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ABSTRACT

Human tracking is an extensively researched yet still challenging area in the Com-

puter Vision field, with a wide range of applications such as surveillance and healthcare.

People may not be successfully tracked with merely the visual information in challenging

cases such as long-term occlusion. Thus, we propose to combine information from other

sensors with the surveillance cameras to persistently localize and track humans, which is

becoming more promising with the pervasiveness of mobile devices such as cellphones,

smart watches and smart glasses embedded with all kinds of sensors including accelerom-

eters, gyroscopes, magnetometers, GPS, WiFi modules and so on. In this thesis, we firstly

investigate the application of Inertial Measurement Unit (IMU) from mobile devices to

human activity recognition and human tracking, we then develop novel persistent human

tracking and indoor localization algorithms by the fusion of non-visual sensors and visual

sensors, which not only overcomes the occlusion challenge in visual tracking, but also

alleviates the calibration and drift problems in IMU tracking.
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1. INTRODUCTION

Human tracking, including long-term tracking and instant localization, attracts a

lot of attention because consistently tracking and accurately localizing people have many

applications in the field of surveillance. However, human tracking is still tricky and chal-

lenging because the visual information may be in low quality (e.g., low illumination, low

resolution) or sometimes we totally lose the visual signal. For instance, indoor localization

system may be cheated by the unified decoration of a building and reports wrong positions

to users. Vision-based tracking system may be unable to consistently track the target when

the target is totally occluded for long time and changes its direction meanwhile.

These problems are difficult to be solved merely by visual signal, but we can com-

bine information from other sensors to mitigate the human tracking problems. These non-

visual sensors include accelerometers, gyroscopes, magnetometers, WiFi modules and so

on, which are pervasively embedded in portable devices such as smartphones. For example,

in the indoor localization system, the WiFi module is able to decrease the searching space

considering the WiFi strength can be regarded as a useful feature to discriminate different

positions. In tracking, the magnetometer can be used to estimate the target’s proceeding

direction when the target is totally occluded. In this paper, we are interested in the fusion of

visual and non-visual signal for long-term human tracking and instant localization. More

specifically, this paper is composed of four subtopics. The first two subtopics solve prob-

lems merely by non-visual sensors, which serves as the base for the last two subtopics, the

true fusion of visual and non-visual information for human tracking.

(1). Wearable sensors for human activity recognition (Section 2): We firstly in-

vestigate human physical activity recognition merely based on wearable sensors (i.e., ac-
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celerometers, gyroscopes). Human physical activity recognition based on wearable sen-

sors has applications relevant to our daily life such as healthcare. How to achieve high

recognition accuracy with low computational cost is an important issue in the ubiquitous

computing. Rather than exploring handcrafted features from time-series sensor signals, we

assemble signal sequences of accelerometers and gyroscopes into a novel activity image,

which enables Deep Convolutional Neural Networks (DCNN) to automatically learn the

optimal features from the activity image for the activity recognition task. The proposed ap-

proach is evaluated in five publicly available datasets and it outperforms five state-of-the-art

methods on a wide variety of activity categories.

(2). Wearable sensors for people tracking (Section 3): Then we study human track-

ing with wearable sensors such as Inertial Measurement Unit (IMU), which is of great

significance for ubiquitous computing and ambient applications. We propose a novel Dead

Reckoning based tracking algorithm using IMUs placed in the pocket. The contribution

of our approach lies in three-folds: 1. Precise steps are detected according to people’s

repetitive moving patterns. 2. In each step, heading direction is estimated by the principle

frequency of filtered acceleration. 3. Rather than inferring the heading direction of each

step independently, we compute a vector in the IMU coordinates which can be transformed

to the world coordinates to represent the heading direction, by solving an optimization

problem with all historical tracking data considered. The proposed tracking algorithm is

tested on a public dataset and outperforms five state-of-the-arts. We also apply it to real sce-

narios where our IMU tracking algorithm successfully assists visual tracking to overcome

the challenging visual occlusion problems.

(3). Combing visual and IMU sensors for people tracking (Section 4): We attack

the problem of persistently tracking cooperative people such as children, the elderly or

patients by combining passive tracking and active tracking techniques. Passive tracking
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uses visual signals from surveillance cameras, but vision based people tracking becomes a

hard problem in challenging scenarios such as long-term/heavy occlusion, people changing

their movement patterns during occlusion, or people temporarily moving out of the visual

field. Active tracking uses sensor signals from Inertial Measurement Unit (IMU) carried

by targets themselves. IMU-based tracking is independent of visual signals, so it keeps

working when people are visually occluded and offers clues where the target could be,

helping the visual tracking to reidentify the target. Meanwhile, when visual signals on

people are available, visual tracking can calibrate IMU-based tracking to avoid sensor drift.

The experimental results show that the IMU and visual tracking are complementary to each

other and their combination performs robustly on tracking cooperative people in many

challenging scenarios.

(4). Indoor localization by signal fusion (Section 5): Indoor localization based

on image matching faces the challenges of clustering large amounts of images to build a

reference database, costly query when the database is large and indistinctive image features

in buildings with unified decoration style. We propose a novel indoor localization algorithm

using smartphones where WiFi, orientation and visual signals are fused together to improve

the localization performance. The reference database is built as a signal tree with less

computational cost as WiFi and orientation signals pre-cluster the reference images. During

localization, WiFi and orientation signals not only offer more context information, but

also prune impossible reference images, improving the accuracy and efficiency of image

matching. In addition, images are described by multiple-level descriptors recording both

global and local image information. The proposed method is compared with other methods

in terms of localization accuracy, localization efficiency and time cost to build the reference

database. Experimental results on four large university buildings show that our algorithm

is efficient and accurate for indoor localization.
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2. WEARABLE SENSORS FOR HUMAN ACTIVITY RECOGNITION

2.1. RELATED WORK

Human physical activity recognition has emerged as a critical problem to human-

computer interaction, robot learning and ubiquitous computing [1, 2, 3]. When people carry

portable devices (e.g., smart phones, smart watches), their physical activities, defined by

bodily states such as walking, standing, opening doors, can be recognized based on sensors

such as accelerometers embedded in these portable devices.

The critical factor attributed to the success of accelerometer-based activity recogni-

tion is to seek an effective representation of the time-series accelerometry signal. The most

widely used approaches fall into two categories: handcrafted feature design and automatic

feature learning. It is intuitive to manually pick statistical attributes (e.g., means) or quan-

tity distributions (e.g., magnitude histograms) from accelerometry signals, mostly driven

by the domain knowledge, prior experience and experimental validation. For example, [4]

designed as many as 341 features from 3-axis accelerometry signals while [5] preserved

the statistical characteristics of accelerometry data using their empirical cumulative dis-

tributions. However, it is hard to extract all useful features in a hand-crafted manner. In

addition, a pre-defined feature extraction mechanism trained on a specific scenario might

not work well on other scenarios with different sets of activities to be recognized, i.e., the

hand-crafted features might not be transferrable to new application domains.

The drawbacks of handcrafted features motivate researchers to explore automatic

feature learning [6]. Deep Convolutional Neural Network (DCNN), as one of the most

effective deep learning models, attracts attentions in the mobile sensing domain considering

it has achieved the superior performance in other research fields such as computer vision [7]
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and speech recognition [8]. To improve the accuracy of sensor-based activity recognition,

[9] designed a tri-source DCNN architecture with the three inputs corresponding to the tri-

axis accelerometry data. [10] and [11] took as input the two-dimensional matrix obtained

by simply stacking accelerometry signals. [12] looked into this problem in a practical way

and showed the application of deep learning to mobile sensing domain is hardware-efficient

and can scale to a large number of inference classes.

Figure 2.1. Overview of recognizing query signals.

In short, the input to the deep model and the architecture of the deep model itself

are two key factors to the success of automatic feature learning. In the previous work, the

accelerometry signals are directly fed into the DCNN architecture and this simple input

restricts the depth of the deep model, limiting the capability to find discriminative features.

For instance, the input in [13] is a small 3× 30 matrix and there are only two convolutional

layers in the architecture. Additionally, the tri-axis accelerometry signals are convolved

with one-dimensional kernels in the deep model independently, thus the correlation among

different signals is not taken into enough consideration.

2.2. OUR PROPOSAL

We propose to fuse the tri-axis accelerometry data and explore the hidden relation-

ship between different axes of signals, for the purpose of which, we design a more complex

input and a deeper DCNN architecture. A novel 36 × 60 activity image is designed to be
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the Fourier transformation of the stacked signals. Taking as the input the low frequency

part, the high frequency part and the whole of the activity image, we design a multi-source

DCNN architecture with as many as 16 convolutional layers, largely enhancing the com-

plexity and depth of the deep model. Figure 2.1 shows the flowchart to recognize query

signals. With the activity image generated from accelerometry data as the input, DCNN

outputs a probability distribution over activity categories, based on which the human activ-

ity is determined.

Figure 2.2. Flowchart to generate an activity image.

The section is organized as follows. Subsection 2.2 and 2.3 introduce the activity

image and DCNN architecture, respectively. Experimental results on five public datasets

are described in subsection 2.4, including comparison with five state-of-the-art methods,

and the evaluation of the activity image and the deep architecture.

2.3. ACTIVITY IMAGE

The original accelerometry data from smart devices measure acceleration forces.

Such forces may be static such as the continuous force of gravity, or dynamic to sense the

movement or vibration of the device (linear acceleration). To make full analysis of the

acceleration, we separate the accelerometry data into the low frequency component and
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high frequency component, corresponding to the static and dynamic forces which mea-

sure the gravity and body motion, separately. Although the gravity is a relatively constant

vector, the partition of which into three axes is able to indicate the static direction of the

accelerometer while the body motion shows the moving trend of the user. With the sep-

aration of accelerometry data, we extend the tri-axis signals to 9 different accelerometry

signals (Figure 2.2(a)), which is beneficial to explore the relationship among the accelera-

tion signals. The 9 acceleration signals shown in Figure 2.2(a) are identified by its serial

number (e.g., the 5th signal is Y-Gravity).

Figure 2.3. Samples of activity images.

As shown in Figure 2.2 (b), a novel signal image is established following Algorithm

1. There are two critical rules in Algorithm 1: (a) The linear acceleration, gravity and total

acceleration signals are stacked row-by-row into the signal image. Algorithm 1 produces a

sequence order (the sentence between asterisk lines in Algorithm 1) which tells the signal

order in the signal image. For example, signal 2 (i.e., Y-axis linear acceleration signal) is

in the 2nd, 15th, 25th and 35th (colored as red) of the sequence order. Correspondingly,

Y-axis linear acceleration signal is in the 2nd, 15th, 25th and 35th rows of the signal image,

to make which clearer, we display the position of Y-axis linear acceleration in the signal

image by the purple arrows in Figure 2.2; (b) Algorithm 1 ensures that each signal has

one and only one chance to be adjacent to each of the other signals. For instance, in the
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sequence order, signal 2 (colored as red) has one and only one opportunity to be adjacent

to each of all the other eight acceleration signals (colored as green), similarly do the other

signals. This mutual adjacency enables signals to be fully fused with each other.

Finally, 2D Discrete Fourier Transform (DFT) is applied to the signal image and

its magnitude is chosen as our activity image (Figure 2.2 (c)). Figure 2.3 shows a few

activity images corresponding to different activities. It is easy to visually observe their

differences. Compared with the signal image (Figure 2.2 (b)) which is a set of permutated

accelerometry signals, each pixel in the activity image (Figure 2.2 (c)) clearly indicates

the frequency magnitude at that position and the difference between the activity images

for various activities can be identified in the pixel level, which enhances the potential for

DCNN to extract discriminative features for the activity recognition.

