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INTB.ODUC'l'ION 

It is possible to predict the Lntensity o£ coherently 

soattere4 waves by a liquid in thermodynamic equilibrium if' 

the distribution o£ the atoms or molecules, about one chosen 
.. . ~ .- ... 

arbitrarily, is known completely. It has been shown in a 

one-dimensional model that certain distances receive special· 

weight in the f'ormation of' 1nterf'erences.1 Qualitatively it 

is possible to determine a spatial distribution f'unction be­

cause o£ the impossibility of' interpenetration of' atoms and 

the implication that certain arrangements of' any given atom 

with respect to its neighbors are more probable than others. 

However, by using the simplest ease of' atoms as hard spheres, 

it has not been possible to calculate unambiguously and ex­

actly the distribution of' atoms about any given atom; and as 

yet def'inite results have not been obtained f'or a procedure 

based on f'irst principles because of' analytical complications.2 

In view of' this a number of' attempts have been made to 

solve the problem by semi-empirical means. Ornstein and Zer­

nike3, among others,4 have derived a quite general semi-em­

pirical liquid model. It was suggested by Zernike and Prins5 

1. F. Zernike and J. A. ~rins, z. Physik 41, 184 (1927), 

2. J. E. Mayer and M. G. Mayer, Statistical Mechanics, 
N. Y.~ Wiley,. (1941 ). 

3. L. s. Ornstein and F. Zernike, Proc. Acad. Sci. Amster­
dam 17, 793 (1914). - . 

4. J. Frenkel, Theory of' Liquids, London, Oxford University 
Press, (1947). --

5. Fo Zernike and J. A. Prins, op. cit. 
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that i~ the coherent scattering structure factors o~ x-rays 

were known precisely, then the reverse o~ the above procedure 

is available and the two- atom or two-molecule spatial dis­

tribution ~unction, which is one o~ the two operating elements 

of the Or.nstein-Zer.nike (0. z.) model, can be determined. De­

bye and Menke6 completed the theoretical work on determining 

this spatial distribution ~unction and applied it to liquid 

mercury. An alternate presentation of this theory along with 

a discussion o~ the method and application to various liquid 

elements has been given by Gingrich.? 

The o. z. liquid model is based on the assumption that 

there is a direct intermolecular interaction function whose 

range is o~ the same order of magni~ude as that of the ~ter­

molecular forces. It is this direct-interaction function which 

in turn.determines- an indirect interaction function which en-

ters into the static two-atom radial distribution function. 

This two-atom distribution function de~ines the probability 

per unit volume of ~inding an atom at some specified distance 

r from an origin atom. 

The fundamental relation of the o. z. liquid model is 

the definition of the indirect interaction function in terms 

of the direct interaction function. According to Goldstein8 

this relationship has been left partially out of account in 

6. P. Debye and H. Menke, Ergeb. d. Tech. Rontgenk II (1931}. 

7. N. s. Gingrich, Rev. Mod. Phys. 15, 90 (1943). 

8. L. Goldstein, Phys. Rev. ~, 466 (1951). 



x-ray work. Therefore, Gol.dstein9 has attempted to redirect 

attention to the possibility of obtaining a more complete 

verification of the o. z. liquid model through a :Cu11er ex­

ploitation of the experimental data already accumulated on 

the coherent intensity factors or a number of liquids. 

Further interest 1n the o. z. static liquid model has 

been aroused by a study of the analogies existing between the 

molecular distributions of this model and that of ideal Bose­

Einstein :fluids undergoing condensation in momentum space.lO 

Additional veri:Cication of the o. z. theory in the critical 

region or liquids may possibly come about by using slow neu­

trons in the investigation of the coherent scattering by liq­

uids in this region.ll, 12 

The purpose of this research is to obtain the direct 

interaction :functions :from the liquid argon x-ray scattering. 

structure factors of Eisensteinl3 at various temperatures and 

over a wide range o:C interatomic separations. 

9· Ibid. 

