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INTRODUCTION

The explanation of thermodynamic and other propertiss
of matter, solids, liquids, and gases, from the atomistic
point of view, has been one of the moat extensively invest-
~1gated fields of Physics and Chemistry during the modern
hisBory of sciencs, Gases and solids were always given more
importance because their properties are amenable to expla=-
nations, at least ecrudely, based on some simple idealized
assumptions. Not until in comparatively recent times have
liquids been able to attract much attentidh from acientists,
In this background, naturally, attempts at cofrelation.of
the properties, espéoially*structural, of the three states
of matter have not been ample. With the advent of x-ray ana-
lysis the question as to the existence or any correlation at
all has been answered conclusively in the affirmative, But
the exact quantitative relationnhips have not bheen found in
any general case. The task is not an easy ona. We have three
distinet thermodynamically atable phases with properties
almost uniformly varying with temperature, separated by two
‘discontinuities corresponding to the melting and boiling
points. Additional comlications are encountered when we con-
sider some properties that undergo practically no change on
Phase transformations -

\
~

According to the classical view the solid was consider-



ed to be an array of atoms rigidly held to fixed relative
positions in space, and the liquid was considered to be a
reapproximated gaseocus states The modern oonception of the
liguid state - at temperatures'lying near the crystalliza-
tion point = is very similar to that of the so0lid state.
The spparent opposition between these two phaséa have been
removed by the discovery of elements of rigidity and oxder
in the liquid state on the one hand, and fluidity and dis-
order in the solid state on the othere The structures of the
liquid gnd thg 80lid states thus must not be essentially di-
fferent, and the theory of the liquid state must be deve-
loped in the same line as that of the salid statee
JOffe(lgwas the first one to introduee the conception

1) Joffe, Aes Anne de Phys., 72 (1923) 461.

of a partial dissociation of the latiice and the notion of
heat motion as an &alternative to small vibrationa of atoms
about fixed,equilibmium.poeitiona in space into the kinetic
theary of cryatalé; This has led to the correct understand-
ing of mnlacular-kineﬂié motions of molecules in bath the
80lid and the liquid states as a motion of vibration-diffu-
sion type, the diffusion being more pronocunced im the ligui-
d state in as much as the equilibrium positions of the atoms
are more randomly disiributed.

It was believed, however, uniil the time of the pia-



neering experiments of Stewart(Z) with the x-ray scattering

(2] Stewart, Ge We, Phys. Reve, 30 (1927) 2323 31 (1928) 1745
35 (1930) 7263 37 (1931) 9. '

of liéuﬁds that there is a total absence of arrangement and
order of atoms in the liquid state. Stewart's experiments
have shown that liquids near the orystallization temperature
exhibit a large amount of local order, and the structural
difference between the solid and the liquid atates is more
of a quantitative than qualitative nature.

Acecording to the modern conception, atoms in a erysia-
lline solid are arranged in a self-consistent field of po-
tantiél energy set up by the atoms themselvea, and executing
small thermal vibrations about their equiiibrium.positiuna
determinaed by the fields of their neighbours, thus display-
ing a long range or diétant order. The range of the vihra?
tions of the atoms (root-mean-square value) increases mono-
tonously with tempefature. Thus the probahility of finding
an atom outside its equilibrium position becomes higher,
causing more and more vibration-diffusion with loss& of exrder
in.tﬁe substance. near the melting point the change is grea-
tly acecelerated, acquiring a more pronounced "co=operative®
character in the sense that it requires less and less eneréy
for further decrease of order. The thermsl expansion (at
constant pressufé) and the acecompanying increment in the
value of the interatomic distances is a further cause enhan-



cing loss of order. The increase of volume on fusion is si-
multanecusly the direct cause and effect of this loss. The
long range order breaks down on melting and the liguid "
shows a short range or local order near the melting point,
thus exhibiting a quasi-crystalline structure. With still
further increase of temperature the liquid a.ssizmea a more
and more gas-like state until the boiling point is reached.
Osida._(s) and others have tried to consider a solid as an

(3) 0sida, I.s Prc. Phys.~lath. S0c., Japan, 25 (1943) 582.

arrangemeht of atams with fixed equilibriﬁﬁ positiona while
a liquid, near the crystallization point, is an array of
atoms whose equilibx;ium positions are determined by the
positionas of their neighbours. This is elearly fallacious
gince the positions of the atoms cannot be independent of
bthe otherse.