Before introducing the DCNN architecture, we point out some engineering details.

Given 9 signals, the size of the signal image is 37×Ls according to Algorithm 1, where Ls

is the time length of signal sequences. Since different devices may have different sampling

rates, we interpolate all raw signals in the same time length (e.g., 1 second) with 60 signal

samples. Note that, Ls = 60 is an acceptable value considering most accelerometers collect

signals using the sampling rate between 50HZ and 100HZ. In addition, we delete the last

row of the signal image generated by Algorithm 1, so each signal occurs equally 4 times in

the signal image. The size of the signal image and the consequent activity image is finalized

as 36 × 60 pixels.

2.4. DCNN ARCHITECTURE

One direct approach to design the DCNN architecture is to take the activity image as

the input and build a single-source DCNN, but this approach treats every part of the activity

image equally. To emphasize the local context of the activity image, we introduce a multi-



9

Algorithm 1 Raw Signals (Figure 2.2(a))→Signal Image (Figure 2.2(b)).
Notations:
• Raw Signals (Figure 2.2(a)): the 9 signal sequences shown in Figure 2.2(a). Each
signal is identified by its serial number. //e.g., The 5th signal is Y-Gravity.
• Signal Image (Figure 2.2(b)): a 2D array stacked by raw signals in a row-by-row
manner.
• “the i-th and j-th signal are adjacent in the signal image": in the signal image, there
exist two adjacent rows with one row being the i-th signal and the other one being the
j-th signal.

Intput:
Raw signals, the number of which is Ns. //In Figure 2.2(a), Ns = 9.

Loops:
i = 1; j = i + 1;
Signal image is initialized to be the i-th signal;
while i , j do

if j > Ns then
j = 1;

else if the i-th and j-th signal are NOT adjacent in the signal image then
Append the j-th signal to the bottom of the signal image;
i = j; j = i + 1;

else
j = j + 1;

end if
end while

Output: Signal Image.
*****************************************************
The final signal image has 37 rows. From top to down, the signal order is
1234567891357924681471582593694837261.
*****************************************************

source DCNN architecture such that multiple sources of information generated from the

activity image are taken as the input and they are integrated at a certain level of the deep

network. Considering the activity image is actually a frequency map, as shown in Figure

2.4, we divide the activity image into two components: the high frequency part and the low

frequency part. Note that the two parts are with the same size and the high frequency image

is stitched by the left and right high frequency parts. The whole activity image is utilized
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to model human activity globally, while the low frequency part and high frequency part are

used for activity recognition in the meticulous level. The three inputs are integrated into

the multi-source deep learning framework for activity recognition, and the three modelings

are jointly optimized.

Figure 2.4. Frequency separation of activity image.

Thanks to the larger and more complex input images, we are able to design a deeper

DCNN architecture for automatic feature learning. Figure 2.5 shows the multi-source net-

work structure of our deep model. The network contains three branches where the high and

low frequency components have the same structure. The network is 25 layers deep when

counting only layers with parameters. Deeper depth typically means a larger number of

parameters, which makes the network more prone to overfitting, thus we add the dropout

layer to each of the full connected layers [14]. We use shorthand notations to represent

parameters in the networks: (1) Conv(K@M×N×T + S) for convolutional layers with K

outputs, T inputs, kernel size M×N and stride size S, (2) MaxPool(M × N + S) for max

pooling layers with kernel size M×N and stride size S, (3) Dropout(K) for dropout layers
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with the dropout rate K . Note that the full connected layer can be regarded as a special

convolutional layer, thus we denote the full connected layer with the same format as the

convolutional layer. In the testing phase, the softmax operator is adopted to derive the

probability distribution over activity classes. In the training phase, the loss function of the

network is the softmax log-loss as in Equation 2.1

E =
I∑
i

[(log
Na∑

d=1
exid ) − xig] (2.1)

where Na denotes the number of output neurons, which equals to the quantity of activities

to be recognized. i is the index of training samples. Thus xid is the d-th output neuron

of the i-th training sample. xig is the output neuron corresponding to the ground truth

of the i-th training sample. The first term of Equation 2.1 (log
∑Na

d=1 exid ) minimizes all

output neurons while the second term (xig) maximizes the output neuron corresponding to

the ground truth, thus Equation 2.1 maximizes the difference between the output neuron

corresponding to the ground truth and the other output neurons.

We trained our deep model using the stochastic gradient descent where the gradient

is obtained by the back-propagation. We use batches of 50 examples, momentum of 0.9

and weight decay 0.0005. The model is initialized with learning rate of 0.001 and this value

is further reduced manually whenever the validation error stops improving.

2.5. EXPERIMENTAL RESULTS

As summarized in Table 5.1, we selected five publicly available datasets for the

method validation. These datasets are collected in various contexts including different

sensor positions on the human body, different sampling rates, and different numbers of vol-
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Figure 2.5. The proposed multi-source DCNN architecture. Note that the Rectified Linear
Unit (ReLU) layer is not depicted here which follows each convolutional layer and full
connected layer.
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unteers. In addition, the five datasets include activities with different levels of classification

difficulties, for example, the relatively more discriminative activities such as walking, sit-

ting (USC [15], UCI [4], WISDM [16]), and the challenging fine-grained activities such

as closing a closet vs. closing a door, cleaning a table vs. moving a cup (Oppor [17]).

Complex activities in special scenarios such as the manipulative gestures performed in a

car maintenance workshop (Skoda [18]) are also used in our experiments. By leveraging

these five different datasets, we want to test the effectiveness and robustness of our activity

image and DCNN architecture.

Table 2.1. Dataset information.

2.5.1. Evaluating the Design of Activity Image. The design of activity image can

affect the effectiveness of the proposed method. Table 5.2 shows the performance of ac-

tivity recognition with various designs of input images where accuracy is defined as the

number of correctly recognized samples divided by the total number of testing samples.

The proposed activity image (Row 3) achieves the highest recognition accuracy. The ac-

curacy decreases when we use the signal image directly (Row 1) or replace the Discrete

Fourier Transform with the Discrete Cosine Transform (Row 2). The proposed activity

image is symmetrical with each pixel explicitly indicating the frequency magnitude at that

position. This pixel-level difference among different activity categories facilitates the deep

model to learn discriminative features.
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Table 2.2. Accuracy vs. input images.

2.5.2. Evaluating the Design of DCNN Architecture. The design of the deep

model is a critical factor to the proposed method. In this section, we design a multi-source

deep model which takes the whole activity image and its high and low frequency parts as

the inputs. We compare our model with other alternatives that are built by discarding one

or more branches. For example, a network only taking the high and low frequency parts

can be designed by omitting the branch of the whole activity image.

Table 2.3. Accuracy vs. architecture alternatives.

Table 2.3 shows the recognition accuracy with different model alternatives, from

which we have the following observations: (1) The comparison between the first and the

last column indicates that the performance can be improved by adding the high and low

frequency parts to the deep model with the whole activity image only. (2) The first three

columns shows that the performance is comparable when we discarding either the high or

low frequency part, because the deep model itself is capable of retuning the parameters



15

and balancing the branches when the high or low frequency part is discarded. (3) The first

and fourth column indicate when the branch of the whole activity image is deleted, the

performance significantly decreases, which means the whole activity image is important to

improve the recognition accuracy. (4) The large performance gap shown in the fifth and

sixth column illustrates that the low frequency part is of much more importance than the

high frequency part, because the low frequency part contains more principle information

while the high frequency part is more likely to be influenced by noise.

Table 2.4. Performance comparison.

2.5.3. Quantitative Comparison with State-of-the-Arts. As shown in Table 5.3,

we compare the proposed method with five other state-of-the-arts which can be classified

into two categories: (1) Automatic feature learning. The three methods labeled by green in

Table 5.3 are based on deep convolutional model, which differ with our proposed method

on the input image and the DCNN architecture; (2) Handcrafted feature design. The two

methods labeled by blue in Table 5.3 extract statistical attributes and empirical cumulative

distributions to recognize activities, respectively.

Our proposed method achieves higher accuracy than the other three deep model

based approaches, which is attributed to two factors: a more complex input image inten-

sively establishing the relationship between accelerometry signals and a deeper DCNN

architecture extracting discriminative features. Our method also outperforms the two ap-
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proaches based on handcrafted features. The manual design of features largely relies on

researchers’ domain knowledge and experiences, thus it is possible to omit important hid-

den features.

2.6. SUMMARY FOR SECTION 2

In this section, we focus on going deeper to achieve the higher performance on

human activity recognition. The word “deep" not only corresponds to the deep learning

method adopted in this section, but also has the following meanings. First of all, we go

deeper to process the accelerometry signals by separating them into gravity and linear ac-

celeration, then stacking the signals to have them adjacent to each other. DFT further sim-

plifies the difficulty to learn discriminative features. In addition, we design a deeper and

more complex network model for feature learning. In the experiments, we not only eval-

uate various designs of input images and different network alternatives, but also compare

our method with state-of-the-arts on five public datasets. The proposed method achieve the

superior performance in terms of recognition accuracy.
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3. WEARABLE SENSORS FOR PEOPLE TRACKING

3.1. RELATED WORK

This section is revised based on the paper published in IEEE 2015 Global Confer-

ence on Signal and Information Processing [19].

Human tracking based on Inertial Measurement Units (IMU) has a wide range of

applications in the ubiquitous and wearable computing [20, 21, 22, 23]. IMU-based human

tracking (abbr. IMU tracking) is able to achieve a high accuracy in a short or middle term

[24, 25]. In addition, because of its low battery consumption, low cost and the advantage

of requiring no extra infrastructures, IMU tracking can be applied to bridge the gap in

sensor-denied areas [26, 27], such as scenarios without visual, GPS or WiFi signals.

Figure 3.1. Overview of our IMU tracking. In the Dead Reckoning framework, the cur-
rent location pn+1 is obtained by adding the estimated displacement vector, vn

un
‖un‖ , to the

previously estimated location pn. vn and un are the speed and heading direction in step n,
respectively.

With IMUs embedded in mobile devices, their carriers can be tracked based on

the Dead Reckoning (DR) framework [25, 28, 29, 30, 31, 32], which consists of three

components: step detection, speed estimation and heading direction determination. Previ-
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ously, steps are detected by setting a threshold on the value of acceleration [28, 30, 32].

However, the threshold is person-specific and is dependant on the speed, so it needs to be

pre-determined and manually changed according to a target’s speed. Heading direction es-

timation is another challenging part. Acceleration is often used to determine the forward

moving direction [29, 31]. However, when a person walks, the movement pattern of an

IMU on the body is complicated, including noise which is unrelated to the heading direc-

tion, thus further calculation on the IMU signals is needed to infer the forward moving

direction. Overall, DR is subject to cumulative errors if we treat steps individually, so it is

necessary to consider the historical tracking data and reach a globally-optimal trajectory.

