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PUBLICATION DISSERTATION OPTION

This dissertation consists of the following four articles that have been submitted for
publication. The papers are formatted according to Missouri University of Science and
Technology specifications.

Pages 13-60: The article entitled “Neural Network-based Finite Horizon Optimal
Adaptive Consensus Control of Mobile Robot Formation” was published in the
International Journal of Optimal Control Applications and Methods in Nov. 2015.

Pages 61-107: The article entitled “Hybrid Consensus-based Control of
Nonholonomic Mobile Robot Formations™ is submitted to the Journal of Intelligent and
Robotic Systems.

Pages 108-158: The article entitled “Distributed Consensus-based Event-triggered
Approximate Control of Nonholonomic Mobile Robot Formations™ is submitted to IEEE
Transactions on System Man and Cybernetics.

Pages 159-210: The article entitled “Consensus-based Output Feedback Control of
Quadrotor UAV Formations Using Neural Networks” will be submitted to the

International Journal of Advanced Robotic Systems.



ABSTRACT

Over the past decade, the control research community has given significant
attention to formation control of multiple unmanned vehicles due to a variety of
commercial and defense applications. Consensus-based formation control is considered to
be more robust and reliable when compared to other formation control methods due to
scalability and inherent properties that enable the formation to continue even if one of the
vehicles experiences a failure. In contrast to existing methods on formation control where
the dynamics of the vehicles are neglected, this dissertation in the form of four papers
presents consensus-based formation control of unmanned vehicles-both ground and aerial,
by incorporating the vehicle dynamics.

First, neural networks (NN)-based optimal adaptive consensus-based formation
control over finite horizon is presented for networked mobile robots or agents in the
presence of uncertain robot/agent dynamics and communication. In the second paper, a
hybrid automaton is proposed to control the nonholonomic mobile robots in two discrete
modes: a regulation mode and a formation keeping mode in order to overcome well-known
stabilization problem. The third paper presents the design of a distributed consensus-based
event-triggered formation control of networked mobile robots using NN in the presence of
uncertain robot dynamics to minimize communication. All these papers assume state
availability.

Finally, the fourth paper extends the consensus effort by introducing the
development of a novel nonlinear output feedback NN-based controller for a group of

quadrotor UAVS.
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1. INTRODUCTION

Over the last few decades, the control research community has given significant
attention to formation control of multiple unmanned vehicles. These vehicles can be very
beneficial for numerous tasks when compared to a single, heavily equipped vehicle, which
may require much more power and lack the robustness needed to avoid failure. For
example, in military missions, a group of autonomous vehicles are required to keep in a
specified formation for area coverage and reconnaissance; hence, multiple vehicles can
complete tasks requiring a large area coverage much faster than a single vehicle. Therefore,
the coordination of multiple wheeled robots, unmanned air/ocean vehicles, satellites,
aircraft and spacecraft [1]-[8] have been investigated as applications of vehicle formation
control.

Consensus-based formation control [4]—[8] is considered to be more robust and
reliable when compared to other formation control methods due to scalability [4], [7] and
inherent properties that enable the formation to continue even if one of the robots
experiences a failure. In consensus-based formation control, the robots share information
regarding their position errors from their respective goal positions. The shared information
is then synthesized into a control law which seeks to achieve the same position error for all
robots until each robot has reached its goal position. The desired formation is achieved and
maintained by reaching and maintaining consensus on the position errors. Therefore, the
main tasks in consensus-based formation control are described as: i) given an initial state,

achieve a desired formation, and ii) maintain this formation while the robots move through



the environment to reach their desired goal position. Completing task ii) is equivalent to
solving the regulation problem for the formation.

In earlier works [1]-[4], consensus-based schemes have been studied for
generalized linear systems with known system dynamics and applied to systems with time
varying communication graphs [8], bounded disturbances [9], and communication delays
during state information sharing [4]. In addition, the majority of consensus-based formation
control methods for mobile robots [10]-[12] also takes into consideration linearized robot
dynamics for a controller design. In contrast, nonlinear robot dynamics play a vital role
[13] in maintaining a predefined formation as shown before.

The consensus-based optimal formation control scheme was also introduced in
[14]. Similar to the aforementioned approaches [4]-[8], optimal control [14] was designed
for linearized robot dynamics in a backward-in-time manner and requires complete
knowledge of the robots’ system dynamics. The backward-in-time solution for optimal
control is not suitable for practical implementation.

Various schemes [15]-[17] are now available in the literature to solve the optimal
control online and the forward in time movements with complete or partial knowledge of
the system dynamics. These online approaches, referred to as adaptive dynamics
programming (ADP) [16], [17], require a significant number of iterations [18] to maintain
stability. However, to control the robot formation, both iterative [16] and backward-in-time
techniques [19] are unsuitable [18] because an insufficient number of iterations can lead to
instability.

In the event-sampled framework [20]-[23], the measured state vector is sampled

based on certain state dependent criteria referred to as the event-triggering condition, and



the controller is executed at these aperiodic sampling instants. The event-triggering
condition is designed by taking into account the stability and the closed-loop performance,
and hence, it’s proven to be advantageous over its periodic counterpart.

Initially, the event-triggered techniques from [20],[22],[23] were designed for
ensuring stable operations of the closed-loop system by assuming that a stabilizing
controller exists for the system under consideration. Developing an event-triggering
condition and establishing the existence of positive inter-event time with the proposed
event-sampling condition was the main focus in these works [20],[22],[23]. An event-
sampled adaptive controller design was presented in [21] for physical systems with
uncertain dynamics.

Quadrotor UAVSs are easier to build and maintain when compared to conventional
helicopters [24]. However, the dynamics of the quadrotor UAVs are not only nonlinear,
but also coupled and under-actuated. They have six degree of freedom and can be modeled
as having four independent control inputs; one for elevation adjustments and three
rotational control inputs. Many controller schemes are proposed in the literature for
trajectory tracking problems of quadrotors [25]-[26], where the control objective is to track
the Cartesian position and a yaw angle. Others research focused on ways to control a group
of quadrotor UAVs [24]-[35].

The quadrotor UAV leader-follower formation controller design was introduced in
[27] while considering the fourth order linearized dynamics of quadrotors. A relative
distance approach is utilized for adaptive leader-follower formation keeping when the GPS
signal lost in [31]. The nonlinear quadrotor dynamics are assumed to both be known

[27],[31] . An NN based adaptive formation controller is developed for quadrotor UAVs



in [24]. The availability of position, orientation and velocities of the follower as well as the
leader for the leader-follower based formation controller design in [24] is quite a strong
assumption as it may not be practical. Further, there are several limitations of leader-
follower based formation control over the consensus-based approach.

1.1 ORGANIZATION OF THE DISSERTATION

The dissertation is organized as it is shown in Figure 1.1. For nonholonomic
systems, the regulation problem is not straightforward due to nonholonomic constraints
and Brockett’s theorem. In [36], the robot kinematics were transformed into polar
coordinates to satisfy Brockett’s theorem, and control velocities were developed to solve
the regulation problem. However, the work in [36] assumed perfect velocity tracking and
did not consider the robot dynamics. In addition, several others [4]-[8] have considered
consensus-based formation control but failed to consider velocity tracking error dynamics
in their controller design.

Motivated by the aforementioned limitations of existing stabilizing consensus [4]—
[8] controllers, adaptive dynamic programming (ADP) controllers [15]-[17] and the
optimal consensus controller [14] , a novel online, forward-in-time, finite horizon optimal
adaptive formation control is proposed for mobile robots by modeling the robots as
nonlinear continuous-time systems in affine form in the first paper. A novel value function
is introduced as a quadratic function of consensus-based formation keeping, regulation
errors of each individual robot and control inputs.

The ADP is utilized to solve the optimal control by using two neural networks

(NNs). One NN is used to identify the unknown mobile robot formation dynamics and the



other is utilized to approximate the time varying value function, which becomes the
solution of the HJB equation.

Both the NN estimation error and the Hamiltonian estimation convergence have
been proven to show that the estimated value function becomes the solution of the HIB
equation. The identified formation dynamics and the approximated time-varying value
function were subsequently utilized for designing the optimal control policy for each robot.
The NN weights were updated by using a novel update law, which is derived by using both
the Lyapunov stability technique and to minimize formation keeping regulation and
terminal constraint errors. An initial admissible controller is not needed.

In the second paper, the limitations of existing stabilizing consensus [4]-[8] and
regulation controllers [36] are considered and a novel time-varying velocity tracking error
system is designed to solve the formation regulation control problem with guaranteed
performance for nonholonomic wheeled mobile robots. A hybrid automaton is proposed
to control the nonholonomic mobile robots with nonlinear dynamics in two discrete modes:
a regulation mode and a formation keeping mode. The regulation mode drives each robot
to a constant goal position while the formation-keeping mode ensures that the robots
achieve and maintain a specified geometric formation prior to reaching their goal position
to solve the formation regulation problem.

In order to avoid hard switches between regulation and formation keeping modes,
a novel blended time-varying velocity tracking error approach is developed. The blended
error approach ensures the robots’ velocity tracking errors and control torques are
continuous at the switching conditions. Time-varying Lyapunov functions are used in

conjunction with multiple Lyapunov methods [37] to provide stability of the hybrid system.



Unlike current approaches available in [4]-[7], this work considers the kinematics and
dynamics of each mobile robot as well as the formation.

The third paper describes the development of an adaptive event-based distributed
formation control of mobile robots wherein the dynamics of the individual robot and the
controlled formation are explicitly taken into account. The NN are utilized as function
approximators to learn the dynamics of each mobile robot in the formation. Traditionally,
adaptive NN controllers require more computations when compared to the proportional-
integral-derivative (PID) controllers whereas event sampling of feedback reduces
computations for adaptive formation control. Moreover, since the mobile robots need
location and velocity information from neighborhood robots to reach consensus, they share
their information with each other through a resource-limited communication network.
Therefore, utilizing the communication network in an event sampled context can lead to
minimizing network congestion and undesired performance of the controller.

However, event-based sampling can make stability analysis complex and a suitable
adaptive sampling condition is needed to obtain consensus-based formation errors. These
formation errors are then utilized to obtain the desired velocities for each robot in order to
drive the robots to a predefined formation as a tracking problem. Further, to determine the
formation error, a unique virtual cart is defined using the regulation errors of the
neighborhood robots in the network. However, due to the dynamics of each robot, a
persistent velocity tracking error continues to exist. Using the NN-based representation of
the mobile robot dynamics, the control inputs can be obtained to minimize this velocity

tracking error with event-sampled feedback.



It is worth mentioning that the velocity tracking errors of each robot acts as a virtual
subsystem for the formation error subsystem. Thus, by using the distributed back-stepping
controller design, the velocity tracking errors are reduced leading to fewer formation errors
and the robots reach a desired formation. The overall control scheme is distributed since
the controllers for each robot are designed using a consensus-based formation error, which
is a function of the position and velocity of all the robots.

Since the unknown NN weights are tuned at the event-sampled instants,
computations were reduced when compared to traditional NN and adaptive control
schemes, but the innovation also introduced aperiodic weight tuning. A novel event-
sampling condition was derived, in such a way that the robots use locally available
information and previous information from others to determine the feedback instants
thereby reducing communication costs and ensuring stability and performance of the
overall formation due to this intermittent feedback. In other words, the event-sampling
mechanism enables asynchronous broadcast of position and velocity information, reducing
network congestion. Finally, the extension of the Lyapunov direct method is used to prove
the local uniform ultimate boundedness (UUB) of the tracking and the parameter
estimation errors with event-sampled feedback.

The fourth paper presents the development of a novel consensus-based output
feedback formation controller for a group of quadrotor UAVs in the presence of uncertain
quadrotor dynamics. The leader quadrotor UAV is assumed to track a pre-defined desired
trajectory while the others have no knowledge of the desired trajectory. Since the NN-
based output feedback controller has already been developed for a single UAV in [35], it

was briefly introduced in the fourth paper and utilized to demonstrate the control of a leader



UAV. In this UAV leader controlled setup, follower UAVs only need the position and
orientation of the quadrotor UAVs in the neighborhood, thereby relaxing the need for linear

and angular velocities.

Paper I: H. M. Guzey, H. Xu and S.
Jagannathan, “Neural Network-based Finite
Horizon Optimal Adaptive Consensus Control
of Mobile Robot Formations ” Published in
International Journal of Optimal Control
Applications and Methods.

Non-Holonomic .

Mobile Rob Paper Il: H. M. Guzey, T. Dierks and S.
obile Robots Jagannathan, “Hybrid Consensus-based

Control of Nonholonomic

Mobile Robot Formation” is submitted to the
Journal of Intelligent and Robotic Systems.

Paper I1I; H. M. Guzey, Vignesh Narayanan,
S. Jagannathan and L. Acar, “Distributed
Consensus-based Event-triggered
Approximate Control of Nonholonomic
Mobile Robot Formations ” submitted to
IEEE Transactions on System Man and
Cybernetics.

Paper IV: H. M. Guzey, T. Dierks, S.
Jagannathan and L. Acar, “Consensus-based
Quadrotor Output Feedback Control of Quadrotor

UAV UAYV Formations Using Neural Networks ” to
S ’ .
be submitted to International Journal of
Advanced Robotic Systems.

Consensus Control of Unmanned Vehicles

Figure 1.1 Flowchart of the dissertation.



The position and velocities were designed to be shared among the UAVs enabling
each UAV to obtain information about position and velocities of neighbor UAVs through
local sensors when communications are not available. A novel NN-based extended
observer was developed in this dissertation research allowing each follower UAV to
estimate its own velocities as well as that of its neighbors. To support UAVSs joining or
leaving a formation or neighborhood, a novel size reduction matrix was defined to remove
the zero elements in the observer design corresponding to the states of a UAV that has left
the formation. The size reduction matrix provides a method to ensure that an invertible
observer matrix is always available.

