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ABSTRACT 

In the past, reliability is usually quantified with sufficient information available. 

This is not only time-consuming and cost-expensive, but also too late for occurred 

failures and losses. For solving this problem, the objective of this dissertation is to predict 

product reliability in early design stages with limited information. The current research of 

early reliability prediction is far from mature. Inspired by methodologies for the detail 

design stage, this research uses statistics-based and physics-based methodologies by 

providing general models with quantitative results, which could help design for reliability 

and decision making during the early design stage. New methodologies which 

accommodate component dependence, time dependence, and limited information are 

developed in this research to help early accurate reliability assessment. The component 

dependence is considered implicitly and automatically without knowing component 

design details by constructing a strength-stress interference model. The time-dependent 

reliability analysis is converted into its time-independent counterpart with the use of the 

extreme value of the system load by simulation. The effect of dependent interval 

distribution parameters estimated from limited point and interval samples are also 

considered to obtain more accurate system reliability. Optimization is used to obtain 

narrower system reliability bounds compared to those from the traditional method with 

independent component assumption or independent distribution parameter assumption. 

With new methodologies, it is possible to obtain narrower time-dependent system 

reliability bounds with limited information during early design stages by considering 

component dependence and distribution parameter dependence. Examples are provided to 

demonstrate the proposed methodologies. 
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SECTION 

1. INTRODUCTION 

 

1.1 BACKGROUND 

Reliability is the probability that a product performs its intended function under 

specified conditions during a specified period of time [1]. In the past, reliability analysis 

had been primarily regarded as a study of failures and failure time data of products, 

meaning a product’s reliability could be quantified only after observing field failure data 

and/or life testing results. This is often too late due to risks and losses that have already 

occurred. Nowadays, reliability is viewed as an important criterion of product 

performance. Research indicates that the major product performance and up to 70% of 

the product cost are determined in early design stages [2]. With the trend of design for 

reliability in modern industries, reliability analysis as early as in conceptual design stages 

is imperative.  

Progress has been made in reliability prediction during early stages, but many 

questions still need answers. In the conceptual design stage, reliability information is 

sparse or may not be available. Thus, it is hard to obtain quantitative reliability results. A 

series of methodologies in qualitative reliability prediction have been developed by 

Tumer’s and Stone’s groups based on function modeling [3-6]. Function modeling is an 

important stage for generating design concepts during conceptual design. The overall 

function is created first and is then decomposed into a number of sub-functions. Solutions 

are sought to realize the sub-functions. Design concepts are then generated from the 

solutions. The key to high reliability is to make sure that the design concepts generated 

have sufficient intrinsic reliability. Function modelling based methodologies, which 
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enable the early reliability analysis mainly in a qualitative way after the product functions 

are determined, are more or less subjective.  

Besides qualitative methods discussed above, relative reliability measures are also 

provided, whose objective is to rank design concepts with quantitative reliability indexes. 

A good attempt is the development of the Relative Reliability Risk Assessment (R3I) 

method [7]. In the conceptual design stage, though limit information is available, 

quantitative reliability prediction is usually more preferred. Traditional reliability 

approaches, such as Failure Modes and Effects Analysis (FMEA) and Fault Tree 

Analysis (FTA), often restrict the information to what is obtained from current product 

testing data, and they often result in unseasonable results, such as 1 or 0 for reliability. 

Bayesian approaches [8-11] are proposed to use in early design stages and perform better 

than the traditional methods because all the information available can be used, no matter 

if it is old or new, objective or subjective, or point or interval values. However, the 

application of Bayesian models is sensitive to the appropriate prior distributions.  

Due to the lack of computational models during the early design stage, physical-

based methods are rarely used. Recently, there was an attempt to extend one of the 

physical-based reliability strategies, the stress and strength interference theory, to the 

reliability analysis in conceptual design. The method is called the conceptual stress and 

conceptual strength interference theory (CSCSIT) [12].  The CSCSIT method is a good 

attempt to use physics-based methodologies in product early design stage; however, it did 

not consider the issues of component dependence and time dependence. 

From the state-of-the-art, we see that the research on early design reliability 

methodologies has progressed in spite of the challenges and is gaining more attention. 
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The methodologies, however, still have their limitations, and the research in reliability 

prediction during early design stages is far from mature. Even though the challenges are 

formidable, they undoubtedly provide great opportunities of exploring new ways to deal 

with reliability in conceptual design.  

1.2 RESEARCH OBJECTIVE 

The objective of this research is to predict product reliability in early design 

stages. With the predicted reliability, the research results can help engineers reduce the 

likelihood of failures to an acceptable level before the test of manufactured products or 

field deployment. To achieve this objective, four research tasks are performed.  

Research task 1 focuses on the survey of reliability prediction in early design 

stages. This research task intends to answer the questions, such as how far reliability 

methodologies for early conceptual design have been progressed and what is needed for 

further research? This research task results in Paper 1. 

Research task 2 concentrates on the consideration of component dependence in 

early reliability prediction. The component dependence is ignored in existing studies and 

practices. In this task, physics-based reliability methodologies are used. This is a new 

development because physics-based (structural) reliability methodologies have been 

rarely applied in conceptual design before, they are widely used in only parameter or 

detail design stage where computational models are available. This research task 

produces Paper 2 [13]. 

Research task 3 focuses on the accommodation of time dependent issue in early 

reliability design stages.  Research task 2 is for time invariant reliability problems. It is 

extended to time variant problems in research task 3. The goal of this task is to evaluate 
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the time-dependent system reliability for a given period of time in early design stages.  

This research task produces Paper 3 [14]. 

Research task 4 concentrates on the effect of dependent interval distribution 

parameters on reliability prediction. In this task, the distribution parameters are estimated 

from scarce and point-interval-mixed samples. The distribution parameters are dependent 

since they are estimated from the same set of data. The dependent relationship leads to 

more accurate reliability prediction than the traditional independent assumption. This 

research task produces Paper 4 [15]. 

The outcomes of above research tasks are expected to enable engineers to 

understand how dependence affects the reliability prediction in early design stages and 

how to predict system reliability efficiently with good accuracy. With the accurate system 

reliability prediction in early design stages, this dissertation will enhance system designs 

in decision making with respect to system configurations, optimization, lifecycle cost, 

maintenance, and warranty.   

1.3 ORGANIZATION OF DISSERTATION 

As discussed in Section 1.2, the four tasks in this study have produced four 

papers, which constitute this dissertation. 

The first paper is entitled “Reliability Methodologies for Conceptual Design: 

What is Done; What is Needed?” Rather than reviewing the entire body of the literature 

on reliability methodologies for conceptual design, this work focuses on assessing the 

feasibility of predicting reliability in the early design stage. In addition to providing the 

current state-of-the-art of the methodologies, this survey also shows that early reliability 

consideration provides great opportunities for new research in conceptual design, 
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including accounting for dependent component failures in system reliability prediction, 

the use of physics-based reliability approaches, and information aggregation for 

reliability quantification. 

The second paper is entitled “System Reliability Analysis with Dependent 

Component Failures during Early Design Stage – A Feasibility Study”. This work is 

concerned with the reliability prediction of a new product whose components are 

independently designed, tested, and manufactured by different suppliers. A system 

reliability method is developed to predict the reliability of the new product in the early 

design stage using the component reliabilities provided by component suppliers. The 

method is based on the strength-stress interference model that takes the dependence 

between components into consideration, thereby eliminating the assumption of 

independent component failures. As a result, the predicted system reliability bounds are 

much narrower than those from the assumption of independent component failures. 

The third paper is entitled “Narrower System Reliability Bounds with Incomplete 

Component Information and Stochastic Process Loading”, which is the extension of time 

invariant problems in Paper 2 to time-dependent system reliability analysis. The new 

method can be applied to more common engineering applications because it can answer 

the question about the system reliability with respect to time; for example, what is the 

probability that a system can still work without failure after five years? A general model 

is developed to implicitly and automatically incorporate component dependence. With 

this general model, system designers do not need to know component resistance 

distributions (both distribution types and parameters), component failure modes, and 

other detail information such as dimensions. Simulation is used to obtain the extreme 



 

 

6 

value of the system stochastic process load for a given period of time, and optimization 

models are established to estimate the system reliability interval. The width of the system 

reliability interval is then reduced significantly.   

The fourth paper is entitled “Effect of Dependent Interval Distribution Parameters 

on Reliability Prediction”. This study investigates the effect of the dependence of 

distribution parameters on the accuracy of reliability analysis results. The major approach 

is numerical simulation and optimization. This study indicates that the independent 

distribution parameter assumption makes the estimated reliability bounds wider than the 

true bounds due to interval samples. The reason is that the actual combination of the 

distribution parameters may not include the entire box-type domain assumed by the 

independent interval parameter assumption. The results of this study not only reveal the 

cause of the inaccuracy of the independent distribution parameter assumption, but also 

demonstrate a need of developing new reliability methods to accommodate dependent 

distribution parameters. 

 

 

 



 

 

7 

PAPER 

I. RELIABILITY METHODOLOGIES FOR CONCEPTUAL DESIGN: WHAT IS 

DONE; WHAT IS NEEDED? 

 

 

Yao Cheng, Xiaoping Du 

Department of Mechanical and Aerospace Engineering 

Missouri University of Science and Technology 

 

ABSTRACT 

Reliability methodologies have been used for a long time in product design, 

manufacturing, and operation, but how far reliability methodologies for early conceptual 

design have progressed and what is needed for further research? This paper intends to 

answer these questions. Reliability methodologies for conceptual design are critical 

because product reliability is primarily determined in this design stage even though 

sufficient information is usually lacking. Major performances and vital cost of a product 

are also determined in the early design stage. The importance and challenges of reliability 

for conceptual design are therefore emphasized in this paper. Rather than reviewing the 

entire body of the literature on reliability methodologies for conceptual design, this work 

focuses on assessing the feasibility of predicting reliability in the early design stage. The 

assessment is summarized in the following aspects for each methodology: the objective, 

input (information required), output, assumptions, tools, scope, and nature (quantitative 

or qualitative). In addition to providing the current state-of-the-art of the methodologies, 

this survey also shows that early reliability consideration provides great opportunities for 

new research directions in the conceptual design, including accounting for dependent 
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component failures and time-dependent issues in system reliability prediction, the use of 

physics-based reliability approaches, and information aggregation for reliability 

quantification. 
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1. INTRODUCTION 

Reliability is the ability of a system to perform its intended function without 

failures, and it is usually quantified by the probability of such ability. The system in the 

above definition is in a general sense so that the definition of reliability is also applicable 

to a variety products, assemblies, subsystems, equipment, components, services, and 

processes. There are two major application areas of reliability methodologies. The first is 

reliability analysis [1, 2] whose task is to predict and evaluate the reliability. Potential 

failure modes and their causes are also identified during the reliability analysis. The 

second is reliability-based design during which optimal design concepts and design 

variables are determined so that reliability requirements are met with a reduced lifecycle 

cost [3, 4]. Overall, the focus of reliability methodologies is to eliminate failures and/or 

reduce the likelihood of failures to an acceptable level. 

In the past, reliability analysis was mostly regarded as a passive term since it 

could be quantified only when field failure data and/or life testing data become available. 

With the advancement of design methodologies and simulation techniques, reliability is 

now addressed more upfront in the design stages, even as early as in the conceptual 

design stage [5-7]. Performing reliability analysis upfront will not only ensure high 

reliability, robustness, safety and availability, but also reduce product lifecycle cost [8]. It 

has been well recognized that reliability can be built into products in the design stage and 

can be maintained throughout production and operation.  

Predicting reliability in early design stages, however, is a challenging task due to 

the following reasons: 
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(1) Reliability data are scarce. The data include those of failure modes, time to 

failure, product downtime, and so on. In the early design stage, data may not be available 

or are limited.  

(2) The relationship between components and the system is unclear. As a 

result, it is difficult to predict the system level reliability even if the information about the 

component level reliability is available. 

(3) Product functions delivered by components and their interfaces could 

suffer from common-cause failures, shared excessive loading, dependent strength 

deterioration, and so on. This requires considering dependencies between functions, 

failure modes, components, and subsystems. 

(4) Limited reliability data may come from various sources with different 

formats. For examples, reliability information of new products can be collected from their 

parent products; expert opinions could be solicited by designers; information may be 

obtained from test results of similar components or prototypes. All relevant information 

needs to be aggregated and processed to make reliability prediction at each milestone of 

the design project. 

The research on early design reliability methodologies has progressed in spite of 

the challenges and is gaining more attention. The methodologies, however, are far from 

mature compared to those for detail design (or parameter design). The methodologies are 

quite different with respect to their scopes, assumptions, information required, and 

outcomes. The purpose of this review is to investigate how far those methodologies have 

evolved and provide useful insight that can help better understand and choose the 

methodologies for specific applications. We also provide suggestions about the future 
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research directions for early design reliability methodologies. The contributions of this 

work are multifold. (1) As discusses previously, it summarizes the reliability 

methodologies for conceptual design by treating them as black-boxes so that the 

methodologies could be better understood. (2) New research directions beyond traditional 

reliability engineering are given with the focus of physics-based methodologies. (3) 

Insight from the aspect of mechanical engineering is offered with respect to both what 

has been done and what is needed for reliability consideration in conceptual design. 

The rest of this paper is organized as follows. Section 2 discusses the role of 

reliability analysis in conceptual design and then examines and reviews existing 

reliability methodologies in conceptual design. Section 3 reviews efforts made in 

reliability related methodologies in conceptual design, including sensitivity analysis, 

uncertainty quantification, and risk analysis. In Section 4 a methodology summary is 

provided, and future research is heighted in Section 5. Conclusions are made in the last 

section.  
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2. RELIABILITY METHODOLOGIES IN CONCEPTUAL DESIGN 

A design process is usually divided into four stages: problem definition, 

conceptual design, embodiment design, and detail design. We herein focus on conceptual 

design, during which design concepts are generated and selected. In this section we 

review reliability methodologies that can be used in this design stage.  

2.1 RELIABILITY CONSIDERATION IN CONCEPTUAL DESIGN 

In the early design stage, in addition to setting up reliability requirements and 

target [9], other major reliability-related tasks are also conducted, including the 

following: 

 Identify potential failure modes, their causes, and their consequences. 

 Estimate the likelihood of the occurrence of failure modes.  

 Generate design concepts whose failures could be eliminated or their 

likelihood could be reduced. 

 Evaluate the system reliability or the product-level reliability for each design 

concept. 

 Select the best design concepts with respect to reliability. 

Since reliability is related to risk and is also a major driving factor of lifecycle 

cost, the above activities are usually accompanied by risk analysis [10] and lifecycle cost 

analysis [11]. The current reliability methodologies handle one or more these tasks as will 

be reviewed next.  
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2.2 METHODOLOGIES IN RELIABILITY ENGINEERING 

Many methodologies in reliability engineering are commonly used in the 

conceptual design stage. They include Failure Modes and Effects Analysis (FMEA) [12], 

Fault Tree Analysis (FTA) [13], Event Tree Analysis (ETA) [14], Root Cause Analysis 

(RCA) [15], and Reliability Block Diagrams (RDB) [16]. We briefly review these 

methodologies with a focus on the new development for FMEA. 

FMEA is used to identify and prioritize potential failures. Its three major tasks are 

shown in Table 1. The prioritization of failure modes is determined through the risk 

priority number (RPN), which is determined by the following three factors: failure 

occurrence (O), effect severity (S), and detection difficulty (D), all evaluated with a 10-

point scale. Eq. (1) shows the RPN. The higher is the RPN of a failure mode, the greater 

is the risk. 

 RPN O S D    (1) 

 

Table 1 Three FMEA tasks 

Task Result 

Identify failures Failure modes, causes, and effects 

Prioritize failures RPN and the most risky failure modes 

Reduce risks Effective measures to reduce risks 

 

FMEA has been applied widely in industry [17, 18]. It has, however, several 

shortcomings [19]. The relative importance among O, S, and D is not considered; their 

different combinations may produce exactly the same RPN, but their hidden risk 

implications may be totally different; and the three factors are difficult to be precisely 

evaluated. Besides, FMEA often misses key failures [20]; FMEA is performed too late to 
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affect key decisions [21]; the FMEA process is also tedious [22]; the RPN may not be a 

good measure of risk [23, 24]. Numerous modifications of FMEA have therefore been 

made. To overcome the difficulties of assigning risk factors, Wang et al. [25] proposed 

fuzzy risk priority numbers (FRPNs). Chin et al. [26] used the data envelopment analysis 

(DEA) to determine the risk priorities of failure modes. In order to resolve the difficulty 

of incorporating different types of information into the fuzzy RPN, Chin et al. [27] 

employed a multiple attribute decision analysis with the group-based evidential reasoning 

(ER) approach. Other fuzzy theory based methods are also reported in [28-30]. While 

they add quite flexibility to FMEA, fuzzy theory based methods have some limitations 

due to the use of subjective factors. 

One of the remarkable improvements is the scenario-based FMEA [31-33], where 

a failure scenario is an undesired cause-effect chain of events as shown in Fig. 1 [31]. 

The expected cost CE  is the product of probability of an event (failure effect) p  and the 

associated failure cost C  for a simple failure event; namely, CE pC . For a failure 

scenario flow with multiple failure effect events iF  ( 1,2, ,i n ), the expected cost of 

the scenario is given by 

 1 1

2
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   (2) 

where 1( )i ip F F   is the conditional probability of effect iF  given that effect 1iF   has 

occurred, and C  is the cost of the failure scenario. If there are m  failure scenarios, the 

total expected cost is given by 
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 Figure 1 Failure scenario [31] 

 

As discussed above, the failure occurrence (O) and effect severity (S) in the 

original FMEA are replaced by the probability and cost, respectively. The detection 

difficulty (D) can also be considered in the scenario-based FMEA using a probability 

measure and can be included in Eq. (2) [31]. By using probabilities and costs, the 

scenario-based FMEA provides a consistent basis for risk analysis and decision making 

with more accurate risk evaluations. Bayesian methods have also been introduced into 

FMEA (more Bayesian approaches will be discussed in the next subsection). For example, 

Lee [34] combined Bayesian belief network theory with traditional FMEA and proposed 

the BN-FMEA method, which models the system failure cause and effect relationships 

and their uncertain consequences with better precision and consistency. Other FMEA 

approaches have also been developed, including a simulation method for considering 

possible combinations of failures automatically [35], an FMEA for lean systems [36], and 

the assessment of the impact of multiple failure modes [37].  

The fault tree analysis (FTA) [38] is another important tool for system reliability. 

It can be applied for both simple and complex engineering systems; and existing systems 

and new systems [39, 40]. A tree is constructed downwards, dissecting the system for 

further detail until the primary events leading to the top event are known. Lee et al. [41] 

reviewed FTA-related articles published before 1985. Shalev and Tiran [39] proposed a 

practical operative tool called condition-based fault tree analysis (CBFTA) to improve 
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system reliability. Dynamic FTA (DFTA) [42] is a notable extension to FTA by defining 

additional gates called dynamic gates to model complex interactions. Some researchers 

have recently used the fuzzy set theory and evidence theory in FTA analysis [43] to 

reduce the error from the inaccuracy of primary event data.  

A Reliability Block Diagram (RBD) is an inductive methodology to perform 

system reliability analysis by using a graphical representation [44]. The system structure 

is usually in series or parallel or their combination. Examples of the extension of the 

RBD method include the RBD method for repairable multi-state systems [45] and the 

RBD with general gates [46].  

The above traditional reliability methodologies have been widely used in 

reliability engineering. They are general methods, and most of them can be used in all 

stages of product design and development, but they have more or less limitations in the 

application of reliability prediction in the early design stage due to subjective factors 

involved. There are other methodologies recently proposed that suit the need of 

conceptual design. Some of them are reviewed in the next subsection. 

2.3 BAYESIAN METHODOLOGIES 

In the conceptual design stage, reliability information is sparse or may not be 

available. Traditional statistical approaches restrict the information to what is obtained 

from current product testing data [47], and they often result in unseasonable results, such 

as 1 or 0 for reliability. The information may also come from different sources with 

different formats, for example, from previous similar products and components, expert 

opinions, experiments, limited physical testing, and simulations. For these cases, many 

Bayesian approaches perform better than the traditional methods because all the 
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information available can be used, no matter if it is old or new, objective or subjective, or 

point or interval values.   

The Bayes’ Theorem is expressed by 

 
( | ) ( )

( | )
( | ) ( )

f y
y

f y d

  
 

   



 (4) 

where   is a parameter vector, y  is a data vector, ( )   is a prior probability density 

function, and ( | )f y   is the probability density function of the data, referred to as the 

likelihood when viewed as a function of the parameter vector given the data. The result of 

integrating the data with prior information in Eq. (4) is the joint posterior distribution  

( | y)  . Eq. (4) provides significant flexibility for various types of input information 

mentioned above [48]. 

Data from previous comparable products under similar conditions of use may be 

available. As indicated in [47], the application of the Bayesian hierarchical models is 

reported for the prediction of failure probabilities during early flights of new lunch 

vehicles, for which sparse or no system level failure data are available. But the “prior” 

information on comparable products can be used to estimate the reliability of new 

products. The major approach of doing so is the use of the hierarchical model, where the 

probability density function of a new space vehicle is based on the prior known parameter 

from comparable products.   

Bayesian methods are also able to integrate lifetime data collected at component, 

subsystem, and system levels with prior information at any level. A typical Bayesian 

model for assessing the reliability of such multicomponent systems is discussed in [49]. 

The model allows pooling of information from similar components and expert opinions. 
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It can also handle censored data. Several sources of information relevant to estimating 

system reliability are assumed available, including (1) lifetime data collected at the 

individual component level, (2) lifetime data collected at the system or subsystem level, 

(3) expert opinions regarding the reliability of components and subsystems of the current 

product, and (4) expert opinions regarding the distributions of the lifetimes of similar 

components. The relationship between the state of the system and those of components is 

known, and it could be expressed as a series, parallel, or the combination system. Under 

the assumption that all the component lifetimes are independent, the distribution of the 

system lifetime is analytically available given the distributions of component lifetimes. 

The method follows a four-step procedure. 

 Step 1: Determine the prior distributions of the distribution parameters of the 

component distributions. It is the ( )   term in Eq. (4).  

 Step 2: Use the component and system lifetime data, which is y  in Eq. (4), to 

formulate the likelihood (y | ) ( )f    . In this step, both the distributions of 

component and system lifetimes are incorporated, and the system lifetime distribution 

is expressed in terms of the distributions of component lifetimes. 

 Step 3: Use Eq. (4) to obtain the posterior distribution of the distribution parameters 

of component lifetimes. 

 Step 4: Use Markov chain Monte Carlo (MCMC) to solve Eq. (4) and then obtain the 

system reliability. 

Although the methodology is developed for general reliability analysis, it could be 

used in the early design stage given its ability of incorporating diverse sources of 

information at different levels about the system. 
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There are variants of Bayesian reliability methodologies with different scopes, 

assumptions, and implementations [50]. For example, the Bayesian model updating 

approach [51] assesses the reliability of a product throughout all its life cycle stages. For 

the early design stage, historical data, CAE-induced knowledge, simulation results, and 

expert opinions are used to formulate a Bayesian model for the reliability index. The 

model is built in such a way that it can be easily updated when more information is 

available as the design evolves. If system test data and component data are available, the 

two kinds of data can be integrated for the system reliability assessment with the 

Bayesian approach in [52]. A similar work is reported in [53] where three sources of 

information could be handled, including warranty data that are collected for the product’s 

components that have been released to the market, raw data from test or field, and 

engineering judgment of the reliability impact due to the planned design changes. 

The Bayesian reliability methods have been further expanded with the Bayesian 

Network (BN). BN is a probabilistic graphical model that represents a set of random 

variables and their conditional dependencies through a directed acyclic graph (DAG). 