Even with &ll the advancement and the voluminous &=
mount of work put out in recent times, the theory of the
liquid state and its relation with the solid state ias still
in a very elementary forme. A successful model has not been
found even for the simplest types of liquids like fused
netalse The warious special types of molecular structures
and molecular forces are added eomplications tc the yet un-~
solved problem. All attempts are based on the method of the
partition sum which, in itself, is not ebjectionahble. How-

ever, the efforts of Mayer, Ackermann, Born, and Fuchs in



the late thirties and early forties“’ to evaluate the par-

{4} Moyer, J. B., J. Chem. Phys., 5 (1937) 683 layer, J» n.,
and.Ankermann, Pe Go, Ibid, & (1937) 743 Boxn, Mes and
E’uchs. Kes Proce Roye. Soc., ﬂﬁﬁ (1938) 391.

tition sum in a rigorous way leads to extremely complicated
mathematica. Cn the other hand, the so=called cell method of
Lennard-Jones and Devonshire, Eyring and others,(s’ which

TE).Eyring, He s I;'Chem. Physe., 4 (1936} 2833 Newton, R.,
and Eyring, He, Trans. Faraday sdo;, 33 (1936) 733 Eyring,
H., and Hirshfelder, J., J. Phys., 41 (1937) 2493 Lennard-
Jones, J. E.,'and Devdnahire; A. Fo, Proc. Roy. Soce, Al83
(1932) 533 A 165 (1938) 1.

leads to nurerically satisfacﬁory regults, are subject to
serious objections. '

An attempt has been made in the present work to derive
some thermodynamic and struetural properties of a linear
chain of atoms (under somewhat idealized conditions) moving
in the fields of nearest neighbours and assuming a.pafa-
bolic well in the interaction of pairs within the range of
relative movements. The equation'of state and other formulas
derived are applicable only to the linear model which could
be considered as a simplified form of one-dimensional cry-
stals in the form of chain-like molecules of rubber=like

Substances, An attempt has also been made to extend the
model to two- and three-dimensional casese.



REVIEW OF LITERATURE

In calculating the partition functiom, distribution
function and other thermodynamic and structural properties
of solids and liguids, various uncertain factors, such as
the type of model used, the nature of interaction among the
molecules, etce., creep in, thus necessiating the results to
be expressed in terms of parameters that often lose their
physical meaning. It is customary to consider solid atoms
being permanently distinguishable in as much as they are
attached to fixed equilibrium positions in the lattice. This
enablgs Boltzmann statistics to be>employed in evaluation of
the partition function.

From the classlcal partition function of the solid the
specific heat at constant volume comes out to be 3R per mole
at all temperatures and for all solids, R standing for the
gas constant.

Einstein(6) considered the solid to be an array of

(6) minstein, A., Aun. de Phys., 22 (1907) 180,

atoms executing independent simple harmonic motions about
their fixed eguilibrium points in the lattice (the "lattice
gas model®), to which he applied Boltzmann statistics after
quantizinéithe energy levels of the harmonic oscillators. The
resultant specific heat expression reduced to the classical
value at high temperatures and to zero at absolute zsro in

agreement with the third law of thermodynamics. Although



this was a great improvement over the elanaivcal theory, qua-
ntitatively it is not possible to find a single value of the
frequeney of the oscillator to give an accurate agreement
with the ohsereved heat capacity over the whole ’te\mperature
i'ange;. Moxreover, the mod_el itself is extremely crude and
inconsistent with the modern conception. |

Debye haaf‘conaid_ered a 8olid as an elastic cecontinuun,
imitating the actual crystal in elé.stic prbperties, and set
up the partition function from the sum of the eigenvalue'a of
ther normal modes of the coninuum model witih an arbitrary
cut-off f‘req_ugncy('z)‘ The heat capacitiy is expressed :Ln

-ﬁ} Debya, Pe Pey Anne de Physe., 39 (19121 789,

terms of a single para.mbter. the Deﬁye t‘emperatnré, whieh is
characteristic of the nature of the substance. At tempera=
tures much higher than this temperature the specific heat
reduces to the classical value, while at low temperatures it
shows a T®-dependence, where T is the abeolute temperature.
The low témperature heat capaéxity is very well borﬁe Qut by
experiment, and is one of the major successes of the Debys ‘
theorys The Debye model, however, is powerless in predicting
the equation of sﬁate - pressure, volume, temperature rela-
tion. Thore‘are also many minor and major exceptions that
can be understood in terms of deviations of the normal mode
spectrum from tﬁat of the Debye continuum model. As has been



shown by Blackmann,(s) the spectral density in actual cryst
(8) Blackmann, M., Proce Roye SoCe, AL59 (1937) 416.

als ia at large variance ﬁith the frequency-square depend=-
ence derived by Debye. Moreover, the individual atoms lose
their identities in this model, and the whole idea of subs-
titution of an elastic continuum for for a set of discrete
particles is decidedly idealistice.

Born and von Ka.rman(Q) obtained, taking into consider-

{9) Born, M., and von Karmsn, The, Phys. Z., 13 (1912) 297,

ation the interaction of atoms with nesrest and next near-
est neighboura, superficially the séme results as De.bye,
but with mueoh méi'e iaborioua computations Although'ﬁhis'
theoxy is mmch more exaet and realiatic s there are too many
as yet unknown effects to be taken into consideration be- ,
fore we can expect it to give exact predictions.