By using the position, orientation, reference location and estimated velocities of
neighbors, each UAV determines its consensus-based formation errors. Since the under-

actuated quadrotor UAVs have no control over the position error along x and y directions,

novel desired pitch and roll angles were developed in this research to reach consensus on
position errors in those directions, the author also utilized as a virtual controller in the
controller design. An elevation controller was also developed by considering the formation
error along z direction and other position and orientation errors.

1.2 CONTRIBUTIONS OF THE DISSERTATION

The consensus-based formation controllers [4]-[8] mainly dealt with linear systems
prior to the research developed in this dissertation. Developing controllers for
nonholonomic unmanned systems had it its own challenges, which were met and are
presented here in as objectives achieved. The achievements include defining the consensus

error of each unmanned vehicle, deriving the error dynamics and contribution to the
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understanding of nonlinear under-actuated error dynamics. Each chapter of this dissertation
provides contributions to the consensus control and unmanned vehicle control research
community.

In the first paper, a novel consensus-based finite horizon optimal formation control
is presented. It was developed for the mobile robots in the presence of uncertain nonlinear
dynamics by using a novel cost function. By doing so, a group of nonholonomic mobile
robots can now reach consensus on their regulation error and reach their desired location
thereby minimizing a cost function that is based on consensus error and regulation error as
well as the control torque in a given finite time. The ideal cost function which enhances
the Hamiltonian zero and the robot formation dynamics are approximated by using novel
NN weights adaptation laws derived in the first paper. By using the Lyapunov’s stability
theorem, the closed loop robot formation dynamics, and regulation dynamics are shown to
be bounded and the overall formation errors are also shown to be bounded.

In real life applications, unmanned vehicles may be expected to form a desired
shape first and move to a desired location in the given desired shape. Therefore, the
combined regulation-formation controller developed in the first paper may not be suitable
for all applications. In the second paper, a novel hybrid method is designed for
nonholonomic mobile robots to take care of the consensus seeking and regulation problems
sequentially. In order to avoid the hard switches between the regulation and consensus
seeking tasks, a novel blending of velocity tracking errors was developed which improves
transactions between different modes of the hybrid system. Additionally, analysis of the
nonlinear hybrid system’s stability using time-varying Lyapunov functions to prove the

guaranteed performance of the approach is another contribution of the second paper. Two
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separate Lyapunov functions were separately assigned for both regulation and consensus
seeking tasks. It is shown that each Lyapunov function dies while the corresponding task
IS being taken care of by the controller. The initial values of each Lyapunov function at the
time of its corresponding time period is also shown to be decreasing. This provides the
stability of the hybrid system.

In the first two papers, it is assumed that each robot broadcasts its state information
continuously, and others use it to obtain their consensus error and learn where they stand
currently. However, this may cause communication over traffic in real applications.
Therefore, the author considered reducing communication as possible by using a novel
event trigger condition that can be triggered by each robot individually. To accomplish
this, in the third paper, a novel distributed adaptive consensus-based formation control of
mobile robots is presented, which was developed by taking into account the uncertain
dynamics of each robot and its formation. A novel adaptive event-sampling condition was
determined through the Lyapunov analysis using both current information of the robot
under consideration and previous information from neighborhood robots to determine the
feedback instants, which in turn resulted in asynchronous communication. At the end of
the paper, overall stability of the robot formation was demonstrated even if the state
information was only broadcasted when the event was triggered by using the Lyapunov
stability theory.

The controllers in the first three papers were developed for nonholonomic mobile
robots formation. The fourth paper deals with formation control of quadrotor UAVs which
is also under-actuated in the same manner as that done for the nonholonomic mobile robots.

The first contribution of the fourth paper is the design of a novel NN-based nonlinear
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extended observer to estimate the velocity of the UAV under consideration and its
neighbors which enables the quadrotors to maintain any desired formation shape even
without communication among each other. By using the observer, each UAV is able to
observe their neighbors’ velocities through their positions and orientations. Secondly, the
development of a nonlinear consensus based output feedback adaptive formation controller
for a group of quadrotor UAVs is one of the major contributions of the fourth paper.
Finally, showing that any number of quadrotors can form any given desired shape in the
presence of switching communication topologies through Lyapunov analysis is a

contribution to the research community and the state of the art.
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PAPER

l. NEURAL NETWORK-BASED FINITE HORIZON OPTIMAL ADAPTIVE
CONSENSUS CONTROL OF MOBILE ROBOT FORMATIONS

ABSTRACT

In this paper, a novel NN-based optimal adaptive consensus-based formation
control scheme over finite horizon is presented for networked mobile robots or agents in
the presence of uncertain robot/agent dynamics. The uncertain robot formation dynamics
are approximated online by using an NN-based identifier and a suitable weight tuning law.
In addition, a novel time-varying value function is derived by using the augmented error
vector, which consists of the regulation and consensus-based formation errors of each
robot. By using the value function approximation and the identified dynamics, the near
optimal control input over finite horizon is derived. This finite horizon optimal control
leads to a time varying value function, which becomes the solution of the Hamilton-Jacobi-
Bellman (HJB) equation, and control input is approximated by a second NN with time
varying activation function. A novel weight update law for the NN value function is
developed to tune the value function, satisfy the terminal constraint, and relax an initial
admissible controller requirement. The Lyapunov stability method is utilized to
demonstrate the consensus of the overall formation. Finally, simulation results are given to

verify theoretical claims.
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NOMENCLATURE

X :x Cartesian position of the robot
y :y Cartesian position of the robot

¢ :Bearing angle of the robot

X, :X position of the robot with
respect to robot frame

Yy, . y position of the robot with
respect to robot frame

V : State vector of the robot
7 : Controller torque of the robot

f:Internal  dynamics of robot
velocities

g :Controller input matrix of robot
velocity dynamics

f, - Internal dynamics of the robot

g, : Input matrix of the robot
V, : Desired robot states
V : Regulation error of robot states
f_:Internal regulation error dynamics
of robot

g, : Regulation error dynamics matrix

of robot

o0 :Consensus based formation error
of the robot

¢ : Augmented error vector of robot

f :Internal formation dynamics of
robot

g : Formation control input matrix of
the robot
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1. INTRODUCTION

Formation control of multi-agent systems has been studied broadly [1]- [6] in recent
times and various formation control techniques have been in the literature, which have
traditionally favored the consensus based approach [1], 0, [4], [6]-[8]. This consensus
approach O continues to receive increased attention since it is more robust and scalable
when compared to other methods. The aim of consensus-based formation control is to
guarantee that the state information of each agent in the network converges to a common
value.

In earlier works [1]-[4], consensus-based schemes have been studied for
generalized linear systems with known system dynamics and applied to systems with time
varying communication graphs [8], bounded disturbances [9], and communication delays
during state information sharing [4]. In addition, the majority of consensus-based formation
control methods for mobile robots [10]-[12] also takes into consideration linearized robot
dynamics for a controller design. In contrast, nonlinear robot dynamics play a vital role
[13] in maintaining a predefined formation as shown before.

The consensus-based optimal formation control scheme was also introduced in
[14]. Similar to the aforementioned approaches, optimal control [14] was designed for
linearized robot dynamics in a backward-in-time manner and requires complete knowledge
of the robots’ system dynamics. The backward-in-time solution for optimal control is not
suitable for practical implementation.

Various schemes [15]-[17] are now available in the literature to solve the optimal

control online and forward in time with complete or partial knowledge of the system
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dynamics. These online approaches, referred to as adaptive dynamics programming (ADP)
[16], [17], require a significant number of iterations [18] to maintain stability. However, to
control the robot formation, both iterative [16] and backward-in-time techniques [19] are
unsuitable [18] because an insufficient number of iterations can lead to instability.

A novel ADP-based online optimal control over infinite horizon of mobile robots
is presented in [18], which does not require value and /or policy iterations. Therefore, the
problem of solving the consensus-based optimal formation control problem of mobile
robots or agents with uncertain nonlinear dynamics in an online and forward-in-time
manner within a finite time horizon remains open. The objective of adaptive optimal
consensus based finite horizon controller is to regulate the robot state vector in an optimal
manner from an arbitrary initial position and orientation to a desired target position and
orientation while maintaining the formation. The finite horizon optimal control is more
practical for formation control. Because of the terminal constraint, the value function,
which is the solution of the Hamilton-Jacobi-Bellman (HJB) equation, becomes time
varying [15],[19] and involved, and the closed-loop system becomes non-autonomous.

Motivated by the aforementioned challenges, a novel online, forward-in-time,
finite horizon optimal adaptive formation control is proposed for mobile robots by
modeling the robots as nonlinear continuous-time systems in affine form. A novel value
function is introduced as a quadratic function of consensus-based formation keeping,
regulation errors of each individual robot and control inputs.

The ADP is utilized to solve the optimal control by using two neural networks
(NNs). One NN is used to identify the unknown mobile robot formation dynamics and the

other is utilized to approximate the time varying value function, which becomes the
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solution of the HIB equation. Both the neural network estimation error and the Hamiltonian
estimation convergence have been proven to show that the estimated value function
becomes the solution of the HIB equation. The identified formation dynamics and the
approximated time-varying value function are subsequently utilized for designing the
optimal control policy for each robot. The NN weights are updated by using a novel update
law, which is derived by using both the Lyapunov stability technique and to minimize
formation keeping regulation, and terminal constraint errors. An initial admissible
controller is not needed.

The main contributions of this paper include: 1) the design of a consensus based
optimal formation control of mobile robots or agents in finite time in the presence of
uncertain nonlinear dynamics by using a novel cost function; 2) the derivation of novel
adaptation laws for the NN weights to approximate the robot dynamics and the value
function; and 3) demonstration of the boundedness of the closed-loop robot dynamics and
overall formation stability.

The remainder of the paper is organized as follows. Section 2 presents a brief
background on consensus based control of mobile robots. The problem formulation is given
in Section 3. Section 4 discusses the design of the finite horizon optimal controller design.
Before offering conclusions in Section 6, simulation results are presented to support our
theoretical work in Section 5. An appendix gives detailed proofs for the theorems and the

lemmas.
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2. BACKGROUND AND PRELIMINARIES

In this section, the dynamics of an individual robot is formulated in an affine form,
and a brief background on the consensus-based formation control is discussed. Later, the

finite horizon optimal control design for nonlinear affine systems is revisited.

2.1 MOBILE ROBOT DYNAMICS

The dynamics of an individual mobile robot [20] are functions of the Cartesian
positions and the bearing angle. In Figure 2.1, X.,Yy, denote Cartesian positions with

respect to the robot frame. They are also subject to non-holonomic constraints and

represented by

M (V,)V, +CV, + F (V,)+G (% )+ 7, =B (% )r - ATA, 1)
whereV, =[x Yy ¢]T and V, =[>’< y qB]TWith X,y,and X,y represent the Cartesian

positions and velocities, ¢ and ¢ , denote bearing angles and angular velocity, respectively
as shown in Figure 2.1 The matrices B(e) e R*?, M (¢)eR*®, CeR>®, and AeR*?
represent input transformation, inertial, Coriolis, and constraints matrices, respectively.
The vectorsz e R**, 7, e R**, AeR**, G(o)eR* and F(e)eR*" are, respectively,
the control torque, bounded disturbance, constraint forces, and gravitational and friction
vectors [20] . By using the fact that the inertia matrix, M (¥,), is invertible [21], equation
(1) can be rewritten as

Vv, =M (%) (Cv,—F(%,)-G(%)-7,-ATA)+M (%) B(%)7. )
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Figure 2.2 Communication topology among robots.

In terms of state space representation, equation (2) can be expressed as

.1 =V ~ 3)
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withv =[v7 v | eR*™, F(%,,%)=M(%)"(Cv,~F(%,)-G(%)-7,~A'A)eR*,
andg(v,)=M (\71)71 B(V,) eR*? denotes the nonlinear functions representing the system

dynamics.

Alternatively, equation (3) can be expressed in affine form as

v="1(V)+g,(V)r, (4)
where f, (V) = [VZT f(v) ]T eR™, g, (V)= [OM g(v) ]T eR®2  represents the
nonlinear internal dynamics and the control coefficient matrix, respectively. In the
formation control problem where there are n mobile robots present, the dynamics of the
i" mobile robot can be written as

V= (W) +3,(W)r, i=12-n. (5)
The following assumption is needed before we proceed.

Assumption 1: The state vector V; in (5) is available and the input matrix satisfies

gr,i (\7I)H < gmax )
Without loss of generality, the system (5) is considered controllable in the sense

that there exists a continuous control policy that stabilizes the robot error dynamics (8)

with V. =0 being a unique equilibrium point on a setQ2 = R®. The main objective of the
formation control problem is to reach a desired state, V, , eR* by the i™ mobile robot

while maintaining the formation intact.
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Next, we define the regulation error as the difference between actual state, v, and
desired state vectors, V, ., as
Vi =V, -Viq, (6)
where V. e R*is the regulation error for the i" robot. Since the desired positions and
velocities are assumed to be fixed, \7Id =0, and the regulation error dynamics from (6)

becomes

v = -_\}i,d:v:f_i(\7i)+gr,i(\7i)7i- ()

\7i =f..(%)+9, (V)7 (8)
with f (Vi ) = i (_u ) = f_r,i (Vi +tVig ) andg, (Vi ): 9 (vu ) =0, (vi +Vig ) .
Remark 1: From (8) it is evident that the regulation error must be forced to zero in

order for the formation to reach the target. Assumption 1 ensures that

gr,i (\7|)H < gmax iS
bounded. On the other hand, in a formation control design, a consensus has to be reached

to maintain formation.

