

Scholars' Mine

Masters Theses

Student Theses and Dissertations

1957

Determination of lattice constants, and thermal expansion coefficients of Ti_2O_3 and of its solid solutions with Ti

Tatsuhiko Ejima

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

Part of the Metallurgy Commons Department:

Recommended Citation

Ejima, Tatsuhiko, "Determination of lattice constants, and thermal expansion coefficients of Ti₂O₃ and of its solid solutions with Ti" (1957). *Masters Theses*. 2562. https://scholarsmine.mst.edu/masters_theses/2562

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

DETERMINATION OF LATTICE CONSTANTS, AND THERMAL EXPANSION COEFFICIENTS OF Ti₂O₃ AND OF ITS SOLID SOLUTIONS WITH TI

BY

TATSUHIKO EJIMA

А

THESIS

submitted to the faculty of the

SCHOOL OF MINES AND METALLURGY OF THE UNIVERSITY OF MISSOURI

in partial fulfillment of the work required for the

Degree of

MASTER OF SCIENCE IN METALLURGICAL ENGINEERING

Rolla, Missouri

1957

Research Professor of Metallurgy

Approved by -

ACKNOWLEDGEMENTS

The author is grateful to the Board of Curators of the University of Missouri for granting the research assistantship, without which the present investigation would not have been possible.

To Dr. Martin E. Straumanis, Research Professor of Metallurgy, the author wishes to express sincere appreciation for the invaluable assistance and guidance granted throughout the entire course of this investigation; and he is also much indebted to Dr. Albert W. Schlechten, former Chairman of the Department of Metallurgical Engineering, for his encouragement, assistance, and constant interest.

He also wishes to express sincere thanks to Dr. D. S. Eppelsheimer, Chairman of the Department of Metallurgical Engineering.

Sincere thanks are due to Dr. William J. James, Associate Professor of the Department of Chemical Engineering for his valuable suggestions and continued interest.

The author also wishes to express his appreciation to the many faculty members on the campus who at various times provided facilities necessary for carrying out this work.

TABLE OF CONTENTS

CHAPTER			PAGE
I	Introduc	tion	l
II	Review o	f Literature	3
III	Experime	ntal Procedure	5
	Ι.	The material used and the preparation of Ti ₂ 0 ₃ -Ti solid solutions	5
· ·		1) Preparation of the samples	5
	•	2) Determination of free titanium and oxygen content in the samples	5
	II.	Apparatus for lattice parameter deter- mination	6
	III.	The sample mount	6
	IV.	Film measurement	6
	۷.	Selection of proper radiation	7
	VI.	Determination of lattice parameters and coefficients of thermal expansion	7
. '	VII.	Density determination	8
IV	Experime	ntal Results	10
	I.	Composition of the samples	10
	II.	The proper radiation	10
	III.	Indexing	10
	IV.	Calculation of the precise lattice con- stants and coefficients of thermal ex- pansion of the hexagonal cell	11
		1) Determination of the lattice para- meters of the hexagonal cell	11
		2) The linear expansion coefficients of the hexagonal cell	13
		3) The precise lattice parameters at 25.0°C	18
		4) Thermal volume expansion coefficient of the hexagonal cell	22

CHAPTER

V

VI

· · · ·		PAGE
5)	Change of the axial ratio,c/a,of the hexagonal cell with tempera- ture	25
V. Det and ien	ermination of the lattice parameter of the thermal expansion coeffic- ts of the rhombohedral cell	26
1)	The a _{rh} constant and the linear expansion coefficient	26
2)	The interaxial α angle	28
3)	Volume expansion coefficient of the rhombohedral cell	31
VI. Den	sity of samples I and II	33
Discussion	•••••••••••••••••••••••••••••••••••••••	37
I. Rem	arks on error elimination	37
II. Det x-r	ermination of the molecular weight and ay density of Ti ₂ 03-Ti solid solutions.	41
Summary	• • • • • • • • • • • • • • • • • • • •	54
Appendix	••••••	1
A. Acc exp	uracy of the thermometers used in the eriments	2
B. Wav men	e length of x-ray used in the experi- ts	2
C. Fil	m measurements	2
1.	Sample I	2
2.	Sample II	9
Bibliography		14
Vita		17

LIST OF TABLES

TABLE		PAGE
I	Composition of Ti203-Ti solid solutions	10
II	Indices of the lines of Ti ₂ O ₃ patterns obtained with cobalt radiation (Exposure 2 hrs.)	12
III	Variation of the hexagonal lattice parameters of sample I with temperature	14
IV	Variation of the hexagonal lattice parameters of sample II with temperature	15
V	Straight line equation expressing the relation between temperature and lattice parameter	18
VI	The linear expansion coefficients of the hex- agonal unit cell of the two samples, temperature region between 10° and 60°C	18
VII	Lattice constants of sample I reduced from the temperature of the measurement to 25.0°C	20
VIII	Lattice constants of sample II reduced from the temperature of the measurement to 25.0°C	21
IX	Refraction correction for the Bragg angles of the two last α_{1} lines (Co radiation)	23
X	Refraction correction for the constants <u>a</u> and <u>c</u> (Co radiation)	23
XI	The corrected lattice a and c constants at tem- peratures of 20.0 and 25.0°C	24
XII	Volumes at 20.0° and 25.0°, and the volume expan- sion coefficients of the hexagonal unit cell, temperature region between 10° and 60°C	25
XIII	The axial ratio, c/a, of the hexagonal unit cell at several temperatures	25
XIV	Thermal expansion coefficients of the axial ratio of the hexagonal unit cell, s , between 10° and 60°C (temperature region)	26
XV	Rhombohedral a _{rh} constants at several tempera- tures	26
XVI	Thermal linear expansion coefficients of the rhombohedral a_{rh} constant, α_{rh} , between 10° and 60°C	28

.

v

TABLE		PAGE
XVII	The interaxial X angles of the rhombohedral unit cell at several temperatures	31
XVIII	Thermal interaxial angle expansion coefficients of the rhombohedral unit cell between 10° and 60°C	31
XIX	The volumes of the rhombohedral unit cell of the two samples at several temperatures	33
XX	Thermal volume expansion coefficients of the rhombohedral unit cell between 10° and 60°C, and the straight line equations	33
XXI	Determination of the density of sample I	35
XXII	Determination of the density of sample II	36
XXIII	X-ray densities and macroscopic densities of Ti ₂ O ₃ -Ti solid solutions at temperatures 20.0° and 25.0°C	46
XXIV	Molecular weight of Ti ₂ O ₃ and of solid solu- tions	46
XXV	Variation of the number of molecules in the hexagonal unit cell of Ti ₂ O ₃ and of solid solu- tions with free titanium content	48
XXVI	Lattice constants (extrapolated) of the hex- agonal cell of pure Ti ₂ O ₃ at temperatures 20.0° and 25.0°C	51
XXVII	Lattice constants (extrapolated) of the rhombohedral cell of pure Ti ₂ O ₃ at temperatures 20.0° and 25.0°C	52
XXVIII	Interaxial & angle (extrapolated) of the rhombohedral unit cell of pure Ti ₂ O ₃ at tem- peratures 20.0° and 25.0°C	53

vi

5

1

LIST OF ILLUSTRATIONS

FIGURE		PAGE
1.	The hexagonal lattice constants a and c of sample I versus temperature	16
2.	The hexagonal lattice constants a and c of sample II versus temperature	17
3.	The axial ratio, c/a, of the hexagonal unit cell versus temperature	27
4.	The lattice constant, a _{rh} , of the rhombohedral unit cell versus temperature	29
5.	The interaxial angle, d , of the rhombohedral unit cell versus temperature	30
6.	Volume of the rhombohedral unit cell versus temperature	32
7.	The relation between molecular weight (x-ray and macroscopic) and free titanium content in Ti ₂ O ₃ -Ti solid solution	45
8.	Variation of the number of interstitials in the hexagonal unit cell with increasing free titanium content in the Ti ₂ O ₃ -Ti solid solution	49
°9•	The hexagonal a and c constants versus free titanium content in the Ti ₂ O ₃ -Ti solid solution at 25°C	50

CHAPTER I

INTRODUCTION

For the determination of the precise lattice constants of Ti_2O_3 , it is very important to use a Ti_2O_3 as pure as possible.

l

Due to the formation of solid solution with titanium or oxygen, ranging from 32.5 to $3^{14}.5\%$ O₂ by weight in the Ti-O binary system, it is very difficult to get a pure Ti₂O₃ (33.38% O₂ by weight) in the laboratory.

To determine the precise lattice constants of pure Ti_2O_3 , therefore, the extrapolation method was used.

This method computes the respective constants for pure Ti_2O_3 from the values obtained with Ti_2O_3 -Ti solid solutions by extrapolation. To carry out such an investigation on Ti_2O_3 the determinations as

the following had to be made:

- 1) Determination of the exact lattice parameters of a substance having a composition close to Ti₂O₃.
- 2) Determination of the coefficients of thermal expansion (linear and volume expansion coefficients of the hexagonal and the rhombohedral unit cell, expansion coefficient of the axial ratio of the hexagonal unit cell, and interaxial angle expansion coefficient of the rhombohedral unit cell.)
- 3) Establishment of the change of the same parameters with small change in composition of the Ti₂O₃-Ti solid solution.
- 4) Determination of the experimental densities and the molecular weights of Ti₂O₃-Ti solid solutions.

These determinations would allow one :

5) To make conclusions concerning the perfection of Ti_2O_3 -Ti solid solution and

6) To determine the parameters of pure Ti_2O_3 .

For the evaluation of soundness of the crystal lattice of Ti_2O_3 , experimental macroscopic densities of the samples used had to be determined.

CHAPTER II

REVIEW OF LITERATURE

(1) The titanium-oxygen diagram developed by Ehrlich in 1939 indicates the oxides TiO, Ti_2O_3 and TiO_2 as intermediate phases with increasing oxygen content. The crystal systems of these intermediate phases are cubic, hexagonal-rhombohedral and orthorhombic. Any one oxide can be easily transformed into another by heating with oxygen or titanium.

 Ti_2O_3 is of particular interest, as the oxygen dissolved in titanium is probably present in the metal in this form.

Determination of lattice constants and x-ray density of Ti₂O₃ (1) (2) (3) was done previously by Ehrlich , Lunde and Zachariasen . The values obtained by them are as follows (in Å):

		ahex	^c hex	arh	& (deg)	$D(g/cm^3)$
р.	Ehrlich	5.141	13.61		-	4.486
G.	Lunde			5.42	56° 32'	4.605
w.	H. Zachariase	en 5.15	13.56	5.42	56° 50'	4.601

Ehrlich and Bumps have also reported on the intermediate phase Ti_2O_3 containing from 32.5 to 34.5 per cent of oxygen by weight. In this range Ti_2O_3 forms solid solutions with titanium.

For the determination of the exact values of the lattice constants, it is very important to use a Ti_2O_3 as pure as possible.

In the previous reports, nothing was stated about the purity of Ti_2O_3 , and the coefficients of thermal expansion were not determined at all. For the determination of the precise lattice parameter and the expansion coefficients, the asymmetric method developed by (14) Straumanis and associates in 1935-40, was used. The method is very suitable, precise, fast, and convenient also for other kinds of chemical work where x-ray examinations are useful.

The densities of the samples used were determined in the manner (8) described by Aka .

CHAPTER III

EXPERIMENTAL PROCEDURE

I. The material used and the preparation of Ti203-Ti solid solutions.

1) Preparation of the samples.

The samples were prepared by heating titanium powder (+ 65 mesh, 98.27 per cent purity, supplied by the Belmont Smelting and Refining Works, Inc.), with the calculated amount of titanium dioxide (99.9 per cent purity, Fisher Scientific Company).

The dried materials were weighed, mixed, ground as well as possible, and heated in an alundum or zirconia crucible in a vacuum resistance furnace at 1400°C for four hours or more. To prevent a further oxidation of the samples by the oxygen remaining in the reaction tube after the evacuation, another crucible containing titanium powder, serving as a getter, was put in the reaction tube above the crucible.

The charges, usually sintered to one solid piece, were crushed, ground and stored in a dessicator.

2) Determination of free titanium and oxygen content in the samples.

For the determination of free titanium and oxygen content in the titanium oxygen alloys prepared, the hydrogen evolution method, as (7)developed by Straumanis, Cheng and Schlechten , was used.

The respective Ti_20_{3} -Ti alloy was dissolved in 60 ml of 6N HF. The hydrogen evolved was accumulated in a gas burette, and the volume readings were reduced to standard conditions. The oxygen content of the Ti_20_{3} -Ti alloy was then calculated in per cent by weight by the following equation

$$O_2 \% = 33.4 - 0.0475 V$$
 (1)

V being the volume of H2 developed per 1 gr. of alloy.

The apparatus for dissolving the samples and collecting the hy-(7) drogen was the same which was already available in the laboratory

II. Apparatus for lattice parameter determination.

The description of the experimental method and apparatus was
(8)
given by E. Z. Aka in his thesis for a Doctor's degree. Reference
(9, 10)
should be made to his work or to the later publications

III. The sample mount.

The specimen used in this study consisted of a glass rod (0.08 mm in diameter, and 4-6 mm in length) coated with a thin layer of oil to which the powder to be examined was pasted.

