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ABSTRACT

Given its potential for a large variety of real-life applications, smartphone

crowdsensing has recently gained tremendous attention from the research community.

Smartphone crowdsensing is a paradigm that allows ordinary citizens to participate

in large-scale sensing surveys by using user-friendly applications installed in their

smartphones. In this way, fine-grained sensing information is obtained from smart-

phone users without employing fixed and expensive infrastructure, and with negligible

maintenance costs.

Existing smartphone sensing systems depend completely on the participants’

willingness to submit up-to-date and accurate information regarding the events being

monitored. Therefore, it becomes paramount to scalably and effectively determine,

enforce, and optimize the information quality of the sensing reports submitted by the

participants. To this end, mechanisms to improve information quality in smartphone

crowdsensing systems were designed in this work. Firstly, the FIRST framework

is presented, which is a reputation-based mechanism that leverages the concept of

“mobile trusted participants” to determine and improve the information quality of

collected data. Secondly, it is mathematically modeled and studied the problem of

maximizing the likelihood of successful execution of sensing tasks when participants

having uncertain mobility execute sensing tasks. Two incentive mechanisms based on

game and auction theory are then proposed to efficiently and scalably solve such prob-

lem. Experimental results demonstrate that the mechanisms developed in this thesis

outperform existing state of the art in improving information quality in smartphone

crowdsensing systems.
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1. INTRODUCTION

In recent years, smartphones have become ubiquitous in our lives. According

to 2014 Ericsson’s mobility report [26], 8.4 billion smartphones will be active world-

wide in 2020. These devices are equipped with rich multi-modal sensors, that provide

information such as location, acceleration, temperature, and noise. In the near future,

additional capabilities are envisioned, such as detecting pollution, lighting conditions,

and more. These technological features, have contributed to the emergence of appli-

cations based on a new and promising paradigm known as smartphone crowdsensing∗.

1.1. SMARTPHONE CROWDSENSING

The main idea behind smartphone crowdsensing is to enable ordinary citizens

to actively monitor various phenomena pertaining to themselves (e.g., health, social

connections) or their community (e.g., environment). For example, the cameras on

smartphones can be used as video and image sensors [7], the microphone can be used

as an acoustic sensor [20], and the embedded global positioning system (GPS) receiver

can be used to gather accurate location information, while gyroscopes, accelerome-

ters, and proximity sensors can be used to extract contextual information about the

user (e.g., if the user is driving [67]). Further, additional sensors can be easily inter-

faced with the phone via Bluetooth or wired connections (e.g., temperature sensors

[81]). Real-life applications, which can take advantage of both low-level sensor data

and high-level user activities, range from real-time traffic monitoring applications like

∗For the sake of generality, in this thesis the term smartphone crowdsensing will be used to desig-
nate applications where participants voluntarily contribute sensor data for their own benefit and/or
the benefit of the community by using their phones. Such a notion therefore includes mobiscopes
[1], opportunistic sensing [10], and equivalent terms such as mobile phone sensing, participatory
sensing [47], or simply crowdsensing. It also covers specific terminologies focusing on particular
monitoring subjects, such as urban sensing [10], citizen sensing [9], people-centric sensing [10], [11],
and community sensing [45].
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Nericell [63] or Waze [87] to air [19, 59, 68] and noise pollution [59, 73], social net-

working [62], crime monitoring [12], smart parking and so on [30, 66, 67, 69, 92]. An

excellent survey of applications based on the smartphone crowdsensing paradigm may

be found in [42].

Although a clear consensus on the best architecture for smartphone crowd-

sensing systems has not been reached yet, the majority of the existing smartphone

crowdsensing applications utilize a centralized cloud-based architecture, depicted in

Figure 1.1.

Users Sensing application

SCP

Figure 1.1. Smartphone crowdsensing architecture.

In particular, volunteers† use mobile phones to collect sensor data and submit

via wireless data communication links to a smartphone crowdsensing platform (SCP)

located in the cloud. The crowdsensing tasks on the phones can be triggered manually,

automatically, or based on the current context [17]. On the SCP, the data is analyzed

and made available in various forms, for example, graphical representations or maps

showing the sensing results at an individual or community scale. The results may

be displayed locally on the users’ mobile phones or accessed by the broader public

†In this thesis, we will use the words “users”, “participants”, and “volunteers” interchangeably
to indicate a person contributing to the smartphone crowdsensing campaign.
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through web-portals, depending on the application needs. Three are usually the

components of a smartphone crowdsensing system.

• The main component of the system are the users, whose task is to use their

smartphones (and in particular, the sensing application) to capture different

kinds of sensor data, such as location, images, sound samples, accelerometer

data, biometric data, and barometric pressure. However, opinions about the

sensing area or an environmental phenomenon, for example, traffic status or

weather information, may also be provided by the users. In practical implemen-

tations of smartphone sensing systems, users typically register with the system

by providing using a username and password [87] that allows their contributions

to be uniquely identified.

• The sensing application (app), deployed on the users’ smartphones, is dis-

tributed through common application markets like Google Play or App Store,

or is retrieved from a mobile cloud computing system [27]. It is responsible for

providing the users with a friendly user interface for data acquisition and visual-

ization. In particular, data acquisition may be triggered by the users themselves

or may be elicited by the app, on a one-time on-demand basis or periodically.

• The backend component of the system is the smartphone crowdsensing platform

(SCP), responsible for the filtering, elaboration, and redistribution of sensed

data, as well as coordinating every operation performed by the system. This

component is usually implemented by a set of servers dedicated to the processing

of sensed data [74]. The PSP also ensures efficient storage and elaboration of the

sensed data coming from the users, which may be stored in relational databases

[32], or databases specially adapted to the management of sensor readings, for

example, sensedDB.

Along with the main elaboration system, the SCP might leverage a reputation

system and an incentive mechanism. Briefly, the target of a reputation system is
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to predict the reliability of the data sent by the users based on their past behavior

[36, 84] so as to filter out unreliable reports. Conversely, the target of an incentive

mechanism is to encourage participation of users by appropriately rewarding the users

for their contributions to the smartphone crowdsensing campaign. Since this work

will mainly focus on these two components, the state of the art research regarding

reputation systems and incentive mechanisms for smartphone crowdsensing systems

will be surveyed in details in Section 2.

Smartphone crowdsensing provides a significant number of advantages with

respect to previous sensing paradigms (such as, for example, wireless sensor networks):

• The lack of a fixed sensing infrastructure dramatically eases deployment and

maintenance costs associated with the administration of the sensing system;

• The sheer number of smartphone users, coupled with the ubiquitousness of WiFi

and 3/4G cellular-based Internet connectivity, allows a level of spatio-temporal

sensing coverage impossible to achieve in previous sensing paradigms;

• The presence of people in the sensing loop provides the opportunity to acquire

opinions along with sensor data, allowing the emergence of complex mobile

applications such as real-time traffic monitoring [82], [87], [95];

• The widespread availability of software development tools and markets for

smartphone applications (apps) makes development and distribution of smart-

phone crowdsensing software relatively easy.

1.2. MOTIVATION AND CONTRIBUTIONS

The most distinctive characteristic of smartphone crowdsensing is that it relies

completely on the voluntary commitment of participants to submit up-to-date and

reliable information to the SCP. This implies that one of the key factors for the

success of smartphone crowdsensing applications is determine, enforce, and optimize

the Information Quality (IQ) of the reports sent by participants. IQ is often defined as



5

a measure of the value which the information provides to the user of that information

[8]. In this context, “quality” is often perceived as subjective and the quality of

information can then vary among users and among uses of the information. For

this reason, the definition of IQ for smartphone crowdsensing still remains an open

research issue.

In order to deal with the challenging problem of optimizing the IQ in smart-

phone crowdsensing, existing work has so far mainly focused on addressing two specific

issues that pertain to such broader research topic:

• Estimate and optimize the reliability of the sensing reports. A number of

reputation-based frameworks [37, 74, 85] have been recently proposed to ad-

dress this issue. Reputation-based systems associate to each user a reputation

level, which is estimated and updated over time. The rationale is to improve

the reliability of information by filtering out reports coming from users hav-

ing low reputation, as such reports are most likely to be unreliable. Another

approach that has been followed is to use trusted platform modules (TPMs),

which are hardware chips that reside on the participants’ devices and ensure

that the sensed data is captured by authentic and authorized sensor devices

within the system [22, 33, 76].

• Increase the amount of sensing reports received by the participants over time.

A significant number of incentive mechanisms, mostly based on game theory

citeTadelis-game2008 and auction theory [46], have been proposed [75] to in-

crease the amount of sensing reports received by users. The rationale is to

formulate the incentivization problem as an optimization problem, in which the

mechanism selects the participants and computes their reward so as to maxi-

mize an objective function defined before (e.g., sensing coverage or information

reliability). Rewards usually are given to the users proportionally to their con-

tribution to the smartphone sensing campaign. For example, rewards made may
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be based on submitting a report close to a desirable location [38], how a report

contributes to the social welfare [55, 79], the number of reports that a user sent,

or the time dedicated to collecting and submitting sensing reports [89]

A number of research issues, however, still remain. In particular, the main

issue of existing reputation-based frameworks is that user reputation is updated by

considering contextual factors, such as location and time constraints. Given user lo-

cation and timestamp of reports are easily forgeable quantities, the solution already

proposed may not perform well in practical smartphone crowdsensing systems, where

malicious users can voluntarily tamper with their GPS location and timestamp of

reports. Moreover, existing incentive mechanisms assign sensing tasks irrespective of

the mobility of users over the sensing area. This approach oversimplifies the prob-

lem formalization and subsequent analysis, but may not be applicable to real-world

sensing scenarios where sensing tasks are spatio-temporal constrained. These reasons

motivated this work and the following novel contributions to the state of the art.

• A novel Framework to optimize Information Reliability in Smartphone-based

participaTory sensing (FIRST) is developed, which leverages the collective ac-

tion of mobile trusted participants (MTPs) to securely assess the reliability

of sensing reports. FIRST mathematically models and solves the challenging

problem of determining before deployment the minimum number of MTPs to

be used in order to achieve desired classification accuracy, by also leveraging

a novel algorithm based on image processing. FIRST was evaluated through

experiments leveraging real-world mobility traces of taxi cabs in San Francisco,

Rome, and Beijing, and through an implementation in iOS and Android of

a system leveraging human participants to monitor the attendance to various

events at the IEEE PerCom 2015 conference. Experimental results demonstrate

that FIRST is remarkably effective in optimizing information reliability by re-

ducing the impact of the three considered security attacks, while outperforming
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state-of-the-art literature by achieving on the average a classification accuracy

of 80% in the considered scenarios.

• The problem of maximizing the likelihood of successful execution of the sensing

tasks when participants having uncertain mobility compete for offering their

sensing services is studied. The problem is cast in the context of truthful budget-

feasible reverse auction design with submodular objective function, where the

crowdsensing system is the buyer and the participants are the sellers. After

demonstrating that the problem is NP-hard, two incentive mechanisms based

on game theory are proposed. To deal with a large number of participants,

an implementation on the well-known MapReduce framework is provided. The

mechanisms were evaluated by considering a road traffic monitoring application

that uses real-world mobility traces of taxi cabs in San Francisco, Rome, and

Beijing. Experimental results demonstrate that the mechanisms outperform the

state of the art by improving its performance of 30% and are highly scalable,

obtaining on the average 12x speedup in the considered experimental setup.

1.3. ORGANIZATION

A survey of state-of-art research work pertaining to this thesis is presented

in Section 2. Section 3 presents FIRST, a framework for optimizing IQ in smart-

phone crowdsensing with minimum amount of mobile trusted participants. Section 4

presents the two auctions.
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2. AN OVERVIEW TO SMARTPHONE CROWDSENSING

Smartphones are becoming more and more central to our everyday lives. While

early mobile phones were designed to primarily support voice communication, tech-

nological advances helped reduce the divide between what we consider conventional

phones and computers. As this technological gap further diminished, a new paradigm

is fast emerging: people are beginning to replace their personal computers with smart-

phones. The mobility and power afforded by smartphones allow users to interface

more directly and continuously with them more than ever before; smartphones rep-

resent therefore the first truly ubiquitous mobile computing device.

A critical component that opens up smartphones to new advances across a

wide spectrum of applications domains is founded on the embedded sensors in these

devices. Sensor enabled smartphones are set to become even more central to people’s

lives as they become intertwined with existing applications, such as social networks

and new emerging domains such as green applications, recreational sports, global en-

vironmental monitoring, personal and community healthcare, sensor augmented gam-

ing, virtual reality, and smart transportation systems. As such, the global density of

smartphones will provide ground breaking ways to characterize people, communities,

and the places people live in as never possible before.

The advance in smartphone-based applications is enabled not only by embed-

ded sensing, but by a number of other factors as well, including, increased battery

capacity, communications and computational resources (CPU, RAM), and new large-

scale application distribution channels – also called app stores, such as Apple App

Store, Google Android Market, Nokia Ovi Store, to name a few. By mining large

scale sensing data sets from applications deployed on smartphones through the app

stores and using machine learning techniques to analyze the data, it is now possible
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to discover patterns and details about individuals and ensembles of people not pos-

sible before. As a result, real-time and historical sensing data from communities of

people can be leveraged to make inferences at scale, and advancing the design of new

people-centric sensing systems across many diverse application domains [30, 80, 88].