2.2 CONSENSUS BASED FORMATION CONTROL

In this subsection, the traditional consensus-based control is discussed in brief.
Before introducing the consensus approach, the following assumption is needed to proceed.

Assumption 2 [27], [9]: The connectivity graph of the formation network is assumed
to be undirected and connected.

The primary goal of a formation control is to reach consensus by maintaining the

formation error defined as
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5= [(-7)]eR™, 9)

jeN;
where V. is the regulation error of the i" robot and V; is the regulation error of j" robot

and N, is the set of mobile robots in the neighborhood of the i" robot. Similar to (9), the

formation error can also be defined as
5= |1, -7,) ] eR™, (10)
withl; 20, I; 21 if information flows from vehicle j to vehicle i and I; £0, otherwise

Vi # j.Then, the connectivity matrix of overall network is defined as L = [Iij] . However,

for the sake of simplicity on notation, the neighboring set notation (9) is preferred during
the paper.
Remark 2: To ensure consensus among the robots in the network, each robot needs

to be aware of regulation errors of other robots; hence, the robots need to communicate

with each other. The set of robots from which the i robot can receive regulation error is
called a neighboring set or N; of thei™ robot that is

Vi=1..,n, N;={j=1...,N|(i j)eG}, (11)

: : . ‘th
where G designates the existence of a regulation error exchange between i" and Jt robot.

Additionally, all the robots have a two-way communication.
To achieve the desired formation, the difference among the regulation errors of the
robots should converge to zero. Although each robot is not receiving the regulation error

information from every other robot in the network, the connectedness of the network
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provides consensus on regulation errors[14]. Consequently, the final regulation error of

each individual robot will be in consensus [14] . In other words, even though there is no
direct communication between i"" and k" robots, sinceV, =V, , V; =V, , then V; >V,

[14].

Traditionally, in a consensus-based formation control [22] of agents described by a
linear system [14], [23], the control input for linear systems is based on the formation error
by using the information of their neighbors. To design an optimal consensus-based
formation control of nonlinear systems, both the regulation and formation errors need to
be accounted for. Next, traditional optimal control background is discussed before
introducing the proposed scheme.

2.3 OPTIMAL REGULATION OF CONTINUOUS-TIME SYSTEMS

A brief background on optimal control of general nonlinear continuous-time
systems in affine form is presented in this subsection. Consider the nonlinear mobile robot
regulation error dynamics (8) in affine form. The objective here is to design an optimal

control policy while minimizing the cost function,
_ _ ts -
Vi) =1 (Gt ) + [ QU+ Rt (12)

inafinitetime [t, t, |where Q(V,)20€R isapositive semi-definite function to penalize
the regulation error, R eR?*?, is a positive definite matrix to penalize the control input of

the i™™ robot while the terminal constraint, ¥; (Vi (t; ),t; ), penalizes the terminal state at the

finial time , {; . It is important to mention here that due to fixed finite time, the cost function

becomes an explicit function of time in contrast to the infinite time case where the cost
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function is a time invariant function. Next, define the Hamiltonian
H(¥,7,t) =V, +Q(¥) +7/ Ry, +V\7iT [ (V) +9.,(V)z], (13)

_ V.Y

where v, w and V; are the gradient of the cost function, V;(V;,t;).

Equation (13) has the time-dependency term, V;, ,in contrast with the infinite-horizon case.
The optimal control policy [18] is obtained by using the stationary condition,

oH(V,7,1)/07. =0, which yields

., i P

7 (7,0 =—SRIG7 %)V, (14)
Substituting (14) into (13) yields the time-varying HIB equation as

Vi +V, ' f (W) + Q) - v '9,,(V)R™g,," (V)V, =0, (15)

with Vit* , VVT representing the derivatives of optimal time-varying value function of i"

robot, Vi*, with respect to time and regulation error, respectively. The solution to the time

varying HJB equation, which is essentially the value function, is used to obtain the optimal
control input. On the other hand, finding an analytical closed form solution of the HIB
equation is difficult and has been considered to be extremely difficult. Hence,
approximation based ADP techniques are used to solve the solution online.

Lemma 1[18]: Consider the regulation error dynamics of i"" robot (8) with value
function (12) and the optimal control policy (14). Let J(\7i) be a continuously
differentiable, radially unbounded Lyapunov candidate such that

J(W)= 3 @ W = Jg @)(f (%) +9(%)7) <0 with J; (V) being the partial derivative of
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J(%) with respect toV; . In addition, let Q(V.) € R be a positive definite matrix, i.e.,
VW £0VeQ, |Q@)|>0. and v, =0=|Q@)[=0 . and Q,, <|QW)| <
Moreover, letQ(V) satisfy V'E‘LELQ(VJ — oo as well as
VVTTQ(Vi)Jvi =r(V,7)=Q()+7 Ry (16)
Then, the following relation holds: JvTi(f (V) +9(V)z) :—JVTQ(\Z)JVi .

In a consensus-based control, since the complete formation depends on both

regulation and formation errors, the cost function has to be redefined. In the next section,

the problem statement of the consensus-based optimal formation control is formulated.
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3. PROBLEM FORMULATION

In this section, the augmented formation dynamics are derived and the near optimal
control of a consensus-based formation control of mobile robots is formulated.

3.1 FORMATION DYNAMICS

The formation dynamics are derived by augmenting the regulation and the

formation errors. The dynamics of formation error discussed in (9) can be derived as

8= 2 (s (@) + 9, (%)= (%) -9, (%) 7,) (17)

jeN,

Now, augmenting the regulation and formation errors ofi™ robot,
s = & ]T e R™*, the dynamics of the formation error for the i robot by using
(8) and (17) becomes

f.(v)+9,., (V)7

é/i: Z(fr,i(vi)—i_gr,i(vi)ri_frj( ) gr](\7 ) ) (18)
In an affine form, equation (18) can be represented as
f (V.
é;- _ r,|(V|) +{ gr'i(vi) }2__ 9
I Z(fr,i (Vi)_ fr,j(vj)_gr,j(vj)fj) £9:: (V)

jeN;
where O; being the number of robots in the neighborhood of the i™ mobile robot. The

formation dynamics of the i™ mobile robot (19) can be expressed in a compact form as

& =1 (%, 74)+0 (%), (20)
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with7; € 7y, Vj € N;, V; €V, Vj € N; being the control input and regulation error vector

of all robots in the network, respectively, and

fr,i (\7|)
gr,i (\7|)

f i T i ~ € R12X11 (V)= (S Rlz)d .
( " N Z(f V ( ) gr]( )Tj) gl(l) pigr,i(vi)
jeN;
Remark 3: Note that, similar to [24], the i™ robot formation dynamics (19) are
given as a function of the regulation errors and control inputs of its neighbors and its own

regulation error dynamics. The controller, 7; , in the augmented error dynamics (20) of the

i" robot is formulated in a decentralized way. These formation dynamics are not known
beforehand as they are a function of other robot dynamics in the formation. Therefore, an
NN identifier will be utilized to identify them for optimal consensus control. Next a novel
cost function is defined for the optimal control problem to achieve optimality in a finite
time by minimizing both the regulation and formation errors.

3.2 CONSENSUS-BASED VALUE FUNCTION

In order to control the consensus-based formation error dynamics (20) optimally

in finite time, a novel value function is proposed for the i™ robot as

V,(Gt) = 9 (Gt + [ (QU6) +7/ Ry ), (21)
where t, and t; are initial and final time instants, respectively, while
Q&) = V' QV. + 7,6/ Q6 withQ, € R*® representing positive definite matrices to

penalize regulation and formation errors, respectively. In addition, %}, are positive

design parameters, R is a positive definite constant matrix, and $ (¢;(t;),t,) serves as a
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terminal constraint for each robot. Note that the design parameters y,,and y, define how
much relative penalty needs to be given to regulation and formation errors. In other words,
for example, increasing y, and reducing g, increases priority of formation which prevents
over minimization of the regulation error.

The time-varying value function (21) with augmented error, ¢, as its input can be

expressed by using an NN with a time-varying activation function on a compact setQin

the form [15] as

Vi(GD) = By Gty —) +8,(S.0) (22)
and the terminal constraint can be represented as

Vi(Gt) = w, (& (). 0+, (& t) (23)
where 6, e RE*1 is the target NN weight vector with L being the number of hidden-layer
neurons; hence, y, (&, t—t;) :R12x[0,0) — RI is the bounded time-dependent activation
function of augmented errors of each robot, while &, (¢;,t) is the NN reconstruction error.

The target NN weights, &, , and reconstruction error , &, (¢;,t), are assumed to be

bounded above such that |6, ||< 6, and [, (£;.t)| < & . where 6, and &, are positive

constants [13]. In addition, it is assumed that the gradient of the NN reconstruction error

with respect to ¢; is bounded above, such that HV & (g’i,t)H < &, [18], where ¢, is also

a positive constant. The quantities y, (&;(t;),0) and &, (¢;,t;) have the same meaning but

correspond to the terminal time and state. Next, an adaptive optimal consensus-based finite

horizon NN-based controller scheme is derived.
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4. OPTIMAL ADAPTIVE CONSENSUS CONTROL

In this section, finite horizon optimal adaptive consensus-based formation control
is designed for mobile robots in the presence of unknown robot formation dynamics. First,
NN-based identification of the dynamics is introduced. In the second part of this section, a
novel NN-based finite horizon optimal adaptive consensus controller is proposed. In this
scenario, two NNs are utilized, one for identification and the other one for estimating time
varying value function.

In contrast with the traditional actor critic methods where two NNs are utilized, in
the proposed approach, only one NN is utilized in an online fashion. A Novel NN weight
matrix adaptation law is derived to guarantee terminal constraint as well as maintaining
stability of the system. The Lyapunov stability theorem is utilized to find an optimal
controller and stability analysis of the closed-loop system incorporating the identifier.
Without loss of generality, i" robot’s adaptive optimal controller design is considered as
follows. Further, the optimality and consensus ability of external robot network is
demonstrated in Theorem 2 based on the controller defined for each robot individually. The
next section introduces identification of i mobile robot dynamics.

4.1 NN-BASED IDENTIFIER

Consider the formation dynamics of mobile robots (20) in affine form. On a
compact setQ, by using an universal function, the approximation property of NN-based

identification of mobile robot formation dynamics can be expressed as [25]

fi (Vir 7)) = 6’2% (Vi Ti) +€4, 0, (V) = e;l/lgi (V) +&4, (24)
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where §; e R, 6, e R™ are NN target weight matrices with | being number of neurons,

andy; :R° > R', and ; :R** — R"™ are activation functions and &, e R>*, ¢, e R**

are NN reconstruction errors. Even though the dynamics of other robots are unknown to

i" robot, the regulation errors and control inputs are transmitted for identification of
formation dynamics.

Then, the mobile robot dynamics (20) can be represented by using (24) as

é./i = (V. 7)) + 9 (V)7 =0—le/jﬁ (vNi’TNi)+0;il//gi (V)7 +&4 +E4T

| s ' v (Vi 7) 0 1
_{ggi} { 0 ng(vi)}{ri]kgﬁ*_ggiri

=0y, (i, 7T + &4 (25)
where 8, =[0; 0;1 e R*®and,y, (&) = diag{y ; (V. 7). v, (V)}, v, :R*® > R
represent the NN identifier target weights matrix and activation function, respectively,
where 7, =[1 7/]" eR® and &, =&, +&,7; are being the augment control input and the
NN identifier reconstruction error, respectively. Because (V) is known, and 6] is
unknown, equation (25) can be estimated as

&, = Oy (7,77, + Ke,, (26)

with 8, e R**® being an estimation of the NN weight matrix; furthermore, K is a design

parameter, which is used to maintain stability of the NN identifier, and e, =&, —fi presents

the state estimation error. By substituting (26) with (25), the state estimation error

dynamics for robot i" can be given as
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€ = é’u _é;;i = él-:—l//li(VNi’TNi)z_-i +&; —Ke,, (27)
where 6, =(‘9n —é,i)e]Rz'XG is the NN weight estimation error. The update law for 6, is

defined to force the actual NN weights close to target NN weight in a finite time by using

the Lyapunov stability theorem as

0, =20y + (U T )78 (28)

with A, being the tuning parameter of the NN identifier satisfying 4, >0. Since 5,i = —é,i

, by using (28), the NN identifier weight estimation error dynamics can be written as

0, = 10, — v (B T )6 (29)
The identification of robot formation dynamics (26) is utilized to determine the

optimal controller of robot formation which is given in the next section.

4.2  FINITE HORIZON OPTIMAL CONSENSUS CONTROLLER DESIGN

To estimate the value function, V,(¢;,t), for i" robot, we can define it as

V(&) =G, (&t 1), (30)

The terminal condition then becomes
Vi($te) =G, (£,,0), (31)
where \/I (&;,1) is the approximated value function, and évi e R" is the actual NN weights

for the value function; additionally, V,(<;,t;) is the approximated value function at the

terminal timet, , and y, (¢, (t,),0) e R'2x[0,00) — RE is the activation function with
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approximated terminal state £, (t, ). Note that term £ (t, ) is randomly chosen from a

region of stability from the initial stabilizing control [26].
Using the NN approximation of value function (30), the approximated Hamiltonian

is then given by

|:|i (& 7.1) = écivt‘//vi (&t —1) +é{zvgi‘//vi (&t —1) f. (S)
~2AV i (Gt ~OBEIVIw (.t D4, (2)

where D(V.) =g (V.)R™. (V,) is obtained from the NN identifier. Finally, the estimated

control policy is given by
. 1 .1, A
260 =5 RTG W)V Gty ~06, (33)

In order to derive the finite-horizon optimal control, both the time-varying nature
of the value function and the terminal constraint needs to be included in a proper manner.

