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INTRODUCTION 

A liquid or a dense gas may be regarded either as a very 

imperfect gas in which multiple collisions are frequent or as 

a distorted crystal. in which the long range order has been 

lost. The crystal-like approach has not led to formal. solut­

ions, but it has led to several approximate treatments which 

can be used to give numerical resul.ts. 

The tvro main types of approaches which have been used 

are: the cell theo-ries, in \'Ihich the liquid is regarded as 

a distorted crystal with one molecule located at or near each 

lattice point; and the hol.e theories, in whieh it is realized 

that liquids differ from crystals in that some of the lattice 

sites are vacant. 

In the cell theory a solid composed of molecules Without 

internal degrees of freedom is pictured as a set of particles 

executing small vibrations about their equilibrium positions. 

The partition function o-:f such a syst.em is the product of 

harmonic oscillator partition functions. In the Einstein 

approximation each of the molecules is pictured as vibrating 

independently in that field which would be present if all 

the neighboring molecules were at their equilibrium positions. 

To this appro:x:l.mation all the vibration frequencies are the 

same, and the partition function for a system of N particles 

is just the product o:f N identical factors.1 

]... R. H. Fowler and E. A. Guggenheim, Statistical Thermo­
dynamics, Cambridge University Press, (1.949). 
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The concept of small. vibrations is not va.I.id in liquids. 

Ho1trever, sine~ the specific heat of a material in the l.iqu.id 

phase just. above the melting point is almost the same as that 

for the solid phase, it is tempting to retain the idea of the 

molecule moving in the force field which would exist if all 

the neighboring molecules were at their mean positions. 

There have been two major developments of the ce11 theor­

ies: that of Eyring2 and his colleagues and that due to 

Leonard-Jones and Devonshire3. Both these groups of invest­

igators established their theories o:f the liquid state by­

means of well-founded physica~ intuition. The basic express­

ions which were the starting point. for their researches have 

been justified by Kirkwood,4 who has shown rigorously what 

assumptions are inherent in both theories. Kirkwood, star~ 

ing from the general principles of statistical mechanics and 

using certain well defined approximations, expresses the 

Gibbs configuration integral as a sum of integral.s correspond­

ing to single and mul.tiple occupancy of the cells of a refer­

ence lattice. The integral. corresponding· to single occupancy 

is then evaluated with the approximate probability density, 

expres.sed as a product of functions of the coordinates of 

individual molecules, which leads to minimum free energy under 

2. H. J • Eyring and o·. Hirschfelder, J • Phys. Chem. 41., 250 
(1937) 

3· J. Lennard-Jones and A. Devonshire, Proc. Roy. Soc. A163, 
53 (1937); ~65', l (1.938). 

4-. J <> G. Kirkwood, ;r. Chem. Phys., ~' 380 (195'0). 
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the restraints o:f constant temperature and volume. The min­

imization of the :free energy gives an inte·gra1 equation :for 

the probability density within each ceJ.l o:f the lattice. A 

:first approximation of the solution of this equation yields 

a partition f'unction identica1 With that of' the Lennard-Janes 

Devonshire free vol.ume theory'. If convergent, an iteration 

of Kirkwood's integral equation might. provide an improvement 

on the Lennard-Janes Devonshire theory. 

The purpos-e of this· research is to determine whether or 

not the iteration o:f Kirkwood's integral. equation is converg­

ent for· 1iquid Argon. 
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REVIEW OF LITERATURE 

The equations o:f state of van der WaaJLs5 and others were 

success:ful in accounting- :for the eri tiea.I phenomena of gases 

and the forms of temperature isotherms bel.ow the cri tiea]. 

temperature. These theories were based on arguments which 

are valid onl.y f'or gases of I.ow con centra t:ton where binary 

encounters are predominant, hence they fai~ for gases at hi.gh 

densities such as o"EJtain near the critical. point. 

