       =  Pr , ,
ini ni nj nj

ob j i and j JV V                                         (2-2) 

       =  Pr , ,
ini nj nj ni

ob j i and j JV V       

j  : alternatives (other than i ) 

J : the total number of alternatives 

njU : utility of alternative j  to individual n  

njV : observed component measured for alternative j  of individuals n  

nj : unobserved random component for alternative j of individual n  

Discrete choice theory has been successfully applied in econometrics and other 

disciplines to understand consumer behavior. For example, discrete choice theory has 

been employed to evaluate community acceptance of renewable energy projects 

(Dimitropoulos & Kontoleon, 2009). Other researchers have also used discrete choice 

theory to model individuals’ preferences for mining projects (Ivanova & Rolfe, 2011; 

Que & Awuah-Offei, 2014). Undoubtedly, discrete choice theory can be used to 

formulate rigorous utility functions for ABM of community acceptance. For instance, 

Hunt et al (2007) successfully applied a discrete choice model and agent-based model to 

investigate recreational behaviors so as to guide the choice and implementation of given 

scenarios.  

Discrete choice models are of several forms, such as: binary logit, binary probit, 

multinomial logit (MNL), conditional logit (CL), nested logit (NL), generalized extreme 

value(GEV), multinomial probit (MNP), and mixed logit (ML) models (Que, 2015; 
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Train, 2002). The formulation, development, description and application of various 

discrete choice models are well discussed in the literature (Daganzo, 1979; Hausman & 

Wise, 1978; Ivanova & Rolfe, 2011; Ivanova et al., 2007; Mcfadden & Train, 2000; 

McFadden, 1974; Que, 2015; Thurstone, 1927). This study discusses the two most 

popular discrete choice models namely: the multinomial logit and conditional logit 

models. The interested reader can refer to the literature for information on the other 

models. 

2.5.1 Multinomial Logit Model.  The multinomial logit (MNL) model, which 

is also known as multinomial logistic regression, describes the observed utility of each 

choice alternative, niV , as a linear function of 
nX , the vector of characteristics specific to 

the individual decision maker, and the random component ( )ni . The utility of alternative i 

to individual n and probability that individual n will choose alternative i are presented in 

Equations (2-3) and (2-4). In the MNL model, the utility for each alternative is dependent 

on the same variables,
nX  but different alternatives have different coefficients. 

i
  is 

the vector of coefficients particular to the i th  alternative. Therefore, this model 

comprises choice-specific coefficients and only individual specific repressors. The error 

terms, 
ni  , are considered to have independent and identical distribution (iid) with a 

type 1 extreme value distribution. 

nni ni ni niiU V X                                                                       (2-3) 

nX : Characteristics specific to the nth individual 

ni : iid Type 1 extreme value distribution 

The probability that individual n will choose choice i : 
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                                                                                 (2-4) 

2.5.2. Conditional Logit Model.  The conditional logit model (CL), sometimes 

also known as the multinomial logit model, was originally formulated by McFadden in 

the 1970s (McFadden, 1974). For this model, the observed utility of each alternative,
niV  

is a linear function of 
niX  and the random component  ni .The error terms,

ni  are 

assumed to be independently and identically distributed (iid) with type 1 extreme value 

distribution. 
niX  is a vector of attributes specific to the i th   alternative as observed by 

the n  th individual. Equations (2-5) and (2-6) show the associated utility and 

probability. 

ni ni ni nini
XU V                                                                                          (2-5) 

 : a coefficient vector for 
niX  

niX :  a vector of attributes specific to the i th alternative as perceived by the nth 

individual. 

The probability of choice i to individual n is: 

 
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exp
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                                                                                  (2-6) 

The Equation (2-5) is quite similar to Equation (2-3) for the MNL model. 

However, in the CL model, the explanatory variables 
niX  include characteristics 

specific to the nth individual, and describe the relationship between the selector (nth 
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individual) and the alternative ( i th alternative). It is an important attribute that 

differentiates the conditional logit model from the MNL model. Besides, the MNL model 

presents distinct coefficient vectors,
i

  for each of the probable outcomes. However, 

with the MNL model, there is only one coefficient vector but different X  vectors, for 

each outcome in the conditional logit model. Given these two characteristics, the 

conditional logit model provides a key advantage over the MNL model. The model has 

considerably fewer parameters than the MNL model. In the case of CL model, each factor 

has one coefficient, while MNL model has the number of coefficients equal to the 

number of its levels minus one. 

 

2.6. AGENT BASED MODEL (ABM) 

In any type of modeling, the objective is to understand some aspect of the whole 

system by examining the underlying phenomena and not to perfectly reproduce a “real” 

object. Models are useful tools that allow individuals to contextualize phenomena and 

behavior that are not well understood into something familiar, or at least tractable. Every 

type of model has its usefulness and limitations, and the type of model to use for a 

particular application is largely dependent on the system or phenomena under study 

(Bahr, 2015).This study applies agent-based model (ABM). 

An agent based model is a computational model that employs qualitative and 

quantitative information at a microscopic level to produce information about a system at 

a macroscopic or aggregate level. It is useful for modeling systems that have no 

analytical solutions, multiple scales of manifested behavior, and heterogeneous 

constitutive parts (Bahr, 2015). Agent based-modeling focuses on modeling and 
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simulating the behavior of a complex system. It emphasizes the detailed description of 

agents in the complex system (Fujiono, 2011). Some of the general characteristics of 

agent-based model and simulation include: (i) it describes heterogeneous and autonomous 

agents; (ii) it explicitly represents the environment; (iii) it describes local interaction 

between agents; and (iv) it involves bounded rationality (Epstein, 1999; Fujiono, 2011; 

Goldstone & Janssen, 2005). ABM allows modeling of systems that consist of agents 

with unique attributes (e.g., preferences, options, strategy, and size) (Fujiono, 2011). It is 

usually a stochastic modeling approach and generally applies stochastic elements to 

model the range of outcomes for agent behaviors and interactions which are not known 

with certainty ( Macal & North, 2006). 

The benefits and applications of ABM are well explained in the literature 

(Bonabeau, 2002;  Macal & North, 2006).  ABM allows modelers to represent, in a 

natural way, multiple scales of analysis, the emergence of structures at the macro level 

from individual action, and various kinds of adaptation and learning, none of which is 

easy to do with other modeling approaches (Gilbert, 2008).  

Agent based model has had a number of applications in the last few years, 

including applications to real-world business problems (Bonabeau, 2002). ABM 

applications include application to fields of study where the main agents are individual 

humans or organizations, such as politics, economics, business management (Caldart & 

Ricart, 2007),  public policy, military, operations research, traffic simulation, geographic 

systems (Torrens, 2010) and anthropology (Premo, 2006). Table 2.2 presents ABM 

applications in different research fields as summarized by Fujiono (2011). 
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Table 2.2. ABM Applications in Different Research Fields 

Research Fields Examples of ABMS Applications 

Biology 

Basic Immune Simulator (BIS), an agent-based 

model created to study the interactions between the 

cells of the innate and adaptive immune system 

(Folcik et al., 2007)  

Geographical 

System 

Constructing and implementing an agent-based 

model of residential segregation through vector GIS 

(Crooks, 2010) 

Business & 

Management 

Evaluation of corporate strategy (Caldart & Ricart, 

2007) and impact of market interventions on the 

strategic evolution of electricity markets (Bunn & 

Oliveira, 2008) 

Operations 

Research 

Optimization of supply chain configurations  

(Akanle & Zhang, 2008) and scheduling problems 

with two competing agents (Agnetis et al., 2004) 

Politics Modeling adaptive parties in spatial elections 

(Kollman et al.,1992)  

Anthropology Study of the evolution of Plio-Pleistocene hominid 

food sharing in East Africa (Premo, 2006) 

Economics 

Agent-based computational economics (Tesfatsion, 

2002) and multi-agent social and organizational 

modeling of electric power and natural gas markets 

(M. J. North, 2001) 

Public Policy 
Evaluation of government policy on promoting 

smart metering in retail electricity markets (Zhang 

& Nuttall, 2011) 

Military 

Evaluation of the U.S. Army’s network-based 

Future Force to perform with degraded 

communications, observing how unmanned surface 

vehicles can be used in force protection missions, 

evaluation of standard Army squad size (Cioppa et 

al., 2004) 

Traffic Simulation 
Air traffic management system, the effect of 

advanced driver assistance systems on road traffic 

accidents (Yuhara & Tajima, 2006) 

 

Beside, ABM affords opportunities for multi-disciplinary collaboration. ABM 

also allows implementation of various modeling techniques from different research 
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fields, such as agents’ decision making process, agents’ learning and adaptation 

mechanism, and agents’ interaction (Fujiono, 2011). 

In mining, ABM has had some applications, which include an agent-based model 

of fluctuations in social license to operate through the use of opinion diffusion and 

stakeholder network creation (Bahr, 2015); and  agent-based model framework to show 

ways innovations can be adopted in the mining industry (Fujiono, 2011). 

ABM structural design, characteristics, and its relationship to information 

diffusion are discussed in the subsequent sections. 

2.6.1. Structural Design of ABM.  Generally, an agent-based model can be 

built in much the same way as any other type of model. Firstly, identify the purpose of 

the model, the questions the model is intended to answer and engage the potential users in 

the process. Secondly, systematically analyze the system under study, identifying 

components and component interactions, relevant data sources, and so on. Then, apply 

the model and conduct a series of “what-if” experiments by systematically changing 

parameters and assumptions. Finally, use sensitivity analysis and other techniques to 

understand the robustness of the model and its results. These general steps of model 

building apply to agent-based modeling as well ( Macal & North, 2006). Law & Kelton 

(2000) provide an excellent description of good simulation model building practices. 

Agent-based modeling possesses a few unique aspects due to the fact that agent-

based modeling and simulation (ABMS) mostly considers the agent’s perspective as 

opposed to the process-based perspective that is the traditional hallmark of simulation 

modeling. Besides the standard model building tasks, practical ABMS requires modeler 

to: (i) identify the agents and get a theory of agent behavior, (ii) identify the agent 
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relationships and get a theory of agent interaction, (ii) get the requisite agent-related data, 

(iv) validate the agent behavior models in addition to the model as a whole, and (v) run 

the model and analyze the output from the standpoint of linking the micro-scale 

behaviors of the agents to the macro scale behaviors of the system (Macal & North, 

2006). 

According to Macal and North (2006), agent-based modeling does not currently 

have a mature set of standard formalisms or procedures for model development and agent 

representation such as those that are part of systems dynamics modeling (system 

dynamics are a problem evaluation approach based on the premise that the structure of a 

system, that is the manner important system components are linked, generates its 

behavior (Stave, 2003)). Except the implemented software code, there is no scheme for 

explicitly representing an agent-based model. However, Grimm et al (2006) proposed 

agent modeling documentation schemes intended to promote agent model transferability 

and reproducibility. Agent-based modeling can benefit from the use of the Unified 

Modeling Language (UML) for representing models. UML is a visual modeling language 

for representing object-oriented (O-O) systems (Booch et al., 1998) that is commonly 

adopted to support agent-based models in both the design and communication phases. 

UML comprises a number of high-structured types of diagrams and graphical elements 

that are assembled in various ways to represent a model. The UML representation is at a 

high level of abstraction, independent of the model’s implementation in the particular O-

O programming language used (Macal & North, 2006). 

The general steps in building an agent model as presented by Macal and North 

(2006) are as follows: (i) Agents: Identify the agent types and other objects (classes) 
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along with their attributes; (ii) Environment: Define the environment the agents will live 

in and interact with; (iii) Agent Methods: Specify the methods by which agent attributes 

are updated in response to either agent-to-agent interactions or agent interactions with the 

environment; (iv) Agent Interactions: Add the methods that control which agents interact, 

when they interact, and how they interact during the simulation; (v) Implementation: 

Implement the agent model in computational software. 

2.6.2. ABM Characteristics.  There are numerous references for modelers using 

ABM, which explain the concept and characteristics of ABM. For instance, North and 

Macal proposed a guide that particularly allows the use of ABM to optimize production 

streams for better understanding of markets (North & Macal, 2007). Chen (2012) has 

discussed the historical evolution of agents in terms of computational economics. 

Modelers applying ABM in social science can refer to work on ABM done by Gilbert 

(2008) and others. Figure 2.2 presents a typical agent structure as described by Macal & 

North (2010). 

2.6.2.1. Agents and their attributes.  Agents have been defined in several 

terms by researchers. In ABM, a system is modeled as a collection of autonomous decision-

making entities referred to as agents. Each agent individually assesses its situation and 

makes decisions on the basis of a set of rules. Agents may execute various behaviors 

appropriate for the system they represent, for example, producing, consuming, or selling 

(Bonabeau, 2002). Agents possess behaviors, frequently described by simple rules, and 

interactions with other agents, which in turn influence their behaviors. By modeling agents 

individually, the full effects of the variety existing among agents in their attributes and 

behaviors can be observed as it leads to the behavior of the system as a whole ( Macal & 
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North, 2010). Agents have limited computational capability and do not have global 

information (bounded rationality), and they create perceptions about their environment and 

choose to perform specific actions based on this limited information (Fujiono, 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. A Typical Agent Structure (Macal & North, 2010) 

 

From a practical modelling perspective, depending on how and why agent-models 

are actually built and described in applications, modelers consider agents to have certain 

essential characteristics (Macal & North, 2010), which include:  

Agent Interactions with Other Agents 

 

Agent Interactions with the Environment 

Agent Attributes: 

 Static: name, gender 

 Dynamic: memory, resources 

 

Methods: 

 Behaviors 

 Behaviors that modify behaviors 

 Update rules for dynamic attributes 
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i. An agent is self-contained. This implies that an agent has a boundary, and 

identifiable attributes that enable it to be distinguished from and recognized by 

other agents. 

ii. An agent is autonomous and self-directed. An agent can function independently in 

its environment and in its interactions with other agents. An agent has behaviors 

that relate information sensed by the agent to its decisions and actions.  

iii. An agent has a state that changes over time. An agent’s state comprises a set or 

subset of its attributes. An agent’s behaviors are conditioned on its state. In an 

agent-based simulation, the state at any time is all the information needed to make 

a decision. 

iv. An agent is social having dynamic interactions with other agents that influence its 

behavior. Agents have rules for interaction with other agents for communication, 

movement and contention for space, the capability to respond to the environment, 

and others. Agents are capable of recognizing and distinguishing the traits of 

other agents. 

Other attributes of agents, which may be useful include the fact that an agent may 

be adaptive, goal-directed and heterogeneous (Macal & North, 2010). 

2.6.2.2. Agent environment and topology.  As discussed by Macal and 

North (2010), agents interact with their environment and with other agents. The 

environment may simply be used to give information about the spatial location of an 

agent in relation to other agents or it may provide a set of geographic information. 

Complex environmental models can be used to model the agents’ environment. For 

instance, hydrology or atmospheric dispersion models can provide point location-specific 
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data on groundwater levels or atmospheric pollutants, respectively, which are accessible 

by agents. Thus, agent actions can be constrained by the environment. An example is the 

environment in an agent-based transportation model that would include the infrastructure 

and capacities of the nodes and connections of the road network. These capacities would 

result in congestion effects (reduced travel speeds) and limit the number of agents 

moving through the transportation network at any given time (Macal & North, 2010) . 

The term topology is used to describe how agents are connected to each other in 

agent-based modeling. Classic topologies comprise a spatial grid or network of nodes 

(agents) and links (relationships). The topology in ABM describes who transfers 

information to whom. In some cases, agents interact based on multiple topologies. For 

instance, an agent-based pandemic model has agents interacting over a spatial grid to 

model physical contact as agents perform daily activities and possibly give infections. 

Agents also are members of social networks that model the likelihood of contact with 

relatives and friends (Macal & North, 2010). 

2.6.3. ABM and Information Diffusion.  Researchers have applied agent based 

model in the study of information diffusion and related diffusion of innovation. Some 

researchers have conducted literature reviews of the application of agent-based modeling 

in the study of innovation diffusion  (Dawid, 2006; Garcia, 2005; Kiesling et al., 2012). 

The main characteristics of ABM that make it a popular method for studying diffusion of 

innovation is its capability to model population heterogeneity, including interactions 

between agents in the population. Research on diffusion of innovation mostly focuses on 

agents’ internal and external adoption factors (e.g., risk preference, adoption strategy, 
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policies, network structures, and effect of opinion leaders) and their influence on the rate 

of innovation adoption (Fujiono, 2011). 

Agent-based models have been used for modeling agents’ decisions to innovate or 

to imitate innovation (Bullnheimer et al., 1998; Debenham & Wilkinson, 2006) as well as 

their strategies for collaboration (Fujiono, 2011). Ahrweiler et al (2011) used ABM to 

study innovation networks, which shows how knowledge becomes an important aspect of 

agents’ tactics in choosing their research partners. As highlighted by Fujiono (2011), 

different types of agents have different roles in the diffusion of innovation (e.g. producers 

of innovation and potential adopters). Each agent has its own distinct attributes that 

influence its decision to create or adopt an innovation, such as knowledge, innovation 

strategy, capital resources, and risk preference. Table 2.3 presents some examples of 

various types of agents included in ABM to study diffusion of innovation as listed by 

Fujiono (2011). 

Agents’ rules of behavior, in the framework of agent-based modeling of 

innovation diffusion, dictate agents’ activities in searching for an innovation (e.g. agents 

acting as consumers that always seek for a better product, a better idea, and a better 

practice) and in making decisions to adopt a specific innovation (Fujiono, 2011). 