The computation of the partition function of the li-
guid is beset witn more complexities because of the léck of
a proper model. As has been stated before, the attempts at
an exact evaluation of the partition function of the liquid
lead t0 complicated mathematical entangiementa. In the sa=-
called cage model, the liquid is pictured as differing from
the selid anly in the circumatance that its atoms are nat
permanently attached to the equilibrium lattice sites, but
are confined to amall regions or cages by their neighhours
from which they frequently leak oute The partition function



is set up as in the 30lid model of Einstein and is multi-
plied Sy an arbitrary factor to take into account the leak-
age mobility of the atoms from cagse to cdge. Kirkuood(lo)
TI0T Kizkwood, Jo Ges J» Chem. Physe, 19 (1951) 658,

has shown how this extra factor'arise theoretically in the
partition function of the liquid, although mest investi-
gatoraradd the communal entropy term empirically to give
the eorrect results. It can be ahoun(llJ that the’partition

{11} Band, We, "Quantum Statistica®, D. Van Nostrand Cos
Ince, Ne Jos 1955, pps 131 — 134.

funetion of the liguid takes the forms

Qg = (1/N!)Nﬂ§dc$€NQC, using Sterling's approximation,
'whereun is the total number of atows in the assembly, aﬁd
Qe is the configurational integral expraaaing‘the partition
function of an Einstein's solid with N atoms.

Several models ¢losely related with the above formal-
ismhave been proposed. Nnmérically. all of them give satis-
factory results, but only partially so. It is interesting
to review the expressions for change in’antropy on fusion
obtained on the basis of some common modela.

We can expect an increment in entropy on melting even
if the structure of the solid remains unchanged because of
the volume dilation associated with fusion. But this does

not amount to more than only about one-third of the total



10

change in entropy as shown by Slater,(12) and in a more ri-

2] S8later, J. Ce, "Introduction to Chemical Physics®,
' McGraw-H1ill Book Compeny Inces NHe Yoy 1939, 261..

goroua mannexr by Gruneisen.(ls)

(T3] Gruneisen, Ge., Anne de Phys., 39 (1912) 302.

Mbtt(l4} has attributed the large change in entropy to

{14] Mott, Ne Fes Proce ROYyes SOCes Al46 (1934) 465,

the change in the frequency of vibration of the atoms. But

this cannot account for all of it unless there is sgome es-

sential change in structure, as pointed out by Toda.(15’

(15] yoda, e, Proc. Physe-Mathe Soce, Japan, 23 (1941) 252

Lennard-Jones and.Devonshire(le’ have lmagined the

(16) Lennard=Jones, Je Bey, and Devonshire, A. Fe, Proce
R OYe Sace, Al69® (1939) 3173 A170 (1939) 464.

crystal lattice as consisting of an alloy of the atoms and
the inter-lattice vacant sites or holes. The phenomenon of
melting has then been treated as a sort of order-disorder
transition in solid binary alloys. The change in entropy on
breakdown of ordei, which they have imagined to occur at
the melting point, comes out to be R(3/2)ln 2 per mole.
This explanation, however, seems to be cdnsiderably artifi-

cial, apart from the fzet that the large number of holes



necessary in the solid state to fit this scheme will make
the density considerably lower. Peek and Hill(17?) nave

1177 peek, Heo Mo, and Hill, Te Les Je Chem. Phys., 18 (1950)
1252,

tried to modify this model necessiating_ fewer holese.
According to the cage model of Eyfing and. others, the
increment in entropy an breakdown of distant order is R, in-
stead of l.04 R as calculated by Lennard-Jones and Devon-
shire. The arbitrariness in the original theory of Eyring
has been removed to a large extent by Gurney and.Mbtt(la)

(18) Gurney, Re We, and Mott, NeFo, Ibid, 6 (1938) 222.

and other invastigatdrs wha put the conception of communal
entropy on a firmer basise.

051dall®) nas imagined the solid &s an array of atams

(12) 0gida, Ies Ope Gite.

performing amall vibrations about their equilibrium posgi-
tions, and independent of the other atoms, while in the li-
quids the atoms have been supposed to occupy similar léttice
sites, but this time moving in the fields of their immediate
neighbours. Using é Gausaian disfribution function to such
assemblies he set up the é;rtition function of the solid and
the liquid. The rasulting change in‘entropy is found to con-
sist of three partas due to the change in the static poten-

tial accompanied by the voluminal expansiong the decrement
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of the interatomic frequancy; and due to the disappearance
of the long range order in the liguid phase, the last com-
ponent being the same as derived by Lennard-Jgnea and Devon-
shire. However, Osida's model of the solid suffers from the
same objections as HEinstein's lattice gas model.

