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Introduction 

This thesis deals with the feasibility of efficiently 

detecting low energy psoitive ions, those with energies of 

less than several hundred electron volts, using phosphors. 

The scintillation technique, first used visually and 

greatly improved in the last ten years by the use of a 

photomultiplier tube, has- greatly advanced detection in 

high energy fields. The photomu1tiplier is capable o£ 

delivering milliampere pulses o£ current of short duration 

and these can be registered directly by the many electronic 

devices currently in use. 

Extensive work has been done with phosphors which 

scintillate under hich energy bombardment, due in part to 

their wide use in the television industry, but very little 

is known of their use for the detection of low energy 

positive ions. 

Tbe •aln advantage of the scintillation technique for 

low energy particles lies with the relatively short time 

constants of the phosphorescent materials. If low energy 

ion~ produce scintillation, this process of detection 

would allow n•t only the det•ction of ions but, in con­

junction with the techniques o£ mass spectroscopy, would 

enable one to distincuish between the types o£ ions being 

produced. Furthermore, if low energy positive ions can be 

detected, ~here ~s a possibi11ty that metastable states 

could also be de'tectecl. A .. t .hocl of detecting ~ons or 
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metastables of low energy would be a valuable aid in 

studying the ionization of air and other gases, particu­

larly the photoionization processes of the upper atmosphere. 

Interest in the region of the electromagnetic spec­

trum below 2000 angstroms (the vacuum ultra-violet) is 

primar11y due to the problems concerning the composition 

of the upper atmosphere and the photo-electric and photo­

conductive effects in solids. 

Of particular interest in the study of upper atmos­

phere physics are the mechanisms responsible for the 

creation of the ionized layers, and a strong interest bas 

developed in the responsible portions o£ the solar spec­

trum, the vacuum ultra-Tiolet. 

The atmosphere is not a continium, but consists of a 

number of distinct layers as shown schematically in 

Appendix A. 

Perhaps the most important effect of the solar ultra­

violet radiation on the upper ·atmosphere is the ionization 

of its constituent gases. The ionization commences from a 

height of about sixty kilometers and extends up to the 

highest limits of the atmosphere. These ionized regions 

which are discussed in Appendix A are known collectively 

as the ionosphere. To the radio-phys1c~st, the presence 

of these ion layers in. the upper atmosphere,~and their 

mechanism o£ £ormation are of prime importance and hence, 

have been the object of o1ose •tu4y for .any year•• To 
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the physicist interested in such phenomena as the bombard-

ment o~ gases by charged particles, electr~c discharges in 

rarified gases, ionization o£ gases and photo-chemical 

react~ons, this region ~urnishes a natural laboratory in 

which nature is performing experiments on a scale beyond 

the scope o£ any man-made laboratory. 

Much o£ the impetus for research on the upper atmos-

phere is due to the importance o£ these ionized layers to 

radio communicat~on. A thorough knowledge of .these layers 

would enable one to predict the maximum usable radio fre-

quencies. 

The absorption of photons having wavelencths in the 

vacuum ultra-violet and the sb~t x-ray recion is the main 

mechanism Cor the Cor-ation of ions in the upper atmos-

phere. At hicb altitudes the atmosp~ere consists mainly 

of o, N, o2 , N2 • The enercies required fer the ioni­

zation and dissociation are relatively high, as indicated 
(1) 

in Table 1. Tbe solar radiations reaching the upper 

(1) Gaydon 1 A. G. 1 Dissociation Energies and Spectra o~ 
Diatomic Molecules, New York, John Wiley and Sons, 
1947, P• 93, P• 9?, P• 161. 

+ 
N2 N + N 9.?6 ev 02 02 12.)0 ev 

+ + 
N2 N2 15.51 ev 0 0 1).60 eY 

+ 
02 0 + 0 s.oa ev N N 14.54 ev 

Table No. 1. Xoni&ation and Dissociation Enercies 

atmosphere conta~n photon• o£ su~~icient energy to cause 
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ionization of these gases, hence the formation of ions in 

thi.s region. 

The formation process £or ionized strata may be under-

stood as fol1ows. The atmosphere of the earth is consid-

ered to be a single gaseous element, the density o_f which 
(2) 

decreases exponentially upwards. Radiation entering the 

(2} Mitra, s. K., The Upper Atmosphere, The Asiatic Socie­
ty, Calcutta, India, 1952, P• 279. 

atmosphere from outside is absorbed in producing ioniza-

tion, therefore the rate of ion production ·will be a maxi-

mum at a certain level. This is because the rate of absorp-

tion at any height is ~ontrolled by two factors, the 

intensity of the incident rad~ation and the density of the 

absorbing gas. As the radiation enters the atmosphere 

from above, its intensity decreases and the density ot the 

absorbing gas increases. ~ese layers of" maximum ioniza-

tion are modified, however, by the rate of recombination 

of the gases concerned. A theory of the formation of these 

strata, known as the Chapman Theory, has been ~ormulated 

and is developed in Appendix B. 

The Chapman Tbeory can lead to some important results. 

However, among the factors in the equations that are not 

readily determined are the absorption coef£1oient per unit 

mass o~ the gas and the nu.ber o~ ions produced by absorp-

'More cGR~pl•t• data regarclinc the absorption cross 
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sections of N2 , 02, N and 0 in the extreme ultra-violet 

are necessary, because the ionizations in the upper atmos-

phere are controlled by the absorption o~ these gases. 

A vacuum spectrograph which is suited to making such 

measurements is at the present time being constructed by the 

Physics Department, Missouri School o~ Mines and Metallur-
(3) 

gy. 

(3) Henderson, J. K., Unpublished Thesis Material 

Cross sections can be determined 1~ the number of 

photons incident per second on· a given mass of gas and the 

number o~ ions per second produced are known. The strength 

o~ the ion current :l.s then a d,lrect measure o£ the ioni.za-

tion efficiency. One of the main problems associated with 

the use of ionization chambers is the measurement of small 
-4 -15 

ion currents. These ion currents run from 10 to 10 

ampere. Once measured these currents give the sum results 

of the processes that have taken place but no insight into 

the processes individually. For example, in measuring cross 

sections for oxygen, it would be valuable to know if the 

+ + current was primarily 0 2 ions or 0 ions, how many atoms 

were left in metastable states and similar in~ormation. 

A technique which might be valuable in such measure-

ments is the time resolution mass spectrograph method. A 

sketch of' a possible set-up :l.s. shown in J'ig. 1. A sui.t-

able phosphor, coated on oen4ucting alass forms the top. 

Photomultiplier tu~s are placed tn direct oontaet with 
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the glass surface and a low voltage is placed between the 

upper and lower plates. The incident photons, which 

ionize the gas in the chamber, are pulsed at a rate such 

as to allow the ions produced by earlier pulses to be swept 

out by the e1ectric field before arrival. The time o£ 

incidence of the ions on the phosphor will depend upon 

their masses and the interval between the arrival o£ ions 

of different types would b• short. Any device used to 

measure these ion currents must have an equally short time 

response and must detect small currents. Phosphors coupled 

with photomultiplier tubes meet these requirements. 

Instruments which are in general use for measuring 

small currents such as microammeters and calvanometers 

usually haTe a time response much too long for such meas-

urements. Specialised instruments such as the vibrating 

capacitor electrometer have been developed to measure small 

currents with a time response on the order of milliseconds 

but require specialized skill for adjustment. 

The field of low energy excitation of phosphors by 

positive ions is relative1y unexplored, and it is poss~ble 
. . 

that additional information on the mechanisms ~nvolved ~n 

the process· may be ~btained. These in turn may provide 

data on the band structure of insula~ors regarding Which 

there is very 11~t1e in~ormation available at the present 

time. It is found also that the operating characteristics 

of a particular phosphor are very dependent upon the meth­

ode oC preparation and the conditions o£ use, and this Cie1d 

t 

.· ~ 



can be further explored in this research. 

It is hoped that the scintillation technique will 

provide a simple, accurate method of measuring small ion 

currents with a short time constant and possibly contri­

bute to the understanding of the mechanisms of the lumi­

nescent process• 

8 



Luminescence 

Luminescence is a general term which includes the 

many phenomena involving the absorption o~ energy by a 

substance and its re-emission as visible or near-visible 

light. 

The first scientific treatment oC 1uminexcence came 

in the middle of the nineteenth century by Edward 
(4} 

9 

Becquerel. He measured the wavelength of the incident 

(4) Becquerel, E., Ann. Chim. Phys., ~' 244, (1848) 

radiation exciting the material and the emitted radiation, 

tS. duration of the afterglow, and the influence of temper-

ature. Becquerel investigated the luainescence of many 
(.5) 

materials but it was left to Lenard at the close of the 

(5) Lenard, P., und Klatt, v., Ann. P.bys., ~' 286, (1904} 

nineteenth century to find that nearly all the mineral 

phosphors owe their luminescence to the presence of impuri-

ties. 

Since light is a form of energy, energy must be sup-

plied to every system serving as a source of light. The 

most common method of supplying energy is to heat the 

system. This is an example of increasing the energy of 

all the molecules oC a system until thermal radiation is 

obtained, as in a light bulb. 