Some researchers have studied the interaction between agents and agents’ 

diversity in understanding the dynamics of the innovation diffusion process in the mining 

industry (Barczak, 1992; Fujiono, 2011; Souder & Palowitch, 1981; Tilton & Landsberg, 

1999). Mines obtain information about other mines through interaction in the form of 

informal discussion, observing their competitors (Ala-Härkönen, 1993), and visiting other 

mines (Souder & Palowitch, 1981).  For example, Fujiono (2011) provided and 
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implemented a framework for an agent based model to show ways innovations can be 

adopted in the mining industry with emphasis on modeling the diffusion of the longwall 

mining method in the United States (U.S.).  

 

Table 2.3. Various Types of Agents in ABMs and Innovation Diffusion Applications 

Agent-Based Model Agents Agents’ Attributes 

New product diffusion of 

novel biomass fuel (Günther et 

al., 2011). 

Consumers 

Consumer type, 

capacity of fuel tanks, 

travel behavior, 

refueling behavior 

The diffusion of agricultural 

technology (Berger, 2001) 
Farm households 

Farms with 

biophysical and 

economic attributes 

such as soil, quality, 

land use, water 

supply, etc.) 

The diffusion of medical 

innovation (Ratna et al., 2008) 
Doctors 

Adoption thresholds, 

locations of  practice, 

level of innovation 

 

 

None of these studies used ABM to model individuals in a mining community and 

the unique challenges (e.g. defining valid agent utility functions using decision science, 

diffusion models and social networks) related to this have not been addressed yet. It will 

be beneficial to extend ABM to other aspects of the mining business (e.g. assessing social 

risks associated with mineral projects). This will benefit the mining industry in diverse 
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areas including effective mining community engagement, which can lead to gaining and 

maintaining social license to operate and more sustainable mining. This dissertation 

makes a contribution in this direction by introducing a framework for modeling the effect 

of information diffusion on community acceptance of mining. 

 

2.7. SOCIAL NETWORK 

Social networks have received great attention in recent years due to their 

relevance to many processes, such as information processing, distributed search, and 

diffusion of social influence. Social scientists have also been interested in social networks 

as dynamic processes (Kossinets & Watts, 2006). 

A social network is defined as a set of actors and the set of ties signifying some 

relationship or lack of relationship between the actors (Brass et al., 1998).   Potts et al 

(2008) also defined social network from a market perspective as a connected group of 

individual agents who make production and consumption decisions based on the actions 

or signals of other agents on the social network. This definition places emphasis on 

communicative actions rather than to connectivity alone. Social, in this context, means 

the capability of one agent to connect to and interpret information generated by other 

agents, and to communicate in turn; and network, in this case, implies that these are 

specific connections, and not an abstract aggregate group such as a nation or a people 

(Potts et al., 2008).  Social networks may influence an individual's behavior. However, 

they also reflect the individual's own activities, interests, and opinions (Bakshy et al., 

2012). The definition of social network by Potts et al (2008) is more appropriate for this 
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research because it relates to how social networks can affect information diffusion in a 

given community.  

Social network formation is a complex process by which several individuals 

concurrently attempt to satisfy their goals under multiple, possibly conflicting constraints. 

For instance, individuals frequently interact with others similar to themselves, a tendency 

known as homophily and endeavor to shun conflicting relationships while exploiting 

cross-cutting circles of acquaintances. (Kossinets & Watts, 2006). Social networks have 

some important properties as outlined by Potts et al (2008): Firstly, a social network is 

not necessarily only the group of people an agent or individual knows personally and 

communicates or interacts with frequently (e.g. family, friends, and colleagues), but there 

are many other processes that are also important such as in information networks. For 

instance, social network response from reviews of movies by expert opinion or just 

observation of box-office totals, and reviews of restaurants whether a restaurant is 

crowded, give social network information that agents or individuals use in making 

choices. Secondly, a social network is not always regular, but may comprise hubs, weak 

and strong connections, and close and distant connections. Besides, agents may show 

significant heterogeneity regarding their connections in social networks.  Thirdly, a social 

network implies social origination, adoption and retention processes. This partially makes 

social networks usually more complex than physical networks, because the switching 

mechanisms (human agents) are far more complex than neurons or genes in cognitive or 

genetic regulatory networks. 

2.7.1. Structure of Social Networks.  Researchers have studied the structure of 

social networks and its effects on spreading awareness, information, and opinions about 
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innovation. For instance, the influence of the structure of connections in consumers’ 

social network, through which awareness, information, and opinions about an innovation 

are spread, is one of the most intensively researched topics in the agent-based innovation 

diffusion literature (Kiesling et al., 2012). Jackson (2008) outlined some of the 

characteristics of social networks structure, which include diameter and small worlds, 

clustering, degree and degree distributions, correlations and assortativity, patterns of 

clustering, homophily, the strength of weak ties, structural holes, social capital and 

diffusion. This dissertation briefly discusses the structures of social network that are 

relevant to this study. The interested reader is referred to Jackson (2008) for a more 

comprehensive review. 

 Diameter and small worlds 

The diameter of a network is the largest distance between any two nodes in the 

network. The diameter of a network tells about how "big" the network is (that is, how 

many steps are necessary to get from one side of it to the other). The diameter is a useful 

quantity since it can be used to set an upper bound on the lengths of connections 

(Hanneman & Riddle, 2005). Social network exhibiting features of small worlds is one of 

the earliest, best-known, and most widely studied aspects of social networks. The term 

small worlds represents the idea that large networks tend to have small diameters and 

small average path lengths. To understand why several social networks exhibit small 

diameters, it is useful to think about neighborhood sizes.  

 Clustering  

Level of clustering in a network is measured by the clustering coefficient 

(Newman, 2003b).  Clustering is an interesting observation about social networks 
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because social networks tend to have high clustering coefficients relative to what would 

emerge if the links were simply determined by an independent random process. Concepts 

about clustering have been important in sociology and in triads (triples of mutually 

connected nodes). A range of large socially generated networks exhibit clustering 

measures much greater than would arise if the network were generated at random.  

In the case of directed networks, which is used in this dissertation, clustering can 

be measured by ignoring the direction of a link and considering two nodes to be linked. 

Another approach is to keep track of the percentage of transitive triples (the condition 

where a link between agents i and k , and j  and k , means that there is higher probability of 

a link between i and j ).  This approach takes into account situations in which node i has a 

directed link to j , and j  has a directed link to k , and then questions whether i  has a 

directed link to k . The fraction of times in a network that the response is “yes” is the 

fraction of transitive triples given in Equation 2-7: 
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 Degree distributions 

The degree of a particular node in a network is the number of links. Networks 

differ in their average numbers of links. Even though the average degree of a network 

offers a rough understanding for connectivity, there is much more information that could 

be of interest. For instance, how variable is the degree across the nodes of the network? 

Individuals can gain a much better understanding for the structure of a social network by 

examining the full distribution of node degrees rather than just looking at the average. 
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Degree distribution of a network is a description of the relative frequencies of 

nodes that have different degrees. There are various types of degree distributions 

including regular degree distribution (where all nodes have the same degree), scale-free 

degree distribution, which follows power law. This research relies on directed random 

graph where degree distribution is more directional and link is formed by a given 

probability and the formation is independent across links. 

 Correlations and Assortativity 

Apart from the degree distribution of a network, knowledge about the correlation 

patterns in the degrees of connected nodes is also important. For example, do relatively 

high-degree nodes have a higher tendency to be connected to other high-degree nodes? 

This tendency is called positive assortativity. While there is little systematic study of 

assortativity, there is a hypothesis that positive assortativity is a property of many socially 

generated networks. 

In relation to assortativity, studies of some social networks have also suggested 

"core-periphery" patterns, where there is a core of highly connected and interconnected 

nodes and a periphery of less-connected nodes. Additionally, theories of structural 

similarity postulate that people tend to use other people who are similar to themselves as 

a reference group (Festinger, 1957). It is hypothesized that people with similar structural 

positions tend to have similar issues, which lead them to communicate with one another. 

Since the patterns of connections in a network can have a great impact on processes like 

the diffusion of behavior, information, or disease, it is important to have a better 

understanding of assortativity and other characteristics that describe who tends to be 

connected to whom in a network. 



55 

 

 

 

 Homophily 

Homophily refers to the fact that people are more likely to maintain relationships 

with people who are similar to themselves. Several social networks show homophily due 

to age, race, gender, religion, or profession. McPherson et al (2001) present an overview 

of research on homophily. Homophily was first noted by (Burton, 1927), who coined the 

phrase "birds of a feather." Homophily is an important aspect of social networks, since it 

means that some social networks may be largely segregated. For example, homophily has 

profound implications for access to job information (Calvó-Armengol & Jackson, 2004). 

It can also have intense implications for the spread of other kinds of information, 

behaviors, and many more. 

 The strength of Weak Ties 

The strength of the social relationships is measured by frequency of interaction. 

There are various ways to measure the strength of a tie. Granovetter (1973) proposed a 

rudimentary notion that strength is linked to the "amount of time, the emotional intensity, 

the intimacy, and the reciprocal services which characterize the tie".  He measured the 

strength of a tie through the number of times individuals had an interaction in the past 

year; categorizing it as  strong, at least twice a week; medium, less than twice a week but 

more than once a year; and weak, once a year or less. Granovetter’s idea was that 

individuals involved in a weak tie were less likely to have overlap in their neighborhoods 

than individuals involved in a strong tie. These ties then are more likely to form bridges 

across groups that have fewer connections to one another, and can consequently play 

critical roles in the diffusion of information. 
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 Diffusion 

One key role of social networks is as channels of information. As indicated by 

Jackson (2008),  individuals frequently learn from one another, which has important 

implications not only for how they find employment, but also about what movies they 

watch, which products they purchase, which technologies they adopt, whether they 

participate in government programs, whether they protest, and so forth.  There have been 

various studies on the diffusion of innovation, comprising some typical early ones, such 

as the diffusion of hybrid corn seed among Iowa farmers by Ryan & Gross (1943) and 

examination of diffusion and the telephone by Hagerstrand (1967). These studies on 

diffusion of innovation have indicated how important social connections are in 

determining behavior. 

2.7.2 Social Network and Information Diffusion.  Social networks are very 

dynamic and complex networks. All kinds of information flow on social networks. Such  

information can be classified as positive or negative (Ma et al, 2008). Research on how 

information flows in a social network began from a work on “Diffusion of Innovations” 

by Rogers (2003). Rogers proposed that adopters of any new innovation could be 

categorized as innovators (2.5%), early adopters (13.5%), early majority (34%), late 

majority (34%) and laggards (16%) (Ma et al., 2008). Other researches  have also worked 

on developing theories of innovation adoption (Coleman et al., 1966; Valente, 1995). 

Social networks influence the degree of an innovation's diffusion by determining 

which potential adopters can become aware of information about this innovation and 

adopt it.  Social networks channel information about innovations to some potential 

adopters who might adopt these innovations and also prevent information from reaching 
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others, who then have no opportunity to adopt them (Abrahamson et al., 1997). It is well 

acknowledged that the structure of a social network can favor or impede the diffusion of 

innovations in the network (Deroian, 2002; Kong & Bi, 2014). Bass model, one of the 

most applied diffusion models, describes the process of how new products are adopted in 

a social network (Bass, 2004; Meade & Islam, 2006). 

Social network research suggests that access to useful information might be 

greatest in a network with diverse members such as  persons from different units within 

an organization, since this diversity permits tapping multiple pockets of information 

(Morrison, 2002). Such diversity has been termed as network range (Campbell et al., 

1986). Social network research has also underscored the value of network status, defined 

as the extent to which one's network contacts hold high positions in the relevant status 

hierarchy (Morrison, 2002). For example, research has emphasized the political 

advantages of a high-status network (Ibarra, 1995; Morrison, 2002). Also, people at 

higher levels in an organization may be better sources of certain categories of information 

than those at lower levels (Morrison, 2002; Ostroff & Kozlowski, 1992). 

Besides, individuals with weak ties are said to have access to more diverse 

information because they usually have fewer mutual contacts; each individual has access 

to information that the other does not. For information that is virtually only embedded 

within few people, such as job openings or future strategic plans, weak ties play an 

essential role in facilitating information flow. Weak ties, which are defined directly in 

terms of interaction propensities, diffuse novel information that would not have otherwise 

spread (Bakshy et al., 2012).  
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There are some information diffusion paradigms which are captured in ABM 

research (e.g. (Abdollahian et al., 2013)). For instance, Berlo et al (1969) proposed a 

model that describes how a receiver’s likelihood of receiving/accepting a message 

depends on whether they are exposed to it or not, their attentiveness, and their disposition 

to the sentiment of the message. Also, social judgment theory postulates that the 

likelihood of an agent or an individual accepting a piece of information depends on the 

“distance” between the positions of the two agents (individuals) involved in the 

communication (Siero & Doosje, 1993). Other researchers have noted that the likelihood 

of an agent accepting a message also increases with repetition and the use of various 

channels of communication (Corman et al., 2007). 

The origins and application of diffusion models have been vastly described in the 

literature and cuts across several disciplinary boundaries (Boyle, 2010). Jackson (2008) 

has comprehensively described the various diffusion models. According to Jackson 

(2008), the Bass model is one of the earliest models of diffusions that is still in 

application today. The model is tractable, and it incorporates social aspects into its 

structure. Even though it does not have any explicit social network structure, it still 

incorporates rates of imitation. The model is developed on two key parameters: one 

captures the rate at which agents (individuals) innovate or spontaneously adopt, and the 

other captures the rate at which they imitate other agents or adopt because others have. 

The innovation can be interpreted as a response to outside stimuli, including media or 

advertising, while the imitation aspect captures social and peer effects.  Other diffusion 

models described in the literature by Jackson (2008) are the SIS ("susceptible, infected, 

susceptible") and SIR ("susceptible, infected, removed") models. The idea of the SIS 
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model is that a node can be in one of two states: (1) it is infected, or (2) it is not infected 

and thus is susceptible to becoming infected. This model is a variation on the seminal SIR 

model. For more details on these diffusion models, readers can refer to Jackson (2008). 

The candidate applies the Bass model to model changing perceptions, which are 

modeled as a diffusion process over a social network (e.g. word of mouth information 

transfer) in this dissertation. This is because the Bass model is consistent with the 

objective of the modeling framework in this research presented in section 3. 

 

2.8 APPLICATION OF AGENT-BASED MODEL, SOCIAL NETWORKS AND   

DISCRETE CHOICE THEORY TO MODEL COMMUNITY BEHAVIOR 

As discussed in section 2.6, agent-based modeling (ABM) has been applied in 

several disciplines in the past few years (Bonabeau, 2002). Applications of ABM include 

application to fields of study where main agents are individual humans or organizations, 

such as politics, economics, business management (Caldart & Ricart, 2007), public 

policy, military, operations research, traffic simulation, geographic systems (Torrens, 

2010), and anthropology (Premo, 2006). ABM also offers an opportunity to implement 

various modeling techniques from different research fields including agents’ decision 

making processes, learning and adaptation mechanisms and  interaction (Fujiono, 2011). 

This dissertation focuses on agent-based models of communities and addresses the 

associated utility functions and other technical challenges for mining applications. 

2.8.1. Agent-Based Models of Communities.  Agent-based models are able to 

represent the behavior of human actors more realistically, accounting for bounded 

rationality, heterogeneity, interactions, evolutionary learning and out of equilibrium 
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dynamics. They are also able to combine this representation with a dynamic 

heterogeneous representation of the spatial environment (Filatova et al., 2013). 

ABM has received attention from researchers modeling communities. For instance, 

ABM has been applied in the land-use modelling community (Matthews et al., 2007).  

Also, Brown et al (2004) used an agent-based model to evaluate the effectiveness of 

using a greenbelt adjacent to a developing area to delay development outside of the 

greenbelt. In their model, agents chose where to locate based on preferences for 

minimizing distance to services and maximizing aesthetic quality of the chosen location. 

Similarly,  Valbuena et al (2010) developed a framework for ABM, which they used to 

simulate regional land-use change. They combined agent diversity, an agent typology and 

a probabilistic decision-making approach to simplify and incorporate the inherent 

variability of the population and decision-making in rural regions. In another application, 

Berger & Troost (2012) adopted the agent-based simulation approach to understand how 

heterogeneous populations of farm households and their agro-ecological resources are 

affected by agricultural technology, market dynamics, environmental change, and policy 

intervention. Additionally, ABM has been used to simulate energy reduction strategies of 

owner-occupied homes in the UK. The agents in this model were home-owners who had 

to choose whether or not they wanted to carry out any energy efficiency development in 

their house (Lee et al., 2014). Gao & Hailu (2012)  employed agent-based simulation to 

assess the effect of management strategies, related to managing recreational fishing 

resources, on stakeholders.  

From the foregoing, we can conclude that there is enough evidence in the literature 

to motivate the hypothesis that ABM can be used to study the impact of management’s 
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decisions and other events on community perceptions of mining. Many researchers have 

studied similar phenomena in other industries. The challenge then is how to build valid 

agent utility functions and overcome other technical challenges necessary to extend ABM 

application to the evaluation of the effect of management decisions and other events (e.g. 

new information becoming available in the community) on mining community 

acceptance. 