Proper models of the.solid aﬁd the liquid states muat
take into account the different degrees of order in the two
phasess The :ela&ive distribution functian,ylhich isg defined
a8 the average number of atams per unit volume at a distance
r from an arbitrary central atom, ahowa very strong maxima
for solids near the central atom, causing corresponding
strong diffraction mexXima in X-ray scattering. This is attr-
ibuted to the long range order in solids. X=-ray diagrams qf
liquids show zn absence of rays scattered at amall angles
(as in the case of gases), but are éharacterizéd by the pre-
gence of one or more intensity maxima in the form of diffuse

diffraction rings (Fig. 1). This is attributed to the pre-

.
.
\J
LY
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RELVATIVE INTENSITY

sin6



13

senca of short range order in liquids. The corrasponding di-
stribution function should also show broad maxima near the
central atom before they attenuate to the comstant value of
the atonic density of the substance.

The relative distribution function p(r) for Einstein's
model of the solid is given bys

' s e (-%)/238F
P(r) = Zurt ZJ(% 39)
" where ng is the mean number of atoms at a distance of rg
from the central atem, and §g is the displacement of an atom
from its mean position in space. Provided the liquid is a
simple (moratomic) one with & guasi-ecrystaliine structure,
the relative distribution function can be found in a similar
ways &8 pointed out by Prinsa, (20) if the width of the succe-

(20) Prina, Je¢ Aes llatumiaaena.chaften, 19 (1931) 435.

saeive Gaunssian curves is inereased as the sguare-root of the
distance rge Basing his arguments on the free volume of a

substance Kirkwoed;(al) has been able ‘to derive an expression

AT xirkwood, Jo G.» Jo Chem. Phys., 7 (1939] 919,

for the relative diatribution functione. In the case of li-
quids it shows an exponential damping of the density ose¢i-
llations. Numerieally f.'b.e resultis are qui.te satisfactory for
some aimple liguida, but Kirkwood's arguments imply a number
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of assumptions and simplifications which render questionahle
the physical meaning of the resulis obtained.

The structure diffusion constant, speecifying the amount
of disorder in a substance, has been computed by Prins(zz)

(22) Prins and Petersen, Physica, 3 (1936) 147.

for az linear chain of atoms using & Gausaian disgtribution

function. It is given by the expressions

- A
D=2e~ 24f

where 4@ is the mean interatomic distance and f is the co-ef=-

ficient aof the 'qua.si-elastic force between two neighbouring
atoms. Prins tried to- identify the linear ecrystal with the
three-dimensional liquid which is wholly fallacious from the
structural point of wview. »
Following the method of Debye in the theory of specific
heat of the solid, Peierla(23) has computed the mean quadra-

(23} Pelerls, Re., Halve. Physe Acta, Supple, 1i, 81 (1936).

tic fluctuation of the atoms due to hea.t. motion in one-;,
two- and three-dimensional solida. At large distances this
came out to bes | o
£3 = (constant)r in one-dimensional case,
= conate. + (conat. Jin r in two-dimensional case,
= constant in three dimensional case.
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From this Franknl(24) argues that the cause of the structure

T24) Frenkel, T., "Kinetic Theory of L:Lquids", Dover Publi-
: cations, IncCe, Ne Yes (1946) 120.

yon

diffusion of liguids must not be directly connected with the
heat motion, and must be an explicit function of the volume
anly. Peierls's findings are, however, are subject to the
aame objections as Debyets model of the solids

It may be mantionad here that even with éonsiderable
quantitative agreement between theoretical and abserved a-
lues meny theories cannot be considered as conclusive, such
numerical égreaments being easily obtained by a proper

choice of the parasneters involved.



THE SOLID AND LIQUID MODELS

In view of what has been discussed already it iz quite
apparent that the struetures of a subastance in the solid and
thé liquid staﬁea near the melting point are very similar.
So it is but natural that for discusaion of properties near
the melting point the models shauld be essentially the same,
but with different structural constania. For simplification
we will further assume the interaction of atoms with those
lying beyond the nearest neighbours is negligible, and the
range of heat motion of an atom relative to its nearest
neighbours is small so that Hooke'’s law is appliéaﬁle. This
of ceuﬁse does not take into consideration the anharmonic
terms that come into play at high temperatures. Boltzmenn
statistics is employed in both the cases assuming disting=-
uishability of the atoms. This is a fairly correct approxi-
mation for liquids lying very near the orystallization point
since the rate of vibration of the atoms is much larger than
the rate of migration. The degree of order in the two diff-
erent states is thus attributed only to the frequency of

vibration of the atoma due to heat motion.
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IS ORGDIMENSIONAL MODET