There were also severa~ theories of the crystal state, 

based on various· s ·imple models, the most no:table being the 

Einstein mode]., and the Debye mode:t.6 Eyring? dei"'ined the 

entropy· o:f fusion as the inerease o:f entropy due' to the fact 

that·. in the solid state the motion of the individua~ mol.ec-

ules is restricted to· the corresponding indi vidua:t cel.ls, 

v!hereas in the liquid each atom can be found in any cell.. 

This focuses attention on. the essential. difference between 

solids and liquids~ , namely that. a so.Iid possesses :long range 

order while a liquid has on1y short. range order. The fundament­

aL. factor which determines the amount· o:r disorder i.n a l.iquid 

is the volume, since at the fusion point the liquid di:f:fers 

from the crystai only by its larger volume; this· extra vol.ume 

being denoted as its "free vol.ume wr. 8 

5. R. H. FOWLER and E. A. Guggenheim, op. cit~., P'•l.• 

6. Ibid. 

7• If. :r. Eyr:tng, J"'. Chemo Phys., ~' 283 (1936)·. 

B. ;r. Frenkel, Kinetic Theory o:f Liquids, London, ox:rord 
University Press, Ct947). 
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The first attempts to give a description of liquids with 

the free volume concept were made by Eyring· and Hirschfe1derJ 

However, they used the :r:ree volume theory to correlate the 

liquid properties with ~ther properties. Leonard-Jones and 

Devonshire (LJD) ,1.0 on, the other hand, used the :rree vo·:tume 

concept ta explain the properties of the liquid state in 

terms of the intermoJiecu.l.ar potential..s. 

In the. LJ1) theory each moleeul.e is confined to move in. a 

cell around one o:f the ].attica points o:r a virtual. cubic face­

centered. lattice with a totai number of Iattice sites equaL 

to the rmmber of molecuies, N, the vo1ume per ce11 being V/N. 

The :field in 't<l.hich ea.ch molecule moves iD· its ce1J. is the 

molecu.Jlar fieid of the surrounding molecul.es averaged over 

all directions, and the partition !'Unction of' the whole as­

sembly can be expressed as a product of' the partition funct­

ions of the ~dividual molecules. (This excludes mu1tiple 

enccrunters, an approximation ~mich is· more appropriate the 

higher the density.) It is rurther assumed that each molec­

ul.e moves on the average in the same fiel.d and is eon:fined to 

the same volume. At sufficiently high densities one can 

negiect the possibi~ity of migration as being an infrequent 

even~ compared with the time spent in any given cell. 

9' ~ :r. Hirs·ch:fe:tder, D. Stevenson, and K. Eyr±ng, :r~ Chem. 
Phys., Z, 896 (1937) ~. 

10. :r. Lecnnard-Jones and A .. Devonshire, op·. cit., p·~~. 
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~though the LJD cell mode~ gives a reasonable picture o~ 

molecular environment at: high densities, it becomes increas­

ingly innacura.te as the cell size 1nereases·. 11 At 1.ow densi­

ties restriction to cells vrill prevent collisions occuring 

and the method gives no second vi rial coe~fic·ient .• 

An attempt to extend the cell method to JLow densities was 

made by Bueh:t.er et a1...12 In addition to the model us·ed by LJD 

which he ealls the "soft eenter model", Buehler considers 

another mode~ in vmiCh the wandering molecule moves in the 

~ield of molecul.es fixed at the centers o:f neighboring eells 

and one fixed at the center o:f the e·ell in question. This is 

called the "hard center m0del". The ari thmetie mean o:f the 

two :f'ree volwnes is then used to construct. the partition :funct­

ion. This method reduces to that of L.JD a.t high densities and 

gives the correct second virial coefficient at lovr densities. 

No theoretical justification is given ~or the averaging process. 