3.2. OUR PROPOSAL

This section presents a novel Dead Reckoning (DR) based human tracking algo-

rithm using IMUs embedded in wearable devices. Here we concentrate on the scenario

when wearable devices are placed in the pockets of people’s trousers because it is a com-

mon location to carry mobile devices especially for smartphones. Figure 3.1 shows the

overview of our IMU tracking. IMU consists of an accelerometer, a gyroscope and a

magnetometer, measuring tri-axis acceleration, tr-axis angular velocity and the strength of

magnetic field, respectively. In this section, steps are detected using accelerometer and gy-

roscope by Discrete Fourier Transformation and no person-specific thresholds are needed.

Speed is estimated by the maximal difference of angular velocities. Heading direction is

obtained from the principle frequency of the filtered acceleration. Additionally, the heading

direction of each step will be further rectified by considering historical tracking data. In the

rest of the section, we introduce the three components of DR in order, then we summarize

our algorithm and present the experimental study.
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3.3. STEP DETECTION

Speed and heading direction require to be computed on a complete step period, so

the accurate beginning and end of each step are needed. Unlike previous work which relies

on person-specific thresholds [28], we detect step in the frequency domain of acceleration

and angular velocity using the repetitive moving pattern when people walk. Magnetic field

is not suitable for step detection because step detection should be direction invariant.

Figure 3.2(a) shows the magnitude results after applying Discrete Fourier Transfor-

mation (DFT) to the six signals of accelerometer and gyroscope over a time sliding window

L of 400 samples (4 seconds). As we know, the frequency components related to the step

number should have high magnitude. We compute the principle frequency of all six signals,

f ∗, by

f ∗ = arg max
f

6∑
i=1
|Fi( f ; L)| (3.1)

where |Fi( f ; L)| denotes the magnitude of frequency component f of the ith signal within

the time sliding window L. Note DFT only detects integral frequency here, thus f ∗ is

an integer, equalling to 4 in Figure 3.2(a), but if there are 3.8 or 4.3 steps in the sliding

window L, the corresponding principle frequency will be rounded to 4. To find the step

precisely, we observe that the principle frequency should have a large difference compared

to its neighboring frequencies. Therefore, we propose a new metric ML , the magnitude

variance of the principle frequency compared with its neighboring frequencies, to search

the accurate steps:

ML =

6∑
i=1

var([|Fi( f ∗-1; L)|, Fi( f ∗; L)|, Fi( f ∗+1; L)|]) (3.2)
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Figure 3.2. Step detection. (a) DFT results of signals with 400 samples. (b) The variance
metric ML vs. the length of time sliding window L. Red curve is the curve fitting result.
(c) Illustration of the precise step detection procedure.

The blue part of Figure 3.2(b) shows the plot of ML when we gradually increase

L from 400 samples to 600 samples. The first peak and second peak are around 432 and

540, respectively, which means that there are 4 steps in 432 samples (4.32 seconds) and

5 steps in 540 samples, i.e., each step period is about 108 samples. The peaks in Figure

3.2(b) indicate that at these points, the magnitude of the principle frequency has the locally

largest difference compared to its neighboring frequencies. The raw curve of ML may

not be smooth, so we fit it by the least square method using the sum of sines model (i.e.,

ML =
∑

j a j sin(b j s + c j), where a j , b j and c j are parameters to be estimated. s is the
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sample sequence number). The red curve in Figure 3.2(b) is the curve fitting result whose

local maximum can be detected according to the parametric formula.

Figure 3.2(c) illustrates how we determine the beginning and end of each step pre-

cisely. We firstly define a coarse sliding window L (purple interval, with 600 samples or 6

seconds). For general walking, 6 seconds are able to include several steps. We then com-

pute the ML metrics in the last 200 samples of interval L. From the peak (green point) in

the ML curve, a precise time sliding window L̂ (green interval) can be calculated, which

includes exactly f ∗ steps.

3.4. SPEED ESTIMATION

Integration on acceleration to obtain speed accumulates errors very fast, making it

impractical for speed estimation. Observing that intensity of movement is approximately

proportional to speed, we propose to use the maximal difference of angular velocity to

measure the movement speed. The speed for step n is defined as

vn = K(maxs∈[s(n)
b
,··· ,s(n)e ]

‖ es ‖ −mins∈[s(n)
b
,··· ,s(n)e ]

‖ es ‖) (3.3)

where s(n)b and s(n)e denote the beginning and end of the nth step and ‖ es ‖ computes the

magnitude of angular velocity at sample s. K is a normalization factor calibrated using a

small fraction of the IMU data (about 20 seconds).

3.5. HEADING DIRECTION

The 3D acceleration in the IMU coordinates during a step can be projected to the

horizontal plane in the world coordinates. Principle Component Analysis (PCA) is applied

to the transformed acceleration to infer the heading direction [25, 28], but this is likely
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to be influenced by noise. As shown in Figure 3.3(a), the estimated heading direction by

applying PCA onto the projected raw acceleration data is not accurate.

Figure 3.3. Determination of the heading direction. Red arrows are the ground truth.
(a) The raw acceleration during a step is projected to the horizontal plane of the world
coordinates and the blue arrow is the estimated heading direction, which is inaccurate. (b)
The acceleration corresponding to the principle frequency is projected and the green arrow
is the estimated heading direction, which is much more accurate.

In this subsection, we transform the time-series acceleration signals in a step into the

frequency domain. We consider the frequency with the largest magnitude as the principle

frequency and treat all non-principle frequency components as noise and zero out them.

Then, we transform the filtered acceleration back to the time domain and project it to the

world coordinates’ horizontal plane. PCA is applied to the filtered acceleration to find the

heading direction u(w)n of step n. As shown in Figure 3.3(b), the heading direction is more

accurate.

When applying the above procedure (filtering, projection and PCA) repetitively

to determine the heading direction for each step individually, small errors may be accu-

mulated over time. We further rectify the heading direction by considering all available

steps’ heading direction globally. In Figure 3.4, if an IMU follows the forward directions
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Figure 3.4. A constant in different coordinate system. A constant vector in the IMU coordi-
nates always represents the forward direction after being projected to the world coordinates.

A→ B → C → D, the black vector that is constant in the IMU coordinates always points

to the forward direction after being projected to the world coordinates. Assuming an IMU’s

position in the target’s pocket does not dramatically change, it is possible to find a vector

r(IMU)
n in the IMU coordinates and then project it to the world coordinates to represent the

heading direction. r(IMU)
n is found by solving the following optimization problem

arg min
r(IMU)
n

∑
s∈[s(1)

b
,··· ,s(n)e ]

‖ Q(w→IMU)
s ∗ u(w)s − r(IMU)

n ‖ (3.4)

where u(w)s is the heading direction of sample s in the world coordinates directly obtained

from the heading direction of the step that sample s belongs to. Q(w→IMU)
s is the coordinate

transformation matrix of sample s from the world to the IMU coordinates which may be

provided by IMU model or computed by the approach proposed in [33]. s(n)b and s(n)e denote

the beginning and end sample of step n, respectively. r(IMU)
n is obtained by solving the

optimization problem in Equation 3.4 using the least square method.
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Each time we detect a new step n, the optimization problem in Equation 3.4 is

solved with all historical tracking data, thus r(IMU)
n is updated. Then we can rectify u(w)s to

û(w)s by Equation 3.5:

û(w)s = Q(IMU→w)
s ∗ r(IMU)

n , s ∈ [s(1)b , · · · , s(n)e ] (3.5)

Note that Q(IMU→w)
s is the transpose of Q(w→IMU)

s . The rectified heading direction

for each step û(w)n is the average direction of all samples within this step:

û(w)n = means∈[s(n)
b
,··· ,s(n)e ]

û(w)s (3.6)

3.6. OUR COMPLETE IMU TRACKING ALGORITHM

Algorithm summarizes the complete IMU tracking algorithm combing the three

aforementioned DR components. Row 4 to row 14 presents the updating strategy. Note

that algorithm 2 is designed for online tracking, so we update the trajectory p after each

new step detection. Algorithm 2 can be easily revised to an offline version by solving the

optimization problem after we obtain all data.

3.7. EXPERIMENTS AND EVALUATION

To validate the effectiveness of the proposed IMU tracking algorithm, we test it in

a public dataset. In addition, we also successfully apply the IMU tracking to assist visual

tracking in an occlusion-included environment.
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Algorithm 2 IMU Tracking Procedure.
Inilization: n = 0; k = 0; p0 = predefined starting position; // n is the step sequence

number; k is sequence number of sliding window. p is the tracking trajectory.
Loops:

1: while the target is walking do
2: • k = k + 1;
3: • Determine the precise sliding window L̂k ; and its number of steps f ∗k .
4: for i = 1 : f ∗k do
5: • n = n + 1;
6: • Define the nth step’s interval [s(n)b , · · · , s(n)e ]; //The interval of each step can be

determined by dividing the interval of L̂k by the principle frequency f ∗k .
7: • Determine the tentative heading direction u(w)n of step n by the filtering, projec-

tion and PCA procedure;
8: • Determine the speed vn of step n by Equation 4.3;
9: • Update r(IMU)

n by solving the optimization problem Equation 3.4;
10: • Calculate the rectified heading direction û(w)1 to û(w)n by Equation 3.5.
11: for j = 1 : n do
12: p j = p j−1 + û(w)n · vn;
13: end for
14: end for
15: end while
Output: p;

3.7.1. Test on a Public Dataset. The dataset is provided by [25]. For each record-

ing, three XSens MTx sensors are used with two being freely placed in the left and right

pockets respectively for testing and another one dorsally on the back for ground truth. This

dataset includes 23 traces from 8 volunteers wearing trousers ranging from jeans to slacks,

thus the pockets are with variable sizes and shapes. All volunteers are required to walk with

their normal patterns in two locations (a park and a garden). In the park (Figure 3.5(a), a

route with 870m), volunteers first walk anti-clockwise in a rectangular-like shape and then

turnaround in the opposite direction to the starting point. In the garden (Figure 3.5(c), a

route with 415m), volunteers walk based on a more complex trace. Some volunteers are
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required to walk several times with different trousers or at different times. Different factors

of human, trousers, traces and time are all considered in this dataset and it provides a total

of 30km trace length.

Figure 3.5. Traces comparison. The blue traces are ground truth. Red traces are the traces
of all volunteers from the left pocket in the park based on the proposed algorithm (a) or
PCA2df [25] (b). Yellow traces are the traces of all volunteers from the right pocket in the
garden based on the proposed algorithm (c) or PCA2df [25] (d).

(1). Performance of Step Detection: Table 3.1 shows the performance of step de-

tection by our FFT and adaptive sliding window strategy. Results from column 8 to 11

are obtained from one volunteer wearing four different trousers. The relative error is com-

puted by the difference between the estimated step number and the ground truth divided

by the ground truth. The relative error is pretty stable for different volunteers or differ-

ent trousers. Without setting person-specific thresholds, the overall relative error is 2.45%

which is acceptable in real scenarios especially for short-term or mid-term applications.

Table 3.1. Performance of step detection.

∗Estimated Step Number(E.S.N.); Ground Truth(G.T.); Relative Error(R.E.);
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(2). Performance of Heading Direction Estimation: Table 3.2 shows the heading di-

rection estimation performance of the proposed method compared with five state-of-the-arts

surveyed in [25]. The rotational approach utilizes the rotational motion of IMU. PCA2D

directly projects raw acceleration to the world coordinates while PCA2Df processes the

acceleration with a 5HZ mean filter. PCA3Df analyses the eigenvector in the 3D world

coordinates. GyroPCA relies on PCA on the angular velocity.

The comparison is performed on the total 30km trajectories from both pockets of all

volunteers in terms of two metrics: the deviation per step and the orientation error per step.

