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INTRODUCTION

A liquid or a dense gas may be regarded either as a very
imperfect gas in which multiple collisions are frequent or as
a distorted crystal in which the long range order has been
loste The crystal-like approach has not led to formal solut-
ions, but it has led to several approximate treatments which
can be used to give numerical resultse.

The two main types of approaches which have been used
are: the cell theories, in which the liquid is regarded as
a distorted crystal with one molecule located at or near each
lattice point; and the hole theories, in whieh it is realized
that liquids differ from crystals in that some of the lattice
sites are vacant.

In the cell theory a solid composed of molecules without
internal degrees of freedom is pictured as a set of particles
executing small vibrations about their equilibrium positions.
The partition funetion of such a system is the product of
harmonie oscillator partition functions. 1In the Einstein
epproximation each of the molecules is pictured as vibrating
independently in that field which would be present if all
the neighboring molecules were at their equilibrium positions.
To this approximation all the vibration frequencies are the
same, and the partitionm function for a system of N particles

is just the product of N identical factors.t

l. R. H. Fowler and E. A. Guggenheim, Statistical Thermo-
dynamics, Cambridge University Press, (I949) .



The concept of small vibrations is not valid in liquids.
However, since the specific heat of a material in the liquid
phase just above the melting point is almost the same as that
for the solid phase, it is tempting to retain the idea of the
molecule moving in the force field which would exist if all
the neighboring melecules were at their mean positionse.

There have been two major developments of the cell theor-
ies: that of Eyring2 and his colleagues and that due to
Leonard-Jones and Devonshire3. Both these groups of invest-
igators established their theories of the liquid state by
means of well-founded physical intuition. The basic express-
ions which were the starting point for their researches have

. who has shown rigorously what

been justified by Kirkwood,
assumptions are inherent in both theories. Kirkwood, start-
ing from the general principles of statistical mechanics and
using certain well defined approximations, expresses the
Gibbs configuration integral as a sum of integrals correspond=
ing to single and multiple occupancy of the cells of a refer-
ence lattice. The integral corresponding'to single occupancy
is then evaluated with the approximate probability density,

expressed as a product of functions of the coordinates of

individual molecules, which leads to minimum free energy under

Ze %; J.)Eyring and O. Hirschfelder, J. Physe. Chem. 41, 250
1937

3« Je. Lennard-Jones and A. Devonshire, Proc. Roy. Soc. Al63,
53 (1937)s 165, 1 (1938).

ke Jo Ge Kirkwood, J. Chem. Phys., 18, 380 (1950).



the restraints of constant temperature and volume. The min-
imization of the free energy gives an integral equation for
the probability density within each cell of the lattice. A
first approximation of the solution of this equation yields
a partition function identical with that of the Lennard-Jones
Devonshire free volume theorye. If convergent, an iteration
of Kirkwood's integral equation might provide an improvement
on the Lennard-Jones Devonshire theory.

The purpose of this research is to determine whether or
not the iteration of Kirkwood's integral equation is converg-

ent for liquid Argon.



REVIEW OF LITERATURE

The equations of state of wvan der Waalss and others were
successful in accounting for the critical phenomena of gases
and the forms of temperature isotherms below the critical
temperature. These theories were based on arguments which
are valid only for gases of low concentration where binary
encounters are predominant, hence»they fail for gases at high
densities such as obtain near the critical rointe.

There were also several theories of the crystal state,
based on various simple models, the most notable being the
Einstein model, and the Debye model,6 Eyring7 defined the
entropy of fusion as the increase of entropy due to the fact
that in the solid state the motion of the individual molec-
ules is restricted to the corresponding individual cells,
whereas in the liquid each atom can be found in any cell.
This focuses attention on the essential difference between
solids and liquids, namely that a solid possesses long range
order while a liquid has only short range order. The fundament-
al factor which determines the amount of disorder in a liquid
is the volume, since at the fusion point the liquid differs
from the crystal only by its larger volume; this extra volume

being denoted as its "free volume'*’.8

5« Re. He FOWLER and E. A. Guggenheim, ope Citey Dele
6. Ibid.
7« He Je Eyring, J. Chem. Phys., 4, 283 (1936).