Although a clear consensus on the best architecture for smartphone crowd-

sensing has not been reached yet, most of the commercially available smartphone

crowdsensing application employ an architecture depicted in Figure 2.1.

This figure illustrates the main activities of the sensing and incentivization

processes in a smartphone sensing system. Since this collection of activities is per-

formed again and again over the lifetime of the sensing campaign, henceforth, we will

use the term sensing round to refer to the execution of the following four steps.

Sensing task advertisement. In this phase, the smartphone crowdsensing plat-

form (SCP) communicates to the users the list of sensing tasks that need to be

executed during the current sensing round. In particular, each sensing task specifies

a series of requirements, such as the sampling rate requested [43], minimum sensing

time [41], maximum distance from specified location [83], or task expiration time

[48, 94]. For example, a sensing task might be “report the current traffic status near

the Golden Gate bridge by 5:00PM”. Additional parameters may be sent, such as

quality of information requirements [2, 50]. Sensing tasks can be advertised statically

[24, 28, 89] or dynamically [29, 74]. In some cases, depending on the application,

tasks can be retrieved by the users asynchronously, e.g., each day [49], or whenever

requested by the participants [48].

Private information disclousure. After the advertisement of the sensing tasks,

the SCP collects information about the participating user, often called the type [89]

of the user, which can be leveraged by the SCP to make a choice regarding the

scheduling of sensing tasks. For example, users may supply a bidding value, which is

included in the user type for use in auction-based incentive mechanisms. The SCP
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may collect temporal information about the user, which can be used to determine

the user’s availability to perform sensing services [34]. The SCP may also acquire

information regarding the characterization of the skills of a person [52, 54] and the

incurred cost for the required sensing services, for example, privacy loss [23], energy

consumption, or mobile data charges [55].

Users SSP

Sensing task advertisement

Private information disclosure

Sensing task assignment

User selection
Task scheduling

Execution of
sensing task

Data transmission
Data filtering

Reward calculation

Reward assignment

Figure 2.1. Sensing and incentivization activities within a sensing round.

User selection and Task scheduling. After receiving private information de-

scribing the users, the SCP selects a subset of users that will submit the sensed

information to the SCP, and schedules the sensing tasks for each user. For example,

users might be selected according to their geographical position [28, 56, 93], or accord-

ing to the submitted bid [89], cost of sensing services [24], sensing effort [52]. In case
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a reputation mechanism is used, users might be selected according to their reputation

value [84, 86]. Furthermore, the SCP may schedule the sensing tasks according to the

temporal availability of the users [15, 29].

Execution of sensing task and data transmission. After being selected and

instructed on the sensing task to execute, a user is allowed to begin performing

the sensing service using the sensing application. The sensing application may be

designed to assist in collecting data according to one of the following sensing modes:

manual, automatic, or context-aware [17]. Data collection might also be triggered by

leveraging the context, occurring upon the detection of an event or condition (e.g.,

clapping of hands, as in [7]). The sensing application handles the transfer of the sensed

data from the smartphone to the SCP, making use of communication infrastructure

available to the mobile phone, such as WiFi or 3G/4G connectivity. For example,

the sensor readings can be transmitted to the server using SMS or TCP connections

[32], remote procedure calls [62], or web interfaces [27]. Recently, opportunitistic

forwarding coupled with data fusion has been proposed as a viable method for data

transmission [56].

Data filtering and Reward assignment. In this phase, unreliable data coming

from the selected users is filtered according to the perceived Information Quality (IQ)

of the reports themselves. If a reputation mechanism is used, the reports are filtered

based on the reputation score of the user submitting the sensing report [84, 85, 86].

Users are rewarded for their services, usually according to the time dedicated to the

sensing services. The information quality contained in sensing reports might also be

a parameter to decide the amount of reward to assign to users [74].
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3. THE FIRST FRAMEWORK

As discussed earlier, the inherent collaborative nature of smartphone crowd-

sensing implies that its success is strictly dependent on the reliability of the informa-

tion sent by the participants. However, it is well recognized that participants may

voluntarily submit unreliable information. For instance, participants may be mali-

ciously aimed at degrading the received service to the other users of the application

by conducting security attacks. In March 2014, to give an example, students from

Technion-Israel Institute of Technology successfully simulated through GPS spoofing

a traffic jam on Waze that lasted hours, causing thousands of motorists to deviate

from their planned routes [6]. These (and similar) attacks are made extremely easy by

smartphone applications (apps) like LocationHolic or FakeLocation [51], which allow

participants to spoof their current GPS location.

To ease the impact of malicious participants, a limited number of mobile trusted

participants (MTPs) may be employed to help build reputation scores in a secure

manner, and thus ‘bootstrap’ the trust in the system [13]. Specifically, MTPs are

participants that are hired by the sensing application to periodically generate reliable

reports that reflect the actual status of the event that is being monitored around

their location. This methodology is being successfully used in the National Map Corps

project [58] developed by the U.S. Department of Geographical Survey (USGS), where

MTPs (in this case, USGS employees) are employed to validate crowdsourced data,

such as the exact location of schools and cemeteries∗. MTPs are also used in the

Crowd Sourcing Rangeland Conditions project [40], where Kenyan pastoralists are

recruited as MTPs by researchers to validate sensed data regarding local vegetation

conditions. The advantage of using MTPs with respect to existing approaches is the

∗Website at http://nationalmap.gov/TheNationalMapCorps/

http://nationalmap.gov/TheNationalMapCorps/
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capability to tackle malicious and unreliable behavior by building reliable reputation

scores, since MTPs are trusted entities. However, MTPs also inevitably represent

an additional cost for the smartphone crowdsensing system, as MTPs need to be

recruited.

In this section, the following questions will be investigated:

• What is the minimum number of MTPs we need to employ to ensure that the

information quality will remain above a certain threshold?

• How does the mobility of the MTPs affect the optimum number of MTPs

needed?

• What is the impact of non-trivial security attacks on the information quality

when MTPs are employed?

To answer these questions, the MTP Optimization Problem (MOP) is formu-

lated, which aims at minimizing the number of MTPs deployed (to minimize hiring

costs) while guaranteeing the desired accuracy in classifying the collected reports as

reliable or unreliable. However, several aspects make the MOP solution extremely

challenging. For example, formalizing the relationship between the number of MTPs

deployed and the resulting information reliability is significantly complex, since the

latter is heavily influenced by the mobility of MTPs and other users. This motivated

the following contributions.

• After describing the system architecture, a novel Framework to optimize In-

formation Reliability in Smartphone-based participaTory sensing (FIRST) is

proposed, which has three main components. A probabilistic model, called

Computation of Validation Probability (CVP), calculates the probability that

a user report is validated as a function of the number of MTPs deployed and

user mobility. A novel image processing algorithm, named Likelihood Estima-

tion Algorithm (LEA), leverages geographical constraints of the sensing area to
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provide an approximation of the probability that a sensing report will be val-

idated. Finally, an optimization algorithm (MOA) efficiently solves the MOP

by using the results from CVP and LEA, and computes the minimum number

of MTPs required to achieve the desired classification accuracy.

• The performance of FIRST is extensively evaluated by considering a smartphone

crowdsensing (SC) application for monitoring road traffic, where real-world mo-

bility traces[4, 72, 91] are used to emulate the mobility of participants. For com-

parison purpose, the state-of-the-art approaches [37, 74] are implemented. To

test their performance, three security attacks previously defined in [64] are con-

sidered. Experimental results demonstrate that FIRST outperforms the state

of the art and achieves high classification accuracy with relatively low number

of MTPs, and is able to tackle effectively all the three considered attacks.

• The performance of FIRST is further evaluated on a practical implementation

of a smartphone crowdsensing system, which was conducted at the IEEE Per-

Com 2015 conference. In this experiment, an app (for both iOS and Android

devices) was designed, which was distributed to the interested participants (i.e.,

volunteers) at the conference. These volunteers sent reports regarding the con-

ference participation, acting as users of the smartphone sensing system. Results

show that FIRST outperforms previous approaches and achieves on the average

a high classification accuracy of 80%.

The section is organized as follows. Section 3.1 introduces the system model

and the MOP. Section 3.4 presents the FIRST framework and its CVP, MEA, and

MOA components, while Section 3.5 presents the experimental results and Section

3.7 draws conclusions.
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3.1. SYSTEM MODEL

The smartphone crowdsensing architecture taken into account (depicted in

Figure 3.1) consists of a smartphone crowdsensing platform (SCP) which can be

accessed through 3G/4G or WiFi Internet connection. The data collection process

can be summarized as follows. First, participants download through common app

markets like Google Play or App Store the smartphone crowdsensing app, which is

responsible for handling data acquisition, transmission, and visualization (step 1).

1

App
Reception

2

Sensing
Request

3

Sensed
Data

4

$$$

Smartphone Crowdsensing
Platform

(SCP)

· · ·· · · · · ·

Participants

Figure 3.1. System model for the FIRST framework.

Then, the SCP sends (periodically or when necessary) sensing requests through

the cloud to registered participants (step 2). The participants can answer such re-

quests by submitting their sensed data (step 3), and eventually receive a reward for

their services (step 4). Hereafter, the words “participant” and “user” will be used

interchangeably.
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As far as the sensing application is concerned, it is considered a sensing sys-

tem in which the phenomenon being monitored is (i) quantifiable, (ii) dynamic (i.e.,

varies over time), and (iii) not subject to personal opinion. This includes phenomena

measurable with physical sensors, for example, air/noise pollution levels [20], but also

quantities that can only be measured by humans, such as occupancy level of parking

lots [66], gas prices [21], traffic events (e.g., car crashes and traffic jams) [87], and so

on. Furthermore, it is assumed that the range of the sensing quantity being monitored

may be divided up into intervals or categories, which are specific to the smartphone

crowdsensing application but are properly defined before deployment. For example,

in a gas price monitoring system, the range of possible values could be from $2 to

$3 dollars per gallon, divided into intervals of 10 cents each. In a traffic monitor-

ing application, a different category for each traffic event (e.g., “Car Crash”, “Road

Closure”, “Traffic Jam”, and so on), like in the Waze app [87], could be specified.

Moreover, a sensing report is defined as reliable if the quantity being reported falls

into the interval the phenomenon is currently in (or belongs to that category). For

example, if the actual gas price at a station is $2.46, a report is considered reliable if

the reported value falls into the range [$2.40, $2.50).

As far as the security assumptions are concerned, the SCP is considered trust-

worthy in terms of its functionality (such as user registration, issuing credentials, re-

ceiving, processing, and redistributing data). Furthermore, confidentiality, integrity,

and non-repudiation are assumed to be addressed by using standard techniques such

as cryptography and digital signatures. It is also assumed that users may exhibit

malicious or unreliable behavior; such behavior models are detailed below. In the

following, users are assumed to be identified by the SCP via username and password

and some sort of user-unique information (e.g., credit card information), meaning no

sybil/rejoin attacks are possible.
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• Malicious: These users are willingly interested in feeding unreliable reports to

the system; their purpose is to either creating a disservice to other users (e.g.,

fake road traffic lines [6]), or gaining an unfair advantage w.r.t. other users.

• Unreliable: These users are not willingly submitting false information, but they

still do it because of malfunctioning sensors or incapability in performing the

sensing task [74].

FIRST provides a general approach to determine the reliability of each user

depending on his/her behavior. In Section 3.5, three types of attacks are experimen-

tally studied, namely the corruption, on-off and collusion attacks (previously defined

in [64]), and it is proven that FIRST is able to quickly detect the malicious behavior

and discard unreliable reports.

3.2. MOBILE TRUSTED PARTICIPANTS

In this study, the same approach used by the successful National Map Corps

[58] and Crowd Sourcing Rangeland Conditions [40] projects is employed, and use

mobile trusted participants (MTPs) to tackle the attacks described in the previous

section. Specifically, MTPs are individuals who are able and willing to submit regu-

larly reliable reports regarding the phenomenon being monitored or observed. These

reports are used to validate users’ sensing reports coming from nearby, and ultimately

estimate the reliability of those participants. Such estimate is used to classify reports

generated where MTPs are currently not present, as explained in the next sections.

To allow mathematical formulation, the sensing area is divided up into S =

{s1, . . . , sn} sectors, which may have variable size and represent the sensing granu-

larity of the application. For example, in the gas price app, each gas station could be

assigned to a single sector. In an air pollution monitoring application, a sector may

be as large as a neighborhood of a city, whereas in a traffic monitoring application,
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sectors may be as large as a city block. It is defined as U = {u1, . . . , uz} the set of

users contributing to the sensing application.

The MTP report validation process is modeled as follows. In order to validate

user reports, it is assumed that the reports sent by MTPs are valid for a time period

of T units. The value of T is a system parameter that is dependent on the variance

over time of the sensing quantity being measured. For example, in a traffic monitoring

application, a good value of T could be 5-10 minutes, while in a gas price monitoring

app T can be much longer (in Section 3.5.2, the impact of T on the system performance

is evaluated).

Definition 1: Validation of sensing reports. Whenever a sensing report q is

received from a user ui in sector sj, the platform checks whether a report from an

MTP in sector sj was received in the previous T time units. If yes, then the report is

cross-checked with that coming from the MTP. If q is reliable (i.e., falls into the range

of the report sent by the MTP), q is marked as validated and classified as reliable.

Instead, q is rejected if unreliable. If q is not validated, it is classified reliable or

unreliable depending on an algorithm discussed in Section 3.4.