Among all the approaches, our proposed method achieves the best performance. Figure 3.5

shows the comparison of resulting traces based on the proposed algorithm and PCA2Df

[25]. The traces based on our method visually present less deviations than the traces based

on PCA2Df [25].

Table 3.2. Performance of heading direction estimation.

3.7.2. Practical Application. We conduct a potential application of our IMU track-

ing in some vision-denied scenarios described in Figure 3.6 where the target is occluded

by moving pedestrians at location A and moves out of visual field from location B. At

locations C and D, the target is occluded by background objects frequently. The target
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is cooperative to carry a Samsung Galaxy III embedded with IMU in his pocket and the

tracking-by-detection [34] is adopted as visual tracking algorithm. As we know, visual

occlusion is a hard problem for camera-based human tracking [35], but IMU does not rely

on vision, thus it has no problem of occlusion. The tracking strategy is as follows: when

the target is visible, only visual tracking works. When the target is occluded or missed, the

IMU tracking works to re-identify the target. As a result, if only vision is used, it might fail

in location A. However, as shown in Figure 3.6, despite the complex scenarios, the IMU

tracking algorithm can successfully aids vision to track the target persistently.

Figure 3.6. An application when the proposed IMU tracking assists visual tracking. Red
curves are visual trajectories and green curves are IMU trajectories when visual tracking
fails. The two kinds of trajectories form a persistent tracking trajectory.

3.8. SUMMARY FOR SECTION 3

This section presents a novel IMU tracking algorithm based on Dead Reckoning.

Steps are detected using accelerometers and gyroscopes by DFT and no person-specific

thresholds are needed. Heading direction is obtained from the principle frequency of the

filtered acceleration. We not only test it in a large public dataset, but also apply it to a prac-

tical application where IMU tracking aids visual tracking to mitigate the challenging visual

occlusion problem. The experimental study shows that the proposed IMU tracking is eli-
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gible for short-term or mid-term tracking and applicable to practice especially when other

sensors are combined. In the future, we will apply the proposed IMU tracking algorithm to

more applications such as indoor localization and navigation.
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4. COMBING VISUAL AND IMU SENSORS FOR PEOPLE TRACKING

4.1. PROBLEM

This section is revised based on the paper published in 18th International Confer-

ence on Information Fusion [36].

People tracking has a wide range of applications such as tracking people in pub-

lic crowded environments for security surveillance and tracking family members to avoid

losing loved ones. Typically, people tracking techniques can be classified as “passive” or

“active” tracking. Passive tracking utilizes devices that are not carried by people, such as

surveillance cameras. Active tracking locates targets by sensors carried by the cooperative

targets themselves, such as the Global Positioning System (GPS), WiFi receiver and Inertial

Measurement Unit (IMU). This section attacks the problem of persistently tracking coop-

erative targets (e.g., children, teens, the elderly, patients with autism/alzheimers/dementia)

by combining passive and active tracking.

4.2. RELATED WORK

We firstly present the related work for passive visual tracking, then previous work

on active sensor tracking is introduced. Previous research on Vision and IMU Fusion will

be illustrated finally.

4.2.1. Passive Visual Tracking. Passive vision-based people detection and track-

ing have been studied for several decades [37, 38]. The challenges are to track people

persistently through occlusion or clutter. For partial occlusion, [39] represented humans

as an assemble of four body parts and combined body part detectors and human detectors
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to track humans when they were occluded. [40] formed the representation of visible and

occluded parts and segmented the two parts by graph cuts. [41] trained an occlusion-aware

person detector, which was a joint model of detecting single person as well as pairs of per-

sons under varying degrees of occlusion. For full occlusion, previous efforts focused on

predicting targets’ positions when they are occluded and this was realized by Kalman filter

[42, 43, 44] or assuming the target keeps a constant velocity [45, 46].

Figure 4.1. Visual people tracking and its challenges. (a) Successful tracking; (b) The
target is occluded by other people; (c) The target is occluded by a tree over a long period;
(d) The target moves out of the field of view temporarily.

When there is heavy occlusion, large appearance change, nearby clutter or pedes-

trians temporarily moving out of the field of view, as shown in Figure 4.1, it is challenging
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for a merely vision-based tracking algorithm to persistently track people without any fail-

ure. This problem becomes worse when people change their moving patterns (e.g., speed,

direction) when occluded, which voids the linear filtering based prediction approaches.

4.2.2. Active Sensor Tracking. It is intuitive to track people with GPS consid-

ering its wide application in navigation. However, the accuracy of common GPS modules

isn’t high enough (15 meters on average as reported in http://www8.garmin.com/aboutGPS/).

Furthermore, obstructions such as city canyons or tall trees outdoors and walls/ceilings in-

doors weaken the signals transmitted between GPS receivers and positioning satellites,

making the GPS-based tracking unreliable in these GPS-denied environments. WiFi is an-

other choice to locate people but the coverage area of most WiFi hotspots is less than 50

meters, limiting its application in people tracking outdoors.

Inertial Measurement Unit (IMU), consisting of gyroscope, magnetometer and ac-

celerometer, is a good choice to track people by Dead Reckoning (DR) which adds the

current displacement vector to the previous estimated location. DR is built upon three

components: step detection, speed estimation and forward moving direction determination.

Previously, steps are detected by setting a threshold on the value of acceleration [25, 28],

but the threshold depends on a person’s movement patterns such as running and fast/slow

walking. Speed equals to the product of a predefined calibrated coefficient and the am-

plitude of acceleration [25, 28, 47, 48], but the calibration coefficient is hard-coded and

person-dependant. The orientation of acceleration is used to determine the forward mov-

ing direction [25, 28, 49], but finding the accurate transformation from sensor movement

directions on human body (e.g., in a pocket) to the walking/running direction of a person

in the world coordinate is difficult. Furthermore, the DR-based approach is prone to drift if

small errors on each step are accumulated over a long period.
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4.2.3. Vision and IMU Fusion. Previous work has explored the possibility to fuse

vision and IMU for people tracking or navigation [50, 51, 52, 53]. These work usually

fixed a camera on the target’s body and utilized vision information for motion estimation.

By involving the motion information from vision and Dead Reckoning result from IMU

into the Kalman filter framework, a more accurate tracking results can be obtained. These

work is single-direction fusion, that is only vision can aid IMU for people tracking. Our

work sets up the stationary surveillance camera out of the target’s body and investigated

how IMU and vision tracking can assist each other and form a persistent people tracking

system.

4.3. MOTIVATION

Visual tracking can obtain the movement trajectories/patterns of people, thus it can

calibrate IMU-based active tracking to avoid sensor drift. It is challenging for visual track-

ing to handle heavy occlusion, but active people tracking methods have no problems of

occlusion because they do not rely on visual signals, thus the occlusion problem of visual

tracking can be compensated by active sensor tracking.

4.4. PROPOSAL

Since visual tracking and IMU-based active tracking are complementary, i.e., not

only can IMU assist visual tracking when the target is occluded, but also the challenges

of IMU tracking (calibration and drift) are alleviated when visual signals are available, we

propose a novel people tracking system combining passive visual tracking and active sensor

tracking. The visual signal is from stationary surveillance cameras and IMU devices from

cooperative people are used for active tracking.



34

4.5. SYSTEM OVERVIEW

Our cooperative tracking system consists of three parts:

(1). Passive Visual Tracking (Subsection 4.2): Given a stationary surveillance cam-

era, a scene-specific pedestrian detector is trained to improve the detection performance.

An adaptive scale selection algorithm is proposed to further improve the pedestrian detec-

tion performance and reduce computational cost. Mode-seeking algorithm is applied to the

detection confidence map for people tracking.

(2). Active IMU Tracking (Subsection 4.3): A Discrete Fourier Transform (DFT)-

based step detection method is proposed, which does not need preset person-dependant

thresholds. The calibration coefficient in speed estimation is obtained by visual tracking

instead of manual setting. More accurate forward moving direction is obtained by a princi-

ple frequency component filter.

(3). Integration of Visual and IMU Tracking (Subsection 4.4): When the target is

visible, its visual trajectory calibrates and adjusts its IMU trajectory. When the target is

occluded, IMU tracking keeps working and offers clues for visual tracking to re-identify

the missed target.

4.6. PASSIVE VISUAL TRACKING

In this subsection, a scene-specific and scale-adaptive pedestrian detector is firstly

introduced, then visual people tracking based on detections is described.

4.6.1. Training a Scene-specific Pedestrian Detector. Histogram of Oriented Gra-

dient (HOG) features along with Support Vector Machine (SVM) has been widely used to

perform pedestrian detection in images. A large dataset (both positive samples and nega-

tive samples) are usually needed to train a general pedestrian detector which is very time-



35

consuming and the detector may not work well on scenarios different from the training

dataset [37].

Figure 4.2. Training a scene-specific pedestrian detector.

In a fixed scene, the viewpoints from which people can be observed and the scales

of people in images are limited. Moreover, the negative samples are limited (they are just

the background in the scene!). The critical problem in people detection is how to classify

those background samples that are very likely to be mistakenly classified as people samples.

If the detector can correctly classify those background samples whose feature descriptors

are near the decision boundary, it is sufficient to classify other background samples which
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are largely different from people samples. In this subsection, we propose a new iterative

training algorithm to deal with the problem.

As illustrated in Figure 4.2, the positive samples (images framed in red) are the

manually cropped pedestrian images from videos taken on the specific scene, which in-

clude pedestrian images with different walking gaits and scales that can be seen from the

specific viewpoint. The pool of positive samples is not changed during the iterative training.

The negative sample pool initially consists of randomly cropped backgrounds from images

taken on the specific scene in different weather and illumination conditions (images framed

in blue). The negative sample pool expands gradually during the iterative training.

The iterative training algorithm is performed in the following steps: when a new

pedestrian detector is available after SVM training, it will be applied to classify back-

ground images randomly cropped from images taken on the specific scene (images framed

in green); the false positive samples (images framed in purple) are put into the negative

sample pool and the SVM will be updated for the next iteration; training stops when the

number of false positive samples is zero. Every time the SVM is updated, the detector is

more robust to classify those samples that are misclassified previously.

4.6.2. Adaptive Scale Selection. In common people detection algorithms, for ev-

ery input frame, different scales defined by the height and width of rectangles need to be

searched in the image exhaustively to detect all pedestrians. In a fixed scene, although the

same person may display different scales at different locations in the image (e.g., Figure

4.3(a)). However, if we transform the image into the top-down view by a homography

matrix Ha, the width of the pedestrian rectangle is almost a constant (red lines in Figure

4.3(b) are the warped rectangular bottoms from four detections). Thus, if we fix the ratio

of the height and width of a detection rectangle and determine the standard scale Sstd by

the length of the bottom side of the warped rectangle, people’s scales in every region of the
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specific scene can be estimated in advance, i.e., we know which scale in the original image

we should use to detect pedestrians rather than performing the exhaustive scale search.

Figure 4.3. Adaptive scale selection.

Ha is estimated by four pairs of point correspondences (e.g., the four corners of the

purple rectangle in Figure 4.3). Ha is a constant for a fixed scene and it only needs to be

updated when the viewpoint changes.

4.6.3. Tracking by Detection. Based on the target’s location in the previous frame

t − 1, we apply our scene-specific and scale-adaptive pedestrian detector within a local

region around the previous location to detect the target in the current frame t. Figure 4.4

shows some pedestrian images and their confidence maps corresponding to SVM scores of
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the pedestrian detector. The white in a confidence map denotes high score (confidence) of

people detection. The target’s location in frame t is determined by seeking the mode (the

position with maximal confidence in the confidence map).