THE _PARTITION FUNCTION
’ First we start with a one-dimensionsl model in which
I atoms aor molecules are Joined together in one line and
are constrained to move in that line. Let the mean inter-
atomic distance be d, the atomic d.iaméter o, and the mean
clearence between two neighbouring atoms be 1lg, so that

d =31, + ¢
If we consider the atoms as hard spheres and if the inter-
change of positions of any two atoms in the assembly does
' not have any macroscopic eifect, then the partition func-
tion of the assembly will be given by, according to Boltz-
mamn statistics,

2.mnk ) _U j _ WO g)dx - dua [y

z = |

subject to y = Nd& + ixg_, where xj denotes the displace-
ment of the 1th at‘an;’from its mean position with respect to
(i=1)th atom, W is the potential energy of the system ax=-
pressed as a function of the co=-ordinstes xj's, the kinetic

part being given by

Sk

and y is the distance of the Nth atom from the zeroeth or t



the reference atom (Fige 2), tne integrations being taken

loole d X
M_C;-vv—--omn- w—O—-rwww-deha’-om
| d — ith atom
; y
I
Fig. 2..

over all configuration space.

We can use the last condition as follows:

Construet A= ‘;‘“ [: iy-Nd- zx.] du s J =#(-1)
which is the Dirac delta-function, [y-Nd-3x], multiplied
by dy that gives .

A =1, when y-—g‘g < Nd+3Z % <Y+é=%

= 0, wnen |y-Nd-3x|>4
If the dependence of the potential energy on all tlie co-
ordinates is the same and the limits of integrations are
the same, then on multiplication by &, the partition func-

tion takes the form:

;= r:‘ (Zn:lkT ,| ” J T*J(Y‘"d"..z"‘ Ao, - de dut dy
) .‘{‘.‘(H%‘ET_) 2«” I CARRY dxdx,-d xné(y-“d);ud‘v

N
_t}l'l' (21(:\:\:.1') 2 -I_ML ! F(v) dy
) Ne™

18



1le

where L is the length of the chain and F(y) is given by,

fooe.j (y_. Nd)\l [_T('A)] Ndu

Zao

F(y)
W ;
T(u) = je'— Tt dx;

This is the general formulation of the problem, the exact

form of the partition function being dependent on the func-
tion W(xji)e
The general nature of interaction between a pair of

atoms is shown in the following W(x) diagram, where x ia the

Pig. Se

distanca between ﬁhe atoma. It can be seen that the mean
interatomic distance at any particular temperature will be
a constant (xg), which is 4 in oux case. Near the bottom of
the well, i, @¢s when the thermal vibrationa of the atoms
are small, the curve is parabolice The atoms will thus exe-
cuté simple harmonic motions about xgs the potential being
W =wy + (1L/2)K(x—x,)%

-



where K is the co-efficient of the quasi-elastic force. Thus
the chain of atoms can be replaced in our model by a chain
of hard spheres joined together by springs of stiffness con-
stant K (see Fige 2), if the interaction among atoms is as=-
sumed to be confined to immediate neighbours, and the mag-
nitude of vibration is asmalle. |

The transform 9 (u) will now be given by,

{37"‘( JUX\
T(u} = e —%J X
If K is large, which is the case wi_th both solids and liq-
~uids, the exponential under the integral sign will approach
zero very rapidly, and the limits of integration can be
taken to be from —eo to +aee, so that 9°(u) will becomse:

T(u) = -1 '&eﬂxa’(i » where P""’i"\s(‘i"
_ e-:‘:’kT ft-ﬁx?ca, (uxy) dx;
) -“VkTJ_ e Wap
Then’F(y) _ _.) [ _5} J("Nd)_udu, Wo = Nwe

i e'ﬁ (%)_2 ZJ?_ﬁEe--,r(y-Ne\),.

The partition fuhction will then take the forms



- W x
z = _l_('Zl‘ka)% ® Nt Lo Wt % (y~nd) dy
AN (P JN o "
W - (L.-Nd)
. o WL (2xmkT\5 (3)-’-‘5*‘_!_ E o ax
LA ¢ VN F

“'“ ~r WAOTT

The Gibuas Free Bnergy, when the partition function is
derived from Boltzmann statistice, is given by,

A ==kT 1ln z

- "f In M N l,,_’. -m2-1lw N!-%-rln{ert?ﬁ(\.-ﬂd)@e*ﬁlﬂ

The equation of state is given by,
P == —A

. E ‘ eykﬂ (L-Ncl)-o- ech{z NLJ
[k & -nd)verp[RnL]

Lt J{ (-~ Nd)
kTI% chk & (L-NQ) + ef‘» nrg- ﬂ\.]

where P is the thermal pressure exerted by the end molecule

in the chaine. The asymptotlc expansion of erf(x) near x = 0

is given by S
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erf(x) = (2//r)(x— x8/2 + x3/3 — +°*°°)
In the limiting case whenmbeta abproaches zero, we can take
only the first term of the expansion, and the eguation of

state is reduced to

2/Jx
kTE fiﬁ (L-Nd +NLo)

= xT/(L -~ Ne)

P

1l

which is the familiar gas laws L — No standing for the free

volume of the substance,

SPECIFIC HEAX
The total internal energy of the system is given by,

S
B = xr* (53,

= NkKT + WO,

if we neglect the factor (Jw/z)(erfﬁ(n.—rq-r erf [B Ma) as be-
ing very nearly equal to onee.