Figure 3.2 illustrates an example in which an MTP is moving over a sensing

area comprising three sectors.

The locations at which the MTP submits a sensing report are marked as white

circles, while users are depicted as black dots. The user reports from sector s1 between

t = 0 and T units are validated by using the MTP report sent at t = 0. Meanwhile,

the MTP moves to sector s2 and generates a new report at time 2T , which then

validates users reports from sector s2 in the next time window. Similarly, the MTP

report at 3T validates the user reports from sector s3 in the time interval [2T, 3T ].
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Examples of MTPs in urban sensing scenarios include, but are not limited to,

professional drivers (i.e., taxi/bus), policemen, employees of the smartphone crowd-

sensing application, or people commuting on a daily basis to their workplace. Hence-

forth, the MTPs will be considered as reliable, in sense that it is implied that their

reports reflects the actual status of the event being monitored. This also implies that

reports originating from the same sector during the same time window are supposed

to be equivalent. The case in which trusted participants can be (up to some extent)

unreliable has already been studied in [74].

0

3T

2T

MTP path

s1

s2

s3

Figure 3.2. An MTP moving over the sensing area.

3.3. MTP OPTIMIZATION PROBLEM

It is intuitive that the number of validated sensing reports (and therefore, in-

formation reliability) increases as the number of recruited MTPs increases. However,

in practical implementations, it is not feasible to assume unconstrained budget to

recruit MTPs; the number of MTPs that can be used by the system will be limited
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and therefore, insufficient to guarantee perfect information reliability. The question

is then the following: is it possible to find a good estimation of the minimum number

of MTPs that will allow the smartphone crowdsensing system to achieve desired clas-

sification accuracy? To this end, the MTP Optimization Problem (MOP) is defined

and studied. Before that, the metric of classification accuracy is defined.

Definition 2: Classification accuracy. Let A define the event of the system

considering a report as reliable, and let F define the event of a user submitting an

unreliable sensing report. Let E define the event of erroneously deeming reliable (resp.

unreliable) an unreliable (resp. reliable) report. By definition, it follows that the

probability of event E, denoted P{E}, can be computed as

P{E} = P{F} · P{A | F}+ P{F} · P{A | F} (3.1)

where X is defined as the complement of event X. Thus, 1 − P{E} represents the

classification accuracy of the smartphone crowdsensing system, and will henceforth be

used to evaluate its performance.

The proposed FIRST framework will provide the mathematical tools to relate

the number m of MTPs to the error probability P{E} and the mobility of users.

Let εmax be the desired maximum classification error probability. The MTP

optimization problem (MOP) is then defined as follows.

Definition 3. MTP Optimization Problem. Minimize m such that 0 ≤ P{E} ≤

εmax

3.4. THE FIRST FRAMEWORK

Figure 3.3 introduces the FIRST framework, which is made up by three com-

ponents:
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• Likelihood Estimation Algorithm (LEA): It provides an approximation of the

mobility of users and MTPs. LEA is based on an image processing technique

that produces an approximate likelihood based only on geographical information

(i.e., the map of the sensing area).

• Computation of Validation Probability (CVP): This component derives the

probability P{V } of the event V that a sensing report will be validated by

at least one MTP, as a function of the number of MTPs deployed and the

approximate mobility produced by the LEA.

• MTP Optimization Algorithm (MOA): It takes P{V } and computes P{E}, so

as to provide a solution to the MOP to achieve desired maximum error εmax.

Sensing area map

Likelihood
Estimation
Algorithm

(LEA)

Computation of
Validation
Probability

(CVP)

MTP
Optimization

Algorithm
(MOA)

Minimum number
of MTPs

(MOP solution)

˜̀

P{v}

Figure 3.3. Block scheme of the proposed FIRST framework.

3.4.1. Computation of Validation Probability. In this section, the prob-

ability P{V } of the event that a sensing report will be validated by at least one MTP

is derived. Let Q be the set of MTPs competing for offering their sensing services,

and U be the set of users of the application. Let u(i, z, t) be the distribution over the

sector set S of the random variable (r.v.) U t
z describing the location of user z at time
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t. Let also q(i, z, t) be the distribution over the sector set S of the random variable

(r.v.) Qt
z describing the location of MTP z at time t.

Let us calculate the probability P{Vz} that a sensing report coming from user

uz is verified by an MTP, conditioned to the fact that user uz is currently in sector

si of the sensing area:

P{Vz | U z
t = si} = 1−

∏
k∈Q

(1− q(i, k, t)) (3.2)

In the above equation, it is assumed that the mobility of each MTP is in-

dependent, which is sound because it is highly unlikely MTPs would influence each

other’s mobility in any way. The above equation can be explained as follows. The

probability that a sensing report is verified is the complement of the probability that

no MTP is in the same sector as the user. The probability that a sensing report is

verified, irrespective of the location of the user, can thus be computed by using the

theorem of total probability, i.e.,

P{Vz} =
n∑
i=1

P{Vz | U z
t = si} · u(i, z, t) (3.3)

The probability P{V } that on the average a sensing report will be validated

can be computed as the average P{Vz} over all the users, which is

P{V } =
1

|U|

|U|∑
z=1

P{Vz} (3.4)

Example. Figure 3.4 shows two sensing areas (S1 and S2) divided into the

same number n = 8 of sectors. It is assumed that a total of m = 5 MTPs are present.

For simplicity, in this example it is assumed that the mobilities of users and MTPs

follow the same distribution.
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Figure 3.4. Example to illustrate computation of P{V }.

For simplicity, let us define as `ji as the probability that an MTP will be in

sensing area j and sector i. The corresponding mobility distributions `1
i and `2

i are

given as: `1
i = 1/8 for 1 ≤ i ≤ 8, while

`2
i =



1
8

i = 1, 3, 5

2
8

i = 7

3
8

i = 8

0 i = 2, 4, 6

(3.5)

Let us compute P{V } for both sensing areas. First, we need to compute

P{V | U = si} for each si, which is

• S1 : P{V | U = si} = 1− (1− 1/8)5 = 0.49 for every i, since `i is equal for each

sector. Therefore, P{V } = 1/8 · 8 · 0.49 = 0.49.

• S2 : P{V | U = s1} = P{V | L = s3} = P{V |U = s5} = 1− (1− 1/8)5 = 0.49.

P{V | U = s7} = 1− (1− 2/8)5 = 0.76, P{V | U = s8} = 1− (1− 3/8)5 = 0.90,
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P{V | U = s2} = P{V | U = s4} = P{V | U = s6} = 0. Therefore, P{V } =

3/8 · 0.49 + 2/8 · 0.76 + 3/8 · 0.90 = 0.71.

The above example suggests that the likelihood that some sectors will be

more occupied than others significantly impacts on the report validation probability.

Indeed, if the mobility of MTPs and participants is more concentrated, the validation

probability will increase with respect to the case when the mobility is uniform.

3.4.2. Bounding Mobility. Estimating the mobility distributions u and q

is paramount to compute P{V } and therefore, provide a cost-efficient solution to the

MOP. In cases where information about the mobility of users and MTPs is available,

for example, mobility traces of MTPs and users are available, an exact computation

of u and q may be used. However, prior information about MTP and user mobility

may not always be available. Nevertheless, it is need necessary to analyze at least

the worst-case scenario of uncertainty and solve the MOP in any case. In this study,

the well-known concept of information entropy is used to this purpose.

The entropy H(L) of a random variable (r.v.) L having distribution `i ,

`(i) = P{L = i}, 1 ≤ i ≤ n , is H(L) = −∑n
i=1 `i log2 `i. If the distributions q

and u cannot be estimated otherwise, the theorem of maximum entropy [39] states

that, without having any information on the phenomenon, we need to consider the

distribution having maximum entropy, which it is known is the uniform distribution.

This theoretical result is particularly interesting, because the worst case perfor-

mance can be studied regardless of the availability of mobility information. However,

in order to obtain better optimization results, it is necessary to find a tighter bound on

the mobility of users. This is because, if the mobility of the users is more restricted,

fewer MTPs will be needed to provide the same information reliability level, which

yields a better optimization result.

In this study, a heuristic Likelihood Estimation Algorithm (LEA) was designed,

to provide a tighter bound on the mobility of users and MTPs, with just knowing the
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sensing area location. This heuristic is based on the following rationale: the smart-

phone crowdsensing systems under consideration are deployed in cities, or anyway

close to urban areas. This implies that the mobility of users and MTPs will be likely

to be almost restricted to the main arterial roads of the sensing areas, or anyway the

zones/roads with the greater amount of traffic (both pedestrian and vehicular). By

restricting the possible area of movement of the MTPs and users, the randomness of

the movement of users and MTPs can be reduced, and therefore, a tighter bound on

the likelihood of sectors can be provided.

To demonstrate this point, Figure 3.5(a) shows the heatmap of the mobility

traces† of taxi cabs in a section of Downtown San Francisco, where the intensity of the

color indicates the popularity of the place. As the figure points out, the mobility of

taxi cabs is definitely not uniform, and mostly concentrated on a few popular places.

Furthermore, Figure 3.5(b) shows the main arterial roads provided by Google Maps

APIs‡. From this figure, it emerges that the roads point out (with some degree of

approximation) the most popular places as shown in the heatmap of Figure 3.5(a).

Let us now describe the LEA algorithm which works as follows. Let us consider

the map M of the sensing area, and divide it into n sectors as required by the

application, where S = {s1, · · · , sn} is the set of sectors. Then, information about

the most popular places (which may be roads/squares/buildings) and the geographical

constraints of the sensing area is acquired.

By using Google Maps APIs§, the main arterial roads on a specific location

area are highlighted. This information is leveraged to mark such places in the map

M , the background of which is further removed to get a black-and-white image of the

†Published in [72], available at http://www.crawdad.org
‡APIs publicly available at https://developers.google.com/maps/documentation/

javascript/styling
§Other approaches, such as Open Street Maps (https://www.openstreetmaps.org), could be

also used for such purpose.

http://www.crawdad.org
https://developers.google.com/maps/documentation/javascript/styling
https://developers.google.com/maps/documentation/javascript/styling
https://www.openstreetmaps.org
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sensing area as shown in Figure 3.5(b), where the black pixels represent the popular

places.

(a) (b)
Figure 3.5. (a) Heatmap of mobility traces vs. (b) Arterial roads.

The LEA is described by the pseudo-code in Algorithm 1. In Section 3.5, it is

shown that the LEA is remarkably effective in approximating the mobility distribution

of users in various settings, by using real-world mobility traces collected in three major

cities in three different continents, namely Rome, San Francisco and Beijing.

The implicit assumptions that LEA makes are (i) the mobility of users and

MTPs is stationary (i.e., does not change over time); and (ii) users and MTPs follow

the same mobility distributions. Although these are pretty strong assumptions, in

the experimental evaluation conducted in Section 3.5 it is shown that LEA provides

a pretty good approximation of the likelihood of the sectors, considering that only

information only from a map are used.

Indeed, LEA is not a fine-grained mobility estimation algorithm. Instead, it

is a simple heuristic that provides before deployment an approximate information

regarding the likelihood of certain sectors with respect to others. If more reliable

information about the mobility is known, it could be used to complement LEA’s

analysis and achieve better optimization results.
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Algorithm 1 Likelihood Estimation Algorithm (LEA)

Input: M , map of the sensing area
Output: ˜̀, approximate distribution of mobility

1: S ← set of sectors s1 · · · sn
2: I ← processed image with most popular areas
3: B ← 0 (sum of black pixels in sensing area)
4: for each sector si ∈ S do
5: Bi ← number of black pixels ∈ si
6: B ← B +Bi

7: end for
8: for each si ∈ S do
9: ˜̀(i)← Bi/B

10: end for
11: return ˜̀

3.4.3. Solving the MTP Optimization Problem. This section describes

the methodology adopted by FIRST to solve the MTP Optimization Problem (MOP)

defined in Section 3.3. In order to solve the MOP, it is needed to compute the error

probability P{E}. This implies P{A | F} and P{A | F}, defined in Equation (3.1),

must be derived as a function of P{V }.

Here FIRST solves the MOP by providing the mathematical tools that relate

the number m of MTPs to the error probability P{E} and user mobility. In Equation

(3.4), it is shown how to compute P{V } given q and u. By applying probability

theory, it is obtained P{A ∩ F} = P{F} · P{V } · P{A | V } and P{A ∩ F j} =

P{F j} · (P{V }+ P{V } · P{A | V }).

The only unknown in P{A ∩ F} and P{A ∩ F} is P{A | V }, which is, the

probability of deeming a sensing report reliable in the case it has not been validated

by an MTP. Ideally, this probability should be close to 1 when the report being sent

is reliable, and close to 0 when the report being sent is not reliable. To this end,

FIRST leverages the knowledge provided by the reports submitted by the MTPs,
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and computes P{A | V } as follows.

P{A | V } = P{V } · P{F}+
1

2
· P{V } (3.6)

This formula can be explained as follows. The first part, P{V } · P{F}, repre-

sents the “degree of belief” we have in the users; it is higher when the user is validated

most of the time (P{V } close to 1) and the reports are reliable. The second part,

1/2 ·P{V }, represents the “degree of uncertainty” in the users; it is higher when most

of the reports have not been validated. Note that, as P{V } increases, the value of

P{A | V } approximates to P{F}. Also, if P{V } = 0 (i.e., no MTPs are present),

the system deems as reliable every report with probability 1/2 (coin tossing), which

is sound as there is no reason to be more inclined to accept or reject the report if no

information is available.