Lithium-boron glass was used for the glass rod in order to decrease the absorption of x-rays.

After mounting, the powder specimen was carefully centered to prevent broadening of the diffraction lines. The exact centration and adjusting of the mount was made displacing the specimen holder by means of two adjusting screws.

After taking all necessary x-ray photographs with one specimen, the powder was removed from the glass rod by means of a thin aluminum strip moistened with acetone. Thus, the glass rod, once mounted to the sample holder could be used further for making other powder mounts.

All of these operations were performed under a microscope.

IV. Film measurement.

The distances between the peak intensities of corresponding rings (on the straight line, crossing the vertexes of the arcs) which are located symmetrically on either side of the point of entry or exit of the x-ray beam were measured in millimeters. The difference in the average constant (the sum of readings of corresponding lines) for the back reflection lines and of the front reflection lines represents the circumference of the film cylinder at the time of measurement of the film. The most important lines for the present investigation are the back reflection lines, from which the precise back refraction angle φ can be calculated.

The distance in reading of the corresponding back reflection lines gives then the 4 9 angle (in millimeters).

The correct reflection angles (Bragg) in degrees are obtained by multiplying them by a factor F (see in Table II).

The detail of the technique of film measurement is described by (14) Straumanis

V. Selection of proper radiation.

The proper radiation for Ti_2O_3 is that one which gives sharp lines in high back reflection region. The radiation was determined by comparing films taken with Cu, Fe, Cr, and Co targets under the same conditions.

Cobalt radiation was selected for the present investigation, because high back reflection angles of 77° and 82° were obtained on the films.

VI. Determination of lattice parameters and coefficients of thermal

expansion.

X-ray photographs for determination of the exact lattice parameters and of the thermal expansion coefficients of Ti_2O_3 -Ti solid solutions in form of powder were taken at constant temperatures between 10° and 60°C. The experiments were carried out in the x-ray thermostat which was capable of maintaining constant temperatures within **10**.02°C. To assure the temperature: constancy of the powder mount, the loaded camera was held at a certain constant temperature for several hours before exposure.

7

Two or more photographs were taken at each constant temperature; some of the first lines and the two last lines were measured (see Table II), and the parameters a and c were calculated.

VII. Density determination.

A convenient and accurate method for determination of the density of fine powder was required to evaluate the soundness of the crystal lattice of Ti_2O_3 . The accuracy of density determinations of powders can be improved by:

1) grinding the sample so that it does not contain any larger voids isolated from the surrounding medium. In other words, the material under examination should possess a hydraulic permeability as perfect as possible in all of its portions;

2) desorption of gases which adhere to the large surface of the finely divided powder and also are entrapped mechanically among the particles. The gases must be removed as completely as possible, because otherwise, the total volume of the powdered sample will appear larger than it actually is, and will lower the density.

These gases are commonly removed by outgasing, while applying (15) mechanical agitation. However, this operation never goes smoothly

The method reported here is essentially an improved modification (18) of the method described by Barker and Martin and is based on Archimedes' Principle. The following operations were performed in the density determination of Ti_2O_3 -Ti solid solutions:

(1) Purest benzene in which the powder sample was insoluble was used, and the powder-liquid mixture was outgased as well as possible by the application of a suitable vacuum while stirring the mixture.

(2) The first weighing was done while the powdered material, to-

gether with its container, was completely immersed in the benzene at a temperature measured.

- (3) The benzene in the container of the powdered material was evaporated completely after the first weighing.
- (4) The second weighing of the dry powdered material was made in air.

CHAPTER IV

EXPERIMENTAL RESULTS

I. Composition of the samples.

The compositions of samples used for the present investigation are shown in Table I.

Table I

Composition of Ti203-Ti solid solutions.

	Sample I	Sample II
Weight of sample (in gr)	1.000	0.1706
Volume of H_2 developed (in ml/g)	5.6	25.79
Free Ti (in %)	0.8	3.67
O ₂ content (in %)	33.1	32.17
Total Ti (in %)	67.2	67.87

II. The proper radiation.

Cobalt radiation, as already mentioned, was selected for the present investigation, because high back reflection angles of 77° and 82° were obtained on the films. Rotating and scanning the powder mounts during one and a half to two hours of exposure developed these lines (α_1 , as well as α_2) to a sufficient intensity for accurate measurements.

To reduce the effect of fluorescence of the specimen (background fogging) two pieces of thin aluminum foil were used to cover the back and front reflection regions of the film.

III. Indexing.

In order to index the film in accordance to the hexagonal unit (12, 13) cells, the following equation was used :

$$\sin^2 \Theta = \frac{\lambda^2}{4 a^2} \left[\frac{4}{3} \left(h^2 + k^2 + hk \right) + \frac{a^2 1^2}{c^2} \right]$$
(2)

The indices of each line of the diffraction pattern were determined in sequence by means of comparison of the values of $\sin^2 \theta$, as calculated directly from the measurement of θ angles, and as computed from Ehrlich's constants for Ti₂O₃

$$\underline{a} = 5.141 \text{ Å} = 5.1306 \text{ kX}$$

 $\underline{c} = 13.61 \text{ Å} = 13.5825 \text{ kX}$
(3)

using equation (2).

For the value of λ , the average wave length of Co radiation was used.

$$\alpha_1 = 1.78529 \text{ kX}$$

ave. = 1.787 kX (4)
 $\alpha_2 = 1.78917 \text{ kX}$

The hexagonal indices are tabulated in Table II.

+1

U = -h -k

The indices of the lines for the rhombohedral cell were then cal-(10) culated from the hexagonal ones using equation (5) .

K = k + 1 (5)	H = h		+1		
	K =	k	+1		(5)

where H, K, U are new rhombohedral indices, and h, k, l are the hexagonal indices.

- IV. <u>Calculation of the precise lattice constants and coefficients of</u> thermal expansion of the hexagonal cell.
 - 1) Determination of the lattice parameters of the hexagonal cell.

Using formulas (6) and (7) derived from equation (2), the hexagonal <u>a</u> and <u>c</u> constants were calculated from the values of Bragg angles of the two last lines.

$$\underline{\mathbf{a}^{2}} = \frac{\boldsymbol{\lambda}^{2} \left\{ l_{2}^{2} \left(h_{1}^{2} + \mathbf{k}_{1}^{2} + h_{1} k_{1} \right) - l_{1}^{2} \left(h_{2}^{2} + k_{2}^{2} + h_{2} k_{2} \right) \right\}}{3 \left\{ l_{2}^{2} \sin^{2} \theta_{1} - l_{1}^{2} \sin^{2} \theta_{2} \right\}}$$
(6)

Table II

Indices of the lines of Ti203 patterns, obtained with Cobalt radiation (Exposure 2 hrs.) v.s. m. S. s. m. v.s. m. v.s. m. v.s. m. Intensity 61.160 84.768 163.156 162.495 Reading (in mm) 65.094 71.095 72.250 75.765 190.279 156.897 157.933 27.861 23.165 14.096 108.369 26.701 135.458 37.895 33.959 136.132 140.767 141.756 98.930 98.864 298.648 298.627 Sum (in mm) 98.956 98.951 298.614 298.700 298.653 99.055 99.053 43.234 52.600 70.672 27.698 Difference (in 23.265 31.135 45.549 81.910 26.363 17.166 15.141 mm) 298.648 98.979 Average of the similarence (in mm) 298.648 - 98.979 = 199.669 Circumference-(in mm) $F = 360 / (4 \times 199.669) = 0.450745$ Factor 11.883 12.485 7.737 6.825 19.488 31.855 78.117 Θ (in deg.) 10.487 14.034 20.531 23.709 53.079 77.515 82.263 83.175 41.062 28.068 38.976 47.418 106.158 155.030 20.974 63.710 156.234 164.526 166.350 20 0.528 0.182 0.243 0.334 0.350 0.402 0.800 0.976 0.979 0.991 Sin 0 0.993 $\sin \theta^2$ 0.16160 0.27878 0.64000 0.95257 0.95844 0.98605 0.03312 0.05905 0.11155 0.12250 0.9821 (012) (104) (110) (13)(1 1 6) (0 0 12)(1 3 10) (1 3 10) (3 0 12)Indices (0 0 3)(3012) $= \lambda^{2} \left\{ l_{2}^{2} \left(h_{1}^{2} + k_{1}^{2} + h_{1}k_{1} \right) - l_{1}^{2} (h_{2}^{2} + k_{2}^{2} + h_{2}k_{2}) \right\}$ $c^{2} = \frac{\lambda^{2} \left\{ l_{1}^{2} (h_{2}^{2} + k_{2}^{2} + h_{2} k_{2}) - l_{2}^{2} (h_{1}^{2} + k_{1}^{2} + h_{1} k_{1}) \right\}}{\lambda^{2} \left\{ l_{1}^{2} (h_{2}^{2} + k_{2}^{2} + h_{2} k_{2}) - l_{2}^{2} (h_{1}^{2} + k_{1}^{2} + h_{1} k_{1}) \right\}}$ $5 \left\{ 1_2^2 \cdot \sin^2 \theta_1 - 1_1^2 \sin^2 \theta_2 \right\}$ $4\left(h_{2}^{2} + k_{2}^{2} + k_{2}h_{2}\right) \sin^{2}\theta_{1} - (h_{1}^{2} + k_{1}^{2} + h_{1}k_{1}) \sin^{2}\theta_{2}\right)$ $\frac{a^{2}}{3 \times (144 \times 0.95257) - (100 \times 0.98210))} = 26.50590975 \quad c^{2} = \frac{(1.7853)^{2} \{(10^{2} \times 9) - (12^{2} \times 13)\}}{4 \{(9 \times 0.95257) - (13 \times 0.98210)\}} = 184.6621079$ c = 13.58907Lattice constant (in kX) a = 5.14839

12

$$\underline{c}^{2} = \frac{\lambda^{2} \left\{ l_{1}^{2} \left(h_{2}^{2} + k_{2}^{2} + h_{2}k_{2} \right) - l_{2}^{2} \left(h_{1}^{2} + k_{1}^{2} + h_{1}k_{1} \right) \right\}}{4 \left\{ \left(h_{2}^{2} + k_{2}^{2} + h_{2}k_{2} \right) \sin^{2}\theta_{1} - \left(h_{1}^{2} + k_{1}^{2} + h_{1}k_{1} \right) \sin^{2}\theta_{2} \right\}}$$
(7)

For the calculation, the indices of the two last doublets (1, 3, 10) for h_1 , k_1 , l_1 and (3, 0, 12) for h_2 , k_2 , l_2 were substituted. Of these lines only the $\boldsymbol{\alpha}_1$ lines were used, corresponding to the $\boldsymbol{\lambda}$, (wave length of cobalt $\boldsymbol{\alpha}_1$ radiation = 1.78529 kX).

The simple average of two (or more) values of the corresponding lattice constants was taken as the correct value at a certain constant temperature.

Tables III and IV show (1) the values of the lattice parameters of Ti_2O_3 -Ti solid solutions obtained at different constant temperatures, and (2) the variation in the values at one constant temperature.

Figures (1) and (2) show that the values of the lattice parameter are related to temperature by a straight line equation. The constants (the slope and the intercept on the y-axis) of the straight line equation (19) were calculated by the least square method and are summarized in Table V.

2) The linear expansion coefficients of the hexagonal cell.

The thermal linear expansion coefficients of the hexagonal axes of the Ti_2O_3 -Ti solid solution could also be computed from equation (8) as follows:

$$\mathbf{A} = \frac{\mathbf{a}_{t_2} - \mathbf{a}_{t_1}}{\mathbf{a}_{t_1} (t_2 - t_1)} = \frac{\underline{a}}{\underline{a} t} = \frac{1}{\underline{a}} \frac{d\mathbf{a}}{dt}$$
(8)

where \mathbf{k} = thermal linear expansion coefficient, \mathbf{a}_{t_1} , \mathbf{a}_{t_2} = lattice constants (kX) at temperatures t_1 and t_2 (°C).

Assuming that the straight line relationship is still valid at that temperature interval. The linear expansion coefficients of the

·	Lattice	Parameter a	Lattice	Parameter <u>c</u>
Temp. °C.	Parameter <u>a</u> in kx	Parameter a average in kx	Parameter <u>c</u> in kx	Parameter <u>c</u> average in kx
10.0	5.13702 5.13839	5.1377	13.60463 13.60150	13.6031
20.0	5.13881 5.13521 5.13845	5.1375	13.60489 13.61603 13.60284	13.6078
30.0	5.13548 5.13971 5.14014	5.1382	13.61494 13.60680 13.60486	13.6101
40.0	5.13516 5.13667 5.13796 5.13848 5.13869 5.13560 5.13816	5.1373	13.61865 13.61600 13.60924 13.60736 13.60785 13.61570 13.61559	13.6129
50.0	5.13792 5.13648 5.13829	5.1376	13.61726 13.61924 13.61667	13.6177
60.0	5.13762 5.13693	5.1380	13.61982 13.62136	13.6189

.