The BN methodology has become a popular approach applied to assess system reliability 

[50, 54] of nuclear power systems, military vehicles, and sensors. Martz et al. [55] and 

Martz and Waller [56] used static Bayesian procedure to estimate the reliability of a 

complex system. Weber and Jouffe [57, 58] developed dynamic Bayesian networks 

(DBN) to dynamically model and control the complex manufacturing processes. Hybrid 

BN is developed to assess reliability aiming for both discrete and continuous variables for 

real world applications. Langseth et al. [59] summarized the research on the inference of 

hybrid BN. Hamada et al. [60, 61] presented a Bayesian approach which not only 
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simultaneously combines basic events and independent higher-level failure rate, but also 

automatically propagates the highest-level data to lower levels in the fault tree. 

One of the key factors of using the Bayesian model is to select appropriate prior 

distributions. Many references are available about choosing prior distributions, including 

[62-64].  

2.4 USE OF HERITAGE DATA 

As discussed above, Bayesian methods could incorporate various kinds of data, 

and there are other specific approaches that could directly use the data from previous 

products for the reliability analysis of a new product. The parenting process [65] is such 

an approach. The overall procedure of the method is depicted in Fig. 2.   

For each of the failure causes, the method starts from searching for the failure rate 

  from the warranty database of the previous products. The failure times are assumed to 

follow lognormal distributions. Then expert judgment is solicited for the adjustment of 

the failure rate of the current product with a parenting factor  , which is also assumed to 

follow a lognormal distribution. Then the failure rate of the new product is adjusted by 

new  . A relationship matrix between a failure mode and its possible failure causes is 

also established. From the matrix, the time distribution of a failure mode is obtained by 

using the failure rates of all the failure causes,
,new i , 1,2, ,i n  , where n  is the number 

of causes for the failure mode. This method creates a direct link for the reliability 

between a new product and its parents.  
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Figure 2 Parenting process [65]  

 

2.5 RELIABILITY METHODS FOR DESIGN CONCEPT EVALUATION 

The reliability predictions can be used to compare design concepts with respect to 

reliability. In many cases, however, it is impossible to obtain quantitative reliability 

predictions, but the design concepts have to be evaluated, in order to select the best 

design concepts for the later design stages. For this case, it is desirable to identify relative 

reliability measures so that the design concepts can be ranked without quantitative 

reliability indexes. A good attempt is the development of the Relative Reliability Risk 

Assessment (R3I) method [66]. It is used with sparse data during conceptual design even 

though no quantitative data are available for reliability. The steps of R3I method are 

shown in Fig. 3. 

For each design concept, the method starts from the functional modeling where 

the complete functions of the product with their input-output flows [67, 68] are created. 
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Then the Analytic Hierarchy Process (AHP) [69] is used to obtain the priority measures 

of functions of the design concept with respect to evaluation criteria (attributes). The 

advantage of this method [66] is that the weights of the attributes are not assigned 

subjectively; instead, they are evaluated by the entropy method. With both of the priority 

measures and weights available, the R3I index of the design concept is computed. This 

process is repeated for all the design concepts, and finally the design concepts are ranked 

according to their R3I indexes. It is noted that reliability could be one of the attributes in 

the evaluation process, but it may not be necessary. 

 

 

Figure 3 Steps of the R3I method [66]  

 

2.6 FUNCTION MODELING METHODOLOGIES 

Function modeling is an important stage for generating design concepts during 

conceptual design. The overall function is created first and is then decomposed into a 
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number of sub-functions. Solutions are sought to realize the sub-functions. Design 

concepts are then generated from the solutions. The key to high reliability is to make sure 

that the design concepts generated have sufficient intrinsic reliability. Stone and Wood 

[67] introduced a functional basis in conceptual design as a design language to 

comprehensively and consistently describe product functions in a function-flow format, 

and this makes the design in a systematic and repeatable manner. By reconciling and 

evolving previous efforts, this functional basis is served as the evolved definitions of 

functional modeling and the taxonomy of engineering design at many scales [70].     

A series of methodologies in this area have been developed by Tumer’s and 

Stone’s groups. Their Function-Failure Mode Method [71] provides a matrix-based 

analytical approach to making design decisions in order to avoid potential failures based 

on the link between functionality and failure modes of components. An elemental 

function-failure design method (EFDM) [72] was proposed specifically for use in the 

conceptual design stage, and the advantages of EFDM over traditional FMEA were 

demonstrated using the Bell 206 rotorcraft data. The latter-developed Function Failure 

Design Methodology (FFDM) [73, 74] fully allows the FMEA-style failure analysis to be 

used in the conceptual design. The steps shown in Fig. 4 include: (1) Generate a black-

box model to best describe the overall function. (2) Use the function flow of the overall 

function to identify the most common failure modes for that function. (3) Derive a 

complete functional model that includes all sub-functions for the overall function. Failure 

modes identified in the former step are addressed here. If needed, additional sub-

functions are added to mitigate the effects of major failure modes. (4) Generate solutions 

to sub-functions and the overall solutions (design concepts) for the overall function. (5) 
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Evaluate the design concepts with respect to reliability. During the implementation, the 

function-failure analysis and the associated knowledge base [67, 70, 71, 75] are called.  

 

Figure 4 The FFDM procedure [73]  

 

The FFDM is then extended to the Functional Failure Rate Design Method 

(FFRDM) [76] that can effectively provide recommendations to mitigate failure modes 

with high likelihood of occurrence. A more robust knowledge base and repository data at 

Oregon State University are used by FFRDM. More quantitative ways are provided to 

deal with the same reliability issues; for example, O’Halloran et al. calculated function-

flow failure rates (FFFR) using component failure rates [77] and proposed a hierarchical 

Bayesian model with frequency weighting method [78] toward predicting reliability in 

the early design, especially during the functional modeling and concept generation. Based 
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on these achievements, they presented the Early Design Reliability Prediction Method 

(EDRPM) to facilitate decision making in the early design using quantitative reliability 

results [79]. The steps of the methodology are as follows: (1) Set the reliability goal. (2) 

Gather component failure rate evidence. (3) Investigate function level distributions. (4) 

Component elimination using function and component level graphs. (5) Determine final 

design alternatives.  

The functional-failure identification and propagation (FFIP) framework has also 

been introduced by Tumer’s research group for designing reliable complex systems [80, 

81].The architecture of FFIP is shown in Fig. 5. The three major modules in the FFIP are 

the graphical system model, the behavioural simulation, and the functional-failure logic 

(FFL) reasoner. The FFIP graph-based modelling approach has several advantages. (1) 

Capture function-configuration-behaviour architecture of a system at an abstract level. (2) 

Facilitate the assessment of potential functional failures. And (3) generate fault 

propagation paths through the FFL reasoner, which translates the dynamics of the system 

into functional failure identifiers.  

Both the FFDM and FFIP methods help deal with reliability in the conceptual 

design. The focus of the latter method is slightly different, and it is used to estimate 

potential faults in a qualitative way. The combination of function, structure, and behavior 

modeling is used to estimate potential faults and their propagation paths at a highly 

abstract system concept level before any potentially high-cost design commitments are 

made. Flow State Logic (FSL) method was also proposed to consider energy, material, 

and signal (EMS) flow failure propagation in addition to the original failure analysis in 

FFIP [82]. FFIP can be applied as a reliability-based design tool in the application of the 
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development of a prognostic and health management (PHM) system in the early design 

stage [83]. A related design stage failure identification framework has also been 

developed based the function-based failure analysis and dimensional analysis. The 

framework allows for more detailed behavioral models derived from information 

available at the configuration level [84]. The FFIP method also has been improved by its 

extension to continuous flow levels from former discrete ones [85]. 

 

 

Figure 5 Architecture of the FFIP framework [80]  

 

In sum, function modelling methodologies are based on function-flow format. 

They provide a functional basis with a more consistent classification scheme and enable 

the reliability/failure/risk analysis in the early design stage mainly in a qualitative way 

after the product functions are determined.   
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2.7 PHYSICS-BASED RELIABILITY METHODOLOGIES 

Many of the methodologies reviewed above are statistics based; namely, they 

depend on statistical data of failure times either from testing or from field. On the 

contrary, physics-based reliability methodologies [86, 87] predict reliability based on 

computational models derived from physics. They are widely used in the detail design 

stage where computational models (called limit-state functions [88, 89]) are available for 

checking the state of a component or a system. For example, if a limit-state function is 

defined as the difference between maximum stress and material strength, then a positive 

limit-state function indicates a failure because the stress is greater than the strength.  

Given the distributions of the input variables, the reliability, which is the 

probability that the limit-state function is negative, can be computed either analytically or 

numerically. Due to the lack of computational models during the early design stage, 

physical-based methods are rarely used. Recently, however, there was an attempt 

[90][90] to extend one of the physical-based reliability strategies, the stress and strength 

interference theory, to the reliability analysis in conceptual design. The method is called 

the conceptual stress and conceptual strength interference theory (CSCSIT) [90]. 

According to the stress and strength interference theory, reliability R is calculated 

by 

 Pr(strength stress)R    (5) 

where the distribution of the stress can be estimated from the computational model of the 

stress with respect to input variables (such as those of dimensions and loadings) whose 

distributions are available. The CSCSIT method extends the above traditional theory into 

conceptual stress and conceptual strength interference theory that parametrizes the 
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conceptual design space by introducing reliability related parameters into functional 

design. Based on CSCSIT, a practical analysis framework is proposed to support 

functional design for reliability. A conceptual stress Cste  is assumed to be a linear 

combination of the EMS (energy-material-signal) parameters, and a conceptual strength 

Cstn  is defined as the product of a conceptual safety factor and a percentile value of the 

conceptual stress. Then the reliability of the i-th sub-function is computed by Eq. (6). 

 Pr( )i i iR Cstn Cste    (6) 

And the reliability of the product is then given by 

 11 2 2Pr( )R Cstn Cste Cstn Cste     (7) 

With the given function model of a design concept, its associated EMS flows, the 

distributions of the EMS parameters, and safety factors, the method estimates the 

reliability using Eq. (7). As a result, the reliability of a design concept can be predicted. 

Furthermore, all the design concepts can be compared with their estimated reliability.  
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3. OTHER METHODOLOGIES 

In this section, we give several examples about other methodologies that could be 

used for conceptual design. One example is the sensitivity analysis, which explores how 

sensitive the product reliability would be with respect to specific data sources, expert 

opinions, failure data of a particular component, and so on. Knowing the sensitivity of 

information sources, one is able to identify the most important information sources. Then 

resources can be optimally allocated to collect more information from the important 

sources. There are multiple methods available for sensitivity analysis, such as the local 

derivative, normalized derivative, Monte Carlo regression, variance-based, and simplified 

model fit methods. To reconcile various approaches to performing a sensitivity analysis 

in conceptual design, Hutcheson and McAdams [91] presented a local sensitivity analysis 

used for screening a large number of concepts during conceptual design and a global 

sensitivity analysis performed during the later stages of design.   

The other example is the uncertainty quantification in the early design stage. This 

is a broader topic. Not only probabilistic representations of uncertainty can be used, but 

non-probabilistic representations of uncertainty can also be used, especially for sparse 

information. The concept of the multi-stage uncertainty quantification method [92], 

which was originally developed for model validation, for example, could be modified for 

uncertainty quantification in conceptual design. Hutcheson et al. [93] proposed a 

function-based method for addressing uncertainty of engineering systems in the early 

design stage. By performing function-based sensitivity analysis from previous designs 

and storing the results, significant knowledge about the sensitivity to design variable 

uncertainty can be retained and reused. In order to reduce uncertainty due to the lack of 
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knowledge during the design process, Barrientos et al. [94] developed a methodology to 

model design evolution in concurrent design teams and to help reduce the effects of 

uncertainty and risk. 

The last example is risk related methodologies. Since risk is the product of cost 

and the probability of failure, and the probability of failure is complementary to 

reliability, a risk assessment with less mature data during early design phase is needed. 

The current state of the art in quantitative risk analysis is probabilistic risk analysis [95]. 

The FFDM method discussed previously can also be used for risk analysis [71, 73]. 

Based on functional failure data, Mehr and Tumer [96] presented a risk management 

method named RUBIC-Design. The RUBIC-Design is a numerical and real-time method, 

which is capable for recognizing the major risk factors and their propagation during the 

early phases of concurrent and distributed engineering design. The risk in early design 

(RED) method [97, 98] was proposed based on functions rather than physical 

components in order to perform risk assessments in the conceptual design phase of a 

product. RED produces specific detailed preliminary risk assessments based on 

catalogued historical failure data. A functional failure reasoning methodology [99] was 

proposed for risk analysis based on the analysis of functional failures and their impact on 

the overall system functionality during the early design stage. An integrated multi-

domain functional failure and propagation analysis approach [100] was presented to help 

designers understand the interplay between components and thus evaluate the design in 

an integrated manner in the early design stage.  
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4. METHODOLOGIES SUMMARY 

We have reviewed a number of reliability methodologies for conceptual design. 

Even though the review is not exhaustive, it indeed demonstrates how the methodologies 

could help predict the reliability of design concepts and how they help evaluate design 

concepts with respect to reliability. To better understand, compare, and select the 

methodologies, we provide a summary of the methodologies in this section. We then 

point out several important areas that are worthwhile to devote efforts in the future 

research.  

The methodologies reviewed above are quite different in many aspects. To better 

understand them, and more importantly, to select appropriate methodologies for specific 

applications, we summarize the methodologies by tabulating them in a consistent way. 

The summary is given in Table 2 in the appendix. Each row of the table represents one 

methodology, and its columns include the objective, the input required, the output 

produced, the assumptions, tools and scope of the methodology, and the nature 

(quantitative or qualitative) of the methodology. For the ease of presentation, we treat 

each methodology as a black box as shown in Fig. 6, and it therefore has its input (the 

information needed by the methodology) and output (the outcome of the methodology). 

The input may include the following items: product overall function and sub-functions, 

function flows, system configurations, historical data, expert opinions, distributions of 

relevant data, and others. The outcome may include the following items: product 

reliability, relative product reliability, reliability indexes, risk of potential failure modes, 

and others. Going inside the black box, we can also find the details about each of the 
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methodologies, such as assumptions, major approaches or tools, and the nature of the 

methodology. 

 

 

Figure 6 Black box of methodology 
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5. FUTURE RESEARCH DIRECTIONS 

As discussed previously, quantifying reliability is a challenging task in conceptual 

design; the methodologies are not as mature as those for detail design, such as structural 

reliability analysis and reliability-based design optimization (RBDO). Even though the 

challenges are formidable, they undoubtedly provide great opportunities of exploring new 

ways to deal with reliability in conceptual design. Several thoughts of the future 

reliability research in this area are discussed in the following subsections. 

5.1 NEW SYSTEM RELIABILITY PREDICTION METHODS FOR DEPENDENT 

COMPONENTS 

Predicting the reliability of a new product during conceptual design is essentially 

performing a system reliability analysis because the product is typically consists of a 

number of components. Knowing all the component reliabilities is not sufficient to 

predict the system reliability since the states of the components may be statistically 

dependent. For example, the transmission system consists of 24 major mechanical 

components, whose states are dependent because of shared stochastic loading and 

operation environment. Even though the component suppliers could provide the 

individual component reliabilities, the designers of the system could not accurately 

estimate the system reliability unless component failures are assumed independent. Such 

an assumption is used in many current system reliability methodologies.  

The independent assumption may product large errors. For the above transmission 

system, which is series system, if all the components had a relatively high reliability of 

0.9999R  , then the system reliability would be 240.9999 99760.SR   . This low 

product reliability could make the system designers eliminate the design concept. In 
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reality, such a transmission system is commonly used, and its reliability is much higher 

than the calculated reliability. This example indicates that the independent component 

assumption may lead to erroneous decisions in design concept selection. 

One solution is using system reliability bounds. The well-known equation for a 

series system is 

 1 12 3 2 3min{ , , , }SR R R R R R R    (8) 

where iR  is the reliability of the i-th component, and SR  is the system reliability. For the 

above transmission system, the system reliability bounds are given by 

0.9976 0.9999SR  , which covers the true system reliability. But the interval is too 

wide and may make decision making difficult for concept selection.  

New system reliability methodologies are therefore needed for conceptual design. 

There are several potential ways to address this problem. First, the width of the system 

reliability bounds in Eq. (8) could be narrowed. Reducing the width of system reliability 

bounds requires some information about dependence between components states. New 

methodologies should accommodate all the information available to the designers of the 

product, such as the stochastic load acting on the new product, strength-stress 

interference of a component, and the range of a possible factor of safety that is commonly 

used in the design of a component. The use of such information will promote the 

consideration of dependent components. Then optimization could be used to search for 

the maximum and minimum system reliabilities, and the two extreme values should form 

a narrower system reliability bound given that more information is used. 

The other possible way is to obtain a more accurate point estimate of system 

reliability, instead of a bound. Doing so requires knowing details of component design 
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from suppliers, and some information may be proprietary and may therefore not be 

available to the designers of the new product. New methodologies for component and 

system reliability analyses should be developed for both component designers and system 

designers. From the perspective from component designers, rather than providing single-

valued component reliability to the designers of a new product, more information could 

be supplied. The additional information should be adequate so that the designers of the 

new product could use it to accurately predict the system reliability; and the proprietary 

details of the component, such as key parameters of the component, material properties, 

and manufacturing tolerances, should also be protected from being revealed. On the other 

hand, from the perspective of the designers of the new product, they could use the 

additional component reliability information to rebuild the limit-state functions of all the 

components without knowing all the details of the component designs. As a result, the 

dependence of component states could be considered, and thus an accurate system 

reliability prediction can be obtained. 

5.2 THE USE OF PHYSICS-BASED RELIABILITY METHODOLOGIES 

As discussed in Sec. 2.7, physics-based (structural) reliability methodologies have 

been rarely applied in conceptual design, but they are widely used in the parameter or 

detail design stage where computational models are available. The computational models, 

also called limit-state functions, are derived from physics theories and can be readily used 

to predict the working or failure states of components and systems, thereby the 

component reliability and system reliability. For the i-th component or failure mode of a 

product, the limit-state function is defined by 

 ( )i iY g X   (9) 
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where X  is a vector of random variables, whose joint distribution function is known, Y  

is a response (state) variable, and ( )ig   could be an explicit function or a black-box 

model. If ( ) 0i iY g X  indicates that a failure will not occur, then the reliability is given 

by 

 ( ) }Pr{ 0i iR g X   (10) 

R  can then be evaluated by structural reliability analysis.  

During the conceptual design stage, more and more simulations are used, 

especially for design concept evaluation. It is therefore highly desirable to develop 

methodologies that could integrate the physics-based reliability methodologies and 

traditional conceptual design methodologies in the following aspects. 

(1) Integrate component reliabilities estimated by physics-based methodologies as 

shown in Eq. (10) and reliabilities estimated by reliability engineering methodologies 

such as those based on field data, statistics, or experiments. 

(2) Assess the dependencies of all the components in a product system for the 

system reliability, which is determined by component reliabilities estimated by statistical 

methods and those estimated by physics-based methods. This relies on the methodologies 

discussed in Sec. 5.1. Use the factor of safety in conceptual design. The factor of safety is 

the ratio of resistance to load and is required to be greater than 1. It tells how much 

stronger a component or system than it usually needs to be for intended loads. As 

discussed in Sec. 2.7, the factor of safety is used in the stress and strength interference 

theory [90], which can be further developed with more involvement of physics models. 

One potential way is to identify the equivalence between reliability and the factor of 

safety [101] during the conceptual design. Once a factor of safety is determined by the 
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designers, the reliability will also be known. This will greatly enhance the reliability-

based conceptual design because engineers are more familiar with the concept of the 

factor of safety.   

(3) Employ multidisciplinary design methodologies. The product design usually 

involves multidisciplinary teams, such as those responsible for mechanical, electrical, 

material, and operational aspects of the design. Multidisciplinary design optimization 

(MDO) [102] is a system design methodology that can effectively handle the coupling 

between multidisciplinary teams and components. MDO has been successfully applied in 

detail design stages, especially in the aircraft design. Its use in conceptual design has also 

been reported [103, 104]. Reliability capability [105-109] has also been added to the 

MDO in the detail design stage. If the methodologies are extended to the conceptual 

design stage, the reliability of complex engineering systems could be greatly enhanced. 

The research in this area will rely on not only what has been discussed in Secs. 5.1 and 

5.2, but also the following areas: efficient analysis for uncertainty propagation from one 

discipline to other disciplines, management of coupling state variables, and so on. 

5.3 APPLICATIONS IN MECHANICAL ENGINEERING 

Many of the reliability methodologies assume constant failure rates or exponential 

distributions for component lifetimes. Constant failure rates are commonly seen in 

electronic components, but they may not be applicable for most mechanical components. 

Although constant failure rates make computations easy, assuming a constant failure rate 

may result in a high risk as indicated in [110]. More tractable computational methods are 

required for dealing with non-constant failure rates and general distributions, such as 

normal, lognormal, Weibull, and extreme value distributions. Dealing with truncated 
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random variables is also worthwhile to devote further research efforts since they are 

commonly encountered in mechanical engineering applications. For example, random 

dimensions and clearances of mechanisms are truncated because they vary within their 

tolerance limits [111].  For a wind turbine or hydrokinetic turbine, when the wind or river 

velocity reaches a cut-out velocity, the system will be shut down for a safety reason. The 

velocity is therefore a truncated random variable [112].  

5.4 ACCOMMODATION OF TIME- AND SPACE- DEPENDENT 

UNCERTAINTY 

As discussed in Sec. 5.2, it is desirable to integrate statistics-based reliability 

methodologies and physics-based reliability methodologies. The former methodologies 

usually handle time-related information, such as the time to failure. They can predict 

reliability for a given period of time; in other words, the result is the time-dependent 

reliability. The majority of the latter methodologies, however, are only based time-

independent limit-state functions as indicated in Eq. (10), and the predicted reliability 

does not change over time. In reality, many limit-state functions are functions of time; for 

example, the motion errors of a robot are different at different time instants. In addition, 

some of the input variables of limit-state functions are time-dependent stochastic 

processes, such as the river velocity considered in the hydrokinetic turbine design and 

ocean wave loads on marine structures. With the consideration of the time factor, the 

reliability for a period of time [0, ]T  is then defined by 

 ( ), ) 0,  for alPr{ ( l [0, ]}t t t TR g   X   (11) 

The input variables ( )tX  are stochastic processes, and they usually nonstationary 

in mechanical engineering applications. 
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Time-dependent physics-based reliability has recently received increasing 

attention, and some of relative methodologies [113-122] could be used in conceptual 

design. One of the research tasks is to estimate product reliability for a period of [0, ]T  

given component reliabilities from statistics-based and physics-based methodologies. For 

example, if the reliability of Component 1 is estimated by a statistics-based approach 

with 1 Pr{ }TR t   and that of Component 2 is estimated by a physics-based approach 

with 2 ( ), ) 0,  for all [Pr{ ( 0, ]}t t t TR g   X , what is the reliability of the product which 

consists of the two components? Since the sates of the two components are usually 

statistically dependent, this research task will rely on what has been discussed in Sec. 5.1. 

5.5 INFORMATION AGGREGATION 

As reviewed in Sec. 2.3, Bayesian approaches can handle various information, 

more methodologies are desired to integrate data with different structures and from 

different sources, such as the following: 

• Full distributions: Sufficient information is available for many standard 

mechanical components, such as gears and shafts, about their manufacturing impressions, 

strengths, and usage cycles, and so on. The associated complete probability distributions 

are therefore available.   