With NN approximation, define the terminal constraint error as
e, = 3Gt ~-Qu, (Gt) L) = G, (G S )+ 8w, )t +5, . (34)
where 7, (& (t;).t;) =w, (G (). t) —w, (fi(tf),tf). The objective is to minimize the

approximated Hamiltonian (23) and the terminal constraint error (25) along the system
trajectory, such that the optimality can be achieved while satisfying the terminal constraint.

Hence, the total error is defined as
Soi = (Hi (G 7, 1)? /24, /4 (35)
The update law for tuning the NN weights is found by minimizing (35) using normalized

gradient descent as
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4, =—nmﬁi(a,a.t)+n%e& + 29,y (0,1, -0D)I. (&) (36)

@+ 4" ) 2

1 A ~ . A
where _EvéiWVi (&t _t)D(Vi)v;l//Vi (&t —1)4, D tarvsand g=y, (G (t).t)  are
positive design parameters and J.. (&;) is the partial derivative of a Lyapunov candidate

with respect to ¢, . The last term in (36) ensures the system states remain bounded while

the NN scheme learns the optimal cost function [18].

Theorem 1: Consider the formation dynamics of the i mobile robot (20) in a
network of robots. Assume that, each robot broadcasts its regulation errors and control
torques over the network without any communication delays; furthermore, the topological
graph of the robot in the communication network satisfies Assumptions 1 and 2 given in
the paper. Let the NN weight update law for the identifier and the value functions

approximation are given as (28), and (36), respectively, and the estimated control input is

given as (33). Then, there exists positive design constants, y >0,7,>0

77 max
2 1

7, >4+%||gi||4,/1mm(K)>g+i/—2 A (R‘l), allowing all robots to have a small
7

bounded formation error ||5;| and, they are also able to reach their desired position and
orientation with a small, bounded regulation error|[V;|. Additionally, identification error
&) and the NN weights estimation errors for the NN identifier, |4, |, and the controller,
Hé\,i H , are bounded. Further, the bounds are the function of final timet, , initial system state
bound B, o initial identification error bound B, , and initial weight estimation error

bound for NN identifier and controller B, ;,B, ,, respectively.

&;,0"
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Proof: Refer to the appendix.

In Theorem 1, consensus-based formation errors were proven to be bounded for
each robot. The bounded formation error is due to NN approximation error. In the literature,
many papers have dealt with consensus and bounded measurement error [27] as well as
bounded disturbances [9] for decentralized control systems. Since the formation error has
proven to be eventually traced to bounded NN reconstruction errors, by using the
assumption stated for network topology [27], we can claim that all regulation errors of the
networked mobile robots are due to bounded reconstruction errors. Next, the consensus of
the overall network of mobile robots will be introduced.

Theorem 2: Consider the formation dynamics (20) of the i" robot in a team of
mobile robots based on the neighboring sets. Let the NN weight update laws for the
identifier and the value functions be given by (28), and (36), respectively. Then, let the
control inputs given by (33) of each robot minimize the cost functions (21) and also
guarantee that the robots reach consensus over their regulation errors. Furthermore, the
leaderless group of robots will move toward their goal position while maintaining
consensus on the way and, they eventually reach close to the goal position in a finite time.

Proof: See appendix.

Next it is worth mentioning the benefits of the proposed consensus-based finite
horizon adaptive optimal controller(33). In the traditional leader-follower based formation
control [24], each follower needs to receive the controller input and the state information
of its leader while the communication delays are ignored. Once the communication is lost
between a leader and the follower, the follower and the robots behind the follower will lose

formation. However, this is not the case in the consensus based approach. As long as the
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communication graph of the robot formation is connected, which means each robot
transmits its information to at least one neighbor robot and receives at least one neighbor
robot’s information, the consensus is preserved over the entire group.

Now, assume that i robot receives information from only part of the group. Then

the formation dynamics of i" robot becomes

¢ = iV, 7, %) + 9, (V)7 @37)
The neighboring set N, can contain up to n robots. As mentioned before, the i"

robot neighboring set should have at least one robot. To demonstrate this, let us assume

that thei™ robot is at the edge of the group, and it can only receive information from the

i™ robot. Then the formation dynamics of the i robot will be a function of only the j"

robot’s regulation error and controller such as

¢ = f(V.v,,7,)+9(")z. (38)
Since the communication links are undirected, the formation dynamics of the j"
robot needs to have i" robot’s information

¢ = fi(Vy, 7y, V) +9,(V))7; VieVy, 7 eny, (39)
one can realize that j" robot can be considered as the leader [24] of i robot for this case.

In the worst case, if the i robot cannot receive any of the other robots information.

Then the dynamics become
& = 1,7,0,0)+9,(%)7, (40)

which is a function of its own regulation error. Then the i robot runs to its goal position

without considering other robots. If others get i robot’s information, then every robot in
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the group will align themselves with respect to i robot; otherwise, the rebel (unaligned)
robots will be separated from the group and run by themselves to the goal position.

In the simulations, the performance of the controller is demonstrated for several
network topologies. The proposed controller (33) not only stabilizes the formation
dynamics (20) of the robots, but also minimizes a cost function in a finite time. Therefore,
a novel cost function is proposed based on consensus error, regulation error and minimized
in a desired finite time. Regulation and formation errors are penalized with two different
penalizing matrices. In the simulation section, different penalizing matrices are utilized to

inspect how it will affect the formation performance. Next, simulation results are given.
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5. SIMULATION RESULTS

This section presents performance of finite horizon optimal consensus control (33)
in mobile robot formation in the presence of uncertain robot dynamics. Four non-
holonomic mobile robots are utilized to simulate robots that reach their desired positions
as well as show how formation stability is maintained along the way. Initial robot positions

and velocities are selected as
[%(0) %(0) %(0) x(0)] =[0 20 0 -20],
[%(0) ¥%:(0) ¥:(0) v.(0)] =[20 0 -20 0]
[%(0) %(0) %(0) % (0)] =[0 0 0 of,

. . U T

[yl yz Y3 (0) Ys (0)] :[0 00 0] !
Each robot is controlled by using finite horizon optimal formation control (33) and
forced to achieve their desired positions and velocities by using minimum energy in 10

seconds. Desired locations are given as
T T
[Xg Xoq X X =[-14 -8 -14 -22],
[Vio  Yaa  Yau  Yag ]T =[21 15 9 15]T , and desired accelerations are all set to zero.

The basis vector of value function estimation is done in two steps because of its

time varying feature. In the first step, time dependent basis matrix is defined as

14 1|—1r1

[tr N RPN 5 TN SPREH Al i 1t49] R where t, =10—t representing

the time left to reach the final destination. Secondly, we show the dependent part of a basis

vector for value function estimation defined as
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T IX.
W =[ 6 G 6 GG GGS o GG G §GT 615 | € R where
[£1,++1 6| corresponds to the regulation error of the i robot, and [¢5,-++, ¢, | corresponds

to the formation error of i" robot.

Subsequently, the basis vector of value function estimation is given as
multiplication of time-dependent and state-dependent parts, vy, =y, € R, For the

identifier NN, activation function is selected in the same manner as the time-invariant part

of the value function basis vector,
N
Wi =[ 801G i Ch61 CECEn COGE IS 06 60 G | e R,

Wi  Ospa

~2 ~2 ~6 5 ~6 " 15x1
[Vil'vilViZ'""Vi2’""Vil'VilViZ""’Vi2:| SRU and ;= 0
a1 Wi

}EERSSXZ . Initial NN

weights are selected as small random numbers asW,,<0.01*rand(65,12) and

W,, €0.02*rand(50,12) for both the identifier and value function NNs. The history of

NN weights for value function approximation is illustrated in Figure 5.1. Moreover, the
value function is defined as function of regulation error, formation error and control input

of each robot as

V(£,0) = 9(£(10),10)+ [ (Q(¢) +u" Ru)et (41)
where R =eye(2,2) is identity matrix,

Q(g) :%[gl"“’gﬁ]Ql [§11""§6]T +%[§7""1§12]Qz [4/7:"'1512]TWhere Q1 eR*® and

Q, e R*® become positive definite matrices to penalize regulation error and formation



error, respectively; hence, terminal constraint is given as

9¢010)=|[12 12 12 12 12 12],3*[12 12 12 12 12 12] |

Robot Movement
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Figure 5.1 Robot movements on x-y plane.

20

The simulation results are given for three different communication scenarios among

the four robots.

5.1

FULL CONNECTIVITY

In this case, it is assumed that each one of the four robots is able to receive the

regulation errors and controller torques of all other robots, i.e., the connectivity matrix is

chosenas L=

N = =

P O -

=T S =
= Y
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Figure 5.1 depicts how robots move from their initial position to their goal
positions. Since the initial position of the second robot is farther away from its desired
position, it moves faster to minimize the formation error and reaches the goal position at
the same time as the other robots. The NN weights converge in the first couple seconds as

shown in Figure 5.2.

History of value function NN weights for each robot

60 20
s
40 1 ok
7
20
Fa W™
oba -20
-20 ; ; : : i -40 : ; : : —
0O 2 4 6 8 10 12 0 2 4 6 8 10 12
Time (sec) Time (sec)
20 : : : 20 L : L
f
0 10 W’
-20 fo] Eud —
W\
-40 : : : : : -10 : : . : . .
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Time (sec) Time (sec)

Figure 5.2 Value function estimation NN weight history.

In Figure 5.3, regulation and formation errors are depicted for all four robots. It is

assumed that each robot has all the information possessed by the other three robots. In the
cost function (41), the regulation and formation errors are penalized equally, Q, =Q, .

However, Figure 5.4 shows the effect of penalizing matrices on the formation

performance of robots. In Figure 5.4, performance of controller (33) with two different cost
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functions is compared. The first plot illustrates how regulation errors converge when
formation errors are penalized five times larger than regulation errors, Q, =0.2Q, , and the

second plot depicts the regulation errors with equal penalizing matrices. As can be
observed in Figure 5.4, the third robot moves away from its goal position initially to
maintain formation; however, in the second plot, the third robot converges to the goal
position directly.

Analysis of the HIB equation and terminal constraint errors have been given in

Figure 5.5, which show that not only the HIB equation error but also terminal constraint

errors converge close to zero within the finite time (i.e., t e [0,105]).

According to Theorem 2, the proposed finite horizon optimal design can ensure
the boundedness of both HJB and terminal constraint errors within finite horizon.
Moreover, the convergence of the HIB and terminal constraint errors confirm that the
approximated control input (33) approaches the finite horizon optimal control input over
finite time.

As shown in Figure 5.3, Figure 5.6 and Figure 5.7, the proposed finite horizon
optimal control can force robot states to converge close to zero within a finite horizon; or,
in other words, the proposed controller scheme can maintain the boundedness even in

presence of uncertain robot dynamics.
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5.2 PARTIAL CONNECTIVITY

In this second case, the communication graph of the robots is assumed to be
similar to Figure 2.2 in terms of connectivity whereas each robot is able to receive only

part of group member’s information, i.e., the connectivity matrix is chosen as

O O O
o —, O O
R O O O
O -

Even in this case, because the graph is connected, the performance of formation
controller is almost similar to the full connected case. The performance of the controller is

given in Figure 5.6.

1 9
—— Robot 1 ——Robot 1
0.9 — Robot 2 8 —Robot 2
m —— Robot 4 —Robot 4
W 0.7 =
S e ° \
T 0.6 =
£ S5
705 % \\
S 0.4 4
2o 2l
= =3
= 0.3 S
g @
T 2

[N

0.2

\ A\
0.1 0 \\
0 4 8 12 0 4 8 12
Time (sec) Time (sec)

Figure 5.5 Hamiltonian and terminal constraint errors.
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Figure 5.6 Error convergences with connected communication.

5.3 NO CONNECTIVITY

In this last case, one of the four robots (second robot) is assumed to have neither

received any information from other robots nor passed its information to any other robot,

0
: - o 0
i.e., the connectivity matrix is L = 1
1

o o o o
O o K
o B O K

From Figure 5.7, it is clear that the regulation error of the second robot converges
to zero independently from others; however, the other three robots converge to the same

value in the first couple of seconds.
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6. CONCLUSIONS

In this paper, a finite horizon optimal consensus-based formation controller was
designed for mobile robot formation in the presence of uncertain robot dynamics. The
consensus-based control was derived for a formation of mobile robots by taking into
account their dynamics. Subsequently, the cost function derived as a function of regulation
and formation errors would be able to generate optimal inputs to each robot such that the
entire formation will travel in consensus from an initial position to the goal position. An
NN identifier generated the formation dynamics while the time-varying value function
approximated the solution to the HIB equation. Simulation results confirm the theoretical

conclusions.
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APPENDIX
Proof of Theorem 1: Define Lyapunov candidate function as

L =73 (6)+ ST, + e S + Sud[=0,} +L (T Ae) +22.ar{]Ad )
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a

b c
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First, consider the derivative of L, as

L= 230 E)(F.6) + 9,807 (A2)
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Combining (A.1), (A.2) and (A.3), the first derivative of the overall Lyapunov

function candidate, L, can be expressed as
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Hence, observe that L <0 provided

ol [ 2=t or 4> 2o i, orfe] > [——op—=bor
% 77 [t 2]

0 16Qmmg 1
eli 2 1ol -1 = lqNIi . (A5)
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where Q_.is defined similar to Lemma 1, v, 2. is the partial derivative of square of

terminal constraint error 9(¢,t, —t)* with respect to formation error ¢; of i" robot.