Figure 4.4. Visual tracking. (a) and (c) are the pedestrian images. (b) and (d) are their
confidence maps, respectively.

If the target is not occluded (Figure 4.4(a)), there is a single global peak in the con-

fidence map, thus the target can be correctly tracked. However, when the target is occluded

by other pedestrians (e.g., Figure 4.4(c)), there are multiple peaks in the corresponding

confidence map. It is possible that the non-target pedestrian is detected and tracked mistak-

enly. Therefore, when occlusion, clutter and disappearance of the target happen, we refer

to IMU-based active tracking to correct the visual tracker and reidentify the lost target.

4.7. ACTIVE IMU-BASED TRACKING

IMU includes accelerometer, magnetometer and gyroscope, which measures tri-

axis acceleration, the strength of magnetic field and tri-axis angular velocities, respectively.

As shown in Figure 4.5, our IMU tracking is based on Dead-Reckoning (DR) which adds

the displacement vector, vn
un

‖un‖ , to the previously estimated location pn. vn and un are the
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speed and forward moving direction in step n, respectively. Our IMU tracking approach

consists of three components: step detection, speed estimation and forward moving direc-

tion determination.

Figure 4.5. Flow chart of our IMU-based pedestrian tracking.

4.7.1. Step Detection. Speed and heading direction require to be estimated on a

complete step period for DR, so the accurate beginning and end of each step is needed.

In [25], step is detected in the time domain by finding local maximum and minimum of

acceleration data and a threshold is set to rule out false positives. However, the threshold

depends on the speed and is person-specific. When speed greatly changes, missed detection

of steps increases rapidly. Different thresholds need to be chosen for different targets.

In this subsection, a step detection algorithm based on adaptive sliding window

and Discrete Fourier Transform (DFT) is introduced, which is inspired by the following

observations: (1) The movement pattern of a walking person is periodic. Therefore, DFT

can be applied to find the number of periods (i.e., the number of steps) in a certain sliding

window. (2) Magnetic field is sensitive to heading direction change, so it is not suitable

for step detection. Instead, angular velocity and acceleration are ideal because they do not
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depend on the forward direction. (3) Only one axis signal is not reliable for step detection.

All 6 axes of gyroscope and accelerometer are considered in our step detection by DFT.

Figure 4.6. Step detection. (a) DFT results of 4-second signal with 400 samples. (b) The
variance metric vs. signal length to detect the accurate step period.

Figure 4.6(a) shows the results after applying DFT to six signals of accelerometer

and gyroscope over a time sliding window L of 400 samples. In our IMU device, sensor

data are collected at the rate of 100 samples per second, so 400 samples of data imply

data collected in 4 seconds. The horizontal axis in Figure 4.6(a) is the frequency which

is related to the number of periods within the time sliding window. The vertical axis in

Figure 4.6(a) is the corresponding magnitude. The frequency component related to the step

number should have high magnitude while frequency components corresponding to noise

should have low magnitude. We compute the principle frequency of all six signals, f ∗, by

f ∗ = arg max
f

6∑
i=1
|Fi( f ; L)| (4.1)



41

where |Fi( f ; L)| denotes the magnitude of frequency component f of the ith signal within

the time sliding window L. Note that f ∗ is an integer in DFT. In Figure 4.6(a), f ∗ = 4, but is

there exactly 4 steps during this time sliding window (400 samples)? The answer is possibly

NO. If there are 3.8 or 4.3 steps in the sliding window L, the corresponding principle

frequency will be rounded to 4. We need to search the accurate beginning and end sampling

moments of complete steps in the signals to estimate the speed for Dead-Reckoning (DR).

Otherwise, DR will deviate from the truth quickly due to the accumulated error. Observing

that the principle frequency has a large difference compared to its neighboring frequencies,

we propose a new metric ML , the magnitude variance of the principle frequency compared

with its neighboring frequencies, to search the accurate steps:

ML =

6∑
i=1

var([|Fi( f ∗-1; L)|, |Fi( f ∗; L)|, |Fi( f ∗+1; L)|]) (4.2)

We gradually increase the time sliding window L. For each L, we compute f ∗ by

Equation 4.1 and then compute ML by Equation 4.2. Figure 4.6(b) shows the plot of ML

versus L. We can see the first peak is around 420 with L = [1, 420], which means that there

are 4 steps in 420 samples (4.2 seconds), i.e., each step period is about 105 samples. If we

keep increasing L, we will find another peak around 525 in L = [1, 525] which means that

there are 5 steps in 525 samples. The peaks in Figure 4.6(b) indicate that at these points, the

magnitude of the principle frequency has the largest difference compared to its neighboring

frequencies. Thus, we can detect the exact number of steps by adapting this time sliding

window technique.

4.7.2. Speed Estimation. Practically, walking/running speed varies from person

to person. Even for the same person, the moving speed may not be a constant over time.

Integration on acceleration to obtain speed accumulates errors very fast, making it imprac-
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tical for speed estimation. Observing that the magnitude of movement is approximately

proportional to speed, we propose to use the maximal difference of angular velocity to

measure the movement intensity. The measurement is only valid in complete movement

pattern periods, which is at least one step. That is one of the reasons why we need accurate

step detection and speed is calculated in the unit of step. The speed for step n is defined as

vn = α(maxs∈[s(n)
b
, s(n)e ]

‖ as ‖ −mins∈[s(n)
b
, s(n)e ]

‖ as ‖) (4.3)

where s(n)b and s(n)e denote the beginning and end sample of the nth step and ‖ as ‖ is the

magnitude of angular velocity at sample s. α is the calibration factor depending on specific

persons. When visual signal is used, α is determined by a similarity warping matrix which

will be introduced in subsection 4.4.

4.7.3. Forward Moving Direction Determination. The 3D acceleration vectors

in the IMU coordinate during each step can be projected to the horizontal plane in the

world coordinate to infer the forward moving direction [25, 28]. This method works for

professional IMUs. But for low cost IMUs such as the IMU module built in smatphones

which is more likely to be influenced by noise, it performs poorly. Figure 4.7 shows the

results when acceleration collected by a smartphone in 4 steps is projected to the world

coordinate’s horizontal plane. There is no obvious forward moving direction.

Considering the 3D acceleration vectors during a time sliding window as time-

series signals, we transform them into the frequency domain. Since the principle frequency

during the sliding window is already detected in the step detection process (subsection

4.3.1), we treat all non-principle frequency components as noise and zero them out. Then,

the filtered signal is transformed back to the time domain and is projected to the world

coordinate’s horizontal plane. As shown in Figure 4.7(b), the moving direction is obvious.
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Ellipse-fitting (i.e., 2D Principle Component Analysis) is applied to the projected principle

acceleration and the semi-major axis of the ellipse represents the forward moving direction

[ux uy].

Figure 4.7. Determine the forward moving direction. (a) The acceleration in a short period
(4 steps) is projected to the horizontal plane in the world coordinate. (b) The acceleration
corresponding to the principle frequency in a short period is projected. The semi-major
axis of the ellipse represents the forward moving direction.

4.8. INTEGRATION OF VISUAL AND IMU TRACKING

As shown in Figure 4.8, our cooperative people tracking system is divided into three

parts: initialization, tracking and re-identification.

4.8.1. Initialization. The target to be tracked is initially identified by human. Fig-

ure 4.8(a) and Figure 4.8(b) show the visual trajectory (red) and IMU trajectory (green)

in the first sliding window L1, respectively. The trajectory generated by IMU tracking is

in the world coordinate, so it is a 2D curve in the horizontal plane viewed from top to

down. Unlike IMU trajectory, visual trajectory is in the image coordinate depending on the
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Figure 4.8. The flow chart of the cooperative tracking system. SW: Sliding Window.

specific camera viewpoint, thus they are not directly comparable. We warp the visual tra-

jectory from scene-specific viewpoint to the top-down viewpoint by Ha (subsection 4.2.2),

as shown in Figure 4.8(c). Since the transformation between the warped visual trajectory

(Figure 4.8(c)) and IMU trajectory (Figure 4.8(b)) is just rotation, translation and scaling

(i.e., similarity transformation), we match the two trajectory curves by computing the sim-

ilarity transformation matrix Hs,k in sliding window Lk using the least square procedure:

arg min
Hs,k

∑
t

(Hs,kT(v,k)t − T(s,k)t )2 (4.4)

where T(v,k)t and T(s,k)t denote the uniformly sampled point t on the warped visual trajec-

tory and sensor trajectory in sliding window Lk , respectively. The initialization step is

performed in the first sliding window, so k = 1. Figure 4.8(d) shows the result of IMU tra-
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jectories matched to visual trajectories. For better visualization, we can warp the top-down

viewpoint to the scene-specific viewpoint by the inverse of Ha. Therefore, two matrices, Ha

(homography transformation) and Hs,k (similarity transformation), make visual and IMU

trajectories compatible. Ha does not change unless the scene-specific viewpoint changes.

Hs,k keeps being updated during each sliding window of the cooperative tracking.

4.8.2. Tracking. The initialization step only needs to be performed once, then our

system goes to the normal tracking. Figure 4.8(f) and (g) show the trajectories based on

visual and IMU tracking, respectively, in sliding windows L1 ∼ Lk . Then, Hs,k−1 and Ha

are applied to warp IMU and visual trajectories to the top-down viewpoint. The average

distance d between trajectories in Figure 4.8(h) is calculated. If d < dthr , visual and IMU

trajectories are matched, then new Hs,k is computed using Equation 4.4 and we go to the

next sliding window. In our tracking system, we set dthr = 80inches.

4.8.3. Re-identification. Two cases lead to the re-identification: (1) The target

disappears in visual tracking such as moving out of the visual field or being occluded by

other objects; (2) Visual and IMU trajectories do not match each other, which may be

caused by tracking drift (i.e., track a non-target pedestrian).

As shown in Figure 4.8(i), IMU keeps tracking the target even it is occluded (green

curves). Meanwhile, visual pedestrian detector tries to detect pedestrians in a search re-

gion estimated by IMU (yellow circle in Figure 4.8(i)). If detected, the pedestrian will be

visually tracked for ∆t frames (Figure 4.8(k)-Figure 4.8(m)). ∆t is set as 150 frames (5

seconds) here. If any visual tracking failure happens within the ∆t frames, we go back to

the IMU-tracking (Figure 4.8(i)). If the tracking within the ∆t frames succeeds, the av-

erage distance d between IMU and visual trajectories during ∆t is computed to judge if

they match. If d < dthr , the target is re-identified and we go to the normal tracking again.

Otherwise, we go to the IMU-tracking (Figure 4.8(i)) for re-identification.
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The above cooperative people tracking system elucidates why visual tracking and

IMU tracking are “complementary”. First, when visual tracking fails, IMU tracking keeps

working and offers the clue where the target could be, helping visual tracking reidentify

the target. Secondly, the visual trajectory corrects the bias of speed and forward direction

estimation in IMU tracking by the similarity matrix Hs,k . The calibration coefficient in

Equation 4.3 is also compted by Hs,k once we know the length of matched visual and IMU

trajectories. As we keep updating Hs,k , visual tracking rebuilds the relationship with IMU

tracking and rectifies the deviation of IMU-based tracking trajectory.