8. J. Frenkel, Kinetic Theory of Liguids, London, Oxford
University Press, (1947).




The first attempts to give a description of ligquids with
the free volume concept were made by Eyring and Hirschfelderf;
However, they used the free volume theory to correlate the
liguid properties with other properties. Leonard-Jones and
Devonshire (LJD),Io on the other hand, used the free volume
concept to explain the properties of the liguid state in
terms of the intermolecular potentialse.

In the LJD theory each molecule is confined to move in a
cell around one of the lattice points of a virtual cubic face-
centered lattice with a2 total number of lattice sites equal
to the mumber of molecules, N, the volume per cell being V/N.
The field in which each molecule moves in its cell is the
molecular field of the surrounding molecules averaged over
all directions, and the partition function of the whole as-
sembly can be expressed as a product of the partition funct-
ions of the individual molecules. (This excludes multiple
encounters, an approximation which is more appropriate the
higher the density.) It is further assumed that each molec-
ule moves on the average in the same field and is confined %o
the same wvolume. At sufficiently high densities one can
neglect the possibility of migration as being an infrequent

event compared with the time spent in any given cell.

9« J. Hirschfelder, D. Stevenson, and He. Eyring, Je. Chem.
Phys., 5, 896 (1937)%

10. Je. Leonﬁard-Jones;and A. Devonshire, ope citey, De2e



Although the LJD cell model gives a reasonable picture of
molecular environment at high densities, it becomes increas-
ingly inpacurate as the eell size increases;ll At low densi-
ties restriction to cells will prevent collisions occuring
and the method gives no second virial coefficient.

An attempt to extend the cell method to low densities was
made by Buehler et al.l2 In addition to the meodel used by'LJD
which he calls the "soft center model", Buehler considers
another model in which the wandering molecule moves in the
field of molecules fixed at the centers of neighboring cells
and one fixed at the center of the cell in question. This is
called the "hard center model%". The arithmetic mean of the
two free volumes is then used to construct the paertition funct-
ione This method reduces to that of LIJD a2t high densities and
gives the correct second virial coefficient at low densitiese.
No theoretical justification is given for the averaging processe.

Although it is known that the communal entropy increases
from zero to "k" per molecule as the volume increases to in~-
finity, no satisfactory theory of the point at which it be-
comes effective has been advanced. Originally it was suggest-
ed by Hirschfelder, Stevenson and Eyringl3 that it becones
available at the melting point. This hypothesis has been
examined critically by J. A. Pc:p:l.ezl"l‘L who presents an appropriate

1ll. Je. A. Pople, Phil. Mag. 42, 459 (1951),

12. Buehler, Wentorf, Hirschfelder, and Curtiss, J. Chem.
Phys., 19, 61 (1951).

13. J. Hirschfelder et al, oDe CiteyDPe5e
1% J. A. Pople, Phil. Mag. 42, 459 (1951).



méthod of calculating the comunal entropy of an ensemble of
monatomic particles. Pople divides the available volume into
cells a la LJD, and the communal free energy is expressed in
terms of a set of parameters related to the probability of
various multiple occupancies. Application to an assembly of
rigid spheres leads to the conclusion that the commun2l entropy
does not become appreciable until the awvaileble volume is
over five times that of a close-packed assembly. This suggests
that,y for more accurate potentials, the communal entropy is
practically zero in the solid and liquid states.15

One of the difficulties of the LJD theory is that it fails
to allow for vacant sites in the lattice. It has long been
realized that there are many holes in the lattice structure