10. L. Goldstein, Phys. Rev. 83, 289 (19.51). 

11. Ibid. 

12. Lo Goldstein, Phys. Rev. 81, 
. - 326A (19.51 >. 

13. A. Eisenstein and N. s. Gingrich, Phys. Rev. 62, 261 
(1942}. -
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REVIEW OF LITEBA'l'UBE 

Considerable ~ormation concerning the atomic distri­

bution in matter, both crystalline and amorphous, has been 

obtained :from x-ray scattering patterns. Beginning with the 

advent of' reliable experimental techniques :for obtain~ these 

x-ray patterns, many atte•pts have been made to give a quanti­

tative description of the structure of' liquids. 

In 1914 Ornstein arid Zernike14 suggested a liquid model 

in connection with a possible solution of' the critical opal.­

escance problem of visible radiation. Since that time many 

advances in both experimental technique and theory of the sub­

ject have been made. A relation involving an indirect cor­

relation or distribution function was derived by Zernike and 

Pr1na.l.S They specified a distribution :function from which 

x-ray intensities could be calculated and compared·with exist­

ing experimental data. De bye ~d Menke, 16 however, used ex­

perimental data to determine the nature of' the.distribution 

function. It was thus shown that the probability that the 

atomic or molecular spacLng in a liquid has a specific value. 

G. w. Stewart1 7 in numerous articles supported the theory that 

the atomic or molecular grouping in a liquid is arranged 

temporarily, and for short spatial distances, in the same 

14~ F. Zernike and J. Ao Prins, op~ cit., p.l. 

lSo L. So Ornstein and F. Zernike, op. cit., p.1.8 

16 •. P. Debye and H. Menke, op. cit.; P. Debye, z. Phys1¥ )l.e 
)48 (19)0). . -

17. G. w. Stewart, Bev. Mod. Phys. ~~ 116 (19)0). 



manner as in the solid state. An excellent review o~ the 

work on coherent scattering o~ x-rays by liquid elements has 

been prepared by Gingrich.l8 

In 1951 Goldsteinl9 called attention to the fact that 

the Cundamental relationship oC the original Ornstein-Zer­

nike liquid model has been partially omitted in the analysis 

of x-ray scattering data. This fundamental relation 

{1) g(r,T) = J:rcr- r',T) g{r',T) dv' + c{r,T), 

where the integration extends over the liquid volume at tem­

perature T and r is a vector from an arbitrary origin atom 

in the liquid to an atom at r. states that the indirect inter­

action or correlation between a molecule at the origin and one 

at a distance r is equal to the direct interaction ~(r~T) 

with the molecule at r plus the sum of' the correlations 

with those molecules surrounding the one at the origin which 

are caused by their direct interaction with the molecule at 

r. This relation has recently been derived by Klein and 

Tisza20 in their discontinuous transcription o~ the Ornstein­

Zer.nike continuum liquid model. 

A knowledge. o~ the indirect interaction t'unction g(r,T) 

enables with some et'Cort the determination oC the direct 

18. N. s. Gingrich, op. cit., p.2. 

19. L. Goldstein, op. cit., p.2. 

20. M. J. Klein and L. Tisza, Phys. Bev. 76, 1861 (1949). 

5 



interaction function f(r,T) according to the integral equa­

tion (1). Goldste~n21 has derived the direct interaction 

function in terms of the coherent intensity structure factor 

of x-rays by means of a Fourier inversion. This derivation 

allows the same type of numerical analysis to be applied to 

the determination of the direct interaction function as has 

been used in the evaluation of the indirect correlation 

function. 

The direct correlation functions of liquid He4 over most 

of the liquid temperature interval have been obtained by Gold­

stein22 using the x-ray scattering data of Reekie.23 He has 

shown these functions to satisfy two types of integral tests 

which proves their over-all character. 

21. L. Goldstein, op. cit., p•2· 

22. L. Goldstein, Phys. Rev. ~· 981 (1955). 

23. J. Beekie and T. s. Hutchison, Phys. Rev. 92, 827 (1953); 
C.F.A. Beaumont and J. Beekie, Proc. Royo ~c. (London) 
A228, 363 (1955). 