4.9. EXPERIMENTS

To test the effectiveness of our cooperative tracking system, we apply it for people

tracking in daily environments. Consumer electronics such as smartphones embedded with

IMU modules are selected as the IMU signal collector. The IMU module in a smartphone

is low cost and sensitive to noise. If our system works well using smartphones, we believe

it will work using expensive and professional IMU devices. In addition, the popularity of

smartphones offers more possibilities of applications of our tracking system. We developed

an App to collect IMU signals when the target is moving or standing. The IMU signals are

transmitted back to a groundstation by GSM. Meanwhile, a stationary surveillance camera

collects visual signal of the target person. The visual signal is taken at 30 frames per second

and the sampling frequency of IMU signal is 100 samples per second. The data transmitted

between a smartphone and the groundstation is about 13.5 MB per hour. To synchronize

the two signals, for every frame of the video, the nearest IMU signal is found according to

the timestamp provided by the smartphone system.

4.9.1. Evaluation. We recorded four videos in different conditions to test the per-

formance of our cooperative people tracking system (Figure 4.9).
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Figure 4.9. Trajectories of the target person. Red curves are visual trajectories and green
curves are IMU trajectories when visual tracking fails. (a)(b) Screenshots from video 1.
(c)(d) Screenshots from video 2. (e)(f) Screenshots from video 3. (g)(h) Screenshots from
video 4.
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Video 1 was taken in an occlusion environment with a small slope. The target per-

son was occluded by a tree twice for 9 and 16 seconds, respectively. Figure 4.9(a)(b) show

that the target is successfully tracked by our system in long term and heavy occlusions.

In video 2 (Figure 4.9(c)(d)), the target changed his speed from walking to sudden

run and then stopped when hidden by the tree. Ten seconds later, the target began to

walk in a direction different from his previous direction. This case is difficult for vision-

based tracking algorithm because the target changes his speed and forward direction when

occluded.

Video 3 (Figure 4.9(e)(f)) is an example of associating IMU trajectories with visual

ones when multiple cooperative people carrying IMUs were in the scene. One target was

occluded by the other. When they departed towards different directions, visual tracking

failed because of the clutter of similar appearance. However, IMU tracking tracked and

re-identified the target successfully.

In video 4 (Figure 4.9(g)(h)), the target was occluded by moving pedestrians at

location A and moved out of visual field from location B. At locations C and D, the tar-

get was occluded by background objects frequently. Despite the complex scenarios, our

cooperative tracking system can persistently track the target.

Table 4.1 summarizes the quantitative evaluation on our cooperative tracking sys-

tem. The two trajectories are synchronized by comparing their timestamps. The trajectory

error is computed by the average difference between a tracked trajectory and its ground

truth. The ground truth is labelled by a human annotator in each frame of the videos. The

average errors of vision and IMU tracking in our cooperative people tracking are 37 inches

and 44.3 inches, respectively. Visual tracking fails when the target is heavily occluded in

the first time in each video, but our proposed tracking system can persistently track the

target by combining visual and IMU tracking. The experiments validate that visual track-
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ing combined with IMU tracking can achieve both accuracy and persistency. Here we did

not provide the quantitative IMU-only tracking results, which is because IMU-only track-

ing needs manually set parameters such as the speed coefficient α in Equation 4.3 and the

orientation offset [25]. These handcrafted parameters are person-specific and will largely

affect the tracking performance. In the next subsection, we compare the shape of IMU

tracking results which does not need manual parameters.

Table 4.1. People tracking results. FV: number of frames successfully tracked only by
Vision. FS: number of frames successfully tracked by our cooperative people tracking
system. VTAE: Visual Trajectory Average Error. ITAE: IMU Trajectory Average Error.

Video #frames FV FS VTAE(in) ITAE(in)

1 2009 580 2009 50.3 66.0

2 1940 717 1940 35.15 45.2

3 1063 625 1063 22.4 15.8

4 1857 392 1857 33.1 36.1

avg 37.0 44.3

4.9.2. Comparison. We have seen IMU tracking can assist visual tracking in sub-

section 4.5.1. We use video 1 as an example to compare different IMU tracking methods

and shows the benefit of visual tracking to help IMU tracking. Figure 4.10(a) is the ground

truth of the target trajectory in video 1, which is obtained by warping the target’s trajecto-

ries in the scene-specific viewpoint to the top-down viewpoint using Ha. All trajectories

in Figure 4.10 are in the horizontal plane of the world coordinate. Figure 4.10(b) is based

on the PCA2D (i.e., 2D Principle Component Analysis) method introduced in [25] which

detects step in the time domain. There are many misdetections on step and direction by

this approach and the tracked trajectory drifts away from the ground truth largely. Figure
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4.10(c) is the result by our IMU tracking method without any assistance from the visual

tracking, which is better but still drifts away from ground truth a little. Figure 4.10(d)

shows the trajectory results of IMU tracking assisted by the visual tracking. When visual

tracking is combined, visual trajectories constantly adjust the orientation and scale of IMU

trajectories with Hs,k . The IMU trajectory in Figure 4.10(d) is very close to the ground

truth.

Figure 4.10. IMU trajectories generated by three different approaches. (a) Ground truth
trajectory; (b) Trajectory by time-domain step detection [25]; (c) Trajectory by our DFT
approach; (d) Trajectory by our DFT approach assisted by the visual signal.

4.10. SUMMARY FOR SECTION 4

To persistently track cooperative people such as children and patients in challenging

scenarios, we present a novel tracking system combining the visual and Inertial Measure-

ment Unit (IMU) signals, obtained from surveillance cameras and IMU devices carried by

the targets themselves, respectively. Not only can IMU assist visual tracking when the tar-



51

get is occluded, but also the challenges of IMU tracking (calibration and drift) are alleviated

when visual signals are available. Experimental results show that visual and IMU tracking

are complementary to each other and their integration achieves very good performance on

persistent people tracking under challenging daily environments.
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5. INDOOR LOCALIZATION BY SIGNAL FUSION

5.1. PROBLEM STATEMENT

This section is revised based on the paper published in 18th International Confer-

ence on Information Fusion [54].

Indoor geo-location is an important component of smart buildings, which can be

divided into two categories: indoor navigation and indoor localization. Indoor navigation

provides the route to the user’s destination while indoor localization tells the user where

she/he is. This section focuses on indoor localization because it has many daily applications

in different scenarios such as hospitals, shopping malls, museums and office towers. In

addition, indoor localization lies the basis for further navigation. The technology of indoor

localization of human can also be applied to robots in a building.

Visual signal is intuitively useful for indoor localization as people generally know

where they are according to what they see. A typical vision based indoor localization

algorithm consists of two stages: building a reference database and online localization by

image matching. The database is built by the feature representation of geo-tagged images

taken within a building. When positioning, a new image around a user’s location is taken

and it is compared with the database to estimate her/his location.

Although vision based indoor localization has been studied for several years [55,

56, 57, 58, 59], there are still several unsolved challenges when practical implementations

are considered: (1). In a common building, thousands of images can be recorded as refer-

ences and millions of visual features can be detected and extracted from the images. An

efficient way to build the reference database is needed. (2). In online localization, the query

image will be compared with the whole database, which decreases the efficiency when the
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database is huge. (3). A building may have unified decoration style, so similar scenes exist

in different positions, which is hard to be visually classified.

The pervasiveness of smartphones offers the opportunities to assist visual indoor lo-

calization with WiFi and orientation signals and mitigates the challenges described above.

The WiFi module collects WiFi signals and inertial sensors (e.g., accelerometer and magne-

tometer) can be used to measure the orientation of a smartphone when its user takes photos.

In this section we fuse the visual signal and other contextual information offered by WiFi

and inertial sensors to make the energy-saving, efficient and accurate indoor localization

possible.

5.2. PREVIOUS WORK

WiFi and inertial sensors can be individually applied to indoor localization. [60]

and [61] extracted sophisticated features from the raw Received Signal Strength Indication

(RSSI) of WiFi signals to describe a location. However, it is possible that some hotspots

are shut down or the RSSI value of a specific hotspot is changed because of the device

update, which dramatically decreases the localization accuracy of merely WiFi-based ap-

proaches. [62] and [63] utilized inertial sensors such as accelerometers and magnetometers

to perform step detection, speed estimation and heading direction determination and the

three components can be built in the Dead Reckoning framework to obtain the user’s tra-

jectory. The trajectory can then be matched with the floor plan to infer the user’s location.

Inertial sensors based approaches do not need to collect reference data in the building ex-

cept the floor plan, but Dead Reckoning suffers from cumulative errors or drift, making the

trajectory estimation inaccurate.

For vision-based indoor localization, in [64], local affine invariant points were ex-

tracted from images. These points were quantized into visual words by K-means. Each



54

image can be represented as a vector and each dimension of the vector represented a count

of the occurrence of a visual word. The feature descriptor in terms of visual words was

used for image/object matching. [55] proposed a coarse-to-fine localization system where

several candidate images were obtained by comparing the similarity of a query vector with

reference vectors in the database, then a keypoint voting algorithm was adopted to deter-

mine the final matched image. Although online localization is reliable, the database is

still computationally costly to be built. [58] considered the global features, including a

weighted gradient orientation histogram and color histogram to localize people in indoor

environment, but merely global information can not distinguish two different locations with

similar decoration. To reduce the cost to build database, [65] improved the traditional K-

means by compressing and removing patterns at each iteration which are unlikely to change

their membership thereafter. To improve the localization accuracy, [66] adopted epipolar

geometry constrains to refine the location.

Previous work also investigated signal fusion methods for indoor localization. [67]

and [68] utilized WiFi signal to rectify the trajectory obtained by inertial sensors. [69]

combined Radio Frequency and WiFi to improve the localization accuracy. [70] combined

more signals (e.g., WiFi, sound, motion, color) to build the localization algorithm. These

signal fusion methods just concatenate several sensors together to improve the localization

accuracy but the problems of feature selection on signals and how to efficiently combine

signals are often overlooked.

5.3. PROPOSED METHOD AND ALGORITHM OVERVIEW

In this section, we propose a novel tree-based indoor localization algorithm in which

the WiFi, orientation and visual signals from smartphones are integrated into a signal tree.

In the proposed algorithm, WiFi is used for coarse positioning, thus the problem of WiFi
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environment change is mitigated since WiFi is only used for coarse localization instead

of fine localization. Inertial sensor is not used to estimate the trajectory, but to obtain the

orientation towards which the user takes photos. The problem of image scenes caused by

unified decoration can also be alleviated because similar scenes may have different WiFi

and orientation information. This algorithm consists of two stages: building the signal tree

and online localization (Figure 5.1).

Figure 5.1. Overview of the propose indoor localization algorithm.

Building the Signal Tree (Figure 5.1(a)): WiFi signals are collected in a building,

tagged with hotspots’ Received Signal Strength Indication (RSSI) and the positions where

the signals are collected. Reference images are densely captured in a building and labeled

with the orientation and location information. Essentially, the construction of a signal tree

is the process of clustering and describing reference images with the aid of WiFi and orien-

tation signals. Locations are described by WiFi fingerprints and then all WiFi fingerprints

are clustered into branches. All reference images are partitioned into the WiFi branches

based on their spatial distance to WiFi fingerprints’ positions (purple part in Figure 5.1(a)).

Then, images in the same WiFi branch are further classified according to their orientation

similarity (blue part in Figure 5.1(a)). Images in one leaf node share the same WiFi and
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orientation labels. Given a leaf node, each image is described by multiple level descriptors

(blue part in Figure 5.1(a)).