16  pollowing an idea originally due to Cermuschi

of liquidse
and Eyring, the theory of LJD has been generalized by
Rowlinson and Curtiss,l7 and others, to include the possibil-
ity of empty lattice sites in the liquid state. However,
these theories all hinge on linear approximations of the log-
arithm of the generalized free volume (i.e. that free volume
which accounts for neighboring sites which are vacant.)y an
approximation which does not describe well the dependence of

the generalized free volume on the fraction of nearest neighbor

15. J. A. Pople, ODe Cito, po6o

16. Je. Se. Rowlinson, and C. F. Curtiss,y J. Chem. Phys., 19,
1519 (1951).

17. 1Ibide.



sites which are vacant. These theories show little improv-
ment over the LJD treatment.

The LJD theory involves two types of approximations;
those intrinsic to the free volume concept, and those inherent
in the calculations of the free volume itself. Buehler, et
al,ls calculated the free volume for non-interacting rigid
spheres taking into account the exact geometry imposed by the
face-centered cubic packing. The size and shape are quite
different from that of the inscribed spheres which correspond
to the LJD approximation. At high densities the equation of
state obtained from the exact treatment agrees well with the
LJD equatione When the specific volume is greater than twice
the cube of the collision diameters, the molecules are no
longer confined to cages formed by neighboring molecules. At
these low densities the free volume concept is ambiguouse.

The equation of state depends upon the shape and orientation
of the cells with respect to the lattice positions of the
molecules. A particular choice which leads to an equation of
state that at low densities is accurate through the second
virial coefficient is given by a dodecahedron formed by planes
bisecting the distances from the neighboring molecules to the
origine There are other shapes and orientations of the cells

which would lead to other equations of state having this same

propertye.

18. Buehler, Wentorf, Hirschfelder, and Curtiss, ops cit., p.6e



One of the limitations of the LJD theory as pointed

19-13 that a free volume is defined in terms

out by Kirkwood
of the Gibbs phase integral, and the free volume is then
calculated from purely geometrical models without reference

to the Gibbs theory. Kirkwood begins with the general prin-
ciples of statistical mechanics, and presents a rigerous theory
of the free volume, and then shows that the LJD theory repre-
sents the first approximation to a general equation.

Kirkwood developes a formal expression for the communal
entropy term which must be added to the LJID result to allow
for the fact that the molecules are not entirely confined to
their respective cells. This expression is quite intractable
and the communal entropy problem remains unsolved. If the
communal entropy is neglected, the problem reduces to one of
single occupancy. Considering this case further, Kirkwood
seecks the "best" solution, (that is, the one that minimizes
the free energy), based on a self-consistant field approxi-
mation. The essential feature of this approximation is that

a molecule is considered to move not in the instantaneous
field produced by its neighbors, but in the average field
produced by its neighbors as they move over their cells. The
self-consistant feature of the calculation enters through the
necessity of finding a potential probability distribution
function which yields an averaged LJD cell potential that then

reproduces, through the Boltzman factor, the original

190 Je Go KiI‘kWOOd, OPQCito, p.2’.
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probability functione. Kirkwood obtains an integral equation
which is equivalent to this condition. Although Kirkﬁood‘s
equations formally determine the best solution of the restrict-
.ed class of solutions he considers, the accuracy of the self-
consistant field approximation is open to question. The

true situation is that each molecule moves in the instantan-
eous field of its neighbors and not in an average or smeared-
out field.

Taylorgo attenpts to take account of this faet by assum-
ing that the configurational probability function for the
entire liquid is a product of separate functions, one for each
molecule. Thus Taylor recasts the exact classical partition
function in a form in which the LJD potentials appear in
correction terms. The resulting integrals are analogous to
those appearing in the conventional theory of an imperfect gas,
but with the correlation potential playing the role of the
usual intermolecular potential, and the range of integration
of each molecule limited to its own cell, where it is also
subjeect to the statiec LJD potential. A practical method of
evaluation of the integrals is developed, based on power series
expansions of the factors containing the correlation potentials.
Single occupancy is not an essential feature of this theory,
and the allowance for multiple occupancy leads to the corrmunal

entropy correction.