6 



DISCUSSION 

The x-ray scattering date o~ Eisenatein24 for argon has 

been used to calculate the direct correlation function f(r,T) 

7 

for four of the curves listed in Figure 1. Three curves, num­

bers 1, 4, and 6, represent argon in the liquid. state. Curve 

number six is the closest in the liquid state to the critical 

point. Curve number 7 is the curve closest to the critical 

point in the vapor state. 

The direct correlation functions for the above mentioned 

curves are shown in figures 2, 3, 4, and 5. The space integrals 

F(r,T) = Jr~r2~(r,T)dr for the curves are shown in figures 

6, 7, 8, and 9. It is shown in the next section of this paper 

that the isothermal compressibility can be calculated from the 

space integrals F(r,T). 

24. A. Eisenstein and N. s. Gingrich, op. cit., P•J• . 



THEORY 

The main features o~ the Ornstein-Zer.nike statio liq­

uid model and the derivation of the direct interaction 

function in terms of the available x-ray scatter~ data 

have been presented by Goldstein25. 

8 

First let us proceed with a derivation of the indi­

rect correlation function in terms of the direct correlation 

function. 26 

Let v 

N v 

Nv 
6Nv 

Nj 

Nj 

t.Nj 

dv3 

= 
= 

= 

= 
= 

= 

= 

= 

Volume of the sample. 

Total number of molecules in volume v. 
Average number of molecules in volume v. 
Bandom fluctuation of the molecules in volume v. 
Total number of molecules in cell j. 

Average number of molecules in cell jo 

Random fluctuation of the molecules in cell j. 

Volume of cell j. 

j designate a homogeneous cell of molecules within 

volume v. 

Let us define the average of the fluctuation of the num­

ber of molecules in the kth cell due to the fluctuation in 

the jth cell by introducing g{rjk), a function of the distance 

between the two Cells such that 

25. L. Goldstein, Phys. Bev. 84, 466 {1951). 

26. This development was suggested by Dro Louis H. Lund, 
Professor-of Physics at the Missouri School of Mines. 



.(2) 6NkiJ = g(r3k)dvkMij, 

j # k 

where rjk is equal to the distance from the jth to the kth 

cell. We see that this average fluctuation depends upon the 

fluctuation in the jth, the volume in the kth, and a function 

of the distance between the two cells. 

We introduce the direct correlation function f(rjk) by 

considering the average fluctuation in the kth cell due di­

rectly to the effect of the fluctuations in all other cells, 

which is given by 

(3) = ~jf(rjk) dvk ~Nj • 

j -F k 

From equation (J).we obtain the very important concept 

(4) 6Nkfi = :£jf(rJk) dvk ~jli + f(rik) dvk 6Ni ' 

J-Fk-Fi 

which_says that the average fluctuation of the number of 

molecules in the kth cell due to the ith cell is equal to the 

linear superposi~ion of the effect of the average fluctuations 

in the jth cell due to the ith plus the direct effect of the 

fluctuation in the ith cell. 

Equation (2) tells us that ~Jii = 

stituting this in equation (4) we obtain 

Mrkfi = g(rik)dvk~ 

i # k 

= ~jf(rjk)dvk g(rij)dvjaNi 

j pi k # i 

Sub-

9 



Solving £or g(rik) leads to 

(5) ~jf(rjk)g(rij)dvj + £(rik). 

j ~ k " i 

In the continuum representation and as a function or 

distance and temperature Equation (5) becomes 

(6 l g(i",Tl = J :r er-r• ,Tl g (!' • ,T l dv • + :r cr,Tl • 

This states that the indirect correlation between a molecule 

10 

at the origin and one at a distance r is equal to the direct 

interaction £(r,T) with the molecule at r plus the sum or the 

correlations w_ith those molecules surrounding the origin which 

are caused by their direct interaction with· the molecule at 

r. It is this relation which is fundamental to the Ornstein-

Zernike static liquid model. 