Although it is kn.o'm that the conmnm.al entropy increases 

from zero to "k" per molecule as the volmpe increases to in-

fimity, no satisfactory theory of the point at which it be­

comes e~feetive has been advanced. Originally it was suggest-

13 ed by Hirsch:fe1.der, Stevens·on and Eyring that it becomes 

available at the melting point. This hypa·thesis has been 
I4 examined critically by J'. A. Pople, who presents an appropriate 

11·. 

12'. 

13. 
14. 

~r. A. Pople, PhiT. Mag. !:±g, 459 (195'1). 

Buehler~ 'Wen~rf, Hi.rseh:f'elder, and Curtiss, J. Chem. 
Phys., 1;2, 6I (1951)·. 

:r. Hirschi"el.der et al, op'. cit., p'. ;:. 

J'. A. Pop1e, Phil. Hag. !±g, 459 (1951.)-. 
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method o:f calculating the comunal entropy of an ensemble o'£ 

monatomic particles. Pople divides the available volume into 

cells a la LJD, and the comnnm.al f'ree energy is expressed in 

terms of a set of parameters related to the probability- of 

various multiple occupancies. Application to an as.sembly o:r 

rigid spheres leads to the conclusion that the communal entropy 

does not become appreciable until the avaiiab1e volume is 

over five times that of a c1ose-packed assembly. This suggests 

that., :for more accurate potentials, the communal entro·py is 

practically zero in the solid and liquid states.15 

One of the di:r:ficulties o:f the LJD theory is that it fails 

to allow :for vacant sites in the lattice. It has long been 

realized that there are many holes in the lattice structure 

o:f Jiiquids:·. 16 Following an idea originally due to Cernuschi. 

and Eyring, the theory o:f LJD has been generalized by 

Rawlinson and Curtiss,17 and others, to include the possibi2-

i ty o:f empty lattice sites in the liquid state. However, 

these theories all hinge on linear approximations of the log­

arithm o:f the generalized free volume (i.e. that free volume 

wh ich aceotmts for neighboring sites which are vacant.), an 

approxima~ion which does not describe well the dependence of 

the generalized :free volume on the fraction of nearest neighG<>r 

15. J. A. Pople, op. cit., p.6. 

16. ;r. s. Rawlinson, and c .. F. CUrtiss, J. Chem. Phys., 12., 
1519 (1951). 

17. Ibid. 



sites which are vacant. These theories show little improv­

ment over the LJD treatment. 

8 

The LJD theory invol..ves two types o:f approximations; 

those intrinsic to the :free volume concept, and those inherent 

in the calculations o:f the :free vo1ume itsel:f. Buehler, et 

ai, 1 8 calculated the :free volume :for non-interacting rigid 

spheres taking into account the exact geometry imposed by the 

face--centered eubic packing. The size and shape · are quite 

di:f:ferent :from that o:f the inscribed spheres which correspond 

to the LJD approximation. At high densi t:ies the equation o·:f 

state obtaine·d from the exact treatment agrees well with the 

LJD equat.ion. When the speei:fic v0lume is greater than twice 

the eube o:f the collision diameters, the molecules are no 

longer confined to cages :formed by neighboring molecules. At 

these low densities the i'ree volume concept is ambiguous. 

The equation o:f stat-e depends upon the shape and orientation 

of the cel.Is with respect to the lattice positions of the 

molecules. A particular choice which leads to an equation o:f 

state that at low densities is accurate through the second 

Virial coefficient is given by a dodecahedron :formed by planes 

bisecting the distances from the neighboring molecules to the 

origin. There are other shapes and orientations of the cells 

which would lead to other equations o:f state having this same 

property. 

18. Buehler, Wentor:f, Hirsch:felder, and Curtiss, op. cit., p.6. 



One of the limitations of the LTD theory as pointed 
~9 out by Kirkwo-od. ·is. that a :fi"ree. vo·1ume is- de:fined in terms 

of the. Gibbs phas.e integra1, and the :free vol.ume is then 

calculated from purely geometxieal models vrithout reference 

9 

to the Gibbs theory. Kirkwood begins w2th the general prin­

ciples of statis:tica.I mechanics, and presents a rigerous theory 

of the free vol.ume, and then shows that the LJ'D theory repre­

sents. the first. appFoximation to· a general equation. 