Variation of the hexagonal lattice parameters of Sample I with temperature.

.

Variation of the hexagonal lattice parameters of Sample II with temperature.

· .	Lattice P	parameter <u>a</u>	Lattice p	ce parameter <u>c</u>	
°C.	Parameter <u>a</u> in kx	Parameter a average in kx	Perameter <u>c</u> in kx	Parameter <u>c</u> average in kx	
10.0	5.13052 5.13175	5.1311	13.62581 13.62623	13.6260	
20.0	5.12958 5.12971	5.1296	13.62918 13.62887	13.6290	
30.0	5.12813 5.13004 5.12956	5.1292	13.63598 13.63559 13.63333	13.6350	
40.0	5.12680 5.12815	5.1275	13.64069 13.63619	13.6384	
50.0	5.12986 5.12913	5.1295	13.63938 13.63997	13.6397	
60.0	5.12852 5.12804	5.1283	13.64455 13.64542	13.6450	

Tabl

Fig. 1 The hexagonal lattice constants a and <u>c</u> of sample I versus temperature.

16

Fig. 2 The hexagonal lattice constants a and <u>c</u> of sample II versus temperature.

straight line equation expressing the relation between temperature and lattice parameter.

Sample I	for the a constant	a = 5.13767 + 0.00000857 (t - 25.0)
	for the <u>c</u> constant	c = 13.60855 + 0.000318 (t - 25.0)
, Samole II	for the <u>a</u> constant	a = 5.13202 - 0.0000466 (t - 25.0)
Dempre II	for the c constant	c = 13.63179 + 0.000373 (t - 25.0)

(continued from p.13)

two axes between 10° and 60°C are expressed by equation (9).

ď _a ,	$= \frac{0(\mathbf{a})}{\frac{\mathbf{a}_{25}}{\mathbf{c}}}$	(For a constant)	(9)
d _C :	$= \frac{b(c)}{c^2 25^{\circ} c}$	(For <u>c</u> constant)	

where, $\underline{a}_{25.0^{\circ}C}$ is the lattice <u>a</u> constant of the hexagonal cell at 25.0°C ^b(a) is the slope da/dt for the lattice <u>a</u> constant $\underline{c}_{25.0^{\circ}C}$ is the lattice <u>c</u> constant of the hexagonal cell at 25.0°C

 $b_{(c)}$ is the slope dc/dt for the lattice <u>a</u> constant.

The calculated linear expansion coefficients of the axes of the hexagonal cell of the two samples, temperature region between 10° and 60°C, are summarized in Table VI.

Table VI

The linear expansion coefficients of the hexagonal unit cell of the two samples, temperature region between 10° and 60°C.

Sample	$\alpha_{a} (in \frac{kX}{C})$	$\alpha_{\rm c} (\ln \frac{kX}{\circ_{\rm C}})$
I	1.668×10^{-7}	2.337 x 10 ⁻⁵
II	-9.080×10^{-6}	2.736 x 10 ⁻⁵

3) The precise lattice parameters at 25.0°C.

To check the accuracy of the lattice parameter determination, the values of the lattice constants obtained at different constant temperatures were reduced to one single temperature 25.0°C, using the linear expansion coefficients. (see Tables VI and VII).

The probable error and the standard deviation of the lattice constants were calculated by the equations (10) and (11).

$$S = \sqrt{\frac{\sum \{dx\}^2}{n-1}}$$
 (10)

where, S = standard deviation

 $\sum \{dx\}^2 = sum of the squares of the deviations in the constants$ $<math>\pi = the total number of values$

Then, the most probable error S',

The result of error calculation is given in Tables VII and VIII which shows that the reproducibility of the measurements is about 1: 10000 for the <u>a</u> constant, and about 1: 20000 for the <u>c</u> constant. No absorption correction is necessary for lattice constants using the described technique. (see Chap. III).

The application of the refraction correction is necessary to obtain the true lattice constant and in order to balance the lattice constants (21, 22, 23, 24) of the same substance obtained with different x-radiations The correction for refraction was introduced by the use of the equation (24) derived by Ewald .

(29) The author used the equation given by Jette , who transformed a (13) respective Siegbahn's equation , $a = a_{ii} \left(1 + \frac{\delta}{\sin^2 \Theta}\right)$, by introduction of a minor correction of 0.9 for anomalous dispersion, as suggested by Weigle, which resulted in the following relation:

$$\Delta \sin^2 \theta = -\frac{11.58 \times P \times Z}{M} \times \frac{\lambda^2}{4} \times 10^{-6}$$
(12)

where $\mathbf{f} = \text{density}$

 \mathbf{Z} = number of electrons in the sample

M = molecular weight

 λ = wave-length

Table VII

Lattice constants of Sample I reduced from the temperature of the measurement to 25.0°C.

Temp.	Lattice Const.	Reduced to 25.0°C	da	{da}2
10.0 20.0 30.0 40.0 50.0 60.0	5.1377 5.1375 5.1382 5.1373 5.1374 5.1380	5.13771 5.13750 5.13819 5.13729 5.13738 5.13797	+0.00004 -0.00017 +0.00053 -0.00038 -0.00029 +0.00030	16 x 10 ⁻¹⁰ 289 x 10 ⁻¹⁰ 2809 x 10 ⁻¹⁰ 1444 x 10 ⁻¹⁰ 841 x 10 ⁻¹⁰ 900 x 10 ⁻¹⁰
Total Average	^a 25.0°C =	30.82605 5.13768		6299 x 10-10
Standard Most prol Reproduct	deviation S bable error S' ibility	35.4 x 10 ⁻⁵ kx +0.00024 kx 1:21400		
The <u>c</u> con	nstant			
Temp.	Lattice Const.	Reduced to 25.0°C	dc	{dc} ²
10.0 20.0 30.0 40.0 50.0 60.0	13.6031 13.6078 13.6101 13.6129 13.6176 13.6189	13.60787 13.60939 13.60851 13.60813 13.60965 13.60777	-0.00068 +0.00084 -0.00004 -0.00042 +0.00110 -0.00078	4624 x 10 ⁻¹⁰ 7056 x 10 ⁻¹⁰ 16 x 10 ⁻¹⁰ 1764 x 10 ⁻¹⁰ 2 100 x 10 ⁻¹⁰ 6084 x 10 ⁻¹⁰
Total Average	°25.0°c =	81.65132 13.60855		31644 x 10-10

Standard deviation Most probable error Reproducibility

°25.0°C

The a constant

79.55 x 10⁻⁵ kX +0.0005 kX 1:25000

Table VIII

Lattice constants of Sample II reduced from the temperature of the measurement to 25.0°C.

The a constant

Temp.	Lattice Const.	Reduced to 25.0°C.	da	(de) ²
	<u>(</u> in	kX)	· · · · · · · · · · · · · · · · · · ·	
10.0	5.1311	5.13040	+0.00072	5148 x 10-10
20.0	5.1297	5.12947	-0.00021	441 x 10-10
30.0	5.1292	5.12943	-0.00025	625 x 10-10
40.0	5.1275	5.12820	-0.00148	21904 x 10-10
50.0	5.1295	5.13067	+0.00099	9801 x 10-10
60.0	5.1283	5.12993	+0.00025	625 x 10-10
Total		30.77810		38580 x 10-10
Average	^a 25.0°C ⁼	5.12968		
Standard	deviation	$87.84 \times 10^{-5} \text{ k}$	X	
Most prob	able error	0.0006 (in kX) .	
Reproduci	bility	1:8000		

The c constant

Temp.	Lattice Const.	Reduced to 25.0°C. n kX)	dc	{dc} ²
10.0	13.6260	13.63160	-0.00019	361 x 10-10
20.0	13.6290	13.63087	-0.00092	8464 x 10-10
30.0	13.6350	13.63313	+0.00134	17956 x 10-10
40.0	13.6384	13.63280	+0.00101	10201×10^{-10}
50.0	13.6397	13.63037	-0.00142	20164 x 10-10
60.0	13.6450	13.63194	+0.00015	225 x 10-10
Total		81.79071		57371 x 10 ⁻¹⁰
Average	°25.0°C =	13.63179		
Standard	deviation	107.12 x 10 ⁻⁵	(in kX)	
Most pro	bable error	0.00073 (in	kX)	
Reproduc	ibility	1:19000	·	

Using the following values:

(3) S = 4.59 ...(W. A. Zachariasen) M = 143.80 Z = 68 $\lambda = 1.78529$ kX it was obtained from equation (12)

$$\Delta \sin^2 \theta = - 0.00003379$$
 (13)

To calculate the value of $\Delta \sin \theta$ or d $\sin \theta$, equation (13) has to be differentiated

$$d \sin^2 \theta = 2 \sin \theta \cdot \cos \theta d\theta$$
 (14)
From equation (13) and (14), it follows then:

$$2 \sin \theta \cdot \cos \theta \, d\theta = -0.00003379$$
 (15)

Thus, the correction for Bragg's angle was calculated by equation (15), using for Θ the Bragg angles measured. The results are shown in Table IX.

The refraction corrections for the lattice constants themselves were calculated by comparing the values of lattice constants obtained with those calculated with the corrected Bragg angles, as shown in Table X.

Then the final and corrected lattice constants for the two samples at 20°C and 25°C were calculated using the refraction corrections of Table X, and are summarized in Table XI.

The kX unit can be easily converted to Angstrom unit by multiplying by 1.00202.

4) Thermal volume expansion coefficient of the hexagonal cell.

The volume of a hexagonal unit cell at temperature t is as (13) follows:

$$V_t = a_t^2 c_t \sin 120^\circ = a_t^2 c_t \times \sqrt{3/2}$$
 (16)

Table IX

Refraction correction for the Bragg angles of the two last α_1 lines (Co radiation).

Sample	Film No.	θ _l in ang. deg.	θ ₂ in ang deg.	. de _l	d 0 2	Corrected Θ_1 in ang. deg.	Corrected θ_2 in ang. deg.
I	940	77.467	82.077	-0.0046	-0.0071	77.462	82.070
II	983	77.494	81.840	-0.0046	-0.0069	77.489	81.833

Table X

Refraction correction for the constants \underline{a} and \underline{c} (Cobalt radiation).

Sample		Lattice const. calculated with 9 in kX	Lattice const. calculated with 9 corrected in kX	Refraction correction in kX
-	<u>a</u>	5.13792	5.13805	+0.00013
· 1	c	13.61726	13.61743	+0.00017
	a	5.12852	5.12865	+0.00013
II	c	13.64455	13.64474	+0.00019

23

Table XI

. .•

The corrected lattice a and c constants at temperatures of 20.0°C and 25.0°C.

20 .0° C			
Sample		Corrected lattice constant (in kX)	Corrected lattice constant (in Å)
	a	5.1378 ± 0.0002	5.1482
T	c	13.6072 ± 0.0005	13.6347
ŦŦ	a	5.13005 <u>+</u> 0.0006	5.1404
	c	13.63011 <u>+</u> 0.0007	13.6576

25.0°C

.

Sample	,	Corrected lattice constant (in kX)	Corrected lattice constant (in Å.)
	a	5.1378 ± 0.0002	5.1482
1	<u>c</u>	13.6087 + 0.0005	13.6362
TT	a	5.1298 ± 0.0006	5.1402
11	с	13.6320 + 0.0007	13.6595

Thus, the volume of a cell at a certain temperature can also be calculated using equation (16), and the two linear expansion coefficients α a and α c, from a and c obtained other temperatures.

$$V_{t} = \frac{3}{2} \left\{ \underline{a} \left(1 + \alpha_{at} \right)^{2} \underline{c} \left(1 + \boldsymbol{d}_{c} t \right) \right\}$$

$$V_{t} = \frac{3}{2} \underline{a}^{2} \underline{c} \left\{ 1 + \left(2\alpha_{a} + \alpha_{c} \right) t + \left(\alpha_{a}^{2} + 2\alpha_{a} \alpha_{c} \right) t^{2} + \boldsymbol{d}_{a}^{2} \alpha_{c} t^{3} \right\} (17)$$
The equation (17), in which the values of $\left(\boldsymbol{d}_{a}^{2} + 2\alpha_{a} \alpha_{c} \right) t^{2}$ and
 $\left(\alpha_{a}^{2} \alpha_{c} \right) t^{3}$ are very small and can be neglected, results in
$$V_{t} = \frac{3}{2} \underline{a}^{2} \underline{c} \left\{ 1 + \left(2\alpha_{a} + \boldsymbol{d}_{c} \right) t \right\} = V \left\{ (1 + \beta t) \right\} (18)$$
or
$$\beta = 2\alpha_{a} + \alpha_{c}$$
(19)
where β is thermal volume expansion coefficient of the hexagonal cell.

Using the linear expansion coefficients of Table VI, the volume expansion coefficients, β , of the two samples were calculated. (see Table XII).