It is possible to express the direct interaction function 

in terms of the coherent scattering intensity data of the 

liquid. To do this we multiply both sides of equation (6) 

by cos(r•6k), where 

- -S0 is a unit vector along the incident x-ray. S is a unit vec-

tor along the scattered x-ray and 29 is the scattering angle. 

Integrating over the liquid volume or the whole space we obtain 

(7) G(C.k,T) = F(6k,T) ~ - F(6k,T~ -1 

where 



G(tlk,T) = J ~os(r·~~) g(r,T) dv(r) , 

(8) F(6k,T) = Jr cos(r•6k) ~(r,T) dv(r) • 

We may rewrite equation (8) by averaging cos(r•6k) over all 

solid angle. Then 

F(6k,T) = J~r2~(r,T) sin(rl\k) dr , 
() r6k 

(9) 
= Iool.Jtrrr2g(r,T) G(6k,T) sin(rL\k) dr • 

0 r6k 

Gingrich27 has shown that the ·1ntensi ty o~ coherently scat­

tered x-rays (Ieu> by a liquid is given by 

(10) Ieu = N~2 [1 + [:r2 g(r,T) sin(r6k) dr]· , 
rAk 

where ~ is called the atomic structure ~actor and is deter-

mined by the distribution o~ the electrons in the atom and N 

11. 

is equal to the number o~ atoms in the liquid volume. Equation 

(10) becomes, with equations (7) and (9), 

(11) Ieu = 1 + G(6k,T) = [1 
N:f2 

F(l'lk,T)] -1 • 

Solving :for F(6k,T) and using equation (9) agai~we obtain 

(12) 

F(6k,T) = 1 

4TT J-=-2~ (r,T) 
0 

sin(r6k) 
rAk 

dr 

27. N. s. Gingrich, op. cit~ p.2. 

= 



Applying the Fourier transform theorem to equation (12) we 

arrive at 

(13) f'(r,T) = 1/2n2r JTI. - (Ieu/Nf'2)-1] .6ksin(r6k) d(6k). 
0 

Equation (13) may be rearranged into a more usef'ul f'orm by 

writing i(6k) = Ieul Nf'2 - 1, then 

(14) f'{r,T) = l/2n2r 100

6k i(6k) sin(r6k) d(6k). 
i(&k) + I 

We shall now proceed to derive the relation which exists 

between the direct interaction f'unotion f'{r,T) and the iso­

thermal compressi~ility ~· 

Let us def'ine the mean square of' the f'luctuation of' the 

number of' molecules in volume V by 

(1.5) • 

j = k 3 F k 

12 

It can be shown28 f'rom f'luotuation theory that the mean square 

of' the f'luctuation in cell J classically is equal to the average 

number of' molecules in cell J, i. e., 

(16) ~~· AiTJ2 = ~ .. -N = N £....,.., Ul'l .C.,_:, J v • 

j = k 

The average of' the fluctuation ·in the kth cell due to the jth 

and the f'luctuation in the jth is 

28. J. Slater, Intro4uction to Chemical Physics, N.Y., McGraw-
Hill, (1939 • --



Since 1iJf 32 = V 3 = N dv J, where N = ~verage number o~ molecules 

per unit volume, then equation (15) can be written as 

(18) lliiv2 = Nv + L,:'3 l'~<rjkl dvk N dvj 

j 1: k 

= 1fv + Nv ~ g (r) dv • 

Writing equation (18) in the continuum representation we get 

{19) 

Let 

(20) 

then 

-2 
ANv = lfv + lfv/ g(ro) dv. 

= J g(r,T) dv; P(r,T) a J :t' (r~T) dv, 

Multiplying both sides ot: equation (6) by dv(r) and integrating 

over the whole space, one obtains 

(22) 

In a large Yo1ume and as long as the state ot: the t:luid is not 

the critical statet, ANv2 I 1fv is t:oUDd by stat1st1cal thermo­

dynamics29 to be 

29. M. v. Smoluchowski, Ann. Physik 25, 205 (1908). -

1:3. 



where K is Boltzman•s constant and ~ is the isothermal com­

pressibility at temperature T. Theret'ore, 

(24) j;(r,T) J.wrr2 dr = [1 - =~] -l. 
0 

F(r,T) = [1 - NKT~] -1 

14 

This provides us with a means of checking f(r,T) as determined 

from the x-ray scattering data. 



l.S 

. ,..,. 
Figure 1. Preeaure~~~ture ~or argon with datum po~ts 

eorreeponding to x-.-7 scattering patte~. 