Kirk't-tood developes· a formal.. expres·sion :for the communa~ 

entropy t _erm '\vhich must. be added to; the LJD res1.11t to- allo't-1 

for · the· fact- that- the molecuies are not entirely- conf'ined to 

their· respective cells. This· expression is quite intractable 

and the communal. entropy problem remains. unsolved~ I:r the 

communal entropy is negi.ected, the problem reduces to one of' 

s ·ingle oc·cupancy. Considering this cas.e- further, Kirbrood 

seeks the "bes_t ." solution, (that is, the one that minimizes 

the ~ree energy), based on a self-consistant field appro:xi­

ma.tio-n. The essential :feature. of this approximation is that 

a mo~lecule_ is considered to· move: not in the ins~tantaneous 

field produced by its neighbors, but in· the average fie1d 

produc,ed by its neighbors as they- move: over· their c.ells. The 

self~consistant. feature of the calculation enters through the 

necessity of finding a _ potentia] probability distribution 

f\mction which yields an averaged LJ"D eell potential. that then 

reproduces, through the· Bo1tzman factor, the original 

l9. J. G. Kirkwood, op.cit., p~2. 
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probabi~ity funetion. Kirlrnood obtains an integral equation 

~mich is equivalent to this condition. Although Kirkwood's 

equations formally determine the best solution of the restrict­

ed class of solutions he considers, the accuracy of the self­

consistant field approximation is. open to question. The 

true situation is that each molecule moves in the instantan­

eous field of its neighbors and not in an average or smeared­

out field. 

Taylor20 attempts to take account of this fact by assum­

ing that the configurational probability function for the 

entire liquid is a product of separate functions, one for each 

molecule. Thus Taylor recasts the exact classical. partition 

funct-ion in a form in which the LJ1) potentials appear in 

correction t .erms. The resultinK integrals are analogous to 

those appearing in the conventional theory of an imperfect gas, 

but with the correlation potential playing the role of the 

usual intermolecular p<Ot.entia.l, and the range of integration 

of each male~e limited to its ovm cell, where it is also 

subject to the static LJD potential. A practical method of 

eva.J.uati.on of the integrals is developed, based on power series 

expansions of the factors containing the correlation potentials. 

Single occupancy is not an essential feature of this theory, 

and the allovrance for mul t1ple occupancy leads to the communal 

entropy correction. 

20. w. J. Taylor, J. Chern. Phys., ~' 454 (1956). 
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DeBoer21 generalizes the LJD theory by considering in a 

systematic way the motion of tvro or more neighboring molecules 

in a "cell--cluster" of tl-ro or more neighboring cells, consider­

ed: as one big cell shared collectively by the molecules in the 

cell-cluster. This method solves :tn principle the problem of 

communal entropy and problems related to the correlation of 

the motions, and allows for quantum mechanical treatment of 

exchanges of neighboring molecules. On the basis of this 

concept of the cell-clusters deBoer is able to define a set of 

partial probabilities fo·r n molecul.es in a cell-cluster of n 

cells·. This set of probabilities has as its first number the 

single cell probability of LJ"D, and as its last :number the 

true probability which should be introduced into the partition 

function. The calculation of the partition function of the 

cell-cluster method leads to the difficult combinatorial 

problem of finding the factor for the number of ways of dis­

tributing a given number of cell-clusters of given size and 

shape over the lattice, and in general an· exact so·lution is 

difficult to obtain. 

Woo'Cl22 gives an exact solution to the Kirkwood integral 

for a system composed of rigid s·pheres by considering the face­

centered cubic lattiee and choosing as the cell the dodecahed­

rOn proposed by Buehler et al.. Wood's solution gives zero for 

the integral if the molecule is in the dodecahedron, and inf'in­

i t:y elsewhere. 