The specific heat at constant volume will then be give

) .
Cy = (5)' =Nk
which is the classical expression for specific heat on the

by,

basis of equipartition of energy and not considering the

quantumn effectse.

CHANGE IN ENTROPY ON FUSION

The entropy of a substance is given by,



8§ =k 1ln z.
The change in entropy on fusion will then be given by,
48 = k(1n z3 - 1ln 2zg)
where z; and zg4 are partition functiona for the liquid and

the solid phases respectively.

©AS =k 1n [Q(N., "w°',)/k'\' (Ps)n {Cff G(\:‘M) +evrf R Nl.} ]

{eof JR (L) +erf JB AT,
_Wop-Wor 1 k \n Lo f R (N + eof B NLYL
T 5 Nk v P._ + kn {e,.”jg (L-Nd) + e<f TENL]

if we neglect 1 when N » 1. Since the last term is nagli-
gible aompared to the rest,

as = (Wog = Wo3)/T + (1/2)¥k In (f'ﬂ/(’l)

It may be noted thatvthere is ﬁn compbnant éo the ehangq in
entropy due to loss of distant order in an axplicit form
because our eontention is that oxrder, in both the solid and
the liquid states, is a direct function of the frequency of
heat motion of the atoms, gnd as sueh the change in emtropy
associated with breakdown of distant order is taken care of
by the frequeney term in the ex@reaaioﬁ.

Objection may be raised as to the validity of the 1li-
quid model on the ground that liquid atoms are capable of
migrating, and henge do not have any fixed lattice sites
permanently. But the same is true for solids also, espe-
cially near the"meltiﬁg pointe Since there is no known way
of computing the entropy due to migration of atems in the
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g8olid stzte, and since this component of entrépy is small,
both in solids and liquids, it seems that the derived ex-
pression for AS is nearly correct, although the individual
entrories, Sy and S;, should be slighlty highere. Moreover,
according o the author,vthe loss of distant order on fu-
sion due to the mobility of the atoms seeris to have been
overenmphasized, especially in temperature ranges near tbe
crystallization pointe. According to the cage model or the
hole theory of the liquid atoms have been pictured as too
mobile.s If we consider the resulting entropy due to thié
mobility, the ratio@s/el becomes nearly one, whereas the
compessibility data show that it should be nearer 2 or 3,
which, incidentally, will account for the change in entropjy
usually attributed to the extra mobility of the atoms in &l

the liquid state.(25) Our theory may make the liquid seem

(25) grenkel, Jes Ope Cites pPeo 1003 Do 138.

too rigide. But there are elements of rigidity in liquids,
masked by their fluidity. This is especially obvious in the
case of such substances as under the influence of cooling
pass from the liguid state to the solid‘amnrphous state wi-

thout crystallization, and in a continuous manner.

The relative distribution function, as has been de-

fined vefore, expresses the average number of atoms in a



substance as a function of the distance from the reference
atom. Naturally, this can be written as a sum of the proba-
bility distribution functions for all the atoms in the as-
sembly ielativa to the reference atom. These individual disg-
tribution funetions will now be ohtained in a similar way
the partition function wﬁs deriveds |

Referring back to Fige 2 (page 18), the probability
that the Jth atom (J = 1,2,35.+sN) will be found at a dis-
tance y from the réferenca atom i;‘given}hy, according to

Boltzmenn disfs.ribution lmé: .
| N\ —p Kt
Pily) = (%)z ﬁje P dadin -y

aﬁbdact to y = jd *:2?&» where the distribution functions
are the normalized.;:tential energy functions used in the
partition function. |

Using the same sort of artifice as in the derivetion of
the partition function And using the same sort of logic, we
gety on multiplication by the Dirac dalta-function,

- : i (y-jd)u |
P, “Tr[ﬁ Bt ux: A&] , (- )du, el

L -iwg t(sdé)“
Ix I e P du

-00

Sy O

Thus the probability dimtribution curwe for each atom is a

=
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Gaussian funetion about its mean position with reapect to

the reference atom (Fige. 4), the width of the spread in-

Fige 4.

creasing as ﬁlpe square-root of the distance from the refer=-
ence atem of vita mean positione The integration of Py (y)
from —o0d to + 00 yields 1 in sceordance with the p-hyaiéa}
meaning of probability.