Table XII

Volume at 20.0° and 25.0°C and the volume expansion coefficients of the hexagonal unit cell temperature region between 10 and 60°C

	Volume expansion coeff (between 10 and 60°C)	• V25.0°C (in A°)	V _{20.0} °C (in A)
Sample I	2.370 x 10 ⁻⁵	312.993	312.956
Sample II	9.200 x 10-6	312.537	312.523
5) Cha	nge of the axial ratio	c/a of the hexagona	l cell with

temperature.

W

The axial ratio of the hexagonal cell obtained at several temperatures are summarized in Table XIII.

Table XIII

The axial ratio c/a, of the hexagonal unit cell at several temperatures.

Temp. (in °C)	c/a (Sample I)	c/a (Sample II)
10.0	2.6478	2.6560
20.0	2.6484	2.6569
25.0	2.6487	2.6574
40.0	2.6497	2.6589
60.0	2.6509	2.6609

25

Figure 3 shows that the axial ratio of the hexagonal cell is related to the temperature by a straight line equation. The constants of the straight line equations were calculated by the least squares method. Then the thermal expansion coefficients, **S** of the axial ratio were computed from these equations. (see Table XIV).

Table XIV

Thermal expansion coefficients of the axial ratio of the hexagonal unit cell,8, temperature region between 10° and 60°C.

Sample	Straight line equation	Expansion coefficient 8 between 10 and 60°C.
I	${c/a}_{t} = 2.64873 + 0.00006$ (t-25.0)	24 2.356 x 10^{-5}
II	${c/a}_{t} = 2.65744 + 0.00009$ (t-25.0)	83 3.699 x 10 ⁻⁵

V. Determination of the lattice parameter and of the thermal expansion coefficients of the rhombohedral cell.

1) The a_{rh} constant and the linear expansion coefficient.

The rhombohedral a_{rh} constant can be computed from the hexagonal (13) a and c constants as follows . $\frac{1}{2}\sqrt{\frac{2}{2}}$

$$\mathbf{e}_{\mathrm{rh}} = \frac{1}{3} \bigvee 3 \underline{a}^{2} + \underline{c}^{2} \tag{29}$$

Using the values of the lattice constants in A as given in Table VII, the rhombohedral a_{rh} lattice constants were calculated from equation (20). (see Table XV).

Table XV

Rhombohedral a_{rh} constants at several temperatures.

Temp. (in °C)	Sample I, a _{rh} (in Å)	Sample II, a _{rh} (in A)
10.0	5.42961	5.43359
20.0	5.43054	5.43448
25.0	5.43096	5.43493
40.0	5.43230	5.43628
60.0	5.43409	5.43808

Fig. 3 The axial ratio, c/a, of the hexagonal unit cell versus temperature.

27

Figure 4 shows that the a_{rh} constant is related to temperature by a straight line equation. The constants of the straight line equations were calculated as mentioned previously. The linear expansion coefficients, α_{rh} are summarized in Table XVI.

Table XVI

Thermal linear expansion coefficient of the rhombohedral a_{rh} constant, α_{rh} between 10° and 60°C.

Sample		Straight line equation	e rh	xpansion coefficient between 10° and 60°C.
ī	^a rht =	= 5.43096 + 8.934 x 10 ⁻⁵	(t-25.0)	1.6450×10^{-5}
II	^a rht =	• 5.43493 + 9.967 x 10 ⁻⁵	(t-25.0)	1.6499 x 10-5

2) The interaxial & angle.

The rhombohedral interaxial angle α is derived from the following relation:

$$\sin\frac{\alpha}{2} = \frac{a/2}{a_{\rm rh}}$$
(21)

Substituting for a_{rh} equation (20), equation (22) is obtained $\sin \frac{\alpha}{2} = \frac{3 a}{2\sqrt{3} a^{2} + c^{2}}$ (22)

with which the interaxial α angle, was calculated. (see Table XVII). Figure 5 shows that the change in the rhombohedral interaxial α

angle: is related to the temperature by a straight line equation.

The thermal interaxial angle expansion coefficient, γ , of the rhombohedral cell of the two samples was calculated from the straight line equation and is listed in Table XVIII.

Fig. 4 The lattice constant, a_{rh}, of the rhomb**ched**ral unit cell versus temperature

Table XVII

Temp. in °C	Sample I X (in ang. deg.)	Sample II a (in ang. deg.)
10.0	56.600	56.466
20.0	56.590	56.450
25.0	56.586	56.442
40.0	56.570	56.418
60.0	56.550	56.388

The interaxial & angle of the rhombohedral unit cell at several temperatures.

Table XVIII

Thermal interaxial angle expansion coefficient of the rhombohedral unit cell between 10° and 60°C.

Sample	Straight line equation (in ang. deg.)	Expansion coefficient (in ang. deg.) between 10° and 60°C. °C
I	a t = 56.575 - 0.000996 (t - 25.0)	- 1.761 x 10-5
II	X t = 56.442 - 0.00156 (t - 25.0)	-2.763×10^{-5}

3) Volume expansion coefficient of the rhombohedral cell.

The volume of the rhombohedral cell is expressed as follows:

$$V_{\rm rh} = a_{\rm rh}^3 \sqrt{1 - 3 \cos^2 \alpha + 2 \cos^3 \alpha}$$
 (23)

The calculated volumes of the rhombohedral cell of the two samples are summarized in Table XIX.

Figure 6 shows that the volume of the rhombohedral cell is related to the temperature by a straight line equation.

The constants of the straight line equations were calculated and are summarized in Table XX.

Thermal volume expansion coefficients were calculated from the obtained straight line equations and are summarized in Table XIX.

Table XIX

The vorumes of	several temperatures.						
Temp. in °C	$V_{\rm rh}$ of sample I (in $Å^3$)	v_{rh} of sample II (in Å ³)					
10.0 20.0 25.0 40.0 60.0	104.295 104.322 104.336 104.360 104.420	104.166 104.175 104.179 104.194 104.216					

Table XX

Thermal volume expansion coefficients of the rhombohedral unit cell between 10° and 60°C, and the straight line equation.

Sample	Straight line equation	Volume expansion coefficient, β_{rh} between 10° and 60°C
I	104.33208 + 0.00242 (t-25.0)	2.320 x 10 ⁻⁵
II	104.16023 + 0.00096 (t - 25.0)	9.216 x 10 ⁻⁶
		· · ·

VI. Density of Samples I and II.

The density was computed by equation (24) derived from that of Baker and Martin:

$$d_s^t = (d_e - d_g) \frac{(b - c)}{(b - c) - (a - Z)} + dg$$
 (24)

where, d_{t}^{t} = density of the sample at temperature t°C

 d_1 = density of the liquid medium at temperature t°C

 d_g = density of air at temperature t°C and pressure of the

balance room

b = weight of the cup, the platinum wire and the sample in air

- c = weight of the cup and platinum wire in air
- z = weight of the cup and platinum wire immersed in the benzene at temperature $t^{O}C$.
- a = weight of the cup, platinum wire and the sample in the benzene at temperature t° C.

The density of the sample at any other temperature was calculated

by the following equation:

 $d_{s}^{t_{1}} = d_{s}^{t_{2}} \left\{ 1 + \beta (t_{2} - t_{1}) \right\}$ (25)

34

The method reported here is theoretically sound. It seems to be an accurate and convenient method for determination of the density of solids. Further refinements for closer control of experimental conditions are possible, such as the provision of a means for maintaining a constant level of the liquid medium evaporating in the cabinet of the analytical balance. The densities obtained with samples I and II are listed in Tables XXI and XXII. Determination of the density of the sample I.

Run No.	I	II	III	IV
Experimental (mm Hg.) conditions (°C)	730.9 25.0	733.2 25.0	731. 7 24.7	740.1 23.0
Density of benzene at experimental conditions (g/cm ³)	s 0.873402	0.873402	0.87383	0.87544
Density of air at ex- perimental conditions (g/cm ³)	0.001138	0.001138	0.001139	0.001161
Weight of the cu p in air (with Pt wir e)(g)	6.6324	6.6325	6.0302	6.6326
Weight of the cup in benzene (with Pt wire) (g)	4.1536	4.1521	3.7822	4.1499
Weight of the cup with sample in benzene (with Pt wire) (g)	4.3059	4.2910	3.9348	4.3387
Weight of the cup with sample in air (with Pt wire) (g)	6.8204	6.8039	6.2186	6.8658
Density reduced to 25°C (g/cm ³) eq.25)	4.5945	4.6013	4.5996	4.5998
Average density at 25°C for I to IV (g/cm ²)		4.5988		
Deviation dd _s	-0.0043	+0.0025	+0.0008	+0.0010
$\{aa_s\}^2$	1849 x 10 -8	625 x 10-8	64 x 10 ⁻⁸	100×10^{-8}
Most probable error		± 0.002		
Density of the sample I at 25°C (calculated with equation (25). (in g/cm ²)		4.5988 <u>+</u> 0.	0020	
Density of the sample I at 20°C (calculated with equation (25). (in g/cm ³)		4.5993 <u>+</u> 0.	002	

Table XXII

Determination of the density of the sample II.

Run No.	I	II	III	IV
Experimental (mm Hg) conditions (°C)	731.2 24.3	730.9 26.0	731.9 23.5	740.0 22.8
Density of benzene at experimental conditions (g/cp ³)	0.87415	0.872332	0.875006	0.87575
Density of air at ex- perimental conditions (g/cm3)	0.001142	0.001134	0.001143	0.001161
Weight of the cup in air (with Pt wire)(g)	6.6328	6.0298	6.6323	6.0286
Weight of the cup in benzene (with Pt wire) (g)	4.1511	3.7836	4.1486	3.7818
Weight of the cup with sample in benzene (with Pt wire) (g)	4.5373	4.0689	4.5890	4.3083
Weight of the cup with sample in air (with Pt wire) (g)	7.1092	6.3815	7.1759	6.6785
Density reduced to 25°C. (eq.25)(g/cm3)	4.16139	4.6155	4.61025	4.6138
Average density at 25°C for I to IV (g/cm3)	4.61336		
Deviation dd	+0.00054	+0.00214	-0.00311	+0.00044
[dd] ² 2910	6 x 10 ⁻¹⁰	45796 x 10 ⁻¹⁰	96721 x 10 ^{-D}	1936 x 10 ⁻¹⁰
Most probable error		+0.0015		
Density of the sample II at 25.0°C (calcul- ated with equation (25) (in g/cm ²)		4.6134 <u>+</u> 0.	0015	
Density of the sample II at 20.0°C (calcul- ated with equation (25) (in g/cm ³)		4.6136 <u>+</u> 0.	0015	•

CHAPTER V

DISCUSSION

I. Remarks on error elimination.

The powder method is connected with various sources of error. All conditions which cause a deviation of diffraction lines from the positions determined by Bragg's law are referred to as the sources of error. Therefore, if the work is not proper, errors may be introduced into parameter determinations through numerous possibilities. These possibilities may conveniently be classified according to the stage of their occurrence in the process.

1) Errors may be caused during the production of the diffraction by:

- a) Absorption of x-rays by the specimen
- b) Eccentricity of the specimen with respect to the axis of the film cylinder.
- c) Form of the specimen
- d) Deviation of cross-section of camera from a perfect circle
- e) Direction of primary beam not being perpendicular to the specimen
- f) Inexact knowledge of the temperature of the substance
- g) Use of improper x-radiation
- 2) Errors may be involved before and while measuring and evaluating the diffraction pattern by:
 - a) Film shrinkage and non-uniform shrinkage of films after development
 - b) Change of the length of film during the time of measurement
 - c) Inexact determination of the equatorial line of the powder pattern.

- d) Inexact determination of the peak-intensity position of diffraction spectra
- e) Inaccurate measurements
- 3) Finally errors may be caused by crystaloptical factors:
 - a) Refractive index of the crystal for x-rays
 - b) Divergence of x-rays after diffraction
 - c) Condition of diffraction spectra

The errors mentioned are eliminated by the present technique as follows:
1.a. Absorption displaces diffraction lines in the direction of larger 9;
making the parameter appear smaller. This effect can be largely
eliminated making the powder mount thin and transparent to x-rays.

Even heavy metals like tungsten cause only a very slight line displacement if the sample is thin.

- 1.b. The modus of construction of the camera used does not allow any appreciable eccentricity of the specimen with respect to the camera axis.
- l.c. The effect of the form of specimen is least if its cross section
 is circular. Round specimens were therefore employed.
- 1.d. Cameras with perfect cylindrical internal surfaces can easily be secured by the present technique of metal machining. The films are pressed tightly against the camera wall so that a noticeable error is excluded.
- 1.e. If the primary x-ray beam makes an angle r with the specimen, the diffraction spectra do not disperse symmetrically with respect to the equatorial line of the pattern. However, this error is negligible, and is avoided by the contraction of the camera.
- 1.f. Temperature fluctuations affect the magnitude of the lattice parameter. To exclude this source of error the experiments were per-

formed at constant temperatures.

l.g. It is necessary to have diffraction lines with 0 angles in the range of 78° to 87° in order to carry out precise lattice parameter determinations.