2.8.2. Utility Function.  In an agent-based model, the utility function relates the 

various relevant variables to the utility of particular alternatives to the agent. The agent 

utility function guides the agents (individuals) to make a decision regarding whether to 

choose an alternative or not. Since ABM relies on a model of utility maximization (which 

assumes among other things that the agent is rational and has clear preferences), the agent 

chooses the option that maximizes its utility (as per the utility function). Utility functions 

can vary from model to model based on the modeling objectives. For example, in the 

work by Brown et al (2004), which evaluates the effectiveness of greenbelt, the utility 

function dictating the residents’ (agents’) preferences was based on the tradeoffs between 

aesthetic quality and distance to services, and weighted near locations much higher using 

an inverse squared distance. In their model, the utility function had a random component 

based on heuristics such that to choose a location, a new resident looks at some number 

of randomly selected cells and moves into the cell that has the highest utility. Also, 

Valbuena et al (2010) used a discrete stochastic process to describe agent’s utility 

function relative to farm expansion. In their work, they divided the choices into three 

mutually exclusive options: buy, keep and sell land. They assigned a probability to each 

option based on the type of agent to represent the diversity in decision making of agents. 
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Conversely, Gao and Hailu (2012) used an empirically formulated random utility model 

to characterize the behavior of angler agents in their recreational fishing simulation. 

Angler agents select angling locations depending on individual characteristics and 

attributes of the alternative locations. Lee et al (2014) developed their model by relying 

on a decision-making algorithm, which used discrete choice experiment (DCE) data from 

two different surveys. 

Regardless of the type and nature of the utility function, most ABM models rely 

on the concept of random utility maximization (RUM).  The assumption is that choice 

behavior is governed by an objective to maximize utility within the constraints of 

available resources (i.e., time and monetary budgets) and cognition (i.e., limited 

information and mental effort) (Arentze et al., 2013). In the literature, several ABMs are 

described that use some type of discrete choice model in the agents’ utility function. The 

information for the discrete choice models stem from a wide range of sources (Holm et 

al., 2016). Discrete choice models based on discrete choice theory are better sources of 

agent utility functions than other approaches because discrete choice theory is based on 

decision science and is based on random utility maximization. Most other researchers 

who do not use discrete choice theories use empirically generated utility functions or 

heuristics. For instance, Dia (2002) developed a model to guide route choice decision, 

which was a discrete choice problem and recommended that the two approaches to 

addressing this problem are discrete choice and artificial neural network techniques. 

Also, an iterative system was used together with a set of specific parameters for agent’s 

utility function (Evans & Kelley, 2004). These utility functions are limited because the 

models cannot be used to reliably evaluate scenarios beyond the conditions under which 
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empirical functions were formulated. Hence, this work relies on utility functions 

formulated from discrete choice models.  

Discrete choice theory has been applied to evaluate community acceptance of 

renewable energy projects (Dimitropoulos & Kontoleon, 2009). Other researchers have 

also used discrete choice theory to model individuals’ choice regarding whether or not to 

support mining (Ivanova & Rolfe, 2011; Que & Awuah-Offei, 2014). Discrete choice 

theory can be employed to formulate rigorous utility functions for ABM of community 

acceptance (Hunt et al., 2007; Lee et al, 2014).  

In spite of the extensive application of ABM and discrete choice experiments 

(DCEs), separately and together, to model consumer and individual  preferences (Brock 

& Durlauf, 2001; Gramming et al., 2005; McFadden, 1974;  Zhang et al., 2011), there is 

no work in the published literature that combines the two approaches to model 

community acceptance of mining projects. ABM applications in resource exploitation 

have not been supported by rigorous utility functions based on sound social science. For 

example, Fujiono (2011) used agent-based model framework to show ways innovations 

can be adopted in the mining industry but did not apply rigorous utility functions based 

on sound social science to determine agents’ adoption. Instead, each individual mining 

company representing an agent, was set to constantly aim for lesser mining cost and 

higher productivity compared to its competitors and to avoid failures at their mines. 

When any of these objectives was not met, a mining company (an agent) was set to find 

information about a better technology to improve its performance.  Such an approach was 

more heuristic. Nonetheless, work done by other researchers (Hunt et al., 2007) proves 
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that it should be possible for these two approaches to be applied to model mining 

community acceptance over time.  

The main technical challenge of ABM is how to formulate rigorous utility 

functions that describe the agent’s motivation for decision making. Even though discrete 

choice models are valid for estimating the utility of the various alternatives presented in 

the discrete choice experiment, they do not, by themselves, provide a means to make an 

accept/reject decision. This binary (accept/reject) decision is what is required to estimate 

the level of acceptance of a particular mine. This dissertation overcomes such a challenge 

by using odds ratio as the utility function in the ABM. Odds ratio has been widely 

applied in making decisions, especially in the field of medicine for choosing options and 

making decision. For example, it helps patients decide to accept or waive painful or 

expensive treatments, and thus, enables health care workers to make treatment decisions 

(Mchugh, 2009).  

2.8.3. Other Technical Challenges and Issues for Mining Applications.  

Besides formulating rigorous utility functions, there are other challenges to be overcome 

in order to apply ABM to study the effect of mine management and other external events 

on community acceptance. One of these is the nature of the social network that describes 

the connections between individuals in the community. Various studies have indicated 

that the structure of social network can affect information diffusion (Deroian, 2002; Kong 

& Bi, 2014). However, there has been no work that used ABM and discrete choice theory 

in conjunction with diffusion model through social network to understand dynamic 

community acceptance of mining. For example, Bahr (2015) uses ABM and social 

networks to explore the effect of different scenarios on the social network of a 
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stakeholders and the resulting changes in community perception. However, Bahr (2015) 

used heuristics to formulate the utility functions and was more interested in how 

stakeholders (not individuals) form stable connections (strategic social network 

formation) than information diffusion and its effect on community perceptions. 

Generally, community acceptance is affected by several factors, including 

effectiveness of local community engagement, individual’s preferences, and requirements 

for community acceptance, and perceptions of legitimate ownership of mineral rights 

(Ballard & Banks, 2003; Joyce & Macfarlane, 2001). On the whole, community 

acceptance is an important element in the sustainability of a particular mining project. 

This presents several questions: Can technical considerations (design for sustainability) 

be sufficient to influence community acceptance? How do other competing factors, such 

as economic considerations, influence community acceptance? Under what conditions are 

these competing factors dominating the decision of the local community to accept 

sustainable projects? How do all these change over the life of the mining project? Given 

the abovementioned complexities associated with achieving perceived sustainability, 

further research is required to investigate these issues. Combining ABM with rigorous 

decision science and incorporating social network structure is a promising approach to 

examine these issues. Nevertheless, combining ABM and DCE together with social 

network structure to model community acceptance has many challenges such as: (1) how 

to define valid agent utility functions using discrete choice theory; and (2) how to 

describe the interaction between perceptions of sustainability and community acceptance 

using an ABM diffusion model through social network. The main contribution of this 

dissertation is to overcome these challenges.  
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2.9. SUMMARY OF THE SECTION 

The following key points summarize the discussions in this section. 

1. Community engagement is important for ensuring sustainable mining 

2. Current qualitative community analysis approaches do not fully provide enough 

understanding into the community’s trepidations, expectations, and, particularly, 

level of acceptance to achieve the project’s sustainability 

3. The level of social license to operate changes over time based on people’s 

ongoing experiences of an operation and changes in their perceptions and 

opinions, and the procedure by which social license is expressed, which is 

contextually specific, dynamic and non-linear 

4. There are many factors that affect community acceptance, which include the 

impacts of the mine on the environment and host community, the mine owner (the 

corporate reputation etc.) and governance issues, and demographics of the 

community 

5. Researchers have used discrete choice theory to model individuals’ choice 

regarding whether or not to support mining. Such work indicates that discrete 

choice theory can be used to formulate rigorous utility functions for agent based 

model (ABM) of community acceptance 

6. Agent based models are a potential tool for modeling agents’ decisions to 

innovate or to imitate innovation as well as their strategies for collaboration. 

7. Social networks channel information about innovations to some potential adopters 

who might adopt these innovations and prevent others from getting such 
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information who are, therefore, not in a position to adopt them. Thus, the structure 

of a social network can favor or inhibit the diffusion of innovations in the network 

8. Literature review shows that several agent-based models use some type of 

discrete choice model in the agents’ decision process 

9. This dissertation aims to combine ABM, DCE and social networks structure to 

model community acceptance while addressing the following challenges: (1) how 

to define valid agent utility functions using discrete choice theory; and (2) how to 

describe the interaction between perceptions of sustainability and community 

acceptance using an ABM diffusion model through social network 
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3. AGENT-BASED MODELING FRAMEWORK FOR MODELING THE 

EFFECT OF INFORMATION DIFFUSION ON COMMUNITY 

ACCEPTANCE OF MINING 

 

3.1. INTRODUCTION TO MODELING COMMUNITY ACCEPTANCE OF 

MINING 

Changes in the community's perception of mine characteristics and impacts, 

which affect social license to operate (SLO), can be described as diffusion of information 

(perceptions) over a social network. This is particularly so if the changes in perceptions 

(or opinions) are basically because of interactions with others. In such circumstances, 

new perceptions or opinions can diffuse over a network of people in the mining 

communities. Ultimately, these new perceptions can result in changing acceptance levels 

of the mining project. Continual surveying and engagement can help monitor such 

changes. Nevertheless, such practices are expensive and time-consuming. Therefore, 

mine managers need approaches (including computational models) to predict such 

changes without (or in addition to) repeated surveys. Such approaches do not currently 

exist and researchers have not given the problem the required attention. 

This dissertation is intended to fill this gap by proposing a framework for 

understanding how levels of community acceptance change over time given changes in 

social and environmental attributes of a mine, and community’s demographics . The 

specific objectives of this section are to: (i) propose a framework for modeling the effect 

of information diffusion on community acceptance1 of mining using ABM; and (ii) 

illustrate the framework using a case study. The case study, which uses data from Que 

                                                 
1 As used in this paper, “community acceptance” means the individuals (agents) prefer the project 

over the status quo. This may be more than “acceptance” but less than “approval,” in SLO 

parlance (Thomson & Boutilier, 2011). 
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(2015), examines the effect of agents' changing perceptions of the levels of air pollution 

on the level of acceptance of a mine. The work in this section accounts for the effect of 

new information about the mine's relevant sustainability impacts on changing 

perceptions. The purpose is to understand how in a given mining community, interactions 

and communications among the people in the presence of changing perceptions of mine 

impacts can affect community acceptance of the mining project. 

Modeling the effect of information diffusion on community acceptance of mining 

needs a complex adaptive system framework such as agent-based modeling (ABM) 

(Miller & Page, 2009). ABM is predominantly appropriate for this case because it is 

much easier to characterize the interactions between individuals, how such interactions 

might influence an individual's perceptions and preferences, and the uncertainties 

surrounding such processes for individuals than for the entire population. ABM provides 

the opportunity to explicitly model the social interactions between individuals of different 

characteristics and takes into account the structure of social network (Kiesling et al, 

2012). ABM models can capture dynamic and emergent behavior in ways that cannot be 

achieved by other approaches (Bonabeau, 2002; Macal & North, 2010). 

This study contributes to improving mining sustainability practice and research 

and can inform broader discussions about the interactions between large engineering and 

manufacturing projects and their host communities. It will help facilitate better inclusion 

of community opinions in evaluating design options during project design and planning 

(Howard, 2015; Soste et al., 2015). This helps project managers obtain informed consent 

and social license to operate, which are sustainable outcomes (Szablowski, 2010; Yates & 

Horvath, 2013). Additionally, this work contributes to current research at the boundaries 
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of social science, complex adaptive systems and sustainability (Fiksel, 2003; Schluter et 

al., 2012). Mines, which are often relatively large enterprises in small rural communities, 

are typical examples of the interaction between social, environmental and economic 

impacts of the mine and demographics of the community that hosts them.  

 

3.2. MODELING FRAMEWORK 

The major determinants of the level of community acceptance of a mining project 

can be classified into characteristics and impacts of the mine, and demographic factors 

(Que et al., 2015). Mines have social, environmental and economic impacts. For instance, 

Que et al found that the relevant characteristics of a mining project include the life of the 

project (the project duration), buffer between the mine and residents (how far is the 

community or communities are from the mine), decision making mechanism for permit 

approval, and availability of independent and transparent information on potential 

impacts of the mine. These impacts and characteristics depend on the type of mine and 

technology (equipment, engineering design, and mitigation techniques) employed in 

mining. 

To model the level of community acceptance of mining, the model has to account 

for these determinants. In ABM, the model state “emerges” from the state of individual 

agents in the model. The level of community acceptance could be modeled from 

deducing the percentage of individual agents that prefer a proposed mining project over 

the status quo. To accomplish this, the determinants of individual preferences for mining 

projects have to be incorporated into the agent's utility function, which determines the 

agent's state (prefer or not). For this proposed framework, these determinants are 
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incorporated into the model as agent attributes, which can change with time. The general 

framework is presented in Figure 3.1. 

The main assumptions of the modeling framework are that it assumes: 

1. The influence of other agents (individuals) who live outside the mining 

community under consideration on the preferences of agents in the community is 

negligible (i.e. boundary condition) 

2. The effect of other variables, besides those captured in the utility function (the so-

called unobserved variables in discrete choice theory), on individual preferences 

are negligible 

3. Information diffusion is primarily through word of mouth and the effect of other 

forms of information transfer are negligible  

4. All agents have similar roles in the information diffusion process (i.e. all agents 

are open to new information and can influence others).  

The framework in this research (Figure 3.1), implemented in MATLAB 7.7 2014, 

predominantly relies on two input data sets: (1) demographic data (e.g. age, gender, 

education, number of children, length of residence, location, etc.); and (2) non-

demographic data (e.g. job opportunities, income increase, noise pollution, traffic 

increase, crime rate, mine life, mine buffer etc.), which define the mine impacts and 

characteristics (section 3.2.1 describes how this is incorporated into the agent’s utility 

function). These two data sets, which are modeled as agents’ attributes, are used to 

describe agents' motivations (utility function). The examples of these data sets in this 

study are not exhaustive. The factors that influence an individual's preference for a mine 

differ from one situation to the other. Therefore, the number and type of factors in the 
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model depend on the number and type of factors that are deemed important for describing 

an individual's preference. For instance, (Que, 2015) found the individual's level of 

education to be statistically significant but not the number of children. Ivanova & Rolfe 

(2011), on the other hand, found the number of children to be significant but did not 

consider level of education (Table 3.1). Likewise, whereas Que (2015) found 20 (4 

demographic and 16 non-demographic) factors to be relevant, Ivanova & Rolfe (2011) 

found 13 (8 demographic and 5 non-demographic) factors to be relevant. Que’s 

significant factors were used to model agents’ attributes and define utility function 

variables in this research. 

The algorithm initializes agents at the beginning of each iteration. In this step, 

agents are created with various attributes depending on the input. The important state 

variables for this framework are the “decision” and “preference” variables. The decision 

variable is used to describe whether the agent is participating in the decision (above 18 

years old and alive) or not (below 18 years or dead). Agent preference state describes 

whether the agent prefers the proposed mining project over the status quo or not, and is 

determined using the decision criteria based on the utility function. Some agent attributes 

are dynamic as they change over time. These attributes are updated at each time step. 

These include age and agent's decision state (i.e. alive or dead, or attained 18 years). In 

order to use the model to understand the effect of information diffusion on community 

acceptance, at least one non-demographic attribute has to be dynamic. Also, such 

attribute should be affected by information diffusion over a social network. The model is 

run for a number of iterations to adequately estimate the output from Monte Carlo 

simulation, which is used to model stochasticity in the model. 
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Figure 3.1. Framework for Modeling Community Acceptance 
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Table 3.1. Comparing Ivanova and Rolfe’s, and Que’s Significant Factors (Ivanova & 

Rolfe, 2011; Que, 2015) 

Ivanova and Rolfe’s significant 

factors 

Que’s significant factors 

 Cost  Age 

 Housing and rental prices  Gender 

 Water restrictions  Annual income 

 Buffer for mine impacts  Education 

 Population in work camps  Job opportunities 

 Gender  Income increase 

 Number of children  Increase in housing costs 

 Age  Labor shortage for other business 

 Length of residence  Noise pollution 

 Enjoy living in Moranbah  Water pollution and shortage 

 Spending in Moranbah  Air pollution 

 Improved Services will reduce 

travel 

 Land pollution and subsidence 

  Population increase 

  Infrastructure Improvement 

  Traffic increase 

  Crime increase  

  Permit approval decision making 

mechanism 

  Availability of information 

  Mine buffer 

  Mine life 
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The three major aspects of this framework are the approach to modeling agents, 

agents’ topology, and changing perceptions. These are discussed in detail in the following 

sub-sections. 

3.2.1. Modeling Agents.  An agent is a discrete, autonomous entity with its own 

goals and behaviors, which it can adapt and modify (Macal & North, 2006). Agents have 

attributes (variables) that are used to describe them. In this modeling framework, 

individuals are modeled as agents, with attributes that depend on the study objective and 

variables in the utility function. As explained earlier, the factors that affect an individual's 

preference for a mine differ from one context to the other. Hence, the number and type of 

attributes in the model depend on the number and type of factors that are important for 

predicting an individual's preference. Physical location can be an agent’s attribute, if it is 

deemed important for the diffusion process. Agents are more likely to interact based on 

their locations (e.g. individuals in the same neighborhood are more likely to be friends). 

The modeling framework is based on utility functions derived from discrete 

choice theory (McFadden, 1974). Discrete choice theory is used to model individual 

preferences in discrete choice situations. This is consistent with the modeling framework 

that models individuals as agents. Based on discrete choice theory, an individual's utility 

(or payoff) for alternative a ( )au , and the odds of selecting alternative a  over b , abOR , 

are given by Equations 3-1 and 3-2, respectively. 
j

  is the taste coefficient associated 

with attribute j ; jx , is the variable for attribute j ; 
a  is the random unobserved 

component, and n is the number of attributes relevant to the choice. The odds ratio, which 

is the ratio of the probability of an individual with specific demographic characteristics 

choosing alternative a   over alternativeb , under specific conditions, is used as the 
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decision criteria in this work (Equation 3-2). The agent chooses an alternative over the 

status quo, if its odds ratio is greater than one.  