• Distributions with uncertain parameters: The distribution types of some 

variables are known, but the distribution parameters, are imprecise due to limited 

knowledge. For example, it is well-known that the fatigue life of some structures follows 

a lognormal distribution or Birnbaum–Saunders distribution. But the parameters that 

define the distribution are uncertain.    
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• Interval variables: A parameter may be estimated between lower and upper 

bounds. The tolerances of the dimensions of a mechanical component are specified as 

intervals. Expert opinions are also sometimes expressed in the form of intervals.  

• Multilevel data: We may have partial information at component, subsystem, and 

system levels. This situation can also occur for a single component when its life is tested 

by several testing approaches, such as fail/pass, censored, and aging. 

• Time-dependent parameters: Uncertainties may change over time. For example, 

the random strength of a component degrades over time, and loadings vary randomly 

over time. 

The other related issue is how to integrate probabilistic information (distributions) 

and non-probabilistic (intervals). Extensive research has been conducted in statistics 

about how to deal with interval samples [123]. The statistical approaches to interval data 

could be introduced into the reliability quantification with other types of data. 

5.6 DECISION MAKING UNDER VARIOUS UNCERTAINTIES 

During conceptual design, there are many decisions to be made, such as how to 

determine solutions to realize product functions and sub-functions, how to combine such 

solutions, and how to select the best design concepts. Reliability is one of the most 

important considerations in decision making. The research questions to be answered 

include the following. 

(1) How to incorporate reliability requirements in design concept evaluation? The 

concept evaluation assesses relative strengths and weaknesses of design concepts with 

respect to customer needs and engineering criteria. There are many concept selection 

methodologies, such as the decisions matrix [124] and Pugh's method [125]. Reliability 
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can be incorporated in the evaluation criteria. The criteria may include the initial 

reliability, the time-dependent reliability (the reliability over a period of time), the 

possible reliability range (lower and upper bounds), and the associated cost to achieve the 

expected reliability.  

(2) How to compare and select design concepts with the lack of quantitative 

reliability estimations? As discussed in the previous subsection, different types of 

uncertainty may result in the predicted reliability in different formats, such as point 

estimates and interval estimates. Reliable methodologies are needed to assist decision 

making on selecting design concepts with the interval reliability estimates.  

(3) How to optimally allocate limited resources to ensure accurate reliability 

assessment? With limited information for reliability assessment in the early design stage, 

the resolution of reliability prediction may not be good enough for decision making. For 

example, if the predicted reliability bounds of two design concepts are too wide, we may 

not be able to distinguish one from the other in term of their reliabilities. In this case, 

more information should be collected, and this poses a question of how to effectively 

allocate resources for collecting more information. Sensitivity analysis is therefore 

required, and it allows designers to understand how sensitive the product reliability 

prediction will be with respect to specific data resources, expert opinions, failure data of 

particular components, and so on. By evaluating the sensitivity indexes of these input 

sources, designers will be are able to identify the most important input sources. When 

more data are required, then designers can collect additional information from the 

identified important input sources.  
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6. CONCLUSIONS 

Conceptual design is the most crucial stage in product design. Considering 

reliability in this design stage has a much greater impact on product performance and 

quality than doing so in latter design stages. It can not only help generate design concepts 

with high intrinsic reliability but also help evaluate and select the best design concepts 

with respect to reliability.  

As indicated by this study, the current reliability methodologies for conceptual 

design are much less mature than their counterpart in detailed parameter design stage; the 

major obstacle is the lack of information in the early design stage. It is the reason that 

there exist a variety of reliability methodologies with different capabilities, application 

scopes, and required information. This study shows that considering reliability upfront in 

the conceptual design is feasible. 

The majority of reliability methodologies provide qualitative results, and they are 

used mainly for failure mode and cause identification, failure effect analysis, risk 

assessment, and action decisions for eliminating failures or reducing their likelihood of 

occurrences. Methodologies originated reliability engineering including Failure Mode 

and Effects Analysis, Fault Tree Analysis, and Event Tree Analysis. Many improvements 

have been made for these methodologies so that they could provide quantitative or semi-

quantitative results. The methodologies developed in the area of engineering design focus 

on introducing reliability into the functional modeling where potential reliability issues 

are addressed for solutions that realize sub-functions and the overall product function. 

There are also many quantitative reliability methodologies, which can be used to 

estimate the reliability of a component or system and can therefore provide useful 
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information for decision making on design conception selection. Since sufficient 

information may not be available, these methodologies employ some assumptions in 

order to produce quantitative results. Typical assumptions are as follows: The 

components of a new product have independent states (the failure of one component will 

not affect those of other components), prior distributions are available when a Bayesian 

approach is use, and the component or system life follows a specific distribution, such as 

an exponential distribution with a constant failure rate. 

The challenges of considering reliability in conceptual design also provide great 

opportunities for future research in this area. The key topic is to accurately predict 

product reliability in the early design stage to better assist decision making. This requires 

new methodologies in aggregating reliability information with multilevel and multi-

format uncertainties, dealing with dependent components, integrating statistics-based and 

physics-based approaches, better modeling the reliability of mechanical components, and 

performing uncertainty propagation for a multidisciplinary system. 
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APPENDIX 

Table 1 Summary of reliability methodologies for conceptual design 

Methodology Objective Input Output 

Scenario-based 

FMEA [31]  

 Evaluate risk 

events 

 

 

 Cost of failure 

 Probability of failure  

 Immediate effect  

 Next-level effect  

 End effect 

 Expected cost 

and risk of 

each failure  

Assumptions/tools/scope Nature 

 Known cost of failure  

 Known relationship among events 

 Total probability theory is used 

 

Quantitative 

Fault Tree 

Analysis [41]  

  

  

Objective Input Output 

 Show compliance 

with reliability 

requirements 

 Guide the resource 

redeployment 

 

 Already-identified 

undesirable events 

 Probabilities of basic 

events 

 Combinations 

of events that 

cause system 

failure 

 Probability of 

system failure  

 Minimal cut 

sets 

 Importance 

rankings of 

contributors 

to system 

failure 

Assumptions/tools/scope Nature 

 Graphical representation 

 Boolean operations  

 Independent basic events 

 Binary states of events 

 

Qualitative/ 

quantitative 

Event Tree 

Analysis [126]  

Objective Input Output 

 Define potential 

accident sequences 

 Enable probability 

assessment of 

success/failure 

 Initial undesired events 

 Accident consequences 

 System success criteria 

 Combinations 

of events that 

cause system 

failure 

 Probability of 

system 

success/failur

e 

Assumptions/tools/scope Nature 

 Anticipated operating pathways 

 Independent basic events 

 Binary states of events 

 

Qualitative/ 

quantitative 
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Table 1 Summary of reliability methodologies for conceptual design (cont.) 

Methodology Objective Input Output 

Root Cause 

Analysis [15] 

 Identify what, how 

and why events 

happened 

 Prevent recurrence 

 Initial undesired events 

 Causal factors  

 Root cause 

map 

 Future 

recommenda-

tions 

Assumptions/tools/scope Nature 

 Collected data about the event is complete 

 Causal factor knowledge is accurate 

Qualitative 

Reliability 

Block Diagram 

[127]  

  

Objective Input Output 

 Analyze system 

reliability 

 Component structure 

 Component reliabilities 

 System 

reliability 

Assumptions/tools/scope Nature 

 Known component reliability 

 Relationship between system and components 

Quantitative 

ISFA [100] 

(Integrated 

System Failure 

Analysis) 

 

Objective Input Output 

 Identify failure 

propagation paths 

in the early design 

stage 

 System configuration 

 Input-output flows of 

components 

 Failure 

propagation 

paths 

 Failure 

impact on the 

system 

Assumptions/tools/scope Nature 

 Behavioral simulation 

 Event sequence diagram 

 Advanced modeling languages 

Qualitative 

Use of heritage 

and other 

relevant data 

[53]  

Objective Input Output 

 Predict reliability 

of a new product 

 Warranty data, field data, 

and test data of relevant 

existing products 

 Design changes of the 

new product 

 Reliability 

bounds w.r.t. 

time of the 

new product 

Assumptions/tools/scope Nature 

 Repairable product 

 As-bad-as-old repair 

 Constant failure rate 

 Power Law process for the intensity function 

 Bayesian method 

Quantitative 

Parenting 

process [65] 

Objective Input Output 

 Predict reliability 

of a new product 

 Parent products 

 Warranty data of parent 

products 

 Failure mode and failure 

cause relationship of 

parent products 

 Probability of 

failure of new 

product 
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Table 1 Summary of reliability methodologies for conceptual design (cont.) 

 Assumptions/tools/scope Nature 

 Expert estimates of the change in failure rates  

 Lognormal distribution of the change and the 

failure rate of parent products 

 No change in failure mode and failure cause 

relationship in the new product 

Quantitative 

Early Design 

Reliability 

Prediction [78, 

79]  

Objective Input Output 

 Assist decision 

making in 

functional 

modeling stages 

 Select concepts by 

required system 

reliability  

 Functional modeling 

 Solutions to sub-functions 

 Component failure rates 

 Design 

alternatives 

that meet 

reliability 

target 

Assumptions/tools/scope Nature 

 Time-independent and normally distributed failure 

rates 

 Known standard deviations at component level 

 Hierarchical Bayesian model 

Quantitative 

CSCSIT [90]  

(Conceptual 

Stress and 

Conceptual 

Strength 

Interference 

Theory)  

Objective Input Output 

 Evaluate reliability 

in the early stage 

 Identify the weak 

spots of the 

function structure 

 Analyze the 

sensitivity of 

reliability 

 Function structures with 

energy, material and 

signal (EMS) flow paths 

 Probability distribution of 

EMS parameters 

 Similar functions from 

existing designs 

 Conceptual 

stress 

 Conceptual 

strength  

 System 

reliability 

Assumptions/tools/scope Nature 

 Linear limit-state function 

 Known EMS parameters of their distributions 

 Known parameters such as factor of safety 

Quantitative 

Fuzzy 

Reliability 

method [5] 

Objective Input Output 

 Quantify 

imprecision and 

uncertainty in 

early reliability 

and risk analysis 

 Failure rate for all 

components 

 Subsystem reliability 

 System 

reliability 

 Average cost 

of system 

operation 

Assumptions/tools/scope Nature 

 One mission of finite duration 

 Independent subsystems connected in series. 

 Perfect failure detection and switching among 

redundant components 

 Binary status of all components, subsystems, and 

system  

 Exponential life-distributions for all components 

Quantitative 
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Table 1 Summary of reliability methodologies for conceptual design (cont.) 

Methodology Objective Input Output 

Reliability 

Prediction 

Models [6]  

 Predict system 

reliability  

 Predict average 

mission cost 

 Simulation modeling 

inputs  

 System-level inputs 

 Subsystem-level inputs  

 Mission 

reliability 

 Average cost 

of system 

operation 

Assumptions/tools/scope Nature 

 Triangular distribution of the failure rates for the 

components in a subsystem  

 Simulation-optimization tool  

Quantitative 

FFDM [73] 

(Function 

Failure Design 

Method) 

Objective Input Output 

 Predict likely 

failure modes 

 Improve product 

designs in the 

early stage  

 Failure knowledge from 

previous products 

 Product functionality 

 Concept generator 

 Product 

design 

concepts 

 Design 

recommenda-

tions  

Assumptions/tools/scope Nature 

 Knowledge from previous accident study 

 Overall function of each black-box  

 Filter matrix  

Qualitative 

FFRDM [76, 

77] (Functional 

Failure Rate 

Design 

Method)  

 

Objective Input Output 

 Mitigate failure 

modes 

 Predict system 

reliability analysis 

in the functional 

design stage  

 Repository Data from two 

data sources: NPRD-95 

and FMD-97 

 Design 

recommenda-

tions 

 Reduced 

likelihood of 

failure  

Assumptions/tools/scope Nature 

 Function-flow fails in a specific failure mode  

 Knowledge from previous failure modes study 

Quantitative 

/qualitative 

FFIP [81, 82]  

(Functional 

Failure 

Identification 

and 

Propagation)  

 

Objective Input Output 

 Evaluate and 

assess the 

potential of system 

functional failures 

 Critical event scenarios 

 Documented historical 

data 

 Functional 

failure  

 Functional 

failure 

propagation 

paths 

Assumptions/tools/scope Nature 

 Reliable and complete functional basis 

 Function-failure logic reasoner that allows 

reasoning at a functional level 

 Combine hierarchical system models with 

behavioral simulation and qualitative reasoning 

Qualitative 
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Table 1 Summary of reliability methodologies for conceptual design (cont.) 

Methodology Objective Input Output 

Bayesian 

reliability 

model using 

multiple 

sources of 

information 

[49]  

 Estimate system 

reliability 

 Component lifetime data 

 System lifetime data 

 Expert data regarding the 

current product and 

similar products 

 System 

lifetime 

distribution 

 System 

reliability  

Assumptions/tools/scope Nature 

 Independent component lifetimes 

 Known system-component structure (series, 

parallel, and mixture) 

Quantitative 

Hierarchical 

model [47]  

 

 

Objective Input Output 

 Estimate reliability 

of complex 

systems 

 System available data  

 Prior judgment 

 Engineering experience 

 System 

reliability 

Assumptions/tools/scope Nature 

 Well-understood relationship between system and 

its components 

 Specific distribution of probability density function 

based on prior known parameter 

Quantitative 

Relative 

reliability risk 

assessment [66]  

Objective Input Output 

 Predict reliability 

in the early stage 

 Function structure  Relative 

reliability risk 

index 

 Concept 

functionality 

graph 

Assumptions/tools/scope Nature 

 Reasonable relative rating  

 Reasonable distributed weights for the functions  

Quantitative 
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ABSTRACT 

It is desirable to predict product reliability accurately in the early design stage, but 

the lack of information usually leads to the use of independent component failure 

assumption. This assumption makes the system reliability prediction much easier, but 

may produce large errors since component failures are usually dependent after the 

components are put into use within a mechanical system. The bounds of the system 

reliability can be estimated, but are usually wide. The wide reliability bounds make it 

difficult to make decisions in evaluating and selecting design concepts, during the early 

design stage. This work demonstrates the feasibility of considering dependent component 

failures during the early design stage with a new methodology that makes the system 

reliability bounds much narrower. The following situation is addressed: the reliability of 

each component and the distribution of its load are known, but the dependence between 

component failures is unknown. With a physics-based approach, an optimization model is 

established so that narrow bounds of the system reliability can be generated. Three 

examples demonstrate that it is possible to produce narrower system reliability bounds 

than the traditional reliability bounds, thereby better assisting decision making during the 

early design stage. 
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1. INTRODUCTION 

There are four design stages in a design process, including problem definition, 

conceptual design, embodiment design, and detail design [1]. The early design stage 

includes problem definition and conceptual design. During the problem definition stage, 

the problem and working criteria/goals are defined, information such as voice of 

customer is gathered, and functional modeling is performed [2]. During the conceptual 

design stage, design concepts are generated, analyzed, and selected [3]. In this work, we 

consider reliability in the conceptual design stage. Reliability is the ability of a product to 

perform its intended function without failure, and it is usually quantified by the 

probability of such ability [4]. In the past, reliability issues were usually addressed when 

field failure data and/or life testing data became available. This treatment is too late 

because losses have already occurred. It is therefore necessary to perform reliability 

analysis in the early design stage. Considering reliability upfront will not only ensure 

high reliability, robustness, safety, and availability, but also reduce risk and product 

lifecycle cost [5]. Specifically, predicting system reliability helps decision making in the 

early design stage [6]. For example, after several design concepts are generated, the best 

design concept(s) should be selected. In many cases, the product reliability is a major 

decision factor for keeping or eliminating design concepts. Reliable decision making 

relies on the accurate system reliability prediction. 

Although methodologies exist for early reliability prediction [7-9], predicting 

reliability early is still a challenging task due to various reasons. Herein, we focus on one 

of the most important reasons – the lack of dependence information between component 

failures. Nowadays it is a common practice for a product (or system) to have its 
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components designed and manufactured from different companies (suppliers). These 

components are individually and independently designed, tested, and manufactured. The 

reliability of each component may be known to the designers of a new product. When the 

components are assembled into a system for operation, they are dependent, and the 

dependent relationship needs to be considered for obtaining the system reliability. The 

dependence comes from the following reasons: components operate under the same 

environment, they are subjected to the same load, they deform dependently due to 

geometric constraints, and the output of one component is the input to other components, 

and vice versa.  

Lacking dependent component states poses a challenge for the early product 

design because it is difficult to define the exact dependent relationship of components 

due to the limited information available to the designers of the new product. Even if the 

designers could acquire the reliability of each component from the supplier who designed 

and manufactured the component, they do not have access to all the details that are 

necessary for the system reliability prediction, such as the material properties, geometry, 

and critical parameters of the component. As a result, the joint probability density of the 

states of all the components is not available in general.  

For the above reasons, approximations to the system reliability are usually used. 

The commonly used reliability engineering methods are based on the assumption of 

independent component failures [10-12] on the condition that component reliabilities are 

given. The independent component state assumption makes the system reliability analysis 

much easier, but may produce large errors and may therefore lead to erroneous decisions 

for design concept evaluation and selection. Besides, Park et al. [13] demonstrated that 
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the error due to ignoring dependence can be negligible for a highly reliable system. The 

conclusion is verified by various conditions. But for design concepts that may not have 

high reliability, considering component dependence is still necessary for concept 

evaluation and selection with respect to reliability. 

Efforts have been made to improve the accuracy of system reliability by 

considering component dependence. Humphreys and Jenkins [14] reviewed and 

summarized the development of techniques of dealing with dependent component failures 

before 1991. Zhang and Horigome [15] proposed a method to predict system reliability 

by considering both dependent component failures and time-varying failure rates under 

several assumptions about system states and time-varying failure and repair rates. This 

study is suitable for system and component failures due to a cumulative shock-damage 

process. Pozsgai and Neher [16] summarized approaches to the reliability of mechanical 

systems with the dependence consideration, such as common-mode failures, load-sharing, 

and functional dependence. Neil et al. [17] developed hybrid Bayesian Networks (BNs) 

to model dependable systems with a new iterative algorithm, which combines dynamic 

discretization with propagation algorithms to realize inference in hybrid BNs. This model 

uses several assumptions; for example, the repair time is negligible. Marriott and Bate 

[18] considered dependent failures of nuclear submarines. Their method is based on the 

unified partial model (UPM), which provides a way to assess the effects of dependent 

failures on a system in an auditable manner. The method, however, may not be applicable 

for early designs due to the limited information available for the input of the UPM model. 

Recently, Youn et al. [19], Nguyen et al. [20], and Wang et al. [21] presented system 

reliability analysis models for problems where all the component parameters are known. 
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In summary, it may not be easy to apply these methodologies in the early design stage 

because of limited information about component dependence. 

The alternative way is to estimate the bounds of the system reliability. For 

instance, for a series system, with the inclusion-exclusion principle [22], the system 

reliability analysis involves the joint probabilities associated with the components of the 

system. When the component states are dependent, it is difficult to calculate the 

probabilities of the intersections for a large number of components; thus system 

reliability bounds min max,S SR R    are of interest, where min

SR  and max

SR  are the minimum and 

maximum system reliabilities, respectively. The analysis may require the marginal 

component probabilities, Pr( )iC  for component iC , and the joint probabilities of small 

sets of components, for example, bicomponent  probabilities Pr( )i jC C  for components i 

and j; tricomponent probabilities Pr( )i j kC C C for components i,  j, and k; and so on. Even 

the bicomponent joint probability Pr( )i jC C , however, still needs knowing the joint 

probability of iC and 
jC . Without using joint probabilities, Boole [23] derived an 

inequality equation to calculate the system probability bounds for series systems with 

only the unicomponent probabilities Pr( )iC , namely, component reliabilities. The bounds 

produced, however, may be too wide for practical use, as will be discussed in the next 

section. 

In the area of structural reliability which is based on computational models 

derived from physics principles, narrower system reliability bounds could be produced 

because joint probabilities are computationally available [24]. The first-order 

approximation method for system reliability analysis proposed by Hohenbichler and 
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Rackwitz [25] produces narrow system reliability bounds. The method is efficient, but 

cannot be used in conceptual design because it requires all detailed information about 

components, such as component limit-state functions, which may not be available during 

conceptual design.  Kounias [26], Hunter [27], and Ditlevsen [28] also developed 

methodologies for series systems with both unicomponent probabilities Pr( )iC  and 

bicomponent probabilities Pr( )i jC C . Zhang [29] generalized the methodologies with 

high order joint probabilities, such as tricomponent and quadricomponent probabilities. 

These methods still have some drawbacks. The system reliability bounds have the order-

dependency problem, meaning that different orders of components may result in different 

system reliability bounds. The computational demand is also intensive since all the 

possible ordering alternatives need to be considered. Song and Kiureghian [30] later used 

linear programming (LP) to address some of these drawbacks. The LP method has no 

restrictions on component ordering and can incorporate incomplete component 

probabilities and inequality constraints on component probabilities. Its efficiency 

deteriorates as the dimension of the problem increases because the size of the problem 

expands exponentially with respect to the number of components. Ramachandran [31] 

reviewed and summarized progresses made on structural reliability bounds before 2004. 

Recently, Domyancic and Millwater [32] summarized and compared different 

computational methods such as first order bounds, Ditlevsen bounds, KAT lower bound, 

and LP bounds and demonstrated the applications in series systems. However, as the 

computational models may not be available during the early design stage, these methods 

could hardly be applied for the system reliability analysis of a new product.  
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The purpose of this work is to explore possible ways to accurately and efficiently 

produce narrow system reliability bounds during the early design stage using a physics-

based method with limited information. We demonstrate the feasibility for the following 

situation: component reliabilities are provided to the designers of a new product from 

individual suppliers, and the system designers know the load, to which the new product is 

subjected. We also assume that a component has only one major failure mode that is 

related to the strength of the component. With a physics-based approach, we establish an 

optimization model to produce narrower bounds of the product (system) reliability, which 

will better assist the decision making process in the early design stage.  

We review the methodologies of system reliability modeling in Section 2. We 

then present the proposed system reliability analysis in Section 3, followed by three 

examples in Section 4. More discussions on the uncertainty in input variables are 

provided in Section 5. Conclusions and future work are given in Section 6. 
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2. REVIEW OF SYSTEM RELIABILITY MODELING 

There are three typical types of systems, including series systems, parallel 

systems, and mixed systems. Herein we focus on series systems. The proposed 

methodology in this work can be extended to the other two types of systems. 

A series system consists of components in series as shown in Fig. 1. The failure of 

one component can result in the failure of the entire system. This type of system is also 

referred to as a weakest link system. 

 

 

Figure 1 Series system 

 

We denote the components by 1 2,  ,  ..., nC C C . Correspondingly, their reliabilities 

are denoted by 1 2,  ,  ..., nR R R . If the states of the components are assumed to be 

independent, the system reliability is  

 
1

n

S i
i

R R


    (1) 

The direct use of the above method with the independent component assumption 

may not be applicable to many mechanical systems. For example, the speed reducer 

system shown in Fig. 2 consists of one motor, one belt, one drum, two couplings, three 

shafts, four gears, four keys, and eight bearings, with a total of 24 components. For a 

simple demonstration, assume the reliability of each component is 0.9999R   or the 

Component 1 Component 2 

… 

Component n 

C1 C
2
 Cn 
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probability of failure is 
410fp  , then the system reliability is 240.9999 99760.SR    

according to Eq. (1), or the probability of system failure is 
3

, 2 101 .4Sf Sp R     . The 

calculated probability of system failure is so high that the design would be rejected for 

any practical applications. In reality, however, given the high component reliability 

0.9999, the actual system reliability of the speed reducer system should be much higher 

than the calculated value 0.9976. The reason is that the states of the components are 

dependent because all the components share the common load in this speed reducer 

system.  