Using the standard Lyapunov theory [28] and previous derivation (A.4-A.5),

within finite horizon, all the signals are bounded.
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Proof of Theorem 2: Define the sum of Lyapunov functions given in (A.1) as
- 3 18 aray, I e
L=> rJ. (§)+§Zy3tr{0ViH6?Vi}+EZei Ze,
i=1 i=1 i=1
1 e Ay N oo
+Eztr{9.i~9..}+ Z(e Ae)'+ 7 > (RO AGY (A6)
i=1
Then, it is straightforward to realize from Proof of Theorem 1 that If< 0 provided

Pow]> 2, PFe =3, o

3 min

2 n
-3 o 22w O

i=1

n

||®|| > Z I e Zbei
\l|: mm(K)_:||| ” =
” 16Q & "
0 H min“TCi — 3 A7
H I= \/573((%MIV ‘92 +1)9I?\/IiO-I4Mi/1r$1ax(R_l) iZ:l:thl (A7)
Whereg(/ =[6~(/T1 a, - G(,n] [H.Tl o, - éﬂT and,®=[e1T S eHT
:[ff LA gnT] Note that since b, ,h,,;,b, andh,; are bound, and there is only

a finite number, n , of robots in the group, then ij ’Zthn’Zbe ,and Z% are also

=1 =1 =1
bounded. These bounds can be minimized by choosing proper design parameters, which
guarantees that all the formation errors are bounded (resulting in consensus on the
leaderless robot group’s regulation errors), and the robots get their goal position with some

bounded regulation errors.
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Il.  HYBRID CONSENSUS-BASED CONTROL OF NONHOLONOMIC
MOBILE ROBOT FORMATION

ABSTRACT

This paper addresses the hybrid consensus-based formation keeping problem for
nonholonomic mobile robots in the presence of a novel time-varying, composite, nonlinear
velocity-tracking error system. First, continuous-time regulation and consensus-based
formation controllers are developed for a group of wheeled mobile robots. These
controllers are then used to create a hybrid automaton, which drives the robots to their goal
positions while maintaining a specified formation. In order to avoid the hard switches
between regulation and formation keeping controllers, a novel blended velocity tracking
error approach is proposed in this work to create nonlinear, time-varying velocity error
dynamics. Therefore, the hybrid controller consists of two discrete modes, each with
continuous dynamics, and the novel blended velocity tracking error approach provides a
smooth transition between each mode. The controller in the regulation mode drives the
robot to a goal position while the formation keeping controller ensures that the robots
achieve a specified geometric formation prior to reaching their goal-position. Time-
varying Lyapunov functions are used to rigorously demonstrate that the formation errors
converge to a small bounded region around the origin and the size of the bound can be
adjusted by using the switching conditions. Convergence to goal position while in
formation is also demonstrated in the same Lyapunov analysis illustrating that the robots
are converging to their goal positions while operating in both regulation and formation

keeping mode. Simulation results verify the theoretical conjectures.
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1. INTRODUCTION

Over the last few decades, the robot control research community has given
significant attention to formation control of multiple vehicles since using multiple vehicles
can be very beneficial for certain tasks since a single, heavily equipped vehicle may require
much more power and lack the robustness needed to avoid failure. For example, in military
missions, a group of autonomous vehicles are required to keep in a specified formation for
area coverage and reconnaissance; hence, multiple vehicles can complete tasks requiring a
large area coverage much faster than a single vehicle. Therefore, the coordination of
multiple wheeled robots, unmanned air/ocean vehicles, satellites, aircraft and spacecraft
[1]-[8] have been investigated as applications of vehicle formation control.

Mobile robot formation control is also the focus of researchers [9]-[12] and several
different approaches such as behavior-based, generalized coordinates, virtual structure and
leader-follower strategies, have been proposed. In the formation control of wheeled mobile
robots [13], kinematics are considered and either perfect velocity tracking is assumed or
only a nominal part of the nonlinear velocity tracking error dynamics are considered. A
novel leader-follower-based formation control algorithm was developed in [3], which
considers complete nonlinear dynamics of both the leader and the followers.

Consensus-based formation control [4]-[8] is considered to be more robust and
reliable when compared to other formation control methods due to scalability [4], [7] and
inherent properties that enable the formation to continue even if one of the robots
experiences a failure. In consensus-based formation control, the robots share information

regarding their position errors from their respective goal positions. The shared information
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is then synthesized into a control law which seeks to achieve the same position error for all
robots until each robot has reached its goal position. The desired formation is achieved and
maintained by reaching and maintaining consensus on the position errors. Therefore, the
main tasks in consensus-based formation control are described as: i) given an initial state,
achieve a desired formation, and ii) maintain this formation while the robots move through
the environment to reach their desired goal position. Completing task ii) is equivalent to
solving the regulation problem for the formation.

For nonholonomic systems, the regulation problem is not straightforward due to
nonholonomic constraints and Brockett’s theorem. In [13], nonholonomic robot kinematics
are transformed into polar coordinates to satisfy Brockett’s theorem, and control velocities
are developed to solve the regulation problem. However, the work in [13] assumed perfect
velocity tracking and did not consider the robot dynamics. In addition, several others [4]-
[8] have considered consensus-based formation control but failed to consider velocity
tracking error dynamics in their controller design.

Motivated by the aforementioned limitations of existing consensus [4]-[8] and
regulation controllers [13], this work develops a novel time-varying velocity tracking error
system to solve the formation regulation control problem with guaranteed performance for
nonholonomic wheeled mobile robots. A hybrid automaton is proposed to control the
nonholonomic mobile robots with nonlinear dynamics in two discrete modes: a regulation
mode and a formation keeping mode. The regulation mode drives each robot to a constant
goal position while the formation-keeping mode ensures that the robots achieve and
maintain a specified geometric formation prior to reaching their goal position to solve the

formation regulation problem. In order to avoid hard switches between regulation and
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formation keeping modes, a novel blended time-varying velocity tracking error approach
is developed. The blended error approach ensures the robots’ velocity tracking errors and
control torques are continuous at the switching conditions. Time-varying Lyapunov
functions are used in conjunction with multiple Lyapunov methods [15] to provide stability
of the hybrid system. Unlike current approaches available in the literature [4]-[7], this work
considers the kinematics and dynamics of each mobile robot as well as the formation.

The main contributions of the paper include the development of: a) a nonlinear
consensus-based formation control technique which considers the nonlinear robot
dynamics; b) a hybrid regulation-formation controller design for nonholonomic mobile
robots; ¢) a novel blended velocity tracking error approach to avoid hard switches between
different modes of the hybrid system; and d) analysis of the nonlinear hybrid system’s
stability using time-varying Lyapunov functions to prove the guaranteed performance of
the approach.

The remainder of the paper is organized as follows. Section 2 presents a brief
background on hybrid automata while Section 3 derives the continuous time regulation and
formation controllers used by our hybrid controller. Section 4 discusses the main result and
derives the hybrid regulation-formation controller of nonholonomic mobile robots. Before
offering conclusions in Section 6, Section 5 provides simulation results to support the

theoretical results.
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2. BACKGROUND ON HYBRID AUTOMATA

In this section, the hybrid automata problem considered in this work is introduced
first, followed by the necessity for a specialized method for analyzing hybrid controller
designs.

The goal of the proposed control scheme is to keep the networked robots in a
predefined formation while they move toward their desired positions. Therefore, two
different discrete modes will be considered: regulation and formation modes. The general
hybrid approach is depicted in Figure 2.1 where the regulation and formation modes are
identified. The robots move to their respective goal locations in the regulation mode while
monitoring the formation error. If the formation error threshold is exceeded, the robots
transition to the formation mode wherein the robots are controlled to achieve their desired
formation. Once the formation tracking is achieved, the robots return to the regulation
mode. This cycle repeats until the each robot reaches its goal position.

The switching cycle creates a hybrid system with both continuous and discrete
dynamics. Due to the hybrid nature of the system, traditional analysis techniques that
consider purely discrete or purely continuous system dynamics may not be sufficient to
analyze the system. The work in [15] illustrates through counter examples that two
asymptotically stable systems may become unstable due to switching conditions when a
hybrid system is formed.

Therefore, to prove the stability of hybrid systems such as the one modeled in Figure

2.1, the authors from [15] introduced an analysis method involving multiple Lyapunov
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functions. In order to claim that the switched system is stable, the stability of each discrete

state must be individually proven while considering restrictions on switching conditions.

Formation Error > Upper Threshold

Y

Formation Mode Regulation Mode
Control Scheme Control Scheme

T

Formation Error < Lower Threshold

Figure 2.1 General hybrid scheme considered in this work.

Consider the switched hybrid system given by
X =f(X), (42)
where X is the state variable and each f,(X) describes continuous dynamics of the k™"
discrete mode. It is assumed that each f;, is globally Lipchitz continuous and that a finite
number of switches occur among the discrete modes in a finite time. The following lemma
presents the necessary and sufficient conditions needed to achieve the stability of a hybrid
system.

Lemma 1 [15]: Given a hybrid system with m modes, let each mode contain
continuous dynamics in the form of (42) with k =1,2,...,m and let each continuous system
have an equilibrium point at the origin. Define m Lyapunov candidate functions

corresponding to each of the m modes asV,,V,,...,V,, respectively. Let timet, denote the
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time instant that mode k becomes active, and let time t,, denote the time instant that mode

k was previously activated wheret,, <t, . Then, the hybrid system is stable if the following

criteria are satisfied for all modes, k =1,2,...,m.

1.V, decreases when the dynamics f, are active, and

2.V, (t, )<V, (ty).

Proof: See [15] for detailed proof.

Graphically, the conditions for lemma can be illustrated by plotting the Lyapunov
functions as shown in Figure 3.1.  The multiple Lyapunov function-based approach given

in Lemma 1 will be utilized to prove the stability of the hybrid controller presented in

Section V. Next, the regulation and formation controller design is given.
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3. REGULATION AND CONSENSUS-BASED FORMATION CONTROL OF
NONHOLONOMIC ROBOTS

In this section, first, a nonlinear continuous time regulation controller is designed
for a single nonholonomic mobile robot. Then, the consensus-based formation control
problem is considered for a group of nonholonomic mobile robots. For nonholonomic
systems, additional considerations are required to solve both the regulation problem and
the formation control problem due to the added complexities introduced by the

nonholonomic constraint.

ta] fag tc‘f tCZ

Figure 3.1 Multiple Lyapunov function values versus time (m = 2).

Solid lines indicate the system is active while dashed lines indicate that the system
is inactive [15].
Consider the nonholonomic robot shown in Figure 3.2. The equations of motion

about the center of mass, C, for the i” robot are written as [16]
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X cosg, —d;sing, v

G =| Vs |=|sing d cosé, {‘}:Si(qi)vi : (43)
. [
6, 0 1 '

whered; is the distance from the rear axle to the robot’s center of mass; q =[x, y, 61
denotes the Cartesian position of the center of mass and orientation of the i** robot; v;, and
w; represent linear and angular velocities, respectively, andV, =[v, @]"  for the i*"* robot.

Many robotic systems can be characterized as having an n-dimensional

configuration space C with generalized coordinates (q;,...q,) subjectto( constraints [16].

Applying the transformation [16], the dynamics of the it* mobile robot are given by

M V4V (G, 6% + F (W) + 74 =7 (44)
where M, e R”” is a constant positive definite inertia matrix, V. e R is the bounded
centripetal and Coriolis matrix, F, € R” is the friction vector, 7,; € )” represents unknown
bounded disturbances such that|7 | <d,, for a known constant,d,, , B, e R”” is a
constant, nonsingular input transformation matrix, 7, = Biz, € R” is the input vector, and

7, € R” is the control torque vector. For complete details on (44) and the parameters that
comprise it, see [16]. For thiswork n=3,(=1and p=2.

Next, a controller is designed to enable the i*" nonholonomic robot to drive to its

goal position during the regulation mode.
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3.1 REGULATION CONTROL OF MOBILE ROBOTS

The kinematics of the it* mobile robot can be written as

X | |cos(6) O ’
y; |=|sin(6) 0 { '] (45)
6 o 1"

where (x;,y;) is the point centered between the it* robot’s driving wheels. The objective
of the regulation controller design synthesis is to stabilize (45) about a desired posture,
Gia = [Xig Yia 6iq]". However, due to Brockett’s theorem [18], smooth stabilizability of
the driftless regular system (45) requires the number of inputs to equal to the number of
states, a property not satisfied by (45). The above obstruction has a significant impact on
controller design. In fact, to obtain a posture stabilizing controller, it is necessary to use
discontinuous and/or time-varying control laws [13].

A technique which allows us to overcome the complication presented by the
Brockett theorem is to apply a change of coordinates such that the input vector fields of the
transformed equations are singular at the origin. This approach is carried out using a polar
coordinate transformation, and the control law, once rewritten in terms of the original state
variables, is discontinuous at the origin of the configuration space C.

Consider again the robot shown in Figure 3.2. Let p; be the distance of the point
(x;, y;) of the robot to the goal point (x;4, v;4). Let a; be the angle of the pointing vector
to the goal with respect to the robot’s main axis (labeled as Xy in Figure 3.2), and define
B; to be the angle of the same pointing vector with respect to the orientation error [13].