It is now presented an algorithm to solve the MOP, called the MOP Optimiza-

tion Algorithm (MOA). The MOA is based on a modified version of binary search

algorithm, called Left-most Insertion Point (LMIP). More specifically, LMIP returns

the left-most place (i.e., the minimum value) where P{E} can be correctly inserted

(and still maintains the sorted order) in the ordered array of the errors corresponding

to a particular choice of m. This corresponds to the lower (inclusive) bound of the

range of elements that are equal to the given value (if any). Note that LMIP can be

applied to solve the MOP due to the fact that P{E} is a monotonically decreasing

function of m (demonstration has not been reported here due to space limitations).

The MOA takes as input the approximate distribution ˜̀
i provided by LEA

(equal for participants and MTPs), and also P{F}, the desired maximum error εmax,

and the maximum number mmax of MTPs available. It provides as output the opti-

mum number m∗ of MTPs to be used to achieve the desired maximum error εmax.
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Algorithm 2 MOP Optimization Algorithm (MOA)

Input: ˜̀
i, P{F}, εmax, mmax

Output: m∗

1: εmin ← CalculateError(˜̀
i,P{F},mmax)

2: if εmax < εmin then
3: return ‘infeasible’
4: end if
5: return LMIP(˜̀

i, P{F}, εmax, 0, mmax)

In lines 1-3, the MOA checks with the procedure CalculateError (imple-

menting Equation 3.1) whether the minimum error εmin obtained with the maximum

number of MTPs available is greater than the desired maximum error εmax. If this

is the case, then the MOA has no feasible solutions and therefore the algorithm ter-

minates immediately. If not, then the routine LMIP is invoked, which finds m∗ by

implementing the LMIP algorithm.

Let us calculate the time complexity of the MOA. LMIP is a variation of bi-

nary search, therefore its overall complexity will be O(x · logmmax), where x is the

complexity of CalculateError. Such complexity is Θ(n), given it requires constant

time to compute P{E} using Equation (3.1) and n iterations to compute P{V } us-

ing Equation (3.4), where n is the number of sectors. Therefore, the overall time

complexity of MOA is given by O((n · logmmax).

Example 3. In the example of Figure 3.6, it is assumed the ` distribution

equal to `2
i presented in Figure 3.4, P{F} = 0.01, mmax = 8 and εmax = 0.1. In this

case, the LMIP will return m∗ = 4, since it is the left-most element that provides

P{E} ≤ 0.1.

3.4.4. Practical Implementation. In this section, it is described how the

system, after deployment, handles the case in which a report has not been validated

by MTPs (i.e., how P{A | V } is actually computed). For each user ui, the system
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Figure 3.6. Example of LMIP.

keeps track of the number ki of sensing reports submitted, the number kvi of sensing

reports validated by an MTP, and the number kri of reports that have been validated

as reliable.

As soon as a report q is sent by user ui, if the report has not been validated

by an MTP, then the report is classified as reliable with probability

P{A | V } =
kri
ki

+
1

2
·
(

1− kvi
ki

)
(3.7)

After being classified as reliable, reports may be subsequently analyzed by

additional algorithms (for example, [60, 61]) to determine the actual status of the

sensing area by combining or fusing the information conveyed by the reliable reports.

3.5. EXPERIMENTAL RESULTS

In this section, the experimental results obtained by evaluating the perfor-

mances of FIRST and comparing it with relevant related work are presented. First,

it is reported the performance results obtained by considering an application mon-

itoring vehicular traffic events. Then, results obtained by using the Participatory

PerCom application are discussed.

3.5.1. Participatory Traffic Sensing. To implement this experiment, the

mobility traces collected from the following datasets were considered:

• CRAWDAD-SanFrancisco [72]: This dataset contains mobility traces of approx-

imately 500 taxis in San Francisco, USA, collected over one month’s time;
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• CRAWDAD-Rome [4]: In this dataset, 320 taxi drivers in the center of Rome

were monitored during March 2014;

• MSR-Beijing [91]: This dataset collected by Microsoft Research Asia contains

the GPS positions of 10,357 taxis in Beijing during one month.

In these experiments, it is considered a traffic sensing application in which

taxi cab drivers report traffic anomalies. Consistent with the example mentioned

in Section 3.1, it is assumed the reports are divided into 4 categories such as “Car

Crash”, “Road Closure”, “Traffic Jam”, “No Event”. Furthermore, sensing areas of

approximately 4×4km square areas are considered, which characterize the downtown

of cities such as San Francisco, Rome, and Beijing. In the chosen scenario, the taxi

cabs report every 5 minutes information about their surroundings to the SCP. The

application was implemented using the OMNeT++ simulator¶.

3.5.1.1. Evaluation of FIRST components. The goal of the first set of

experiments is to test the efficacy of LEA in computing the likelihood of sectors. To

obtain ground-truth information about the actual mobility of taxi cabs, the traces

were processed using OMNeT++. It is assumed that such mobility is unknown,

and the LEA algorithm was applied to the chosen sensing areas to approximate the

mobility. To apply LEA, the sensing area was divided into a grid of 20×20 sectors,

with sectors having the same size as a city block. In Figure 4.2, it is shown the maps

of the sensing areas after the processing of LEA.

Figure 3.8 shows the distribution of the likelihood of sectors and the one ob-

tained by LEA, respectively. More specifically, the figure shows the actual and esti-

mated probability of a taxi to be in each sector of the sensing area. These experiments

conclude that the LEA algorithm approximates well the likelihood of sectors, consid-

ering the scarce information available. This result is extremely significant, as it is

necessary to provide very precise estimation of the classification accuracy of FIRST

¶Available at https://www.omnetpp.org

https://www.omnetpp.org
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as a function of the number of MTPs. Figure 3.9 shows P{E} as a function of the

number of MTPs, calculated analytically by the Computation of Validation Proba-

bility (CVP) component of FIRST. For comparison purposes, CVP is evaluated by

providing as input (i) the distribution computed by LEA as applied to each considered

sensing area (CVP-LEA, represented by a dashed line), and (ii) the uniform mobility

distribution (CVP-Uniform, represented by a dotted continuous line) as the baseline

approximation. Such analytical results are compared with the experiments using the

traffic datasets.

(a) San Francisco (b) Rome (c) Beijing

Figure 3.7. Maps of the sensing areas after the processing of LEA.

In Figure 3.10, the MTP Optimization Algorithm (MOA) is applied to analyze

the number of MTPs that are necessary by FIRST to provide maximum desired error

probability εmax. Similarly to the experiments shown in Figure 3.9, users sending un-

reliable reports with three probability values P{F} = 0.01, 0.5 and 0.9 are considered.

Figure 3.10 confirms that the San Francisco setting requires the highest number of

MTPs to achieve given εmax. These results also highlight that FIRST is remarkably

effective in achieving high accuracy with a low number of MTPs. More specifically, it

provides on the average 85% of accuracy with an MTPs per sector density of about

32% in case of Rome and Beijing, and 55% in the case of San Francisco. Note that

higher accuracy values require in general a significant number of MTPs, especially
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when the behavior of participants becomes hardly predictable (i.e., P{F} = 0.5) and

the mobility is highly entropic (i.e., in San Francisco setting).

As shown in Figure 3.9, in all three scenarios, CVP-LEA computes P{E}

with remarkable precision. In particular, the maximum difference obtained is 3.47%,

achieved in the Rome setting. Furthermore, Figure 3.9 shows that the accurate

estimation of the mobility provided by the LEA translates into an improved prediction

accuracy of CVP with respect to the uniform distribution, as CVP-Uniform yields a

maximum difference of 17.02% in the case of Rome setting. Figure 3.9 highlights that

the San Francisco setting requires the largest number of MTPs to achieve a specified

maximum error probability.

In these cases, only a high number of MTPs can guarantee that a sufficient

number of reports are validated and therefore, desired accuracy may be provided.

Indeed, Figure 3.10 also shows that fewer MTPs are needed when P{F} = 0.9 than

when P{F} = 0.5.

Intuitively, this is due to the fact that, when participants send reports ran-

domly, it is more difficult to understand their reliability. On the other hand, when

their behavior is more “regular” (i.e., consistent over time) it is easier to evaluate their

reliability. This intuition is also confirmed by Figure 3.11, which depicts the number

of MTPs needed as a function of P{F}, for three values of desired maximum error

probability εmax. Figure 3.11 shows that, irrespective of εmax, the highest number of

MTPs is necessary when P{F} = 0.5.

3.5.1.2. Evaluation of attack resiliency. Based on the behavior models

defined in Section 3.1, the following security attacks are taken into acocunt, which

were defined in other domains and recently cast in the context of smartphone crowd-

sensing [64]. For simplicity, hereafter we will generically use the word “attacker”

for both malicious and unreliable users, and the words “threat” and “attack” inter-

changeably.



34

0 100 200 300 400

Sector

0.02

0.04

0.06

0.08

0.10

S
ec

to
rP

ro
ba

bi
lit

y Actual Likelihood
LEA

(a) San Francisco

0 100 200 300 400

Sector

0.02

0.04

0.06

0.08

0.10

S
ec

to
rP

ro
ba

bi
lit

y Actual Likelihood
LEA

(b) Rome

0 100 200 300 400

Sector

0.02

0.04

0.06

0.08

0.10

S
ec

to
rP

ro
ba

bi
lit

y Actual Likelihood
LEA

(c) Beijing

Figure 3.8. Traces vs. Mobility Estimation Algorithm.
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Figure 3.9. Number of MTPs vs Error rate / P{E}.
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Figure 3.10. MOA results.
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1. Corruption attack. This threat models the following strategy: for each sensing

report, the attacker sends unreliable data with probability p and correct data

with probability 1−p. This attack can be carried out by unreliable and malicious

users alike.

2. On-off attack. In this attack, the malicious user alternates between normal and

abnormal behaviors to conceal her maliciousness. Specifically, the adversary

periodically sends n reliable reports and then m unreliable reports, and then re-

peats the process. This attack is extremely easy to carry out but also extremely

challenging to detect and contrast [3, 14, 71].

3. Collusion attack. In this attack, two or more malicious participants coordinate

their behavior in order to provide the same (unreliable) information to the SCP

[35, 57]. The malicious behavior may also include GPS location spoofing, so as

to mislead the SCP into assuming colluding participants are nearby [74].
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Figure 3.11. Number of MTPs vs. P{F} in case of MOA applied to Rome setting.
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FIRST is compared with the FIDES framework [74] and the reputation-based

framework proposed in [37], [Huang 2014]. FIDES uses a modified version of Jøsang’s

trust model to update the reputation of users. This framework inherits from Jøsang’s

trust model a strong sensitivity to parameter tuning. On the other hand, [Huang

2014] proposes an approach which is a improved variation of majority vote, and its

performance also depends on the choice of parameter setting (Gompertz’s function’s,

among others). For implementation, it is used the parameter settings proposed in

the papers, which are reported in Table 3.1. A pure majority vote scheme was also

implemented to obtain baseline performance. If not stated otherwise, in the following

experiments the parameters reported in Table 3.1 are used. Confidence intervals at

95% are shown only when above 1% of the value.

Table 3.1. Experimental parameters.

Parameter Value

Experiment length 240mins
Timestep length 5mins
Location Rome
Number of users 1000
P{F} for non attackers 0.01
ar (FIDES) 0.7
au (FIDES) 0.9
Initial reputation (FIDES) 0.5
Reputation threshold (FIDES) 0.75
Initial weights (FIDES) [1, 0, 0]
λs (Huang) 0.7
λp (Huang) 0.8
a (Huang) 1
b (Huang) -2.5
c (Huang) -0.85
Initial reputation (Huang) 0.5
Reputation threshold (Huang) 0.5
Number of MTPs (FIRST, FIDES) 400
Number of attackers 500
Attackers P{F} 0.8
On-off steps (10, 10)
Collusion groups 3
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Figure 3.12 reports the false positive rate (percentage of false reports accepted

w.r.t. the total number of reports accepted) obtained by the frameworks when subject

to a corruption attack, as a function of the (constant) attack probability, number of

MTPs (applies only to FIDES and FIRST), and number of attackers. Figure 3.12(a)

and (c) show that the performance of Majority and [Huang 2014] decreases as the

number of false reports and attackers increases. This is reasonable, as both schemes

are based on data aggregation and therefore not resilient to large number of malicious

users and/or unreliable reports. Figure 3.12(a) Furthermore, Figure 3.13 shows the

results obtained under the On-off attack by all the considered schemes. As expected,

the performance of FIRST is slightly affected by this attack, especially when the

percentage of ON steps is less than the OFF one. This is because, the less the ON

steps are, the harder it is for FIRST to decrease the accept probability of malicious

users. However, FIRST is able to achieve a FPR of about 10% in the worst case of

ON=5. On the other side, [Huang 2014] and Majority are instead more affected when

the ON step is greater than the OFF, as it is more likely for them to misclassify sensing

reports when the percentage of unreliable reports/number of attackers is higher.