APPLICATION OF THEOBY 

The direct correlation ~unction ~(r,T) was calculated 

~or liquid argon at temperatures and pressures as indicated 

by datum points 1, 4, 6, and ? in ~igure 1 on the liquid­

vapor transition curve. Using equation {14) values o~ 

f'(r,T) were calculated at intervals o~ 0 • .5 angstroms in r 

~rom 0 • .5 to ? angstroms, and interva1s o~ 1 angstrom in r 

~rom ? to 20 angstroms. A value o~ r was chosen and then 

kept constant while values o~ 6k and 1(Ak) were in•erted 

16 

into the equation. The integrand was then tabulated, graphed 

and planimetered ~or the area under the curve which repre­

sented the value o~ 21T2r ~(r,T). Dividing by ~r then'gave 

a value of'·~(r,T). This was done ~or datum points 1 and 4 

~or values o~ r equal 0.5 to ? angstroms. The values o~ 

i(6k) were obtainea30 in intervals o~ .01 A-1 ~or 6k/4rr. 

The values o~ r(r,T) tend to become less accurate for 

increasing values o~ r. At 10 angstroms ~or example, there 

are only 2 • .5 integration intervals per hal~ cycle o~ the 

sine ~unction in the integrand o~ equation (14). The values 

or "r(r,T) ~or datum points 1 and 4 ~or r ~rom ? to 20 ang­

stroms, and ~or datum po_ints 6 and ? ~or r ~rom 0 • .5 to 20 

angstroms were calculated by a method.31 which did not have 

the limitations arising ~rom the decreasing accuracy o~ 

30. Eisenstein, A.,Ph. D. Dissertation, University o~ Mis­
souri, Columbia, Missouri, June, 1942. 

31. L. Goldstein and ·J. Reekie, Phys. Rev. 98, 8.57 (1955). -



integrations at large separations. Let 

(2.5) 

and rewrite equation (14) as 

{26) f(r,T) = l/2~r J[~(6k,T) sin(P~k) d(6k) • 
• 

Actually the interval o:f' integration is finite. Dividing 

this finite interval into N equal parts w, we obtain 

(27) f(r,T) = l./:m2r [L;(Lik,T)ei~(rLik)d(llk.) 
+ ~(~k,T)sin(r~k)d(dk) + •••] • 

1? 

It the r~ction g(6k,T) varies slowly ·in_ the interval w, 

it may be replaced by g [<n-l)w,nw] its value in the middle · 

or the interval w. Then 

(28) f(r,T) = J./:m2r [ i(O,w) J.:in(r.!lk)d(.!lk) 

+ gcw,2w)~:1n(r.!lk)d(.!lk) + ···]. 

Integrating the sine function, we may write, with good approxi-

mat1on, 

[. .., ~w 

r cr,T> = 1;:m2r2 [gco,w>cos (r.!lk) l -g cw,2w)cos (rllk>L, -

= l/2'rr2r2 ~(O,w) + ~(w,2w) - g(o.w)] cos {rw) 

+ ~(2w,Jw)- g(w,2w)J cos(r2w) + ··~ 

(29) :r(r,T) = 1(2Tr2r2 {sl. + f<~+l - in)cos <nrw>}, , .. , 

··J 



where in = i [<n - 1)w,n1 • 

As in the other method a value of r was ehoeen and then 

-kept constant while values of gn were inserted Lnto equation 

{29), tabulated and summed. Dividing by 2n2r2 gave a value 

for f(r,T). The curves f(r,T) versus r are .shown in :figures 

2, J, 4 and 5o 

The direct correlation functions were submitted to an 

integral check available :for the :functions. Using e~uation 

(24),·the values of F(r,T) were calculated over the r range 

o~ 0 to 20 angstroms for the :four ~unctions o:f :f(r,T). The 

values o:f :f(r,T) :for a given value o~ r, were multiplied by 
l 

the :factor 4nr2 and tabulated. The area under the curve :for 

different values of r was determined by use of the trapezoidal 

rule. F(r,T) versus r are shown in :figures 6, 7, 8, and 9. 