 

  

Figure 2 A speed reducer system 
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On the other hand, without considering the dependence, the design could be 

extremely conservative. For instance, if the required system reliability of the speed 

reducer in Fig. 2 is 0.999SR   and the reliability of each component is the same, then the 

required component reliability should be at least 24 0.90.999 99958 , or the probability 

of failure of each component should be less than or equal to 
54.168 107fp   . For the 

aforementioned reason of dependent components, the actual required maximum 

component reliability should be much lower than 0.999958 , or the actual required 

minimum probability of component failure should be much larger than 

54.168 107fp   .  

Since it is difficult to obtain the system reliability without knowing the 

dependence between component failures, the bounds of the system reliability are usually 

used. The upper bound is given by [33]  

 min{ },  1,...,S iR R i n    (2) 

The component dependence could be positive or negative. If a failure of one 

component leads to an increased tendency for other components to fail, the dependence is 

positive, and vice versa. For most mechanical systems, the dependence is positive [34], 

and we therefore consider only positive dependence. For positive dependence, the lower 

bound of the system reliability is given by [33]  

 
1

,  1,...,
n

i S
i

R R i n


     (3) 

Therefore 

 
1

min{ },  1,...,
n

i S i
i

R R R i n


      (4) 
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Or the bounds of the probability of system failure are 

  , , ,
1

max 1 (1 ),  1,2,  ..., 
n

f i f S f i
i

p p p i n


      (5) 

where 
,f Sp  is the probability of system failure, which is equal to 1 SR ; 

,f ip  is the 

probability of component failure and 
, 1f i ip R  . In Eq. (4), estimating the reliability 

bounds requires only knowing component reliabilities, but the width or the distance 

between the lower and upper bounds is usually too large. Take the above speed reducer 

system as an example. If the component reliability is 0.9999, the system reliability 

bounds are then 0.9976 0.9999SR  , or the bounds of the probability of system failure 

are 
4 3

,10 2.4 10f Sp    .  

 

 

Figure 3 System reliability bounds of two designs 

 

The wide gap between the lower and upper bounds makes decision making 

extremely difficult. For example, during the early design stage, if the bounds of the 
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system reliability of two design concepts are as shown in Fig. 3 (a), designers will not be 

able to differentiate one design from the other with respect to reliability because the two 

bounds are so wide and they overlap with each other. If the bounds of the system 

reliability of two design concepts were narrower as shown in Fig. 3 (b), designers would 

easily differentiate one design from the other and will conclude that design 2 is more 

reliable than design 1.  

To address the above problem, we propose a physics-based approach that 

produces narrower bounds for the system reliability.   
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3. SYSTEM RELIABILITY ANALYSIS WITH DEPENDENT COMPONENTS 

The objective of this work is to explore a possible way to produce narrower 

bounds of system reliability in order to assist decision making in the early design stage. 

To show the feasibility, we focus on problems where the failure of a system can be 

predicted using the physics-based stress-strength interference model. The overview of the 

proposed method is discussed in the next subsection followed by details in the subsequent 

subsection. 

3.1 OVERVIEW OF THE PROPOSED METHOD 

As mentioned previously, we focus on series systems. The components of the 

system may be designed, manufactured, and tested independently by different companies 

or suppliers. The reliability analysis of the components is the responsibility of the 

suppliers. The reliability of each component of a new product is available to the system 

designers, who are responsible to predict the system reliability. The system designers 

may also have knowledge about the factors of safety that the suppliers may have used in 

their component designs. In addition to component reliabilities, the system designers may 

also have other information, such as the load to which the system is subjected. The 

system designers, however, do not have access to all the detailed information (usually 

proprietary) about the component designs, such as the analysis models and material 

properties, e.g., the distributions of the strengths of the components.  

With the above information available, we develop a system reliability prediction 

methodology based on the stress-strength interference model. Instead of providing a 

single-valued system reliability, the proposed method produces system reliability bounds, 

which are much narrower than those from the traditional method discussed in Section 2. 
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The task of the proposed method is then to search for the maximum and minimum system 

reliabilities, and this is accomplished by establishing an optimization model for the 

system reliability bounds. The objective of the optimization model is the system 

reliability, the design variables are unknown distribution parameters of components, and 

the constraints are those related to component reliabilities and factors of safety of the 

components.  

The above assumptions, along with other assumptions we use in this work, are 

summarized as follows:  

 The new product is a series system. The reason we select series systems is 

that they are commonly encountered in mechanical applications, such as the speed 

reducer in Fig. 2. The proposed method can be extended to parallel systems and 

mix systems.  

 Each physical component has only one major failure mode related to the 

strength of the component. If a physical component has multiple failure modes, to 

use the proposed method, one can treat each failure mode as a single component. 

For example, if there are two physical components, each having two failure 

modes, then there are four components from the viewpoint of system analysis. 

 The load and strength of each component are independent. This 

assumption holds for many problems where material strengths do not depend on 

the load applied to the component.  

 The system designers of the new product know the load, to which the new 

product is subjected. The examples of the system load include the output torque of 

the speed reducer in Fig. 2, the wind velocity or water velocity of a wind turbine 



 

 

75 

or hydrokinetic turbine, the force acting on the slider of a crank-slider mechanism. 

The system designers also know the distribution types of the strengths of the 

components, but the distribution parameters of the strengths are unknown. 

 Component reliabilities are provided by component suppliers to the 

system designers of the new product.   

3.2 SYSTEM RELIABILITY MODEL 

We start from the models for the case with general distributions and then present 

the models for a special case with normal distributions. 

3.2.1 General Optimization Model. In order to obtain the system reliability 

bound with dependent components, the designers of the new product need to ask 

component suppliers to provide component reliabilities. The limit-state function of the i-

th component is defined by  

 
, ,Ste i Stn iiY S S     (6) 

where 
,Ste iS  is the stress in the component, 

,Stn iS  is the strength of the component, and iY  

or 
, ,Stn i Ste iS S  is the design margin. 

,Ste iS  is determined by the component load iw L  or a 

function of iw L . Substituting 
,Ste iS  with iw L  in Eq. (6), we could rewrite the limit-state 

function as  

 
,Ri iiY w L S   (7) 

where 
,R iS  is the general resistance of the component to the load. 

,R iS  is in general a 

function of the component strength 
,Stn iS  and other parameters, such as the dimension 

variables of the component. The information about some of the parameters may be 
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proprietary to the component supplier. As will be discussed later, the proposed method 

does not require the designers of the new product to know such proprietary information.  

For the system to which component i  belongs, L  is the total load to the system, 

and iw  indicates the fraction of the load that component i  shares, and iw  is a constant. If 

the load acting on the component is equal to the load acting on the system, 1iw  ; if the 

load acting on the component is less than the load acting on the system, 1iw  . iw  can be 

determined by the simplified free-body diagram of component  i  as shown in Fig. 4, 

where iL  is the load applied to the component. Note that Fig. 4 is only a schematic 

diagram, which shows how the system load is shared by components, and it is not a real 

free-body diagram. Also note that iL  is the resultant force acting on the component and 

could produce point forces, distributed forces, bending moments, and torques that exert 

on the component.  

 

 

Figure 4 Simplified free-body diagram of component i   

 

The reliability and probability of failure of component i  are given by  

 Pr{ 0}i iR Y     (8) 

and 

 
, Pr{ 0}f i ip Y     (9) 

Component i 

L
i
 C

i
 wiL 
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We assume that the component resistance 
,R iS  and the load to the system L  are 

independent. Let the probability density functions (pdf) of the component load and 

resistance be ( )
iLf l  and 

,
( )

R iSf s , respectively, and let their joint pdf be 
,, ( , )

i R iL Sf l s . Then 

the component reliability is calculated by  

 
,

,

,Pr{ 0} ( , )
i R i

i R i

Li Si
w L S

R Y f l s dlds


     (10) 

Given all the component limit-state functions, the safe condition of the system is 

determined by the intersection 1 2{ 0 0 ... 0}nY Y Y   , or 1 2{ 0, 0,..., 0}nY Y Y   . 

Then the system reliability is given by 

 1 2Pr( 0,  0,..., 0) Pr( 0)S nR Y Y Y     Y  (11) 

where 1 2( ,  ,  ..., )nY Y YY . Using the joint pdf ( )fY y  of 1 2( ,  ,  ..., )nY Y YY , we have  

 Pr( 0) ( )dSR f    YY y y  (12) 

If the distributions of the loads and resistances of all the components are 

available, ( )fY y  will also be available, and the system reliability can then be obtainable 

by Eq. (12). As discussed previously, for the system designers of the new product, 

however, the distribution parameters of component resistances are unknown. We denote 

1 2, ,( , )nd d d d  for the distribution parameters of component resistances, where id  

contains the distribution parameters of the resistance of component i . For example, if the 

resistance of component i  is normally distributed, then 
, ,

( , )
R i R iS Si  d , where    and 

  denote the mean and standard deviation, respectively. Some of the parameters in d  are 

proprietary to the component suppliers. Without knowing the distributions of the 

component resistances, the designers of the new product will not be able to obtain an 
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exact system reliability prediction. As mentioned previously, the proposed method uses 

all the information available to the designers of the new product to produce narrow 

bounds of the system reliability with the assumption that the distribution types of the 

component resistances are known while the distribution parameters are unknown.  

The system reliability bounds are found by solving for the minimum and 

maximum system reliabilities through using optimization models. We now discuss such 

optimization models, including their design variables, objective functions, and constraint 

functions. 

The design variables are those of unknown distribution parameters of the 

component resistances, denoted by d . For example, if the component resistances follow 

normal distributions, the design variables will be means and standard 

deviations
,1 ,1 ,2 ,2 , ,1 2( , ,..., ) ( , , , ,..., , )

R R R R R n R nn S S S S S S      d d dd . 

The objective function is the system reliability given in Eq. (12). It is a function 

of known distribution parameters of the system load Lp , and unknown design variables 

d . The objective function is denoted by ( ; )S LR d p . Maximizing ( ; )S LR d p  produces the 

maximum system reliability max

SR  while minimizing ( ; )S LR d p  produces the minimum 

system reliability min

SR .  

There are multiple constraint functions. The reliability of a component gives an 

equality constraint according to Eq. (10), and there are therefore n  equality constraints, 

as shown below. 

 
,

,

, ( , ) ,  1,2,..) ,; .(
i R i

i R i

L S i
w

L
L S

ih f l s dlds R i n


  d p  (13) 
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Although the designers of the new product may not know the actual factors of 

safety used by component designers from the suppliers, they have good knowledge about 

the range of the factors of safety of the components. Denote the lower and upper bounds 

of the factors of safety by 
m n

,

i

s in  and 
m x

,

a

s in , respectively, we have the following inequality 

constraints. 

 
m m

, ,

in ax

, ( );si L s iisn n n d p  (14) 

There are therefore totally 2n  inequality constraints given by 

 
mi

,,

n( ) ( ) 0,;  1,2,; ,s ii L s i Lg n n i n    d p d p  (15) 

and 

 
max

, ,; ;( ) ( ) ,0, 1,2,i n L L ss iig n n ni     d p d p  (16) 

In addition, the designers may also have good knowledge about the coefficients of 

variation, which are the ratios of standard deviations to means of component resistances. 

Denote a coefficient of variation by c , and its lower and upper bounds by min

ic  and max

ic , 

respectively. From min max;( ) iii Lc c c d p , we have other 2n  inequality constraints. 

 min

2 ( ) ( ) 0,; ; , 1,2,i n iL i Lg c c i n     d p d p  (17) 

and 

 max

3 ( ) ( ) 0, 1, ,2,; ;i n LiL i ng c c i     d p d p  (18) 

Next, we construct the optimization models. The optimization model for the 

minimum system reliability is based on the objective function as shown in Eq. (12) and 

the constraint functions that are listed in Eqs. (13) - (18). The optimization model for the 

minimum system reliability is then given by  
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,

,

,

min

,

m

,

,

ax

,

2

min  

subject to

( , ) ,  1,2,...,

( ) ( ) 0,                             

( ) ( ) 0,                         

( ; )

( ; )

; ;

; ;

;

 

(

i R i

i R i

S L

i L

i L s i L

L S

i n L L

i
w L

s

S

s i

s i

i

i

n

R

h f l s dlds R i n

g n n

g n n

g







 

  

 







d
d p

d p

d p d p

d p d p

d
in

max

3

m) ( ) 0,                     ;

;

   

( ) ( ) 0,                      ;    

i

i

L i L

i n L L i

c c

g c c










   

   


p d p

d p d p

 (19) 

For the maximum system reliability, we just change the first line of the 

optimization model in Eq. (19) from (in ) ;m S LR
d

d p to (ax ) ;m S LR
d

d p . The two 

optimization models will produce the minimum and maximum system reliabilities, 

thereby the system reliability bounds. 

3.2.2 Optimization Model for Normal Distributions. After having presented the 

general case, we now discuss a special case where all random variables are normally 

distributed. Suppose 
,R iS  and L  follow normal distributions 

, ,

2

, ~ ( , )
R i R iR i S SS N    and 

2~ ( , )L LL N   , respectively. From Eq. (7), the mean and standard deviation of iY  are 

 
,R ii i L Sw             (20) 

 
,

2 2( )
R ii i L Sw        (21) 

The reliability of component i  is then calculated by 

 
,

,

2 2
Pr( 0) ,  1,2,...,

( )

R ii

i
R i

i L SY

i i

Y i L S

w
R Y i n

w

 

  

  
          

      

 (22) 

where   is the cumulative distribution function of a standard normal variable. It can be 

shown that every linear combination of 1 2( ,  ,  ..., )nY Y Y  is normally distributed if the 
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resistances 
,R iS  ( 1,2, , )i n  and load L  are independently and normally distributed. As 

a result, vector 1 2( ,  ,  ..., )nY Y YY  follows a multivariate normal distribution denoted by 

,( )N μ Σ  , where the mean vector μ  and covariance matrix Σ  are given by 

 
1 2( , ,..., )n μ  (23) 

and 

 

11 1

1

cov cov

cov cov

n

n nn

 
 

  
 
 

Σ  (24) 

where  

 

2                
cov

cov( , )     

i

ij

i j

i j

Y Y i j

 
 



 (25) 

From Eq. (7), we can derive the covariance between iY  and 
jY , and it is given by 

 2

, ,cov cov( , ) cov ,ij i j i R i j R j i j LY Y w L S w L S w w         (26) 

Thus, the covariance matrix Σ  in Eq. (24) is rewritten as 

 

1

2 2

1

2 2

1 n

Y n L

n L Y

w w

w w

 

 

 
 

  
 
 

Σ  (27) 

After μ  and Σ  are obtained, the pdf of Y  is fully defined by 

   1

1 2 1
2 2

1 1
( , ,..., ) exp ( )

2
(2 )

T

n n
f y y y



 
    

 
y μ Σ y μ

Σ

 (28) 

The system reliability is then obtained by integrating the probability density 

function using Eq. (12).  
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For the system designers of the new product, however, the distribution parameters 

of component resistances, for example, the means 
,R iS  and standard deviations 

,R iS  

( 1,2 ,,i n  ) of normal distribution are unknown. As a result, the complete information 

that defines the mean vector μ  and the covariance matrix Σ  in Eq. (28) are not available 

to the designers. Thus, the exact system reliability cannot be obtained.  

Narrow system reliability bounds can be found with the proposed optimization 

model. For this case, the design variables become 1 2( , ,..., )nd d d d  

,1 ,1 ,2 ,2 , ,
( , , , ,..., , )

R R R R R n R nS S S S S S       as discussed previously, and the distribution 

parameters of the system load become ,( )L L L p . The constraint functions associated 

with component reliabilities, according to Eq. (22), are given by  

 
,

,

2 2
, ,  1, 2,...,

(
( ; )

)

R i

R i

i L S

i

S i L

i L L

w
h R i n

w






 


 
    
 
 

d  (29) 

And we have totally 2n  inequality constraints according to the range of factors of 

safety 
,s in . 

 ,

,

min( , ) 0, 1 , ,, 2; R iS

i L

i L L s i ng n i
w




     d  (30) 

and 

 , max

,( , ) 0, 1,2; ,,R iS

i L

i n L L s ig n i
w

n 



     d  (31) 

In addition, we have other 2n  inequality constraints according to the ranges of 

the coefficients of variation ic  of the unknown distributions. 
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and 
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3
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R i

i n L L

S

i

S
g c i n 


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The optimization model for the minimum system reliability is then given by 
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 (34) 

For the maximum system reliability, we just change the first line of the 

optimization model in Eq. (34) from (m ; )in S LR d p  to (m ; )ax S LR d p .  

There are n  equality constraint functions, which may cause numerical difficulties 

in solving the optimization models. We could improve the optimization models by 

eliminating some of the design variables using the equality constraints. This will not only 

reduce the scale of the optimization but also improve the robustness of the solution 

process [35]. An equality constraint imposes a functional relationship on design 
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variables, and design variables 
,R iS  can then be substituted with remaining design 

variables. From Eq. (22), we obtain 

 
, ,

1 2 2( ) ( )
R i R iS i L i S i Lw R w       (35) 

Thus, design variables 
,R iS  and all the equality constraints are eliminated. 

Plugging Eq. (35) into Eq. (34) yields  
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 (36) 

The new vector of the design variables in Eq. (36) is 

,1 ,2 ,
( ,, , )

R R R R nS S S S    d σ . The bounds of 
,R iS  can be determined by plugging Eq. 

(30) and Eq. (31) into Eq. (29), respectively. 

 
 
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 
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The predicted system reliability bounds cover the true value if the true design 

point, which produces the true system reliability, falls into the feasible region defined by 

the constraint functions. It is therefore important to carefully select the parameters for the 

constraint functions. The designers of the new product could select these parameters 

based on their experiences, their knowledge about component design, and design 

standards in their specific areas. 
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4. NUMERICAL EXAMPLES 

In this section we provide three examples for three cases: (1) a system consists of 

different components with the same load, (2) a system consists of identical components 

with the same load, and (3) a system consists of different components with different 

loads. In the third example, we also demonstrate the superiority of the proposed method 

in early design decision making over that of the traditional method. Since the reliability is 

high, to easily show the accuracy of the results, we use the probability of failure. 

4.1 EXAMPLE 1: THREE DIFFERENT COMPONENTS SHARING THE SAME 

LOAD 

A new design consists of three different components, supplied by three different 

companies, as shown in Fig. 5. They are subjected to the same load L . The resistances of 

the three components are known to the component designers, and their distributions are 

2

1 ~ (3500,350 ) kNS N , 2

2 ~ (3200,260 ) kNS N , and 2

3 ~ (4000,400 ) kNS N . The three 

random variables are independent. The load L  is known to both component designers 

and system designers of the new product. The distribution of the load is 

2~ (2000,200 ) kNL N . The probabilities of failure of the components obtained from the 

component designs are therefore 1

5

, 9.920 10fp   , 2

4

, 1.2696 10fp   , and 

3

6

, 3.87 10fp    according to Eq. (22). The information about the component reliability 

is provided to the system designers of the new product. In addition, the system designers 

of the new product are confident that the factors of safety of the three components are 

between 1.5 and 2.5 and that the coefficients of variation of component resistances are 

between 0.08 and 0.2. The information available to the system designers of the new 

design is summarized in Table 1. 
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Figure 5 Three different components sharing same load  

 

Table 1 Information available to the designers of the new product 

Known information Value 

Probability of component failure 
,1fp   59.920 10  

Probability of component failure 
,2fp  41.2696 10  

Probability of component failure 
,3fp  63.87 10  

Distribution of system load L   2(2000,200 ) kNN   

Factor of safety for component 1 
,1sn   [1.5,2.5]  

Factor of safety for component 2 
,2sn  [1.5,2.5]  

Factor of safety for component 3 
,3sn  [1.5,2.5]  

Coefficient of variation of resistance of component 1 1c   [0.08,0.20]  

Coefficient of variation of resistance of component 2 2c  [0.08,0.20]  

Coefficient of variation of resistance of component 3 3c  [0.08,0.20]  

 

For the system designers of the new product, the task is to estimate the system 

reliability of the new product using the information in Table 1. The simplified free-body 

diagrams of the three components are the same. Fig. 6 shows the simplified free-body 

diagram of component 1.  

 

 

Figure 6 Simplified free-body diagram of component 1 
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The three components are subjected to the same load L , and their limit-state 

functions are therefore given by 

 

1 1

2 2

3 3

Y L S

Y L S

Y L S

 


 
  

  (39) 

Thus, the system reliability of the new product is  

 
0

1 2 3Pr( 0,  0,  0) ( )dSR Y Y Y f


      y y  (40) 

where 1 2 3( ,  ,  ) ~ ( , )Y Y Y N μY Σ . From Eq. (35), the means of component resistance 

,  1,2,3
iS i  , are given by 

 1 2 2( ) ( )
i iS L i S LR       (41) 

The covariance between any two limit-state functions is 
2cov( , )i j LY Y   

according to Eq. (26), and the covariance matrix Σ  is then given by  

 

1

2

3

2 2 2
 

2 2 2

2 2 2

 

  

  

Y L L

L Y L

L L Y

  

  

  

 
 

  
 
 
 

Σ  (42) 

The design variables are 
1 2 3

( , , )S S S  d . Thus, the optimization model is 

created using Eq. (36). 

For the maximum system reliability, we just change the first line of the 

optimization model in Eq. (43) from (mi ;n  , )S L LR  
d

d to (ma ;x  , )S L LR  
d

d . Table 2 

shows the bounds of the probabilities of system failure obtained from the traditional 

method and the proposed method. The results indicate that the proposed method produces 
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much narrower bounds than those from the traditional method. The two bounds are also 

plotted in Fig. 7.   
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 (43) 

 

Table 2 System reliability analysis results  

Methods Bounds of 
,f sp  Interval width 

Traditional method   41.2696,  2.3002 10  
41.0306 10  

Proposed method   42.2891,  2.30 10  
40.0109 10  

Exact                        
42.2950 10  

 

The true value of the probability of system failure is also provided in both Table 2 

and Fig. 7, and it is calculated as if all the distributions of 1S , 2S , 3S , and L  were 

known. Note that in reality, both component designers and system designers only know 

some of the distributions. Even though the exact value may never be known, we use it to 

verify the accuracy of the proposed method. As indicated by the results, the probability 

bounds from the proposed method do contain the exact value. To easily show the 

accuracy, we also use the percentage errors of the lower and upper bounds of the 

probabilities of system failure relative to the true value. The errors of the traditional and 
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proposed methods are [ 44.68%,0.23%]  and [ 0.26%,0.22%] , respectively. They are 

also shown in Fig. 7. 

 

 
Figure 7 Bounds of probabilities of system failure 

 

4.2 EXAMPLE 2: THREE IDENTICAL COMPONENTS SHARING THE SAME 

LOAD 

The system configuration is the same as that in Example 1. The three components 

are also subjected to the same load L . But the three components are identical here. The 

component resistance is known to the component designers, and its distribution is 

2~ (4000,130 ) kNS N . The load L  is known to both component designers and system 

designers, and its distribution is 2~ (2400,450 ) kNL N . The probability of failure of the 

Proposed Method 

Accurate value 

Traditional Method 

p
f,S

 [-44.68%,0.23%] 

[-0.26%,0.22%] 



 

 

91 

component obtained from the component supplier is 
43.1789 10fp    and is provided 

to the system designers. In addition, the system designers estimate that the factors of 

safety of the component are between 1.5 and 2.2 and that the coefficient of variation of 

component resistance is between 0.03 and 0.15. The information available to the system 

designers of the new design is summarized in Table 3. 