Figure 3.14 shows the results obtained by running the Collusion attack. The

experiment has been implemented as follows. We have assumed there are k collusion

groups. An attacker belonging to the k-th group coordinates with the other attackers

belonging to the same group by implementing together an On-off attack. In such

attack, during the ON phase the attackers send false reports pertaining to a chosen

sector, the same for every user in the k-th group. The results conclude that [Huang

2014] and Majority are severely affected by this attack, while FIRST tolerates well this

attack by keeping the FPR below 10% by using 400 MTPS, regardless of the number

of attackers and collusion groups considered. This is because FIRST uses MTPs to

validate data and does not rely on data aggregation. Interestingly enough, [Huang

2014] and Majority perform slightly well when the collusion groups are more. This is
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Figure 3.12. Corruption attack: False Positive Rate vs. P{F}, MTPs, and attackers.
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Figure 3.13. On-off attack: False Positive Rate vs. On-off steps, MTPs, and
attackers.
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Figure 3.14. Collusion attack: False Positive Rate vs. P{F}, MTPs, and attackers.
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explained by considering that when the collusion groups are more, less attackers will

belong to the same group, and so it is more likely that a scheme based on aggregation

may perform better.

Finally, in Figure 3.15 we report the probability P{A|V } of FIRST (i.e., the

probability that a report will be accepted when not validated) as a function of time,

in all the considered attacks. In the Corruption attack, as expected P{A|V } con-

verges to the P{F} probability of the attackers. In the On-off attack, FIRST reacts

by decreasing the P{A|V } probability and increasing it in the OFF phases. Same be-

havior is also experimented in the Collusion attack, but in this case, the performance

is not affected by the number of attackers as explained above. As described in Section

3.4.3, P{A|V } is equal to P{F}, because when reports are verified the probability

of misclassification is zero; on the other hand, when the reports are not validated,

we would like that P{A|V } also tended to P{F}, and Figure 3.15 shows that FIRST

achieves such goal.

3.5.2. Participatory PerCom. In addition to the participatory traffic sens-

ing use-case as described above, the performance of FIRST is also evaluated by im-

plementing a smartphone crowdsensing system designed to monitor the attendance

of participants at various events during the IEEE PerCom 2015 conference held in

St. Louis, Missouri, USA. In such a system, the voluntary participants were asked

to regularly submit (i) the conference room they were currently in, and (ii) the (ap-

proximate) number of participants in that room. The goal of the experiment was to

evaluate the accuracy of FIRST in classifying sensing reports sent by participants in

a practical scenario.

The server-side of the smartphone crowdsensing system handling the storage

of sensing reports was implemented by using a dedicated virtual machine on Ama-

zon Web Services. Figure 3.16 shows the screenshots of the Android and iOS apps
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Figure 3.15. FIRST Acceptance probability P{A|V } in corruption, On-off, and
Collusion attacks.
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distributed to the participants‖. The apps provided a simple interface for the partici-

pants to report the room they were in (8 choices, from ‘A’ to ‘H’), and the approximate

number of people in that room (5 choices, ‘Less than 10’, ‘Between 10 and 20’, ‘Be-

tween 20 and 50’, ‘Between 50 and 100’, and ‘More than 100’). In order to recruit

participants, the conference and workshop attendees were asked whether they were

willing to install our app and participate in the experimental study. This way, 57

participants attending the entire conference and workshops were recruited.

Figure 3.16. Screenshots of the smartphone crowdsensing app, Android and iOS.

In order to acquire ground-truth information about the location of partici-

pants, 20 Gimbal™ beacon devices∗∗ were used, which were deployed as in Figure 3.17

‖IRB approval of experiments available on file upon request.
∗∗Available at http://www.gimbal.com

http://www.gimbal.com
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and which emitted periodically Bluetooth packets that were received by the smart-

phone crowdsensing app. Whenever a user sent us a report, the location of the nearest

beacon was also automatically included in the report by the SC app. This way, it

was possible to acquire ground-truth information on user location.

Figure 3.17. Position of Bluetooth beacons.

To acquire ground-truth information about the number of people in each room,

three people voluntarily acted as MTPs and sent every 5 minutes the actual number

of people in each conference room. Prior to the conference, to evaluate the impact of

the T parameter (i.e., MTP reporting interval), 4 concurrent, real-time classification

processes were implemented, each one taking into account different MTP reporting

intervals (10, 15, 20, and 25 minutes), aiming at evaluating the impact of the length

of the MTP reporting interval.
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During the experiment, it was observed that the number of people attending

a particular event was almost constant during a 10-minute time window. Therefore,

the MTP reports were used to validate all the reports sent in the following 10-minute

time frame. More specifically, a user report was validated as reliable if (i) an MTP

report r was sent during the 10-minute time frame before the user report was re-

ceived, and (ii) the reported number of people in that room was in the same range as

the one sent by the MTP in r. If the number of people in the room reported by the

user mismatched the information acquired by the MTP, the report was considered

unreliable. Otherwise, if no MTP report was available during the previous 10-minute

time window, Equation (3.7) was used to decide whether to consider the report as

reliable, as explained in Section 3.4.4. After the experiment, the ground-truth infor-

mation provided by the Bluetooth beacons and the MTPs was used to calculate the

classification accuracy.

Figure 3.18(a) shows the distribution of the percentage of participants that

had submitted unreliable reports with a given frequency. For graphical reasons, fre-

quencies in the x-axis have been grouped into intervals of length 0.1. Figure 3.18(a)

points out that about 44% of the participants submitted more than 50% of unreliable

reports; moreover, over 30% of participants submitted more than 90% of unreliable

reports when participating. These results make this experiment ideal to study the

performances of FIRST given the number of unreliable reports is significant.

Figure 3.18(b) illustrates the accuracy of the considered approaches as a func-

tion of the MTP reporting intervals implemented in the experiments. These results

conclude that FIRST outperforms existing approaches as far as classification accuracy

is concerned. In particular, FIRST achieves on the average an accuracy of 80.16%, as

compared to FIDES, [Huang 2014] and majority vote which achieve 69.20%, 62.76%,

and 43.38%, respectively. The results can be explained as follows. When the MTP

reporting interval is 10 minutes, both FIDES and FIRST achieve accuracy of 100%,
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because each report is validated by MTPs. As the reporting interval increases, FIDES

performs worse than FIRST due to the challenge in finding a parameter setting which

achieves good performance in all scenarios. In contrast, FIRST does not require any

parameter setting to be implemented, and it is able to achieve high accuracy in all

the considered scenarios.
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Figure 3.18. (a) Frequency of unreliable reports vs. percentage of participants. (b)
Comparison of FIRST vs. FIDES, Majority Vote and [Huang 2014].

Note that the majority vote and [Huang 2014] schemes do not rely on MTPs,

and instead leverage only sensing reports from users to infer their reliability. As a

result, the accuracy achieved by majority vote and [Huang 2014] in Figure 3.18(b) does

not depend on the MTP reporting interval. As far as performance is concerned, Figure

3.18 concludes that such approaches do not obtain accuracy values close to FIRST
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and FIDES. This is due to the fact that approaches based on majority vote are not

resilient to large number of unreliable reports, which is the case of the Participatory

PerCom experiments, as shown in Figure 3.18(a).

3.6. RELATED WORK

Related work can be divided into two main approaches: trusted platform mod-

ules (TPMs) and reputation-based systems. TPMs are hardware chips that reside on

the participants’ devices, and ensure that the sensed data is captured by authentic

and authorized sensor devices within the system [22, 33, 76]. The main drawback of

this approach is that TPMs require additional hardware not currently available on

off-the-shelf devices, implying such solutions are not readily deployable. Moreover,

TPM chips are tailored to verify data coming from physical sensors (e.g., accelerom-

eter, camera). Thus, they are not applicable to smartphone crowdsensing systems in

which the information is directly supplied by the participants.

Most of related work has focused on developing reputation-based systems to

increase information reliability. Specifically, they associate each user with a reputation

level, which is estimated and updated over time. Among related work, [37, 53, 74,

85] are the most relevant. In [85], the authors proposed ARTsense, a reputation-

based framework that includes a privacy-preserving provenance model, a data trust

assessment scheme, and an anonymous reputation management protocol. The main

issue of [85] is that user reputation is updated by considering contextual factors, such

as location and time constraints. Given user location and timestamp of reports are

easily forgeable quantities, the solution proposed in [85] may not perform well in

practical smartphone crowdsensing systems, where malicious users may voluntarily

tamper with their GPS location and timestamp of reports.

Recently, in [37] the authors proposed a reputation framework which imple-

ments an improved version of majority vote. The main limitations of this framework
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are (i) the assumption of constant sampling rate, which is not realistic in asynchronous

smartphone crowdsensing systems, and (ii) the poor resilience to a large number of

malicious users, as the framework uses a modified version of majority vote to update

user reputation levels. To overcome such limitation, in [74] the authors proposed

FIDES, a reputation-based framework that used mobile security agents to classify

sensing reports. Similarly to us, FIDES is also resilient to a large number of malicious

users. However, as in [37], the necessity to set a significant number of parameters

makes the actual performance of the framework hardly predictable in reality. On

the other hand, FIRST does not depend on specific parameters. Furthermore, in

this study it is considered the problem of modeling and optimizing the information

reliability [64].

3.7. CONCLUSIONS

In this section it was presented FIRST, a novel framework that models and

optimizes the information reliability in smartphone crowdsensing systems. First, the

system model, the concept of mobile trusted participants (MTPs), and the MTP

optimization problem (MOP) were introduced. Then, the main components of the

FIRST framework were discussed in detail, which include a novel likelihood estima-

tion algorithm (LEA) and the MTP optimization algorithm (MOA) that provides

optimum solution to the MOP. Furthermore, the framework was extensively evalu-

ated through real mobility traces in the context of participatory traffic sensing, and

by a practical implementation of a system that monitored participants’ attendance

at the IEEE PerCom 2015 conference. Finally, FIRST was compared with state-

of-the-art literature. Results have shown that FIRST outperforms existing work in

increasing information reliability and is able to capture the performance of the system

with significant accuracy.
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4. INCENTIVE MECHANISMS FOR CROWDSENSING

The collaborative nature of smartphone crowdsensing implies that its success

is strictly dependent on the active participation of users. However, smartphone users

invest their personal resources (e.g, time, battery, and bandwidth) while executing

sensing tasks. Thus, a user would not be interested in participating in the crowd-

sensing process unless she receives a satisfying reward. For this reason, a significant

number of mechanisms to incentive the users’ participation have been proposed, as

recently surveyed in [31, 75].

Despite sound mathematical analysis, the main limitation of existing mech-

anisms is that they implicitly assume that participants will always be able to per-

form the sensing tasks assigned to them. However, in most smartphone crowdsens-

ing systems, the contributors are pedestrians, drivers, or people commuting to their

workplace through public transportation [75]. For example, in the well-known traffic

monitoring application Waze [25, 87], participants are drivers or commuters traveling

from one place to another; thus, their mobility largely depends on current traffic con-

ditions. For example, it may not be always possible for a Waze participant driving

in New York City to execute spatio-temporal constrained tasks such as “Submit road

traffic information at Times Square in 5 minutes and Central Park South in 10 min-

utes”. Therefore, the mobility of the participants should be assumed as uncertain,

and specific incentive mechanisms should be designed to maximize the likelihood that

the sensing tasks will be actually executed. Furthermore, the incentive mechanism

should also assume that the budget for recruitment of participants is often limited,

and thus not every participant can be hired by the system.

In this section, the problem of maximizing the likelihood of successful sensing

task execution with participants having uncertain mobility and strict hiring budget
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constraint is solved. The problem is cast in the context of truthful budget-feasible

mechanism design, a branch of game theory that studies how to influence the outcome

of a game towards a certain objective [70]. Specifically, the interaction between the

smartphone crowdsensing platform (in short, SCP) and the participants is modeled

as a reverse auction, where the SCP is the buyer (i.e., the auctioneer), and the

participants are the sellers (i.e., the bidders) of sensing tasks.

Participants compete with each other by submitting a bid containing the ex-

pected payment for executing the sensing tasks advertised by the SCP. The SCP, in

turn, will use the auction mechanism to select the winning bidders and compute their

payment. The goal is to select participants so as to maximize the probability that

the sensing tasks will be executed, and guarantee the total payment will be contained

in the budget. In order to avoid the situation in which participants overbid to obtain

a greater payment, which leads to inefficiencies in the participants’ selection process

[70], the auction must also be truthful, in sense that participants are not incentivized

to overbid by the mechanism.

To effectively solve this problem, the theory of budgeted maximization of sub-

modular functions [44] is leveraged. This theory is used to mathematically model the

Budgeted Value Maximization Problem (BVM) studied in this section, and show that

it is NP-Hard. Two polynomial-time mechanisms are derived, called Truthful Value

Maximization (TVM) and Heuristic Value Maximization (HVM). It is also mathe-

matically proven that the mechanisms guarantee truthfulness, individual-rationality

and are budget-feasible. Finally, to provide scalability, it is also presented an im-

plementation of the mechanisms on the well-known MapReduce [18] framework for

parallel computation.

The mechanisms are extensively evaluated by considering a traffic monitoring

application where taxi drivers submit information about traffic events (e.g., accidents,
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traffic lines, etc.) during their trips. In order to realistically implement the applica-

tion, and experiment with different mobility patterns, real-world mobility traces of

taxi cabs in San Francisco [72], Rome [4], and Beijing [91] were used. Experimental

results demonstrate that our mechanisms outperform the state of the art [16, 77, 89]

by improving on the average of 30% with respect to the existing approaches the like-

lihood of successful task execution, and by achieving a speed-up factor of 12x on the

considered experimental setup with MapReduce.