The relative distribution £uncti§n will Abe the sum of
the individual distribution funetions Pi(y)'s (the heavy
line in Fig. 4)3 |

gl .2 R

F‘x) »";R_ g $ .‘.e.‘.* %C"f}‘) '

sl 93 £
The upper limit of the sum is y/r, because only that many
atoms can be sgueezed into the seetion y. f(y) shows maxima
near d,2d, @etces instead of o320%, etce, as found by Kivke- |
wood using Clausius=-type distribution. ‘

The aummation of the individual distribution fumctions

must be done numerically for small values of y. For large
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values of y, P(y) tends to fb, a constant equal to the mean
atomic density of the substance, whick in our case is 1/d.
This can be shown as follows:

For large values of y/o" the swmation can be replaced

by an integration, )
we o _L (y-5d)*
p(y)éjﬁ‘-%e 3 7%y
i

On substitution x =y — jd, the expression becoues,

re
: Y
— _ d_ 2
2 -{a %e v dx = 1/4,
o

since for large values of y there is practically no comntri=-

ile

o

bution to the integrand from large values of the variable.
It can be seen thét the number of well- diatinguished
maxina depends on P or the stiffness constant of the spring.
Solids, having large values of g, will ahow & large numberx
of sharp maxima, displaying a distant order. In liquids,
with much smaller values of P, there will be only a féw di-
ffuse maxima, and will thus ahowvonly a local order. The
different degrees bf order in the solid and the liquid phases
can thus be attxihuted,to the difference in frequency of
heat motion of the atoms, aﬁ least near the melting point.
The migration of atoms in the lattice will of course make
the maxima a little more diffuse than the maxima pictured

hereae



STRUCTURE DIFFUSION CONSTANT

The structure diffusion canstant, specifying the degree
of disorder in a2 substance, can be defined in our case as

@ _sa\2
[é-%(sjgds

5 |
D=r,where§' -—‘[
=od

3
] and Yy = Jd
LA
& D =—7':; ? 2_-5—&—: 2—':‘—?
whicih is the same expression as derived by Prinse
This constant D is applicable only to the one-dimension-
al case, and the attempt by Primns to identii'y it with the

structure diffusion constant of a three-dimensiomnal liguid

is clearly fallacious from the structural point of viewe.



- (e) H

The pertition function for a simplified two=dimension-
al model can be set up in the fallowing manner. Let the
lattice be a square one (Fig. 5), and let the potential

¥
o © o © o © A
8 Y3
ithat G————-.-m
ked o o V% &Y, dotg

Fig. Se

energy gained by an atom be determined by its relative dis-
placements with respect to the two neighbouring aboms, one
to the left and one taward;a the bottom, the atoms lying on
the reference axes being constrained to move along the axes
thus sexrving as réference lines relative to which all dig-
placements can be measured. With this arrangement all the %
links are taken oare of and we are :r;eadj to proeeed with
the determination of the potential enexgy funationa.

Let the displacement of the atom A relative to B be
d+xp,yps and let its displacament relative to € be Xgsd+¥gs
the potential energy due to the disfigurement of the AB



link will then be given by, assuming Hooke's law to be wa=-
1lid in the range of displacement,

A
oo - ]
{J dexe)+ve - 4}1" @+xg) +ryg +d?-2d [dexg)+v@

= ad'+2de+X§+Y§ -2d(d+xp)
2¢‘+x§+y§+2d.x£‘2d (d"‘xB )
= xhtyi-yia/(aaxg) + ya/Mlatxs)® 8 xB

a
A 'TB % o ¢ s Wwhere e=—-2—‘21'r""' yl-‘
Similarly it can be proved that We & e-P ¢

The partition function will then be given by,

] 1 DA O

subject to a — Nd® = d(gxi + 2:31)’ where a is the area of

the lattice, N is the total number of atoms, and Wo is the
static potential. Proceeding the same way as with the one-

dimensional case, the partition function becomess

_‘*!‘.g \J _—
¢ B () s [ ) et [
The wvarious thermodyngmic aexpressions are:
a evf’%s (A-Nd?)
PN T o
esf [Lo, (A-NdY 4 e B (Na2N)
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A8 = (Woq = wol)/r + Nk 1n (Ps/p;)

C = 2Nk

The distribution functions can can be derived as belows

Let the equilibrium position of an atom be (jd,kd).
Then the probability of finding the atom at (xsy) will Dbe

2y ) = (%)u ” I P(tx. +iy;)dx dys

subject to x = jd = ixi, y = kd =sz\:|y3, where X3 is the die-
placement froi equil‘:;.;)rium pogition af the ith atom from
(i-1)th atom in the kth horizontal chain, end y is the di-
splacement from equilibrium position of the sth atom from
(s=1)}th atom in the jth vertical chain (:E':E.g. 51.