 

Table 3 Information available to the designers of the new product 

Known information Value 

Probability of component failure 
,1fp   43.1789 10  

Probability of component failure 
,2fp  43.1789 10  

Probability of component failure 
,3fp  43.1789 10  

Distribution of system load L   2(2400,450 ) kNN   

Factor of safety for component 1 
,1sn   [1.5,2.2]  

Factor of safety for component 2 
,2sn  [1.5,2.2]  

Factor of safety for component 3 
,3sn  [1.5,2.2]  

Coefficient of variation of resistance of component 1 1c   [0.03,0.15]  

Coefficient of variation of resistance of component 2 2c  [0.03,0.15]  

Coefficient of variation of resistance of component 3 3c  [0.03,0.15]  

 

For the system designers of the new product, the task is to estimate the system 

reliability of the new product using the information in Table 3. The simplified free-body 

diagrams of the three components are the same as that in Example 1, as shown in Fig. 6.  

The component limit-state functions are 1 2 3Y Y Y L S     according to Eq. 

(39). Plugging their limit-state functions into Eqs. (40) through Eq. (43), we obtain the 

optimization model as follows.  
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 (44) 

For the maximum system reliability, we just change the first line of the 

optimization model in Eq. (44) from (mi ;n  , )S L LR  
d

d to (ma ;x  , )S L LR  
d

d . Table 4 

shows the bounds of the probabilities of system failure obtained from the traditional 

method and the proposed method. The results also indicate that the proposed method 

produces narrower bounds than those from the traditional method. The two bounds are 

also plotted in Fig. 8.    

The exact (true) value of the probability of system failure is also provided in both 

Table 4 and Fig. 8. The exact value is calculated as if the distributions of S  and L  were 

known. As indicated by the results, the bounds of the probability of system failure from 

the proposed method do contain the exact value of the probability of system failure. The 

relative errors of the two methods are [ 48.10%,55.65%]  and [ 3.52%,54.64%]  as 

shown in Fig. 8. 
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Table 4 System reliability analysis results  

Methods Bounds of 
,f sp  Interval width 

Traditional method   43.1789,  9.5337 10  46.3548 10  

Proposed method   45.9094,9.4721 10  43.5627 10  

Exact                        46.1252 10  

 

 

 
Figure 8 Bounds of probabilities of system failure 

 

4.3 EXAMPLE 3: TWO DIFFERENT COMPONENTS SHARING DIFFERENT 

LOADS 

Two design concepts for a hoisting device with a load L  are generated. They are 

shown in Fig. 9. Cables 1 and 2 are used in design concept 1 while cables 3 and 4 are 

used in design concept 2. All the cables are supplied by different companies. Both 

Traditional Method Proposed Method 

  

Accurate value 

p
f,S

 [-48.10%,55.65%] [-3.52%,54.64%] 
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reliability and cost are two major factors for choosing one design concept between the 

two. The cost of design concept 2 is estimated 20% cheaper than that of design concept 1 

because the components in design concept 2 are cheaper. The distribution of the weight 

of the block 2~ (1500,160 ) kNL N  is known to the system designers of the new hoisting 

device. The resistances of the two cables used in design concept 1 are only known to the 

component designers, and they are independently distributed with 2

1 ~ (1200,100 ) kNS N  

and 2

2 ~ (2500,250 ) kNS N . Using the distributions, the component designers estimate 

the probabilities of failure of the two cables are 1

4

, 2.2078 10fp    and 

2

4

, 3.7709 10fp   , and the results are provided to the system designers of the new 

product.  

For design concept 2, the slope is 30  , and the coefficient of kinetic friction 

between the block and surface is 0.2R  ; they are known to system designers. The 

resistances of the two cables are only known to the component designers, and their 

distributions are 2

3 ~ (600,65 ) kNS N  and 2

4 ~ (1220,140 ) kNS N . The two random 

variables are independent. The probabilities of failure of the two cables obtained from the 

component design are 
4

,3 1.9475 10fp    and 
4

,4 2.5523 10fp   , and they are also 

provided to the system designers of the new product. In addition, for both concepts of the 

new product, the system designers estimate that the factors of safety of all the cables are 

between 1.5 and 2.5 and that the coefficients of variation of component resistances are 

between 0.08 and 0.2. The information available to the system designers of the two 

design concepts is summarized in Tables 5 and 6, respectively. 
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Figure 9 Two components sharing different loads 

 

Table 5 Information available for design concept 1 

Known information Value 

Probability of component failure 
,1fp  42.2078 10  

Probability of component failure 
,2fp  43.7709 10  

Distribution of system load L   2(1500,160 ) kNN   

Factor of safety for component 1 
,1sn   [1.5,2.5]  

Factor of safety for component 2 
,2sn  [1.5,2.5]  

Coefficient of variation of resistance of component 1 1c   [0.08,0.20]  

Coefficient of variation of resistance of component 2 2c  [0.08,0.20]  

 

The simplified free-body diagram of design concept 1 is shown in Fig. 10.  

 

Figure 10 Simplified free-body diagrams of design concept 1 
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Table 6 Information available for design concept 2 

Known information Value 

Probability of component failure 
,3fp  41.9475 10  

Probability of component failure 
,4fp  42.5523 10  

Distribution of system load L   2(1500,160 ) kNN   

Factor of safety for component 1 
,3sn   [1.5,2.5]  

Factor of safety for component 2 
,4sn  [1.5,2.5]  

Coefficients of variation of resistance of component 1 3c   [0.08,0.20]  

Coefficients of variation of resistance of component 2 4c  [0.08,0.20]  

Slope 30   

Coefficient of friction  0.2R    

 

We have   

 
1

2

0.5L L

L L





  (45) 

The limit-state functions of the two cables in concept 1 are given by 

 
1 1

2 2

0.5Y L S

Y L S

 


 
  (46) 

The simplified free-body diagram of design concept 2 is shown in Fig. 11.  

 

 

Figure 11 Simplified free-body diagrams of design concept 2 
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Based on force equilibrium, we obtain 
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 (47) 

The limit-state functions of the two cables are then given by 

 
3 3
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  (48) 

The general limit-state function of the four cables for both design concepts is 

therefore 

 i i iY w L S   (49) 

where 1,2,3,4i  .  

The system reliability of design concept 1 is then given by 

 
1

0

1 2 1 1Pr( 0,  0) ( )dSR Y Y f

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where 1 2 11 1( ,  ) , )~ (Y Y N μ ΣY . The mean function of component resistance 
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The covariance between the two limit-state functions is 2

1 2 1 2cov( , ) LY Y w w  

according to Eq. (26), and the covariance matrix 1Σ  is then given by  
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The design variables are 
1 21 ( , )S S d . Thus, the optimization model of concept 

1 is created using Eq. (36). 
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 (53) 

where 1 0.5w   and 2 1w   from Eq. (45). For the maximum system reliability, we just 

change the first line of the optimization model in Eq. (53) from 
1

1
1(mi ;n  , )S L LR  

d
d to 

1
1

1(ma ;x  , )S L LR  
d

d .  

For design concept 2, the optimization model is similar to that in Eq. (53) with the 

following modifications: (1) change design variables from 

1 21 ( , )S S d to
3 42 ( , )S S d , (2) change component reliabilities from 1R  and 2R  to 
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3R  and 4R , and (3) change 1w  and 2w  to 3w  and 4w , where  3 sin 'cos / 3w      

and  4 2 sin 'cos / 3w      according to Eq. (47).  

Table 7 shows the bounds of the probabilities of system failure obtained from the 

traditional method and the proposed method for the two design concepts. The results not 

only indicate that the proposed method produces much narrower bounds for the 

probabilities of system failure than those from the traditional method, but also 

demonstrate the feasibility of the proposed method to assist the system designers to select 

a better concept with respect to reliability. The bounds of the two concepts are plotted in 

Fig. 12. It shows that design concept 2 is more reliable than design concept 1. This is 

because the probability of system failure of design concept 2 is lower than that of design 

concept 1 using proposed method. It is hard, however, to make decisions using the 

traditional method as the bounds for the probabilities of system failure of the two design 

concepts are wide and overlap as shown in Fig. 12. Thus, with the new system reliability 

analysis, the system designers may select design concept 2 because it has higher 

reliability and lower cost.   

 

Table 7 System failure analysis results of the two concepts for the new system 

Concepts Methods Bounds of 
,f sp  Interval 

width 
Exact value 

Concept 1 

Traditional 

method 
  43.7709 5.9779,  10  

42.2070 10  

45.9498 10  
Proposed 

method 
  45.8877 5.9769,  10  

40.0892 10  

Concept 2 

Traditional 

method 
  42.5523 4.4993,  10           

41.9470 10  

44.4931 10  
Proposed 

method 
  44.4354 4.4987,  10  

40.0633 10  
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Figure 12 Bounds of probabilities of system failure 

 

The exact (true) value of the probability of system failure of each concept is also 

provided in Table 7. The exact value of design concept 1 is calculated as if all the 

distributions of 1S , 2S , and L  were known; the exact value of design concept 2 is 

calculated as if all the distributions, 3S , 4S , and L , were known. As indicated by the 

results, the bounds of the probabilities of system failure using proposed method do 

contain the exact values of the probabilities of system failure.  
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4.4 SUMMARY OF THE EXAMPLES 

The proposed method has produced narrow system reliability bounds where the 

true system reliability resides. The examples also demonstrate the effect of dependent 

component states on system reliability. In Examples 1 and 3, the true probabilities of 

system failure are close to the upper bounds of the probabilities of system failure that are 

from independent component assumption. This means that the effect of the dependency is 

not significant. For Example 1, the coefficients of correlation between component 1 and 

2, 2 and 3, and 1 and 3 are 0.3025, 0.2727, and 0.2219, receptively. For Example 3, the 

coefficients of correlation between component 1 and 2 of concept 1, and component 3 

and 4 of concept 2 are 0.3367 and 0.2207, receptively. These small coefficients of 

correlation indicate weak component dependency. Even so, it is risky for the designers of 

a new product to make decisions by treating components as independent states, because 

they may not know the weak dependency in advance during the conceptual design stage.  

The result of Example 2 clearly shows the significant impact of dependent 

components on system reliability because the true probability of system failure is far 

away from the upper bound that is produced from the assumption of independent 

components. The coefficients of correlation between the three components are all 0.9230, 

which indicates the strong correlation between the components. 
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5. DISCUSSIONS ABOUT THE UNCERTAINTY IN INPUT VARIABLES 

The uncertainty in input variables will also affect the accuracy of reliability 

analysis [36, 37]. The proposed method can actually accommodate the uncertainty in 

some of its input variables, including the component factors of safety and coefficients of 

variation of component strengths. The system designers know neither their nominal 

values nor the uncertainty associated with these input variables. By treating the unknown 

variables as either design variables or constraints in the system reliability model in Eqs. 

(19) and (34), the proposed method can identify the likely values of the input variables 

corresponding to the minimum and maximum system reliabilities.  

The uncertainty in other input variables is not considered in the proposed system 

reliability model. They include component probabilities of failure, the distribution of 

system load, and the types of component strength distributions. The uncertainty in these 

input variables may be in different forms due to different reasons. For example, if the 

samples for the system load are not sufficient, there might be several possible candidate 

distributions, and the distribution parameters themselves might also be random variables 

[37]. In an extreme case, if the data are too scarce, the load may be described by only an 

interval [38]. The component reliabilities may also be intervals because component 

suppliers may report percentage errors for their component reliabilities.    

The proposed system reliability model in Eq. (19) can then be modified to account 

for the uncertainty in input variables. If several candidate distributions are possible for 

random input variables, the methodology for imprecise random variables [37] can be 

incorporated. If the uncertainty in the dependence between input variables has to be 
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considered, the Bayesian approach [36] may be applied. If the uncertainty is in the form 

of intervals, denoted by y , the system reliability in Eq. (19) can be modified as  
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 (54) 

In the above model, one more loop is added for identifying the extreme values 

with respect to interval variables. Due to the uncertainty in the input variables, the system 

reliability bounds produced will be wider, and the computational cost will also be higher. 

Efficient numerical algorithms are needed to solve the optimization model. 
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6. CONCLUSIONS 

This work is concerned with the reliability prediction of a new product whose 

components are independently designed, tested, and manufactured by different suppliers. 

A system reliability method is developed to predict the reliability of the new product in 

the early design stage using the component reliabilities provided by component suppliers. 

The method is based on the strength-stress interference model that takes the dependence 

between components into consideration, thereby eliminating the assumption of 

independent component failures. As a result, the predicted system reliability bounds are 

much narrower than those from the assumption of independent component failures. This 

study has shown the feasibility of considering dependent component failures for 

predicting system reliability bounds in early design stage. The proposed method provides 

reliability predictions for decision making on eliminating or keeping design concepts 

during the conceptual design stage. It is useful if a concept selection method, for 

example, the Pugh Chart method, requires all design concepts be ranked with respect to 

performance criteria, including reliability. For some situations, however, designers of the 

new product are only interested in if the reliability requirement could be satisfied. Then 

the proposed method is not necessary once the minimum reliability (the lower bound) 

from the independent component assumption in Eq. (5) reaches the reliability target. 

The proposed method is applicable for time invariant reliability problems. It can 

be extended to time variant problems in the future work. Time-dependent reliability could 

be addressed by considering time-dependent component stresses and strengths. The major 

research task is to obtain the autocorrelation function of the unknown stochastic 
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processes of generalized component strengths. The ultimate goal is to evaluate the time-

dependent system reliability for a given period of time. 

As discussed in Sec. 5, uncertainty may also exist in the input variables required 

by the proposed system reliability method. The future work will be the development of 

computational methods that can efficiently solve the optimization models with the extra 

loop that accommodates the uncertainty in input variables. 

This work assumes each component has only one failure mode. For a component 

with multiple failure modes, the component designers may use multiple limit-state 

functions to evaluate the reliability of the component. Although the component reliability 

may be reported to the designers of the new product, they however know neither the 

failure modes nor the limit-state functions of the component. A possible way to deal with 

this problem is to model the multiple failure modes of the component using a single 

equivalent limit-state function that can represent the limit-state functions of the multiple 

failure modes. Then the optimization models proposed in this work could be applied. 

The proposed method is applied to series systems. Its application to parallel 

systems and mix systems is also a possible research task in the future work. Our future 

work will also deal with situations where a new product is subjected to multiple forces.  
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ABSTRACT 

Incomplete component information may lead to wide bounds for system reliability 

prediction, making decisions difficult in the system design stage. The missing 

information is often the component dependence, which is a crucial source for the exact 

system reliability estimation. Component dependence exists due to the shared 

environment and operating conditions. But it is difficult for system designers to model 

component dependence because they may have limited information about component 

design details if outside suppliers designed and manufactured the components. This 

research intends to produce narrow system reliability bounds with a new way for system 

designers to consider the component dependence implicitly and automatically without 

knowing component design details. The proposed method is applicable for a wide range 

of applications where the time-dependent system stochastic load is shared by components 

of the system. Simulation is used to obtain the extreme value of the system load for a 

given period of time, and optimization is employed to estimate the system reliability 

bounds, which are narrower than those from the traditional method with independent 
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component assumption and completely dependent component assumption. Examples are 

provided to demonstrate the proposed method. 

Keywords: System reliability; Incomplete information; Time-dependent loading; 

Optimization 

 



 

 

112 

1. INTRODUCTION 

System reliability is the probability that a system performs its intended function 

within a given period of time under specified conditions [1]. The task of system 

reliability analysis is to obtain such a probability. Accurately predicting system reliability 

is challenging due to limited information. Without complete information, assumptions are 

usually made and may lead to a large error in the system reliability prediction. For 

example, system reliability could be estimated within an interval determined by its 

minimum and maximum bounds [2-4]. When the width of the bounds is too large, it will 

be difficult to make system level decisions, such as the selection of design concepts, 

lifecycle cost assessment, warranty policy, and maintenance planning.   

The complete information of exact system reliability estimation includes not only 

the system configuration and component reliabilities, but also the statistical relationship 

(dependence) between components. Such dependence exists once the components are 

assembled and are in operation in a system. For example, components may be operated in 

the same environment (e.g. temperature and humidity), they may share the same load 

(e.g. pressure and power), they may deform dependently due to geometric constraints, 

and the output of one component may be the input of others.  

Knowing component dependence information, however, requires the details of 

component designs, such as dimensions of a component and its material properties. Such 

detail information is seldom available to system designers. One of the major reasons is 

due to outsourced components. It is a practical business mode for a product (system) to 

have its components ordered from suppliers, who design, test, and manufacture the 

components individually and independently. The detail design information of 
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components is usually proprietary to component suppliers. For example, the compressors 

and condensers of a refrigeration system may be supplied by other companies. When 

these components are assembled together in the refrigeration system, their states are 

statistically dependent. It is, however, not easy for refrigeration system designers to 

accommodate component dependence because they do not know the detail design 

information of the components – the information contains commercial and confidential 

data that belong to the component suppliers, who may be reluctant to share the 

information with the system designers.  

If the joint probability density of all the component states is not available, the 

system reliability could be estimated with its bounds min max,S SR R   . 
min

SR  is the minimum 

system reliability and 
max

SR  is the maximum system reliability. To assess the reliability 

bounds, marginal component probabilities and joint probabilities are usually needed. The 

marginal component probability is the component probability, such as Pr( )aC  for 

component a . The joint probability is for at least two components, for example, for 

components a and b, the joint probability is Pr( )a bC C ; for components a, b, and c, the 

joint probability is Pr( )a b cC C C . With no joint probabilities involved, Boole [5] proposed 

an equation for series systems to estimate the bounds of system probability with the only 

information of component probabilities. This method will be elaborated in Section 2. 

Although using only component probabilities is easy, the obtained reliability bounds may 

be too wide for practical applications. 

Efforts have been made to reduce the width of reliability bounds, especially in 

structural reliability engineering. With the models developed from physics principles, the 
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joint probabilities become available [6] and thus lead to narrower system reliability 

intervals. Hohenbichler and Rackwitz [7] employed the first-order approximation to 

narrow the bounds of system reliability. In their method, components’ detail information 

such as limit-state functions was required. Kounias [8], Hunter [9], and Ditlevsen [2] also 

obtained narrower reliability bounds for series systems. Their methods require both 

component probabilities Pr( )aC  and bicomponent probabilities Pr( )a bC C . Zhang [10] 

proposed a general methodology by incorporating high order joint probabilities such as 

Pr( )a b cC C C  and Pr( )a b c dC C C C . 

Some of the above methods have the order-dependency problem, which means the 

results of system reliability dependent on the order of components. Besides, the 

computations are expensive because every possible ordering alternative needs to be 

considered. In order to deal with these drawbacks, Song and Kiureghian [11] developed a 

linear programming (LP) methodology, which not only has no component ordering 

restrictions but also could incorporate inequality constraints as well as incomplete 

component probabilities. However, the problem size expanded exponentially with the 

increasing of the number of components, which dramatically deteriorates the efficiency 

of the LP method. Ramachandran [4] reviewed the techniques for narrower bounds in 

structural reliability published before 2004. Domyancic and Millwater [12] summarized 

multiple popular computational methods for series systems, such as the first order 

bounds, Ditlevsen bounds, and LP bounds. All of the above methods require the detail 

information of components and are not applicable for systems whose component details 

are unknown to system designers.   
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To address the above problem, Cheng and Du [13] performed a feasibility study 

and demonstrated the possibility of producing narrower system reliability bounds using a 

physics-based method. In their method, component reliabilities and distribution types of 

component resistances were provided by component suppliers. With the limited 

information from component suppliers, along with the knowledge of the system load and 

other information estimated by system designers, narrower system reliability bounds 

were produced. This method, however, is limited to only time-independent problems, for 

which the system reliability is constant and does not change over time.  

In this work, we extend the aforementioned time-independent method [13] to 

time-dependent system reliability analysis for systems that are subject to a time-

dependent stochastic system load. The new method can be applied to more common 

engineering applications because it can answer the question about the system reliability 

with respect to time; for example, what is the probability that a system can still work 

without failure after five years? A general model is developed to implicitly and 

automatically incorporate component dependence. With this general model, system 

designers do not need to know component resistance distributions (both distribution types 

and parameters), component failure modes, and other detail information such as 

dimensions. Simulation is used to obtain the extreme value of the system stochastic 

process load for a given period of time, and optimization models are established to 

estimate the system reliability interval. The width of the system reliability interval is then 

reduced significantly.   

Note that although there are many existing methods for incomplete information 

for reliability analysis, the new method is different from the existing ones. For example, 



 

 

116 

the existing methods deal with reliability analysis with incomplete information in input 

variables of a limit-state function, such as a small number of samples [14], interval 

samples [15, 16], input variables in the form of both finite samples and probability 

distributions [17], input random variables with only their means and covariance matrix 

[18, 19], and other formats of incomplete information of input variables, including 

marginal distributions, partial joint distributions, bounds, and higher moments [20]. In 

existing methods, all component limit-state functions are known; but in the new method, 

component limit-state functions are unknown and are assumed by system designers. In 

existing methods, partial information about all input variables is known; but in the new 

method no information is available for many input variables (such as dimensions and 

structure of a component). 

In Section 2, the system reliability modeling is reviewed. In Section 3, the new 

system reliability methodology with dependent components and time-dependent loading 

is elaborated. Following that, two examples are presented in Section 4, and conclusions 

are given in Section 5. 
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2. REVIEW OF SYSTEM RELIABILITY MODELING 

From a statistical point of view, reliability at time instant t is estimated using the 

time to failure T  by 

 ( ) Pr( )R t T t    (1) 

Reliability can also be estimated by a physics-based method with a limit-state 

function ( )g  . A limit-state function specifies a condition of a component, beyond which 

the component no longer fulfills its intended function [21]. ( ) 0g    indicates that the 

component is able to function properly, and then the reliability of the component is 

calculated by 

 Pr( ( ) 0)R g X  (2) 

where X is a vector of random variables. The above reliability does not change over time 

because the limit-state function is time independent.  

When the limit-state function is given by ( ,  ( ))G g  X Y , where Y is a vector of 

time-dependent stochastic process, which varies with time  , the reliability will be time 

dependent. It is calculated by 

  ( ) Pr ( ,  ( )) 0,  for all R t g t   X Y   (3) 

Component designers can use Eq. (2) or (3) to compute component reliabilities if 

the limit-state functions are known. After the component reliabilities are known, system 

designers perform system reliability analysis.  

Three types of systems are commonly encountered and they are series systems, 

parallel systems, and mix systems. In this work we focus on series systems since they are 

most commonly used in mechanical applications. As shown in Fig. 1, in a series system, 

if one component fails, the entire system will fail. For instance, a speed reducer system is 
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a series system, which consists of components, such as a belt, drums, shafts, gears, keys, 

and bearings. If at least one of these components fails, the speed reducer will not work. 

 

 

Figure 1 Series system 

 

Suppose the reliabilities of components 1 2,  ,  ..., nC C C  are 1 2( ),  ( ),  ..., ( )nR t R t R t , 

respectively. Knowing all the component reliabilities is not sufficient for the accurate 

system reliability prediction. As discussed previously, the information about component 

dependence is also required. When such information is not available due to outsourced 

components, a precise system reliability prediction will not be possible. However, if the 

component states are assumed to be independent, the system reliability is given by 

 
1

( ) ( )
n

S i
i

R t R t


   (4) 

The above independence assumption gives the worst-case system reliability and 

may result in large errors because of strong component dependence in many mechanical 

systems. To this end, the best-case system reliability may also be considered. It is the 

minimal component reliability among the reliabilities of all components. It is obtained 

from the assumption that all component states are completely dependent. The system 

reliability bounds are then given by [22] 

 
1

( ) ( ) min{ ( )},  1,2,...,
n

i S i
i

R t R t R t i n


      (5) 
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The interval of the probability of system failure is given by 

  
1

max ( ) ( ) 1 (1 ( )),  1,2,..., 
n

fi fS fi
i

p t p t p t i n


      (6) 

where ( )fSp t  is the probability of system failure in the period of time [0, ]t  and is equal 

to 1 ( )SR t ; ( )fip t  is the probability of component failure and is equal to 1 ( )iR t . As 

discussed previously, although Eqs. (5) and (6) are simple to use, the width of the system 

reliability interval is usually too wide, and the lower bound is too conservative.  