It ~s possible, however, to transfer energy only to 



those parts ol the molecule which are responsible lor 

light emission. Tha molecules can be brought into ex-

cited states without increasing their average kinetic 

energy or without heating the system. For light emitted. 

under su~h conditions Wiedemann( 6 ) has introduced the 

(6) Wiedemann, E., Wiedemann's Ann., 2Zt 17?, (1889) 

term luminescence. Luminescence can be divided into two 

10 

main types, with regard to the mode of excitation. Photo-

luminescence produced by the absorption of light and 

electroluminescence, which is produced by the impact of 

electrically charged particles such as electrons or ions. 

It is mainly with e1ectroluminescence this thesis is 

concerned. 

Luminescence can be either fluorescence .or phosphor-

escence, depending on whether light emission continues 

a measurable time after the end of the excitation process. 

Fluorescence is due to the spontaneous allowed transition 

of a molecule Crom an excited state to a lower energy 

1evel. The mean life o£ the process depends only on the 

transition probability, it is in most cases very short, 

less than or equal to 10-? seconds and. furthermore it is 

(?) 
practically independent or. temperatur~. The character-

(7) Fonda, G. K., J. Appl. Phys., 12• 4os, (1939) 
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istic feature of phosphorescence is that a Craction o~ the 

excited molecules do not immediately begin to emit light 

by returning from the excited state to the ground 8tate, 

but pass instead into a metastable state of somewhat smal-

ler energy than the excited state. From the metastable 

state the molecules are forbidden the transition to the 

ground state and can only return to the excited state, 

with subsequent l~ght emission accompanying the passage 

from excited to ground state, when the missing energy is 

restored to ~hem by the heat movement of the surrounding 

medium. These two processes are shown schematically in 

Fig. 2. 
(8) 

{8) Pringshem, Peter, and Vogel, M., Luminescence of 
Liquids and Solids, Intersc1ence Publishers, New 
York, 1943, P• 11 

In an insulating solid, such as those with which 

this thesis is concerned, the electrons of the lattice 

atoms are not localized on the atoms but are shared by the 

(9) 
whole crystal. The energies o~ these electrons fall 

(9) Garlick, G. F. J., Adv. in Electronics,~~ 168, (1950) 

into bands of permitted energy states separated by bands 

of forbidden states. In an insulator the bands are either 

completely filled or completely empty. Electrons can be 

raised above the forbidden band to the conduction band by 

suitable energy absorption. Tbe removal of electrons 

£rom the filled band creates posit~•• holes there that play 



·------------ -- -····- ·-·- ··--·- ----·--·-·· - --·-- ·- -· -··-·· -·-···- - ···- - -- ·· -----·- - --····-------···- ·-··· . ·-· -- ·········· 

EXCITED 
1'. 7 
I "- / 

METASTABLE 

I ""- / 
t ' / t ./ 

GROUND 

J 

IJ) HI 
; ~ ~! 

. , ! 

.......... -~-------'•----
a. b. 

Fie. 2. Energy level diagrams showing the mech­
anisms involved in a.) Fluorescence b.) Phosphor­
escence. 

CONDUCTION BAND 

Traps 

FILLED•BAND -;jzzzztz, 
a. 

J'ig. 3. Diagrams showing how impurity_ levels may 
act aa donors or acceptors. In a.) impur~ty acts 
as donor to conduction band, while in b.) impur~ty 
supplies an electron ~or a hole in the C111ed ba ... 
Electron traps are shown lyinc just below the con­
duct~on band. 

12 



13 

a part in the luminescence process. 

In phosphors and in most crystalline materials the 

lattice is Car from perfect · and its d~Cects cive rise to 

localized energy states Cor electrons. These may lie in 

the forbidden energy region. When such levels occur near 

the cooduction band they can capture electrons; therefore 

they are known as electron traps and are shown on the 

diagram in Fig. 3• Electron traps give rise to the phos-

pborescent and thermoluminescent characteristics of phos-

phors since they delay the emission process by their 

storage of electrons and the subsequent release of these 

electrons by thermal agitation. Optical stimulation o£ 

the phosphor with visibl• licht may also raise the elect-

rons from traps into the conduction band. Although the 

possibility exists for transitions ·f'rom the traps directly 

to the 1u.inescenoe centers or the filled band no exper-

imental eYidence has been found for transitions directly 
(10) 

:Crom the trapping levels. 

(10) Bube, R. H., Phys. Rev.,~~ ?9, (1953) 

Phosphors consist of' a host crystal and a consciously 

added impurity called the activator. Activators may be 

substitutional atoms, replacing a regular atom of the host 

crystal, inside the host crystal in interstitial sites, 

or on surface sites. Phosphors are designated by stating 

the host crysta1 £o11owed by the ~~ur~ty such as ZnSacu. 
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These activators in many phosphors provide localized 

levels for electrons which may lie in the forbidden region. 

Because of their position they are of great importance in 

the luminescent process. These centers may act as donor 

or acceptor levels in the process as shown in Fig. ).(ll) 

(11) Garlick, G. F. J., Luminescent Materials, Clarendon 
Press, Oxford, 1949 

Certain impurities such as nickel in phosphors can 

also act as •killer• levels. These are fatal for lumines-

cence Cor they may absorb primary excitation energy dir-

ect~y and convert it into heat or interfere with the lumin-

escence centers and traps such as to increase the proba­

bility of non-radiative trans1tions.< 12 ) 

(12) Leverenz, H. A., Luminescence of Solids, John Wiley 
and Sons, New York, 19SO, P• ))? 

The excitation process in electroluminescence is 

muob more complex than that for photoluminescence. The 

incident charged particles interact with all the atoms or 

ions along their path. Particles penetrating into a phos-

phor will have a range of penetration dependent upon their 

initial energy. Whereas ~or ultraviolet radiation, one 

quantum produces one excited electron, the primary part-

icles incident upon the phosphor will produce many second-

ary electrons along their patbs in the solid. 

The important feature of tbe energy transfer precess 
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seems to be that enough energy be transferred to the 

electrons in the fi11ed band to produce a hole by exciting 

electrons to the conduction band. In some phosphors of 

interest there is a high probability of a considerable 

number of electrons in the conduction band due to donor 

levels just below the conduction band. For instance, 

Hahn(l3) has investigated the electrical properties of 

(1)) Hahn, E. E;., J. App1. Phys., !!t 8.55, (19.51) 

donor levels o.o4 ev below the conduction band. This 

would indicate that luminescence is not wholly dependent 

upon having electrons in the conduction band. 

A model proposed by Lamb and IClick(l/.i.) for CdSaAg 

(14) La-b, J., and IClick, c. c., Phys. Rev., 2!• 909, 
(1955) 

provides a satisfactory picture. In this model absorbed 

energy produces a free hole and an electron in the con-

duction band. The bole may then capture an electron from 

a :filled luminescent center with the energy dissipated in 

thermal vibration and an electron in the conduction band 

can make the transition to the luminescence center pro-

ducing emi·ssion. Thus the center is reset for the next 

cycle of operation. This model is shown schematica11y 

in Fig. 4. 
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For slow particles there are relatively large sur~ace 

~orce~ to overcome be~ore penetration is possible. These 

surface forces give rise to a considerable dead voltage 

in some cases. Strange and Henderson(l5) maintain these 

(1.5) Strange, J. w., and Henderson, s. T., Proc. Roy. 
Soc., ~' )68, (1946) 

dead voltages are due to sur~ace impurities and have used 

carefully prepared •creens which show little or no dead 

voltage in the cathodoluminescence process. 

A general empirical form Cor emission due to cathod-

oluminescence is given bya 

L • k C(i) (V 

(16) Garlick, G. F. J., Lu•1nescent Materials, Clare~don 
Press, Ox~ord, 1949, P• 116 

where L is the luminescent emission, V is the particle 

voltage, V0 is the dead voltage, k is a constant for the 

material, f(i) represents a function of the current and 

q is another constant for the material with a value lying 

between one and three. Although this general relation-

ship is verified by most experimental results considerable 

differences are often obtained for values of q and V
0

• 

In cases where the phosphor is coated on a non-cond-

ucting surface secondary emission from the phosphor crystals 

is important, espeoia11y when the particles bombarding the 

phosphor are electrons. XC the ratio of emitted electrons 
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to incident electrons falls below a value of one, the 

phosphor will "charge up" negatively and decrease the 

energy of the beam. 

Phosphor screens often deteriorate due to several 

factors. One would certainly expect a physical and chem-

ical destruction of the phosphor due to ionic bombardment 

if the screen were being used to detect ions. Investiga-· 
(1?) (18) 

tions by Seitz, Lark-Horovitz and others , on the 

(1?) Seitz, Yrederick, Di•cussiond of the Faraday Soci­
ety, ~. 2?1 1 (1949) 

(18) Lark-Horovita, K., Se•i-Conductina Materials, Butter­
worth Scientific Publications, London, 1951 

disordering of solids by the action of massiYe particles 

haYe shown that iens are capable of intreducing new energy 

levels and changing the electrical characteristics of semi-

conductors. Experi•ents indicate that be•bardment pre-

d~ces defects which act as donors and acceptors with acti-

vation energies larger and distributed over a wider range 

of energies than those observed with chemical impurities. 