Online Localization (Figure 5.1(b)): When a user takes a photo to localize her-

self/himself, WiFi and orientation signals are recorded automatically and synchronously.

The signal tree is then searched to find the best matched image that indicates the user’s lo-

cation. The query WiFi fingerprint coarsely determines which WiFi branches the matched

image belongs to. Orientation information further rules out impossible reference images.

Then, every searched leaf node gives a candidate image best match to the query image

within a leaf node. Finally, these candidate images are compared to decide the final

matched image. The matched image’s tagged position indicates the user’s location.

Our proposed tree-based indoor localization algorithm does not bring extra work

to users. A user only needs to take a photo while the WiFi and orientation signals are

automatically recorded. Then, the user can discover her/his location in the building based

on the signal tree. In addition, when building the signal tree, images are naturally clustered

into groups sharing similar WiFi and orientation environments. Combined with parallel

computing, the time needed to build the database can be remarkably reduced. In online

localization, WiFi and orientation can not only offer more context information to refine the

matched location, but also rule out impossible reference images, decreasing computational

cost and increasing localization accuracy.

In the rest of this section, building the reference signal tree is described in subsec-

tion 5.3. Detailed search strategies for localization are introduced in subsection 5.4. Then,

experimental results are presented with comparisons and evaluations.
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5.4. BUILDING THE SIGNAL TREE

This subsection presents the algorithm to build the signal tree. The surrounding

sensor environment (WiFi and orientation) and image attributes of a position are fused

together in the hierarchical signal tree to describe that location.

5.4.1. Building WiFi Branches. WiFi signals are sparsely collected in a building.

A location is described by the WiFi fingerprint, which is a vector with each dimension

equaling to the processed RSSI of a certain hotspot. To better describe the WiFi environ-

ment of a building, all fingerprints are clustered into groups.

It is reported in [71] that WiFi signal gets less reliable when its RSSI is lower, so

we normalize the raw RSSI by an exponential distribution

f ∗i, j = λexp[ λ
fi, j − fmin

fmax − fmin
] (5.1)

λ =
fmax − fmin

fmean − fmin
(5.2)

where fi, j is the raw RSSI of WiFi hotspot j at location i. f ∗i, j is the normalized RSSI.

fmax , fmin and fmean are the maximal, minimal and average RSSI of all fi, j . λ is the rate

parameter. Then, the WiFi fingerprint at location i, fi, is defined as

fi = [ f ∗i,1, . . . , f ∗i, j, . . . , f ∗i,Nj
] (5.3)

where Nj is the number of WiFi hotspots in a building.

WiFi Clustering: Treating WiFi fingerprints individually is not robust to environ-

ment changes such as shutdown of some hotspots. Thus WiFi fingerprints are clustered
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into groups based on their WiFi fingerprint similarity and spatial distance. The clustering

procedure is divided into two steps (Figure 5.2): Bottom-Up clustering by WiFi fingerprint

similarity and Top-Down cutoff by spatial distance.

Figure 5.2. WiFi fingerprints clustering. (a) Button-Up WiFi Clustering Dendrogram; The
number in the leaves are indices of WiFi fingerprints. (b) Top-Down Cutoff Dendrogram.
Leaves sharing the same color belong to the same WiFi cluster. (c) The floor plan where
the WiFi fingerprints are collected. Dots indicate where the WiFi signals are collected and
surrounding numbers are the corresponding indices of WiFi fingerprints. Dots sharing the
same color belong to the same WiFi cluster corresponding to (b).

As shown in Figure 5.2(a), WiFi fingerprints are firstly hierarchically clustered from

bottom to up. Initially, each WiFi fingerprint is a cluster. Then two clusters most similar

to each other are merged into a bigger cluster. This agglomerative mergence operation is

performed iteratively and stops when all WiFi fingerprints are in one cluster. The similarity

metric of two clusters is defined by Ward’s method [72].

S(A, B)=
∑

k∈A∪B

| |fk−fA∪B| |−
∑
k∈A

| |fk−fA| |−
∑
k∈B

| |fk−fB| | (5.4)

where fk denotes a WiFi fingerprint. fA, fB and fA∪B are the centroids of cluster A, B and

A ∪ B, respectively. ‖ · ‖ is Euclidean distance.
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The WiFi hierarchical tree in Figure 5.2(a) only shows a multi-branch hierarchy

rather than a set of clusters. It is partitioned into several groups based on WiFi fingerprints’

spatial distances. As shown in Figure 5.2(b), from top to down of the WiFi hierarchy,

every node is checked if the maximal value of spatial distance between all pairs of WiFi

fingerprints belonging to this node is less than a predefined threshold dWiFi
thr (e.g., dWiFi

thr =20

meters). When the maximal value is actually less than dWiFi
thr , the WiFi fingerprints belong-

ing to this node will be considered to be the same group.

Note that the number of WiFi clusters is automatically defined by the fingerprint

similarity and spatial distance instead of presetting by human. Figure 5.2(c) shows the

final clustering results of WiFi fingerprints in a university building. The clustering result

accurately reveals the actual WiFi environment of this building. Then, each reference image

is clustered to the nearest WiFi group based on spatial distance.

5.4.2. Building Orientation Branches. Inertial sensors, including accelerometer

and magnetometer, are equipped in most smartphones. When smartphones are stable (tak-

ing photos), accelerometer measures the gravity while magnetometer measures the earth’s

magnetic field. Gravity and magnetic field set up a world coordinate system. Thus, every

point in the phone’s coordinate system can be converted to the world coordinate system by

a transformation matrix.

Let Qp→w denote the transformation matrix from phone coordinate system to the

world coordinate system, which can be obtained by the algorithm described in [33]. Figure

5.3 shows the scenario when a user takes a photo, the yellow vector cp represents the ori-

entation that the camera is towards. Note that cp is a constant vector in phone’s coordinate

system. cp is transformed to the world coordinate by

cw = cp ×Qp→w (5.5)



60

Denoting cw = [cwx cwy cwz]T , we project the orientation to the horizontal plane in

the world coordinate, i.e, vector O = [cwx cwy]T is the orientation on the floor plan which

the photo is taken towards.

Figure 5.3. The scenario when a user takes a photo for localization. cp is a constant vector
in photo’s coordinate system, pointing outside the back of the phone.

Orientation Clustering: When building the visual database, previous work [57, 58,

59, 73] mostly took thousands of photos manually, which is pretty time consuming. Instead,

we collect continuous videos and orientation information simultaneously. Every frame of

these videos is a reference image. Without loss of generality, we make the explanation

with a simple floor plan. For example, eight video clips were recorded in a building fol-

lowing the eight routes defined in Figure 5.4(a). Each frame in the videos is tagged with

its corresponding orientation. Each video clip was recorded following the same direction,

therefore the orientations of all frames in a video are similar, naturally forming a cluster of

orientation.

Figure 5.4(b) shows the distributions of eight orientation clusters corresponding to

the eight routes in Figure 5.4(a). The orientation distribution of each video clip is not a
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constant impulse distribution due to noise. The orientation distribution of a video clip q

is modeled by a Gaussian distribution N(µq, σq). Suppose the entire floor plan in Figure

5.4(a) is in one WiFi cluster, overlapped orientation clusters can be further merged into a

bigger cluster. The similarity of two distributions q1 and q2 is defined as:

Sq1,q2 =
σ2

q1 + σ
2
q2

|µq1 − µq2 |
(5.6)

If the centroid of two distributions are close to each other and their inter-distribution

variance ar small, then they can be merged into a bigger cluster. In Figure 5.4(b), the eight

orientation distributions can be clustered into four clusters. Each of the four orientation

clusters is one orientation subbranch within the same WiFi branch.

Figure 5.4. Orientation clustering. (a) Floor plan of a building with 8 routes to record
videos and sensor information. (b) Orientation distributions calculated by the data collected
according to (a).

5.4.3. Building Image Leaf Nodes. In this subsection, we propose a Multiple

Level Image Description (MLID) method to describe images in leaf nodes of the signal tree

(Figure 5.1). MLID is based on Term Frequency Inverse Document Frequency(TF-IDF)
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[64], but we improve it in three-folds: (1) Dense Scale Invariant Feature Transform(SIFT)

keypoints are extracted in the low texture areas. (2) Divisive hierarchical clustering is

adopted rather than K-means. (3) Each image is described as multiple vectors, thus both

global and local information of an image is recorded. As shown in Figure 5.6, MLID

consists of four steps:

Figure 5.5. SIFT points in a user-taken image. The red points are the salient SIFT keypoints
and the blue points are the dense SIFT keypoints. The image is equally divided into five
subimages.

(1). Feature Extraction: In Figure 5.5, salient SIFT keypoints (red points) are firstly

extracted from an image. Dense SIFT keypoints (blue points) are then extracted in the low

texture areas ignored by salient SIFT such as some parts of the ceiling and walls. Features

of keypoints extracted from all reference images in a leaf node are collected into a large

feature pool (represented as purple circles in Figure 5.6(a)).

(2). Feature Clustering: Divisive hierarchical clustering is applied to partition SIFT

features in the feature pool. In Figure 5.6(b), SIFT features are firstly clustered into t

groups (t = 2 in Figure 5.6(b)) at level 1 (l = 1) based on Euclidean distance. Then each
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cluster in the first level are clustered into t groups. The process is performed repeatedly

until every leaf of the feature clustering tree has a small set of SIFT feature descriptors

(e.g., less than 100 SIFT features on the leaves). The symbol around each node represents

the mean of SIFT feature vectors in that subtree (called visual word) and the visual words

at each level forms the visual codebook for that level. In Figure 5.6(b), the symbols in each

dotted rectangle belong to one visual codebook.

(3). Feature Interpretation: As shown in Figure 5.6(c), SIFT features in an image

can be interpreted into visual words hierarchically based on the visual codebooks at dif-

ferent levels. A SIFT feature is interpreted as the visual word which is the closest to the

SIFT feature based on Euclidean distance. For example, at level 1 of Figure 5.6(c), 15 SIFT

descriptors are close to visual word 1 (red star) and 10 descriptors are close to visual word

2 (green circle). The interpreted visual words at level 1 are finely interpreted at following

levels.

(4). Image Description: Based on the hierarchical feature interpretation, an image

can be described by multiple vectors. In each level, the dimension of the vector is the

same as the number of visual words and each dimension is the count of the occurrence for

corresponding visual word. For example, in level 1 of Figure 5.6(d), 15 SIFT descriptors

belong to visual word 1 (red star) and 10 descriptors belong to visual word 2 (green circle),

the description vector is [15, 10], normalized as [0.6, 0.4]. The feature descriptors are finely

computed in the subsequent levels according to more and more detailed visual codebooks.

Spatial information is also considered when formulating the feature description of

an image. As the yellow lines in Figure 5.5 illustrate, the image is first equally divided

into four subimages and the fifth subimage is in the center of the image with the same

size of other four subimages. Multi-level feature vectors are calculated based on individual

subimages and then they are concatenated to form long vectors to describe the whole image.
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Figure 5.6. Flow chart of the Multiple Level Image Descriptions (MLID) method.

The proposed MLID algorithm keeps both global and local information of images.

At the top level, SIFT descriptors are coarsely clustered and the dimension of feature vector

is low, so the global information of the image is reflected. As the descriptors are finely clus-

tered, dimension of feature vector gets larger and more detailed information is recorded.