Our previous study [13] demonstrates the feasibility of producing narrower 

system reliability bounds for systems with time-independent loads. The previous study is 

limited to time-independent problems, and we extend it to time-dependent problems in 

this work. Details are discussed in Section 3. 
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3. SYSTEM RELIABILITY ANALYSIS WITH DEPENDENT COMPONENTS 

AND TIME-DEPENDENT LOADING 

The objective of this work is to accurately predict the reliability of systems whose 

components are designed and manufactured independently by outside suppliers. This 

study focuses on systems that are subject to time-dependent stochastic loading. The 

accuracy is achieved with narrower system reliability bounds by incorporating the 

component failure dependence. 

3.1 OVERVIEW    

The assumptions of this work are summarized below. 

(1) The new product is a series system. Series systems are widely used in 

mechanical applications. For example, a speed reducer is a series system, which consists 

of gears, shafts, bearing, and other components. If one component fails, the system will 

not function properly. The same principle of the new method is also applicable for 

parallel systems or mix systems with parallel and series subsystems. Details will be 

discussed in Sec. 3.2.  

(2) Component failures are due to excessive load. In other words, if the load of a 

component is greater than its resistance, the component fails. Both the load and resistance 

here are in general sense. For example, if the stress of a component is greater than the 

yield strength, a failure occurs; if the deflection of a component is greater than the 

allowable deflection, a failure occurs. The general load and resistance can therefore be 

stresses and strengths, or demand and capacity, respectively. 

(3) The load and resistance of a component are statistically independent. The 

assumption comes from the fact that the material strength is usually independent from 

component structures and load. For special cases when the assumption does not hold, the 
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predicted reliability bounds may or may not cover the true reliability. The new method 

may not be applicable for the special cases. 

(4) Component reliabilities are provided by component designers to system 

designers. If some of the component suppliers are not able to provide their component 

reliability information, the system designers may request relevant information from the 

supplier and perform necessary testing. Then they can estimate the component reliability 

or its range.    

(5) System designers may or may not know the distribution types of component 

resistances, and they do not know the distribution parameters of component resistances. 

Recall that the component resistance is in a general sense and that component details may 

be embedded in the component resistance. Without knowing the component details, it 

may not be possible for system designers obtain the distribution parameters of component 

resistances. Estimating the unknown distribution parameters is the key issue that this 

study addresses.   

(6) The system load is known to system designers. It is a time-dependent 

stochastic process. The component load can be obtained through a system-level analysis, 

such as the use of free-body diagrams. This analysis will be discussed in Sec.3.2. If the 

system load is time independent, the method in Ref. [13] can be directly used.  

(7) System designers may also have other knowledge about component design, 

such as the range of the factor of safety of a component. To obtain the range, system 

designers may consult with design handbooks and manuals, rely on their own design 

experience, or request such information from the component supplier.  
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The proposed method has three tasks at the system level. The first task is to 

reconstruct component limit-state functions using the stress-strength interference model. 

The component limit-state functions are time dependent because of the stochastic process 

of the system load. The component loads are functions of the system load. This task deals 

with unknown information about component design. 

The second task is to find the distribution of the extreme value of the system load. 

The purpose of this task is to convert the time-dependent component limit-state functions 

into their time-invariant counterparts, and the conversion requires the extreme system 

load. Simulation is used to obtain the samples of time-dependent system load, and 

saddlepoint approximation (SPA) is used to estimate the cumulative distribution function 

(CDF) of the extreme system load.   

The last task is to establish system reliability optimization models. The objective 

of the optimization is to find the probability of system failure. The design variables are 

unknown parameters of the distribution of general component resistances. Note that 

component design details may be embedded in the general component resistances, but are 

not required to be found. This safeguards the proprietary information of component 

suppliers. The constraint functions are those such as component reliabilities and factors 

of safety of the components. If no knowledge is available about the distribution types of 

component resistances, system designers may assume the types, for example, a Weibull 

distribution. The Weibull distribution is selected for two reasons. First, the Weibull 

distribution is used widely in industry. The Weibull analysis is a standard tool in 

commercial software for data analysis, and engineers are familiar with the distribution. 

Second, the Weibull distribution is capable of modeling many types of sample data and 
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could cover a number of distributions by changing its distribution parameters. For 

example, if the shape parameter is less than 1, the distribution is close to an exponential 

distribution, which can describe the early failures or infant mortality; if the shape 

parameter is equal to 2, the distribution becomes a Rayleigh distribution, which indicates 

the risk of wear-out failure increases steadily over the product’s lifetime; if the shape 

parameter is between 3 and 4, the distribution is approximate to a normal distribution, 

which can model rapid wear-out failures during the final period of product life; if the 

shape parameter is greater than 10, the distribution is similar to an extreme value 

distribution, which can also model the final period of product life [23, 24]. With an 

unknown distribution type, assuming a distribution type may affect the system reliability 

bounds reduction. The Weibull distribution is the first choice due to above reasons. The 

other way is to assume a number of possible distribution types, and then find the extreme 

values from the results of all the assumed distribution types.  

A flowchart of the proposed methodology is shown in Fig. 2. 

3.2 CONSTRUCTION OF COMPONENT LIMIT-STATE FUNCTIONS 

The objective of this task is to reconstruct component limit-state functions, which 

provide an effective way to deal with incomplete information about component design. 

Let the system load be ( )L  , where [0, ]t  , and component load be ( )iw L   for 

component i . Constant iw  indicates the load that component i  shares. iw  can be 

determined by a system analysis, such as a force analysis by a simplified free-body 

diagram of component i  in Fig. 3, where ( )iL   is the load of the component and is equal 

to ( )iw L  . 
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Figure 2 Flowchart of the proposed methodology 

 

 

 

Figure 3 Simplified free-body diagram of component i   
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Using the strength-stress interference theory, system designers reconstruct the 

component limit-state function as follows:  

 ( ),  ii iG S w L t      (7) 

where 
iS   is the allowable component resistance. Dividing by 

iw , Eq. (7) is rewritten as  

 ( ),  i iG S L t     (8) 

where 
i i i

S S w , and 
i i i

G G w . 
iS  is the general resistance of the component. It is 

usually a function of component details, such as the actual material strength and 

component dimensions, which may be proprietary to the component supplier. Such 

proprietary details do not explicitly appear in Eq. (8), and consequently, the proprietary 

information is safeguarded.  

In this work, the equation i iG S L   is a general representation of the limit-state 

function of a component. iS  is the general resistance of the component and L  is the 

system load. iG  is therefore a linear function of L .  

Eq. (8) can represent an actual component limit-state function that is not linear 

with respect to L . If the load is in a nonlinear form ( )h L , then the actual component 

limit-state function established by a component supplier is 

 ( )i iG S h L   (9) 

We can solve for L by letting ( ) 0iS h L   and then express L  as a function of iS  

given by 

 ( )iL W S  (10) 

Then the limit-state function iG  can be modified as 

 ( )i iG W S L    (11) 
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where ( )iW S  is the new general resistance. Then we obtain a new component limit-state 

function with a linear form of L . This new component limit-state function on the 

component supplier side is consistent with the one in Eq. (8) assumed by system 

designers. 

With the assumption that the load ( )L   and resistance 
iS  are independent in Eq. 

(8), the probability of component failure is then given by 

 

 

 

max

max

1

0

( ) Pr ( ),  for any [0, ]

         Pr

         ( ) ( )
i

fi i

i

S L

p t S L t

S L

F l dF l

   

 

 

  (12) 

where ( )
iSF   is the CDF of iS , and 

max
( )LF   is the CDF of the maximum system load 

maxL . If system designers knew the distribution of 
iS , they could use Eq. (12) to 

reproduce the same component reliability as the one supplied by component designers.  

For a series system, with all the component limit-state functions available, the 

system failure region is determined by the union 1 2{ 0 0 ... 0}nG G G   . Then the 

probability of system failure is given by 

 

 
 

min max

max
1

min max

1

0

( ) Pr

         Pr

          = ( ) ( )

n

fS i
i

S L

p t S L

S L

F l dF l



 

 



 (13) 

where minS  is the minimum general resistance of all the components.  The CDF of minS  is  
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min min

min

1

1

( ) Pr( )

1 Pr( )

1 Pr( )

1 1 ( )
i

S

n

i
i

n

S
i

F s S s

S s

S s

F s





 

  

  

    





 (14) 

Then the probability of series system failure is given by 

   max

1

10

( ) 1 1 ( ) ( )
i

n

fS S L
i

p t F l dF l


      (15) 

Although we focus on series systems in this work, the methodologies could be 

extended to other system configurations. For a parallel system, given all the component 

limit-state functions, the system failure region is determined by the union 

1 2{ 0 0 ... 0}nG G G   . Then the probability of system failure is given by 

 

 
 

max max

max
1

max max

1

0

( ) Pr

         Pr

          = ( ) ( )

n

fS i
i

S L

p t S L

S L

F l dF l



 

 



 (16) 

where maxS  is the maximum general resistance of all the components.  The CDF of maxS  

is  

 
max max

1

( ) Pr( ) ( )
i

n

S S
i

F s S s F s


    (17) 

Then the probability of system failure is given by 

 
max

1

10

( ) ( ) ( )
i

n

fS S L
i

p t F l dF l


   (18) 

For a mix system, which is a combination of series and parallel subsystems, the 

equations for series subsystems in Eq. (15) and those for parallel subsystems in Eq. (18) 

can also be combined. For example, for a system in Fig. 4, we can first use Eq. (18) to 
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obtain the probability of failure of the parallel subsystem with components 
2C  and 

3C . 

Then the parallel subsystem could be viewed as a component C  in series with component 

1C . Then we can use Eq. (15) to obtain the probability of system failure.  

 

Figure 4 A mix system 

 

Note that no matter how complex the component limit-state functions are and no 

matter how many failure modes a component may have, system designers reconstruct 

only one component limit-state function as shown in Eq. (8), which is the difference 

between the general resistance and load. The reconstructed limit-state function is linear 

with respect to the two random variables. As a result, the computation is very efficient. 

The proposed method does not call any original component limit-state functions, and no 

complex analyses, such as finite element analysis, are needed. The optimization process 

only requires evaluating Eq. (15) or Eq. (18), which involves a simple integral. 

For any system, if the CDF of maxL  and the CDFs of iS  ( 1,2, ,i n  ) were 

available, fSp  would then be obtained. As discussed previously, system designers only 

know the system load and they do not know the distributions of component resistances. 
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Thus for a series system, both 
max

( )LF l  and ( )
iSF s  are unknown in Eq. (15). As will be 

discussed in Section 3.3, simulation is used to obtain 
max

( )LF l . And as will be shown in 

Section 3.4, optimization is used to deal with the unknown CDF ( )
iSF s . 

3.3 DISTRIBUTION OF THE EXTREME SYSTEM LOADING 
maxL  

The objective of this task is to find the CDF of the extreme system load 
maxL  for a 

given period of time [0, ]t . Time-dependent stochastic process loading is commonly 

encountered. For example, a ship is subjected to stochastic wave loading that varies over 

time, a hydrokinetic turbine blade is subjected to a time-variant river flow loading, and a 

wind turbine is subjected to time-dependent wind loading. System designers first draw 

samples of maxL  by simulation and then find the CDF of maxL  by saddlepoint 

approximation. 

Finding the distribution of the extreme value of a general stochastic process is a 

challenging task [25]. Even for a commonly used Gaussian process, there is no analytical 

form for such a distribution. A general stochastic process loading ( )L   can be 

approximated by the Karhunen-Loève (K-L) expansion [26-28]. After ( )L   is expanded 

with respect to a number of random variables, samples are generated for the random 

variables, leading to trajectories (sample realizations) of ( )L  . For each trajectory, its 

maximum value is found. Then the samples of maxL  are available.  

Now we discuss a special case where ( )L   is a Gaussian process. The expansion 

optimal linear estimation method (EOLE) is applied to generate samples. EOLE is a 

special case of the K-L expansion [29] for a Gaussian process. 



 

 

130 

Suppose
1 2( ) ~ GP( ( ), ( ), ( , ))L L LL         , where GP stands for a Gaussian process, 

( )L   is the mean function, ( )L   is the standard deviation function, and 
1 2( , )L    is 

the function of the autocorrelation coefficient. After discretizing [0, ]t  into m points 

 
1,2, ,i i m


 

, ( )L   is expanded as [30]  

 
1

( ) ( ) ( ) ( )
p

Ti
L L i L

i
i

U
L      



   φ ρ    (19)                                       

where i  and T

i  are the eigenvalues and eigenvectors of the correlation matrix ρ  with 

element ( , )ij i j    , ,  1,2,...,i j m .  1( ) ( , ),..., ( , )
T

L m      ρ , and p m  is the 

number of terms of the expansion.  ( 1,2, )iU i p m   are independent standard normal 

random variables. Then the random samples of iU  are generated to reproduce sample 

trajectories of ( )L  . After j simulations, j trajectories as well as their maximum values 

are obtained. Therefore, samples of maxL  are available. With these samples, SPA is used 

to estimate the CDF of maxL . 

SPA is easy to use [31, 32] and accurate [33, 34] for the CDF approximation. The 

CDF estimation relies on the cumulant generating function (CGF). The power expansion 

of the CGF of maxL  is given by [31]  

 
max

1

( )
!

ir

L i
i

K k
i






   (20) 

where ik  is i -th cumulant.  In this work, we use the first four cumulants, which are given 

by [35]  
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 (21) 

where ( 1,2,3,4)rs r   is the sum of the r-th power of the samples. It is obtained by 

1

n
r

r i
i

s l


 .  

To obtain the CDF of 
maxL , we must find the saddlepoint 

s , which is the solution 

to the equation 

 
max max( )LK l               (22) 

where 
max

( )LK   is the first derivative of the CGF. After we obtain s , the CDF of maxL  is 

approximated by 

 
max max

1 1
( ) Pr( ) ( ) ( )( )LF l L l z z

z v
       (23) 

where 

  
max

1/2

sign( ) 2 ( )s s L sz l K         (24) 

 
max

1/2[ ( )]s L sv K     (25) 

where sign( ) 1, 1,  or 0s    , if the saddlepoint s  is positive, negative, or zero. 
max

( )LK   

is the second derivative of the CGF.  

Plugging 
max

( )LF l  into Eqs. (12) and (15), component reliabilities and system 

reliability with respect to time could be calculated if the CDFs of general component 
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resistances were known. In Section 3.4, optimization models are developed to obtain the 

probability of system failure bounds with unknown general component resistances. 

3.4 OPTIMIZATION MODEL OF SYSTEM RELIABILITY 

The goal of this task is to obtain narrower bounds of the probability of system 

failure, which are found by using optimization models. In this work, we use optimization 

merely as a numerical solver to find possible extreme values of the probability of system 

failure because it is easy to incorporate all information available by treating it as 

constraints in the optimization model.  

In our proposed optimization model, the design variables are the unknown 

distribution parameters of the general component resistances, denoted by d . Note that the 

system designers may or may not know the distribution types of the general component 

resistances. Thus, they may assume the distribution types. For example, if system 

designers know that the general component resistances follow normal distributions, the 

design variables in the optimization model will be means and standard deviations 

1 11( ,..., ) ( , ,..., , )
n nn S S S S    d dd . If system designers do not know the distribution 

types, they may use two parameter Weibull distributions, and then the design variables 

become shape parameters and scale parameters 
1 11( ,..., ) ( , ,..., , )

n nn S S S Sk k  d dd .  

The objective function of the optimization model is the probability of system 

failure in Eq. (15). It is denoted by 
max( ; )fSp Ld  and is a function of known system 

stochastic process extreme load maxL  obtained by simulation in Section 3.3 and unknown 

design variables d . Maximizing max( ; )fSp Ld  produces the maximum probability of 
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system failure max

fSp  while minimizing max( ; )fSp Ld  produces the minimum probability of 

system failure 
min

fSp .  

Multiple constraint functions are included in the optimization model. A 

probability of component failure gives an equality constraint. From Eq. (12), n  equality 

constraints are obtained by 

 
maxx

1

0
ma ( ) ( ) ,  1,2, .; .) .( ,

ii S L fih F l dF lL p i n  d  (26) 

Although the components’ actual factors of safety used by suppliers may not be 

provided, system designers may estimate their ranges. The factor of safety is defined as a 

ratio of average resistance to average load [36] (
isi S Ln   ). We use 

min

sin  and 
max

sin  to 

represent the minimum and maximum of the factors of safety, respectively. From 

mi ax

m

n m

ax;( )s ssii in nLn d , 2n inequality constraints are obtained by 

 
min

max max( ) ( ) 0, 1; ,2,; ,i si isg n n iL L n    d d  (27) 

 max max

max; ;( ) ( ) 0, 1, , ,2i sn siig n nL L ni     d d  (28) 

Besides, the coefficient of variation, which is defined as the ratio of standard 

deviation to the mean of component resistance (
i ii S Sc   ), may also be estimated by 

system designers. We use 
min

ic  and 
max

ic  to represent the minimum and maximum of the 

coefficient of variation, respectively.  From 
min max

max( );ii iLc c c d , other 2n inequality 

constraints are obtained by 

 m

min

ax m x2 a( ) ( ) 0, 1,2; ,; ,i n ii Lg L c c ni     d d  (29) 

 3 max max

max( ) ( ) 0, 1,; ; ,2,i n iig cL ncL i     d d  (30) 
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Then the optimization model for the minimum probability of system failure is  

 
max

1

0

min

max

mi

max

max

max max

max max

max max

3 max max

n

2

max

min  

subject to

( ) ( ) ,  1,2,...,

( ) ( )

( ; )

( ; )

; ;

; ;

; ;

0 

( ) ( ) 0

( ) ( ) 0

) (; ;( )

ii

i si

i n si

i

i

fS

S L fi

si

si

i n

i

i

in

p

h F

L

L

L L

L L

L L

l dF l p i n

g n n

g n n

g c c

g cL L c







  

  

  

  

  



d
d

d

d d

d d

d d

d d 0















 (31) 

For the maximum probability of system failure, we just change the objective 

function from max( ;min  )fSp L
d

d  to max( ;max  )fSp L
d

d  in Eq. (31). The two optimization 

models will produce the bounds of probability of system failure. The predicted 

probability of system failure bounds cover the exact probability of system failure if the 

exact design point, falls into the feasible region defined by the constraint functions. 

Therefore, system designers should carefully select the parameters (e.g. factors of safety 

and the coefficient of variation) for the constraint functions based on their experience, 

their expertise about component design, and the design standards in their specific areas. 

For example, the most important constraints are those on component factors of safety. If 

system designers know the specific area of the component design, they can consult with 

the design handbooks and manuals in that area and obtain the range of the component 

factor of safety. They may also rely on their own design experience to estimate the range 

of the component factor of safety. If it is difficult to estimate such a range, they may 

request such information from the component supplier. In some cases, this is possible 

because the component supplier only provides the range of the component factor of 

safety, not the exact value. In other cases, providing such information is mandatory for 
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the component supplier. If it is impossible for system designers to come up with a narrow 

range for the factor of safety, they may loosen the range at the cost of having wider 

system reliability bounds. 
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4. EXAMPLES 

Two examples are provided in this section. One is for a system with identical 

components and the other is for a system with different components. 

4.1 EXAMPLE 1: A SYSTEM CONSISTS OF IDENTICAL COMPONENTS 

As shown in Fig. 5, five identical components provided by a supplier are 

subjected to a same stochastic process load ( )L  . The distribution of the component 

resistance is 2~ (4000,130 ) kNS N . Component designers know the distribution type and 

parameters of the component resistance, while the system designers only know the 

distribution type. Both the component designers and system designers know the system 

load ( )L  , which is a Gaussian process with 
2

1 2~ GP(2500,350 , ( , )) kNLL    , in which 

2 2

1 2 2 1( , ) exp( ( ) )L        , 0.5  .  

 

 

Figure 5 Five identical components sharing same load 

 

Component designers can use a physics-based reliability approach to construct the 

limit-state function as 

  ( ),  0,G S L t      (32) 

As shown in Fig. 6, the CDFs of the maximum load maxL  with different periods of 

time [0,1] yr, [0,2] yr,..., [0,12] yr  are obtained by EOLE and SPA as discussed in 



 

 

137 

Section 3.3. The first curve is the CDF of 
maxL for time period [0,1] yr , and the last curve 

is the CDF of 
maxL for time period [0,12] yr . Since 

maxL  is the maximum value of load 

( )L   for a certain period of time, it is therefore a non-decreasing function of the duration 

of the period of time. For example, 
maxL  in five years is always greater than or equal to 

that in two years. It is the reason that the CDF curves of 
maxL shift to the right as the time 

interval increases. 

 

 

Figure 6 CDFs of maximum load maxL  

 

According to Eq. (12), with the CDFs of maxL  and the distribution of the 

component resistance S  available, component designers calculate the probability of 

component failure fCp , which is provided to system designers as shown in Table 1 and 

Fig. 7. Since the five components are identical, their probabilities of failure are the same. 
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Along with other information estimated by system designers, all the information available 

to the system designers is summarized in Table 2. 

 

Table 1 Probability of component failure with respect to time 

[0, ]t  (yr) [0,1]  [0,2]  [0,3]  [0,4]   [0,5]  [0,6]  

fCp ( 410 ) 1.7236    2.8982    4.1139 5.5065    6.6119 7.8197    

[0, ]t  (yr) [0,7]  [0,8]  [0,9]  [0,10]  [0,11]  [0,12]  

fCp ( 410 ) 9.1277 10.267    11.419 12.570    13.580 14.808 

 

 

Figure 7 Probability of component failure with respect to time 

 

For the system designers, the task is to assess the probability of system failure 

using the information in Table 2. In this example, the system designers know the 

distribution type of the component resistance, which is a normal distribution. Yet, they do 

not know the distribution parameters. System designers assume that the component 
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resistance follow normal distribution  
2~ ( , ) kNRS N a b . There are therefore two design 

variables, which are the mean a  and the standard deviation b .   

Table 2 Information available to the system designers 

Variables Values 

Probability of component failure fCp   Table 1 

Distribution type of component resistance  Normal distribution 

Factor of safety of component 
sn   [1.5,2.2] 

Coefficient of variation of component resistance c   [0.025,0.12] 

Distribution of system load L   

2GP( , ),L L   ,  

2500 kNL  ,  350 kNL   

 

System designers reconstruct the limit-state function of the component as 

 maxRG S L    (33) 

According to Eq. (15), the objective function, namely, the probability of system 

failure is  

     max

1
5

0

1 1 ( )fS Lp l a b dF l        (34) 

Then the optimization model for the minimum probability of system failure is 

shown in Eq. (35).  

 

  
max

max

max

max

max

1

0

max

max

1

2

3

4

min  

subject to

( )

( ) 1.5 0 

( ) 2.2 0 

(

( ; )

( ; )
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; ) 0.

;

025 0

( ) 0.12 0

fS

L fC

L
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p

h l a b dF l p

g a

g a

g b a

g

L

L

L

L
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L

L









    



  
   


  
   



d
d

d

d

d

d

d

 (35) 
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For the maximum probability of system failure, system designers just change the 

objective function from max( ;min  )fSp L
d

d  to max( ;max  )fSp L
d

d  in Eq. (35). The trust-

region-reflective algorithm is used to find the minimum and maximum probability of 

system failure. Both Table 3 and Fig. 8 show the results from the proposed method and 

the results from traditional method in Eq. (6). The exact value is also calculated by 

assuming that all the information (the distributions of S  and ( )L  ) were known to 

system designers. Both methods indicate an increasing trend of the probability of system 

failure with respect to time. They also show that the bounds from the proposed method 

are much narrower than those from the traditional method. In fact, the average reduction 

of the reliability bound width is about 74%. The exact value is also contained in the 

bounds of the probability of system failure from the proposed method. Therefore, the 

accuracy is improved by applying the proposed method. 