1

n

a j aj
j

U x 


 
  
 
                                                                                        (3-1) 

 
1

exp
n

a b

ab j jj
j

OR x x


 
  

 
                                                                                 (3-2) 

At each time step, the odds ratio is estimated for all agents participating in the 

decision. The odds ratio is then used to determine the agents' state with respect to 

whether they prefer the simulated mining project over the status quo or not. The model 

then collates that to estimate the level of community acceptance at that time step. 

The user needs to provide the model with the desired distributions of the various 

agent’s attributes. During the agent initialization step, the agents are assigned initial 

values of the demographic attributes based on Monte Carlo sampling. (It is worth 

mentioning that, although the model is capable of incorporating correlation in the Monte 

Carlo sampling, the case study in this work does not consider potentially correlated 

properties since correlation coefficients are not available in Que's work). The 

demographic attributes of each agent are assigned by randomly sampling from the given 

distributions to mimic the actual distributions of the attributes. On the contrary, the non-

demographic attribute values are assigned to the agents in a deterministic approach based 

on the particular simulated scenario. This approach assumes that at time zero, all agents 

perceive the status quo and the option to be evaluated to the same extent. This assumption 

is a limitation that is imposed by the survey (discrete choice experiment) used to capture 

individual’s preferences. Since all participants in the surveys were given same 

descriptions of the alternatives and instructions, the discrete choice modeling assumes 
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that any differences in choices are due to individual’s preferences (which are assumed to 

be explained by demographics and project attributes) and not differences in the way the 

participants perceive the alternatives. Hence, when using the discrete choice model as a 

utility function, it is inconsistent to assume that the agents have differing perceptions of 

the alternatives. Nonetheless, the candidate believes the benefits of using a utility 

function based on actual data on individual’s preferences outweigh this limitation. 

At each time step, dynamic agent’s attributes (those that change with time) are 

updated. There are three types of these dynamic attributes: attributes that are a direct 

function of time (e.g. age); attributes that are function of events that happen over time 

(e.g. number of children); and those attributes that change from interaction with other 

agents (e.g. an agent’s number of “active friends”2). Attributes that are a function of time 

are updated on the function that describes the attribute (e.g. agent's age is updated by 

adding the time step to the previous age). Attributes that are a function of events that 

happen over time are updated based on whether those events occur or not in the 

simulation. Those other attributes that change due to interactions between agents depend 

on topology and the diffusion process which are discussed in the next two sections. 

In this work, the agents have 20 (4 demographic and 16 non-demographic) 

attributes that are used to estimate the utility function as per (Que, 2015). These agents' 

attributes were chosen based on a survey of residents of mining and non-mining 

communities to test the hypothesis that these demographic and non-demographic 

attributes influence individuals' decision to accept a proposed mining project (Que, 

2015).The four demographic attributes are age, gender, level of education and annual 

                                                 
2 “Active friends” is used to refer to those agents connected to an agent that are participating in 

the decision (i.e. 18 years or older and alive) 
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income. The 16 non-demographic attributes cover economic, environmental, social and 

other factors relevant to the problem. Of these 20 attributes, age is the only dynamic 

attribute that is a function of time. Agent's decision state variable is affected by two 

events (an “adult” agent dies or a “child” agent becomes 18 years old), which are 

simulated using Monte Carlo simulation at each time step. The agent's number of active 

friends changes as the agents interact through the network. 

Agents' death is simulated using the death rate distribution over the age of the 

agents in this model. Monte Carlo sampling is used to determine whether an agent is dead 

or not at each time step. Dead agents are removed from the pool of decision makers by 

assigning “0” to their decision state variable. Conversely, those agents who are living (i.e. 

decision makers) have their decision variable set to “1”. 

During the step to initialize agents, the ages of the agents are simulated using 

Monte Carlo sampling, based on the age distribution provided by the user. To introduce 

new agents into the decision pool, all agents that have attained 18 years (new entrants) 

after ages are updated at each time step are identified and added to the decision makers. 

3.2.2 Modeling Agents’ Topology.  Topology describes agents' relationships 

and interactions with each other. The two main concerns of modeling agent’s interactions 

are identifying who is, or could be, interacting and the mechanism of the interaction 

(Macal & North, 2010). In network topology, agents can interact with other agents 

through paths in the network. This type of topology is used to model situations like 

contagion, learning, and diffusion of various behaviors through a social network 

(Jackson, 2008). In network topology: (1) an agent interacts with a subsection of agents 

that it is connected to, referred to as the agent's neighbors; and (2) local information is 
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obtained from interactions with an agent's neighbors. Many networks with distinct 

characteristics have been described in the literature (Newman, 2003a). It is advisable to 

select a network that is applicable to the particular model (Kiesling et al., 2012).  

For this framework, the ABM model uses a static network in which connections 

are defined at the beginning of the simulation and do not change (Macal & North, 2010). 

However, a new network is simulated and used for each iteration. The candidate used a 

static network because the work focuses on changes to the level of acceptance due to 

information diffusion. This is a limitation and can be addressed in future work by 

incorporating strategic network formation based on agents' choices and adaptation 

(Jackson, 2008). The network used in this framework can be any class of networks that 

describe social networks by which information about mine characteristics and impacts 

diffuses through a community. Although, such networks have not been comprehensively 

described in the literature, preliminary descriptions of such networks exist (Boutilier, 

2011). However, it is reasonable to hypothesize that one could approximate such 

networks with other social networks that have been observed to describe information 

diffusion and a variety of social interactions (Newman, 2003a). 

The algorithm that generates the network in the framework is based on a random 

graph algorithm. The algorithm is modified, however, to account for homophily (i.e. a 

higher likelihood that individuals will be connected to other individuals who are similar 

to them). The candidate accounted for homophily in this work because homophily, which 

is the property of social networks that leads to the observation that individuals tend to be 

similar to their friends, is one of the most basic properties of social networks (Easley & 

Kleinberg, 2010). Its basis could be any of the individual's (in this case agent's) attributes, 
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including demographic attributes such as age, gender, race/ethnicity, education and by 

psychological ones such as intelligence, attitudes, and aspirations (McPherson et al., 

2001). In the case study model, the candidate uses the agent's location (postal zip codes) 

as the basis for simulating homophily. Proximity is the most basic source of homophily 

as people (agents) are more likely to interact with those who are closer to them 

geographically than those who are distant (Hipp & Perrin, 2009; Kadushin, 2004; 

McPherson et al., 2001). 

Agents' zip code is assigned using Monte Carlo sampling from the zip code 

distribution over a given total population. Agents are considered “similar” if the 

difference between their zip codes is equal to or less than a “proximity” value defined by 

the user. As with random networks, the candidate started with a goal of a binomial degree 

distribution (that is, the distribution of number of neighbors/friends is binomial) with 

probability of a connection, . The candidate then modified the algorithm to adjust the 

probability of a connection between two agents by a ratio,   0 1     to ensure a 

higher likelihood of connection between similar agents relative to dissimilar agents. 

Hence, the probability of a connection is given by Equation 3-3, where R  the 

difference in zip code, and P  is the proximity value provided by the modeler. 

 

if  
Probability of connection 

1 if 

R P

R P



 

 
 

  
                                                  (3-3) 

The candidate specified the “proximity” value as zero in the case study in this 

research. This implies that agents are similar if they have the same zip code. The 

candidate defined the probability   as 50 divided by the number of agents (i.e. average 

number of friends of 50). Average number of friends of 50 was assumed to be reasonable. 
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For instance, a social group size of 30 to 50 individuals is considered a typical size of 

social group such as overnight camps or a band society (Hill & Dunbar, 2002; Zhou et 

al., 2005). Homophily was ensured by defining 0.75  . 

3.2.3. Modeling Changing Perceptions.  Changing perceptions are modeled as 

a diffusion process over a social network (e.g. word of mouth information transfer) in this 

framework. The most common diffusion models, in the literature, are the Bass, SIR 

(“Susceptible, infected, removed”) and SIS (“Susceptible, infected, susceptible”) models 

(Jackson, 2008). The candidate adopted the Bass model for this framework because it is 

consistent with the objective of this framework. The Bass model postulates that diffusion 

of innovation as a contagion across network nodes (or agents) is random and the 

probability of becoming “infected” depends on the number of neighbors that a node has 

and the state of those neighbors (Jackson, 2008). The model captures the rate at which 

agents innovate or spontaneously adopt, and the rate at which they imitate other agents or 

adopt because others in their neighborhood have. 

Similarly, the candidate assumes that the probability of a person adopting the new 

perception of the mine’s sustainability depends on the number of friends that person has 

and a stochastic process that is a function of the proportion of friends who have adopted 

the new view. Adoption in this context means the process of agent becoming convinced 

of the new perception (e.g. change in the environment). The candidate assumes that agent 

innovation or spontaneous adoption is negligible (i.e. diffusion is primarily by word of 

mouth) because “word of mouth” is seen to be the predominant mode of diffusion in 

many cases and has major influences on individuals’ behavior (Buttle, 1998; Rezvani et 

al., 2012). Thus, this model is limited to situations where there is no significant 
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innovation and other factors such as public education and advertising which may drive 

changes in attitudes independent of social diffusion. Because this model assumes 

negligible innovation, initial conditions need to specify the number of agents who have 

this new view at the beginning of the simulation. 

Figure 3.2 illustrates the algorithm used to update the agents’ perceptions of the 

mine’s sustainability impacts at each time step. The two key steps of the algorithm are 

determining: (i) the agent’s active friends; and (ii) the probability that an agent will 

adopt. 

The statuses of an agent's friends are determined to ascertain whether they are 

active or not. If some of an agent's active friends have adopted the new perception, then it 

is necessary to determine the agent's likelihood of adopting the new perception based on 

strength of influence from his friends (Figure 3.2). In this work, the agent's adoption 

decision is guided by the product adoption model in Equation 3-4 (Bonabeau, 2002). In 

this model, a new perception's (analogous to a new product's) value V  to the agent 

depends on the number of agents who have adopted it, N  in a total population of 
TN  

agents. Where   is the fraction of the population that has adopted the new perception, 

  is a characteristic value and represents a threshold fraction of the population at which 

the adoption curve takes off, and d  is an exponent that determines the steepness of the 

function.   and d   are taken to be 0.4 and 4, respectively, in the base case as per 

(Bonabeau, 2002). These input parameters were used to model how movies become hits 

in an ABM. This adoption model is deemed adequate to model how new perceptions 

about a mine’s attributes become pervasive within a mining community.  
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V can be estimated for each agent by considering   to be the ratio of number of active 

friends who have adopted the new perception to total number of active friends. This 

estimate of V is used to model the probability of the agent adopting the new perception 

in this study. This probability increases as the number of adopting friends increases. 

Monte Carlo sampling is then used to determine whether the agent will adopt the new 

perception in the current time step or not. 

 

 

Figure 3.2. Agent Going Through Adoption and Decision Making Process at Each Time 

Step 
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3.3. MODEL VALIDATION 

ABM validation presents practical and scientific challenges for researchers. As 

noted by Klugl & Bazzan (2012), it is rare to have the empirical data for full validation. 

To fully validate an agent-based model with empirical data, researchers need to observe 

agents’ state at each discrete time step in a carefully documented scenario (Windrum et 

al., 2007). Such data is often unavailable and is not available in this case too. The data 

available to the candidate only surveyed community residents at a point in time and 

provides no dynamic data. Hence, the candidate chose to validate the modeling 

framework with data from Salt Lake City, Utah, USA (Que , 2015), which is used as the 

initial time step in this simulation. Que (2015) conducted a discrete choice experiment in 

Salt Lake City to understand the drivers of the local community’s acceptance of a mining 

project.3 She determined the taste coefficients using a strata conditional logit model 

(Table 3.2). The candidate used Que’s coefficients as the coefficients,   in Equations 3-

1 and 3-2 to describe agent motivations based on the four demographic and 16 non-

demographic attributes she found to be relevant. To validate the agent based model (at 

least for predicting at a particular instant in time), the candidate simulated the level of 

acceptance of the base case option in Que (2015). Data from Que (2015) was used as 

input to simulate the demographic and non-demographic attributes of the agents. For all 

attributes, the candidate used the same numeric codes used by Que (2015) to ensure the 

utility function is valid. 

 

 

                                                 
3 Salt Lake City is home to the Bingham Canyon Mine, a surface mine that produces mainly 

copper but also some gold, silver and molybdenum. 
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Table 3.2.Strata Conditional Logit Model for Salt Lake City (Que, 2015) 

Attribute Coefficient 

Demographic attributes  

Age 0.0028 

Gender -0.0093 

Annual income 0.0021 

Education 0.0017 

Non- demographic attributes (Economic)   

Job opportunities 1.3886 

Income increase 1.2541 

Increase in housing costs -1.7527 

Labor shortage for other business -0.1117 

Non- demographic attributes (Environmental)  

Noise pollution -1.6794 

Water pollution and shortage -0.3471 

Air pollution -1.8216 

Land pollution and subsidence -0.2707 

Non- demographic attributes (Social)  

Population increase -0.2570 

Infrastructure improvement 1.1575 

Traffic increase -0.1742 

Crime increase -1.6939 

Non-demographic attributes (Governance and others)  

Permit approval decision making mechanism 0.2028 

Availability of information 1.2606 

Mine buffer 1.2141 

Mine life 0.1402 

 

The demographic attributes used in this model are gender, age, level of education 

and annual income. In the validation experiment, the proportion of male and female 



86 

 

 

 

agents was equal. Tables 3.3, 3.4 and 3.5 present information regarding respondents' level 

of education, annual income and age in Que (2015), which are used in this experiment as 

input for generating agents' demographic attributes. 

 

Table 3.3. Agents’ Attributes: Level of Education (Que, 2015) 

Code Level of Education % Population 

1 Less than high school 14 

2 High school/GED 18 

3 Some college, Vocational, or 2 year college degree 27 

4 Bachelor’s degree and higher 41 

 

Table 3.4.Agents’ Attributes: Annual Income (Que, 2015) 

Code Annual Income % Population 

1 $5,000-$20,000 22 

2 $20,000-$39,000 23 

3 $40,000-$59,000 18 

4 $60,000-$200,000 37 

 

Table 3.5. Agents’ Attributes: Age (Que, 2015) 

Code Age group (years) % Population 

1 18 to 25 18 

2 26 to 34 26 

3 35 to 54 31 

4 55 to 64 12 

5 65 to 120 13 
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For all non-demographic attributes, Que (2015) used codes 1, 2 and 3, where 2 

represented the base case option code. Hence all non-demographic attributes are set to 

code 2 in the validation experiment. Table 3.6 shows the meaning of code 2 for each of 

the 16 attributes (Que, 2015). 

Using these inputs, the candidate conducted an experiment with 20,000 agents 

and 20 iterations to predict the level of acceptance for the base case option (no dynamic 

changes were evaluated in this experiment). This was based on computational cost and a 

reasonable coefficient of variation (1.6% for the validation experiment) after 20 iterations 

(replications). The validation results (Figure 3.3) indicate that the mean acceptance for 

the base case option is 42.4%. In Que's work, 44% of respondents chose this option (Que, 

2015). Comparing these two results, the candidate believes that the model results agree 

with the data used to generate the discrete choice model. The reader should note that the 

ABM results are limited by the confidence inherent in the discrete choice model. For 

instance Que’s strata conditional logit model has “percent” concordant4 of 78.5% and the 

percent discordant and percent tied are decreased to 18.7 and 2.8, respectively (Que, 

2015). Thus, the accuracy of the ABM is dependent on the accuracy of the Que’s discrete 

choice model. In other words, the ABM cannot predict any better than this rate of 

success. The candidate did not attempt to validate the diffusion model because there is no 

data available in the literature to validate the results. However, there are many instances 

where diffusion models based on the Bass model have performed well in characterizing 

changing perceptions (Dodds, 1973; Wu et al., 2015). 

 

                                                 
4 Concordance analysis is used to show the degree to which different measuring or rating 

techniques agree with each other (Kwiecien et al., 2011)  
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Table 3.6. Interpretation of Base Case Option Simulated in the Validation Experiment 

(Que, 2015) 

Environmental variable Interpretation 

Job opportunities 600 people employed directly by the mine 

Income increase +$300 per month 

Increase in housing cost 5% increase every year in 10 years 

Labor shortage for other 

business 

Other businesses take longer to fill vacancies 

but don’t have to pay more 

Noise pollution Same as similar mine in the area 

Water pollution and shortage Same as similar mine in the area 

Air pollution Same as similar mine in the area 

Land pollution and subsidence Same as similar mine in the area 

Population increase 4% annually 

Infrastructure improvement Moderate improvement 

Traffic increase Same as current rate 

Crime increase Same as current rate 

Permit approval decision 

making mechanism 

Final decision by government agency after 

significant public input 

Availability of independent 

and transparent information on 

potential impacts of mine 

Information reported/verified by government 

agency 

Mine buffer (Home distance 

from mine) 

10 miles  

Mine life 30 years 

 

The candidate recognizes that further work needs to be done to obtain empirical 

data to fully validate the model. Also, one could easily argue that the validation in this 

work simply verifies that the utility function, which is derived from Que's discrete choice 

model, has been properly incorporated into the model. The candidate believes this is not 

the case, since the stochastic aspects of the agent-based model do not necessarily rely on 
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any input from Que's work. Regardless, however, the candidate believes further work is 

necessary to comprehensively validate the modeling framework. 

 

 

Figure 3.3. Validation Results. Mean and Standard Deviation of the Level of Acceptance 

was 42.4% and 0.66%, Respectively 

. 