These defects consist mainly of vacancies and intersti-

tials produced by the passage of the bombardinc ~ons 

through the material. On the bas~s of present theory ~t 

is probable that such de~ect~ are random rather than regu-

lar at low energies. 
(19) 

It has been noted that low energy electrons 



19 

(19) Garlick, ~· ~-, P• 188 

bombarding phosphors result in a fatigue oC the material 

which produces a decrease in luminescent efficiency. This 

may be due to an introduction of new energy levels which 

produce non-radiativ~ transitions since the effect can 

sometimes be removed by heating the screen. This is sug-

gestive oC the annealing process Cor energy leYels pro­
(20) 

duced in radiation damac•• 

(20) Brown, w. L., Fletcher, R. c., and Wright, K. A., 
Phys. Rev., ~' 591, (1950) 

With regard to the process o£ electron penetration 

into the phosphor and the mechanism by which the alec-

trons reach the lum~nescence centers, experimental stud-

ies have supplied very little information. This is more 

true o~ the same processes involving positive ions. One 

reason for this i~ that many phosphors exist only as mi-

crocrystalline powders and therefore have very complex 

surCac~ conditions Cor the incident particle~. 
(21) 

(21) 

Leverenz envisions a strictly kinetic process Cor 

Leverenz, H. A., Luminescence of Solids, John Wiley 
and Sons, New York, 1950 1 P• 38? 

the excitation of phosphors by ions. On this basis the 

luminescent efficiency should vary with the energy of tbe 

primary ion in auoh the sa.e •anner as that of cathodo-
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luminescence, except that the min1mum en~rgy ~or appre-

c~able luminescence should be considerable larger than 

that f'or cathodoluminescence :from the same phosphor since 

the ions penetrate less than electrons with the same 

primary energy. This is based on the complex sur:face 

conditions which limit the processes to the more regular 

interior of the phosphors-

A f'ast i.on passing through matter can have two quite 

diC:ferent e:f:feots on the atoms it stri.kes. In the :first 

place it can make an elastic collision, giving kinetic 

energy to the recoi.l atom. The energy which can be trans­
(22) 

f'erred is given by: 

_____________ 2 ____ _ 

(m1 + m2) . 

(22) Seitz, F., and Koehler, J. s., Sol~d State Physics, 2 
Academic Press, New York, 1956, P• )1) 

where m1 is the mass of' the incident particle~ m2 is the 

mass of the struck nucleus, and E
0 

is the energy o:f the 

incident particle, and A ie the angle of deflection in 

the center o:f mass coordinate system- We see the energy 

given the struck atom is a larger :fraction o£ the energy 

oC the incident particle, the more nearly they have the 

same ma~s. The relation also shows that in eathodolumi-

nescence tpe incident electrons will most probably trans-

fer most of their energy to electrons of the lattice 

excit~ng luminescence rather than to the ions of' the lattice. 
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Competing with this process is another resulting from 

the charge on the ion, the incident particle can excite or 

ionize the electrons of the struck atom, resulting in an 

inelastic collision in which most o~ the energy lost by 

the incident particle is transferred to the removed •lee-

tron. The rate of energy loss in this type o£ collision 
(23) 

can be shown to depend~ among other things, on the 

(2)) Bethe, Ho A., Handbueh der Physik, 24/1, J. Springer, 
Berlin, 1933, P• 27 

square of the charge of the incident particle in analogy 

to Rutherford scattering. 

It is found that fast charged particles passing 

through matter will increase or decrease their charge, 
(24) 

depending on the par~~cle velocity. Accord~ng to Slater 

(24) Slater, J. c., J. Appl. Phys., !!• 248, (1951) 

a simple and fairly accurate rule for which electrons will 

b~ removed from the fa~t particle is that all those will 

be removed whose velocity in their orbits is less than the 

velocity of the atom and as the atom slows down it picks 

up electrons reaching a state of equilibrium. Using a 

simple Bohr picture of the atom the velocity of the last 

9 
electron in Xenon would be approximately 10 em/sec which 

would mean that the atom must have an anergy of about 400 
(25) 

Mev to loose electrons. According to Seitz the rate 
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(25) Seitz and Koehler, ~· ~., P• 338 

oC excitation and ionization is proportional to the ratio 

of the velocity o£ the ion to that of the bound electron 

with which it interacts. Thus as the incident particle 

loses energy, its rate o£ ionization will decrease. 

In collisions between particles o£ high energy, the 

time of collision is so short that the nuclei approach and 

recede from each other in a time short compared with the 

period o£ the electrons in their orbits so they have no 
(26) 

time to rearrange themselves. But for slower part~-

(26) Slater, ~· ~·• P• 24; 

cles the collision takes a longer time allowing the inner 

electrons to modify their motions and present electronic 

shielding. This shielding complicates the theory in this 

range o£ energy. 
(2?) 

According to Knipp and Teller the energy loss o£ 

(27) Knipp, J., and Teller, E., Phys. Rev.~ r~t 661, (1941) 

ions in the region of energy o£ 10 kev or less is due to 

collisions with the atom as a whole. This subject bas been 
(28} . (29} 

treated in a general manner by Bohr an4 Seitz who 

(28) Bohr, N., Kgl. Danske. Vidensbob. Biol. Medd., ~~ 
a, (1948) 
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(29) Se~tz, and Koehler, ~cit., P• 315 

state that exact quantum mechanical methods must be used 

to obta~n an accurate picture of the energy loss of slow 

ions. 

The extraction of electrons by positive ion bombard-

ment has been studied by a number of people. The mecban-

isms involved when the energy of the bombarding ion is of 

the order of a £ew hundred electron volts is particularly 

interesting when applied to the problem at hand. Oliphant 

and Moon()O) have explained the neutralization of positive 

()0) Oliphant, J., and Moon, T., Proc. Roy. Soc., A12Z, 
338, (1930) 

ions during a cell1s1on with a metal surface by the auto-

eiectronic emission into a state of equal energy in the 

atom of electrons under the influence of the electrostatic 

field of the approaching ion. Massey( 3 l) made a quantum 

(31) Massey, H. s. w., Proc. Camb. Phil. Soc., ~~ 386, 
(1930) 

mechanical calculation of the neutralization o£ a positive 

hydrogen atom when colliding with a metal surface and 

found the averag• distance at which the transition takes 

place to be of the order of angstroms. He found the pro-

bab111ty of a transition for the positive ions approached 

unity at a small distance from the metal surface. 

·' 
~ 
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Recent investigat~ons of secondary emission from met-

als by low velocity positive ions by Hagstrum<3 2 )(33)(34 }()5) 

(32} Hagstrum, H. t Phls• ~·· 
104, 672, (19.56) 

(33) Hagstrum, H.' Ph;l:S• .!.!:!. • t .2.§_, 325, (19.54) 

(34) Hagstrum, H.' Pb;[Se !!!.!.·' .2,2, 336, (19.54) 

(35·) Hagstrum, H.' Ph;[•· !!!.!. • , 89, 244, (1953) 

have civen information regarding the possibility of an 

interaction between the approaching ions and the el.ectrons 

in the phosphor. In his work with metals, results indi-

cate that a process of potential efection rather than one 

of kinetic ejection predominates in the region of energy 

less than 1000 e1ectron vo1ts. 

Potential. eJection is the term used for those cases 

in which the interaction between the ion outside the 1at-

tice and the e1eotrons inside may be approximated by a 

purely electrostatic field. Ejection can occur when the 

potential energy recovered on neutralization of the ion 

is sufficient both to extract the neutralizing e1ectron 

and to excite a second metal electron to the level above 

the potential barrier at the surface of the metal. 

Electronic transitions in which an excited atom or 

ion could become involved near a metal surface are reso-
(36) 

nance, Auger, and radiative types. Massey has shown 
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that neutralization takes place within a few angstrom 

units of the surface. For instance, when Xenon, the gas 

used in this work is considered, it is easy to show that a 

ther.mal ion has a velosity of approximately 10
4 

em/sec, 
-12 

therefore would spend only about 10 sec in a neutral 

state near the surface, making radiation unlikely since 

the lifetime for radiation (10-S sec) is long compared to 

this valueo 

The resonance transition consists of the ion being 

neutralized to an excited state by an isoenergetic capture 

of a metal electron. The atom thus formed decays to the 

ground state with the excitation of a second electron. 
(37) 

This process is shown schematioa11y in ~iC• s. 

(37) Hagstrum 1 H., Pbys. Rev., ~. 681, (1956) 

In the Aueer neutralization process the ion is neut-

ralized directly to the ground state by a metal electron 

with a second metal electron obtaining the excess energy 
. (38) 

Crom the process. This process is shown in Fig. 6. 

(38) Hagstrum, H., ibid., P• 683 

Hagstrum was able to explain quantitatively the sec-

ondary emission of electrons from tungsten by 10-200 ev 

He, Ne, A, Xe, and K ions on the basis o£ the Auger neut-

ralization process before the kinetic processes become 
(39) (40) 

important. In fact Hags~rum states that the Auger 
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Fig. s. Energy level diacra. 1nd1cattnc the re•on­
ance tunneling traneitions which oan •ccur £rom a · 
metal into singly ionized xenen. Tunneling into tbe 
ion can occur between a and b'aa thi• ia the re.~on 
oC a large denaity of £111ed 1evels in the metal and 
excited level• in tbe ion. 