To summarize, the main contributions of this section are as follows:

• Two incentive mechanisms for smartphone crowdsensing systems that consider

uncertain mobility of participants and are parallelizable on MapReduce are

designed;

• The proposed incentive mechanisms are validated through experiments, and it

is demonstrated that they improve significantly the state of the art and able to

deal with large number of participants.

The section is organized as follows. Section 4.1 introduces the system model,

which Section 4.2 the problem definition. Section 4.3 presents the budget-feasible

mechanisms developed in this thesis. Section 4.4 presents the experimental results.

Related work is summarized in Section 4.5, while Section 4.6 draws conclusions.

4.1. PROBLEM DEFINITION

This study considers a smartphone crowdsensing architecture consisting of a

platform (SCP) which can be accessed through 3G/4G or WiFi Internet connection.

The data collection process is detailed as follows. Hereafter, the terms “user”, “par-

ticipant” and “bidder” will be referred to interchangeably, as well as “system” and

“SCP”.

• Before the sensing campaign may begin, users interested in participating to

the smartphone crowdsensing campaign download through common application
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(app) markets such as Google Play or App Store the smartphone crowdsensing

app (step 1), which is responsible for handling data acquisition, transmission,

and visualization.

• When the sensing process begins, the SCP generates sensing tasks that need to

be executed (step 2). The information pertaining to each sensing task depends

on the sensing application, and specifies a series of requirements, such as the

sampling rate requested, minimum sensing time, maximum distance from spec-

ified location, or task expiration time [75]. For example, a sensing task might

be “report the traffic status near the Golden Gate bridge in San Francisco by

5:00PM”. Depending on the application, tasks can be retrieved by the users

asynchronously, e.g., each day, or whenever requested.

• After the advertisement of the sensing tasks, the SCP collects information that

is used to make a choice regarding the scheduling of sensing tasks. Among

other information, users supply a bid, which is the amount of reward the user

would like to receive to perform sensing services (step 3). Bids are used by the

auction-based incentive mechanisms developed in this thesis to determine (i) the

scheduling of sensing tasks and (ii) the reward to assign to each participating

user. If available, the SCP may also collect mobility information about the user,

which can be used to determine the user’s availability to perform the sensing

tasks.

• After receiving the bids from the users, the SCP runs the auction mechanism,

and according to the auction’s result, selects a subset of users, assigns them

the sensing tasks, and communicates the reward assigned to each user (step 4).

After being selected and instructed on the sensing task to execute, a user is

allowed to begin performing the sensing service using the sensing application

(step 5). The data collection may be manual or automatic, depending on the

application context [42]). The sensing application handles the transfer of the
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sensed data from the smartphone to the PSP, making use of communication in-

frastructure available to the mobile phone, such as WiFi or 3G/4G connectivity

[75]. After the sensing tasks are executed and the data has been transmitted,

the SCP assigns the reward communicated in step 4 to each participating user

(step 6).

4.2. SYSTEM FORMALIZATION

In order to model users’ mobility, the sensing area is divided up into sectors,

which may have different size and represent the sensing granularity of the application.

For example, in a traffic monitoring application, the sectors can be as large as a

city block, whereas in air monitoring applications the sector can be as large as a

neighborhood. We also assume time is discretized, with j being the j-th time slot

between tj and tj+T .

Let S define the set of s = |S| sectors forming the sensing area. Let Q be the

set of m = |Q| participants competing for offering their sensing services. We define as

sensing task as a sensing activity that the SCP needs to be performed at a particular

place and in a particular moment in time. More formally, since space and time are

discretized, a sensing task is modeled as a tuple τi,j = (i, j) where i ∈ S indicates

the sector and j ∈ R+ indicates the timestep (e.g., τ3,4 indicates the sensing task

involving sector 3 at timestep 4). We will indicate as Z the set of sensing tasks.

Is is assumed that participants can leave and enter the system at their will.

For simplicity, it is defined as t = 0 the moment in which the auction is executed.

To model the participants’ mobility, pi,jk will indicate the probability that the k-th

participant will be in sector i at time j. For the sake of generality, the mechanisms

are derived with general pi,jk . In this way, the mechanisms and proofs derived will be

general and applicable with any state-of-the-art mobility model.
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Participants spend resources when performing sensing services, for example,

their personal time, battery, and bandwidth. It is denoted by γk the cost of the k-th

participant for executing a sensing task, which also includes the minimum profit that

the participant desires to earn by participating. This information is considered as

personal, which means that γk is not revealed to the SCP. In general, the participant

may bid a different quantity than γk; it is thus defined νk as such quantity. The bid

is of each participant is therefore the quantity {νk}. It is also defined as B the set of

bids submitted by the participants for the current auction.

Some terms are now defined, that will be frequently utilized in this section.

Definition 4: (Mechanism). Let T be set of winning bidders, and R be the

vector of rewards given to the auction participants. A mechanism M defines a tuple

{α, π}, where α : B → T is defined as the allocation function of the auction, and

π : T → R is the payment function of the auction.

Definition 5: (Utility). The utility obtained by the k-th auction participant by

bidding νk and receiving as reward R(k) is the quantity uk(νk) = R(k)− γk.

It is reasonable to assume that the participants are selfish and are only in-

terested in maximizing their own utility as much as possible. To this purpose, they

may overbid (i.e., submitting νk much higher than γk), trying to achieve a higher

reward. This may ultimately compromise the auction’s efficiency and lead to low

performance. To solve this problem, mechanisms that align the users’ interests with

the system goals are needed. This is why in this thesis truthful mechanisms were

designed.

A mechanism is called truthful if any user maximizes her utility by bidding her

real cost γk, no matter how other users may act. It is also required to the mechanisms

to satisfy individual-rationality, which means that any user always gets a non-negative

utility, and to be computational efficient. The formal definitions of these properties

is given below.
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Definition 6: (Truthfulness) [70]. The mechanism M = {α, π} is truthful iff

uk(γk) ≥ uk(x), for any x 6= γk.

Definition 7: (Individual Rationality) [70]. A mechanism is individual-rational

iff uk(x) ≥ 0, for each bidder k.

Definition 8: (Computational Efficiency) [70]. A mechanism is computation-

ally efficient iff α and π have at most polynomial complexity in the number of bids.

The user incentivization problem studied in this section is now formalized.

Let us define Vij as a quantity indicating the value that sensing task τij has for the

SCP. Intuitively, Vij models the preference that the system has for some sensing tasks

instead of others (e.g., covering some neighborhoods of a city may be more important

than covering others). For notation simplicity, Vij = 0 if τij 6∈ Z. It is also defined as

W (i, j, T ) the following quantity, W (i, j, T ) = 1−∏k∈T (1−pi,jk ), which expresses the

probability that at least one participant is in sector i at time j (i.e., the probability

that at least one participant will be able to execute the sensing task). Finally, let us

define B as the budget available to the SCP for running the auction, and as z the

maximum timestamp of the available sensing tasks, hereafter referred to as auction

duration.

Problem 1: Budgeted Value Maximization (BVM). Given values Vij and func-

tion W , let V(T ) be defined as

V(T ) ,
s∑
i=1

z∑
j=1

Vij ·W (i, j, T ) (4.1)

Find set of bidders T ∗ and payments vector R∗ such as

T ∗ = argmax
T ⊆B

s∑
i=1

z∑
j=1

Vij ·W (i, j, T ),
∑
ρk∈R∗

ρk ≤ B (4.2)
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The optimization function defined in BVM can be seen as a function that

expresses the probability that the sensing tasks will be executed (each one weighted

with their relative value). It is now demonstrated that BVM is NP-Hard.

Lemma 1: BVM is NP-Hard.

Proof. In order to prove the NP-Hardness of BVM, a reduction from the well-

known Bounded Knapsack problem (BKP) is provided. A general BKP instance has

a capacity B and a set of items Ω = {s1 · · · sn}, where each item si ∈ Ω has a value

vi and a weight wi. The goal of BKP is to find a set S∗ ⊆ Ω whose items provide

maximum value and do not exceed the capacity B of the knapsack. The general

BKP instance is translated into a simpler instance of BVM, where a single time step

(i.e., z = 1) is considered. It is also assumed each bidder is in a different sector of

the sensing area, the probability of being in that sector is equal to one, and that

the payment rule is such as ρk = νk. This way, the optimization function becomes∑m
k=1 V (k) · Xk, where Xk is an indicator function that is equal to one if a bidder

is in sector k, and zero otherwise. Therefore, a solution to BVM can be translated

into a solution of the BKP instance by setting the value vk of each knapsack item to

V (k) ·Xk, its weight wk to νk, and B as the size of the knapsack. As a result, solving

BVM is at least as hard as solving BKP, therefore BVM is NP-Hard.

From Lemma 1, it is concluded that it is unlikely to design a mechanism with

α∗ and π∗ in the polynomial computational class, unless P = NP . Therefore, the rest

of the section will focus on designing mechanisms that provide bounded approximate

solution to the BVM.

Although proven to be NP-Hard, the BVM problem has a special property

that allows the design of approximate solutions. Specifically, it is now proven that

its objective function (defined in Equation 4.1) belongs to the family of submodular
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functions. Submodular function optimization theory provides solutions to many NP-

Hard problems [44]. Submodularity is now defined, and some properties necessary to

design a greedy algorithm are proven.

Definition 9: (Submodularity). Given ground set S and a function F : 2S →

R+, then ∀A ⊆ B ⊆ S, F is submodular iff, for any i ∈ S, F(A ∪ {i}) − F(A) ≥

F(B ∪ {i})−F(B).

Lemma 2: The function V(T ), defined in Equation (4.1) is (i) submodular,

(ii) non-decreasing, and (iii) V(∅) = 0.

Proof. In order to prove (i), it is shown that, for sets A ⊆ B ⊆ S, it is true

that ∆A,k ≥ ∆B,k, where ∆X,k , V(X ∪ {k})− V(X) is the increment in value to V

given by the addition to X of a generic element k, hereafter referred to as marginal

value of k given X.

∆X,k =
s∑
i=1

z∑
j=1

Vij ·

1−
∏

y∈X∪{k}

(1− pi,jy )

−
s∑
i=1

z∑
j=1

Vij ·
[

1−
∏
y∈X

(1− pi,jy )

]

=
s∑
i=1

z∑
j=1

Vij ·
[

1− (1− pi,jk )
∏
y∈X

(1− pi,jy )

]
−

s∑
i=1

z∑
j=1

Vij ·
[

1−
∏
y∈X

(1− pi,jy )

]

=
s∑
i=1

z∑
j=1

Vij · pi,jk︸ ︷︷ ︸ ·
∏
y∈X

(1− pi,jy )

(4.3)

The braced section in ∆X,k does not depend on X. Thus, it is only needed to

prove the following claim, which is that
∏

y∈A (1 − pi,jy ) ≥ ∏y∈B (1 − pi,jy ) holds for

any A ⊆ B. It is now derived an equation that proves this claim.
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∏
y∈A

(1− pi,jy )︸ ︷︷ ︸
, Z

≥
∏
y∈B

(1− pi,jy ) , (4.4)

Z ≥ Z ·
∏

y∈{B−A}

(1− pi,jy ) , (4.5)

1 ≥
∏

y∈{B−A}

(1− pi,jy ) (4.6)

As the quantity pi,jy is a probability and therefore by definition less or equal to one,

the disequality above holds. This proves property (i). Furthermore, property (ii)

derives straightforwardly from the fact that W (i, j, T ∪ {i}) ≥ W (i, j, T ) ∀T , and

(iii) follows from W (i, j, ∅) = 0, by definition of empty product.

4.3. MECHANISM DESIGN

In this section, two mechanisms are described, namely Truthful Value Maxi-

mization (TVM) and Heuristic Value Maximization (HVM) to solve the BVM problem

defined in the previous section.

In order to solve the problem of truthful bidding under budget constraints,

Truthful Value Maximization (TVM) is designed, which is a mechanism that adopts

recent advances in the field of submodular function maximization [44] to provide a

solution to the BVM with proven approximation ratio through a greedy strategy.

Algorithm 3 presents the allocation function of TVM. The algorithm incre-

mentally constructs a set of winners T , initially empty (line 1). At each iteration,

the algorithm picks an unconsidered bidder k∗ having maximum weight, where the

weight is defined as the increase in the function V that k∗ provides, divided by its

bid (line 5). The bidder k∗ is included in T only if the current sum of bidding values

is not exceeded (line 6). and if a condition regarding the new bid νk is satisfied (line

7). The algorithm returns the set of winning bidders T .
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The payment scheme of TVM, which is reported in Algorithm 4, assigns to

each winning bidder a payment corresponding to the critical value, which provably

ensures truthfulness of the mechanism.

Algorithm 3 Truthful Value Maximization (TVM) allocation function

Input: B, B, Q, V
Output: T , Tv

1: T = ∅
2: Tv = ∅
3: Tc = Q
4: while Tc 6= ∅ do
5:

k∗ = argmax
k∈Tc

∆T ,k/νk

6: if νk∗ +
∑

k∈T νk ≤ B then

7: if νk∗ ≤ B
2
· ∆T ,k∗

∆T ,k∗+
∑

v∈Tv ∆T ,v
then

8: Append k∗ to T
9: Append ∆T ,k∗ to Tv

10: else
11: Tc = ∅
12: end if
13: end if
14: Tc = Tc − {k∗}
15: end while
16: return T ,Tv

We point out that the critical value of a bidder is the maximum value that

bidder could have bid and still win the auction. Unfortunately, the critical value

computation is complicated by the submodularity of the marginal contributions ∆T ,k,

which implies that the value depends on the sorting order of the greedy allocation

policy.