That is,
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yo) :dAXiz +Ayi2 y O Z—Hi +atan2(Ayi,AXi)+7Z' ,ﬂi =q; + 01' - gid’ (46)
where Ax; = x;3 — x; and Ay; = y;4 — y;. Then, the polar coordinate kinematics of a

mobile robot can be given as discussed in [13] and expressed as

P —cos(er;)) 0
G |=|sin(e)/ p -1 {Vi} 47)
A Lsin@)ip 0"

From (47), it is observed that the input vector field associated with v; is singular for
p; = 0, thus satisfying Brockett’s Theorem. To drive mobile robots from any initial

position to a goal position, a nonlinear control law is given as [13]

Sing;, cosa,
Vy =k p,cosa, , @y =k,a+k, [TJ(% +K ), (48)

where k,, k,, and kg are positive design constants. As shown in [13], the controller (48)
provides asymptotic converge to the constant desired posture. However, the results are
obtained using the perfect velocity tracking assumption [16] (assuming that v;; = v; and
w;q = w;) Which does not hold in practice.

To relax the perfect velocity tracking assumption, the backstepping technique will be
employed next.

Define the velocity tracking error as

R 95;1 _ _
ey =| g | = Via — Vi (49)

where 7,4 = [v;q wiq]". Rearranging (49) gives 7; = v;; — e, and substituting this

expression into the open loop system (47) while using (7) reveals
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_ [ —k,p; cos® o; + efl; cos a; ]
Pi sina; cosa; sin a;
a;| =|—kati =k (4) kpBi + efy, — o “elys | (50)
. . sina; g
bi | k, sina; cos o; — p—ilewl ]
YI A
Xp

Figure 3.2 Nonholonomic mobile robot.

The closed loop kinematic system (50) explicitly considers the velocity tracking
error (49). Therefore, the backstepping technique ensures the robot tracks the design
velocities (48).

Differentiating (48) and using (44), the mobile robot velocity tracking error system

as

Miéfj = _\7mi (qi ) qi )eis _Z_-i + fi (Zi)+z_-di ) (51)

where f(z) =MV, +V._.(q,,d. )V, +F (v,) and contains the mobile robot parameters such

as masses, moments of inertia, friction coefficients, and so on. When the robot dynamics
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are known, the control torque applied to the robot system (44), which ensures the desired
velocity (48), is achieved and is written as
T, = Kyely, + f(2) + Xi(ps, @i, B, (52)

cosa; (p; + 0.5(a? + kgB?)) — sina; (a; + kpp;

)] is a function
pPiq;

where A;(p;, a;, f;) = [

of the polar coordinate error system (46) and is required for stability. Substituting (52) into

(51) reveals the closed loop velocity tracking error dynamics

M.l =—K.es -V, (0, 6)e; + 75 — X, (P05 f3). (53)
The control torque (52) will be used in the development of the hybrid approach considered
in Section 4 where stability is also considered. Next, the consensus-based formation

controller is considered.

3.2 CONSENSUS-BASED FORMATION CONTROL

In [16], a controller was designed to ensure that all regulation errors for the linear
systems achieved a common value. Due to the nonholonomic constraints considered in this
paper, the formation consensus error is defined as the difference between the robot’s own
regulation error and the regulation error of its neighbor, referred to as robot j. As shown in
[5], average consensus is achieved if the information exchange topology is both strongly
connected and balanced. In the case that the information exchange topology has a spanning
tree, the final consensus value is equal to the weighted average of initial conditions of those
agents that have a directed path to all the other agents [5]. In this work, we will assume that
the information exchange topology forms a spanning tree.

To begin, define the consensus error between the i" robot and robot j as

Oy =A% —AX; ,0,=Ay,—Ay; and o, =A0 —A0, for the x and y directions and the
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bearing angle, respectively. In this work, it will be assumed that the desired heading angles,
0,4, are common for each robot in the formation so that each robot is oriented in the same
direction when arriving at the goal points. Under this mild assumption, 8g; = 6; — 6.

Next, the consensus formation error is transformed into the reference frame attached
to the mobile robot as

cosf; sing; O O
612] = [— sin 6; cos@ 0] 8yi. (54)

1 691’

eir =

Taking the derivative of (54) reveals

—€j1W; + Uj Sin(Hi - Hj) , (55)
w; — (A)j

€2

éil] ej,w; + v; — vj cos(6; — 6;)
€i3

which resembles the trajectory tracking error system from single robot control architectures
that track a virtual reference cart [16]. In this work, instead of tracking a virtual cart, the
robot attempts to reach consensus with its neighbor to achieve a desired formation, and
each e;_) represents the consensus error instead of the trajectory tracking error.

Under the perfect velocity tracking assumption, the consensus-based formation

control velocity is given by

=F

Vig = (56)

1751 _ —kleil + V; COS(Bi - 01)
ol w; — kyvje;; —kssin(6; — 6) |

Next, the backstepping technique is once again employed. For convenience, we
again denote the velocity tracking error using the definition in (49) with 7;; replaced by

: - T - -
vf, for formation control. Defininge;, :[eﬁf eisz] =Vi —vi reveals,v; = vy —ef,

and (55) becomes
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€i1 eiw; — ke —efy;
|:éi2] = —ej w; + Vj sin(@i - 9]) . (57)
€3 —k,vje;, — ks sin(6; — 6;) — efy,

Finally, from the velocity tracking error in the form of dynamics (51), define the

control torque which ensure the robot tracks the desired velocity (58) as

T = Kyel, + f(2) + v(ei, ez, €:3), (59)
1 T .

where y(e;q, €;2,€i3) = [—eu ——sin ei3] is a function of the consensus error states
2

and is required for stability. Substituting (59) into (51) reveals the closed loop velocity

tracking error dynamics
Miéi5 = _Kveis _\7mi (qi ' qi)eis +z—-di _Y(eiiaeizaeis)- (60)
The control torque (61) will be used in the development of the hybrid approach in

Section 4, considered next, for the development of the hybrid consensus-based

regulation/formation controller design.



76

4. HYBRID CONSENSUS-BASED FORMATION CONTROL OF
NONHOLONOMIC ROBOTS

In this section, the regulation error based desired velocities (48) and the consensus
based desired velocities are used to formally develop the hybrid regulation-formation
controller for a group of nonholonomic mobile robots described by (44) and (45). The
hybrid controller ensures that the nonholonomic systems reach their desired positions while
keeping the formation on their way.

In our previous work [16], the linear and angular velocity tracking errors for point
mass systems are switched between regulation and formation modes without consideration
of discontinuities in the control input observed during a switching event. In practice,
physical systems may not respond well to the high frequency signals introduced by the
non-smooth controllers. Therefore, to avoid the discontinuous control inputs during a
mode switch, novel blended velocity tracking errors are first introduced for both regulation
and formation modes. Under the hybrid control approach, the regulation and formation
mode controllers will be functions of the blended velocity tracking errors discussed next.

First, define the novel blended velocity tracking error for the regulation mode as
Ei(tt)=Bi(tt)e, (t)+B, (tt)ey (1), (62)
where ef (t) is the regulation mode velocity tracking error from (8) using the desired
regulation velocity (7), and e/, is the formation mode velocity tracking error written in the
form of (8) using the desired consensus-based velocity (56). The time-varying functions
B, (t,to) = exp(—kq(t — to)) and B, (¢, ty) = 1 — exp(—kq4(t — t,)), are the blending

functions with t, being the time that the current mode (regulation or formation mode) was
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initiated, andk, is a design constant controlling the exponential convergence rate.

Similarly, the blended velocity tracking error for the formation mode is written as

E: (t.t) =B (t.t))er (t)+B, (.t )ey (t). (63)
Remark: In both modes (regulation and formation), the velocity tracking errors e%,
and e[, are both calculated to form the blended mode errors (62) and (63).
The blending functions are chosen to satisfy the desired continuity properties at the
switching conditions. At t = t,, B;(t,t;) = 1 and B;(t, t,) = 0 as t — oo. Conversely,

B,(t,ty) = 0att = tyand B,(t,t,) » 1ast — o. Also, the blended regulation velocity

tracking error, Ej; (,t,), converges to the actual regulation velocity tracking error, e (t),
as time goes to infinity and the blended formation velocity tracking error, E} (t,to) :

converges to the actual formation velocity tracking error, e’ (t) , as time goes to infinity as

well.
Moving on, the blended velocity tracking error dynamics are formed by
differentiating (62) and (63) and applying the results from Section 3. First, differentiating

(62) and applying steps similar to those used to form (51) and (60) gives
MER (¢, to) = M (B, (¢, to)el,(6) + By(t to)ef (1)
+ (By(t, to) (~Vinely + £i(z)) + Ba(t, to) (~Vimel + £i(zR)) - 7). (64)

Next, differentiating (63), and applying steps similar to those used to form (51) and (60)

reveals
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MEL(t to) = M (By (£ to)eR (6) + By (t, to)efy () + (Ba(t, to) (—Vinell +

fi(zR)) + By (t,to) (~Vimely + £i(zF)) = 7). (65)
To stabilize the blended regulation and formation velocity tracking error systems

(64) and (65), respectively, the novel torque control inputs are found to be
7t =K,Ej + M (B, (Lt,)ef (t)+B,(t.t,)ef () -V Ef +B, (t.t,) f; (z7)+B, (t.t,) f,(z})

_Bl(t1tb)y(ei19ei2’ei3)+ B, (t’tb)l(pi’ai’ i) (66)

and
77 =K,E; +M (B, (t.t,)ef (1)+ B, (t.t,)ef (1))
~V,Ef +B, (tt) fi(z7)+B (tt,) f,(z7)

—B, (t,t,)y(e:.€,.65)+ B (L) A( .. 8) (67)
where K, € R**2is a positive definite matrix.

As discussed in [16], stability of the individual continuous controllers does not
guarantee that the discrete dynamics and the hybrid switched system are also stable [15].
Therefore, the switching conditions between the modes must also be defined. The
switching conditions considered in this work will be based on two criteria. First, the robots
must consider the size of the formation errors to assess how well the formation is being
maintained. Second, to enable smooth control inputs at the switching conditions, the robots
must also measure the convergence of the blended velocity tracking errors (31) and (32) to
their respective mode velocity tracking errors in the form of (8). First, the switching
thresholds for assessing the formation keeping performance are defined. The upper and

lower thresholds for switching between the formation and regulation modes are given as
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7 (6) =B + 1) (68)
7,(t)=5 (e“‘f” +77mm)/f<, (69)

respectively, where f>0, k>1, 7., >0 are design constants, and t, is the initial time of

all states. By construction of the time varying upper and lower bounds, a finite number of
mode switches occurs in a finite time as required until Lemma 1 is satisfied.

A robot switches from the regulation mode to the formation mode when the
formation errors based Lyapunov function, L, = (e} +e},)/2+(1-cose,)/k, with k,

being a design constant, exceeds the upper-threshold, 7;(t). In the formation keeping
mode, the formation controller design in (70) brings the robots to a desired formation. Once
the Lyapunov function converge to values below a lower-threshold of formation error,

n;(t), the robots transition back to the regulation mode. As long as the formation error

Lyapunov, L., remains below the upper-threshold, the regulation controller (66) is

applied the systems and the nonholonomic robots arrive at their target positions in
formation.

The second switching condition is based on the convergence of the blended velocity
tracking errors. Under the hybrid approach, the regulation and formation mode controllers
are functions of the blended velocity tracking errors, EX and EL;, and it takes time for the
blended errors to converge to the modal velocity tracking errors, eX and ef; , respectively.
It is observed, however, that the time durations that the robot controller operates in any

single mode are unlikely to approach infinity. Therefore, the blended velocity tracking

error for the formation mode is only approximately equal to the blended tracking error for
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the regulation mode when switching from formation keeping to regulation and vice versa.
The difference between the two blended errors is dependent upon the duration of the current
operating mode and can be controlled through the switching conditions and the
convergence rate, k.

Therefore, the additional switching conditions enforce the continuity condition and

are written as

IR (tt) —es () i< b,y (71)
IE; (t.t.)—&, (Dl<3, (72)
with J,, being a defined constant. The blended regulation velocity tracking error needs to

satisfy (71) before the transitioning to the formation keeping mode while the blended
formation velocity tracking error must satisfy (72) before switching back to the regulation
mode.

The controller of each discrete state and the thresholds needed to move between

each of the modes are demonstrated in Figure 4.1.

As illustrated in Figure 4.1, the i*" robot is initiated in formation state at timet, .

Then, once the switching conditions are satisfied, the ;" robot transitions to the regulation

state at time t, . The regulation state is active until the formation error exceeds the upper
threshold at time t_, and the formation state is activated once again and remains active until

timet, when the switching condition is satisfied.
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Next, the following theorems are given to provide the stability of the blended
velocity tracking error dynamics (64) and (65) under the control of the input torques (66)

and (67), respectively. First, Theorem 3 presents the stability of the

leells > 7 ()1 EF (t..t,)—en (1)< 5,
Lie, 277,(t) t, Lie, <77 (1)
:

C

Formation Mode Regulation Mode

77 =K,ES +M (B, (tt,)ef (t)+B, (Lt )ef (t
V,EF +B, (Lt f (2] )+ B (t.t,) f, (ziR)
B, (tvtc)Y(eilaeizaei3)+ B, (tﬁtc)ﬁ'(pi’ai’ﬂi)

N [ :KAEVF:"'M(Bl(t'tb)eis ()+B,(t.t, el (1)
-V, Ef +B(t.t,) f, (ziF)+ B, (t.t,) f, (ziR)

B, (t'tb)Y(eil’eiz’ei3)+ B, (tatb)/l(piaaiaﬁi)

L,

oR el <m0 1EF (1) €S (<6} t
” EvF (tb’ta)_eis (t) ”Z 5ev

OR
Ef(t,t)—e (t)|>4
td >tc>tb >ta ” V(C b) |v()|| ev

Figure 4.1 Formation and regulation modes for nonholonomic systems.

blended velocity tracking error for regulation followed by the stability of the blended
velocity tracking error for formation keeping in Theorem 4. Theorem 5 presents the
stability of the hybrid controller.