3.4. CASE STUDY USING SALT LAKE CITY, UTAH, USA 

 Experiments 

The motivation for these experiments was to illustrate how to use the proposed 

framework to analyze how, in a given mining community, interactions between people, in 

the presence of changing perceptions of mine impacts, can influence acceptance of the 

mining project. The candidate ran simulations to evaluate how an improvement in 

residents’ perception of the air pollution situation (this is a highly visible impact in Salt 
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Lake City as the particulate emissions are visible in the community) can influence their 

acceptance of the mining project. The air pollution situation is simulated to have 

improved by 1 on the scale used by Que (2015).5 The use of relative scale to indicate a 

change in air pollution situation is appropriate since Que used relative scale in designing 

the discrete choice model, which provides data for this framework. However, this 

framework will still work regardless of any given discrete choice model.  The initial 

condition used makes all agents living in a particular zip code the early adopters of the 

new perception of improvement in the air pollution issue. 

The candidate used the same discrete choice model and input data in Tables 3.2, 

3.3, 3.4, and 3.5 for these experiments. However, since these experiments involved a 

dynamic simulation of the effect of information diffusion across the social network, 

additional input data was required including death rates and a comprehensive age 

distribution. This age distribution is based on the demographics of Salt Lake City as 

shown in Table 3.7. Salt Lake City death distribution data for 2013 (Table 3.7) (National 

Center for Health Statistics, 2014) was also used to simulate agents' death. 

In addition, the model requires the rate of communication (“time step” per 

interaction) as an input. The rate of communication in this context, is the time it takes for 

meaningful interaction between the agents on an issue probable. The candidate sets the 

rate of communication to 0.1 years (10 interactions on this subject per year). The 

candidate assumed this rate of interaction was reasonable to signify frequent interaction. 

For example, Friedman (2015) considers monthly meetings (12 meetings in a year) for 

two hours to be optimal to convene a wisdom circle involving members from the same 

                                                 
5 This change means the perception of air pollution changes from “same as similar mine in the 

area” to “less than similar mine in the area.” 
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neighborhood or part of the town. The rate of communication of 0.1 years was used for 

the initial experiment to represent the base case. 

 

Table 3.7. Deaths Per 100,000 People by Age Group in Salt Lake City (National Center 

for Health Statistics, 2014) 

Age group (years)6 Percentage in population Number of 

deaths 

0 to 17 22.6 47 

18 to 24 13.4 99 

25 to 34 20.2 218 

35 to 54 24.4 667 

 

The initial experiment only simulates the changing level of acceptance due to 

diffusion of the new perception over the social network over a four year period. The 

candidate assumes that this period is short enough to ensure the discrete choice model is 

still valid. This is a limitation of this work that needs to be explored with future work (i.e. 

how long is a discrete choice model valid for?). 

Two additional experiments were carried out to demonstrate how the model 

responds to changes in average degree (average number of friends) and the time between 

meaningful interactions (rate of communication). In the rate of communication 

experiments, the candidate ran different simulations with the rate of communication 

taking values of 0.1, 0.2, 0.25 and 0.5 years. In the average number of friends 

experiment, the candidate varied the average number of friends from 30 to 60 in steps of 

10. The goal was to investigate how a more connected network influences the spread of 

                                                 
6 Age distribution data was obtained from 2009-2013 American Community Survey (American 

Community Survey, n.d.). 
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new information and its impact on level of acceptance. In both experiments, the candidate 

ran four-year simulations. The results of these experiments are discussed in the following 

sections. 

 

3.5. RESULTS AND DISCUSSIONS 

Figures 3.4, 3.5 and 3.6 show the results of the first experiment. The reader may 

note that the mean level of acceptance has increased from 42.4% in the validation 

experiment to 44.0% at time zero. This is anticipated because some of the agents adopted 

the improvement in the air pollution and changed their perceptions about the project and 

this increased the mean level of acceptance. Generally, the level of acceptance increases 

as more agents adopt the new perception (improved air pollution situation) over the 

period. The level of acceptance and the percentage of agents who changed their view of 

air pollution reach 100% before two and half years. 

The results, as shown in Figures 3.4 and 3.5, follow an S-shaped curve, which is a 

behavior of the Bass model described in the literature. In the Bass model, agents are 

influenced by a desire to innovate (defined as coefficient of innovation) and by a need to 

imitate others in the population (coefficient of imitation). The “S” shape occurs under a 

condition where the ratio of the coefficient of imitation to coefficient of innovation is 

greater than one (Meade & Islam, 2006). In the model in this work, the ratio is infinite 

since all the adoption is from imitation (word-of-mouth only).Practically, the S-shaped 

curve implies a relatively long time to “takeoff” followed by rapid increases in adoption 

once takeoff has been attained and a slowdown phase as fewer and fewer agents remain 

to adopt the new information (Boyle, 2010; Mahajan et al., 1990). 
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Figure 3.4. Simulation Results: Effect of Changing Perceptions of Improved Air 

Pollution Impact on Level of Acceptance; Grey Lines Represent Each 

Replication; Thick Black Line is the Mean 

 

 
Figure 3.5. Simulation Results: Effect of Changing Perceptions of Improved Air 

Pollution Impact on Level of Information Diffusion; Grey Lines Represent Each 

Replication; Thick Black Line is the Mean 

 

The rapid adoption shown in these results may not always be observed in such 

situations. The results of these simulation experiments are, in part, because the candidate 

simulated scenarios where adoption is through imitation resulting from unidirectional (i.e. 
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the model only allows interaction where the early adopters of the new perceptions 

convince agents who have not yet adopted to change their perceptions) word of mouth 

(Lilien et al., 2007). It is important to note that incorporating bidirectional word of mouth 

into the model would affect the results. Also, given different social networks (because of 

the diversity of host mining communities, e.g., small towns or cities, traditional societies 

or urban populations) would lead to different results. However, the candidate believes 

that the case study is a good illustrative example of the framework presented in this 

research. To study particular dynamics, many other experiments are required to explore 

the full parameter space to more comprehensively understand the system behavior. 

 

 

Figure 3.6.Simulation Results: Effect of Changing Perceptions of Improved Air Pollution 

Impact on Level of Acceptance; Standard Deviation of Level of Acceptance 

 

 

In this model, the initial slow build up is the result of the fact that very few agents 

have adopted the new perception of air pollution at this stage of the simulation. 
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Consequently, most of the potential adopters of this new perception have no neighbor 

who has the new perception and zero chance of changing their own perception (Figure 

3.2) at this stage. Once critical proportions of agents have adopted the new perception, 

rapid social contagion ensues as the probability is higher that each agent has at least one 

neighbor with the new perception and therefore some probability of adopting the new 

perception. The point of inflection, which symbolizes the “takeoff” point is the crucial 

point in the diffusion process (Laciana et al., 2013). This appears to occur around the 

point where 20% of the agents have adopted, in the simulated social network. The time it 

takes to reach this critical stage, is an important simulation output for managers and other 

stakeholders interested in how changing perceptions of sustainability affects a mine’s 

social license to operate. 

Figures 3.4 and 3.5 confirm that the level of acceptance of the mining project is 

driven primarily by the perception of air pollution impacts. The mean level of acceptance 

curve follows the same trend as the mean level of adoption of the new perception. The 

other simulated mechanisms (ageing, maturity of younger agents and death of older 

agents) have relatively little impact on the level of acceptance. This is consistent with the 

discrete choice model used as the utility function in two ways. First, the coefficients of 

the non-demographic factors are much higher than those of the demographic factors. For 

example, the coefficients for air pollution impacts and age are -1.8216 and 0.0028, 

respectively. Hence, a unit change in an agent’s age (say moving from the 18 to 24 years 

age group to the 25 to 34 years age group) will increase the odds ratio by a factor of 

1.0028
0.0028( )e . On the contrary, if the same agent were to change its perception of air 

pollution from 2 to 1 (as simulated here), its odds ratio would increase by a factor of 6.18 
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1.8216( )e  (see Equation 3-2). Thus, changing opinions about the mine’s impacts will 

have much more significant effects on level of acceptance (and social license to operate) 

than changing demographics, in this case. Second, changes in demographics as a result of 

new entrants into the decision pool (young agents turning 18) and death of older agents 

(higher probability of death –Table 3.7) have negligible effects on the level of acceptance 

since it only affects the age of the agents in the decision pool. As discussed here, age is 

not as important as perception of sustainability impacts. However, this observation 

cannot be generalized without further evidence that a community’s views on impacts are 

more important explanatory variables than demographic variables. 

It is also important to note that the different replications differ the most during the 

“rapid adoption” phase of the simulation (Figure 3.5).The uncertainty in the diffusion 

process at this stage manifests as uncertainty in the level of acceptance (Figure 3.4). 

Figure 3.6 illustrates the evolution of uncertainty surrounding the mean acceptance as the 

simulation proceeds, using the standard deviation of the level of acceptance. The 

increased uncertainty during the rapid adoption phase is due to the many possibilities 

available for the information to diffuse through the network. This higher uncertainty also 

affects the onset of the rapid adoption phase, which is a critical parameter. For example, 

using 20% as the critical point for “takeoff,” the higher uncertainty implies that after 1.5 

years (corresponding to a mean level of adoption of 20%), the standard deviation of the 

level of acceptance is 9.58%. Also, for the 20 replications, the level of acceptance after 

1.5 years varies from 55.8% to 57.9%. 

The results from the rate of communication experiments are shown in Figures 3.7 

and 3.8. The results show, as expected, that over the 4-year simulation period, there is an 
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increase in level of acceptance as the proportions of agents that have the improved view 

of air pollution increase with time for all rates of communication. However, also as 

expected, the rate at which the new perception diffuses through the community is lower 

with rate of communications of greater interval. This trend is reflected in the rate of 

increase in the level of acceptance, as well. For example, the simulation with rate of 

communication of 0.1 years resulted in 100% of the agents, on average, adopting the 

improved view of air pollution (consequently, the mean level of acceptance of 100%) 

before 2.5 years. However, for rate of communication of 0.2 years, only 15% of the 

agents, on average, adopt the improved view of air pollution (the corresponding mean 

level of acceptance is 53%) at the end of 2.5 years. As explained in the previous section, 

the rate of communication defines the time it takes for meaningful interaction between 

the agents on the issue (in this case, air pollution), probable.  Increasing the time between 

interactions (decreasing the rate of communication) means less communication between 

agents on this issue, which will ultimately affect the rate at which the new perception 

spreads. This will eventually affect how quickly the level of acceptance changes. The rate 

at which new information is adopted is proportional to the number of meaningful 

interactions between adopters and potential adopters (Midgley, 1976). This implies that 

mining community engagement that facilitates discussion of the issue in the local 

community may speed up changes in perception and level of acceptance in the presence 

of new information. More importantly, the rate of communication is a key driver of rate 

of change. Hence mines that can drive communication about positive attributes will 

increase the level of acceptance at a higher rate. 
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Figure 3.7. Effect of Varying Rate of Communication on Level of Acceptance 

 

 

Figure 3.8. Effect of Varying Rate of Communication on Adoption of New Perceptions 

 

Figures 3.9 and 3.10 present simulation results from the average number of 

friends experiments. The results indicate that the simulated networks with lower mean 

degrees (average number of agent’s friends) have faster information diffusion and higher 

rates of change of mean level of acceptance. For example, for an average of 30 friends 

per agent, the ratio of agents, on average, who have adopted the new perception and mean 

level of acceptance reach 100% after the 23rd interaction while for an average of 60 
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friends per agent, 100% is reached after the 26th interaction. This is because with higher 

number of friends value to the agent, of adopting the new perception, V, for each friend 

who adopts is lower since the value depends on the ratio, rather than the number of 

friends (Equation 3-3). Hence, higher number of friends leads to slower rate of increase 

in adoption of the new perception past the takeoff point. 

 

 

Figure 3.9. Effect of Varying Number of Friends on Level of Acceptance 

 

 

Figure 3.10. Effect of Varying Number of Friends on Adoption of New Perceptions 
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Nevertheless, the takeoff point still occurs approximately at the same time 

regardless of average number of friends. This shows that the time to takeoff is 

independent of the connectedness of the network (average degree). As explained earlier, 

prior to takeoff the adoption process is primarily driven by the small probabilities that 

exist just because an agent has at least one friend who has adopted the new perception. 

Rapid adoption begins when most agents have at least one friend who has adopted and 

the increased adoption rate is the result of higher and higher probabilities of adoption as 

the ratio of an agent’s friends who have adopted increases. Hence, it is not surprising that 

the time to takeoff is not affected by the average number of friends. 

 Further Discussion 

As noted earlier, the work presented in this section attempts to provide a 

framework for mine managers and other stakeholders to anticipate changes that can occur 

in community acceptance over time due to changes in perceptions. These changing 

perceptions occur due to engineering design choices, changing community demographics, 

and environmental performance of the mine. This new method provides a tool to assess 

design alternatives and various scenarios to understand the associated risks and 

sustainability outcomes. Although the current model (and case study) has limitations, it 

illustrates a pathway for using ABM to assess potential effects of specific changes in 

perception on social license to operate. Specifically, this work shows that using an agent-

based model like the one presented in this study with agent utility function derived from 

valid discrete choice models can be used to explore the interactions between information 

diffusion and community acceptance. 



101 

 

 

 

The model has some limitations that require future work including the fact that 

the: (1) social network used in this work is only assumed to be representative of the 

mining community and has not been observed in the community; (2) model does not 

account for different roles (e.g. active or passive, resistant or receptive, and innovators or 

followers) for individuals during information diffusion; and (3) model has not been fully 

validated with empirical data from a mining community or communities. Also, the model 

assumes that the analyst can isolate the “local community.” The system is thus bounded 

to a particular community and assumes no significant interaction between individuals in 

the community under study and in other communities that can impact perceptions. 

Notwithstanding, the candidate believes the general framework presents a novel 

contribution that allows these limitations to be addressed in future work. 

Readers should note that the case study results are, at best, applicable to the 

particular instance. The results do not represent, as far as the candidate knows, a general 

trend. In fact, the whole point of the framework presented in this section is to help 

stakeholders explore different scenarios to understand potential outcomes of changes in 

perception due to engineering design choices, changing community demographics, and 

the environmental performance of the mine so as to incorporate those possible outcomes 

into design, policy or government decisions. By incorporating appropriate utility 

function, social network model and other input parameters for a particular situation, an 

analyst is likely to generate results that differ from what is presented in this case study. 

However, those results will provide insights that are useful for decision-making in that 

context. 
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Additionally, the model and framework presented here can be applied beyond 

mining in such applications as oil and gas projects and other large scale engineering 

projects such as construction of fossil fuel power plants and hydro-electric power 

stations. The framework is applicable in situations where the project has a relatively long 

duration (e.g. more than five years), significant environmental and socio-economic 

impacts, and distinct phases (e.g. construction, operation and decommissioning) with 

different impacts. 

 

3.6. SUMMARY OF THE SECTION 

This section presents a framework for modeling the effect of information 

diffusion on dynamic community acceptance of mining using agent-based modeling 

(ABM). The model evaluates information diffusion due to word-of-mouth social 

contagion. A case study of mining activity in Salt Lake City, Utah, USA is used to 

illustrate the framework. The case study relies on discrete choice modeling by Que 

(2015) and simulates only unidirectional (from adopters to receptive agents) social 

contagion. The results show that changes in agents' perception of air pollution have a 

significant effect on acceptance of mining while demographic factors included in this 

case study (age, gender, income and education) do not have a significant effect. For the 

simulated social network, the onset of rapid social contagion (takeoff) appears to occur 

when about 20% of the agents in the network have adopted the new perception. However, 

once takeoff occurs, the rate at which information diffuses decreases with increase in 

average degree of the network. Finally, the rate of diffusion is proportional to the number 

of relevant agent’s interactions per unit time. Consequently, community engagement and 
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other interventions that increase discussion of the issues around a mining project are 

likely to affect the rate at which information (on the positive or negative impacts of the 

mine) diffuses through the community and how that affects the mine's social license to 

operate. Essentially, the rate of communication is a key driver of the rate of change. 

Therefore, mines that can drive communication about positive attributes will more 

rapidly increase the level of acceptance. 

The framework presented in this section can be used to understand the effect of 

information diffusion and social interactions on community acceptance. The framework 

can be applied to other resource extraction projects and to large engineering projects in 

general. Although, the case study uses a utility function that includes 20 demographic and 

non-demographic factors, the list of factors will necessarily be facts and circumstances 

determination. Besides the utility function, however, there are other aspects relevant to 

understanding the changes in community acceptance over time that are not accounted for 

in the current work. Those aspects include the role of the agents in the diffusion process 

(active or passive, resistant or receptive, and innovators or followers) and diversity of 

social networks, including those with hierarchies. These aspects can be incorporated into 

the model as part of future work. Finally, future work should attempt to validate the 

diffusion process and its effect on preferences for mining projects. 
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4. RESPONSIVENESS OF MINING COMMUNITY ACCEPTANCE MODEL 

TO KEY PARAMETER CHANGES 

 

 

4.1. INTRODUCTION TO SENSITIVITY OF MINING COMMUNITY 

ACCEPTANCE MODEL 

Section 3 focuses on application of agent-based modeling together with social 

network concepts to model changes in perceptions as a result of word-of-mouth. Similar 

work has been done by others (Sobkowicz, 2009; Suo & Chen, 2008). However, these 

agent-based models are responsive to several key input parameters such as network 

parameters, diffusion model parameters and initial conditions.  In practice, acquiring these 

parameters can be cumbersome and expensive while estimating them based on assumptions 

can lead to uncertainties in the modeling results. In an attempt to understand the 

uncertainties surrounding the modeling results when estimates of these parameters are used 

in the model, researchers should ascertain the sensitivity of the model results to these 

parameters. 