Note that, compared with K-means, there is no need to predefine how many groups we

should cluster the SIFT descriptors, which is another advantage of the MLID method to

handle different unknown scenes.

5.5. ONLINE LOCALIZATION

When a user takes a photo to localize herself/himself, WiFi and orientation sig-

nals are recorded synchronously. This subsection presents the search strategy to find the

best matched reference image to identify a user’s location, which consists of three stages:

coarsely WiFi positioning, orientation pruning and fine visual localization.

5.5.1. Coarsely WiFi Positioning. Let f0 be the WiFi fingerprint submitted by the

user and can be computed by Equation 5.3. Assume there are NWiFi WiFi clusters in the

signal tree. The centroid of WiFi clusters are denoted as fn(n = 1...NWiFi). The distance

between f0 and any WiFi cluster fn is computed by Euclidean distance, denoted as d0,n.
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Only the top h WiFi clusters with the smallest distance will be searched in the next level,

other WiFi clusters as well as their subbranches are skipped over. In the experiments, h is

set to 2 which works well in our campus buildings. If the WiFi environment is complex,

h can be larger such that more WiFi branches can be searched. In the following steps,

branches are searched independently.

5.5.2. Orientation Pruning. Several hundred orientation samples can be collected

when a user is taking photo. The query orientations O0 can be modeled as a Gaussian

distribution N(µ0, σ0). The similarity between O0 and any orientation cluster can be com-

puted by Equation 5.6. Top h orientation clusters with the smallest similarity to O0 will be

searched in the next level, other subbranches are skipped. As shown in Figure 5.1(b), the

black branches indicates the search routes. Only parts of the leaf nodes need be searched,

greatly increasing the efficiency.

5.5.3. Fine Visual Localization. Within each searched leaf node, the most similar

reference image needs to be found. Algorithm 3 shows the search strategy within a leaf

node. The best reference image is searched from top to down of multiple vectors. As

the level goes deeper, the number of reference images to be compared becomes less and

less, which decreases the computational cost. Meanwhile, the dimension of feature vector

increases as the level goes deeper, images are compared with more and more local details.

If only one leaf node is searched, the candidate image selected from that leaf node is

the final matched reference image. Otherwise, every searched leaf node gives one candidate

image, we need to compare which candidate image is the best match. As shown in Figure

5.7, without loss of generality, only two candidate images are discussed here. A new visual

codebook is built by concatenating the codebooks from the outputs of Algorithm 3. This

new codebook is specialized to the two candidate images, therefore it is more discriminative

than either of the single codebook. Then, feature vectors of the query image and candidate
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images are calculated based on the new codebook. The candidate image that has the largest

similarity with the query image is considered as the final matched image. The matched

image’s labeled position is reported as the user’s location.

Algorithm 3 Search algorithm in a leaf node.
Notations:
• B: the totally number of reference images in a leaf node
• L: the number of clustering levels in a leaf node

Intput:
•Multiple feature vectors of query image: V0,l(l = 1...L);
•Multiple feature vectors of reference images in a leaf node: Vb,l(b = 1...B, l = 1...L);
• Codebooks: Ml(l = 1...L);
• A predefined threshold dthr . It is set to 3 meters in this system;
• Comparison Pool (CP): all reference images in a leaf node;

Loops:
for l = 1 : L do
• Compute the similarity between query image and images in CP:
Sl

0,b =
V0,l ·Vb,l

|V0,l | |Vb,l |
• Compute the average similarity

Sl
0,b =

∑
b∈CP Sl0,b∑

b∈CP

• Reference images satisfying Sl
0,b < Sl

0,b are deleted from CP
• Compute the maximum of pairwise spatial distance of images in CP, denoted as dmax
if dmax < dthr then

return Ml and reference images with the largest Sl
0,b

break
end if

end for
Output:

Ml and the candidate image which is the reference images with the largest Sl
0,b in CP

5.6. EXPERIMENTS

To validate the effectiveness of our proposed indoor localization algorithm, we de-

veloped an application in the platform of Android Operation System to record the WiFi,

inertial and visual signals. Figure 5.8(a) is a screenshot of the application with a simple in-
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terface. This application has the capability of collecting reference signals as well as query

signals.

Figure 5.7. Determine final matched image from candidate images.

Figure 5.8(b) shows how we collect signals. WiFi, orientation and visual signals

are collected by smartphones. A laser distance measurer is utilized to identify the actual

location. When we collect reference signals, WiFi signals are collected uniformly and

sparsely in the available regions of a building such as the hallway and public lounge. The

distance of two adjacent WiFi collection positions is about 5 meters. As aforementioned,

visual signals are recorded in videos. The frame rate of each video is 30fps. We keep

walking with a constant speed when recording the videos. Thus, the position tagged to each

frame can be interpolated by the positions of the start and end of each video recording.
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Figure 5.8. Experimental configuration. (a) The data collection App. (b) A laser distance
measurer is used to identify the ground truth of a user’s position.

5.6.1. Testing Environment. The proposed indoor localization algorithm is tested

in 4 campus buildings whose floor plans are shown in Figure 5.9. Table 5.1 summarizes

the information of signal trees of the 4 buildings which are used in experiment evaluations.

5.6.2. Comparison. Figure 5.10 shows some localization samples of our approach,

which demonstrates the proposed localization algorithm is robust to crowded people, illu-

mination change, scene changes and orientation shifts. Our proposed indoor localization

algorithm is compared with three other approaches. (1) Multi-Level Image Description

(MLID) method that only uses visual signals in the localization. (2) WiFi-based method.

(3) The localization algorithm proposed by [55], which did not consider dense SIFT key-

points and multi-level feature vectors. The comparison is in terms of localization accuracy,

localization efficiency and time used to build the reference database.

Localization Accuracy: Figure 5.11 summarizes the localization accuracy of 4 ap-

proaches in the 4 buildings. Our approach achieves the highest accuracy compared to the

other 3 methods. The comparison of the approach described in [55] and MLID proposed
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in this section shows it is more effective to describe images with multiple vectors, thus

images’ global and local information are both recoded and utilized for localization.

Table 5.1. Information about the signal trees of 4 buildings. NWB: Number of WiFi
Branches; NOB: Number of Orientation Branches; NRI: Number of Reference Images;
NQI: Number of Query Images.

Building No. NWB NOB NRI NQI

1 9 4 10117 241

2 6 4 4335 283

3 11 4 19313 202

4 12 4 18825 278

Localization Efficiency: Table 5.2 summarizes the comparison of the average time

cost of online localization. During all the experiments, we notice that all query signals can

be localized in less than 6.5 seconds with our method. The comparison of column 2 (Our

signal tree method) and column 3 (Multi-Level Image Description, image-only method)

proves that WiFi and orientation signals are capable to rule out impossible reference images

and largely speed up the online localization.

Figure 5.9. Floor plans of the test buildings.

Our method is slightly slower than [55]. We analyzed the average time cost of

every step in our method and found out that computing dense SIFT keypoints which is not
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required in [55] consumes 58.06% (about 3.35s) of the total time while searching the signal

tree only takes 7.75% (about 0.45s) in our method. The SIFT key detection and extraction

can be speeded up with GPU parallel computing. For example, it only needs 0.07 second

to detect and extract SIFT keypoints from a 1024×768 image by a GPU [74]. We leave this

as our future work. The WiFi-only method is the fastest, but its localization accuracy is

very low (Figure 5.11).

Table 5.2. Average time used for localization (Seconds).

Building Ours MLID [55] WiFi

1 5.77 10.42 5.48 0.0094

2 5.63 9.63 5.22 0.006

3 5.80 10.79 5.11 0.0050

4 6.20 11.23 4.91 0.0014

Time Used to Build the Database: Table 5.3 summarizes the time cost of the 4

approaches to build the reference database. Except WiFi-only method, The proposed sig-

nal tree takes the least time to build the database (about one-tenth of the time cost of the

image-only(MLID) method). Note that building or updating a reference database including

thousands of images for a skyscraper can be a very time-consuming task. However, in our

signal tree method, WiFi and orientation signals pre-cluster reference images into several

leaf nodes, thus a complex problem is divided and conquered by small problems.

5.6.3. Discussion. From the experimental results, our method takes more time to

build the database compared to WiFi-only method. In addition, our method takes more time

for query compared to WiFi-only and the method proposed in [55], but the accuracy of our

method is far better than all the other methods. Considering the evaluation metrics com-



71

prehensively, our proposed method is competitive to other methods and its effectiveness is

multi-folds.

For a fingerprint based algorithm, it is time-consuming to collect a complete refer-

ence dataset to satisfy the high accuracy requirement. In this section, we just uniformly and

sparsely collect WiFi fingerprints in a building. We collect reference images in the format

of videos (subsection 5.3.2), which largely speed up the data collection and updating.

Table 5.3. Time used to build the database (Hours).

Building Ours MLID [55] WiFi

1 1.75 15.5 12 0.000866

2 2.5 23.75 22 0.001178

3 2 28 27.75 0.000948

4 2.25 27 26 0.00145

The proposed algorithm deals with the problem of WiFi environment change in

two ways. As discussed in subsection 5.3.1, WiFi fingerprints are clustered into groups,

thus our tolerance to WiFi environment change is getting higher. In the scenario that WiFi

environment is largely changed, we can increase the number of search branch h described

in subsection 5.4.1 to allow more WiFi branches to be searched.

5.7. SUMMARY FOR SECTION 5

In this section, we propose a novel signal-tree based indoor localization algorithm

by fusing WiFi, inertial and visual signals. Our proposed algorithm is accurate as well as ef-

ficient because it makes full use of the advantages of three signals and finds the matched sig-
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nal in a hierarchy manner. The proposed Multi-Level Image Description (MLID) method

is very effective to describe and compare images with coarse-to-fine image descriptors.

Figure 5.10. Samples of our indoor localization. Top row: query images. Bottom row:
matched reference images. (a). People occlusion. (b). Illumination changes. (c). Orienta-
tion shifts. (d). Scene slightly changes. (e). Low texture scene.

Figure 5.11. Accuracy comparison. Horizontal-axis is the distance between ground truth
and estimated user’s position. Vertical-axis is the proportion of query signals that have
the accuracy within the distance labeled in horizontal-axis. MLID: Multi-Level Image
Description method that only uses visual signals; Ours: signal tree (MLID + WiFi + Inertial
sensor).
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6. CONCLUSION AND FUTURE WORKS

6.1. CONCLUSION

In this paper, we investigate fusing visual and non-visual sensors for human track-

ing. To deeply understand the principle of non-visual sensors, we firstly study the applica-

tion of wearable sensors to human physical activity recognition and human tracking. These

two subtopics do not involve visual signal, but they are necessary technical foundation

for the actual fusion. Then we fuse the visual signals from cameras and non-visual signals

from IMU, WiFi model and so on to improve the accuracy of indoor localization and human

tracking. Experimental results of each method are evaluated and shown in corresponding

chapters.

6.2. FUTURE WORKS

The research work in this paper serves as a solid foundation for future investigation

of fusion. Considering the proposed long-term tracking algorithm only utilizes one camera,

we aim to update this tracking algorithm where multiple cameras (i.e., camera network)

are adopted and we would like to seamlessly track the target. In addition, for the instant

indoor localization, we plan to provide intelligent guidance to the user allowing a second

localization in the extremely challenging cases when the first localization is not reliable.
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