 

 

Figure 8 Bounds contrast from traditional and proposed methods 



 

 

141 

Table 3 Bounds contrast of probability of system failure  

 

[0, ]t  

(years) 

Traditional method Proposed method  Exact  

(
410
) 

Reduction of 

bound width Bounds of 
fSp (

410
)  Bounds of 

fSp (
410
) 

[0,1]  [1.7236, 8.6151] [4.4691, 6.2438] 5.3343 74.25% 

[0,2]  [2.8982, 14.483] [7.5773, 10.57] 9.0424 74.17% 

[0,3]  [4.1139, 20.553] [10.833, 15.086] 12.923 74.13% 

[0,4]  [5.5065, 27.502] [14.502, 20.185] 17.295 74.16% 

[0,5]  [6.6119, 33.016] [17.534, 24.368] 20.906 74.12% 

[0,6]  [7.8197, 39.037] [20.8, 28.88] 24.793 74.12% 

[0,7]  [9.1277, 45.555] [24.311, 33.733] 28.97 74.14% 

[0,8]  [10.267, 51.232] [27.434, 38.032] 32.685 74.13% 

[0,9]  [11.419, 56.965] [30.583, 42.38] 36.443 74.1% 

[0,10]  [12.57, 62.691] [33.754, 46.736] 40.212 74.1% 

[0,11]  [13.58, 67.715] [36.639, 50.668] 43.636 74.09% 

[0,12]  [14.808, 73.823] [39.993, 55.278] 47.62 74.1% 

 

4.2 EXAMPLE 2: A SYSTEM CONSISTS OF DIFFERENT COMPONENTS 

The system configuration is shown in Fig. 9. A stochastic process load ( )L   is 

applied to a steel beam, which is fixed by four bolts on the ground. The four bolts are 

identical. The beam and bolts are supplied by two independent companies. Both the 

component designers and system designers know the system load ( )L  , which is a 

Gaussian process with 2

1 2~ GP(1800,200 , ( , )) kNLL    , in which 

2 2

1 2 2 1( , ) exp( ( ) )L        , 0.5  . The force analysis indicates that only the beam 

and the two bolts on the right are affected by the load ( )L  . The distribution types and 

parameters of component resistances are only known to the component designers. 
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Figure 9 System configuration 

 

The designers of the beam consider excessive bending stress and excessive 

deflection as two failure modes. The information available to the beam designers is 

summarized in Table 4. 

 

Table 4 Information available to the beam designers  

Variables Value 

Yield stress distribution   
2

1 ~ In (1537, 2.53) 10  kPayS N   

Elastic deflection distribution 
2

1 ~ In ( 5.2, 3.68) 10  my N    

Modulus of elasticity E   8 21.5 10  kN/m   

Length h  ~ (3, 0.002) mh N  

Width  a  ~ (0.2, 0.0005) ma N  

Thickness b  ~ (0.25, 0.0001) mb N  

Distribution of system load L      
           

2GP( , ),L L   ,  

           1800 kNL  , 200 kNL   
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With a physics-based approach, the designers of the beam construct the limit-state 

functions as follows: 

  

3

1,1 1 3

1,2 1 2

4
( )

  0,  
6

( )
b

y

y

h
G L

Eba t
h

G S L
a

 






 


  


 (36) 

where 1,1 0G   indicates an excessive deflection, and 1,2 0G   indicates an excessive 

bending stress. Thus, the probability of failure is obtained by 1 1,1 1,2Pr( 0 0)fp G G   .  

Then with the CDFs of the maximum load maxL  obtained by EOLE and SPA in 

Fig. 10, using Monte-Carlo simulation (MCS) [37], the designers of the beam calculate 

the probability of beam failure, which is provided to system designers as shown in Table 

5. 

 

 

Figure 10 CDFs of maximum load maxL  
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Table 5 Probability of beam failure with respect to time 

[0, ]t  (yr) [0,1]  [0,2]  [0,3]  [0,4]   [0,5]  [0,6]  

1fp (
410
) 5.61 9.66 13.65 17.94 21.92 26.01 

[0, ]t  (yr) [0,7]  [0,8]  [0,9]  [0,10]  [0,11]  [0,12]  

1fp (
410
) 30.12 34.09 38.06 42.1 46 49.88 

 

Similarly, the designers of the bolts consider excessive bearing stress as the 

failure mode. The information available to the bolt designers is summarized in Table 6.  

 

Table 6 Information available to the bolt designers  

Variables Value 

Yield stress distribution 
2

2 ~ In (1563,1.59) 10  kPayS N   

Radius r  ~ (0.02, 0.0001) mr N  

Distance from bolt to beam d  ~ (0.5, 0.0015) md N  

Distribution of system load L      
            

2GP( , ),L L   ,  

            1800 kNL  , 200 kNL   

 

The designers of the bolt construct the limit-state function as  

  2 2 2
( ) 0,

2
y

h
G S L t

d r
 


    (37) 

where 2 0G   represents an excessive stress in the bolt. Thus, the probability of failure is 

obtained by 2 2Pr( 0)fp G  . Then with the CDFs of the maximum load maxL  available 

in Fig. 10, bolt designers can use MCS to calculate the probability of bolt failure, which 

is also provided to system designers as shown in Table 7. The probabilities of failure of 

both beam and bolt are also shown in Fig. 11.  



 

 

145 

Table 7 Probability of bolt failure with respect to time 

 

[0, ]t  (yr) [0,1]  [0,2]  [0,3]  [0,4]   [0,5]  [0,6]  

2fp (
410
) 4.2 7.64 11.23 14.44 17.82 21.31 

[0, ]t  (yr) [0,7]  [0,8]  [0,9]  [0,10]  [0,11]  [0,12]  

2fp (
410
) 25.12 28.53 31.74 35.17 38.55 42.07 

 

 

 

Figure 11 Probabilities of component failure with respect to time 

 

Note that at the component design level, component reliability is calculated with 

all details, such as the dimensions and material properties. These details appear in the 

component limit-state functions in Eqs. (36) and (37).  

At the system design level, although system designers have no access to the above 

design details, with the information available to them as shown in Table 8, they 

reconstruct the limit-state functions of the beam and bolt as follows: 
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1 1 max

2 2 max

G S L

G S L

 


 
  (38) 

where 
1G  is for the beam and 2G  is for a bolt. 

 

Table 8 Information available to the system designers 

Variables Values 

Beam 

Probability of failure 
1fp  Table 5 

Factor of safety 1sn   [1.0,2.0]  

Coefficient of variation of resistance 1c  [0.01,0.05] 

Bolt 

Probability of  failure 
2fp  Table 7 

Factor of safety 2sn  [1.0,2.0]  

Coefficient of variation of resistance 2c  [0.01,0.05] 

Distribution of system load L      

2GP( , ),L L   ,  

1800 kNL  , 

200 kNL   

 

Although there are two failure modes or two limit-state functions for the beam, 

system designers need just one limit-state function, which is 1G  in Eq. (38). Note that no 

component design details are shown in Eq. (38). Without these design details such as 

distributions of material strengths and component dimensions, system designers decide to 

use two-parameter Weibull distributions for the general component resistances. The 

distributions are denoted by 
1 11 ~ WB( , )S SS k   and 

2 22 ~ WB( , )S SS k  . 

The probability density function of a two-parameter Weibull distribution is 

 

1

( / )
0

( ; , )

0         0

Si
kSi

Si i

i i i i

k

xS

S S S S

k x
e x

f x k

x



  




  
  

    




  (39) 
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where 
iSk  is the shape parameter, and 

iS  is the scale parameter. Then the design 

variables are 
1 1 2 2

( , , , )S S S Sk k d . The mean and standard deviation of the Weibull 

distribution are calculated by 

 (1 1/ )
i ii S Sk      (40) 

 
2(1 2 / ) (1 1/ )

i i ii S S Sk k          (41) 

With Eq. (15) as the objective function, the optimization model for the minimum 

probability of system failure is 
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 (42) 

For the maximum probability of system failure, system designers just change the 

objective function from max( ;min  )fSp L
d

d  to max( ;max  )fSp L
d

d  in Eq. (42). The trust-

region-reflective algorithm is used to find the minimum and maximum probability of 

system failure. Both Table 9 and Fig. 12 show the results from our proposed method and 

the results from traditional method in Eq. (6). The exact value is also calculated by 

assuming that all the information, such as the components’ failure modes and the 
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distributions of yiS , 1y , ( )L  , and dimension parameters, were known to system 

designers. Both methods indicate an increasing trend of the probability of system failure 

with respect to time. They also show that the bounds from the proposed method are much 

narrower than those from the traditional method. The average reduction of the reliability 

bound width is about 82%. In addition, the exact value is also contained in the bounds of 

the probability of system failure from the proposed method.  

 

Table 9 Bounds contrast of probability of system failure  

 

[0, ]t  

(years) 

Traditional method Proposed method  Exact  

(
410
) 

Reduction of 

bound width Bounds of fSp (
410
)  Bounds of fSp (

410
) 

[0,1]  [5.61, 14.004] [7.8003, 8.865] 7.87 87.32% 

[0,2]  [9.66, 24.919] [13.529, 15.73] 13.94 85.58% 

[0,3]  [13.65, 36.067] [19.28, 22.716] 19.98 84.67% 

[0,4]  [17.94, 46.747] [24.807, 29.609] 25.93 83.33% 

[0,5]  [21.92, 57.45] [30.227, 36.483] 31.97 82.39% 

[0,6]  [26.01, 68.474] [35.735, 43.545] 37.95 81.61% 

[0,7]  [30.12, 80.146] [41.488, 50.963] 44.1 81.06% 

[0,8]  [34.09, 90.874] [46.792, 57.901] 49.95 80.44% 

[0,9]  [38.06, 101.2] [51.83, 64.477] 55.56 79.97% 

[0,10]  [42.1, 112.02] [56.94, 71.421] 61.47 79.29% 

[0,11]  [46, 122.6] [62.36, 78.153] 67.19 79.38% 

[0,12]  [49.88, 133.42] [68.893, 85.097] 73.02 80.6% 

 

In reality, even for a standard component, such as the bolt in this example, the 

component supplier may still be unwilling to share its proprietary information to the 

system designers, for instance, the distributions of the yield strength and modulus of 

elasticity of the material. This kind of information could reveal detailed technologies, key 

manufacturing processes, and cost. It could then adversely affect the component 
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supplier’s competitive advantage. As shown in this example, the proposed method can 

help system designers predict the system reliability without knowing all details that are 

only available to component designers. 

 

 

Figure 12 Bounds contrast from traditional and proposed methods 
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5. CONCLUSIONS 

This work demonstrates the feasibility of producing narrower system reliability 

bounds with incomplete component design information when the system is subjected to 

stochastic process loading. The new method enables system designers to integrate 

component reliabilities supplied from component designers with other information 

available to system designers, such as the statistics of the system load and ranges of 

component factors of safety. With the integrated information, system designers 

reconstruct component limit-state functions that do not require proprietary component 

design details. System designers then use optimization to search for unknown parameters 

of general component resistance distributions and obtain narrower bounds of system 

reliability. The analysis process is simplified by converting the time-dependent reliability 

analysis into its time-independent counterpart with the use of the extreme value of the 

system load.  

Note that if suppliers could provide their total or partial testing data of 

components, system designers can use the data to calibrate the parameters of the 

distribution of the general component resistance. This can then reduce the size of design 

variables of the proposed optimization model and will further narrow the system 

reliability bounds. Our future research is therefore to develop methodologies to calibrate 

the distribution parameters.  Our other future work will be the full development of the 

concept proposed in this paper and its applications to more complex systems.  
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ABSTRACT 

Distributions of input variables of a limit-state function are required for reliability 

analysis. The distribution parameters are commonly estimated using samples. If some of 

the samples are in the form of intervals, the estimated distribution parameters may also be 

given in intervals. Traditional reliability methodologies assume that interval distribution 

parameters are independent, but as shown in this study, the parameters are actually 

dependent since they are estimated from the same set of samples. This study investigates 

the effect of the dependence of distribution parameters on the accuracy of reliability 

analysis results. The major approach is numerical simulation and optimization. This study 

indicates that the independent distribution parameter assumption makes the estimated 

reliability bounds wider than the true bounds due to interval samples. The reason is that 

the actual combination of the distribution parameters may not include the entire box-type 

domain assumed by the independent interval parameter assumption. The results of this 

study not only reveal the cause of the inaccuracy of the independent distribution 

parameter assumption, but also demonstrate a need of developing new reliability methods 

to accommodate dependent distribution parameters. 
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1. INTRODUCTION 

Uncertainty is the major factor with which reliability analysis deals. It is the 

difference between the present state of knowledge and the complete knowledge [1]. 

Uncertainty is usually classified into two types, aleatory uncertainty and epistemic 

uncertainty. Aleatory uncertainty describes the inherent variability associated with a 

physical system or environment. It comes from inherent randomness and irreducible 

variability in nature. Epistemic uncertainty, on the other hand, is due to the lack of 

knowledge about a physical system or environment. It could be reducible by acquiring 

more knowledge [2].  

Reliability is the probability that a system or component performs its intended 

function within a given period of time under specified conditions [3]. Reliability analysis 

is important in engineering applications given the catastrophic consequences when a 

failure occurs, and uncertainty should be considered in reliability analysis [4]. The 

aleatory uncertainty is commonly modeled by random variables with probability 

distributions, which are usually estimated from samples. This kind of uncertainty is 

induced by variations such as those in temperature, material properties, user operations, 

and manufacturing imprecision. Take a beam as an example, the aleatory uncertainty 

exists in the beam dimensions, external forces, and material properties, which can be 

modeled as random variables with specific distributions if sufficient information 

available. In real applications, however, we may not get precise and complete 

information due to limitations of testing conditions and instrumentation, as well as 

experimental uncertainty. Sometimes, the information may be from judgement and 
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experience. In those cases, samples may be bounded within intervals [5-7]. As a result, 

epistemic uncertainty arises.  

The traditional reliability methodologies, such as first order reliability method 

(FORM) and second order reliability method (SORM) [8], require great amount of 

information to construct precise distributions of the input variables for a limit-state 

function, which predicts the state of a component or system, either in a work condition or 

a failure condition. As mentioned previously, the distributions of the input variables are 

often obtained from samples. If some of the samples are intervals, the distribution 

parameters, such as means and standard deviations, are also intervals. This means that the 

random input variables with aleatory uncertainty also have epistemic uncertainty in their 

distribution parameters. The latter uncertainty is therefore called the second order 

uncertainty because it is on the top of the former uncertainty [9-11].   

Although there are situations where some of input variables are not random 

variables, but also intervals [12-16], in this study, we focus on only the second order 

uncertainty. In other words, the scope of this study is the reliability analysis involving 

random input variables with interval distribution parameters. Interval samples lead to 

interval distribution parameters. Researchers have studied the distribution parameter 

uncertainty. Kiureghian [17] introduced an index of reliability based on minimizing a 

penalty function and developed methods for quantifying the uncertainty in the measure of 

safety arising from the imperfect state of knowledge of distribution parameters. 

Elishakoff and Colombi [18], and Zhu and Elishakoff [19] proposed methods to tackle 

parameter uncertainty when scarce knowledge was present on acoustic excitation 

parameters. Qiu, et al. [20] combined classical reliability theory and interval theory to 
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obtain the system failure probability bounds from the statistical parameter intervals of the 

basic variables. Jiang, et al. [21] developed a hybrid reliability model based on monotonic 

analysis for random variables with interval distribution parameters. Sankararaman and 

Mahadevan [22] proposed a computational methodology based on Bayesian approach to 

quantify the individual contributions of variability and distribution parameter uncertainty 

in a random variable. Xie, et al. [11] developed a single-loop optimization model, which 

combines both probability analysis loop and interval analysis loop, to calculate the 

reliability bounds with second order uncertainty. 

The above-mentioned methodologies, however, treat the intervals of distribution 

parameters independent. In fact, the parameters of a distribution are dependent because 

they are estimated from the same set of samples. The independent parameter assumption 

may make the estimated reliability bounds wider than the true bounds. The purpose of 

this study is to reveal the effect of dependent distribution parameters on the accuracy of 

reliability analysis. 

The organization of this paper is as follows. Section 2 reviews existing methods 

for estimating the distribution parameters of a random variable with mixed point and 

interval samples. Section 3 discusses a likelihood-based approach to estimate the 

distribution parameters with mixed point and interval samples; it also presents the 

investigation of how dependent interval distribution parameters affect the accuracy of 

reliability prediction. Such effect is demonstrated by two examples in Section 4. Section 

5 provides conclusions and the research needs for developing new reliability methods that 

can accommodate dependent interval distribution parameters. 
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2. REVIEW OF LIKELIHOOD-BASED DISTRIBUTION PARAMETER 

ESTIMATION 

Samples are used to estimate distribution parameters. Traditional statistical 

methods assume that samples are given in the form of points, and the likelihood-based 

approach is normally used to estimate distribution parameters. The likelihood is defined 

as a quantity proportional to the probability density function (PDF) of the observed data 

[23, 24]. If the samples of a random variable X are ( 1 2, , , mx x x ), the likelihood function 

is defined by  

 
1

( ) ( )
m

i

i

L f x


p p  (1) 

where ( )if x p  is the PDF of X at ix  with distribution parameters p.   

Then the maximum likelihood estimation (MLE) is used to estimate parameters p. 

The estimator p̂  is obtained by maximizing the likelihood function as follows: 

 
1

ˆ arg max ( )
m

i
p i

f x
 

 
p

p p  (2) 

In engineering applications, it is also possible that some of the samples are in the 

form of intervals. For a random variable X with interval samples ( 1 2, , , ny y y ), where 

[ , ]i i iy y y ,  1,2, ,i n  , Gentleman and Geyer [25] constructed the following 

likelihood function using the cumulative distribution function (CDF) of X:   

  
1 1

( ) ( ) ( ) ( )
i

i

n n
y

i i i
y

i i

L f y F y F y
 

   
  p p p p   (3) 

where ( )iF y p  is the CDF at the upper bound of interval sample iy  with distribution 

parameters p and ( )iF y p  is the CDF at the lower bound of interval sample iy  with 

distribution parameters p. 
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Sankararaman and Mahadevan [26] modified this formulation to include both 

point data ( 1 2, , , mx x x ) and interval data ( 1 2, , , ny y y ) in the likelihood function as 

follows: 

 
1 1

( ) ( ) ( ) ( )
m n

i i i

i i

L f x F y F y
 

   
      

   
 p p p p   (4) 

This likelihood function is constructed using the PDF of point data and the CDF 

of interval data. Then the maximum likelihood estimate of p can be obtained by 

maximizing Eq. (4).  

Instead of maximizing Eq. (4), the Bayes’ theory is used as follows [26] 

 
( )

( )
( )

p

L
f

L d




p
p

p p
  (5) 

in which ( )pf p  is the joint PDF of parameters p. With the joint PDF ( )pf p , the marginal 

PDF of each distribution parameter can be obtained. Also, the PDF of the random 

variable X is then given by 

 ( ) ( ) ( )X X pf x f x f d  p p p  (6) 

The above methods have the advantage of getting precise distributions even 

though some samples are intervals, therefore hiding the epistemic uncertainty and making 

reliability analysis easier. This treatment, however, produces only a single reliability 

prediction although the interval-type of epistemic uncertainty exists. In Section 3, we will 

discuss a likelihood-based approach to the intervals of distribution parameters from the 

mixed point and interval samples and then investigate the effects of dependent 

distribution parameters on reliability analysis. 
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3. EFFECT OF DEPENDENT INTERVAL DISTRIBUTION PARAMETERS ON 

RELIABILITY PREDICTION 

In this section, we at first use the maximum likelihood approach to obtain the 

interval distribution parameters from point and interval samples. Instead of calculating 

the full likelihood [26], we estimate the lower and upper bounds of distribution 

parameters by using the interval samples. We then show the dependence of the 

distribution parameters. Finally, we discuss how the dependent interval distribution 

parameters affect the reliability analysis result. 

3.1 ESTIMATION OF DISTRIBUTION PARAMETERS 

In this subsection, a likelihood-based approach is used to estimate the bounds of 

distribution parameters of a random variable X with the mixed point and interval samples.  

The samples of a random variable X are given by both point data ( 1 2, , , mx x x ) 

and interval data ( 1 2, , , ny y y ), where [ , ]i i iy y y . According to Eq. (1), the likelihood 

function of random variable X with point and interval data is defined by 

 
1 1

( ) ( ) ( )
m n

i i

i i

L f x f y
 

   
    
   
 p p p  (7) 

where ( )if x p  is the PDF of point data ix , and ( )jf y p  is the PDF of interval data iy  

given distribution parameter p.  

Using Eq. (2), we obtain the distribution parameter estimator p̂  from the 

maximum likelihood function by  

 
1 1

ˆ arg max ( ) ( )
m n

i i

i i

= f x f y
 

   
   
   
 p p p  (8) 
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With the point and interval samples of random variable X available, the bounds of 

distribution parameter [ , ]p p  can be obtained.  

We take a normal distribution as an example to illustrate this methodology. 

Suppose a random load 0F  follows a normal distribution 
0 0

2

0 ~ ( , ) kNF FF N   . The 

samples of the load are given by points ( 1 2, , , mx x x ) and intervals ( 1 2, , , ny y y ), 

[ , ]i i iy y y . The mean of the load is calculated by 

  
0

1 1

1
( )

m n

F i i

i i

x y
m n


 

 


   (9) 

Since Eq. (9) is a linear function, the bounds of mean 
0 0
,  F F  

   are obtained by 
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1 1

1
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1
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m n

F i i

i i

m n

F i i

i i

x y
m n

x y
m n




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
  


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 

 

 
 (10) 

The standard deviation of the load is calculated by 

  
0 0 0

2 2

1 1

1
( ) ( )

1

m n

F i F i F

i i

x y
m n

  
 

 
    

   
   (11) 

Since Eq. (11) is a nonlinear function, optimization is used to obtain the minimum 

standard deviation 
0F  as follows: 

 

0 1 2min  , , ,

Subject to

,  1,2 ,

( )

,

F n

i i i

y y y

y y y i n

 


    


y

 (12) 

Changing 
0

min  F
y

 to 
0

max  F
y

, we also obtain the maximum standard deviation 

0F . Then the interval distribution parameters 
0 00
,  F FF   

   and 
0 00
,  F FF   

   are 
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available. In subsection 3.2, we will show that the interval distribution parameters are 

dependent.   

3.2 DEPENDENCE BETWEEN DISTRIBUTION PARAMETERS 

Theoretically, the distribution parameters are dependent because they are 

estimated from the same set of samples. Note that this dependence is unlike the statistical 

dependence between random variables. The latter can be reflected by the joint 

distribution between two random variables [27]. We will continue to use the example in 

Sec. 3.1 to reveal the dependent relationship between distribution parameters of a random 

variable. The method we use is numerical simulation. 

As discussed previously, the load 0F  follows a normal distribution 

0 00

2~ ( , ) kNF FF N   . The samples of the load are 1 2 3 4( , , , )x x x x   

40.486,  31.252,  29.648,  36.285( ) kN and 1 2 6( , , , )y y y  ([23.816, 24.788], [24.78, 

25.791], [31.765, 33.061], [29.755, 30.969], [39.815, 41.44], [35.797, 37.259]) kN. Using 

Eqs. (10) and (12), the bounds of mean and standard deviation are calculated with 

intervals
0 00
,  F F F   

  =[32.34, 33.098] kN and 
0 00
,  F FF   

  =[5.3582, 6.0849] 

kN, respectively.  