This section investigates the responsiveness of the agent-based model (ABM) 

presented in section 3 to key input parameters. The key input parameters explored in this 

study are average degree (number of friends), close neighbor ratio (a parameter used in the 

ABM to model homophily) and number of early adopters (“innovators”). The candidate 

used a two-level full factorial experiment to investigate the responsiveness of the model to 

these parameters (Saltelli & Annoni, 2010). 

Sensitivity analysis is important to make informed decisions to balance the cost of 

studies to obtain accurate estimates of key parameters and the uncertainty related to 

estimates based on assumptions. The candidate is not aware of any work that evaluates 

the sensitivity of agent-based models of changes in community perceptions of large 
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projects (including mining projects) due to changes in perception of environmental, social 

and economic impacts of the projects. This work contributes to further discussion of the 

uncertainties surrounding such ABM results and informs future research and models. 

 

4.2. SENSITIVITY ANALYSIS OF MODELS 

Sensitivity analysis of agent-based models is challenging because these models 

are non-linear, multi-level and have emergent properties (ten Broeke et al., 2016). Some 

of the approaches for performing sensitivity analysis in the literature are: one-factor-at-a-

time (OAT), local and global sensitivity analysis (Saltelli & Annoni, 2010; ten Broeke et 

al., 2016; Thiele et al., 2014). Several researchers have discussed the differences and 

applications of these sensitivity analysis approaches. Below are some of the differences 

and applications of these sensitivity analysis approaches as discussed by Saltelli & 

Annoni (2010): 

One-factor-at-a-time (OAT) approach is the most popular sensitivity analysis 

practice. This consists of analyzing the effect of varying one model input factor at a time 

while keeping all other constant. However, sensitivity analysis approaches should ideally 

be able to deal with a model irrespective of assumptions about a model’s linearity and 

additivity, taking into account interaction effects among input uncertainties, and evaluate 

the effect of an input while all other inputs are made to change as well. OAT application 

is based on assumptions of model linearity, which appear unjustified in reviewed cases. 

Thus, OAT approach is applicable so long as the model is linear and non-additive. Also 

OAT cannot detect interactions among factors because such identification is predicated 

on the simultaneous movement of more than one factor. The insufficiency of OAT is not 
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limited to sensitivity analysis, e.g. to the quest for the most influential model input 

factors, but to uncertainty analysis as well. Basic statistics about the model output 

(inference), such as its maximum, or mode, can be totally misinterpreted through OAT. 

On the other hand, local sensitivity analysis is sensitivity analysis where the 

importance of the factors is investigated by derivative (of various order) of the output 

with respect to that factor. The term ‘local’ refers to the fact that all derivatives are taken 

at a single point, known as ‘baseline’ or ‘nominal value’ point, in the hyperspace of the 

input factors. For example, in approximating a model output in the neighborhood of a set 

of pre-established boundary conditions, it may not be necessary to average information 

over the entire parameter space and local approaches around the nominal values can still 

be informative. In principle, local analyses cannot be applied for the robustness of model 

based inference except the model is verified to be linear (for the case of first order 

derivatives) or at least additive (for the case of higher and cross order derivatives). In 

other words, derivatives are informative at the base point where they are computed, but 

do not provide for an exploration of the rest of the space of the input factors unless some 

conditions (such as linearity or additivity) are satisfied. 

With global sensitivity analysis, a neighborhood of alternative assumptions is 

chosen and the corresponding interval of inferences is identified. Conclusions are judged 

to be sturdy only if the neighborhood of assumptions is extensive enough to be credible 

and the corresponding interval of inferences is narrow enough to be useful. This method 

of analysis indicates that even varying the input assumptions within some plausible 

ranges some desired inference holds. Saltelli et al (2004) report that a global sensitivity 

measure must be able to appreciate the so-called interaction effect, which is especially 
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significant for non-linear, non-additive models. Also, global sensitivity analysis permits 

the identification of the elements and groups characterizing the interaction structure, but 

not the topological configuration of that structure. 

In agent-based modeling, the interactions between the agents are non-linear (Scholl, 

2001; ten Broeke et al., 2016). For this reason, global sensitivity analysis, which relies on 

statistical theory is the most appropriate for ABM (Saltelli et al., 2008; Saltelli & Annoni, 

2010) . 

 

4.3. SENSITIVITY ANALYSIS OF THE ABM 

The main objective of this section is to evaluate the responsiveness of the model 

discussed in section 3 to key input parameters. In order to select these key input 

parameters, the candidate initially conducted screening experiments on all the ABM 

parameters to analyze how these input parameters respond to the model output (level of 

acceptance). The results from the screening experiments show that changes in the number 

of friends, close neighbor ratio, and number of early adopters have significant effects on 

the results of the ABM model. Hence, the motivation to carry out the sensitivity analysis 

on these key input parameters. 

Given that the level of acceptance, which is the output varies as the simulation 

continues, a time-based sensitivity analysis is appropriate (Ligmann-Zielinska & Sun, 

2010). In such an approach, the output at each time step is treated as a separate output 

and sensitivity indices are estimated for each output. To estimate the effect of changes in 

the input on the output, the candidate used a design of experiments method employed by 

other researchers in the literature (Anderson & Whitcomb, 2015; Saltelli & Annoni, 
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2010). The candidate designed a two level full factorial experiment for the three 

parameters. Table 4.1 shows the factors and their levels used in the experiment. 

 

Table 4.1. Values of Levels of the Key Factors (Parameters) 

Factor Level Value Reference 

Number of 

friends (A) 

0 30 friends 
 (Hill & Dunbar, 2002; Zhou et 

al., 2005) 
1 50 friends 

Close neighbor 

ratio (B) 

0 0.55 
Based on reasonable assumptions 

and preliminary experiments 
1 0.75 

Number of early 

adopters (C) 

0 35% 

 (Bass, 2004; Cho et al., 2012; 

Rizzo & Porfiri, 2016; Rogers, 

2002) and reasonable 

assumptions 
1 69.4% 

 

 

As explained earlier, the literature has considered a group size of 30 to 50 

individuals as a typical size of social group such as overnight camps or a band society 

(Hill & Dunbar, 2002; Zhou et al., 2005). This work used these numbers as the limits of 

what could be considered an influential group that the agent (individual) belongs to. 

In the case of close neighbor ratio, the candidate set minimum value to 0.55 to 

ensure homophily and maximum value to 0.75 based on preliminary experiments (Figure 

4.1). The ratio has to be greater than 0.5 to ensure higher probability of connections 

between “similar” agents as discussed in section 3.2.2. The candidate set a maximum 

value of 0.75 for close neighbor ratio by conducting screening experiments using 20,000 
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agents and 20 iterations, and keeping all the factors for the base case the same while 

varying the close neighbor ratio from 0.55 to 0.85 in the interval of 0.1. The preliminary 

experimental results indicate that beyond 0.75, the dynamic behavior of the mean level of 

acceptance changes (Figure 4.1). This is probably due to the extreme homophily modeled 

by 0.85, which likely leads to small-world networks.  

Regarding number of early adopters in this work, 69.4% of the agents in a 

particular zip code where the information diffusion is initiated are considered innovators 

(“early adopters”). The 69.4% of agents in this zip code is equivalent to 2.5% of the total 

number of agents (total population) considered to be the number for innovators or “early 

adopter” according to literature. However, half of this percentage (i.e. 35% of agents in 

that particular zip code or 1.25% of the entire population) was assumed to be reasonably 

enough for the low level.  

 

 

Figure 4.1. Effects of Varying Close Neighbor Ratio on Level of Acceptance 

 



110 

 

 

 

The experiment simulates all possible combinations of the factor levels (Table 

4.2). From the output of these simulation runs, the primary (main), secondary and tertiary 

effects of each parameter can be estimated using well established approaches (Anderson 

& Whitcomb, 2015; Saltelli & Annoni, 2010). Assume, for example, that Z is the output 

(level of acceptance at a particular time instance) for given levels of the three factors 

(Table 4.1).  

Also assume that 
1F

Z  represents the output when a particular factor F is set to 

level 1 and 
0F

Z   represents the output when the same factor is set to level 0. Similarly, 

let 
1nF  and 

0nF represent the number of experiments where the factor is set to 1 and 0, 

respectively. Then Equation 4-1 can be used to estimate the main effect of factor F. 

Similar equations exist for estimating the secondary and tertiary effects of the factors 

(Anderson & Whitcomb, 2015). The secondary effects estimate the effect of interactions 

between two factors while the tertiary effects estimate the effect of interactions between 

three factors. 

1 0

1 0
( )

F F

Eff F Z Z
nF nF

 
 

                                                                           (4-1) 

 

Although, the estimates of primary, secondary and tertiary effects can result in 

positive and negative numbers (Equation 4-1), the results only show the absolute values of 

these estimates to facilitate easy comparison of the scale of the effects. The results of the 

sensitivity analysis are discussed in the next section. 
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Table 4.2. Combinations of Factors in Full Factorial Design 

Exp. # Level 

1 (0,0,0) 

2 (1,0,0) 

3 (0,1,0) 

4 (1,1,0) 

5 (0,0,1) 

6 (1,0,1) 

7 (0,1,1) 

8 (1,1,1) 

 

 

4.4. RESULTS AND DISCUSSIONS 

The results of the sensitivity analysis are shown in Figures 4.2 and 4.3. Figure 4.2 

shows the level of acceptance for all the experiments while Figure 4.3 shows the 

estimated effects from the results in Figure 4.2. The reader should note that points in 

Figure 4.3 where a particular effect “pinches” out indicate a transition from negative to 

positive or positive to negative effects (the plot shows absolute values of the estimated 

effects). The total estimated effects (sensitivity metrics) gradually rise from almost zero 

at the beginning of the simulation to a maximum, just over 100, at 2.9 years. 

Subsequently, the uncertainty decreases slightly and stays near constant for the rest of the 

simulation. The level of acceptance (the output of the model) is near constant at the 

beginning of the simulation for all the experiments (Figure 4.2). Hence, the model output 

is not sensitive to the three factors. However, as the simulation proceeds, the effect of the 

three investigated factors on the output increases over time. This is because the level of 

acceptance over time, which is a function of agent’s interaction and information 
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diffusion, is affected by the three factors. In particular, as shown in Figure 4.2, the onset 

and duration of the rapid adoption phase varies among the experiments in these 

experiments, depending on the input values for the three factors. The sensitivity results in 

Figure 4.3 follow a similar trend (i.e. the three factors have the most effect during the 

period between 1.5 to 3.5 years). After 3.5 years, however, with the exception of the first 

two experiments (Table 4.2), all the simulations have a constant level of acceptance 

(100%) as the entire community has adopted the new perception. This is what causes the 

reduction in the estimated effects and, thus, the model sensitivity to the three factors. 

 

 

Figure 4.2. Simulation Results for the Full Factorial Experiment 

 

From Figure 4.3, one observes that close neighbor ratio (B) and number of early 

adopters (C) are relatively more significant factors than number of friends (A). The main 

effects of close neighbor ratio and number of early adopters are significant contributors to 

the total sensitivity of the level of acceptance to the three factors. Additionally, the 

interaction of these two factors is more significant compared to any other interaction, 
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including interactions of all the three factors. This means the model’s prediction of the 

level of acceptance is more sensitive to changes in close neighbor ratio and number of 

early adopters than to changes in number of friends. It is particularly important to note 

that, of the two network parameters, one (close neighbor ratio) is much more significant 

than the other (number of friends). 

 

 

Figure 4.3. Main Effects and Interactions of All the Factors 

 

This is because close neighbor ratio, which is used to model homophily in the 

social network, influences the degree of clustering in the social network. It is known that 

innovations (a perception of improved air pollution, in this case) diffuse quicker in more 

clustered networks than in random networks due to individual’s exposure to more social 

influence (Kiesling et al., 2012). The candidate confirmed the relationship between close 
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neighbor ratio and clustering by analyzing the clustering coefficients of simulated 

networks with different close neighbor ratios using open-source MatLab routines for 

network analysis (Bounova & de Weck, 2012). In this analysis, the candidate estimated 

clustering coefficients of networks simulated with the network algorithm in this work 

using close neighbor ratios of 0.55, 0.65 and 0.75. The networks had 2,000 nodes (agents) 

and average degree (number of friends) of 50 to reduce the computational cost. The 

estimated mean clustering coefficients, for 10 networks each, were 0.0251, 0.0372 and 

0.0536 for close neighbor ratios of 0.55, 0.65 and 0.75, respectively. The candidate 

confirmed that increasing close neighbor ratio leads to a more clustered network. As the 

network becomes more clustered, diffusion as a result of social influence occurs at a 

faster rate, which increases level of acceptance. 

On the other hand, the number of friends (average number of agent’s friends) 

affects the diffusion process in two ways. First, the higher the number of friends for an 

agent, the higher the probability that it is connected to some other agent who has already 

adopted the new perception. Second, the higher the number of friends, the lower the 

effect of each single connected agent in influencing the agent’s decision to adopt the new 

perception (Equation 3.4 in section 3.2.3), which slows down diffusion. The combined 

effect of these two mechanisms on the diffusion process appears to result in the model’s 

lower sensitivity to the average number of friends than to the close neighbor ratio (within 

the ranges of the two factors). 

Unlike the two network parameters, the number of early adopters (innovators) is 

an initial condition for the simulation. The number of early adopters plays a role 

analogous to gatekeeping in launching a new idea (Rogers, 1995). The “new idea” here is 
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the change in perception (in this case, improvement in the air pollution impact). 

Basically, innovators are more influential at the beginning of the adoption process. Thus 

the model is, relatively, most sensitive to the number of early adopters at the beginning of 

the simulation. As the simulation progresses, the magnitude of the sensitivity index for 

number of early adopters increases but the overall contribution towards uncertainty is 

surpassed by the contribution of the close neighbor ratio (Figure 4.3). 

The candidate investigated further the combined effects of close neighbor ratio 

and number of early adopters on the level of acceptance over time to clarify the 

relationship and effect on the output. The candidate conducted experiments with four 

different levels of close neighbor ratio, “B” and number of early adopters “C”. The 

inputs for close neighbor ratio were 0.60 to 0.75 with 0.05 step size, and that for number 

of early adopters were 40% to 55% with 5% step size. These input figures are within the 

limits of the ranges used in the sensitivity analysis and provide the best insight based on 

candidate’s observations. Table 4.3 shows the 16 experimental runs for all possible 

combinations of the factor levels, which were set to 1 to 4 in order of increasing values. 

The results of these experiments (Figure 4.4) show that the level of acceptance increases 

as the close number ratio increases with a given number of early adopters. 

Figure 4.4 shows how the two factors affect level of acceptance over time. It shows 

that as the close neighbor ratio (thus homophily) increases, the rate of adoption is faster 

leading to a faster rise in the level of acceptance. The candidate examined the interaction 

between the two factors and the level of acceptance at each of the 41 time steps. The reader 

can observe a wide range of effects ranging from no change in level of acceptance with 

changes in the two factors at time t = 0, to wide variation in level of acceptance during the 
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rapid adoption phase to reduced level of variation towards the end of the simulation where 

most replications have 100% level of acceptance. 

 

Table 4.3. Combinations of Factors for the Sensitivity Experiment 

Experiment # Level 

1 1,1 

2 1,2 

3 1,3 

4 1,4 

5 2,1 

6 2,2 

7 2,3 

8 2,4 

9 3,1 

10 3,2 

11 3,3 

12 3,4 

13 4,1 

14 4,2 

15 4,3 

16 4,4 

 

 

 

Figures 4.5 and 4.6 show the level of acceptance at t = 2 years and t = 3.5 years 

respectively, which illustrate some of the observed trends. The candidate selected 2 and 

3.5 years because within this time, the level of acceptance significantly varies with 

varying close neighbor ratio and number of early adopters. At t = 2 years, level of 
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acceptance increases as close neighbor ratio and number of early adopters increase 

(Figure 4.5). At t = 3.5 years, the relation is a bit more nuanced. Though the level of 

acceptance increases as close neighbor ratio and number of early adopters increase, with 

numbers of early adopters set at 50% and 55%, level of acceptance by 3.5 years in the 

simulation is approximately 100% regardless of the close neighbor ratio. Hence, the 

sensitivity of the output in later years is diminished when the combined effect of the two 

variables significantly increases the rate of information diffusion and, thus, the rate at 

which the level of acceptance increases. 

 

 

Figure 4.4. Combined Effects of Close Neighbor Ratio and Number of Early Adopters on 

Level of Acceptance 
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Figure 4.5. Effect of Close Number Ratio (B) and Number of Early Adopters (C) on 

Level of Acceptance (%): t = 2 Years 

 

 

 

Figure 4.6. Effect of Close Number Ratio (B) and Number of Early Adopters (C) on 

Level of Acceptance (%): t = 3.5 Years 

 

When using this model to understand the effect of information diffusion on 

changes in the level of community acceptance of mining, critical attention should be paid 

to the degree of homophily in the social network (close neighbor ratio) and number of 
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early adopters (initial condition). The model is very sensitive to these factors and the 

reliability of the results depends on the accuracy of the estimates of these important input 

variables. It is therefore advisable that mine managers consider the costs and benefits of 

acquiring data to estimate these key parameters accurately so as to minimize uncertainties 

around their conclusions. 

The information and estimates of number of early adopters are well documented 

in the literature (Bass, 2004; Cho et al., 2012; Rizzo & Porfiri, 2016; Rogers, 2002). 