Pig. 6. Enercy leYel dlagr&JD 1n4~oating the elec­
troni.c transitl("'~S wblcb occur when the noratal singly 
charged ion oC Xenon 1a neutralised in tbe process 
o£ Auger neutralization. 

DeCinitions oC notation used in the £igures. 

s 

w 

Ionization energy 

Excitation enercy 

Distance oC particle Crom metal •urCace 

Energy oC vacuum level above bottom o€ conduction 
band 

Work £unction o£ metal 

Kinetic energy of particle outside aetal 

., 
I . 
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(39) Hagstrum, H., Phys. Rev., 89, 244, (1953) 

(40) Hagstrum, H., Phys. Rev., 2f, 328, (1954) 

processes are so probable that the magn~tude of secondary 

emission in this energy range i~ determined by the proba-

bility that the excited electron will escape rather than 

by the probability that the process occurs while the ion 

is near the metal surface. 

If we extend this mechanism to the field of non-

metals and in particular phosphors we find that the impor-

tant factors to cons~der are the ionization energy of the 

incoming ion and the energy required to extract an elec-

tron from the filled band to a region just outside the met­

al surface and the band gap. This involves a knowledge of 

the energy width £rom the top ef the filled band to the 

surface of the phosphor, the width of its filled band and 

the width of the forbidden gap. An Auger type energy level 

diagram indicating the important values for semi-conduc-

tors is shown in Fig. '7• 
(41) 

According to Leveren~, direct experimental infor-

(41) Leverenz, Ho A., Luminescence of Solids, John Wiley 
and Sons, New York 1 1950, P• 119 

mation concerning energy level diagrams and the widths of 

the f'orbidden gap between the filled and the conduction 

band is a ~ajor lack in phosphor research. In general the 
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Notation is the same as that in Figs. 5 and 6 with 
the addition o£ the ~ollowlng. 

Ee Energy given to electron in the filled band 

e g 

w• 

Energy o£' vacuum level above bottom of filled 
.band 

Width of the forb~dden gap in electron volts 

Energy from the top oC the conduction band to 
the surface o£' the phosphor 
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width of the forbidden gap in phosphors which have been 

investiga~ed is about 3 electron volts. A particular lack 

of information regarding the work functions of phosphors 

bas been noted by the author. 

If the Auger process is feasible in the bombardment 

of phosphors with low energy ions then, referring to Fig. 

?, an energy E
8 

which is the difference between the ioni­

zation energy and the energy width from the top of the 

filled band to the vacuum level will be imparted to elec-

trons in the filled band. If this energy is greater than 

eg, the f'orbidden band gap, electrons will be excited to 

the conduction band thus triggering the luminescent pro­
(42) 

cesses. The ionization energy of Xenon is 12.13 ev 

(42) Peaslee, D. c., and Mueller, H., Elements of Atomic 
Physics, Prentice Hall, Hew York, 1955 

and taking the average forbidden gap for phosphors to be 3 

ev we :find that phosphors with an energy width from the top 

of the :filled band to the surface of the phosphor of 1ess 

than 6 ev can have electrons excited :from the filled band 

to the conduction band and trigger the lum~nescent pro-

cess. The process could occur with higher values for the 

work £unction i:f there are donor levels present and the 

Fermi level l~es near the top of the forbidden gap. 

I:f the method of k&netic excitation presented by 

Leverenz is actually the meChanism Cor low energy ions, 
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~t would seem that ~t is not feas~ble to detect low energy 

ions by scintillation methods. For once the particle bas 

entered the phosphor it seems more probable that the ener­

gy would be dissipated in heat than transmitted to the 

luminescent centers. 
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Review o£ Literature 

In a revi~w of the literature concerning luminescent 

materials and detection o£ charged particles using the 

scintillation technique, the author was unable to ~ind any 

articles which dealt speci~ically with the problem o~ de-

tecting low energy ions through the use of phosphors. 
(43) 

Leverenz in his comprehensive bo~k on luminescent 

(43) Leverenz, H. w., Luminescence o~ Solids, John Wiley 
and Sons, New York, 1950 

materials and their uses discusses excitation by charged 

particles but deals mainly with higb energy electrons. 

This volume does howeYer, furnish in~ormation as to which 

materials might be suitable detectors of low energy ions. 

Two materials which stand out are Hex ZnOaZn, which 

appears to be one of the best detectors of low energy 

electrons and ZnS which is reported to be a very ef~i­

cient detector o~ alpha particles. The zinc oxide phos-

pbor has a very short decay time while the zinc sulphide 

is a medium persistance phosphor. Both have their primary 

emission spectra in the middle of the visible spectrum. 

The luminescent efficiency is generally considered 

to be the ratio ·Of the total light output to the total 

energy input without questioning which part of this energy 

is abserbed by the 1um~nescent mater~al, lost by reflec-

tion and transmission or dissipated in other processes. 
(44) 

Pringshaim discusses the efficiency of phosphors 
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(44) Pringsheim, ~· £!l•t P• 29-31 

bombarded by charged particles and states the average effi-

ciency is of the order of a few percent, rarely exceeding 

ten percent for electrons in the kev range. A large part 

of the primary energy is converted into heat and secondary 

electron emission. Pringsheim also indicates the existance 

of a current saturation value for the luminescent yield of 

phosphors. This usually eccurs at currents· o~ five micro-

amperes or less per square centimeter and is dependent 

upon the energy of the particle beam. The reason for this 

saturation is that when the available centers are all ex-

cited, the luminescence cannot be increased. By increas-

ing the energy of the incident beam, a greater depth of 

penetration into the phosphor is achieved and consequently 

more luminescent centers are available for excitation. 

For normal screen thicknesses of approximately 10 
2 . . 

mg/cm the light emitted from the crystals farthest away 

from the observer will probably suffer an attenuation of 

approxi.mately fifty percent in comparison with the light 
(45) 

emitted by the crystals nearest the observer. 

(45) Nottingham, W. B., Cathode Ray Tube Displays, 
McGraw-Hill Book Company, New York, 1948, P• 622 

Since the phosphor materia1 beyond the luminescence 

centers acts to reduce the amount of light transmitted to 
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the photomultiplier tube, a phosphor coating which is 

quite thin seems to be desirable for use in a detection 

device £or low energy ions. 

Zinc Sulphide is one of the £ew simple inorganic com-

pounds which can be excited to strong luminescence in the 

crystalline state only, apparently without containing any 

activating impurity. It is the general belie£ that the 

interstitial zinc atoms play the part of an activating 
(46} 

impurity in zinc sulphide. 

(46) Randall, J. T., Proc. Roy. Soc., London, Al?O, 272, 
(1939) 

Garlick states that the efficiency of excitation 

(4?) Garlick,~· . ~·~ P• 200 

of zinc sulphide phosphors by alpha particles in the kev 

range may be as high as eighty percent as compared to the 

value o~ ten percent for cathode rays. 
(48} 

Brown discussed the brightness o~ cathodolumines-

(48) Brown, T. R., J. 0. s. A., 27, 180, (1937} 

cence in willemite (Zn2Si04:Mn) at low-current .densities 

and low voltages. He encounters a dead voltage in the 

vicinity of 150 volts and indicates that in the region 

£rom 150 to 800 volts the brightness is directly propor-

tional to the square of the voltage. The brightness was 

det•rmined visually by compariaon with an equal brightness 
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photometer which was color matched to the target. This 

method would indicate that willemite could possibly emit 

su:ff'icient light und.er bombardment by low energy particles 
(49) 

to be suitable :for detection of low energy ions. Lever~nY. 

(49) Leverenz, H. w., Luminescence o:f Solids, John Wil8y 
and Sons, New York, 1950, P• 238 

states willernite will give visiblA luminescence at ener-

gies as low as 12 ev but only when subjected to enormous 

current densities. 

In the course of' work on a radio-frequency spectro-
(.50) 

scope, Kaisel and Clark :found it necessary to observe 

(50) Kaisel, S. F., and Clark, c. a., J. 0. S. A., 44, 
134, ( 1954) 

visually patterns created by_ electrons with energies o:f 

.the order of' :five electron volts. A luminescent screen 

which would react to these energies at low current densi-

ties was sucess:fu11y constructed using Hex ZnO:Zn phosphor~ 

The phosphor was settled on glass plates to which had been 

applied a transparent conducting coating. In this way the 

incident charge is removed by conduction through the phos-
, 

phor to a conducting base. In order that the beam current 

can be removed by conduction intimate contact must be made 

between the conducting plates and the phosphor particles. 

Since phosphors are, in general, good insulators the coat~ 

ing must be as thin as poss1b1e, yet keeping the density 
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high f'or maximum light output. It was found that the addi-

tion o£ binders increased the voltage at which lumin8-

scence first was visible and reduced the phosphor sensiti-

vity (i.e. light output for a given incident beam power). 

The zinc oxide screens were found to be very suscep-

tible to "poisol_'ling" which occurs f'rom the introduction of" 

undesirable impurities and was discussed earlier in this 

thesis. Vapors from a diffusion pump, if allowed to enter 

the region where the luminescent process is taking place, 

reduced the sensitivity of" the phosphor and a dead voltage 

begins to appear. 