Interplanar spacings of crystals as calculated from x-ray diffraction lines vary with the position of the lines on the film. These spacings are determined by Bragg's equation:

$$1/d = (2/\lambda n) \sin \Theta$$

It is evident that if measurements of reflections are made whose θ angles fall in the vicinity of 90°, the d's of the planes corresponding to these reflections, because of the sin function, can be determined with much greater reproducibility than those whose θ 's occur at lower angles. For this reason, lattice constants based upon measurements of reflections in the region θ approaching 90° are very precise. Under equal conditions, they are more precise, then are the other θ 's at lower angles.

- 2.a. and b. Although localized changes of length of films are possible, this condition exercises a very small effect on the results, if the films are treated carefully.
- 2.c. If worked as follows, no appreciable errors in the determination of the equatorial line of the powder pattern can occur. The film is first placed on the carriage of the comparator so that the cross-hair of the microscope runs through the center of the film, and then gradually adjusted until the cross-hair of the objective coincides with the vertexes of all Debye-rings on the film. Thus, finally the cross-hair of the objective is in perfect alignment with the equatorial line of the powder pattern.

- 2.d. The comparator used allows determination of peak intensities of sharp lines with an accuracy as high as 0.005 mm. Here the accuracy depends on the sharpness, intensity, and uniformity of lines: and these, in turn, on x-ray optical factors and properties of the powder, such as particle size, mosaic structure, etc. Differences in peak intensity and gravity center of the lines were disregarded.
- 2.e. During measurements, the carriage of the comparator must be moved in one direction only. Since it was necessary to take a number of readings of the same line, the carriage was moved a little back and then advanced again to the peak intensity of the line to make the reading.
- 3.2. From a measured glancing angle Θ , not the actual lattice constant but a slightly smaller value is obtained, due to the deviation from Bragg's law. These deviations are greater, the lower the order of diffraction. The corrected Bragg's equation, as derived by Ewald, is as follows:

 $n \lambda = 2d (1 - 5.40 \int \frac{d^2}{n^2} 10^{-6}) \sin \theta \qquad (26)$ n = order of diffraction

d = the lattice spacing

3.b.

f = density of the crystal

This formula is valid only for the symmetrical reflection. In spite of the well established formula and theories, the magnitude of the symmetrical reflection correction is still uncertain in their appli-(24, 29) cation to various crystals, especially in powder patterns . The divergence of the x-ray beam does not actually lead to errors

but causes complications in the errors arising from other sources.

The divergence of the x-ray beam gives rise to a distortion of the size of the x-ray reflection which reaches the film. The arrangement of the collimeter system minimizes the effect of divergence of x-rays, if the aperture of the pinhole is of the (8)order of 0.8 mm

3.c. Favorable conditions of breadth, intensity, and uniformity of the last lines facilitate the achievement of greater accuracy.

II. Determination of the molecular weight and x-ray density of Ti_2O_3 -Ti solid solutions.

Information concerning the soundness of the crystal lattice can be obtained computing either the x-ray density, d_X , or the molecular weight, M_X , and comparing them with the macroscopic values. The formula for computation, if Siegbahn's wavelengths (in X. U. or in kX) are used, is:

 $M_{x} = k \cdot N_{s} \cdot v \cdot d/n \qquad (g/mole) \qquad (27)$

 N_s being Siegbahn's Avogadro number (6.0594 x 10^{23})

v =	volume	of	the uni	t cell	in	kХJ	х	10-21	ł
-----	--------	----	---------	--------	----	-----	---	-------	---

d =	density	in	gram	per	cubic	centimeter
-----	---------	----	------	-----	-------	------------

n = number of molecules per unit cell

k = correction factor which eliminates the errors that were made determinating N_c and wavelengths.

The necessity of such a factor (1.00020 \pm 0.00003) for exact molecular weight calculations was emphasized by Straumanis in 1944. However, if the wavelengths are expressed in Å units, the equations for M_x and d_x are:

$$M_x = N_0 v^* d/n$$
 (28)
 $d_x = n M/N_0 v^*$ (29)

where, v' is the volume of the unit cell in $(\mathring{A})^3 \times 10^{-24}$, and N_o is the absolute Avogadro's number = 6.02403×10^{23} mole⁻¹ (chemical scale). The values

for v and d should be obtained at the same temperature.

Concerning <u>n</u>, the number of molecules in the unit cell of Ti_2O_3 , (52) which belongs to the corumdum type, and has, according to Bragg , twelve molecules in the hexagonal unit cell, or two molecules in the rhombohedral unit cell, evidently corresponding to the crystallographic ratio a:c = 1:1.365. When the ratio is 1:2.73, as it also was found in this investigation, there are six molecules in the hexagonal unit cell and two molecules in the rhombohedral unit cell, according to Shearer's rule.

The x-ray densities of Ti_2O_3 -Ti solid solutions at 20° and 25°C were calculated by equation (29), using the following data:

number of molecules in the hexagonal unit cell n = 6.0000molecular weight of Ti₂O₃ M = 143.80Avogadro number $N_0 = 6.02403 \times 10^{23}$

Volume of the hexagonal unit cell, v, of the

samples at 20°C and 25°C v' = see Table XII

The results are summarized in Table XXIII and correspond with the macroscopic densities at 20° and 25°C.

Also, the x-ray molecular weights of Ti_2O_3 solid solutions were calculated by the equation (28).

The relative error by which the density and the molecular weights were affected, was estimated as follows:

The x-ray molecular weight M_X of a hexagonal unit cell, using equation (27) reduces to:

 $M_{x} = \frac{k N_{s} v d}{n} = \frac{N_{s}}{n} / \overline{k} \cdot v \cdot d\overline{f} = \frac{N_{s}}{n} / \frac{3}{2} \underline{a}^{2} \underline{c} \cdot d \cdot k\overline{f} =$ const ($\underline{a}^{2} \underline{c} d k$) (30)

 $\ln M_{\rm X} = \ln \operatorname{const} + 2 \ln \underline{a} + \ln \underline{c} + \ln d + \ln k \quad (31)$ $d \ln M_{\rm X} = d \ln \operatorname{const.} + d(2 \ln \underline{a}) + d \ln \underline{c} + \ln k \quad (32)$ $\frac{d M_{\rm X}}{M_{\rm X}} = \frac{2d\underline{a}}{\underline{a}} + \frac{d\underline{c}}{\underline{c}} + \frac{dd\underline{s}}{d\underline{s}} + \frac{dk}{k} \quad (33)$

The final error, due to the propagation of errors, is:

$$\frac{\Delta M_{x}}{M_{x}} = t \left(\frac{2 da}{a} \times f_{1} \right)^{2} + \left(\frac{dc}{c} \times f_{2} \right)^{2} + \left(\frac{dd_{s}}{ds} \times f_{3} \right)^{2} + \left(\frac{dK}{K} \times f_{4} \right)^{2} / \frac{1}{2}$$
(34)

where dg, dc, dds, dK, are the standard deviations of the separate measurements, $\frac{dg}{g}$, $\frac{dc}{c}$, the relative errors, and f_1 , f_2 , the safety factors, each of them $\geqslant 1$.

The necessity of these factors follows from a consideration that relative errors are accidental or random errors: they reflect the quality of the measurements, but they do not contain the systematic error, which is undoubtedly in any measurement, and which may be even several times as large as the accidental error.

It is the task of the investigator to estimate the value of the factor, f, for each kind of measurement, so that the systematic error becomes included in the deviation.

It was assumed in the case of molecular weight determinations that

$$f_1 = f_2 = f_3 = f_4 = 2$$
 (35)

would take care of systematic errors.

Assuming that

		For Sample I	For Sample II
<u>da</u> =	. •	4.67 x 10 ⁻⁵	11.7 x 10 ⁻⁵
		3.99 x 10 ⁻⁵	5.30 x 10 ⁻⁵
$\frac{\mathrm{dd}_{\mathrm{S}}}{\mathrm{d}_{\mathrm{S}}} =$	· · ·	43.5 x 10 ⁻⁵	32.6 x 10 ⁻⁵
$\frac{dK}{K} =$		3.00×10^{-5}	3.00 x 10-5

equations as follows were obtained from equation (34) for the total error (ΔM_X) of the molecular weight for both samples:

	for	sample	I	$\Delta M_{\rm X}$	= 8	3.95 x	10-4	хM			(36)		
· • ·	for	sample	II	∆ M _X	= 8	3.11 x	10-4	хM			(37)		
The o	devia	tion,	Δ Μ _χ ,	may 1	be d	alled	"Sta	ndard	Abso.	lute	Deviat	ion",	for
whic	h wit	h the	data	of x-1	ay	molec	ular	weigh	ts of	Tabl	e XXIV	, it	was
obta	ined												

for sample	I	$\Delta^{M_{X}}$	$M_{\rm X}$ 144.52 + 0.13
for sample	II	+ 0.117	144.77 ± 0.12

For the x-ray density and for the number of molecules in the unit cell the same calculations were done and it was obtained for the Standard Absolute Deviation, Δdx , and $\Delta n'$.

			∆ax	d _x
for	sample	I	±0.07	4.5760 <u>+</u> 0.07
for	sample	II	±0.11	4.5825 + 0.11

			A n'	n'		
for	sample	I	±0.0055	6.126	<u>+</u>	0.0055
for	sample	II	±0.0053	6.484	ŧ	0.0053

The chemical molecular weights of Ti₂0₃-Ti solid solutions, calculated from the results of the chemical analysis, are as follows:

for sample I 141.54

for sample II 133.95

Figure 7 shows the variation of the x-ray and the chemical (macroscopic) molecular weight with free Ti content in the solid solution.

The extrapolated chemical molecular weight for pure Ti_2O_3 was calculated from the straight line equation, and it was found to be 143.65 which agrees with the value from atomic weights 143.80 within 0.1%. It follows from the Tables XXIII and XXIV that the macroscopic densities

Table XXIII

X-ray densities and macroscopic densities of Ti₂O₃-Ti solid solutions at temperature 20.0° and 25.0°C.

	X-ray den	sity	Macroscopic	density
Temperature	20.0°C	25.0°C	20.0°C	_25.0°C
Sample I Sample II	4.5766 4.5827	4.5760 4.5825	4.5993 4.6136	4.5988 4.6134
•	extrapolated values			
Pure Ti203	4.5749	4.5742	4.5953	4.5948
References:	W. H. Zachariasen G. Lunde(2)	4.58 4.605	W. H. Zachariasen P. Ehrlich(1) C. H. Shomate(53) C. Frie de l(54)	4.6014 (25°C) 4.486 4.56 4.601 (10°C)

Table XXIV

Molecular weight of Ti203 and of solid solutions.

Sample	Volume of developed H ₂ in ml	Free Ti content in %	X-ray molecular wgt. (M _X)	Chemical (macroscopic molecular weight (M)	$\frac{\text{Difference}}{(M_{X}-M)}$
I II Pur e Ti	5.6 25.8 2 ⁰ 3 0.00	0.8 3.67 0.00	144.52 + 0.13 144.76 - 0.12 144.45 -	141.54 133.95 143.65	+ 2.98 + 10.82 0.80
Differe	nce between th	e chemica	l macroscopic	Difference Differ	ence in %

molecular weight of Pure Ti₂O₃ and the extrapolated chemical (macroscopic) molecular 0.15 0.103% weight.

Table XXV

Variation of the number of molecules in the hexagonal unit cell of Ti_2O_3 and of solid solutions with free Ti content.

				Refer	ences
Sample	I	II	Pure Ti20	Zachariasen	Ehrlich
Volume of developed H_2 in ml.	5.6	25.8	0.00		
Free Ti content in	0.8	3.67	0.00		
			Extrapolated	value	
unit cell (in Å ²) at 25°C	312.99314	312.53701	313.11959	313.30	313.35
			Extrapolated	value	
Macroscopic density at 25°C	4.5988	4.6134	4.5948	4.6014	4.486
Chemical (macro- scopic) molecular (at 25°C) weight	141.54	133.95	143.80	143.80	143.80
Number of molecules in the unit cell	n' 6.12615	n' 6.48436	6.02684 theoretical value 6.00000	n' 6.03909	n' 5.88871
Number of inter- stitials for one hexagonal unit cell	0.126	0.484	0.027	0.039	-0.111

50

Fig. 9 The hexagonal <u>a</u> and <u>c</u> constants versus free titanium content in Ti_2O_3 -Ti solid solution at 25 C.

Table XXVI

Lattice constants (extrapolated) of the hexagonal unit cell of pure Ti_2O_3 at temperatures 20.0°C and 25.0°C.