21. J. deBoer, Physica £9,, 655 (1954). 

22. W. Ttl. '~ood, J. Chem. Phys., ,gg,, 1334 (1952). 
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Lund23 shows that apparently Woo-d's solution -vTill hold 

for other types of molecular packing where the potential with­

in the cell is uniform and is effectively infinite at the 

boundary, and where the free volume is defined to be: 

(v7- ro) 3 times the lattice parameter, a'• 

The LJD theory has proved to be an effective method of 

treatment of liquids and dense gases, because of its simplicity 

and the fact that it predicts the essential features of the 

condensation process on the basis of the intermolecular 

potential, and from the practical viewpoint provides the best 

estimates of PVT properties for gases and liquids at very high 

pressures and temperatures. 

------------------------------- -----------------------------
23. L. H. Lund, J. Chern. Phys., £Q, 1977 (1952) 



THEORY 

In the LJD model of the liquid, the molecule whose 

partition function is to be determined is considered to be 

13 

moving in its neighborhood under the potential interaction of 

its neighbors, which are assumed to be fixed at their equilib­

rium positions. The volume allowed it by its neighbors is 

defined a s the free volume of the molecule. For mathematical 

expediency in computing the potential due to the neighboring 

molecules, L.TD considered the nearest neighboring molecules 

to be uniformly distributed over a spherical. surface, and 

neglected the effect of all other molecules. KirlGrood, beginn­

ing with the general principles of statistical mechanics, pre­

sents a rigerous theory of the free volume, thus putting the 
- 24 

LJD theory on a firm foundation. 

Let v = Volume of the system. 

T = Absolute temperature of the system. 

k = Boltzman 's constant. 

h = Planl-c 's constant. 

vn = Potential of intermolecular force. 

..6.j = Volume of cell j. 

~ = Free energy of the system. 

Zn = Gibbs phase integra.! in conf'iguration space. 

N = Number of monatomic molecules in volume v. 

mj = Number of molecules in cell j. 

~-------

24. J". G. Kirkwood, op. cit., p·.2. 
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Position vector of jth particle referred to an 

origin in cell j'. 

14-

Rik = Vector from origin of cell i to origin of cell k. 

The classical expression fo-r the partition function of 

an assembly o-:f l'T monatomic molecules is: 

(2) 'Where .3 = J./kT J 

I.f the volume v is spanned by a virtual lattice of N cells, 

~ j, each of' vol.ume .6, the integTal. over v in the configura t­

iou space of each molecule may be expressed as a sum o·f' integra Jls 

o·ver the individual cells: 

(4) 
<-, ~ f6Ji. 1f~~;v,. 

= ~- · '6 · · · e · Tfdv;. 
_i, ~ I .t.,/1 ~ k 

The choice of lattice is arbitrary, and vTill be chosen for con­

venience such that the number of cells is equal to the nunber 

of molecul.es N. The ~ i n tegrals of equation (4) may al.l be 

expressed in terms of integr als of the type Zu (m, • · .mn), where: 

IlL, t" 
(5) Zn (m, • • .mn) = J· ·~ e ~~lJ<lvk. 

Therefore, equation (4) becomes: 

(6) 
, 

Nl0., ~ (m1 • • .mn) I rnns z. 

Nmr, the integral correspond i ng to single occupancy of each 

cell is: 
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(7) 2 c1 ••• 1) 

and: 

(8) 

~n~re: 

(9) ~N = ~ .l.. 2 Cmt •• -mn>12Cl) 
~ m ' • . .,..., ... ..... .., s. 

E 0 

Sigma tal(es into account the "coopera tive" motion and 

contributes the "communal entropy~. It is easil7 shown that 

sigma equal.s one at high density-, and e at lovr density. This 

arbitrary use of sigma equa1s e was assumed by Eyring in his 

vrork and Ieads to his definition of communal entropy. 