In a detailed study of' the zinc oxide phosphor by 
(51) 

Schrader and Kaisel an apparent violation o£ Stokes 

(51) Schrader, R. E., and Kaisel, s. R., J. o. s. A., 
!!!:!:,, 135 J ( 19..S4) 

law was observed in that the luminescence emission of zinc 

oxide phosphors is a band ranging from 4100 angstroms to 

6800 angstroms. (3.1 ev-1.8 ev) and it can be excited by 

electrons with applied voltages as low as 2.4 volts. 
(52) 

Hahn has investigated the electrical properties o~ 

(52) Hahn, E. E., J. Appl. Phys., ~~ 855 1 (1951) 

zinc oxide and has found a high density of donor levels 

.o4 ev below the conduction band. Avalue of ).2 ev for the 

w~dth of the gap between the filled and conduction band has 
(53) 

been given by Schrader and Leverenz. 



(53) Schrader, R. E., and Leverenz, H. w., J. o. s. A., 
3'7, 939, (194?) 
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From a review of the literature it seems apparent that 

zinc oxide is the most promising phosph·or for use in detec-

tion of low energy particles. It has a short decay time, 

-6 
less than 10 seconds, and produces visible luminescence 

under bombardment of electrons with energies of 5 ev and 

less. It also has th~ advantage of having been well in-

vestigated in the 1ow energy range. It would appear that 

if low energy ions are able to excite phosphors with a 

reasonable degree of efficiency that zinc oxide with an 

abundance of donor levels .o4 ev below the conduction band 

would be likely scintillation material in the field. There 

also exists the possibility that additional information 

concerning the luminescence process itself could be obtained 

working with this phosphor. 

The tentative energy level diagram for zinc sulphide 
(54) 

as shown in Fig. 8, has been proposed by Bube for the 

(54) Bube, R. H., Phys. Rev., 90, ?9, (1953) 

excitation and emission spectra. The Corbidden gap is 

).5 ev wide. Energy levels due to zinc interstitials are 

found .5 ev below the conduction band and .5 ev above the 

filled band, it is assumed that these act as luminescent 

centers in the emiss~on process. There is a high density 
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of traps in the region of 0-1 ev below the conduction 

band. 

Enough information is known about the energy levels 

o£ zinc oxide and zinc sulphide to make these phosphors 

suitable for study in regard to the Auger type transi-

tions which were discussed earlier. 

Willemite, due to its demonstrated characteristics 

under bombardment by electron beams of low current density 

and low voltages is another likely prospect. 

Although it is possible that there are other phosphors, 

unknown to the author, which would be suitable for the de-

taction of low energy ions, it was decided to use zinc 

oxide, zinc sulphide and willemite as the scintillation 

materials in this re~earch. 

Samples of the above mentioned phosphors were donated 

by the Chemical and Physical Laboratories of the Radio 

Corporation of America. Special thanks are given to Dr. 

Arthur Smith for his help in obtaining these samples. 

' . 
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Equipment and Experimental Techn~que 

The phosphors to be used are primarily known for the~r 

detection of low energy electrons. Consequently, a simple 

test of' the adequacy and purity of' the phosphor is to 

bombard it with electrons. A read~ly obta~nable source 

of electrons is an electron gun of' the type used in con-

ventional cathode ray tubes. 0 Once the existance of' an 

electron beam ~s ascerta~ned and the phosphor reacts to 

it satisfactorily, a gas can be introduced into the area 

and the electron beam can be used to produce ~ons. 

The electron gun comprises those electrodes that 

create, control and focus ~he beam of electrons. It 

cons~sts of' a heated cathode as the source of electrons, 

and one or more electrodes that form and accelerate these 

electrons ~nto a beam that travels ax~ally down a tube. 

The beam ~s controlled ~n ~ntens~ty by a negat~ve control 

grid cons~sting of' a p~erced d~aphram ~mmed~ately ~n front 

of the cathode. In fro•t of' th~s grid may be an acceler-

ating grid, which is usually at a potential of' several 

hundred volts positive with respect to the cathode. An 

additional element of' the gun may consist of' a focusing 

electron lens, which makes this beam converge to a small 

area or spot on the f"ront of' the tube. 

There was no requirement in the detection of' ~ons 

Cor de:flection o:f the electron beam so the de:flection 0 ° 

plates were not needed. The guns used in the first runs 

o£ the experiment were donated by Dr. Bugene a. Hensley 



o£ the Physics Department o£ the University of M~ssour~. 

These guns were of the electrostatic focus, low voltage 

type, modified by removing the deflection plates com­

pletely. Due to the fact that the heater filaments for 

40 

the cathodes of these guns burned out before definite re­

sults could be obtained it was necessary to obta~n a second 

set of guns. These were also low voltage, electrostati­

cally focused, and were donated by the Rauland Corporation 

of Chicago, Illinois. 

The production and detection of electrons and posi­

tive ions took place ~n the tube shown in Pig • . 9. Th~s 

tube was designed to provide a distance of approximately 

9 inches between the last anode of the electron gun and 

the phosphor coating. This ~s the distance used most 

commonly in cathode ray tubes utilizing this particular 

type of gun. Side plates were placed almost immediately 

in front of the last anode of the electron gun. Ions 

produced by electrons bombarding a cas introduced into 

the tube can be attracted to the phosphor by applying an 

electric field between the side plates. 

This tube was further modified after a series of 

initial runs. It was found that the electron beam pro­

duced a spot of light easily visible with the eye on the 

end plate but the side plates were rather inaccessable to 

the beam. Also the scintillations could be better detec­

ted by the photomultiplier tu~e if it could be placed in 

direct contact with a larce area of the side plates. 
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Consequently the tube shown in Fig. 10 was built. The 

main modification was to increase the size of the side 

plates used to detect positive ions and reduction of the 

end p~ate size. 

To cut down the light ref~ected from the gun assemb~y 

an interior coatina of a matte b1ack material must be used. 

A number of substances are suitab~e for this purpose, e.g. 

Acquadag, Acquagraph, Dixonac, and carbon black in sodium 
(55) 

silicate. A coating of sodium si~icate and carbon 

(55) Zworykin, v. K., and Merton, G. A., Television, John 
Wi~ey and Sons, New York, 19.54, P• ?6 

was tried but if was found to trap and retain consider• 
0 

ab~e quantities of water vapor even after bakinc at 200 c. 

for six hours. A i. .. •atisfactory coat inc wa• obtained by 

mixinc carbon b~aok with high vacuum wax (Apieson W) 

dissolved in carbon tetrachloride. This proved to have a 

low vapor pressure and provide a consistent ~ight absorb-

ing coating. 

The electron gun was provided wj.tb external connec-

tions through a ~ive-lead press which was connected to the 

g~n leads. This enabled control over the filament current, 

cathode voltage, control grid, focusing anode, and acce~e-

rating anode. A schematic of the gun and external connec-

tions is shown in Fig. 11. 

The entire system was made of g~ass. Tbis reduced 

outcassinc problems to a •~n~um and facilitated leak 
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detection. The pumping apparatus consisted of a Cenco 

HyVac forepump and a two stage umbrella type mercury dif-

fusion pump. The pressures attained were read by a McLeod 

Guage connected into the system. A series of stopcocks 

located throughout the system enabled one to close off 

parts of the system, and to leak air or gas into the sys-

tem. A trap, cooled by an acetone and dry ice mixture, 

was placed between the pumps and the experimental tube to 

prevent the contamination of the phosphors by oil or mer-

cury vapors. A block diagram of the vacuum system is shown 

in Fig. 12. 

To reduce a variation of the energies of the elec-

trons while testLng the phosphors and the bea. the pres­

sure was reduced to 10-S millimeters of mercury or less. 

At this pressure the mean free path of ~he electrons was 

5 meters or greater. Censequently the probability of col-

lisions by the electrons before reaching the phosphors was 

small. 

Xenon gas was introduced into the chamber from the 

resevoir shown in Fig. 12 through a series of stopcocks. 

Xenon was used as a source of positive ions because it has 

few metastable states and the noble gases form negative 

ions by attachment much less readily than most other gases. 

The presence of metastable states is undesirable for the 

-3 average life is long (10 sec or more) and at any time may 

produce ionisation of the cas or by photon release may in-
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troduce spurious light. An additional reason Cor ~sing 

the noble gases was so that there would be no question as 

+ + 
to the type of ion present such as N2 or N • Xenon is 

also massive, which allows one to have a reasonable time 

interval between a pulse and an ion striking phosphor. 

The phosphors were coated on special conducting glass 

plates known as E. c. conducting plates, manufactured 

commercially by the Corning Glass Works. The base of the 

plate is standard Pyrex brand glass. To the surface of 

this plate is permanently bonded a thin, transparent, 

electrically conductive film. This film is quite highly 

transparent with light transmission up to ?0 percent. It 

is also chemically inert and extremely hard. The coating 

can be cleaned by normal cleansers but due to its extreme 
. -6 

thinness, about 10 inches, precautions •ust be exercised 

to aYoid scratcbinc the coating with harsh abrasiYes. It 

was found by the author that carbon tetrachloride was an 

effective cleanser. 