Volume of Free Ti The hexagonal a The hexagonal c lattice constant developed H2 lattice constant Sample content in ml in % $(in \tilde{A})$ (in Å) 5.6 0.8 5.1482 13.6347 Ι 3.67 II 25.8 5.1404 13.6576 (Extrapolated value) (Extrapolated value) Pure Ti203 0.00 0.00 5.1504 13.6284 Temperature 25.0°C 0.8 5.1482 13.6362 5.6 Ι II 25.8 3.67 5.1402 13.6595 (Extrapolated value) (Extrapolated value) 0.00 0.00 5.1505 13.6297 Pure Ti203 5.141 References: P. Ehrlich 13.61 W. H. Zachariasen 5.15 13.56

Temperature 20.0°C

Table XXVII

Lattice constant (extrapolated) of the rhombohedral unit cell of pure Ti₂O₃ at temperature 20.0°C and 25.0°C.

Temperature 20.0°C

Sample	Volume of H ₂ developed in ml	Free Ti content in %	The rhombohedral lattice constant, a _{rho} (in Å)	Calculated by eq. (20) using the hexagonal extra-polated lattice constants (a _{hex} and ^c hex) (in Å)
I II	5.6 25.8	0.8 3.67	5•43054 5•43448	
Pure Ti ₂ 0	93 0.00	(E 0.00	xtrapolated value) 5.42945	5.42948
Temperatu	re 25.0°C		•	
I II	5.6 25.8	0.8 3.67	5.43096 5.43493	×
Pure Ti20	3 0.00	(E 0.00	xtrapolated value) 5.4299 1	5.42984
Reference	s: G. Lunde W. H. Zad P. Ehrlid	chariasen ch	(5.42 Å) (5.42 Å) (5.421 Å)	

Table XXVIII

Temperature 20.0°C

Interaxial α angle (extrapolated) of the rhombohedral unit cell of pure $\text{Ti}_{z}O_3$ at temperature 20.0°C and 25.0°C.

Volume of Free Ti Interaxial angle of Calculated by equa-H₂ developed tion (22) using the Sample content the rhombohedral cell in ml hexagonal extrain % in ang. deg. polated lattice constants (ahex and chex)in ang. deg. 56.590 5.6 0.8 I 25.8 3.67 56.450 II (Extrapolated value) Pure Ti203 56.629 56.628 0.00 0.00 Temperature 25.0°C 0.8 56.586 I 5.6 25.8 56.442 3.67 II (Extrapolated value) 56.626 56.624 Pure Ti203 0.00 0.00 G. Lunde 56.533 References: 56.833 W. H. Zachariasen

CHAPTER VI

SUMMARY

The conclusions derived from the results of the present investigation are summarized as follows:

- The lattice parameters of the hexagonal cell at 25°C (in Å) are: 1) For sample I a = 5.1482c = 13.6362 c = 13.6595 a = 5.1402for sample II The axial ratio, c/a, at 25°C is 2) 2.6487 for sample I 2.6574 for sample II 3) The lattice parameter of the rhombohedral cell at 25°C, a_{rh} (in Å) is for sample I 5.4305 for sample II 5.4349
- 4) The interaxial & angle of the rhombohedral cell at 25°C (in deg.) is
 for sample I 56.584
 for sample II 56.442

The various thermal linear expansion coefficients of samples I and

II were determined as follows:

1) The linear expansion coefficient, α_a , for the hexagonal constant in $(\mathring{A}/\degree C)$ is

for sample I 1.668×10^{-7} for sample II -9.080×10^{-6}

2) The linear expansion coefficient, $\boldsymbol{\alpha}_{c}$, for the hexagonal constant in $(\mathring{A}/°C)$ is

for sample I 2.337×10^{-5} for sample II 2.736×10^{-5}

CHAPTER VI

SUMMARY

The conclusions derived from the results of the present investigation are summarized as follows:

- The lattice parameters of the hexagonal cell at 25°C (in Å) are: 1) For sample I a = 5.1482c = 13.6362 c = 13.6595 a = 5.1402for sample II The axial ratio, c/a, at 25°C is 2) 2.6487 for sample I 2.6574 for sample II 3) The lattice parameter of the rhombohedral cell at 25°C, a_{rh} (in Å) is for sample I 5.4305 for sample II 5.4349 4) The interaxial & angle of the rhombohedral cell at 25°C (in deg.) is
- The interaxial & angle of the rhombohedral cell at 25°C (in deg.) is
 for sample I 56.584
 for sample II 56.442

The various thermal linear expansion coefficients of samples I and

II were determined as follows:

1) The linear expansion coefficient, α_a , for the hexagonal constant in $(\mathring{A}/\degree C)$ is

for sample I 1.668×10^{-7} for sample II -9.080×10^{-6}

2) The linear expansion coefficient, $\boldsymbol{\alpha}_{c}$, for the hexagonal constant in $(\mathring{A}/°C)$ is

for sample I 2.337×10^{-5} for sample II 2.736×10^{-5}

3) The change in the axial ratio, δ in (1/°C) is:

for sample I 2.356 x 10-5

for sample II 3.699×10^{-5}

4) The linear expansion coefficient, $\alpha_{\rm rh}$, for the rhombohedral cell

in (Å/°C) is

for sample I 1.6450 x 10⁻⁵

for sample II 1.6499×10^{-5}

5) The volume expansion coefficient β for the hexagonal cell in $(Å^3/°C)$ is

for sample I 2.370×10^{-5} for sample II 9.200×10^{-5}

6) The volume expansion coefficient, $\beta_{\rm rh}$, for the rhomochedral cell in $({}^{\circ}_{\rm A}{}^{\prime}/{}^{\circ}{\rm C})$ is

for sample I 2.320×10^{-5} for sample II 9.216×10^{-6}

7) The angle expansion coefficient f, for the rhombohedral interaxial angle in $\left(\frac{\deg}{e_{C}}\right)$ is

for sample I -1.820×10^{-5} for sample II -2.763×10^{-5}

Although there are no data available in the literature concerning the thermal expansion coefficients of Ti_2O_3 , the values reported here are reliable, as shown by the error calculations.

The thermal linear expansion coefficient, α_{a} , of the hexagonal <u>a</u> constant of Ti₂O₃-Ti solid solution was very small and changed very little in the temperature range from 10° to 60°C.

However, the hexagonal \underline{c} constant increased remarkably with temperature, exhibiting a much larger thermal expansion coefficient.

Concerning the thermal linear expansion coefficient and the composi-

tion of the oxide: that of the hexagonal <u>a</u> constant decreases with increasing free Ti content (contraction of <u>a</u> with increasing free titanium content), while the coefficient of the hexagonal <u>c</u> constant increased with increasing free titanium content (increase of the hexagonal c constant).

The volume of the hexagonal unit cell of Ti_2O_3 -Ti solid solution increased with increasing free titanium content, and also the volume expansion coefficient increased.

The axial ratio, c/a, being around 2.65, increased with temperature and also increased with increasing free titanium content in the solid solution.

The a_{rh} constant increased with increasing free titanium content in the solid solution. The thermal linear expansion coefficient of a_{rh} constant increased also slightly.

The interaxial angle of the rhombohedral unit cell of Ti_2O_3 -Ti solid solution, as well as its angle expansion coefficient, decreased with increasing free titanium content.

The x-ray density of pure Ti_2O_3 calculated from equation (29) using the extrapolated volume of the hexagonal unit cell of pure Ti_2O_3 at 25°C was 4.574. This compared favorably with 4.58 obtained by Zachariasen.

The experimental (macroscopic) density of pure Ti₂O₃ was 4.594. The value obtained was always higher than the x-ray density, indicating the presence of interstitials in the solid solutions.

From the diagram of n'-n (the number of interstitial molecules in the solid solution) versus free titanium content (by chemical analysis), the degree of imperfection of pure Ti_2O_3 could be calculated. The pure oxide also contains some interstitial (probably Ti) atoms.

The hexagonal and the rhombohedral lattice constants for pure Ti₂O₃ were obtained by linear extrapolation of the constants of the solid solutions at 25°C to the free titanium content = zero.

 $\underline{a} = 5.1505 \pm 0.0006 \text{ (Å)}$ $\underline{c} = 13.6297 \pm 0.00071 \text{ (Å)}$ $\underline{a}_{rh} = 5.4295 \pm 0.0006 \text{ (Å)}$ $\underline{d} = 56.626 \text{ (in deg.)} \pm 0.001 \text{ (Å)}$

The obtained constants for the hexagonal and the rhombohedral unit cell of pure Ti_2O_3 are more reliable than those in the literature, because it is not certain whether the previous investigators had a compound of a composition corresponding exactly the formula Ti_2O_3 .

APPENDIX

A. Accuracy of the thermometers used in the experiments.

Accuracy of the thermometers used in the X-ray thermostat, and in the analytical balance were within 0.1°C. The thermometers were calibrated by comparison with the normal thermometer.

B. Wave length of X-ray used in the experiments.

Target	Radiation	Wave length
· ·	ß	1.61744
Co	Cl ₃	1.78529
	d2	1.78919

C. Film measurements.

The individual line readings and lattice constant calculations from all films measured during experiments are recorded below.

1. Sample I (Ti 66.1%, Oz 33.9%, Hz developed 5.6 cm³).

Co-radiation is selected and used for production of powder pattern at all temperatures. Only three sets of lines in the front reflection region, namely (104), (110) and (116), and (1 3 10) and (3 0 12) in the back reflection region are measured, and the lattice constants are calculated from the last two lines, (1 3 10) and (3 0 12).

				• •		3
	.•					
	Film No.	<u>937</u>	Temp. 60)°C	Exp.	1.5 hrs.
	Fron	t Reflec	tion		Back Re:	flection
Reading (in mm)	62.702 31.781	68.672 25.810	69.835 24.643		160 .58 4 132 .583	155.504 137.910
Sum (in mm) Average (in mm)	94.483	94.482 94.481	94.478		293.437 293	293.414 .426
Circumference (in mm) Factor	198.945 0.452 3 86					
		•	0 (in de	g).	77.4549	82.0407
Lattice constant	a = 5.13	762 kX	c = 13	3.619	982 k x	
	Film No.	<u>938</u>	Temp. <u>6</u>	0°C	Exp.	1.5 hrs.
	Fro	nt Refle	ction		Back Re:	flection
Reading (in mm)	70.364 39.425	76.330 33.458	77.505 32.281		168.313 140.570	163.266 145.630
Sum (in mm) Average (in mm)	109.789	109.788 109.788	109.786		308.883 308	308.896 .889
Circumference (in mm) Factor	199.101 0.452031				•	
	× .		9 (in de	eg.)	77-4593	82.0280
Lattice constant	a = 5.136	93k x	c = 13.0	62136	6 kX	
	Film No.	<u>939</u>	Temp. 50	0°C	Exp.	2 hrs.
	Fron	t Reflec	tion		Back Re:	flection
Reading (in mm)	68.893 37.955	7 4.865 31.983	76.037 30.800		166.896 139.198	161.809 144.277
Sum (in mm) Average (in mm)	106.848	106.848 106.844	106.837		306.094 s06	306.086 .090
Circumference (in mm) Factor	199.246 0.451702					
			0 (in de	eg.)	77.4888	82.0808
Lattice constant	a = 5.136	48kX c	= 13.61	924 1	X	