In order to compute payments in an efficient way, the following strategy is used.

For each bidder i, the maximum of all the possible bids that i could have declared and
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still get allocated are considered, as explained next. Consider running the allocation

function without i. For the first j participants in the marginal contribution sorting,

using the marginal contribution of i at point j it is possible to find the maximal cost

that agent i can declare in order to be allocated instead of the agent in the j-th place

in the sorting. For reader’s convenience, it is now shown a small example of the steps

taken by TVM to compute winners and rewards.

Algorithm 4 Truthful Value Maximization (TVM) payment function

Input: T , B, B, Q, V
Output: R

1: for every i ∈ T do
2: Bi = B − {νi},Qi = Q− {i}
3: T i,T iv = Algorithm-3(B,Bi,Qi,V)
4: X = ∅
5: for every j = 1 . . . |T i| do

6: νij =
∆X ,i×νj

∆X ,j

7: ρij = B
2
· ∆X ,i∑

j′≤j T i
v (j)+∆X ,i

8: Append T i(j) to X
9: end for

10: end for
11: return

R(i) =


max
j ∈ T i {min{ρij, νij}} i ∈ T

0 otherwise

Example. Let us consider for simplicity a sensing area composed of 4 sectors

and a time range of only 1 timestep, t = 1. Let us consider the case in which 3

bidders are competing to offer their sensing services. The value of each sector is

V = {.3, .2, .1, .4}, while the mobility distributions of the bidders at time t = 1 are

as follows: p1
1 = {.2, .1, .3, .4}, p1

2 = {0, .8, .05, .15}, p1
3 = {.4, .2, 0, .4}. The bids

submitted are B = {10, 8, 12}.
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Allocation function Input: B = 20, B = {10, 8, 12}

• Step 1: T = {}, Tv = {}

∆T ,1

ν1
= 0.2·0.3+0.1·0.2+0.3·0.1+0.4·0.4

10
= 0.027

∆T ,2

ν2
= 0·0.3+0.8·0.2+0.05·0.1+0.15·0.4

8
= 0.028

∆T ,3

ν3
= 0.4·0.3+0.2·0.2+0·0.1+0.4·0.4

12
= 0.0277

Is 8 ≤ 20
2
· 0.28125

0.28125
? YES

Append k∗ = 2 to T

Append ∆T ,k∗ = 0.225 to Tv

• Step 2: T = {2}, Tv = {0.225}

∆T ,1

ν1
= 0.2285

10
= 0.02285

∆T ,3

ν3
= 0.2640

12
= 0.022

Is 10 ≤ 20
2
· 0.02285

0.02285+0.225
? NO

Condition on budget (line 7) not fulfilled. Algorithm terminates, and returns

T = {2} and Tv = {0.225}

Payment function Input: T = {2}

• Step 1: i = 2

Run auction without 2 (lines 2-3)

– Step 1-A: j = 1

ν21 = 0.225 · 10/0.27 = 8.33

ρ21 = 10

To win against 1, 2 has to bid 8.33
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Return R(2) =
max

j ∈ {1}
{min{ρ2j, ν2j}} = 8.33

We now prove that TVM is truthful, individual-rational, and budget-feasible.

In order to characterize the truthfulness of the mechanism, it is applied the well-known

characterization of Myerson [65] in single-parameter domains, which is reported be-

low.

Lemma 3. A mechanism is truthful iff [65] (i) the allocation function is mono-

tone: bidder k wins the auction by bidding νk, it also wins by bidding ν ′k < νk; (ii)

Each winner is paid the critical value: bidder k would not win the auction if it bids

higher than this value.

Lemma 4. TVM is a truthful mechanism, i.e., no bidder can increase her profit

by misreporting her true cost.

Proof. Lemma 4 is proven by using Myerson’s characterization of truthfulness

(Lemma 3). In particular, it is first proven that TVM has a monotone allocation

scheme, then it is proven that each winner is paid the critical value.

(Monotonicity). The first property is guaranteed by the greediness of the

algorithm. By lowering her bid, any allocated bidder would only increase her marginal

gain per unit cost and thus be placed ahead in the sorting order considered by the

allocation algorithm.

(Critical value). According to Algorithm 4, each winning bidder i is paid the

following quantity: maxj {min{ρij, νij}}. Let us consider r to be the index for which

Pi = min{ρir, νir}. Therefore, bidding Pi implies that i would be allocated at position

r in the run of the algorithm without i. Four different cases are thus possible.

1. νir ≤ ρir and νir = maxj νij. Reporting a bid higher than νir places bidder i

after the first unallocated user k∗ in the alternate run of the mechanism, thus i

would not be selected.
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2. νir ≤ ρir and νir < maxj νij. Consider some j for which νir < νij. Since r

has maximality condition, it must be the case that ρij ≤ νir ≤ νij. Therefore,

bidding higher than νir would violate the selection condition (line 7, Algorithm

3) and hence i would not be allocated. For some other j such as νir ≥ νij,

bidding higher than νir would place i after j, so i would not be allocated at

position j.

3. νir ≥ ρir and ρir = maxj νij. Reporting a bid higher than ρir violates the

selection condition at each of the indices in j ∈ T i, hence i would not be

selected.

4. νir ≥ ρir and ρir < maxj νij. Consider some j for which ρir < ρij. Since r

has maximality condition, it must be the case that νij ≤ ρir ≤ ρij. Therefore,

bidding higher than ρir would put i after j and hence i would not be allocated.

For j such as ρir ≥ ρij, bidding higher than νir would mean i would not be

allocated at considered position j.

In all four cases, bidding higher than Pi would cause bidder i to not be selected, which

means that Pi is the critical value. Since bidder i is paid Pi, this proves the Theorem.

Lemma 5. TVM is individual-rational, i.e., payments for winning bidders are

always greater or equal to their bid.

Proof. Consider the bid that i can declare to be allocated at position j = i

(i.e. back at its original position) in the alternate run of the mechanism. Therefore,

the payment that i will receive will be Pi = min{ρii, νii}, We prove that νi ≤ Pi.

First, it is shown that νii ≥ νi:

νii =
∆X ,i · νi

∆X ,j
≥ ∆X ,i · νi

∆X ,i
= νi (4.7)
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The equality holds because νj/∆T ,j ≥ νi/∆T ,i since i was selected after i − 1 in the

selection algorithm instead of j. Next, it is shown that ρii ≥ νi:

ρij =
B

2
· ∆X ,i∑

j′≤i−1 T iv (j′) + ∆X ,i

=
B

2
· ∆X ,i∑

j≤i−1 ∆X ,j + ∆X ,i
≥ νi

(4.8)

The second equality holds from the fact that the first i − 1 allocated elements in

both the runs of the policies are the same. The third inequality follows from the

proportional share criteria used to decide the allocation of i after i − 1 users were

selected already. This proves the Theorem.

Lemma 6. TVM is budget-feasible.

Proof. The maximum payment for a user p is 2 · ∆p∑
k∈T ∆k

·B, where ∆p is the

marginal contribution given by p computed during the run of the allocation function

[44]. Summing over all payments, it is obtained
∑

i∈T R(i) ≤∑i∈T 2 · ∆p∑
k∈T∆k

· B
2
≤ B

Lemma 7. Algorithm 3 has complexity θ(m2 · s · z), where m is the number

of bidders, s is the number of sectors, and z is the auction allocation span, while

Algorithm 4 has complexity O(m3 · s · z).

Proof. The complexity of Algorithm 3 is dominated by the complexity of the

while loop (line 4 through 15). At each iteration, the loop computes the quantities

∆T ,k for each k ∈ Tc. As every iteration of loop removes one element from Tc, this

implies that this computation is performed m+m−1+m−2+ · · ·+1 = θ(m2) times.

The complexity of computing ∆T ,k for a generic k is dominated by the computation

of

V(T ∪ {k}) =
s∑
i=1

z∑
j=1

Vij ·W (i, j, T ∪ {k}) (4.9)

We now provide a way to recursively derive in constant time W (i, j, T ∪ {k}) as

a function of W (i, j, T ). The overall complexity of computing V(T ∪ {k}) will be

therefore θ(s · z), which yields a total algorithm complexity of θ(m2 · s · z).
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W (i, j, T ∪ {k}) = 1−
∏

q∈T ∪{k}

(1− pi,jq )

= 1− (1− pi,jk ) ·

1−W (i,j,T )︷ ︸︸ ︷∏
q∈T

(1− pi,jq )

= 1− (1− pi,jk ) · (1−W (i, j, T ))

(4.10)

where W (i, j, ∅) = 0 by definition. The complexity is therefore θ(m2 · s · z). The

complexity of Algorithm 4 can be calculated by observing that there are at most m

iterations of the main loop, and in each loop the complexity is dominated by the

execution of the allocation function. This yields a total complexity of O(m3 · s · z).

4.3.1. Heuristic Value Maximization. As discussed earlier, the stopping

criterium of TVM allocation algorithm (line 7, Algorithm 3) limits the efficiency of

TVM. This point is demonstrated through an example.

In the following, it will be referred to as actual budget (B) the budget available

for the current auction provided by the administration, and by input budget (B̂) the

budget that is given as input to the TVM selection algorithm. Figure 4.1 depicts

the sum of payments assigned to winning bidders by TVM as a function of the input

budget value B̂, where 1000 bidders and truncated normal bid distribution (with

mean=0.5 and support=1) are considered. As it can be seen from this plot, the

sum of payments allocated to the winning bidders is non-linear with B̂ and remains

significantly below the actual budget.

From this example, it emerges that the performance of TVM can be further

optimized by exploring the input budget space and finding the B̂ value yielding

the highest sum of payments that remains below the actual budget. Although this

problem might seem straightforward, it turns out there are several issues to be solved.

First, performing an exhaustive (i.e., linear) search on the input budget space

is not practical. This is because, in the worst case, the TVM auction must be run n
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times, where n is the size of the input budget search interval. Although the computa-

tion complexity of TVM does not directly depend on the input budget, in practice the

computational cost of executing the TVM mechanism increases significantly as the

input budget increases. Intuitively, this is because the selection algorithm will select

more winning bidders, which implies that the payment algorithm must calculate the

payment for more winners. Thus, performing the search by running the least amount

of auctions is paramount.
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Figure 4.1. TVM: payments vs. input budget.

Second, while the minimum input budget (i.e., B) is known, the maximum

input budget must be discovered by some means. Therefore, an efficient algorithm

must be designed to define the search interval itself. In order to optimize the compu-

tation time of the optimum input budget without renouncing to efficiency, it becomes

a necessity to leverage the monotonicity of the sum of payments. To explain the

approach, let us assume to have an array A of n elements in which the sum of pay-

ments corresponding to all the input budgets from B to B + n− 1 are stored. Since

payments are monotone with the budget, the array will be sorted. Thus, finding the
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optimum input budget corresponds to finding the rightmost place where the given

sum of payment can be correctly inserted in array A without compromising the sorted

order. Although ordinary binary search may be applied to find such rightmost inser-

tion point, it does not consider that the sum of payments are uniformly distributed

(see Figure 4.1).

Algorithm 5 Heuristic Value Maximization

Input: B, B, Q, V
Output: B∗

1: Bmin = B
2: Bmax = B + 1
3: Bmin, Bmax,Rmin,Rmax = FMMB(B,B,Q,V)
4: while Bmin ≤ Bmax do
5: Bcur = INT(Bmin, Bmax,Rmin,Rmax)
6: Tcur = Algorithm-3(Bcur,B,Q,V)
7: Rcur = Algorithm-4(T , Bcur,B,Q,V)
8: if

∑
k∈Tcur Rcur(k) > B then

9: Bmax = Bcur − 1
10: Rmax = Rcur

11: else
12: Bmin = Bcur + 1
13: Rmin = Rcur

14: end if
15: end while
16: Return Bmin

Algorithm 5 introduces Heuristic Value Maximization (HVM), which uses in-

terpolation [5] to improve over binary search and find the optimum input budget

by computing no more than O(log log n) times the TVM auction. First, it finds the

upper bound of the search interval Bmax, by doubling the search interval until the

sum of payments is below the actual budget (line 2).

This guarantees that the interval will be found in O(logB∗) steps. Then,

the algorithm computes each step of the search, called Bcur, by calculating the line
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passing between the two points (Bmin, Rmin) and (Bmax, Rmax) and computing the

next step Bcur as the x component of the point passing by the actual budget B. If

the payment Rcur yielded by the new point Bcur is greater than (less or equal than)

the budget, the algorithm explores the left (right) part of the search interval, until

the exit condition is not met. In order to further speed up the execution time, the

algorithm approximates the Rmax and Rmin values with the Rcur value.

4.3.2. MapReduce Implementation. Smartphone crowdsensing applica-

tions have a large amount of participants. Therefore, it is imperative to take advan-

tage of cloud computing techniques to speed up the execution of large-scale auctions.

Among parallel programming models, MapReduce [18] is widely adopted for many

data mining tasks on large-scale data. To the best of the author’s knowledge, this

study is the first to introduce a MapReduce model for incentive mechanisms in smart-

phone crowdsensing. In this section, it is now discussed the design of a MapReduce

model.