Theorem 1: Given the i®*mobile robot system described by (44) and (45), let the
blended velocity tracking error and its dynamics for driving the nonholonomic system to
the goal configuration, q;4, be given by (62) and (64), respectively, and let the control

torque vector be defined by (66). Then, in the absence of disturbances (7;; = 0), the
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velocity tracking error system (64) and kinematic system (47) converge to the origin
asymptotically, and the i" robot tracks its desired velocity and converges to its desired
posture. Thatis, Ej (t,t;) =0 and q; = qjq.

Proof: See appendix.

Theorem 2: Given the consensus error dynamics (55) for the i" robot in the
network, let the blended velocity tracking error and the error dynamics, (63) and (65) be
defined for the i™ robot, respectively, and let the control torque be given by (67). Then, in
the absence of disturbances (74 = 0), the velocity tracking error system (65) and

consensus error system (57) converge to the origin asymptotically, and the i" robot tracks

its desired velocity to achieve consensus with its neighbor robot j. That is, Ey; (t,t;) >0

and Ax; — Ax;, Ay; — Ay;, and AG; — A6;. Further, if the information exchange topology
has a directed spanning tree, the final consensus errors are equal to the weighted average
of initial consensus errors.

Proof: See appendix.

Remark: Theorems 1 and 2 provide stability of each discrete mode by using
different time-varying Lyapunov functions. However, a hybrid system can become
unstable by using improper switching conditions among modes [15]. In our case, the
formation errors may become unbounded during regulation modes or the distance error
may eventually go to infinity during formation modes. Therefore, the stability of the
switched system is provided next.

Theorem 3: Given the error dynamics of N networked nonholonomic robots in the

form of (47), let the regulation velocity controller and torque control provided by Theorem
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1 be applied to the i*" robot when the Lyapunov function, L, is less than the i*" upper-

threshold (68) and the blended velocity tracking error satisfies (71). Let the formation

velocity controller and torque controller from Theorem 2 be applied to the i* robot when
L, exceeds the i" upper threshold until L., converges to a value below the i" lower-

threshold (69), and the blended velocity tracking error satisfies (72). Then, the
nonholonomic system (44) and (45)will become stable converges to its desired posture
while in formation.

Proof: See appendix.

Next, simulation results are given to verify the theoretical conjectures.
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5. SIMULATION RESULTS

To illustrate the effectiveness of the proposed hybrid controller, a group of four
nonholonomic mobile robots in the form of (44) is considered. The robots are initiated from
an arbitrary position and move to a desired position around origin in the shape of a square.
Using the hybrid approach, the robots establish the square shape prior to moving to the
goal position. The desired and initial positions, initial bearing angles and the initial

velocities of the nonholonomic mobile robots are given by
%, (t,) =156, X, (t,) =132, %, (t, ) = 96, , (t, ) =120,

y: (t,)=-108,y, (t,) =-156,, (t,) =-168,y, (t,) =120
X' =5,x) =5,x{ =5, =-5,y! =5,y =-5,

ys =5,Yy =-5,0,(t,)=27,6,(t,) =27 ,6,(t,) =27,
0,(t,)=2r,60' =27,6) =2x,05 =2r,6, =2r.

These desired positions inherently provide a square shape when the robots reach
their desired locations. The connectivity graph among the robots is selected as given in
Figure 5.1. It is observed that the graph is connected and satisfies the required assumption
stated in [8]. Each robot receives one of its neighbor robot’s regulation errors, and the

overall formation is established since the graph is connected. The parameters for the robot

dynamics (44) are selected as

2lyy 0

i 2

0 —d,w; (m; —2mW, )

I\_/Ii = ! Vmi = ’
0 md?Z + 1T + 21lyyb? {dwi (m, —2mw) 0 }
r? —4mw,d?
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— | Fw,+Fdsign(v;) | = [Yr Yr |- [0
F‘_[Fvwi+Fdsign(Wi)}’B‘{bi/n —Q/J’H'{O}

with m, =10,mW, =2,r, =0.05,b =0.4,d, =0.1, Iyy=1,IT =5,Fv=0.5Fd =0.8 being

the total mass of the i™ robot, mass of one wheel of the i robot , wheel radius of the "
robot, half of the width of the i™ robot, the distance of the rear axle of the i robot from
its center of mass, wheel moment of inertia, total moment of inertia of the robot platform,

coefficient of the Viscous friction and the coefficient of the Coulomb friction, respectively.

Robot 1 = Robot 2

F

|| b

Robot 4 + ' Robot 3

Figure 5.1 Connectivity Graph of four nonholonomic mobile robots.

The controller gains are then selected with K, =30, k =2,k,=1k,=05
k,=0.5k, =025k, ,k, =k, . The decay rate of the blended velocity tracking errors in

(62) and (63) are shown as k, =2 , the switching parameters for the upper (68) and lower

(69) thresholds are selected as f = nyin = 1 and k = 1.34, respectively, and the blended

velocity tracking error convergence threshold is selected as J,, =0.1.

The performance of the controller analyzed in Theorem 3 (the hybrid blended

approach) is presented next. The four mobile robots described above are considered along
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with the controller torques (66) and (67). Figure 5.2 shows the movements of the four
nonholonomic mobile robots. The desired set points are selected in such a way that the
robots form a square shape around origin when they arrive to their desired set points. The
initial positions of each robot is pointed via text arrows in Figure 5.2.

The robots move to reach consensus with their respective neighbors and
subsequently achieve the square shape prior to reaching their goal positions. When
comparing Figure 5.2 and the robot movements in [16], the effect of nonholonomic
constraints can be realized easily. In [16], the omnidirectional robots travel directly to the
temporary set point to form a square shape; however, in Figure 5.2, the nonholonomic
mobile robots’ motions are subject to nonholonomic constraints requiring different paths
to form the square shape.

Figure 5.3 presents the time-evolution of polar coordinate distance errors, p,, i =
1,2,3,4, defined in (5) for each robot. Initially, the formation error Lyapunov function,
L-,, exceeds the defined threshold and the robots begin in formation keeping mode. The
robots travel from their initial positions and achieve their desired formations, and the robots
remain in the formation mode until the distance errors reach consensus. Once in formation,
the Lyapunov function, L.,, becomes less than the defined threshold, and the robots
transition to the regulation mode. Subsequently, the distance errors converge to zero all
together as the robots travel to the goal positions simultaneously.

The smooth blended regulation and formation velocity tracking errors, (62) and

(63), of the robots are presented in Figure 5.4 and Figure 5.5, respectively. Since the robots

are initiated in formation mode, the formation velocity tracking error converges to zero
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after the first couple of seconds as can be seen in Figure 5.5. The time at which the robots
transition from the formation mode to the regulation mode lasts 3.7 seconds for robot 1,
and 2.3, 4.3, and 3.5 seconds for robots 2, 3, and 4, respectively.

The composite blended velocity tracking error, which combines Figure 5.4 during
the formation mode and Figure 5.5 for the regulation mode is shown in Figure 5.6. Figure
5.6 also provides a zoomed in time span for the time period that contains the switch from
the formation mode to the regulation mode. After examining Figure 5.6, we see that the
switch from the formation mode to the regulation mode is smooth and does not produce
large peaks in the velocity tracking error as a result of the blended velocity tracking error
approach.

As the value of decay rate of the blending function, kg, is increased, the blended
approach converges to hard switching conditions where smoothness is not considered. The
experiment was repeated for k; = 50. The formation trajectory for this scenario is similar
to the trajectories shown in Figure 5.2. However, the composite blended velocity tracking
errors shown in Figure 5.7 illustrate that large peaks in the velocity tracking errors are
present at both the beginning of the simulation and when each robot transitions from the
formation state to the regulation state at 11. 95 seconds. It is interesting to observe that the
switching time where k; = 50 is actually larger than the case where k; = 2. The later
switching time is attributed to the formation errors taking longer to converge to below the

switching threshold as a result of the large initial transient response when k; = 50.
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Figure 5.2 Movements of four nonholonomic mobile robots.
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Figure 5.3 Distances of each robot to their goal positions.
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Comparing the transient behaviors in Figure 5.6 and Figure 5.7, it is observed that
the choice of k, is a tradeoff between the magnitude of errors and the duration of their
transient responses. Selecting smaller values of k,; produces small, smooth crests in the
velocity tracking error at the penalty of a longer transient period before the velocity
tracking errors converge back to zero. In contrast, larger values of k, allow the velocity
tracking errors to converge to zero quickly while transitioning from one state to another at
the cost of large, abrupt spikes in the error signals. In practice, large and abrupt spikes in

signals used by the control laws are undesirable.

Regulation Velocity Tracking Errors
150

100

50

-100

-150

-20
00 10 20 30 40 50 60

Time (s)

Linear and Angular Velocity Tracking Errors

Figure 5.4 Blended formation velocity tracking errors (linear (m/s) and angular
(rad/sec)).
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o Formation Velocity Tracking Error
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Figure 5.5 Blended regulation velocity tracking errors (linear (m/s) and angular
(rad/sec)).
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Figure 5.6 Composite blended formation velocity tracking errors (linear (m/s) and
angular (rad/sec)), kd=2.
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6. CONCLUSION AND FUTURE WORK

The results of the paper provide controllers to the user to regulate a single robot to a
desired posture and for a group of nonholonomic robots to reach consensus on their
regulation errors to achieve a desired posture in a desired shape. This was accomplished
through the development of two novel continuous time regulation and formation controllers
for nonholonomic mobile robots. Then, a novel hybrid regulation-formation controller was
developed by using a novel blended velocity tracking error approach. Time-varying
Lyapunov functions were used to prove the stability of the hybrid approach, and simulation
results verified the performance improvements of the proposed approach over traditional
hard switched hybrid control architectures. The blended velocity tracking error approach
reduced the size of the discontinuity at the switching conditions which led to smaller peak
velocity tracking errors and smaller peak required torques at the switching conditions. The
blended hybrid controller is beneficial when multiple tasks need to be accomplished at the
same time. Future work will investigate extending the approach to include other discrete

modes, such as obstacle avoidance.
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APPENDIX

Proof of Theorem 1: Define the blended regulation Lyapunov candidate function for

each robot as
L =B (t,tb)( (ef1 +€’, )/2+(1—cosei3)/k2)+ B3(t,tp) % (piz +pi(a? + kﬁﬁiz)) +
%EfiTMiEfi (A1)

Then, the derivative of (Al) is calculated to be
L, = 2B, (t,tb)Bl(t,tb)( (€3 +ei22)/2+(1—cosei3)/k2)

: 1

+2B, (t,t,)B, (t,tb)E(piz +p(af +k,8))
+Blz (t’tb )( - k1ei21 - k3 sin® eis/kz _ei1ei51 —sin eisei52/k2)
_kppi2 cos® o = kapiaiz _?ppi cos® 0 (0‘i2 + kﬁﬁiz)

+B; (t.t,

N—"

+ei§1(005ai (pi +%(ai2 + kBﬂiZ))—sin o (ai +Ke )J +EVF§T M.ER. (A2)

R
+P,a€,

(
Next, applying the definitions of A(p;, a;, B;) and y(e;q, e;2, €;3) defined in (13)

and (22), respectively, gives

(o =28, (18, B (18, )( (e €5 )2+ (1-cose )
+28, (1,t,)B, (t'tb)%(pi“rpi (a2 + k7))

+812 (t’tb)( _kleizl _ks Sinz ei3/k2 _eiSTV(emeizveis))
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2 (2 2
—k,pi cos” a; —k, pe

2 o (o 41 47) /24 6T +EME] . (A3)
—k,p, cos® g (ai +k, [ )/2+eiv A(p.8)

i—vi

+B; (t.t,)

Now, substituting the blended regulation tracking error dynamics (64) into (A3),

Lg; becomes

L, =2B, (t,tb)Bl(t,tb)( (€3 +ei22)/2+(1—cosei3)/k2)
+2B, (t,t,)B, (t,tb)%(piz +pi(af +k,8))

2 2 2
—k o7 cos’ o, —k,pa ]

+B7(t,t,)( —ke’ —k,sin’e, /k, )+ B? (t,t
1( b)( 1%i1 3 3/ 2) 2( b)[—kppiCOSZOLi(OliZ'Fkﬁﬂiz)/z

R

m=iv

V(B (Lt el (t)+ B, (1.t )&l (1)) + By (t.tg ) (-Vaeh + f (zr))J

B, (t,t)(Vaeh + £, (27))-7

_Bl2 (tatb)ei'\jTﬂ/(eil’ ei2’ei3) + 822 (t’tb)eis-rﬂ“(pi 1Oy P ) : (A4)
Moving on, adding and subtracting

T T
Bi(t, ty)B, (L, ty)ef, y(eir, eir,e3) and By (t, t,)B,(t, ty)ef, A(p;, @, B;) to (Ad) and

collecting like terms yields
L. :ZBl(t,tb)Bl(t,tb)( (eizl+ei22)/2+(1—cosei3)/k2)
+2B, (t,t,)B, (t,tb)%(piz +p (o + kﬁﬂf)) +B7 (tt, ) ( — kel —k,sin e, /k, )
+B; (t,tb)(—kp,oi2 cos® a, —kapiaiz) —B3 (t,t,)k o, cos® o, (aiz +k, 3 )/2