Proceedinc similarly as befare,

et B (y-kd)”
Py k(®sy) = _'%‘5 e Tl:e -

Thus in ocur simplified model of the square lattice the
atoms vibrate the same way as if the lattice was made of in=
dependent linesr chains superposed together.
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TEREE-DIIENSIONAT, IODET,

The partition function for a three-dimengional model
can be set up the same way as %hat for the two-dimensionsl

modeles For a simple cubiec lattice this becones,

1 an'\scT)“ H f P(Zx‘ +%.Y. +§2~2" y;di.'.fdv

A =N\. h\-

n N
subject to v = Nd® = a®( 3 xy + Dlyy + %zi), the final

form being,

iy O e e
wux [E cof fomae(N-)

) e ET:D‘“ (V-Nd‘) y crk ,gﬁ—a'h NE=)
Cy = 3Nk |

a8 = (Wog — Wor}/T + (3/2)Fk 1n (Po/Py)

Bt B -Gt
Ph.k.l(Xs3'§ZI =(x 5 e " ﬁe i

The mean quadratic fluctuation of any atom relative to
any other mreference atom® due to héat motion will be given
by ?;—];Tl = -(.ZE.{.:—:)—;‘. where R ia the distance of the atom,
whose equilibriun pos:.‘ca.on with respect to the reference
atom is (hd,kd,1ld), from the reference aton at any time and
R is the mean distance equal to d(12+ k3+ h®), If the posi
tion wector of the movmg atom from its aquiiibrium posi=-

tion be denoted by ® = x1 + yJ] + zk, and if its projection
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on the line Jjoining the reference atom and the equilibrium
position of the moving atom be 55, then, since |r| is small
compared to R, (R — R} oan approximately be tak;n“to be
‘equal to IE;}. )

“Fn "R =FTH A

= sum of the projectlons of the ‘mean square fluctua-

tions in the three co=-ordinafe directions

k A
[ J(h* kd‘) vk J(h k™) * ?,/(mk.‘.l')]

ZPJ(W' k=)

Thus the relative distribution function can be written as
tam D e B
pe) = [aw 2 e

where ng is the number of atoms at a mean distance of ﬁ;

from the reference atonm.

The structure diffusion constant can accordingly be

defined as
a—g:"=*l'.
2Qs 4JP
&=RAY_SCATIERING

The pattern of x=-ray scattéring is very closely related
to the relative distribution functione The intensity distri-
bution of the rays scattered by an isotropic system of like
atoms has been derived by Zermicke and Prins,(zs) giving

(QGTVZernicke and Prinsg, Z. fo Physe., 41 (1927) 184,
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s <Ok = [[ (5 Yo

where Z is the relative intensity of the scattered rays, Po
is the value of p(r) when r-»o® 4, and k = %sini_@ s where
)\is the incident wavelength and @ is the angle of scatter-
ing. This formula can be regarded as an expansion into
Fourier integral of the quantity CE‘:L}k/&rrpo as a functiom
of the parameter k, withr the fa-..ctt;r f)Po -~ 1 acting as the
corresponding Fourier amplitudes This factor can &ccording-
ly be determined from the experimental data, referring to
the function E(k) with the help of the Fourier transform-

ation
Iy

(%-9; = -‘-3%‘—(7: ﬁ:ﬁ( pintkw ak

The results cbtained by applying this formula to a
number of simple liquids are in fair agreement with the
derived p(r),(27) where the broademing is increased as the

(27) Frenkel, Jesy OGP citg’ Pe 113.

aquare root of the mean radiuas of the layers of atoms, and
it is conjectured that the same formula for r(r) will

apply to polyerystalline solid.
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The thermodynamic and structural properties of simple
models of solids and liquids can be derived, with the help
of an artifice, on the basgis of a Gaussian-type distribu~
tion funetion and employing Boltzmaenn statistics to a faix
degree of accuxracys This does not call for the mathematical
complications of the more exact theories, nor the artifi-
ciality of the simpler, but rather idealistic models. The
final results depend on two physical parameterss the static
potential when all the atoms are at equilibrium in the late
tice, and the frequency of heat motion offthe‘atams.

The solid and the liquid states near the melting point
of a substance can be regarded as having essentially the
same structure, but with different,atructnral‘censténts.'ﬁhs
varying degrees of order in the two phases can be atiributed
to the atomic frequeneies of heat motion‘andbtemperature.
From this stand point the distant arder in solids is nothing
but a large local order. The ?migrétisnpdiffusion“ of  atruc-
ture and the eorresponding eniropy term can be negleeted

caorpared to the diffusion due to vibration.
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SUMMARY

The thermodynamic and structural propexrties of solids
and licuids have been studied on the basis of simple lineax
models, using a Gaussian distribution function and Boltz-
mann statistics. With the help of an artifice, the ane-
dinmensional partition function, equation of state, echange
in entropy on fusion, specific heat, relatife distribution
function, and the structure diffusion constant have been
derived, and =zn attempt has been made to extend the one<
dimensional model to two- and three-dimanéional cases. Also
thie notion of distant and local orders has been discussed

from a new anglee
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