The maximum recommended operating temperature for 

0 these plates is 350 c. and contact with flame should be 

avoided. It was found during the experimental work that 

the coating was damaged if a gas discharge was allowed to 

begin in the tube. Electrical connections can be made to 

the conducting plates by copper strips which utilize a 

battery clamp to provide a pressure contact with the con-

ducting coating. 

These plates were sealed to the arms of the main tube 
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with high vacuum wax. 

Since low energy charged particles are affected by 

the earths magnetic field it was necessary to determine 

its flux density and dip angle and construct a device to 

neutralize ~t. The field was determined to have a hori-

zontal component of .2?0 gauss and a vertical component of 

.521 gauss. 
0 

The angle of dip was found to be 62 4o• at 

our location. These results were obtained through the use 

of a Cenco Earth Inductor Coil and a ballistic galvanometer. 

The field was canceled by producing an •qual and opposite 

field with a vectangular cage which enclosed the experi-

mental tube. A current of .91 amperes in the windings re-

duced the field to a value of one half percent or less of 

its original value in a plane 4? centimeters above the ta-

ble top. 

The phosphor was placed upon the Plates by a method 

of gravity settling. Gravity settling usually produces a 

uniform screen with the larger particles ~n direct contact 

with the glass and the smaller ones filling in the inter-

stioes between the larger particles. Methyl alcohol was 

chosen as the liquid in whi.ch to suspend the phosphors in 

preference to distilled water due to the greater ease in 

producing a solution in alcohol and the rapid drying of 

the plates. A detailed outline o£ the plating procedure 

is included in Appendix c. 

Since the thickness o£ the coat~ng can be qu~te cr~t-

~cal ~t is des~red to have as thin a coating as possible 
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but yet to have complete coverage. It was finally decided 

to use a coating of one half milligram per square centi-

meter. A satisfactory empirical rule for phosphor coatings 

seems to be that they should be thin enough to allow a 

shadow of the cathode to be visible on the reverse side. 
(56) 

According to Nottingham 1000 volt electrons will pene-

(.56) Nottingham17 W. B., Cathode Ray Tube Displays, McGraw­
Hill, New York, 1948 1 P• 609 

trate phosphors about .4 micron. Since the thickness oC 

the screen is determined by the distance of penetration of 

particles and the average size of the phosphor particles 

being used is three microns it seems that the most desir-

able screen would be one particle layer thick. 

Since the particle size of the phosphors we are using 

runs about three microns we are close to the realm of pseu-

docolloids. We mu.st therefore observe some of' the princi-

ples of colloidal phenomena in our settling suspensions. 

One empirical law (Coehn 1898) of' colloid physics isr If a 

colloidal dispersion consists of two dielectrics, the sub-

stance having the greater dielectric .constant charges it-

self positively with respect to the substance of lower 

dielectric constant. ( Note: Alcohol e=56.6; ZnO e=9 ) 

In settling of the zinc oxide screens trouble was 

encountered in that . the screens looked like Coree lines 

traced by a myriad o~ tiny iron filings in a magnetic 

field. Vigo~ous shaking failed to eliminate these stream-
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er-like volume~, approximately 1/16 to 1/4 inch w~de, 

which were visibly distinguished by having very few sus-

pended particles-

This problem can be solved by introducin~ into the 

suspension a soluble substance which has a hi~h disso-

.elation thus procucing mobile positive ions to discharge 

the negatively charged phosphor particles as fast as they 

are formed on falling throu~h the solution. This was 

achieved by the addition of a solution of dilute Hydro-

chloric acid giving mobile positive ions. 

The s ·cinti.llations obtained by the charged particles 

in most ca~es can be observed visually. But the apparatus 

was designed so that a photomultiplier tube could be used 

a~ a detector deYice. The tube used was a DuMont 6292 

Photomultiplier tube. This is a ten stace pho~otube.of 

the end window type thus facilitating placing ·the photo-

tube in direct contact witb the phosphor plate. The cur­

rent amplification of the tube is 105 with dynode voltages 

of 105 volts per stage. The photocathode is most sen~i-

tive to the spectral region between 4)00 and 5300 ang-

stroms which matches well with the emission spectra o~ 

the phosphors. This is one criterion for peak counter 

per~ormance of the tube. The dark current of' this tube 

with an applied voltage of' 1000 volts is .0'736 microam-

pere at room temperature and by cooling the tube with a 

0 
mixture of dry ice and acetone (-?6 C) this can be re-
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duced to .oo64 microampere. 

The output of the photomultiplier tube can be read 

directly to obtain the magnitude o~ the direct current 

from the tube. This would necessitate insuring that am­

bient light from exterior sources or from the tube fila­

ment be shielded in order that the results be indicative 

of the scintillations produced. Even i~ such shielding 

were possible the further question arises as to the detec­

tion of only positive ions. There exists the probability 

of electron5 and photons also striking the phosphor and 

producing scintillations. 

To be reasonably certain of the results the following 

procedure was used. A £1eld vas applied across tbe two 

side plates making one positive and the other negative. 

Therefore the ions and the electrons would go to opposite 

sides. Further.ore it vas calculated that the time re­

quired for a one hundred volt potential difference to 

sweep these ions from the axis of the tube to the plates is 

of the order of four microseconds. 

By pulsing the electron beam with microsecond pulses 

at a reasonable frequency, pulses of ions should be pro­

duced. These pulses of ions should produce scintillations 

a given time after the electron pulse if the phosphor will 

detect. Due to the difference in velocity of photons, 

electrons, and ions it should be possible to discriminate 

between scintillations produced by these partic1es. 
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A block diagram of the set-up used is shown in Fig. 

1). Pulses with var~able length, frequency and amplitude 

were produced by a General Radio Unit Pulser, Model 12l?A. 

Pulse duration is variable from one microsecond to one 

hundredth of a second, frequency from 10 pulses per second 

to so,ooo pulses per second and the amplitude varies from 

0-21 volts. Thes• pulses vere fed into a linear amplifier 

so as to obtain output pulses of 10~ volts from the ampli­

fier. The positive pulses were then fed into the grid of 

the electron gun which has a variable bias of 0-130 volts. 

The photomultiplier tube is placed in contact with the phos­

phor plate and the output of the tube is directed across a 

one megohm resistor to a Tetronic oscilliscope which was 

adjusted to read alternating current signals only. 

Furthermore the scope was triccered from the amplifier to 

start a sweep when a pulse was daliYered to the grid of the 

electron gun. The circuit diagrams of the amplifier, pow­

er supply for the photomultiplier, and the photomultiplier 

are shown in Appendix E. 

In order to keep unwanted low frequency output from 

the photomultiplier tube from reaching the oscilliscope 

a high pass filter as shown in Appendix F was placed in 

the circuit at the output of the photomultiplier tube. 

Precautions to reduce pick-up of the signal by the 

oscilliscope from the leads consisted in us~ng coaxial 

cable for all connections ~ransmitting the pulses. The 



I 

i 
i 
t . 
I 
i 
i 

• I 

l 
~ 

' 

I.tmfd 
T 
-

40-300V 
+ 

1 
I 0-1 )OV . 

.J.. 
.tmfd ~+Uieg 

·at .tm~ 

+ 
.590V -
l.. 

. . .... .... ··-· ---- ·-·· .... - ·----- -·-----------------, 
t' .._ ___ I ? rjl1 1 

.X 
J I GaLanometer [ 

c~~TOM~_:riPLIER . HL_t_4_,_ov_n_._c_._]_... 
. r,·· ··-·-·· ------1_., ________ : 
L~IGJI PASS J'ILTER 

I 
I 
I 

I 
I 

i 

I 

I 
I. 

i 
! 

I External Trigger-----

l 
I 

A-1 AMPLIFIER 

UNIT PU15ER 

0-:JOOV De C • 

..,..,...........,_, . .,.._ . ...........,... ... .,_.._..,.._ .... _ .... --···----... -.. -----·~- ... ----· 
lig. 1). Final Expe~imental Set Up 

S3 



54 

leads from the photomultiplier tub~ to the base and to the 

scope were also shielded to eliminate pick-up or trans­

mission of low frequency signals which may be due to fila­

ment light or background light. 

Using this set-up it was attempted to detect the pro­

duction of scintillation by ions. The first step in the 

procedure was to ascertain the existance of a beam of elec­

trons and try magnetically and electrostatically to obtain 

the best focused beam possible. Under high vacuum the beam 

was de~lected to the phosphor plates and the grid bias used 

to vary the intensity of scintillations. Xenon gas at a 

low pressure was admitted to the tube and the gun voltages 

carefully regulated to prevent a gas discharge from begin-

ning .. The beam became very scattered after leaving th• 

last anode of the gun. 

After the condition of the beam artd the phosphor were 

checked the photomultiplier was placed in contact with the 

phosphor plate and pulses applied to the grid of the elec­

tron eun. The input pulse could be monitored by changing 

inputs on the oecilliscope and feeding a signal from a 

second output of the amplifier to the oscilliscope coin­

cident with the p ulse to the grid. The output of the 

photomul ti:r l :ier tube went to the high pass filter where 

the d i re r~t c urrE~~nt component could be pa~sed through a 

microamme t Ar to gro un d and the alternating current compo­

nent was sent to the oscilliscope which was triggered to 



begin a sweep at the time a signal left the amplifier. 