	Front Portion	ation	Pools Dof	
	Front Keile	CLON	Back Hei	Lection
Reading (in mm)	62.712 68.68 31.765 25.79	81 69.856 95 24.612	160.645 132.910	155.541 138.018
Sum (in mm) Average (in mm)	94.477 94.4 94.4	76 94.468 74	293.555 293.	293.559 557
Circumference (in mm) Factor	199.083 0.452072			
		Ə (in deg.)	77.4618	82.0783
Lattice constant	a = 5.13829 kx	c = 13.61667	kX	
· · · ·	Film No. <u>941</u>	Temp. 40°C	Exp. 2	hrs.
	Front Reflec	ction	Back Ref	lection
Reading (in mm)	65.686 71.69 34.718 28.72	59 72.832 21 27.554	163.595 135.996	158.503 141.089
Sum (in mm) Average (in mm)	100.399 100.38	30 100.386 38	299.591 299.	299.592 .592
Sum (in mm) Average (in mm) Circumference (in mm) Factor	100.399 100.38 100.38 199.204 0.451798	30 100.386 38	299.591 299.	299.592 592
Sum (in mm) Average (in mm) Circumference (in mm) Factor	100.399 100.38 100.38 199.204 0.451798	30 100.386 38 9 (in deg.)	299.591 299. 77.5308	299.592 592 82.1325
Sum (in mm) Average (in mm) Circumference (in mm) Factor Lattice constant	100.399 100.38 100.38 199.204 0.451798 a = 5.13516kX	30 100.386 38 9 (in deg.) c = 13.61865k	299.591 299. 77.5308 x	299.592 592 82.1325
Sum (in mm) Average (in mm) Circumference (in mm) Factor Lattice constant	100.399 100.38 100.38 199.204 0.451798 a = 5.13516kX Film No. <u>942</u>	30 100.386 38 9 (in deg.) c = 13.61865k Temp. <u>40°C</u>	299.591 299. 77.5308 x Exp. <u>2</u>	299.592 .592 82.1325 hrs.
Sum (in mm) Average (in mm) Circumference (in mm) Factor Lattice constant	100.399 100.38 100.38 199.204 0.451798 a = 5.13516kx Film No. <u>942</u> Front Reflec	30 100.386 9 (in deg.) c = 13.61865k Temp. <u>40°C</u> ction	299.591 299. 77.5308 X Exp. <u>2</u> Back Ref	299.592 .592 82.1325 hrs.
Sum (in mm) Average (in mm) Circumference (in mm) Factor Lattice constant Reading (in mm)	100.399 100.38 100.38 199.204 0.451798 a = 5.13516kX Film No. <u>942</u> Front Reflect 64.323 70.34 33.310 27.29	<pre>30 100.386 38 9 (in deg.) c = 13.61865k Temp. 40°C ction 1 72.479 96 25.139</pre>	299.591 299. 77.5308 X Exp. <u>2</u> Back Ref 162.373 134.700	299.592 .592 82.1325 hrs. ?lection 157.245 139.823
Sum (in mm) Average (in mm) Circumference (in mm) Factor Lattice constant Reading (in mm) Sum (in mm) Average (in mm)	$100.399 100.36 \\ 100.39 \\ 100.36 \\ 100.36 \\ 199.204 \\ 0.451798 \\ a = 5.13516 \\ kx \\ Film No. 942 \\ Front Reflect \\ 64.323 70.34 \\ 33.310 27.29 \\ 97.633 97.63 \\ 97.64 \\ 97.64 \\ 0.451798 \\ 0.451788 \\ 0.451788 \\ 0.451788 \\ 0.451788 \\ 0.451788 \\ 0.451788 \\ 0$	80 100.386 9 (in deg.) c = 13.61865k Temp. <u>40°C</u> etion 41 72.479 96 25.139 57 97.618 29	299.591 299. 77.5308 X Exp. <u>2</u> Back Ref 162.373 134.700 297.073 297.	299.592 592 82.1325 hrs. lection 157.245 139.823 297.068 071
Sum (in mm) Average (in mm) Circumference (in mm) Factor Lattice constant Reading (in mm) Sum (in mm) Average (in mm) Circumference (in mm) Factor	$100.399 100.38 \\ 100.39 \\ 100.38 \\ 199.204 \\ 0.451798 \\ a = 5.13516 kX \\ film No. 942 \\ Front Reflect \\ 64.323 70.34 \\ 33.310 27.29 \\ 97.633 97.63 \\ 97.63 \\ 97.64 \\ 199.442 \\ 0.451259 \\ \end{array}$	80 100.386 9 (in deg.) c = 13.61865k Temp. <u>40°C</u> etion 1 72.479 96 25.139 97.618 29	299.591 299. 77.5308 X Exp. <u>2</u> Back Ref 162.373 134.700 297.073 297.	299.592 592 82.1325 hrs. lection 157.245 139.823 297.068 071
Sum (in mm) Average (in mm) Circumference (in mm) Factor Lattice constant Reading (in mm) Sum (in mm) Average (in mm) Circumference (in mm) Factor	$100.399 100.38 \\ 100.39 \\ 100.38 \\ 199.204 \\ 0.451798 \\ a = 5.13516 kX \\ Film No. 942 \\ Front Reflect \\ 64.323 70.34 \\ 33.310 27.29 \\ 97.633 97.63 \\ 97.633 97.63 \\ 97.64 \\ 199.442 \\ 0.451259 \\ \end{array}$	<pre>B0 100.386 B0 (in deg.) c = 13.61865k Temp. 40°C ction 1 72.479 26 25.139 57 97.618 P9 (in deg.)</pre>	299.591 299. 77.5308 X Exp. <u>2</u> Back Ref 162.373 134.700 297.073 297. 297.	299.592 592 82.1325 hrs. lection 157.245 139.823 297.068 071 82.1382

	Film No. <u>950</u>	Temp. 40°C	Exp.	2 hrs.
	Front Reflec	tion	Back Ret	flection
Reading (in mm)	71.821 77.83 40.689 34.66	9 79.022 7 33.486	170.016 142.341	164.795 147.546
Sum (in mm) Average (in mm)	112.510 112.50 112.50	6 112.508 8	312.357 312	312.341 .349
Circumference (in mm) Factor	199.481 0.450358			
		0 (in deg.)	77.536	82.232
Lattice constant	a = 5.13796 kX	c = 13.60924 1	x	
	Film No. <u>951</u>	Temp. 40°C	Exp.	2 hrs.
	Front Reflec	tion	Back Ret	flection
Reading (in mm)	68.942 70.10 25.829 24.66	3	160.888 133.274	155.665 1 38. 498
Sum (in mm) Average (in mm)	94.771 94.76 94.769	7	294.162 294	294.163 .163
Circumference (in mm) Factor	199 .394 0.451367			
•		0 (in deg.)	77.536	82.251
Lattice constant	a = 5.13848 _{kX}	c = 13.60736	kX	
	Film No. <u>953</u>	Temp. 40°C	Exp.	2 hrs.
	Front Reflec	tion	Back Re	flection
Reading (in mm)	68.942 70.10 25.829 24.66	3 4	160.875 133.245	155.662 138.463
Sum (in mm) Average (in mm)	94.771 94.76 94.769	7	294.120 294	294.125 .123
Circumference (in mm) Factor	199.354 0.451458		-	
•		9 (in deg.)	77.526	82.235
Lattice constant	a = 5.13869kX	c = 13.60785	kX	

	FILM NO.	954	1emp. <u>40°C</u>	Exp.	nrs.
	Front	Reflecti	ón	Back Ref	lection
Reading (in mm)	67.502 36.375	73 .521 30 .353	74.665 29.212	165.517 137.899	160.385 143.033
Sum (in mm) Average (in mm)	103.877	103.874 103.876	103.877	303.416 303	303.418 417
Circumference (in mm) Factor	199.541 0.451035				
			9 (in deg.)	77.583	82.174
Lattice constant	a = 5.13	560 kX c	= 13.6157	kX	
•	Film No	. 955	Temp. <u>40°C</u>	Exp.	2 hrs.
	Front	Reflecti	on	Back Ret	flection
Reading (in mm)	64 .634 33.685	70.621 27.678	71.777 26.516	162.522 134.876	157.357 140.033
Sum (in mm)	98.319	98 .299	98.293	297.398	297.390
G	75.336				
Average (in mm)	90.292	98.301		297	.394
Circumference (in mm) Factor	199.093 0.45205	0			
			Ə (in deg.)	77.503	82.169
Lattice constant	a = 5.1	3816 kX	c = 13.61559) kX	
	Film No	• <u>9</u> 43	Temp. <u>30°C</u>	Exp.	2 hrs.
	Front	Reflecti	on	Back Re:	flection
Reading (in mm)	70.697 39.673	76.711 33.653	77.873 32.495	168.654 141.083	163.521 146.228
Sum (in mm) Average (in mm)	110.370	110.364 110.367	110.368	309•737 309	309.749 .743
Circumference (in mm) Factor	199.376 0.451408			* .	
			Θ (in deg.)) 77.554	82.194
	5 5 17	5)18 I-V 0	- 17 61/10/	1-37	

.

	Film No.	· <u>944</u>	Temp. <u>30°C</u>	Exp. 2	hrs.
	Front	Reflecti	on	Back Ref	lection
Reading (in mm)	68.279 37.278	74.275 31.304	75.442 30.128	166.121 138.460	160.928 143.656
Sum (in mm) Average (in mm)	105.557	105.579 105.569	105.570	304.581 304,	304.583 583
Circumference (in mm) Factor	199.014 0.452229				
			0 (in deg.)	77.4909	82.189
Lattice constant	a = 5.139	971 kX c	= 13.6068 k	2	
Film)	No. <u>944</u> (1	Repetitio	n) Temp. <u>3</u>	O°C Exp	2 hrs
	Front	Reflecti	on	Back Ref	lection
Reading (in mm)	66.637 35.674	72.640 29.667	73.792 28.515	164.513 136.859	159.280 142.059
Sum (in mm) Average (in mm)	102.311	102.307 102.308	102.307	301.372 301.	301.339 355
Circumference (in mm) Factor	199.048 0.452152		•		
			0 (in deg.)	77.496	82.21
Lattice constant	a = 5.140	014 kX c	= 13.60486)	kΧ	
	Film No	• <u>945</u>	Temp. 20°C	Exp. 2	hrs.
	Front	Reflecti	on	Back Ref	lection
Reading (in mm)	65.940 36.865	7 2.9 41 29.864	74.101 28.703	164.990 137.378	159.730 142.63
Sum (in mm) Average (in mm)	102.805	102.805 102.805	102.804	302.368 302.	302.373 371
Circumference (in mm) Factor	199.560 0.450978				
			Θ (in deg.)	77.548	82.28
	Film No. 91	+6 Temp. 20°C	Exp. 2	hrs.	
---------------------------------	-----------------------------	------------------------------	-----------------------------	-------------------------	
	Front Reflection		Back Ref.	lection	
Reading (in mm)	63.025 69 32.125 26	9.976 70.147 5.171 25.007	160.491 133.104	155.382 138.206	
Sum (in mm) Average (in mm)	95.150 95 95	5.147 95.154 5.150	293.595 293.	2 93. 588 592	
Circumference (in mm) Factor	198.442 0.453 533		~		
· ·		9 (in deg.)	77.579	82.210	
Lattice constant	a = 5.1352	1 kX c = 13.61603	kX		
	Film No. <u>91</u>	+7 Temp. 20°C	Exp. 2	hrs.	
	Front Ref	flection	Back Ref	lection	
Reading (in mm)	71.748 77 40.799 31	7.785 78.918 +.761 33.631	169.876 142.277	164.589 147.553	
Sum (in mm) Average (in mm)	112.547 112 112	2.546 112.549 2.547	312.153 312.	312.142 148	
Circumference (in mm) Factor	199.601 0.450899		•		
	. *	0 (in deg.)	77.556	82.318	
Lattice constant	a = 5.13845	kx c = 13.60284	×Χ		
	Film No. 91	48 Temp. 10°C	Exp. 2	hrs.	
	Front Ref	flection	Back Ref	lection	
Reading (in mm)	65.117 7: 34.019 26	1.115 72.239 8.021 26.899	163.178 1 35. 664	157.909 140.932	
Sum (in mm) Average (in mm)	99 . 136 99 99	9.136 99.138 9.137	298.842 298.	298.841 842	
Circumference (in mm) Factor	199.705 0.450664	· · · ·			
•		Θ (in deg.)	77.600	82.349	
Lattice constant	a = 5.1370	2 kx c = 13.60463	kX		

	Film No.	94 9	Temp. 10°C	Exp. 2	hrs.
	Front Reflection			Back Reflection	
Reading (in mm)	65.876 34.823	71.894 28.820	73.031 27.627	164.010 136.463	158.704 141.766
Sum (in mm) Average (in mm)	100.699	100.714 100.704	100.698	300.473 300.	300.470 472
Circumference (in mm) Factor	199.768 0.450522				
			9 (in deg.)	77.589	82.369

Lattice constant a = 5.13839 kX c = 13.60150 kX

2. Sample II (Ti 67.8%, 0_2 32.2%, H_2 developed \sim cm³).

The oxygen content in Ti_2O_3 was determined by the hydrogen evolution method dissolving the sample in HF (6N), and it was 32.2%. Only three sets of lines in the front reflection region, namely (104), (110) and (116), and (1 3 10), (3 0 12) in the back reflection region are measured, and the lattice constants are calculated from the last two lines (1 3 10) and (3 0 12).

	Film No	• <u>987</u>	Temp. 10°C	Exp. 2	hrs.
	Front Reflection		Back Reflection		
Reading (in mm)	69.215 38.153	75.194 32.166	76.410 30.962	167 .570 139 .993	16 2.53 3 1 45. 044
Sum (in mm) Average (in mm)	107.368	107.370 107.370	107.372	307 .5 63 30 7	307.577 570
Circumference (in mm) Factor	20 0.200 0.449550				
			0 (in deg.)	77.603	82.138
Tattice constant	a = 5.13	052 kX c	= 13.62581	kX	

	Film No. <u>988</u>	Temp. 10°C	Exp. 2	hrs.	
	Front Reflecti	Back Reflection			
Reading (in mm)	66.201 72.212 35.176 29.167	73.420 27.956	164.493 136.941	159.460 141.980	
Sum (in mm) Average (in mm)	101.377 101.379 101.377	101.376	301.434 301.	301.440 437	
Circumference (in mm) Factor	200.060 0.449865				
	· · · · · ·	Θ (in deg.)	77.605	82.136	
Lattice constant	a = 5.13175kX c	= 13.62623	kX		
	Film No. <u>985</u>	Temp. 20°C	Exp. 2	hrs.	
	Front Reflection	on	Back Ref	lection	
Reading (in mm)	70.253 76.254 39.253 33.256	77.472 32.041	168.453 140.909	16 3.4 55 145 .90 6	
Sum (in mm) Average (in mm)	109.506 109.510 109.510	109.513	309.362 309.	309.361 362	
Circumference (in mm) Factor	199.852 0.450333	1 .	•	· ·	
	•	Θ (in deg.)	77.596	82.097	
Lattice constant	a = 5.12958 kX c	= 13.62918	kX		
	Film No. <u>986</u>	Temp. 20°C	Exp. 2	brs.	
	Front Reflection	on	Back Reflection		
Reading (in mm)	69.11075.14238.15532.123	76.331 30.935	167.405 139.841	162.401 144.844	
Sum (in mm) Average (in mm)	107.265 107.265 107.265	107.266	307.246 307.	307.245 246	
Circumference (in mm) Factor	199 .98 1 0.450042	се у			
		Θ (in deg.)	77.595	82.099	
Lattice constant	a = 5.12971 kX c	= 13.62887	kX		

.