200 Y]o Jo Tay:Lor, Jo Chemo PhYSo, _g_l_*_" 1*'5)"' (1956)0
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DeBoer21 generalizes the LJD theory by considering in a
systematic way the motion of two or more neighboring molecules
in a "cell-cluster" of two or more neighboring cells, consider-
ed as one big cell shared collectively by the molecules in the
cell-cluster. This method solves in principle the problem of
communal entropy and problems related to the correlation of
the motions, and allows for quantum mechanical treatment of
exchanges of neighboring molecules. On the basis of this
concept of the cell-clusters deBoer is able to define a set of
partial probebilities for n molecules in a cell-cluster of n
cells. This set of probabilities has as its first number the
single cell probability of LJD, and as its last number the
true probability which should be introduced into the partition
functione. The calculation of the partition function of the
cell-cluster method leads to the difficult combinatorial
problem of finding the factor for the number of ways of dis-
tributing a given number of cell-clusters of given size and
shape over the lattice, and in general an exact solution is
difficult to obtain.

Wbod22 gives an exact solution to the Kirkwood integral
for a system composed of rigid spheres by considering the face-
centered cubic lattice and choosing as the cell the dodecahed-
rén proposed by Buehler et al. Wood's solution gives zero for
the integral if the molecule is in the dodecahedron, and infin-
ity elsewhere.

2l. J. deBoer, Physica 20, 655 (1954).
22, W. W. Wood, J. Chem. Phys., 20, 133% (1952).
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Lund23 shows that apparently Wood's solution will hold
for other types of molecular packing where the potential with-
in the cell is uniform and is effectively infinite at the
boundary, and where the free volume is defined to be:

(vf'- To)3 times the lattice parameter, ae.

The LJD theory has proved to be an effective method of
treatment of liquids and dense gases, because of its simpliecity
and the fact that it predicts the essential features of the
condensation process on the basis of the intermolecular
potential, and from the practical viewpoint provides the best
estimates of PVT properties for gases and liquids at very high

pressures and temperatures.

23. L. He Lund, Je Chem. Phys., 20, 1977 (1952)
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THEORY

In the LJD model of the liquid, the molecule whose
partition function is to be determined is considered to be
moving in its neighborhood under the potential interaction of
its neighbors, which are assumed to be fixed at their equilib-
rium positionse. The volume allowed it by its neighbors is
defined as the free volume of the molecule. For mathematical
expediency in computing the potehtial cdue to the neighboring
molecules, LJD considered the nearest neighboring molecules
to be uniformly distributed over a spherical surface, and
neglected the effect of all other molecules. Kirkwood, beginn-
ing with the general principles of statistical mechanics, pre-
sents a rigerous theory of the free volume, thus putting the

2
LJD theory on a firm foundatione

Let v = Volume of the systeme.
T = Absolute temperature of the system.
k = DBoltzman's constente.
h = Plank's constant.
V.. = Potential of intermolecular force.

o]

Aﬁ = Volume of cell j.

An = TFree energy of the systeme.

Z, = Gibbs phase integral in configuration space.
N = DNumber of monatomic molecules in volume V.

= IMumber of molecules in cell J.

2e  Je Ge Kirkwood, ope citey De2e



It

-

rj = Position vector of jth particle referred to an
origin in cell j.