The current to the phosphor plates was measured by a 
-10 

galvanometer with a current sensitivity oC 9 X 10 

amperes per scale division. 

55 
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Results and Conclusions 

The first set of guns and tubes yielded a focused 

beam that produced a well-defined spot on the phosphor 

screen. The scintillations were found to be voltage de­

pendent and the beam could be cut off with a grid bias of 

- 15 volts. 

It was determined that the phosphors ware sensitiYe 

to low energy electron bombardment at currents of the 

order of microamperes. When the Xenon was introduced into 

the - experimental tube acintillations were observed visual­

ly but it was impossible to determine if these were due to 

ions, electrons, or photons before the filaments on these 

guns burned out. It ~s felt that if the pulse technique 

could have been applied to theae guns, full use of this 

technique could have been achieved due ~o the well-focused 

beam obtained at low voltac••• 

The electron beam obtained from tbe second type of 

gun was not as well focused as that of the first type; it 

became very diffuse after leaving the last anode. It is 

possible that higher voltages should be used on the accel­

erating anode to produce better focusing and also that the 

allignment of the gun was disturbed when it vas mounted. 

A considerable grid bias was needed (-lSOV) to cut the beam 

off- Although the external magnetic field was very •~fec­

tive in deflecting the beam from the first gun it was not 

nearly as ef£ective on the beam of the second cun. By 
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using magnets near the tube the beam could be de~lected to 

strike either side plate where it appeared very poorly 

~ocused. 

The signal obtained through the ampli~ier £rom the 

pulser is shown in Fig. 14. As can be seen the pulse has 

a sharp rise with a rather long tail. The length of the 

pulse is of the order of microseconds and the repitition 

rate is 5000 per second. This should allow a sufficient 

time between the pulses for the ions to be swept to the 

phosphor plates. The pulses going into the grid of the 

electron gun were 100 volt pulses of the same shape as the 

one shown in Fig. 14. 

Shielding reduced pick-up to a value of about one 

thousandth of a volt. But with the photomultiplier 

operating at 240 volts for the first stage and 120 volts 

per stage thereafter, a considerable amount of noise 

appear@d on the oscilliscope. Thi5 noise definitely 

appeared to come from the photomultiplier tube itself 

and not from the power supply or leads. 

While investigating the signal produced, the pressure, 

grid bias, pulse length, pulse ~requency, pulse amplitude, 

and the voltage between the phosphor plates were varied 

independently. The photomultiplier current and the current 

to the phosphor plates could be read at any time. The in­

put voltage sensitivity and the sweep time o£ the .escilli­

scope were varied to correspond to the signal received. 
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The filament current was kept at .75 amperes during the 

work and the cathode voltage at -280 volts and the accele-

rating anode at +590 volts. The variables measured are 

shown on the sample data sheet in Appendix G. 

Considerable pressure fluctuations occurred in the 

data taking which seemed to be due to outgassing 1n the 

main tube. It is not certain whether this was due to the 

gun or the light absorbing coating on the tube, as the 

tube itself became quite warm when run for any length of 

time. Consequently it was difficult to keep a constant 

pressure for any length of time. This was compensated Cor 

by adjusting the pressure to the desired value by pumping 

on the system before each run and by taking pressure read-

ings before and after each run. Tests with the Tesla coil 

indicated that the gas in the tube at all pressures was 

Xenon. The gas never appeared to be air. 
I 

At no time during the runs with the second tubes and 

euns was any current reading obtained from the phosphor 

plates~ This would indicate the effective current was 
- '7 ' 

less than 10 ampere although it is likely the actual 

current was larger but that part of it is neutralized by 

secondary electron emission. 

The photograph~ in Figures 15, 16, and 17, show the 

results obtai.ned :from the zinc oxide phosphors with Xenon 

in the tube. The length of the pulse put on the grid is 

one microsecond at a frequency oC 1000 pu1ses per second. 
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Pressure 

Grid Bias 

Phosphor Plate Voltage 

Pulse Length 

Pulse Frequency 
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Oscilliscope Sweep Time 

Photomultiplier Current 

P.boapbor Plate current 
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100 alcroaeoond/c• 

"1 aloroa.per• ..... 



Grid Bi.as 

Phosphor Plate Voltage 

Pulse Length 

Pulse Frequency 

Oscilliscope Voltage Sensitivity 

Oscilliscope Sweep Time 

Photomultipli.er Current 

Phosphor Plate current 

1.9 mi.cron 

-30 volts 

+70 volts 

1 microsecond 

1000/second 

.1 volt/em 
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The pressure is about one micron and the grid bias is 

-30 volts. The variable in these signals is the voltage 

applied to the phosphor plates. In the first figure the 

plate is at ground potential, in the second at -?0 volts 

and in the third at +70 volts. The size of this signal 
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can be seen by comparison with Fig. 18, which is a calib-

ration voltage signal of .15 volts. It is apparent that 

the voltages applied to the phosphor plates have an ef~ect 

upon the size of the signal and that electrons are being 

detected. The size of the signal is also affected by grid 

bias and pressure. Additional photographs of signals 

produced by changing other variables are shown in Appendix 

G. It is difficult to explain the shape of the signal but 

it is possibly due to a gas discharge which starts when the 

positive pulse is app1ied to the grid. 

The willemite phosphor plates failed to respond to 

the pulsing technique satisfactorily, probably due to the 
-2 -3 

long time constant (10 10 seconds) of the willemite. 

The zinc sulphide phosphor was located in such a position 

that is was inaccessable to the photomultiplier tube and 

background light precluded observing visually any change 

in the. emission :from the phosphor. 

No definite indications as to the detection o:f posi-

tive ions wa~ obtained but it is obvious that if the ion 

pulses produced output signals o:f the order of hundredths 
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of volts these wquld probably be masked by the noise level 

alone without considering other competing processes. In 

additj.on the shape of the signal produced a sharp downward 

curve in the region where the expected ion signal would 

appear, making detection possibilities poor. 

It is felt by the author that the technique used is 

valid and with modifications it would be feasible to 

discern possible small ion signals. If possible, gas 

discharge phenomena should be eliminated from the signal. 

It may be that a solution would be to alter the method of 

producing the ions. A range of ·definite energy values for 

the ion beam would also be desirable. Noise levels may 

be reduced by using a carefully chosen photomultiplier 

tube and cooling it to liquid air temperatures. Solutions 

to the aforementioned experimental difficulties would 

enhance th~ possibilities of sucess in further work on 

this problem" 

The effects of electron scintillations were ~bserved, 

consequently it can be stated that if positive ion scin­

tillations exist they must be of' a smaller mae;nitude than 

tho5~ due to electrons, as expected .. The results do not 

indicate that scintillations due to low energy positive 

ions exi~t, nor do they indicate that they don't exist. 



66 

Summary 

A technique was developed which should be capable of 

detecting scintillations produced by low energy positive 

ions. It was found that the method of application oC this 

technique did not possess the resolution necessary to 

ascertain the feasibility of scintillation detection oC 

low energy positive ions. 

The mechani.sms involved in the interactions oC low 

energy particles with insulating materials were investi­

gated. The Auger process was projected as a mechanism to 

justify the feasibility of detection. If detection is 

possible and an Auger type mechanism is responsible, it 

•hou1d be po•sib1e to meliorate the lack of information 

regarding energy levels in phosphors by applications of 

the principles involved in this process. 
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Appendix A 

Strata of the Upper Atmosphere 

The ionosphere, as indicated in Fig. A-l,(S?) is 

(5?) Newell, H. E., High Altitude Rocket Research, 
Academic Press, New York, 1953 1 P• 12 

characterized by the presence of a number of' strati:fied 

68 

layers of' intense ionization denoted in the :figure by the 

letters D, E, and F. Although all parts of' the ionosphere 

contain ionized gases, the intensity of' ionization varies 

with altitude, passing through a number of' maxima and 

minima or layers. 

'The lowest of' these layers o:f maximum ionization is 

known as the D layer. This layer :forms during the daytime 

at an altitude o:f approximately sixty kilometers and dis-

appears at sunset. o:r the several processes suggested 

f'or the :formation o:f the D layer, the :following appear to 

have the strongest support. 

02 + hv (900-1100 Ao) --------e.- 02 
+ (58) + e 

NO + hv (1100-1)00 Ao) 
---~.-..----

NO+ + .<59) 

(58) Mitra, s. K., Bhar, J., and Ghosh, G., Indian Journal 
of Physics, ~~ 455, (1939) 

(59) Bates, De Re 1 and Seaton, M. J., Proc. Roy. Soc., 
London, 863, 129, (1950) 

The D layer is an absorbing layer, as Car as radio is 

concerned hence the daytime decrease in signal. 
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Above this at altitudes of approximately 100 and 140 

kilometers, a pair of more persistent layers known as the 

E layers are formed. These layers, also known by the 

name Kennely-Heaviside layers, serve to reflect radio 

signals back to earth and are of prime interest to the 

radio-physicist. 