However, the information and estimates concerning the network parameters (number of 

friends and close neighbor ratio) can be obtained reliably only through a survey. For 

instance, during community engagement, individuals in the local mining community can 

be interviewed to document the people they are likely to discuss the relevant issue 

(relating to this mine) who are likely to affect their perceptions of the mine. Additional 

questions relating to the residence of those individuals would allow researchers to 

document the degree to which the type of homophily modeled in this work exists in the 

community. This will guide mine managers to estimate the number of friends and close 

neighbor ratio. Nonetheless, such a survey could be expensive, time consuming, and 

present difficulties in obtaining a good representative sample and reliable responses. 

Further research should focus on economic and reliable means of estimating these 

important input variables. 

As previously discussed, the ABM in this study attempts to provide a framework 

for mine managers and other stakeholders to anticipate changes that can happen in 

community acceptance due to changes in opinions. These changing opinions occur due to 

changes in the society and individual perceptions about these mines because of the 
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mines’ environmental and social impacts. Hence, agent based models built based on this 

framework can be used by stakeholders to evaluate different scenarios and explore the 

likely effects of these scenarios in order to incorporate them into design, policy or 

government decisions. The results of the sensitivity analysis in this work will help 

stakeholders identify the key parameters of the model that contribute to uncertainty in the 

model output. This will guide modelers and decision makers on where to expend 

resources in order to obtain more reliable results. 

As already stated, the ABM model presented in this research can be useful beyond 

mining as it is applicable to other fields including oil and gas and other large scale 

engineering projects such as construction of power stations. The framework can be 

applied in cases where the project has a relatively long duration (e.g. more than five 

years), substantial environmental and socio-economic impacts, and different stages (e.g. 

construction, operation and decommissioning) with diverse impacts. 

 

4.5. SUMMARY OF THE SECTION 

This section investigates the responsiveness of mining community acceptance 

model, presented in section 3 to key parameter changes. The parameters investigated 

were average degree (average number of friends) of the social network, close neighbor 

ratio (a measure of homophily in the social network) and number of early adopters 

(“innovators”). The results indicate that the model is relatively more responsive to close 

neighbor ratio (homophily) and number of early adopters than average degree (number of 

friends). Therefore, the candidate recommends that mine managers using this model to 

understand the effect of word-of-mouth information diffusion on the level of community 
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acceptance of their projects pay particular attention to the estimates of close neighbor 

ratio and number of early adopters.  This will minimize the uncertainty surrounding the 

inferences they draw from their simulation experiments. The literature on early adopters 

is mature and offers a reliable means to estimate the range of the number of early 

adopters. This is not the case for the social networks in mining communities, and that it 

will require more effort to reliably estimate the extent of homophily in the social 

networks. The candidate recommends that future work addresses approaches to 

adequately characterize this, given its importance. 

The proposed ABM framework will assist stakeholders to understand the effects 

of various scenarios on the rate of change of community acceptance so that they can 

incorporate them into design, policy or government decisions. The sensitivity analysis 

results have identified the ABM’s key parameters and how they affect the model output. 

This provides a useful guide for modelers and decision markers to determine how to 

spend scarce resources to improve the uncertainty of the results. 
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5. EFFECT OF SOCIAL NETWORKS ON INFORMATION DIFFUSION AND 

COMMUNITY ACCEPTANCE 

 

5.1. INTRODUCTION TO EFFECT OF SOCIAL NETWORKS ON 

COMMUNITY ACCEPTANCE 

Differences in social networks affect information diffusion in real and simulated 

societies (Suo & Chen, 2008). A person’s social network structure does not only 

constrain or enable current attitudes and practices but can also influence their ability to 

change their behavior in future (D' Andreta, 2011). Homophily, which is the principle 

that a contact between similar people happens at a higher rate than among dissimilar 

people (McPherson et al., 2001), is one of the most basic characteristics of social 

networks (Easley & Kleinberg, 2010). Early network studies indicated considerable 

homophily by demographic characteristics such as age, gender, race/ethnicity, and 

education and by psychological characteristics like intelligence, attitudes, and aspirations 

(McPherson et al., 2001). To the best of the candidate’s knowledge, there has been no 

work that explores the effect of homophily in social networks on agent-based models for 

understanding changes in community acceptance (of mining projects). 

This section explores the effect of social network on the results of the agent-based 

model (ABM) presented in section 3. It investigates the effect of homophily on 

information diffusion and its effect on community acceptance over time. Specifically, this 

study examines how the model results are affected by three social networks; social 

network with homophily based on physical distance (propinquity) and social distance 

(social attributes), and social network without homophily (a random network). Also, this 

study discusses the linkage between these social networks and characteristic mining 

communities. 
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The results of this study would provide stakeholders with a better understanding 

of how the rate of change in project acceptance may differ from community to 

community due to differences in social networks. This will help stakeholders to make 

more informed decisions during project planning and design, and community engagement 

to facilitate gaining and maintaining social license to operate to promote mining project 

sustainability. In addition, this study contributes to further discussion of the uncertainty 

surrounding such ABM results, and informs future research and models. 

 

5.2. INVESTIGATING SOCIAL NETWORKS 

As stated earlier, the analysis in this section examined the effect of social 

networks with homophily based on propinquity and social distance (social attributes), and 

one without homophily on the ABM results. Social network with homophily based on 

propinquity, which was used as base case scenario for this research, was modeled as 

described in section 3.2.2. 

The candidate modeled the social network with homophily based on social 

distance (social attributes) using the agent’s social attributes (age, gender, education and 

income). To achieve an average degree (the number of agents connected to an agent) of 

d  ( d   represents only an initial user-provided estimate for the average degree) in an 

agent network with N agents, the probability of a connection between each pair of agents 

has to be d N . To model homophily based on social attributes, the network algorithm 

should adjust this probability to make it higher or lower for some pairs of agents 

depending on their similarity (Equation 5-1). As per Equation 4, the probability of a 

connection between agents i  and j , ijp  is obtained by adjusting the average probability by 
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a factor, ij  which is a mapping of the inverse of the degree of similarity between agents 

to the uniform distribution between 0.5 and 1.5   1

: a a unif 0.5,1.5ij i j


  , 

normalized by the average factor,  . The degree to which agents are similar is 

established by the norm of the difference between their social attribute vectors ( a a )i j  

ˆ
ij

ij

d

N
P 


                                                                                                                 (5-1) 

In the case of social network without homophily, the candidate used the open-

source algorithm by Bounova & de Weck (2012) for a random directed graph. In this 

network, the probability of a connection between any pair of agents is the same. 

The candidate ran three simulation experiments (one for each of the networks) of 

20 iterations each using 20,000 agents and average degree of 50. Note that the modeled 

social networks do not explicitly incorporate transitive triples (the situation where a link 

between agents i and k , and j  and k , means that there is higher probability of a link 

between i and j ) because the candidate did not want to confound the results. Therefore, 

these social networks do not account for triadic interaction between agents (any such 

interaction is just coincidence). For initial conditions, the model randomly selects 4% and 

5% of the entire agent population as early adopters for each simulation. This differs from 

the initial conditions in the experiments in section 3. In those experiments, the initial 

condition assumes all agents in a particular zip code were the initial adopters. This 

approach was reasonable when the network incorporated homophily due to physical 

distance. The initial conditions in this section are necessary to provide the same initial 

conditions for experiments with all three networks. 
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5.3. RESULTS AND DISCUSSIONS 

Figures 5.1 and 5.2 show the experimental results. Figure 5.1 shows the level of 

acceptance over the simulation period for the various networks. The rate of change of 

level of acceptance remains almost the same for the three social networks at the 

beginning of the simulation. For instance, with 4% early adopters, the level of acceptance 

for the three networks was the same for approximately 2.5 years. After that, the network 

with homophily based on social attributes recorded the slowest rate of adoption (Figure 

5.1), leading to lowest level of acceptance at the end of the simulation period. However, 

the other two networks (network with homophily based on propinquity, and network 

without homophily) virtually recorded the same level of acceptance throughout the 

simulation (Figure 5.2). Similarly, with 5% early adopters, there was no difference in the 

level of acceptance until just before 1.5 years. After that, the network with homophily 

based on social attributes  reported the slowest rate of adoption (Figure 5.1) resulting in 

the lowest level of acceptance at the end of the simulation (Figure 5.2) while the network 

with homophily based on propinquity recorded the fastest rate of adoption followed by 

network with no homophily. The candidate observes that the initial adoption process 

leading to level of acceptance are the same for all the networks. As the adoption process 

continues, the connectivity of the agents is different for each of the social networks 

resulting in different evolutions for the level of adoption and acceptance. The different 

levels of adoption and acceptance can be due to differences in degree, degree distribution 

and clustering coefficients of the networks. This is because degree, degree distribution 

and clustering coefficients affect information diffusion processes (Buskens & 

Yamaguchi, 1999; Dover, 2011; Peres, 2014). 
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Figure 5.1. Effects of Changing Social Networks on Level of Adoption 

 

 

Figure 5.2. Effects of Changing Social Networks on Level of Acceptance 

 

In order to understand why the three networks resulted in different diffusion rates, 

the candidate examined the differences in their degree distributions and their clustering 

coefficients using an experiment that extracted 10 networks. These networks consisted of 
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2,000 agents (nodes) and average degree (number of friends) of 50 to reduce the 

computational cost. The results of the experiment are shown in Table 5.1. From the 

results, the average degree and degree distributions of the networks were virtually the 

same as indicated in Table 5.1 and Figures 5.3, 5.4 and 5.5. 

 

Table 5.1. Comparing Degree Distribution of the Various Social Networks 

Network 

# 
Type Mean 

Standard 

Deviation 
Skewness 

1 

No Homophily 49.808 7.185 0.190 

Homophily by 

Propinquity 
49.995 6.789 0.176 

Homophily by Social 

Attributes 
50.260 6.974 0.142 

2 

No Homophily 49.981 6.943 0.111 

Homophily by 

Propinquity 
50.024 6.744 0.184 

Homophily by Social 

Attributes 
50.663 7.009 0.128 

3 

No Homophily 49.973 6.995 0.098 

Homophily by 

Propinquity 
49.984 6.802 0.174 

Homophily by Social 

Attributes 
49.900 6.686 0.106 

4 

No Homophily 50.181 6.971 0.137 

Homophily by 

Propinquity 
50.205 6.810 0.116 

Homophily by Social 

Attributes 
49.860 7.014 0.156 

5 

No Homophily 50.106 6.858 0.101 

Homophily by 

Propinquity 
49.844 6.734 0.128 

Homophily by Social 

Attributes 
50.210 7.034 0.072 

6 

No Homophily 50.111 6.865 0.076 

Homophily by 

Propinquity 
50.067 6.679 0.194 

Homophily by Social 

Attributes 
49.713 6.893 -0.024 
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Table 5.1. Comparing Degree Distribution of the Various Social Networks (cont.) 

Network 

# 

Type Mean Standard 

Deviation 

Skewness 

7 

No Homophily 49.779 6.988 0.143 

Homophily by 

Propinquity 
50.215 6.711 0.138 

Homophily by 

Social Attributes 
49.659 6.919 0.192 

8 

No Homophily 49.908 6.958 0.178 

Homophily by 

Propinquity 
49.972 6.911 0.115 

Homophily by 

Social Attributes 
49.769 6.871 0.126 

9 

No Homophily 49.928 7.083 0.149 

Homophily by 

Propinquity 
50.192 6.870 0.220 

Homophily by 

Social Attributes 
49.585 6.879 0.127 

10 

No Homophily 49.829 6.900 0.159 

Homophily by 

Propinquity 
50.104 6.583 0.129 

Homophily by 

Social Attributes 
49.815 6.936 0.119 

Average 

No Homophily 49.960 6.975 0.134 

Homophily by 

Propinquity 
50.060 6.763 0.157 

Homophily by 

Social Attributes 
49.943 6.921 0.114 

 

 

Figure 5.3. Degree Distribution in Sample Social Network with no Homophily 

0

100

200

300

400

500

600

35 40 45 50 55 60 65 70 75

F
re

q
u

en
cy

Degree 



129 

 

 

 

 

Figure 5.4. Degree Distribution in Sample Social Network with Homophily Based on 

Propinquity 

 

 

 

Figure 5.5. Degree Distribution in Sample Social Network with Homophily Based on 

Social Attributes 
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on social attributes recorded the highest mean clustering coefficient of 0.0249, followed 

by network with no homophily (0.0063) while network with homophily based on 

propinquity recorded the least mean clustering coefficient of 0.0007. These differences 

are one order of magnitude in each case. 

The candidate believes that the difference in the clustering coefficients of these 

networks led to the differences in their diffusion rates. The clustering coefficient serves 

as a measure of a network’s transitivity. In other words, the clustering coefficient shows 

the probability that a person in a given network is a friend with the friends of his or her 

friends (Peres, 2014). Clustering coefficient, and for that matter clustering, affects 

diffusion process by impeding the diffusion process. That is, the redundancies generated 

by high clustering impede diffusion (Coupechoux & Lelarge, 2014; Peres, 2014). 

Newman (2003b) observed that in epidemics, increasing clustering decreases the size of 

an epidemic for an epidemic process on the network. 

Hence, it is not surprising that social network with homophily based on social 

attributes recorded the slowest level of adoption leading to the least level of acceptance at 

the end of the simulation period. This is because such a network possesses the highest 

clustering coefficients, which implies the highest relative average local clustering as 

compared to the other networks (network with homophily based on propinquity and 

network without homophily). Likewise, the network with homophily based on 

propinquity resulted in the fastest level of adoption leading to the highest level of 

acceptance at the end of the simulation period due to its lowest average local clustering. 

The candidate concludes that the different types of homophily led to differences in 

average local clustering, which eventually resulted in differences in diffusion rates. 
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Table 5.2. Average Local Clustering, 
2c , (Bounova & de Weck, 2012) for the Various 

Networks 

Network 

# 

Clustering Coefficients 

No 

Homophily 

Homophily by 

Propinquity 

Homophily by Social 

Attributes 

1 0.00624 0.00076 0.02484 

2 0.00625 0.00073 0.02494 

3 0.00623 0.00075 0.02489 

4 0.00625 0.00068 0.02484 

5 0.00625 0.00073 0.02481 

6 0.00629 0.00075 0.02496 

7 0.00628 0.00072 0.02489 

8 0.00630 0.00076 0.02514 

9 0.00632 0.00079 0.02525 

10 0.00630 0.00070 0.02481 

    

Average 0.0063 0.0007 0.0249 

 

 

For these results to inform management decisions, there is a need to consider 

connection between these networks and typical mining communities. The candidate 

considers the two types of mining communities defined by Evans & Kemp (2011): 

local/host community and affected community. Local community refers to those living in 

the immediate vicinity of a mine, who may have cultural affinity, claim or direct 

ownership of the area. On the other hand, affected community describes the communities 

affected by a mining company’s activities. Local communities tend to be rural areas as 

compared to affected communities which can be in urban and dispersed settings. Given 
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this description, the candidate links the modeled social networks to the types of mining 

communities in the following discussion. 

The social network with homophily based on propinquity is most likely to 

describe the social network by which information about a mine’s impact diffuses through 

a rural local mining community. Rural communities tend to be more homogenous and 

kinship and neighborhood solidarities rather than friendship drive relationships (Beggs et 

al., 1996; Toth Jr et al., 2002). For example, oil sands projects in Nigeria are located in 

largely rural communities that are quiet homogenous with individuals who are unified in 

their concerns (Chindo, 2011). 

On the contrary, the social network with homophily based on social distance 

(social and demographic attributes) is more likely to describe a more urban affected 

mining community’s social network. In urban communities, individuals tend to form ties 

based on social similarities rather than propinquity. For instance, D’Andreta (2011) 

emphasizes that modern urban societies are made up of networks that are disjointed, 

spare and dispersed across physical space as opposed to networks in rural communities. 

In addition, the candidate hypothesizes that the social network without homophily, 

which is more a dispersed social network, is also more likely to describe an urban 

“affected mining community” for the same reasons discussed above. 

This study should provide stakeholders with a better understanding of how 

homophily in the social network of mining communities affects the rate of change in 

project acceptance due to information diffusion. This should help stakeholders to make 

more informed decisions during project planning and design, and community engagement 

to facilitate gaining and maintaining social license to operate for mining projects to 
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uphold project’s sustainability. This study shows that when applying ABM to understand 

the effect of information diffusion on changes in the level of community acceptance of 

mining, the user must pay attention to the simulated community’s social network.  

Some studies have sought to understand how various social networks relate to 

urban and rural communities (D’Andreta, 2011; Hipp & Perrin, 2009; Toth Jr et al., 

2002).  However, there is no work on differences in social network (due to homophily) of 

mining communities in the literature. As indicated earlier,  Boutilier (2011) is the only 

author the candidate could find that discussed social networks in mining communities. 

However, he provided only qualitative description of social networks he has observed in 

his work. Further work is required to characterize social networks in mining 

communities. 