The phase integra2 Z (1) is related to the relative prob­n 
ability density in configuration space Pn(I) subject to single 

occupancy by: 

vli th a little manipulation it can be shmm that the equation 

of total ~ree energy is given by: 

Using a n approximation similar to that employed by Hartree in 

the solution of the Schrodinger equa tion for several particles: 
A 

"' fy;crJ (12) pn 
(1) Tir<rs>J Where dv = 1. -

S" ... 
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_>t?ns) depends only on the position of molecule s in cell s 

referred to son e convenient origin in that cell. In this 

approximation the free energy per mole becomes: 
A 4 4/ 

1.6 

Ct3> .A,/RT = };c;>JJJ. y:c-;>dv + Jl/ZJ<.Tfficr-r•> JO lr> pcr•)dvdv,' 

where: E(~) = ~ vcR, j + r,. 
~ _.... 

V(R1 j + r) is the potential. of intermolecular force for a pair 
~ 

of moi ecules, R1 j being a lattice vector joining the origins 

o:r· cell one and cell j. The choice of ?<~) leading to the 

best approximation to the free energy under the given r'estraints 

is that which minimizes A (l) at constant temnerature and n • 

volume. By the me thod of Lagrange Mu l tipliers one obtains 

from equation (13) the following i n t egra l equa tion \rhich deter­

mines the best approx:lmation to Pn(l) in the form of a product 

of functions of the coordinates of i ndividual molecules. 
A 

(14) yr <X:> = {wrr -r'i > exp .:r c <>'( - Ycri" . . 

where : exp (-! .,1, ) = jexp(- .5 "'f"(-;)) dv, 

ftJ = exp J ( d. - yr )J 

w(-;) = E(r) - I) 
Ill A' 

dv' ) 

= f!Ecr- -;., f(;) )P(~)dvdv'. -E 

-I:r )C(r) is sharply peaked in the vicinity oi' the cell 

origin, it may be repla ced by a Dirac Delta Function in zero 

ap-proximation!. Equation (llt) then leads to a f'irst approxi-

mation: 
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y,(-;) ~ 

(15) = "i.-To(r).., 

E = L V(Rtj)J 

= L [ V(R,j 
-· - ~ V(R, j) j. w0 (r) + r) -

~ 

If the sums defining· E0 and w0 (r) are extended only over 

nearest neighbor sites, and the nearest neighbor sum is re­

pl.aced by an integra1 over a sphere or radius equal to the 
~ 

distance betvreen neighbors, w0 (r) becomes identica~ "ri th the 

LJD theory. If convergent, a numerical s·olution of the 

integral (llt) may be obtained by iteration, leading to a 

refinement of the LJD theory. 
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APPLICATION OF THEORY 

For spherical non-polar molecules it has been shm·m that 

the energy of interaction bettreen a pair of molecules can be 

represented satisfactorily by the Lennard-.Jones (6-12) type 

potential, which does not offer the recalcitra tion to numerical 

calculations inherent in the Buckingham type potential. 25 The 

Lennard-.Jones potential can be expressed in the form: 

(16) = 

wbere tJ-" is the rigid sphere diameter, (i.e. the distance of 

closest approach of two molecules which collide with zero 

initial relative kinetic energy.), and E. is the maximum energy 

of attraction of the two molecules, which occurs at a sepa r at-
'lt.. 

ion of r = 2 r. 

The parameters v- and € may be used to define the follow-
26 

ing reduced variables: 

it 
T = kT/C:. = reduced temperature~ 

reduced cell volume. = 

The parametric values used are listed i n Table I. Additional 

simplification of the formulae results from defining the fol lo\-1-

ing dimensionless quantities: 

25. 
26. 