—

RiP:= Vector frem origin of cell i to origin of cell ke

The classical expression for the partition function of

an assembly of N monatomic molecules is:

(1) (emmer/n2)” z_/W,

(2) z, = f [“' e, .~ where - = 1/%T,
(3) v, = %,V(Rik)-

If the volume v is spanned by a virtual lattice of N cells,
A j, each of volume 4, the integral over v in the configurat-
ion space of each molecule may be expressed as a sum of integrals

over the individusl cells:

Ak, axy

@ oz = j]"vrrdvk.

n

The choice of lattice is arbitrary, and will be chosen for con-
venience such that the number of cells is equal to the number
of molecules N. The N integrals of equation (4) may all be

expressed in terms of integrals of the type Zn(m1“‘mn), where:
Ly, Ay,

74
(5) zn(m‘l o omn) = j j / mv e
Therefore, equation (%) becomes:

6) z, = M. zn(m““mn)/rrms:.

Now, the integral corresponding to single occupancy of each

cell is:



s, a,
(7) Z(l.-.l) = Z(l) = f“'/e-iyﬂﬂdvk)

and:
8 z, = z 21
where:

(9) ¥ = 2_}3;5_3 Z(m,...mﬂ)/z(l).
e |

Sigma takes into account the "cooperative" motion and
contributes the "communal entropy™. It is easily shown that
sigma equals one at high density, and e at low density. This
arbitrary use of sigma equals e was assumed by Eyring in his
work and leads to his definition of communal entropye.

The phase integral Zn(l) is related to the relative prob-
ability density in configuration space P_(1) subject to single

occupancy bys

n

With a little manipulation it can be shown that the equation

of total free energy is given by:
oy’ (1)
(11) A, = -NkT In (2mmkT/h2) T +.An.

Using 2n approximation similar to that employed by Hartree in

the solution of the Schrodinger equation for several particles:
a
N Vi

a2 p M = Jlkzy, where J/y«?) av = 1.

5=
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(1) depends only on the position of molecule s in cell s
referred to some convenient origin in that cell. In this

approximation the free energy per mols becomes:
2 a4
#
(13) Ap/RT = / ¢ (r)in #(r)av + 1/2kT //?.('f-i-") #(T) £ (r1)avay)
'Yr
where: E(?) = L V(-ﬁ,j +7T).

V(ﬁi,'j +T) is the potential of intermolecular force for a pair
of molecules, ﬁ;j being a lattice vector joinming the origins

of cell one and cell j. The choice of ?(F‘S) leading to the
best approximation to the free energy under the given restraints
is that which nminimizes An(l) at constant temperature and
volume. By the method of Lagrange Multipliers one obtains

from equation (13) the following integral equation which deter-
mines the best approximation to Pn(l) in the form of a product
of functions of the coordinates of individual molecules.

4

) Y@ = ﬂz(xf-}“‘w exp £ (< - YATT)) av)

fexp(-.o’ ¥ () dv,

exp s (< - ),
™ - E,

a 9‘
//E(? - T1) )’49(?) @ (T t)avav',

If ¥(r) is sharply peaked in the vicinity of the cell

where: exp(-44)

¥

w(T)

B

originy it may be replaced by a Dirac Delta Function in zero
approximation. Equation (I4) then leads to a first approxi-

mation:



L7

(15) Y@ = wo(m),

E = Z)V(Rfj))
wo(r) = Z [V(R1J "'-;') - V(jo)J.
—d
If the sums defining E; and wo(r) are extended only over
nearest neighbor sites, and the nearest neighbor sum is re-
placed by an integral over a sphere of radius equal to the
distance between neighbors, wc(?) becomes identical with the
LJD theorye. If convergent, a numerical solution of the
integral (I4) may be obtained by iteration, leading to a
refinement of the LJD theory.
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APPLICATION OF THEORY

For spherical non-polar molecules it has been shown that
the energy of interaction between a pair of molecules can be
represented satisfactorily by the Lennard-Jones (6-12) type
potential, which does not offer the recalcitration to numerical
calculations inherent in the Buckinghem type potential.25 The

Lennard-Jones potential can be expressed in the form:

-

(16) P = he[(rf)ll-(i‘:)hj»

where v is the rigid sphere diameter, (i.e. the distance of
closest approach of two molecules which collide with zero
initial relative kinetic energy.), and € is the maximum energy
of attraction of the two molecules, which occurs at a separat-
ion of r = 2w&T

The parameters v~ and € may be used to define the follow-

2
ing reduced variables:

T = XT/c reduced temperature,

v = v/i3 reduced cell volume.
The parametric values used are listed in Table I. Additional
simplification of the formulae results from defining the follow-

ing dimensionless quantities:

25« Je Lennard-Jones and A. Devonshire, ope cite peZ2e

26. Je. Hirschfelder, C. Curtiss, and Re Bird, Molecular
Theory of Gases and Liquids, New York, Wiley, (195%4)
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T T2 ,
Y = (I' ;: - ’) = {/y - ,,'y-!))z
, -1
I(y) = (1 +1zy +25.2y2 + 1233 + 301 - 970 - 1,
"
m(y) = (1 +y){1l~-7) =~1.

Assuming that the wanderer interacts with no molecules
farther removed than the shell of nearest neighbors, and re-
placing the nearest neighbor sum by an iategral over z sphere
of radius equal to the distance between neighbors, the

Lennard=-Jones potential we(r) defined in equation (15) becomes:
il i a
(17) we(T) = ce| L/ ~ 2ly)/v7),

where ¢ is the number of nearest neighbors; (¢ = 12 for Argon).
In the Kirkwood derivation of equation (14) the function

——— s
w(|r - r'l) represcuts the pairwise interaction force between

(@)
[ 3

two molecules as indicated in Figura Ia. It is easily seen

that for T' = 0 this reduces to the original Lennard-Jones value.
To evaluzate IE?- ;ﬂi it is easier to use figure Ib, from which
it is seen that:

- . s
(18) |t - 2 = (r%+ r'?+ 2rricos o),

where w is the angle between T and T, Thus, from ecuation (14):

P
(19) ¥, @ = @ = Jug(T=1)ems | - v (71)av]
Where dv' = 2vr'2sin w dwx dr?'.

Also, from eguation (14):



20

R

fe;tp[:- Jw, (?)J Yrr2ar,

(20) exp[-s ]

ora3 _[Za.xp[-.:ﬁ wo(y}/y dy.
1o °

Defining: g = | vy exp[- K4 wo(y)j dy, equation (20) may be
°

written:

(21) exp Ea"o(,] = 1/(2ralg).

Therefore, equation (19) may be expressed in the form:

B | i
(22) w(y) = lZé/zgffwo(Y) exp[-,o’wo(y')_J Vy'! sin o do dy!

which for the purposes of mumerical calculation may be written

in the form:
(23) wq(y) = 12¢ Aw &y'/2g Z; Z. wo(Y)exp[-on(y')] Vy! sin w,
J /
where now: g = Ay‘Z: vy exp[-.;«wo(y)‘,.
” 4

Finally, when y is zero, equation (23) may be integrated over

the angle w, and the following pair of equations result:

1}

(24 w(y)/12e = Andy'/2g % vo(¥)exp[- # o (y") ¥y' sin o,
y> 0.

Ay"/gr%; wo(yl) exp[.x‘gwo(yt)]./yt) y = O.

(25) wq(y)/12¢e

In the above summations, the range of summation was taken
to be a cell whose volume is equal to the specific volume of
the liquid. Thus, the upper limit is given by y,= (IUum/2) =
0.30544 for a face-centered cubic lattice. The interval was
divided into tén values of y, ten values of y', and eighteen

values of we The order of summation being first over the angle,
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then over y!', for each value of ye. The values of g and the
summation coefficients used are given in Table I1II.

'Replacing w,(y) by wy(y) as calculated by the above
method, and repeating the process yields wa(y), etc. In this
manner values of wy(y), wa2(y), and w3(y) were calculated with
results as shown in Figure 1J.