 

5.4. SUMMARY OF THE SECTION 

The work in this section evaluates the effect of homophily in social networks on 

the results of the mining community acceptance model, presented in section 3. The effect 

of homophily was explored by evaluating a network with homophily based on social 

distance (all agent demographic attributes), network with homophily based on physical 

distance (propinquity) and network without homophily. The results show that homophily 

significantly affects the rate of change in community acceptance. The social network with 

homophily based on propinquity resulted in fastest information diffusion and, therefore, 

highest rate of change in level of community acceptance of mining followed by the 

network without homophily, and network with homophily based on social distance.  The 

results of this work indicate that it is important to understand the nature of homophily in 
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social networks in mining communities. Consequently, mine managers can reduce 

uncertainty surrounding the inferences they draw from simulation experiments using 

agent-based models by obtaining reliable information about the mining communities’ 

social network. The candidate recommends that future research characterizes homophily 

in the social networks of mining communities. This work should provide stakeholders 

with a better understanding of the effect of homophily in social networks on the rate of 

change in project acceptance. 
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6. CONCLUSIONS, RECOMMENDATIONS AND FUTURE WORK 

 

6.1. SUMMARY AND CONCLUSIONS 

Community engagement is important for ensuring sustainable mining. Current 

qualitative community analysis approaches do not fully provide enough understanding 

into the community’s trepidations, expectations, and, particularly, variations in level of 

acceptance due to changes in demographics and perceptions of the project’s 

sustainability. The level of social license to operate changes over time, based on people’s 

ongoing experiences of an operation and changes in their perceptions and opinions, and 

the procedure by which social license is expressed is contextually specific, dynamic and 

non-linear. There are many factors that affect community acceptance, which include the 

impacts of the mine on the environment and host community, the mine owner (the 

corporate reputation etc.) and governance issues, and demographics of the community. 

Researchers have used discrete choice theory to model individuals’ preferences regarding 

mining projects. Such work indicates that discrete choice theory can be used to formulate 

rigorous utility functions for agent based model (ABM) of community acceptance. Agent 

based models are a potential tool for modeling agents’ decisions to innovate or to imitate 

innovation as well as their strategies for collaboration. Social networks channel 

information about innovations to some potential adopters who might adopt these 

innovations and prevent others from getting such information who are, therefore, not in a 

position to adopt them. Thus, the structure of a social network can favor or inhibit the 

diffusion of innovations in the network. A review of the literature shows that several 

agent-based models use some type of discrete choice model in the agents’ decision 

process. 



136 

 

 

 

The goal of this PhD study was to combine ABM, discrete choice experiment 

(DCE) and social networks structure to model community acceptance of mining while 

addressing the following challenges: (1) how to define valid agent utility functions using 

discrete choice theory; and (2) how to describe the interaction between perceptions of 

sustainability and community acceptance using an ABM diffusion model through social 

network. The specific research objectives were to: 

(1) Formulate agent utility functions for ABM, based on discrete choice theory;  

(2) Apply ABM to account for the effect of information diffusion on community 

acceptance; and  

(3) Explain the relationship between initial conditions, topology, and rate of interactions, 

on one hand, and community acceptance on the other hand. 

To achieve these objectives, this study relies on discrete choice theory, agent-

based modeling, innovation and diffusion theory, and stochastic processes. Discrete 

choice models of individual acceptance of mining projects were used to formulate utility 

functions for this research. To account for the effect of information diffusion on 

community acceptance through social network, an agent-based model was developed to 

study changes in community acceptance over time, as a function of changing 

demographics and perceived sustainability impacts. The model’s utility function was 

validated with data from Salt Lake City, Utah, USA, a mining community. 

Based on the work in this dissertation, the following conclusions can be drawn: 

1. For the first two research objectives: 

1) A framework for modeling the effect of information diffusion on dynamic 

community acceptance of mining using agent-based modeling (ABM) was 
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developed. The model evaluates information diffusion due to word-of-mouth 

social contagion. A case study of mining activity in Salt Lake City, Utah, USA 

was used to illustrate the framework. The case study relies on discrete choice 

modeling by Que (2015) and simulates only unidirectional (from adopters to 

receptive agents) social contagion.  

2) Changes in agents' perception of non-demographic factors (e.g. air pollution) have 

a significant effect on acceptance of mining while demographic factors included 

in this case study (age, gender, income and education) do not have a significant 

effect. For the simulated social network, the onset of rapid social contagion 

(takeoff) appears to occur when about 20% of the agents in the network have 

adopted the new perception. However, once takeoff occurs, the rate at which 

information diffuses decreases with increase in average degree of the network. 

Finally, the rate of diffusion is proportional to the number of relevant agent’s 

interactions per unit time. As a result, community engagement and other 

interventions that increase discussion of the issues around a mining project are 

likely to affect the rate at which information (on the positive or negative impacts 

of the mine) diffuses through the community and how that affects the mine's 

social license to operate. 

3) The modeled framework can be used to understand the effect of information 

diffusion and social interactions on community acceptance. The framework can 

be applied to other resource extraction projects and to large engineering projects 

in general. Although, the case study uses a utility function that includes 20 

demographic and non-demographic factors, the list of factors will necessarily be a 
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facts and circumstances determination. Besides the utility function, however, 

there are other aspects relevant to understanding the changes in community 

acceptance over time that are not accounted for in this research. Those aspects 

include the role of the agents in the diffusion process (active or passive, resistant 

or receptive, and innovators or followers) and diversity of social networks, 

including those with hierarchies.  

2. For the third research objective: 

1) The candidate investigated the responsiveness of mining community acceptance 

model discussed under objectives one and two to key input parameter changes. 

The input parameters investigated were average degree (average number of 

friends) of the social network, close neighbor ratio (a measure of homophily in the 

social network) and number of early adopters (“innovators”).  

2) The model is relatively more responsive to close neighbor ratio (homophily) and 

number of early adopters than average degree (number of friends). Therefore, the 

candidate recommends that mine managers using this model to understand the 

effect of word-of-mouth information diffusion on the level of community 

acceptance of their projects pay particular attention to the estimates of close 

neighbor ratio and number of early adopters.  This will minimize the uncertainty 

surrounding the inferences they draw from agent-based simulation experiments. 

The literature on early adopters is established and offers a reliable means to 

estimate the range of the number of early adopters. This is not the case for the 

social networks in mining communities that will require more effort to reliably 

estimate the extent of homophily in the social networks.  
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3) The candidate also investigated the effect of homophily in social networks on 

information diffusion and how it affects acceptance of mining. He did this by 

evaluating a network with homophily based on social distance (all agent 

demographic attributes), network with homophily based on physical distance 

(propinquity) and network without homophily.  

4) Homophily significantly affects the rate of change in community acceptance. The 

social network with homophily based on propinquity resulted in fastest 

information diffusion and, therefore, highest rate of change in level of community 

acceptance of mining followed by the network without homophily, and network 

with homophily based on social distance.  

5) The difference in the rate of change is due to changes in average local clustering 

of the different networks. Level of average local clustering in a network, which is 

measured by the clustering coefficient (Newman, 2003b) measures a network’s 

transitivity. In other words, the clustering coefficient shows the probability that a 

person in a given network is a friend with the friends of his or her friends (Peres, 

2014). Clustering coefficient or clustering, affects diffusion process by hindering 

the diffusion process. That is, the redundancies generated by high clustering 

impede diffusion (Coupechoux & Lelarge, 2014; Peres, 2014).  

6) In order to guide management decisions,  the candidate studied connection 

between these different networks, and host and affected mining communities by 

considering the two types of mining communities defined by Evans & Kemp 

(2011): local/host community and affected community.  The social network with 

homophily based on propinquity is most likely to describe the social network by 
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which information about a mine’s impact diffuses through a rural local mining 

community. This is because rural communities tend to be more homogenous and 

kinship and neighborhood solidarities rather than friendship drive relationships 

(Beggs et al., 1996; Toth Jr et al., 2002). However, the social network with 

homophily based on social distance (social and demographic attributes) is more 

likely to describe a more urban affected mining community’s social network. This 

is because in urban communities, individuals tend to form ties based on social 

similarities rather than propinquity. Besides, the candidate posits that the social 

network without homophily, which is more a dispersed social network, is also 

more likely to describe an urban “affected mining community”. This is due to the 

fact that modern urban societies are made up of networks that are disjointed, spare 

and dispersed across physical space as opposed to networks in rural communities 

(D’Andreta, 2011). 

7) It is essential to understand the nature of homophily in social networks in mining 

communities. Consequently, mine managers can reduce uncertainty surrounding 

the inferences they draw from simulation experiments using agent-based models 

by obtaining reliable information about the mining communities’ social network. 

This study should provide stakeholders with a better understanding of the effect of 

homophily in social networks on the rate of change in project acceptance. 

 

6.2. CONTRIBUTIONS OF THE PHD RESEARCH 

1. Contribution to improving understanding of changes in community acceptance of 

mining project over time using agent based modeling, discrete choice theory and 

diffusion model through social network 
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This dissertation is a pioneering attempt to apply agent based model (ABM) and 

discrete choice theory in combination with diffusion models through social network to 

quantitatively understand community acceptance of mining projects over time. The 

application of discrete choice theory will advance the science of ABM application to 

mining community/stakeholder modeling by incorporating sound decision theory to 

describe individual motivation to support or oppose a mining project. This study is at the 

intersection of mining community/stakeholder analysis, discrete choice theory and 

complex-adaptive system modeling using ABM and diffusion model through social 

network.  A good framework such as what is proposed by this dissertation would ensure 

that mine design and permitting, and policy decisions by stakeholders are less 

challenging than it is, currently. A dependable model, capable of quantitatively assessing 

changes in community acceptance over time will help stakeholders do an improved job in 

evaluating alternatives and, therefore, make informed decisions.  

This dissertation sought to answer four important questions: (1) How does new 

information change community acceptance over time?  (2) Can an agent-based modeling 

framework that uses discrete choice theory be proposed to study this dynamic community 

acceptance?  (3) If so, what are the essential input parameters that the model is most 

sensitive to?  (4) What is the effect of social network on the dynamics of information 

diffusion and community acceptance? 

With regards to questions 1 and 2, section 3 of this dissertation presented a 

framework for studying how new information can change community acceptance over 

time through word-of-mouth diffusion. Changes in agents' perception of non-

demographic factors (e.g. air pollution) have a significant effect on acceptance of mining 
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while demographic factors included in this case study (age, gender, income and 

education) do not have a significant effect. For the simulated social network, the onset of 

rapid social contagion (takeoff) appears to occur when about 20% of the agents in the 

network have adopted the new perception. However, once takeoff occurs, the rate at 

which information diffuses decreases with increase in average degree of the network. 

Finally, the rate of diffusion is proportional to the number of relevant agent’s interactions 

per unit time. As a result, community engagement and other interventions that increase 

discussion of the issues around a mining project are likely to affect the rate at which 

information (on the positive or negative impacts of the mine) diffuses through the 

community and how that affects the mine's social license to operate. 

In response to question 3, section 4 shows that the model, with the base social 

network, is more sensitive to close neighbor ratio (homophily) and number of early 

adopters than average degree (number of friends). These three input parameters were 

found to be the most important input parameters for the model. Consequently, the 

candidate recommends that mine managers using this model to understand the effect of 

word-of-mouth information diffusion on the level of community acceptance of their 

projects give specific attention to the estimates of close neighbor ratio and number of 

early adopters.  This will reduce the uncertainty associated with the inferences they draw 

from agent-based simulation experiments. The literature on early adopters is established 

and offers a reliable approach to estimate the range of the number of early adopters. On 

the other hand, it will require more effort to reliably estimate the extent of homophily in 

the social networks in mining communities. 
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With regards to question 4, section 5 shows that the model is very sensitive to the 

social network. The candidate examined three different networks: a network with no 

homophily, one with homophily due to propinquity (physical distance) and one with 

homophily due to social attributes (social distance). The results show that, at least for the 

social networks evaluated, the dynamics of information diffusion are sensitive to 

differences in average local clustering in these networks. All the simulated networks led 

to similar average degree and degree distribution. However, the difference in the rate of 

change resulted from changes in average local clustering of the different networks. Level 

of average local clustering in a network, which is measured by the clustering coefficient 

(Newman, 2003b) is a measure of a network’s transitivity. That is the clustering 

coefficient shows the probability that an individual in a specified network is a friend with 

the friends of his or her friends (Peres, 2014). Clustering coefficient or clustering, affects 

diffusion process by hindering it. That is, the redundancies generated by high clustering 

impede diffusion (Coupechoux & Lelarge, 2014; Peres, 2014). 

2. Contribution to knowledge on determining utility function using odds ratio. 

In order to use ABM successfully in this application, this dissertation provides a 

novel utility function using odds ratio, which is based on sound decision theory. The 

candidate used the odds ratio as the utility function. The application of odds ratio has 

been wide in decision applications, especially in the field of medicine for selecting 

options and making decision. In some cases, it assists patients decide whether to accept or 

waive painful or expensive treatments, and thus, enables health care providers to make 

treatment decisions (Mchugh, 2009). By the application of odds ratio as utility function in 



144 

 

 

 

this dissertation, other researchers can apply the same concept in defining utility 

functions for similar applications. 

3. Contribution to knowledge on  application of ABM, discrete choice theory and 

diffusion model  in mining sustainability  

This dissertation is the first attempt, to the best of the candidate’s knowledge to 

apply ABM, discrete choice theory and diffusion model in mining sustainability. 

Regardless of the examples of the application of ABM and discrete choice experiments, 

independently, to model consumer’s and individual’s preferences (Brock & Durlauf, 

2001; Gramming et al., 2005; McFadden, 1974; Zhang et al., 2011), the merger of the 

two approaches to model community acceptance of mining project has not been given 

any attention. In fact, ABM applications in resource exploitation entirely have not been 

supported by rigorous utility functions based on sound social science. This dissertation 

built an agent-based model that relied on discrete choice models to formulate agent utility 

functions. Instead of using the discrete choice model itself (which provides the utilities of 

different choice alternatives), this work uses the odds ratio. This allows the candidate to 

build a model for community acceptance, which is not a decision on multiple options but 

a binary decision (accept this option or not). Also, this work is the first exploration of the 

effect of social networks (characteristics such as homophily and degrees) on word-of-

mouth information and how that affects community acceptance and social license to 

operate. This work has provided a framework to study these issues in depth. Other 

researchers can build on this work to better document social networks and diffusion 

models to better study the dynamics of community acceptance. 
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4. Contribution to knowledge on  understanding the importance of information 

diffusion  in mining community engagement 

This dissertation in addition to other work such as Bahr (2015) shows the 

importance of information diffusion in mining community engagement.  Most of the 

existing approaches for mining community engagement have largely ignored the effect of 

information diffusion in the mining community engagement process. This work shows in 

a fundamental way that word-of-mouth information diffusion on a mine’s sustainability 

performance can be much more important in short-term changes in community 

acceptance than change in demographics. Also, this work shows that the extent of this 

effect depends on the social network and the number of early adopters among others. 

This dissertation will help give more understanding into how information diffusion can 

influence mining community engagement. Such an understanding is necessary to guide 

stakeholders and mine managers to strategically ensure more effective mining community 

engagement. 

 

6.3. RECOMMENDATIONS FOR FUTURE WORK 

The following recommendations for future research will improve the current 

study and enhance the knowledge of local community acceptance of mining over time 

and mining sustainability in general: 

1. Incorporating a documented mining community social network  

Social networks used in this dissertation are only considered to be 

representative of the mining community and have not been observed in the study 

community. There is no available data on the type of social network in a specific 

mining community in the literature although some researchers have qualitatively 
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discussed social networks in the mining communities. The information and 

estimates concerning the social network parameters (number of friends and close 

neighbor ratio) can reliably be obtained through a survey. For instance, during 

community engagement, individuals in the local mining community can be 

interviewed to document the people they are likely to discuss the relevant issue 

(relating to this mine) who are likely to affect their opinions of the mine. Further 

questions relating to the residence of those individuals would allow researchers to 

document the degree to which the type of homophily modeled in this study exists 

in the community. This will guide mine managers to accurately estimate the 

number of friends and close neighbor ratio, which will enhance the results of this 

study. 

2. ABM accounting for possibility of individuals’ different roles during information 

diffusion 

The ABM model in this study does not account for the possibility of different 

roles of individual such as active or passive, resistant or receptive, and innovators or 

followers during information diffusion. The assumption of the ABM is that all agents 

have similar roles in the information diffusion process. That is all agents are open to 

new information and can influence others. It was also assumed that agent innovation 

or spontaneous adoption is negligible, which means diffusion is primarily by word of 

mouth. Thus, the ABM is limited to situations where there is no significant 

innovation, and that other factors such as public education and advertising which may 

motivate changes in attitudes independent of social diffusion. Individuals’ different 

roles can be modeled by incorporating bidirectional word of mouth method of 

diffusion into the model. Vigorously developed ABM can account for the possibility 
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of different roles of individual during information diffusion. Also it can allow 

diffusion by other means including public education and advertising.  

3. Empirical validation of the ABM 

The ABM in this study has not been completely validated with empirical 

data from a mining community or communities. In addition, the model assumes 

that the “local community” can be defined and isolated. This suggests that the 

system is thus bounded to a particular community and there is no significant 

interaction between individuals in the community under study and in other 

communities that can impact perceptions. Validating the dynamic aspects of the 

ABM with empirical data is challenging. However, acquiring empirical data 

through community engagement, surveys and other processes can be useful in 

validation. As suggested in the literature, to fully validate an agent-based model 

with empirical data, researchers need to observe agents’ state at each discrete time 

step in a carefully documented scenario. Such a validation will promote more 

useful ABM. 

4. Assessing Changes in Public Acceptance Through Online Social Media for Mine 

Intelligence 

The information diffusion model described by the ABM could be extended 

to incorporate   urgent diffusion events.  Urgent diffusion events are events in which 

the spread of information across the population from   outside sources is faster than 

the spread of information across the population through that population’s own 

social network. Measuring the spread of information diffusion   was difficult when 

the population was not observable, but, with the development of social media, it is 

currently easy to measure trending topics and to monitor how information is 
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spreading throughout an entire network (Rand et al., 2015). Similarly, the ABM 

model in this research could model an online social media as the “mining 

community” in order to predict information diffusion across social media for mine 

intelligence. This would help mine managers and stakeholders to effectively and in 

a timely manner respond to developing mining community issues so as to promote 

community acceptance and social license to operate to ensure mining sustainability.
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