If we do not consider the dependence between the two distribution parameters, the 

actual values of the two parameters vary in a box defined by 
0 00
,  F F F   

  =[32.34, 

33.098] kN and 
0 00
,  F FF   

  =[5.3582, 6.0849] kN. The box is plotted in Fig. 1. 

Since the actual distribution parameters are constrained with the box, the 

reliability prediction will also reside within an interval. The width of the reliability 

determines the accuracy of the reliability prediction and the amount of epistemic 
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uncertainty in the prediction, which of course depends on the size of the box of the 

distribution parameters. The area of the box of the distribution parameters may be too 

large since the actual points of 
0 0
, )( F F may not occupy the entire area of the box. As a 

result, the bounds of the reliability prediction using the box constraint will be wider than 

the actual bounds. Since 
0 0
, )( F F  may not occupy the entire box, they must be 

constrained by other shape, instead of a box. In other words, the distribution parameters 

are dependent.  

 

 

Figure 1 Box domain of mean and standard deviation 

 

To study the dependence between distribution parameters, we perform 

experiments by random sampling. The simulation sample size is set to 105. This size is 

chosen because it is not only good enough to reveal the dependence relationship, but also 

suitable for efficient computations. The four point samples are constant while the six 

interval samples are randomly simulated. The actual values of each of the interval 

samples are drawn within its intervals. Totally 105 sets of samples are obtained, and the 
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same number of means and standards are calculated. The results are shown in Fig. 2. For 

comparison, the bounds of mean [32.34, 33.098] kN and standard deviation [5.3582, 

6.0849] kN by Eqs. (10) and (12) are also plotted in Fig. 2. It is seen that the actual 

domain of the distribution parameters is smaller than the box-type hyperrectangular 

determined by the lower and upper bounds of the mean and standard deviation using the 

independent distribution assumption. The simulation indicates that the actual points of 

0 0
, )( F F  do not appear at the four corners of the box.  

 

 

Figure 2 Domain of mean and standard deviation 

 

To investigate how the pattern of distribution parameter relationship changes with 

respect to the number of interval samples, we also vary the number of interval samples 

from one to nine while keep the sample size (total number of point samples and interval 

samples) as ten. The results are shown in Fig. 3. Fig. 3(a) shows the dependent 

distribution parameter relationship for one interval and nine points; correspondingly, Fig. 
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3(h) shows the dependent distribution parameter relationship for nine intervals and one 

point. 

Although no clear patterns could be identified, the results clearly indicate that the 

actual domains of the distribution parameters are smaller than the box-type domains. In 

Sec 3.3, we will discuss reliability analysis with interval samples. 

 

 
#1 

 
#2 

 
#3 

 
#4 

 
#5 

 
#7 

 

 
#8 

 
#9 

 

Figure 3 Dependent relationships between distribution parameters with  

different number of intervals 
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3.3 RELIABILITY ANALYSIS WITH INTERVAL DISTRIBUTION 

PARAMETERS 

In order to demonstrate the impact of dependent distribution parameters, herein 

we discuss two methods for reliability analysis. The first method is the traditional 

reliability analysis that uses the bounds of the distribution parameters directly without 

accounting for the dependence between the distributions parameters. The second method 

uses the raw sample data of input random variables, including both point and interval 

samples. Both methods will produce interval reliability because of interval samples. For 

engineering applications, we always prefer narrower bounds of reliability prediction or a 

smaller width of the reliability interval. As we will see, the two methods will produce 

different reliability bounds, and the latter method will generate narrower reliability 

bounds and is therefore more preferable. 

Let the limit-state function be 

 ( )G g X    (13)                                       

If a failure occurs when 0G  , the probability of failure is given by 

 Pr( ( ) 0)fp g X   (14) 

Let the intervals of distribution parameters of X be [ ]p p, p . Since the 

probability of failure 
fp  depends on the distributions of X, as well as p, it is also a 

function of p; namely, ( )f fp p p . As a result, the probability of failure is also an 

interval and [ , ]f f fp p p . Next, we discuss how to obtain the bounds of probability of 

failure fp . 
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The traditional method uses the distribution parameter intervals [ ]p p, p  

directly. The minimum probability of failure 
fp  could be obtained by minimizing 

fp  

with respect to p . The optimization model is given by 

 

min  

subject t

( )

o

fp


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

p
p

p p p

             (15) 

For the maximum probability of failure 
fp , the first line of the optimization 

model in Eq. (15) is changed from (in )m  fp
p

p  to (ax )m  fp
p

p .  

The other reliability analysis method uses the raw samples including interval 

samples directly. The minimum probability of failure 
fp  is obtained by minimizing 

fp  

with respect to the interval samples 1 2( , , , ),ny y y y [ , ],i i iy y y 1,2, ,i n  . The 

optimization model is given by 

 

1 2min  , , ,

Subject to

,  1,2 ,

( )

,

f n

i i i

p y y y

y y y i n

  


    


y

             (16) 

For the maximum probability of failure 
fp , the first line of the optimization 

model in Eq. (16) is changed from (in )m  fp
y

y  to (ax )m  fp
y

y .  

Note that in the traditional method, the distribution parameters are assumed 

independent within box-type constraints. The method with raw data accounts for 

dependent distribution parameters automatically. As discussed previously, the box-type 

domain of interval distribution parameters in the former method is larger than and also 

covers that in the latter method. Roughly speaking, the feasible region of the optimization 
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in the former method is larger than and covers that in the latter method. As a result, the 

bounds of the probability of failure of the former method are wider than those of the latter 

method. In Sec. 4, we will demonstrate this with examples. 
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4. EXAMPLES 

In this section, we use three examples to demonstrate the effect of dependent 

interval distribution parameters on the reliability prediction. The probability of failure 

bounds from the traditional method and the method using raw data are compared.  

4.1 EXAMPLE 1 

As shown in Fig. 4, a resultant force 0kT kF , 1,2,3k  , is applied at the end of a 

beam. There are three cases. Case 1 ( 1k  ) has only one force 0F , Case 2 ( 2k  ) has 

two identical and independent force 0F , and Case 3 ( 3k  ) has three identical and 

independent 0F . The samples of the force 0F  are obtained through experiments. The ten 

samples include four points 1 2 3 4( , , , ) x x x x  and six intervals 1 2 3 4 5 6( , , , , , ) y y y y y y . The 

samples are given in Table 1. The distribution 0F  is normal, and the yield strength of the 

beam is 
ykS  ( 1,2,3k  ) for the three cases. All the information available is summarized 

in Table 2. 

 

 

Figure 4 A bending stress applied on a beam 
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Table 1 Experimental samples of load 0F  

Samples Values (×104) N 

Points  4.0486, 3.1252, 2.9648, 3.6285 

Intervals  

[2.3816, 2.4788], [2.478, 2.5791],  

[3.1765, 3.3061], [2.9755, 3.0969], 

[3.9815, 4.144], [3.5797, 3.7259] 

 

 

Table 2 Information available to the beam designers 

Variables Value 

Yield stress distribution 
yS    2~ (70,  5 ) MPayS N  

Samples of load 0F   Table 1 

Distribution type of 0F  Normal distribution 

Length l 1.8 m 

Width d 0.2 m 

Thickness d 0.2 m 

Coefficient k k i  for case i 

 

Excessive bending stress is considered as a failure mode. With a physics-based 

approach, a limit-state function is constructed.  

 
3

(6 )k
y

T l
G kS

d
   (17) 

where l  is the beam length, and d  is the beam width and thickness. 0G   indicates a 

failure.  

Using the samples of 0F  in Table 1; and Eqs. (10) and (12), we obtain the bounds 

of the mean and standard deviation of 0F  as shown in Table 3.  

Table 3 Estimation of distribution parameters of load 0F  

 Mean (×104 N) Std (×103 N) 

0F  [3.234, 3.3098] [5.3582, 6.0849] 
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The limit-state function in Eq. (17) is linear and also follows a normal 

distribution. The probability of failure is then given by 

 

 

3

2
3 2

( / 6 )
1

( / 6 )

y k

y k

S T

f

S T

d k l
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d k l

 

 

 
 

  
 
 

  (18) 

Eq. (18) is a monotonic function. With the independent distribution parameter 

assumption in the traditional method, the minimum probability of failure 
fp  occurs when 

the denominator is minimum and numerator is maximum in function  , while the 

maximum probability of failure 
fp  occurs when the denominator is maximum and 

numerator is minimum in function  . Therefore, with the independent distribution 

parameter assumption, the bounds of the probability of failure are 
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  
 
 

 (19) 

Note that the distribution of the resultant force kT  is changing with the three 

cases. For Case 1, the distribution is 
0 0

2

1 ~ ( , )F FT N   ; for Case 2, the distribution is 

0 0

2

2 ~ (2 ,2 )F FT N   ; and for Case 3, the distribution is 
0 0

2

3 ~ (3 ,3 )F FT N   . 

After obtaining the reliability prediction from the traditional method with the 

independent distribution parameter assumption, we now discuss the method with the raw 

data. The minimum probability of failure is obtained by 
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1 2 6min  , , ,

Subject to

,  =1,2, ,

(

6

)

 

f

i i i

p y y y

y y y i

  


   


y

             (20) 

For the maximum probability of failure 
fp , the first line of the optimization 

model in Eq. (20) is changed from 1 2 6min  , ,( , )fp y y y
y

 to 1 2 6max  , ,( , )fp y y y
y

. As 

seen in Eq. (20), the six intervals are used as the constraints to calculate the probability of 

failure.  

Table 4 shows the bounds of the probabilities of failure obtained from the 

traditional method with the independent distribution parameter assumption and the 

method with raw data. 103 probabilities of failure from MCS are also plotted in Fig.4. 

 

Table 4 Probability of failure 

Case  Traditional Method Method with 

Raw Data 

Percentage 

Reduction 

1 (×10-3)  [1.3698, 4.2353] [1.6231, 3.6823]  28.14% 

2 (×10-4) [1.1541, 4.7762] [1.4578, 3.9247] 31.9% 

3 (×10-5) [2.6348, 11.95] [3.4132, 9.5485] 34.14% 

 

The results indicate that the method with raw data produces narrower bounds of 

the probability of failure than those from the traditional method with the independent 

distribution parameter assumption. The average reduction of the bound width from the 

former method is about 31%. For this problem with a linear limit-state function, the 

solution to the probability of failure in Eq. (18) is exact, and the bounds of the probability 

of failure obtained from the method with raw data are the true bounds. The independent 

distribution parameter assumption produces wider bounds, which therefore contain higher 

amount of epistemic uncertainty in the predicted probability of failure. 
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(a) Case 1 

 

(b) Case 2 

 

(c) Case 3 

Figure 5 Probability of failure by numerical simulation 

 

Table 5 and Fig. 6 show the probabilities of failure with numbers of interval 

samples from one to nine for Case 1. The dependent relationship between the mean and 

standard deviation with the increasing number of intervals has been shown previously in 

Fig. 2. The results also indicate that the method with raw data produces narrower bounds 

than those from the traditional method with the independent distribution parameter 

assumption. 

 

Table 5 Probability of beam failure with increasing intervals 

No. Traditional Method 

(×10-3) 

Method with  

Raw Data (×10-3)  

Percentage 

Reduction 

1 [5.2811, 6.0594] [5.4492, 5.8773]  44.99% 

2 [3.3381, 3.9311] [3.5556, 3.6959] 76.34% 

3 [3.7033, 5.2522] [3.8922, 5.0117] 27.72% 

4 [2.0009, 3.6572] [2.1036, 3.4861] 16.53% 

5 [1.4415, 4.0443] [1.6156, 3.6735] 20.93% 

6 [1.3698, 4.2353] [1.6231, 3.6823] 28.14% 

7 [2.8716, 9.2988] [3.4344, 8.08] 27.72% 

8 [6.5081, 16.166] [7.443, 14.497] 26.96% 

9 [1.7244, 5.7932] [2.0786, 4.9756] 28.8% 
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Figure 6 Probability of failure with respect to the number of interval samples 

 

4.2 EXAMPLE 2 

This example is modified from Case 3 in example 1. The samples of 0F  have 

already been given in Table 1. The samples of the yield stress 
yS  are given in Table 6. 

yS  is normally distributed and is independent of 0F . All the information available is 

summarized in Table 7.  

Using the samples of 
yS  in Table 6; and Eqs. (10) and (12), we obtain the bounds 

of the mean and standard deviation of 
yS  as shown in Table 8.  

Table 6 Experimental samples of strength 
yS  

Samples Values (×107) Pa 

Points  6.4254, 7.5463, 6.9363, 6.5101 

Intervals  

[8.0101, 8.337], [6.1905, 6.4431],  

[7.2541, 7.5502], [6.8651, 7.1453], 

[7.6006, 7.9108], [7.5166, 7.8234] 
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Table 7 Information available 

Variables Values 

Samples of yield stress 
yS   Table 6 

Samples of load 0F   Table 1 

Distribution type of 
yS  Normal distribution 

Distribution type of 0F  Normal distribution 

Length l 1.8 m 

Width d 0.2 m 

Thickness d 0.2 m 

 

Table 8 Estimation of distribution parameters of 
yS  

 Mean (×107 Pa) Std (×106 Pa) 

yS  [7.0855, 7.2628] [5.5012, 7.2305] 

 

Using the traditional method, we obtain the bounds of probability of failure as 

follows:  
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 (21) 

Note that the distribution of the resultant load 0 0 0T F F F   is 

0 0

2~ (3 ,3 )F FT N   . 

After obtaining the reliability prediction from the traditional method with the 

independent distribution parameter assumption, we discuss the method with the raw data. 

The dependent relationship between the mean and standard deviation of the yield strength 

yS  is shown in Fig. 7.  
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Figure 7 Dependent distribution parameters of 
yS  

 

The minimum probability of failure is obtained by 

 

1 6 1 6min  , , ; , ,
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; =1,2, ,6

; =1,2, ,

)

6

(f
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j j j

p y y z z
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     




  
   

z,y

             (22) 

where  ( 1,2, ,6)iy i    are interval samples of 0F ,  and  ( 1,2, ,6)jz j    are interval 

samples of 
yS . For the maximum probability of failure 

fp , the first line of the 

optimization model in Eq. (22) is changed to 1 6 1 6max  , ,( ; , , )fp y y z z 
z,y

. The twelve 

intervals are used as the constraints to calculate the probability of failure.  

Table 9 and Fig. 8 show the bounds of the probabilities of failure obtained from 

the traditional method with the independent distribution parameter assumption and the 

method with raw data. The results indicate that the method with raw data produces much 
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narrower bounds of the probability of failure than those from the traditional method with 

the independent distribution parameter assumption. The reduction of the bound width is 

about 89%.    

Table 9 Estimation of the probability of beam failure 

 Traditional 

Method (10-4) 

Method with 

Raw Data (10-4)  

Percentage 

Reduction 

fp  [0.1369, 12.359] [1.2702, 2.5917]  89.19% 

 

 

Figure 8 Bounds of probability of failure 

 

4.3 EXAMPLE 3 

This problem is the modification of the example given in Ref. [28]. As shown in 

Fig. 9, a load p  is uniformly distributed on a simply supported beam, whose length, 

width, and height are l , b , and h , respectively. The beam dimensions are in Table 10. 

The samples of force p  and Young’s modulus E  from experimentations are given in 
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Table 11.  All the information available to beam designers is shown in Table 12. All 

random variables are independently distributed with lognormal distributions.  

 

 

Figure 9 A load applied to a simply supported beam 

 

Table 10 Beam dimensions 

Variables Mean    Std    Distribution type 

Length l   5 m 50 mm Lognormal 

Width b    0.15 m 7.5 mm Lognormal 

Height h  0.3 m 15 mm Lognormal 

 

 

Table 11 Experimental samples of E  and p   

Variables Samples Values  

 

E (×1010) Pa 

Points  3.5243, 3.0626, 2.9824, 3.3142 

Intervals  

[2.6608, 2.7694], [2.709, 2.8196],  

[3.0582, 3.1831], [2.9577, 3.0785], 

[3.4608, 3.602], [3.2599, 3.3929] 

 

p (×104) N/m 

Points  1.1798, 1.0215, 0.994, 1.1077 

Intervals  

[0.8843, 0.9204], [0.9008, 0.9376],  

[1.0205, 1.0622], [0.9861, 1.0263], 

[1.1585, 1.2058], [1.0897, 1.1341] 

 

 

E 

b 

h 

l 

p 



 

 

180 

Table 12 Available information to designers 

Variables Values 

Beam dimensions Table 11 

Samples of Young’s modulus E   Table 12 

Samples of load p   Table 12 

Distribution type of E  lognormal  

Distribution type of p  lognormal  

Deflection threshold    16 mm 

 

Excessive deflection is considered as a failure mode. With a physics-based 

approach, a limit-state function is constructed as 

 
4

3

5

32

pl
G

Ebh
   (23) 

where 0G   indicates a failure. 

Using the samples of E  and p  in Table 11; and Eqs. (10) and (12), we obtain the 

bounds of the means and standard deviations of E  and p as shown in Table 13.  

 

Table 13 Means and standard deviations of E  and p  

Variables Mean   Std 

E  (×1010) Pa [3.099, 3.1729] [0.2516, 0.3226] 

p (×104) N/m [1.0343, 1.0589] [0.0866, 0.1104] 

 

The limit-state function in Eq. (23) is nonlinear. The second term can be 

expressed as V , whose log expression can be transferred into linear function as follows: 

            
4

3

5 5
ln ln ln ln 4ln ln ln 3ln

32 32

pl
V p l E b h

Ebh

   
         

  
 (24) 

For lognormal variables, the distribution parameters are 
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5

ln 4 3
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V p l E b h     
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 (25) 

    
2 22 2 24 3V p l E b hk k k k k k      (26) 

where   is the scale parameter, and k  is the location parameter of a lognormal 

distribution. Therefore, V  follows a lognormal distribution ~ ( , )V VV LN k . For a given 

deflection threshold  , the probability of failure is   

 
 log

Pr( 0)
V

f

V

p G
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  
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 
 (27)   

The scale   and location k  can be calculated from the mean   and standard 

deviation   of a lognormal distribution by 
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 (29) 

With Tables 10 and 13 available, and using Eqs. (28) and (29),   the scale   and 

location k  of all random variables are calculated in Table 14. For Young’s modulus E  

and load p , the distribution  parameters are intervals due to their interval means and 

standard deviations.  

Table 14 Distribution parameters of variables 

Variables scale    location k   

Length l   1.6094  0.01 

Width b    -1.8984 0.05 

Height h  -1.2052  0.05 

Young’s modulus E   [24.151, 24.177] [0.0792, 0.1038] 

Load p   [9.2384, 9.2643] [0.0816, 0.1065] 



 

 

182 

For the traditional method, we obtain the bounds of probability of failure as 

follows:  
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 (30) 

With Table 14 available, the bounds [ ,  ]V V   and [ ,  ]V Vk k  can be calculated 

using Eqs. (25) and (26). Therefore, the bounds of [ ,  ]f fp p  are obtained. 

After obtaining the probability of failure from the traditional method with the 

independent distribution parameter assumption, we discuss the method with the raw data. 

The dependent relationship between the scales and locations of the Young’s modulus E  

and load p  from numerical simulation are shown in Fig. 10.  

 

 

(a) Young’s modulus E  

 

(b) Load p  

Figure 10 Dependent distribution parameters of E  and p  
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The minimum probability of failure is obtained by 
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             (31) 

where  ( 1,2, ,6)iw i    are interval samples of E ,  and  ( 1,2, ,6)jv j    are interval 

samples of p . For the maximum probability of failure 
fp , the first line of the 

optimization model in Eq. (22) is changed to 1 6 1 6min  , ,( ; , , )fp w w v v 
w,v

. The twelve 

interval samples are used as the constraints to calculate the probability of failure.  

Table 15 and Fig. 11 show the bounds of the probabilities of failure obtained from 

the traditional method with the independent distribution parameter assumption and the 

method with raw data. The results indicate that the method with raw data produces much 

narrower bounds of the probability of failure than those from the traditional method. The 

reduction of the bound width is about 75%.    

 

Figure 11 Bounds of probability of failure 
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Table 15 Estimation of the probability of failure 

 Traditional 

Method (10-4) 

Method with  

Raw Data (10-4)  

Percentage 

Reduction 

fp  [1.82, 14.562] [4.0749, 7.2246]  75.28% 
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5. CONCLUSIONS 

When interval samples exist, the distribution parameters of a random input 

variable are also intervals. The distribution parameters are dependent because they are 

estimated from the same set of samples. If the dependence is not considered, the domain 

of the distribution parameters is a box-shaped hyper rectangular, which is determined by 

the lower and upper bounds of each distribution parameters. This study shows that the 

actual domain of the distribution parameters is not a hyper rectangular and that the 

pattern depends on the number of interval samples. This study also finds that the actual 

domain is enclosed by and is smaller than the box-shaped hyper rectangular domain. 

Besides, the ignorance of distribution parameter dependence may also result in wider 

reliability bounds than the true ones, making decision-making difficult. 

In many situations, however, raw point and interval samples are proprietary and 

may not be available to reliability engineers and design engineers who know only the 

simple bounds of distribution parameters. As a result, they could only assume that the 

distribution parameters are independent, leading to the box-shaped hyper rectangular of 

distribution parameters. One future task is how to report distributions and their 

parameters to reliability engineers and design engineers so that the dependence of the 

distribution parameters can be presented without giving the raw samples, for example, a 

mathematical expression can be found to represent the oval-shaped domain of dependent 

distribution parameters. The other research issue is to develop efficient reliability 

methods for problems having input random variables with dependent distribution 

parameters. 
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SECTION 

2. CONCLUSIONS 

 

Conceptual design is the most crucial stage in product design. Considering 

reliability in this design stage has a much greater impact on product performance, quality, 

and reliability than doing so in latter design stages. It can not only help generate design 

concepts with high intrinsic reliability but also help evaluate and select the best design 

concepts with respect to reliability. The current reliability methodologies for conceptual 

design, however, are much less mature than their counterpart in detailed parameter design 

stage; the major obstacle is the lack of information in the early design stage. The 

challenges of considering reliability in conceptual design also provide great opportunities 

for future research in this area. In this work, some new methodologies are proposed to 

deal with component dependence, time dependence, and distribution parameter 

dependence. With the proposed approaches, narrow reliability bounds are achieved, 

making decision-making easier. 

 A system reliability method is developed to predict the reliability of the new 

product in the early design stage using the component reliabilities provided by 

component suppliers. The method is based on the strength-stress interference model that 

takes the dependence between components into consideration, thereby eliminating the 

assumption of independent component failures. As a result, the predicted system 

reliability bounds are much narrower than those from the assumption of independent 

component failures. The method is also extended to time-dependent problems. The 

analysis process is simplified by converting the time-dependent reliability analysis into 

its time-independent counterpart with the use of the extreme value of the system load. 
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This study has shown the feasibility of considering dependent component failures and 

time dependent stochastic loading process for predicting system reliability bounds in the 

early design stage. 

The other challenge of reliability prediction in early design stages is limited 

information in different formats. The distribution parameters needed for reliability 

analysis are usually estimated with mixed point and interval samples in early design 

stages. The distribution parameters are dependent because they are estimated from the 

same set of samples. If the dependence is not considered, the domain of the distribution 

parameters is box-shaped hyper rectangular, which is determined by the lower and upper 

bounds of distribution parameters. This study finds that the actual domain is enclosed by 

and is smaller than the box-shaped hyper rectangular domain. Besides, the ignorance of 

distribution parameter dependence will also result in wider reliability bounds than the 

true ones, making decision-making difficult. 

The future work will be the improvement and applications of the proposed 

methodologies to more complex systems such as mixed systems with multi-loading. How 

to integrate scarce data with different structures and from different sources is also a 

potential future task. Another future work is to develop a decision making strategy under 

various uncertainties in early design stages.  
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