For additional aecuracy extra care was taken near the
origin where the function behaves approximately as the square
root of ye. The region between y = 0 and y = .03 was subdivid-~
ed into smaller regions, since it is in this region that the
most Important values of the function are obtained, the ex-
ponent rapidly dying off at larger values of y. The results
of this calculation are shown in Figure III.

The rapid rising of the curve for small values of y!' as
indicated in Figure III causes w(y) to increase in each iter-
ation, finally approaching infinity everywhere.

An Investigation of the effect of superposing a rigid-
sphere potential upon the Lennard-Jones potential was con-
sidered. However, as shown in Figure IV, the hard-shell dia-
meter is almost identical to the free volume diameter, and the
effect of this superposition is to mullify the Lennard-Jones
potential. The results so obtained then}become identical with
those of Wbod.27

Only nearest neighbors were considered in the calculaticnSe
However, the function was evaluated at three points for three

shells of nelgnpors, ushing ek foon the enrve for wal(y)e. TihiE

27. We We "IOOd, OPe eite pollo
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results are in extremely close agreement with the curve for
one shell. This is in agreement with results as published by

28 Their results show that the inclusion of

Buehler, et al.
second and third shells is negligible except at high density.
The summations were performed using the trapezoidal rule.
For comparison, graphs of wy(y) versus w, and wyq(y) versus y!
are given in Figures V, and VI, respectively.
As a check on the computational accuracy the value of g
for wy(y) was compared with values as listed by Buehler et al.,

and found to be in excellent agreement.29

28. Buehler, Wentorf, Hirschfelder, and Curtiss, J. Chem. Phfs.,
18, 1485 (1950).

290 Ibid.



TABLE I

The wvalues of the parameters used:3o

T~ = 3,45 Angstroms
€ = 1.647 X 10~ Ergs
v = 1.33
T = 0.90
TABLE TI
2w = 00,1745 Radians
Ayl = 0,03
g awsyt/2g ay'/g
wy  2.60% X 1073 1,005 11.521
W, 1.520 X 10~7 EIRARA) 1974

300 Je Corner, Transe. Faraday SOC., _;_)"1"_’ 91"" (19)'('8)0
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CONCLUSION

The Kirkwood integral has been iterated and found to
diverge for liquid Argon, using the Lennard-Jones type pot-
ential, and parametric values as listed in Table I. This
divergence appears to be due to the rapid rising of the
iterated curve at low values of y where the function varies
2lmost linearly in re. This is in contradiction to accepted
theory which states that small displacements from equilibrium
give rise to harmonic motion requiring a parabolic potential.

It seems that a correction term added to the Lennard-
Jones potential could eliminate this effect. One possibility
would be to superpose a rigid sphere potential using a dia-
meter smaller than the actual collision diametere. There is
no physical justification for arbitrarily choosing this dia-
meter however, and no way of determining the proper value to
chooses One iteration was performed using a collision diameter
equel to one-half the actual wvalue with a resultant lowering
of the curve of wy(y) below that of w,(y)e. Apparently this
value causes the function to approach zero everywhere, although
this was not verified. The above results would seem to indicate
a suitable wvalue of the collision diameter lying between the
true value and one-half the true value.

An alternative approach would be to consider a different
cells perhaps the dodecahedron of Buehler, which appears to be
the most appropriate cell from the physical viewpoint. However
the calculations become prohibitive for non-spherically symmet-
ric potentialse.
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SUMMARY

The iteration of the Kirkwood integral was performed
using the Lennard-Jones (6-12) potential, for Argon at =z
temperature of 110°K, with a density of 1l.38% gm/ccg two
iterations being sufficient to show that the integral diverg-
€S.

As a check on the calculations the walue of g, equation
(23) was compared with the values computed by Buehler, et 2al,
and found to be within the proper range of valuese.

A probable source of the divergence is given, with sever-

a2l possibtle methods of eliminating the causee.
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