In a nutshell, a typical MapReduce model contains two phases: 1) the map

phase reads the input data, and converts it into key-value pairs; 2) the reduce phase

takes the key-value pairs generated from the map phase as input, and applies an

operation to the values belonging to the same key to obtain the desired output.

For TVM, the objective is to adapt Algorithm 3 and 4 (i.e., selection and

payment functions) to a parallel version. To this end, it is noticed that the main

bottleneck of Algorithm 3 is line 5, which is the computation of the maximum value

of ∆T ,k values, for every participant k. However, each of these quantities can be com-

puted separately by different mappers, and the result reduced to obtain the maximum.

Regarding the payment function (Algorithm 4), it is noticed that the computation

of the payment for each winning bidder (line 1) can be assigned to a different map-

per. The same can be applied to compute line 5. As far as HVM is concerned, the

MapReduce model can be used for TVM to further parallelize the computation of
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the optimum input budget by assigning to different mappers a portion of the search

interval, and then apply a reducer to obtain the result.

4.4. EXPERIMENTAL ANALYSIS

In this section,the performance of HVM and TVM is experimentally evaluated

and compared with the most relevant existing work. The scalability of the mechanisms

has also been evaluated by computing the speed-up factor obtained by running the

MapReduce implementation of HVM on a Hadoop cluster.

4.4.1. Experimental Setup. The evaluation has been conducted by emu-

lating an application where taxi cab drivers report vehicular traffic events (similar

to Waze [6]). This type of application was chosen since the results may be valid

also for similar smartphone crowdsensing applications (e,g., urban air/noise pollu-

tion monitoring). In order to obtain real-world participants’ mobility and evaluate

the performance with different mobility patterns, mobility traces collected from the

following datasets were considered:

• San-Francisco [72]: This dataset contains mobility traces of approximately 500

taxis in San Francisco, USA, collected during one month.

• Rome [4]: In this dataset, 320 taxi drivers in the center of Rome were monitored

during March 2014.

• Beijing [91]: This dataset collected by Microsoft Research Asia contains the

GPS positions of 10,357 taxis in Beijing during one month.

The heatmaps of the datasets are shown in Figure 4.2; the pictures show

warmer colors where the mobility is more concentrated. As it can be seen, the mobility

is more concentrated in Rome and Beijing, whereas it is more uniform in the San

Francisco dataset. Therefore, better performance is expected in the Rome and Beijing

experiments (i.e., more users). The sensing area is considered to be approximately
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4×4km square areas, which characterize the downtown of cities such as San Francisco,

Rome, and Beijing.

In this application, taxi drivers request to participate to the sensing process

by submitting the cost for submitting the sensing report through their smartphone.

Whenever the drivers decide to participate, they submit information regarding their

current position and the destination of their trip to the SCP by using a smartphone

app. Upon reception of such information, the SCP computes the mobility information

regarding each participant (i.e., the pki,j quantities as described in Section 4.1) by using

GraphHopper (https://www.graphhopper.com), which provide real-time ETA and

routing information. This information, united with the bid information, is used to

run the auctions mechanisms as described in this section.

To emulate bidders’ behavior, coherently with previous work, the bidding pro-

cess was emululated by using as a Poisson random variable [28]. In particular, each

taxi trip has a duration sampled from a Poisson with λ = 3 timesteps, while each

participant bids happen every λ = 1.5 timesteps. In all experiments, a timestep of

5 minutes was considered, and the sensing areas were divided into 400 sectors, so as

that each sector is approximately as large as a city block. The SCP generates sensing

tasks in such a way that each sector must be covered in each timestep. In order to

account for the uncertainty in the mobility of the users, a Gaussian-distributed noise

with zero mean and std-dev 0.25 to the mobility reported by the participants has

been added. For the distribution of the bids’ costs, coherently with previous work, it

was considered Gaussian-distributed costs with mean 0.5 and std-dev 0.15. In all ex-

periments, 100 bidders were considered, if not stated otherwise. In each experiment,

100 repetitions were performed and 95% confidence intervals were computed, which

are not shown when they are below 1% of the average.

For comparison reasons,the state of the art work due to Singer [77], Chen et

al. [16], and Yang et al. [89] (MSensing auction), recently extended to [90], was

https://www.graphhopper.com
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(a) San Francisco

(b) Rome

(c) Beijing

Figure 4.2. Heatmaps of the mobility traces contained in the datasets.
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implemented. In the following, the following performance metrics will be used to

describe performance:

• Percentage of Obtained Value (POV): If P ∗ is the optimum and Pm is the value

obtained by mechanism m, then POV m = Pm/P ∗.

• Speed-up: given execution time E1 and E2, the speedup is defined as E1/E2. It

will be used to compare the execution time of the mechanisms with the one

obtained with running the MapReduce implementation on the Hadoop cluster.

Since the target is efficiency and scalability, these metrics are believed to be sufficient

and appropriate to evaluate the mechanisms. All experiments have been performed on

a cloud computing system emulated by two Dell Precision T7610 servers, equipped

with an Intel(R) Xeon(R) CPU E5-2680 v2 processor (20 cores, 2.80GHz, 64GB

RAM), and by four Dell Optiplex(R) 7010 with Intel(R) Core(TM) i7-3770 CPU (7

cores, 3.40GHz, 8GB RAM). An Apache Hadoop cluster has been implemented on

top of these machines to evaluate the scalability of the mechanisms.

4.4.2. Experimental Results. Figure 4.3 shows the average percentage of

obtained value (POV) experimented by HVM, TVM, Singer, Chen and Yang as a

function of the allocated budget per timestep, for the datasets San Francisco, Rome,

and Beijing. From the plots the following conclusions can be derived:

• First, it can be inferred that HVM performs better than the other algorithms,

irrespective of the allocated budget per timestep. This is because HVM is sig-

nificantly budget-effective as it uses almost all the available budget at each exe-

cution of the algorithm, while at the same time guaranteeing budget-feasibility.

In turn, the other algorithms suffer from the early exit condition necessary to

achieve budget-feasibility, which significantly affects the optimization perfor-

mance.
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Figure 4.3. Budget vs. POV.
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• Second, TVM increases its performance significantly as the available budget

increases, which is consistent with what expected as the algorithm will terminate

after selecting more participants.

• Third, the performance of Yang, Chen and Singer remains always below 70%,

irrespective of the available budget. This is because Chen and Singer use a ran-

domized selection condition to guarantee budget-feasibility, truthfulness and

bound on performance, but at the same time decrease significantly their per-

formance. The performance of Yang, in turn, remains almost constant as the

algorithm neglects to consider participants’ mobility. Overall, HVM increases

the performances of the state of the art algorithms by a remarkable 30% (29.1%,

average of 30.7%, 30.1.%, 26.7%).

To further validate HVM and TVM efficiency, Figure 4.4 shows the POV as

a function of the probability that a bidder will not be able execute the sensing task

after been assigned to it, defined for simplicity as churning probability (CP). This

might happen, for example, because of problems in the smartphone equipment (i.e.,

battery exhausted, networking issues, or software issues), or because the participant

is in a different sector of the sensing area at the relevant time (or also outside the

sensing area). As expected, Figure 4.4 shows that the overall performance of all the

algorithms decreases as this probability increases. However, HVM is more resilient

than the other algorithms, as the increased efficiency in budget utilization allows to

select more bidders and therefore allow more redundancy in the selection process

(i.e., hire more participants). On the average, HVM achieves 35.2% more utility than

the other algorithms, which makes it ideal in cases when the CP is high (e.g., very

uncertain participants’ mobility).

Finally, in order to demonstrate the scalability of HVM, Figure 4.5 shows the

computation time as a function of the number of bidders and the number of mappers

used in the MapReduce implementation of HVM. For clarity, the execution times
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were normalized by the same factor, so as to have 1 computation unit in the case the

number of bidders is 200 and 1 mapper job is used.
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Figure 4.5. Execution time vs. Number of bidders.

Figure 4.5 concludes that the MapReduce framework is effective in providing

scalability to the HVM algorithm, as the speedup provided by the additional mappers

is linear; on the average, HVM gets a 12.28x speedup by passing from 1 to 20 mappers.

4.5. RELATED WORK

A significant number of recruitment mechanisms (also referred to as incentive

mechanisms) for smartphone crowdsensing have been recently proposed, as surveyed

in [31, 75]. Research has preferred focusing on designing auction-theoretical mech-

anisms rather than other strategies because of the provable theoretical results that

auction theory offers.

One of the first mechanisms was presented in [38], where Jaimes et al. propose

a mechanism that addresses the coverage problem with budget constraints (shown to
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be NP-Hard) by greedily finding a set of users that covers the greatest possible area

within a budget constraint. However, the mechanism fails to consider truthfulness.

The problem of guaranteeing a truthful incentive mechanism was explored for the

first time in [89]. In this paper, the authors propose a model where the system

announces a set of sensing tasks, each one having a certain value to the system. Each

user then selects a subset of tasks according to its preference and bids for each of

them. The system then selects the participants so as to maximize a submodular

value function. Although the mechanism shows important properties and achieves

good performances, it does not consider budget-feasibility, participants’ location nor

mobility pattern.

More recently, Feng et al. proposed in [28] an incentive mechanism which

takes into account the location of the smartphone users. Specifically, the tasks here are

location-based, and users can bid only on tasks which are in the sensing coverage of the

smartphone. After proving that optimally determining the winning bids with location

awareness is NP-hard, the authors proposed mechanism consists of a polynomial

time and near-optimal task allocation algorithm, as well as a payment scheme that

guarantees truthfulness. The main limitation of [28] is that the sensing tasks and

users’ positions are assumed to be known in advance and static. A similar mechanism

considering dynamic tasks and users has been proposed by the same authors in [29].

However, in both papers budget-feasibility has not been considered. The closest to

this work are [16, 77, 78], where the authors investigated the problem of optimum

design of budget-feasible auctions in a more general setting.

4.6. SUMMARY

In this section, mechanisms to incentivize the participation of users with uncer-

tain mobility in smartphone crowdsensing were introduced. First, the system model,

the related assumptions, and the Budgeted Value Maximization (BVM) problem were
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introduced. It has been demonstrated that BVM is NP-Hard and that its objective

function is submodular, and proposed two mechanisms satisfying the desired auction-

theoretical property of truthfulness. The algorithms have been evaluated through

experimental analysis and compared them with the relevant existing work. Results

have shown that the algorithms outperform existing state of the art by more than

30% and are highly scalable.
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5. CONCLUSION

Smart devices have revolutionized our lives and the way we interact with the

surrounding environment. What was technologically a dream twenty years ago has

now become reality, and with more and more users embedding pervasive technologies

in their daily lives, an immense number of novel applications that drastically improve

people’s everyday life are now possible. Among all, smartphone crowdsensing is cer-

tainly one of the most promising paradigms, as it allows to decrease dramatically

infrastructure costs and obtain detailed information about the phenomenon being

monitored.

This work focuses on designing mechanisms for improving information quality

in smartphone crowdsensing systems. First, a novel Framework to optimize Informa-

tion Reliability in Smartphone-based participaTory sensing (FIRST) was developed,

which leverages the collective action of mobile trusted participants (MTPs) to se-

curely assess the reliability of sensing reports. The framework was evaluated through

experiments leveraging real-world mobility traces of taxi cabs and through an imple-

mentation in iOS and Android. Experimental results demonstrate that the framework

optimizes information reliability and outperforms state-of-the-art literature.

Next, this work studied the problem of maximizing the likelihood of successful

execution of the sensing tasks when participants having uncertain mobility compete

for offering their sensing services. Two incentive mechanisms based on game theory

and having proven approximation ratio are proposed that solve such problem. Such

mechanisms were evaluated by experimenting with real-world mobility traces, and

experimental results demonstrate that the mechanisms outperform the state of the

art.
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However, there are a number of open research issues still left to investigate

for further improving information quality in smartphone crowdsensing systems. For

example, it is still an open research challenge understanding what incentive works

best to motivate volunteers. More specifically, there is currently a lack of a general,

empirical study on the motivations of volunteers to perform smartphone crowdsensing

tasks and the effectiveness of smartphone crowdsensing incentives across different

contexts. Furthermore, to date, incentives for smartphone crowdsensing have largely

been applied in an ad hoc, “one size fits all” manner, assuming that all applications

have the same requirements and people have all the same needs. Additional study

is needed to develop a systematic approach to the design and selection of incentives

that are tailored to a particular application, and personalized to motivate individual

volunteers to perform smartphone crowdsensing tasks.

In addition, one of the limitations of existing work is that it does not provide

a detailed definition of information quality, nor do they address the problem of how

to determine the information quality of sensing reports. More specifically, they as-

sume that information quality can be computed by using external functions tailored

to such purpose. However, this might not be the case when multimedia data (e.g., au-

dio/video feed, pictures) is being collected by the smartphone crowdsensing system.

In particular, when the data is coming from physical sensors such as temperature,

pressure, or light, the information quality may be defined as the accuracy of that

measurement with respect to the real phenomenon being monitored. However, how

do we define the information quality of a picture, of a sound, of a video? In such

case, the specific context of the smartphone crowdsensing application may signifi-

cantly influence the definition of information quality. Therefore, additional research

is necessary to provide different definitions of information quality that are valid for

the spectrum of smartphone crowdsensing systems nowadays available.
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