The values of k~ F(r,T) or [1 - (NKTB)-~ are also indicated 

in figures 6 and 7. 

18 
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CONCLUSION 

The x-ray scatter~ data ~or liquid argon has.been used 

to ca1ou1ate the direct cor.re1at1on function ~(r,T), proposed 

by Ornstein and Zer.n1ke, over a wide range of temperature. 

The values of f(r,T) versus r are shown in figures 2, 3, 4, 

and S tor the temperatures 84.JSoK, 126.?°K, 149.)°K (liquid) 

and 149.3°K (vapor) respectively. The graphs extend only to 
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separations of 10 angstroms. At larger distances these func­

tions are a very sma11 fraction of their value at closer sepa­

rations. The principal minimum of the functions was found to 

be 1ess at higher temperatures than at lower temperatures. 

The anomalous behavior of the function f(r,~) for datum point 

4 near the origin is not understood. It should be pointed 

out, however, that in_contrast to the indirect correlation 

functions g(r,T), the direct correlation function f{r,T) do 

not have any precise physical meaning at or near the origin. 

As can be noted from their graphs the functions f(r,T) are of 

re1at1ve1y short-range character. 

F~gures 6, 7, 8, and 9 show the generalized integrals 

F(r,T) versus r. The va.1ues of 11m F(r,T) or [ 1 - (NKTB)-1] 

are also indicated on the graphs for datum points 1 and 4o 

The space integrals for these two temperatures satisfy their 

limiting values at separations of· S and 7 angstroms respectively. 

This might be interpreted as the range of the functions f(r,T) 

at these temperatures since the interatomic force between two 

argon atoms32 has.a ran8e of approximately 9 angstromso The 

32. H1rschelder, Curtiss, and Bird, Molecular Theorl £!2!! 
and Liquids, N.Y. Wiley, (1954). 



space integrals do not appJ!'Oach their limiti:ngvalue at-large 

r. This is not to be expected inasmuch as the rigorous inter­

action :functions are unknown. The f'unctions :r (r,Tlt being 

_derived f'rom x-ray scatter~ data. are the best approximation 

known at this time. 

As the temperature approaches the critical temperature 

T0 o:r the liquid• the space integrals are show by Goldstein:33 

to approach unity, explicitly 

11m F(r,T) = 1. 
T_..Tc 

28 

Datum points 6 and ? represent curves near the critical tem­

perature. The ~pproximate limiting values of' ~he space inte­

grals :tor these curves as calculated :from their compressibility34 

are 0.3 and o.a respectively. These space integrals do not 

reach their limiting value f'or values of' r f'rom 0 to 20 ~­

stroma, nor do they tend to approach unity. 

L. Goldstein, Phys. Bev. ~' 466 (1951). 

G. H. Vineyard, Phys. Rev. ?4, 10?6 (1948). .. ~ 



SUMMARY 

Direct correlation functions f(r,T) were calculated from 

four x-ray scattering patterns of liquid argon at temperatures 

of 84.J°K, 126.?°K, 149.J°K (liquid) and 149.3°K {vapor). The 

graphs of these ~unctions indicated that they were of short­

range character. Three of the four curves were very similar 

in shape. No explanation is given for the irregularities near 

the origin in the fourth curve. 

For the two curves, whose temperature and pressure was 

not near the critical point, the space integrals of the cor­

relation functions satisfy thei.r limiting value at distances 

of fr.om 5 to 7 angstroms. 

The direct correlation functions as calculated here for 

liquid argon seem to agree favorably with the results of Gold­

stein35 for liquid He4. 

35. L. Goldstein, Phys. Rev. ~' 981 (1955) 
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