J'. Lennard-.Jones and A. Devonshire, op. cit. p.2 • 

.J. Hirsch.felder, c. Curtiss, and R. Bird, l1olecular 
Theor:z:: of Gases and Liquids, New York, ~.4/iley, (1954) 
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= (1 + y) (1 - y) - 1 • 
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1\.ssur.Jing that the i·Janderer intera cts v.ri th no molE:cules 

farther rer:;.ove d t han the shell of nea r e0 t neighbors, a n d re-

placing the near est neighbor suin by an i ::1tegral over a sphere 

of radius equa l to the distance between neighbors , the 
--~ 

Lelli'1ard-Joncs po t ential 'tv0 (r) defined in equa tion (15) becomes: 

(17) 
j l. l 

cc:: l l(y)/v~~ - 2m(y)/v,.. .J J 

1Jhere c is t he number of nearest neighbors; (c = 12 for Argon). 

In the Kirk'.vood derivation of equation (14) the function 

~r( 1-; - ;"r I ) r epresents t he pai!",Jise i :1teraction force between 

'bvo molecules as indicated in Figura Ia. It j_s easily seen 
....... 

that for r' = 0 this reduces to the original Lep..nard-Jones value . 

To evaluate I~- -;,I it is easier to use f i gure Ib, from vlhich 

it is seen that : 

(18) 
--I> • ...> 

'IJhere ro is the angle betvreen r and r'. Thus, from equation (14): 

"' 
(19) l.f/'-(-;) = w,(;;) = J,.w0 (1;-r~l)exp~·~ - "T0 (r_.., ·~dv~ 

Where dv' ::: 2'rrr' 2 sin OJ d.al. dr ' .. 

Also, from equation (11.1-): 



(20) exp[-J«.] = J:'xr,[-J W0 (-;~ 1;.1T1"2 dr, 
I o 

/
Y• 

= 2Tra3 exp[- .~w0 (y}ly dy. 

Def'ining: g = ['!;Y exp[- ,>' Wo(~)J dy, equation (20) may be 

written: 

Therefore, equation (]9) may be 

'IT '1· 

(22) w1 (y) = 12fi/2g / J W0 (Y) 
0 Q 

expressed in the form: 

20 

Which for the purposes of numerical calculation may be written 

in the form: 

(23) w1 (y) = 12E:Aro ~y'/2g ~ ~ W0 (Y)exp[-,.i W0 (y')],/y• 
' I 

sin w, 

g = ~ y'L t/y- ex.p r_ ~ Wo(y)l . 
'( L I J 

Finally, when y is zero, equation (23) may be integrated over 

the angle Ql' and the following pair of equations r esult: 

(24) w, (y)/12 E: = 

(25) w1 (y)/l2€ = 4 y'/g 1L w (y') exp(-dw (y')l,/y' 
1' 0 ( 0 'J ,I 

y = 0. 

In the above summations, the range of summation was taken 

to. be a c:ell whose volume is equal to the specific volume of 

the liquid. Thus, the upper limit is given by y 0 = (3/4mV2) = 

0.30544 for a face-centered cubic lattice. The interval was 

divided into ten values of y, ten val.ues of y', and eighteen 

val.ues of w. The order of Sl.Uiliilation being first over the angle, 
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then over y 1 , for each value o:f y. The val.ues o:f' g and the 

summation coefficients used are given in Table II. 

Replacing w0 (y) by w1 (y) as ea1cu1ated by the above 

method, and repeating the process yields w2 (y), ete. In this 

manner values of w1 (y), w2 (y), and w3 (y) were ealcu1ated with 

results as shown in Figure II·. 

For additional accuracy extra care was tru{en near the 

origin where the function behaves approximatel.y as the square 

root of y. The region betlveen y = 0 and y- = .03 was subdi vid-' 

ed into smaller regions, since it is in this region that the 

most important values of the :fUnction are obtained, the ex­

ponent rapidly dying of'f at larger va.J.ues o:f y. The resu1 ts 

of th:is ea1cul.ation are shown in Figure III. 

The rapid rising of the curve :for sma.l.l values of' y' as 

indicated in Figure III causes w(y) to increase in each i~er­

ation, finally approaching inf'inity everywhere. 