Still higher in the upper atmosphere are found an­

other pair of layers known as the F or Appleton layers 

varying in altitude from 200 to 240 kilometers. Like the 

-E layers these layers are permanent and highly reflective 

to radio signals. Actually thi.s portion of' the ionosphere 

is composed of two separate layers, the F-1 and F-2, 

during the daylight hours. At night they coalesce into 

one F layer. These layers are again importan~ in the 

transmission of radio signals and have been the object 

of investigation for many years. 

The existance of' further layers is speculative. The 

upper limit of' direct measurements, through the use of' 

rockets, have extended to altitudes of' only sl~ghtly more 

than 200 kilometers. 



Appendix B 

The Chapman Theory 

Mitra, s. K., The Upper Atmosphere, The Asiatic Society, 
Calcutta, India, 1952, P• 280 

A monochromatic beam of unit cross section is con-
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sidered as entering the atmosphere at an angle q with the 

vertical. Let the absorption coefficient per mass o~ the 

gas be A and the intensity of the incident radiation be I 

at height H above the ground. The decrease of intensity 

after passing through a 1ayer · o£ thickness db at the 

height h will be given by: 

di = AI dh sec q p 0 exp(-h/H) 

where p
0 

is the density of the gas at sea level and H is 

the "scale height•, (H=kT/mg). 

Integration gives 

I = I 0 exp{-Ap0 Hsecq exp(-h/H} } 

where I 0 is the intensity of the radiation before it 

enters the atmosphere. 

Tf B is the number of ions produced in the absorption 

of unit quantity of radiation, the rate of ion production 

per cubic centimeter at ht:\ightt h is 

Q. = B di/dh cos q 

q = B A I 0 p 0 exp(-h/H -A p
0 

H secq exp (-h/F} }. 

Differentiation of this expression gives Q as a maximum at 

altitude h eiven by: exp h/H = A p
0 

H secq and the maximum 

rate of ion production will be: Q = B I 0 cos qf H e. 
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Appendix C 

Plating of Phosphors on Conducting Glass Plates 

This method is based on techniques used by Meier Sadowsky 
as outlined in Transactions o~ the Electrochemical Society, 
95, 112, ( 1949) 

1~ Clean all glassware thoroughly. Nitric acid followed 

by distilled water rinses. 

2. Set glass plate in a deep container which in turn is 

set on a cork ring or o.ther sur~ace free of vibrationo 

). Measure out a quantity o£ the phosphor which will give 

a uniform coating of the thickness desired-

4. Place phosphor in a mortar and mill gently until there 

are no sizable lumps evident in the phosphor. Care 

must be taken not to mill the phosphor too strenuously 

for it is possible to alter the characteristics o~ 

the phosphor in this manner. 

5. Place phosphor in a suspension in methyl alcohol which 

has been :filtered to remove any 'foreign bodi.es which 

mieht be present. 

6.. Pour solution into deep container ancl allow to set i .n 

a dust f'ree area until th~ phosphor has settled. 

Alcohol w~ll become clear upon settling (3-5 hours) 

and thA Tynnall efrect can be used to determine when 

settline is completed. 

7• The liquid may be removed by slow siphoning, usine a 

tube of one millimeter diameter or less, well away 

~rom the plate. It will be observed that the process 



is gradual enough that no disturbance o£ the coating 

on the plate takes place. 

8~ Final drying can be done by air evaporation or by 

heatine with a lamp. 

Final result is observed to be a uniform coating. 
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Care must be exercised in handling the coated plates for 

adherence is not too good. A more durable coating can be 

obtained by the addition of binders but indications are 

that these tend to increase the dead voltage and reduce 

the efficiency of the phosphor. 



Appendix D 

Characteristics of Phosphors Used in This Research 

The information contained in this appendix was obtained 
:from Leverenz, H. w., Luminescence of' Solids, John Wiley 
and Sons, New York, 1950; and information :from the Radio 
Corporation of America. 

Basic Material ZnS Zn2Si04 ZnO 

Activator Pure Mn Zn 

Color of Emission Light Blue Green Blue Green 

Peak o:f Emission 46SOA0 5250A0 5500A
0 

Excitation Band 

Duration o£ Lum. 

Be 1 o'" 2960A 0 Near UV 

l0-2-lo-3 sec lo-6-Io-7sec 

Average Crystal 
Size 

Crystal Structure Cubic 

3 micron 

Rbhdl. 

3 micron 

Hex,. 



75 

Appendix E 

Electronics 

The schematics shown on the following pages comprise 

the photomultiplier circuit used with the DuMont 6292 

photomultiplier tube, the amplifier circuit used to amplify 

the pulse output, and the power supply for the photomult­

iplier tube. The amplifier circuit shows only the portion 

of the Al amplifier that was actually used, as the output 

from the entire amplifier was considerably larger than 

that needed in the work. 
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Appendix F 

High Pass Filter 

The filter network shown in Fig. F-1 was used to 

keep unwanted low frequency current from appearing on the 

osci11iscope. The direct current output of the photo-

multiplier tube was read on the microammeter shown. 

If we let 1 be the current from the photomultiplier 

plate and i 2 be the current through the capacitor and 

resistor, the equation of the circuit may be writtent 

where w = 2 x ).14 x frequency • 
. (_ 

:t2R = i jwLR/"(R + j(wL -1/wc) ) 

~RI• 1 ·wLR/(R2 + (wL - 1/wc)
2 )! 

so we see that as w approaches infinity (t 2Riapproaches iR 

and as w approaches serof~2R/approaches ~w2LCR which 

approaches zero. The values of L, c, and R shown in Fig. 

F-1 were chosen so as to be effective in discriminating 

against the sixty cycle component of the signal. 
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Appendix G 

Additional Experimental Results 

The oscilliscope traces shown in this appendix 

illustrate the variance of the signal with changes in 

grid bias and pulse length. 

There is also shown in this appendix a sample data 

sheet showing the quantities measured for each run. 
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Y~g. Q•l. s~cnal Tra•• show~nc resul-s · a~ low •r~d ·b~••• 
on the zi.nc ox:1d.e phosphor. 

Pressure 

Grid B~as 

Side Plate Voltage 

Pulse Length 

Pulse Frequency 

Osc111:1scope Voltage Sensit:1vity 

Oscilliscope Sweep T1me 

Photomulti-plier current 

Phosphor Plate current 

S •~cron 

-8.2 volts 

-?0 volta 

1 •1crosecond 

1000/eecond 

) volts/em 

100 ~orosecond/o• 

?8 •~croaapere 

Bone 



8) 

l'ig. G-2. S:lpa1 «:~¥• •how:lnc r••ult• at hlp crt.cl bi.a. 
on the zinc eslcle phCisphor. 

Pressure 

Grid Bias 

Side Pl.a~e Voltage 

Pul.se Length 

Pulse Frequency 

Oscilliscope Voltage Sensitivity 

Oscilliscope Sweep T:lme 

Photomultiplier current 

Pheaphor Plate Current 

4; micron 

-so volts 

+24 volts 

1 mi.croseconcl 

1000/second 

.) vo1t/om 

100 mi.croseooncl/o• 

Bene 



~~c. G-). Sicnal tra•• showinc effeet of pul•• l•na~h on 
tbe zinc oxide phosphor. 

Pressure 

Grid Bias 

Side Plate Voltac• 

Pulse Lenctb 

J?ulse Frequency 

Oscilliscope Voltage Sensitivity 

Oscilliscope Sweep Ti•• 

Pbotomuftiplier Current 

42 micron 

-51 volts 

0 Yo1ts 

1 •icrosecond 

5000/seoond 

•) YOl~/o• 

100 •iorosecond/c• 

9.6 micreaaaperee 

Ken• 
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J'ig. G-~. Sicnal trace abowinc .. effect of' pula• lenct:b em 
Zinc oxide phosphor. 

Pressure 

Grid·Bias 

Side Plate Voltage 

Pulse Length 

Pulse J'requency 

Oscilliaoope Voltage Scale 

Oscillisoope Sweep Time 

Pbotemultiplier current 

Pboapbor Plate Cvrrent 

42 mi.cron 

-51 Yolts 

0 volts 

10 mioreeecond 

1000/second 

.3 Yol-./cm 

100 ai.orosecond/om 

9.2 miorea.apere 

Won• 



..,;=,.· 

J'ig. a.-s • . ·=·= · ··.. trae• showing e:tfect ef pulse lencth on zinc oxj.cllf"' , · •~· 

Pr••••r• 

Grid Bias 

Side Plate Voltage 

Pulse Length 

Pulse Frequency 

Oscilliscope Voltage Sensitivity 

42 micren 

-.Sl velt 

0 volts 

100 m:J.crosecond 

1000/aecond 

.3 volt/em 
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Oscil1iscope Sweep Time 100 microsecond/em 

Photomultiplier Current 10 • .5 microampere 

Phosphor Plate Current None 



Sample Data Sheet 

Pressure 

Grid Bias 

Phosphor (S~de) Plate Voltage 

Photomultiplier Voltage 

Pulse Length 

Pul~e Frequency 

Oscilliscope Voltage Sensitivity 

Oscilliscope Sweep Time 

Photomultiplier Current 

Phosphor Plate Current 

Filament Current 

Annode Voltage 

Cathode Voltage 
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Run 1 Run 2 Run 3 
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