•					
	Film No.	<u>975</u>	Temp. <u>30°C</u>	Exp. 2	hrs.
	Front	Reflectio	Back Reflection		
Reading (in mm)	66.472 35.532	72.465 29.538	73.679 28.322	164.849 137.139	159.922 142.065
Sum (in mm) Average (in mm)	102.004	102.003	102.001	301.988 301.	301.987 988
Circumference (in mm) Factor	199.985 0.450044				
			0 (in deg.)	77.529	81.964
Lattice constant	a = 5.130	004 kX c	= 13.63559	kX	
	Film No.	976	Temp. <u>30°C</u>	Exp. 2	hrs.
	Front	Reflecti	on	Back Ref	lection
Reading (in mm)	67 .995 37 .047	74.027 31.010	75.236 29.802	166.323 138.718	161.395 143.641
Sum (in mm) Average (in mm)	105.042	105.037 105.039	105.038	305.041 305.	305.036 039
Circumference (in mm) Factor	200.000 0.450000				
			0 (in deg.)	77.578	82.011
Lattice constant	a = 5.1281	134 kX c	= 13.63598 ¥	X	
	Film No.	977	Temp. <u>30°C</u>	Exp. 2	hrs.
	Front	Reflectio	n	Back Ref	lection
Reading (in mm)	65.774 34.867	71.795 28.854	73.009 27.639	164.085 136.458	159.127 141.402
Sum (in mm) Average (in mm)	100.641	100.649 100.646	100.648	300 . 543 300.	300.529 536
Circumference (in mm) Factor	199.890 0.450247				
			Θ (in deg.)	77.561	82.019
Lattice constant	a = 5.129	9562 kX	c = 13.633330) kX	

•

		Film No. <u>978</u> Temp. <u>40°C</u>		Exp. 2 hrs.		
		Front Reflection			Back Reflection	
Reading	(in mm)	67.914 36.882	73.914 30.886	75.140 29.653	166.209 138.597	161.329 143.466
Sum (in Average	mm) (in mm)	104.796	104.800 104.796	104.793	304.806 304.	304.795 801
Circumfe Factor	erence (in mm)	200.005 0.449988				
			:	0 (in deg.)	77.575	81.962
Lattice	constant	a = 5.126	6802 kx	e = 13.640693	3 kX	
•		Film No.	97 <u>9</u>	Temp. <u>40°C</u>	Exp. 2	hrs.
		Front	Reflecti	on	Back Reflection	
Reading	(in mm)	66 .892 35 .872	72.865 29.896	74.076 28.689	165 . 144 137 .540	160.217 142.460
Sum (in Average	mm) (in mm)	102.764	102.761 102.763	102.765	302.684 302.	302.677 681
Circumfe Factor	erence (in mm)	199.918 0.450184				
				θ (in deg.)	7 7.578	82.009
Lattice	constant	a = 5.128	815 kX c	= 13.63619	kX	
		Film No.	980	Temp. <u>50°C</u>	Exp. 2	hrs.
		Front	Reflection	on	Back Reflection	
Reading	(in mm)	71.731 40.746	77.705 34.774	78.9 3 8 33.543	170.093 142.356	165.207 147.225
Sum (in Average	mm) (in mm)	112.477	112.479 112.479	112.481	312.459 312.	312.432 446
Circumfe Factor	erence (in mm)	199.967 0.450074				
				Θ (in deg.)	77.516	81.907
Lattice	constant	a = 5.129	913 kX c	= 13.63997 k	x	

	Film No	. <u>981</u>	Temp. <u>50°C</u>	Exp. 2	hrs.
	Front Reflection			Back Reflection	
Reading (in mm)	66.486 35.489	72.471 29.504	73.686 28.286	164.859 137.087	159.872 141.868
Sum (in mm) Average (in mm)	101.975	101.975 101.974	101.972	301.945 301.	301.940 943
Circumference (in mm) Factor	199 .969 0.450 069				
			θ (in deg.)	77.501	81.897
Lattice constant	a = 5.129	986 kX c	= 13.63938	<x< td=""><td></td></x<>	
	Film No.	. 982	Temp. <u>60°C</u>	Exp. 2	hrs.
	Front	Reflecti	on	Back Reflection	
Reading (in mm)	65 .50 7 34 .520	71.503 28.525	72.712 27.317	163.894 136.118	159.079 140.942
Sum (in mm) Average (in mm)	100.027	100.028 100.028	100.029	300.012 300.	300.021 017
Circumference (in mm) Factor	199.989 0.450024				
	•		Θ (in deg.)	77.500	81.838
Lattice constant	a = 5.128	304 kX c	= 13.64542	kХ	
	Film No.	<u>983</u>	Temp. <u>60°C</u>	Exp. 2	hrs.
	Front	Reflection	on	Back Ref	lection
Reading (in mm)	66 .99 2 35 .92 0	72.955 29.958	74.201 28.715	165 .303 137 .523	160.479 142.3 5 4
Sum (in mm) Average (in mm)	102.912	102.913 102.914	102.916	302.523 302.	30 2.8 33 829
Circumference (in mm) Factor	199 .9 15 0 .450191				
			Θ (in deg.)	77.494	81.840
Lattice constant	a = 5.128	852 kX c	= 13.64455	kX	

BIBLIOGRAPHY

- (1) P. Ehrlich, Z. Elektrochem., 45, (1939), p. 362.
- (2) G. Lunde, Z. Anorg. Chem., 164, (1927), p. 341.
- (3) W. H. Zachariasen, Skifter utgitt au Det Norske Videnskaps Akademi Oslo Mat.-Naturv. Klasse, (1928), Nr. 4, p. 1-165.
- (4) Chin-Chung Wang and N. J. Grant, Journal of Metals, February 1956, p. 184-185.
- (5) E. S. Bumps, H. D. Keller, and M. Hansen, Trans. A.S.M. (1953), 45, p. 1008.
- (6) A. E. Jenkins, Trans. A.S.M. (1953), 45, p. 1025.
- (7) M. E. Straumanis, C. H. Cheng, and A. W. Schlechten, J. Electrochem. Soc., Vol. 103, No. 8, (1956), p. 439.
- (8) E. Z. Aka, Precise lattice parameter determination of diamond, silicon and germanium by the asymmetric method (1951), Missouri School of Mines.
- M. E. Straumanis and E. Z. Aka, J. Am. Chem. Soc., 73, (1951), p. 5643.
- (10) M. E. Straumanis and E. Z. Aka, J. Applied Physics, 23, (1952), No. 2, p. 330.
- (11) H. J. Gouch and W. A. Wood, Proc. Roy. Soc. A 154, (1936), p. 510.
- (12) H. S. Peiser, H. P. Rooksby and A. J. C. Wilson, X-ray diffraction by polycrystalline materials, London, The Institute of Physics, (1955), p. 349.
- (13) M. J. Buerger, X-ray crystallography, John Wiley & Sons, Inc., New York, p. 69-71, (1942).
- (14) M. E. Straumanis, Analytical Chemistry, Vol. 25, (1953), p. 700.
- (15) W. F. Hillebrand, U. S. Geol. Survey, Bull. 700 (1919), p. 65.
- (16) M. E. Straumanis, Am. Mineralogist, 38, (1953), p. 662.
- (17) A. Smakula and V. Sils, Technical Report 95, Laboratory for Insulation Research, M.I.T., May 1955.
- (18) I. Baker and G. Martin, End. Eng. Chem. Anal. Ed., 15, (1943), p. 279.
- (19) Yardley Beero, Introduction to the theory of error, Addison-Wesley Publishing Co., Inc., (1953), p. 39.

- (20) M. E. Straumanis and A. Ievins, Die Präzisionsbestimmung von Gitterkonstanten nach der asymmetrischen Methode, J. Springer, Berlin (1940), p. 36, reprinted by Edwards Brothers, Inc., Ann Arbor, Michigan, (1948); also J. Appl. Phys. 20, (1949), p. 726.
- (21) H. P. Klug and L. E. Alexander, X-ray Diffraction Procedure, J. Wiley, New York, (1954), p. 455 and 98.
- (22) M. E. Straumanis and A. Ievins and K. Karlsons, Z. Physik. Chemie. Bd 42, (1939), p. 143.
- (23) C. S. Barret, Structure of Metals, McGraw-Hill, New York (1952), p. 150.
- (24) A. E. Lindh, in Wien-Harms, Handb. d. Experimental physik, XXIV/2,
 p. 94, 116, Akad. Verlagoges, Leipzig (1930).
- (25) M. Siegbahn, Spektroskopie der Röntgenstrahlen, 2nd ed., p. 21, Berlin, J. Springer (1931).
- (26) J. W. M. DuMond and V. L. Bollman, Phys. Rev. 50, (1936), p. 524.
- (27) G. Ericson, Ark. Physik. 7, (1954), p. 415, 420.
- (28) P. H. Miller, Jr., and J. W. M. DuMond, Phys. Rev. 57, (1940), p. 198-203.
- (29) E. R. Jette and F. J. Foote, J. Chem. Phys., 3, (1935), p. 605-611.
- (30) M. E. Straumanis, Acta. Cryst., 8, (1955), p. 654.
- (31) M. E. Straumanis and C. C. Weng, Am. Mineralogist, 41, (1956), p. 437.
- (32) M. E. Straumanis and C. C. Weng, Acta. Crystallogr, 8, (1955), p. 367.
- (33) H. D. Megan, Proc. Roy. Soc. A 162, (1937), p. 198.
- (34) H. A. Jay, Proc. Roy. Soc. A 143, (1934), p. 465.
- (35) F. Zwicky, Proc. Nat. Sci. Wash., 15, (1929), p. 253, 816.
- (36) A. Goetz and R. C. Hergenroter, Physic. Rev., 40, (1932), p. 137, 643.
- (37) M. E. Straumanis, Zeit. Physik, 126, (1949), p. 49.
- (38) M. E. Straumanis and A. Ievins, Z. Physik, 116, (1940), p. 194.
- (39) M. Siegbahn, Spectroskopie der Röntgenstrahlen, II Ed., Berlin, J. Springer, (1931), p. 43.
- (40) R. T. Birge, Am. J. Phys., 13, (1945), p. 65.
- (41) M. E. Straumanis, Acta. Cryst., 2, (1949), p. 83.
- (42) M. E. Straumanis, Z. f. Physik, 126 (1949), p. 65.

- (43) J. W. DuMond and E. R. Cohen, Amer. Sci., 40, (1952), p. 447-458.
- (44) S. S. Wilks, Statistical Analysis, Princeton Univ., Press, (1951), p. 36.
- (45) K. Moeller, Z. Kristallograph., 97, (1937), p. 170.
- (46) G. Menzer, Fortschr. d. Min. Kristallograph, 16, (1932), p. 162, Vol. II.
- (47) M. E. Straumanis, J. Appl. Phys., 21, (1950), p. 936.
- (48) H. M. Terill and C. T. Ulrey, X-ray Technology. D van Nostrand Co., Inc., New York, (1930), p. 161.
- (49) J. A. Bearden and C. H. Shaw, Phys. Rev., 48, (1935), p. 18.
- (50) R. C. Spencer, Phys. Rev., 38, (1931), p. 630.
- (51) N. F. M. Henry. H. Lipson and W. A. Wooster, The interpretation of x-ray diffraction photographs, London, MacMillan and Co., Ltd., (1951).
- (52) W. H. Bragg, J. Chem. Soc. Trans., Vol. 121, Part 2, (1922), p. 2766.
- (53) C. H. Shomate, J. Am. Soc., 68 (1946), p. 310/2.
- (54) C. Friedel, Ann. Chem. Phys. [5]7, 8, (1876), 24/56, 42.
- (55) Internationale Tabellen zur Bestimmung von Kristallstrukturn Zweiter Band, p. 470.
- (56) Gmelins Handbuche der Anorganishe Chemie, Vol. 41, (1951), p. 222.

VITA.

The author was born on January 29, 1928 in Formosa. He is the son of Tatsuyuki Ejima and his wife, Hisako. He was graduated from Tohoku University, Japan, in March 1952. After his graduation, he was working at Tohoku University as a research assistant from 1952 to 1955. He published his research work on the Oxidation of Sulfide Ore in Journal of Mining Institute of Japan in 1955. In 1955, he came to the United States as a Japanese Government student to study Metallurgical Engineering at the Missouri School of Mines and Metallurgy.