An investigation of the ef'fect of superposing· a r:lg:td­

sphere potential upon the Lennard-.Jones potential was con­

sidered. Ho\.vever, as sho".-m: in Figure IV, the hard-shell dia­

meter is almost identical to the f'ree vol.ume diameter, and th.e 

effect of" this superposition is to nn1lify the Lennard-.Jones 

potential. The results so obtained then become identical. '\-.ri t;h 

those o:f Wood. 27 

Onl.y nearest neighbors were considered in the eal.culations • 

Ho"t:tever, the function was eval.uated at three points for thre~e 

27. W. w. Wood, op. cit. p.l1. 
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results are in extremely close agreement with the curve for 

one shell. This is in agreement with results as published by 

Buehler, et a1. 28 Their results show that. the inclusion of 

second and third shells is negligible except at high density. 

The summations were performed using the trapezoidal. rul.e. 

For comparison, graphs of w1 (y) versus c.o, and "'' (y) versus y' 

are given in Figures v, and VI, respectively. 

As a check on the computational accuracy the value of g 

for Wt (y) 'vas compared with values as listed by Buehler et al., 
and found to be in exeel.lent agreement. 29 

28. Buehl.er, ~Ientorf, Hirschf'elder, and Curtiss, J"'. Chem. Ptilfs·., 
1[, 148 5 (1.95'0). 

29. Ibid. 



The 

TABLE I 

values of the parameters used:3° 

a- = 3.45 Angstroms 

E: = 4 -14 1.6 7 X 10 Ergs 

v = 1.33 

T = 0.90 

TABLE II 

..6 m = 0~1.745 Radians 

Ay' = 0.03 

g 

1.520 x r.o-5 

~y'/g 

11.~521 

1974 

30. J"·. Corner, Trans·. Faraday Soc., lfl+, 91.4 (1948). 
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CONCLUSION 

The Kirkwood integral has been iterated and :found to 

diVerge :for l.iquid Argon, using the Lennard-Janes type pot­

ential, and parametric values as listed in Table I. This 

divergence appears to be due to the rapid rising o:f the 

iterated curve at low values or· ywhere the function varies 

a lmo·st linearly in r. This is in contradiction to accepted 

theory which states that small displacements :from equilibrium 

give ris·e to harmonic motion requiring a parabolic potential. 

It seems that a correction term added to the Lennard-

.Tones potential coul.d eliminate this effect. One possibility 

\-tould be to superpose a rigid sphere potentia]. using a dia­

meter smaller than the actual collision diameter. There is 

no physical. justi:fication for arbitrariJ.y choosing this dia­

meter however, and no way o:r· determil'li.ng the proper val.ue to 

choose. One iteration was performed using a collision diameter 

equal. to one-half' the actual vaJ.ue '\>lith a resultant lowering 

of' the curve of w1 (y) below that of "'0 (y). Apparentl:y this 

value causes. the fUnction to approach zero everyt•rhere, aithough 

this was not verified·. The above results would seem to indicate 

a suitable val.ue of the collision diameter :lying between the 

true value and one-hal:f the true va.J.ue. · 

An alternative approach worud be to consider a different 

cell; perhaps the dodecahedron of' Buehl.er, which appears to be 

the most appropriate cell from the physical vie";point. However 

the calculations become prohibitive for non-spherically symmet­

ric potentials. 
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SUMHARY 

The iteration o'£ the Kirkwood integral. was performed 

using the Lennard-.Jones (6-1.2) potential, :tor Argon at a 

temperature of ll0°K, with a density o'£ 1.384 gm/e.Cif two 

iterations being ~fieient to show that the integral diverg-

es. 

As a check on the cal.culat:tons the value of' g, equation 

( 23) was compared with the values computed by Buehler, e1: al, 

and f'ound to be within the proper range of values·. 

A probable source of' the divergence is given, with sever­

al possible methods of eliminating the cause. 
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