RT (7 (¢ F : R F F
+ER (M (By(t, t)ely (6) + Bo(t, 6,)eR (D)) + Bu(t, 1) (—Vimely + fi(zD)) +

Ba(t,ts) (~Vimely + fi(z)) = 7) = B1(t, t,) (Ba (&, tp)ef” +
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T
B,(t, tp)efl Iy(en, e, €i3)
RT FT
+B,(t, tp) (B2 (L, tp)ey, + Bi(t,ty)ey, )A(pi, @i fi)

T T
+ B1(t, tp) By (¢, tp)el, v(ewn, e ei3) — Bo(t, t,)B1 (L, ty)ef, Alpy, i, By). (A5)

Then, apply the definition of EX to factor the bottom rows of (A5) into terms pre-

multiplied by EX", and the rows containing V,are factored into EX' V,, ER to give

L, =ZBl(t,tb)Bl(t,tb)( (eizl+ei22)/2+(1—cosei3)/k2)

+2B, (t,t,)B, (t,tb)%(pf +p (o + kB,Biz)) +B7 (1, ) ( —kiel —k;sine; /k, )
+B3 (t.t,)(—k, 07 cos’ o, —k,pc’ ) B} (t,tb)%pi cos’ a; (e’ +k, )

+B] (t.t, ) (K, 07 cos” o, —k,pa) —B} (L.t )k, o, cos” oy (of +k,87) /2
+ER (M (By(t, ty)els (6) + By (6, 6,)eR () = VigER + By (&, t,)fi(zF) +

BZ (tr tb)fl(ZLR) —T- Bl (t: tb)Y(eill €i2, ei3)+B2 (t' tb)l(pil a;, ﬁl)) +

T T
By (t, ty) B, (t, ty)ef, v(ei, ez ei3) — By (t, tp) By (L, ty)ef, A(p;, i, ) (A6)
Finally, use the torque equation (66) in (A6) and write the derivatives B, and B, in

terms of B, and substitute in (A.6)
L, =—2k,B’ (t,tb)( (efl +e’ )/2 +(1-cos eig)/kz)
+kyB, (t4) B, (L,)( 07 + oy (o + K, 8°))

+B7 (t.t,)( —kel —k;sin*e;, /k,) +B; (t.t,)(—k, 0’ cos® o, —k,pcr’ )



96

T T
B} (t.t, )k, cos” o, (o’ +k,/3°) /2 —EX K,ER+ B, (t, tp)By(t, tp)el y(en, e, ei3) —

VI

B, (t, t,)Bi (t, ty)el, Alpy, i, o). (A7)
The firstand last lines in (A7) also go to zero as t — oo exponentially fast (controlled

through B () and the control gain, k).

Again examining the behavior of (A7) ast — oo,

Lri = —k,pf cos® o — kopiaf — kz—ppi cos? oy (af + kppB?) — ei’f,TK4el-’f, . (A8)

since B;(*) = 0,B,(-) » 1,and ER(¢,t,) — ef (¢).

It is observed that L; is only negative semi-definite since at a; = +m/2, L; is no
longer a function of B;. Thus, the velocity tracking error and kinematic error states are
bounded. To achieve asymptotic convergence, Barbalat’s Lemma is invoked [25]. First,
taking the derivative of (A.8) reveals that L; is bounded since all of the system states are
bounded. Therefore, since L; is bounded, L is uniformly continuous and converges to zero.
Thus, p;, i, |eX | and ||é;, ]| are also guaranteed to converge to zero.

Then, using A, (o, ¢, ) and (A.l), it can be concluded that «; and B; also

converge to zero revealing that the velocity tracking error system (64) and Kinematic
system (47) converge to the origin asymptotically, and the i"robot tracks its desired
velocity and converges to its desired posture. That s, e — 0 and q; - q;4.

Proof of Theorem 2: Define the blended formation Lyapunov candidate function

for each robot as
L =B2 (41, )( (€2 +€2)/2+(1-coses)/k, )+ B2 (¢, t) 5 (p? + pi(a? + kpf2)) +

1 T —
SEj MiES; . (A9)
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Remark: The Lyapunov function, (A9) is slightly different than the Lyapunov
function, (A1) defined in Theorem 1. The difference between (Al) and (A9) is the blended
function squares are switched in (A9) which causes the regulation term vanish while the
formation terms vanishes in (Al) ast — oo . Since the proof of Theorem 2 has similarities
with the proof of Theorem 1, some intermediate steps are combined in the proof of Theorem

2.
Now, taking derivative of (A9) , using the definitions of y(e;;, ei,, €;3) and

Alp;, a;, Bi), and inserting the blended formation tracking error dynamics (65), adding and

. T T :
subtracting By (t, t) B, (t, to)ef, v(ei, ez, ei3) and By (t, t.) B, (¢, to)ef, A(p;, ay, B;) into

(A9) and collecting like terms yields

L =28, (t.t,)B, (1.t )( (€ +€5 ) /2+(1—cosey) /k,)

+2B, (t.t,)B, (t,tc)%(piz +pi (e +k,B7)) +BE (Lt kel —kssin® e, /k, )
+B7 (t,t,)(~k, 0’ cos” o, —k,pa? ) B (t,tc)%pi cos’ o, (e’ +k, )

+EL (M (B2t t)efy (6) + By(t t)el (1)) + By (6, o) (—Vimely + fi(zF)) +

Ba(t,to) (Ve + fi(z1) = ) = Ba(t, L) (Bt t ey +

T
B, (t, to)ef y(en, ez ei3)
T T
+B, (t,t.)(By(t, t)efy + By(t toel, )A(pi, ai, Bi)

T T
+ By (t, t.)By(t, to)ef y(en, e i3) — Bo(t, t)By(t, to)ef, A(pi, i, By). (Al11)



98

Then, substitute the torque equation (67), apply the definition of E7; to factor the

bottom rows of (A11) into terms pre-multiplied by E,fl-T, and factor the rows containing 1},

into the form of EE; V,,EE, to give
Ly, =2k,B, (t.t,)B, (t,tc)< (e +ei22)/2+(1—cosei3)/k2)
_ 2 2 2 2 2 . 2 _ks . 2
2k, B; (t,tc)(,oi +p, (ai +K, ))+B2 (t, tc)( kyefy — 5 sin eig) +
B2(t,t.) (—kppi2 cos? a; — kopia? — %”pi cos? a; (a? + kBﬁiz)) — ER'K,ER

+ By (t t)Ba(t t)el, View, iz, €)= Ba(t, t)By (6, te)el, Aoy, i B - (A12)
The lines contains B, (t,tc) of (A12) goes to zero as t — oo exponentially fast

(controlled through control gain, k). Using the identities of blended functions used in the

proof of Theorem 1 to simplify (A12) reveals

Lpi > —kqe? — :—Zsinz eiz — eg,TK4e§, (A13)

ast — oo.

Since (A.13) is not a function of e;,, L;s is negative semi-definite, and the
consensus errors and velocity tracking error are bounded. However, Barbalat’s Lemma
[15] can be used to show asymptotic convergence.

First, take the derivative of (A.13) while using (55) and (60) while observing the
boundedness of all signals to reveal that L;x is also bounded. Therefore, L;r converges to
zero and thus ey, €1, e;3, €, ||ef|l, and ||ef|| all converge to zero as well. Finally,
examining the definition of é;5 in (60) while noting that é;;3 — 0 reveals that e;, must also

converge to zero. Therefore, the velocity tracking error system (60) and consensus error
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system (57) converge to the origin asymptotically, and the i"robot tracks its desired
velocity and reaches consensus with its neighbor robot j.

Proof of Theorem 3: Recall both the regulation and formation Lyapunov functions,
(Al) and (A9) defined in Theorem 1 and Theorem 2, respectively. Theorems 1 and 2
illustrated the asymptotic convergence of the blended regulation and formation controllers,
respectively, independently of one another. Theorem 3 proves that the switched system is
also stable.

Consider the following combined Lyapunov functions of all the mobile robots in
the networked group as L, =L, + L, ,Le =L +L, with
N

Loy :g:Bf (t,tb)( (efl+ei22)/2+(1—cosei3)/k2)+ ZBZZ (t,tb)%(,oi2 +pi(af +kﬁﬁiz)) :

i=1

N

L, = B; (t,tc)( (ef+€5 )/2+(1—cosei3)/k2)+ iBf (t,tc)%(,oi2 +pi (o + kﬁﬁf)) ,

i1 =1
-1 R"p7 ER - 1 F'ng EF

LR2:Z§Evi MiEvi’LFZ =Z§Evi MiEvi '
=) =)

The proof will be completed in two steps: a) showing that Lz, and Lg, satisfy
Lemma 1; and b) Showing that Lz, and Ly, satisfy Lemma 1. That is, we will show
that Lp(t,) > Lg(t.) and Lg(t,) > Lg(t;) where t, < t, < t. <ty are the switching
times defined in Figure 4.1.
a) First, consider Ly, and Ly, are functions of the blended velocity tracking errors. At the
switching time from the formation mode to the regulation mode, t,, the blended velocity

tracking error is required to satisfy the switching condition defined in (69).

To satisfy Lemma 1, we require ||E,’fl-(tb,tb) —Egi(tb,ta)” < 8,, (for a computable
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constant, 8,,). The blended regulation velocity tracking error (62) can be given at the
switching time, t,, as
ER(ty, tp) = B1(ty, tp)el (t,) + By (tp, tp)ef (t,) = ef,(t,) since B;(tp tp) =1 and
B, (tp, tp) = 0.

Now assume EZ; (tp, to) = el (t) + &,, attime t, (from switching condition, (69)

where |6, || < 8,p), then it can be shown that

= ”6617” < Sev-

|1E2 (£, t6) = EE(ty, t)]| = ||ef(6) — e (t) — 8o
As t - oo, recall that EX(t, tp) — el (t). At the switching time from the

l

regulation mode to the formation mode, t., the blended regulation velocity tracking error
must satisfy the switching condition (68).

As before, we require ||E5i(tc, t.) — EE(t,, tb)|| < &,, to ensure the Lemma 1 is
satisfied. The blended formation velocity tracking error can be given at the switching time,
tc, as

Eji(tete) = Bi(to t)efy(t) + Ba(te to)el (t) = efy(t,). Assume  Eji(tc,tp) =
el (t) + 8., at time t. (through satisfaction of the switching condition, (33)). Then,
IES: (te, te) — Ef (b, tn)]] = I]efy (8 — e, (t) = Sevl < 8ev - As t > 00, Eji(t,tc) —
efy(t).

At the switching conditions, we can therefore ensure the requirements of Lemma 1

hold for the blended velocity tracking errors EX.(t,t,) and EX(t,t,). Since the mass
matrix, M, , is constant, the Lyapunov functions Lg, and Ly, satisfy the Lemma 1.

b) Next, we will show that the first parts of the Lyapunov functions, Lg, and Lp,, satisfy
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Lemma 1. To accomplish this, we will illustrate that
Ley (t,) > Leo (t;) @nd Le, (t,)> Le, (t,) for switching times t, < ¢, < t, < tg.

To  proceed, use the property of the Dblended function,
B, (t:t ) =1,B,(t,.t, ) =0, Vt, atthe switching time and consider the Lyapunov functions

at the switching times

1
I‘Fl (tc) = ZE( i2 (tc)+pi (tc)(ai2 (tc)+ kﬁﬂiz (tc))) '
From the switching conditions, it is automatically satisfied that L, (t,)> Lg(t,).

However, it is not trivial to show that L, (t,)> L, (t.) . To prove the inequality, we will

show that the function Lg,(T), for T = t,, t;, t., ..., iS a decrescent function that is upper
and lower bounded by Lyapunov functions Lg,(T) and Lg,(T), respectively, with
Ly (T) — 0 asymptotically and Ly, (T) — 0 asymptotically as T — oo and independently
of the mode of operation. That is, it will be shown that the upper and lower bounds decrease
during both the regulation and formation modes.

First, define the upper bound of Ly, (T) as

LH(T):i;

i=1

(p?(T)+p(T)T) (A.14)
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where T is a computable constant. Since «(t), 8(t) are both in the range of [, 7), one

can easily compute I" which satisfies the inequality.
The value of the upper bound (A.14) at the switching times t, and ¢ is a function of
regulation error, p. To show p is always decreasing, rewrite the regulation error, p, at the

beginning and end of formation mode as

pi(t)=p,(t,)+0o,(t,) (A.15)
P (tb ) = Pay (ta ) T0, (tb ) (A.16)
where pav Z p.(t,) is the average regulation error at the beginning of the

formation mode, and a,,;(t),i = 1,2 ... N are the deviations of the regulation errors. It is
N

observed thatand » o, (t,)=0 Z =0 by definition of pg, (t).
i=1

Next, substitute (A.15) into (A.14) to rewrite the upper bound at time t,, Lz, (tg),

as

|

(0)=2 (a0 (0)) + (Pt 0, ()T

i=1
pav 22 pav Z 2 1—‘pav +gigp (t )
i=1

N
The second and the last terms evaluate to zero since > o, (t,)=0 . Then,
i=1

— N 18 NI
LFl(ta)=Ep§v+§zo-pi (ta)2+ 2 Pav
i=1

Then, substitute (A.16) into (A.14) to rewrite the upper bound at time t;,, Lg,(t3),

as
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NF

Le,(t) = z;( +p| t) ) pav Z 5 5 Pav

i=1
Now, compute the difference between L, (t, )and Lz, (t;) to give

N

Alg, = 1Z(Upi (t) - (L, ) ) :

293
In order to claim that AL, <0 (i.e., L (t,)>Lq(t,)), we will show that

>|o,;(t,)|. First, recall that the formation controller of Theorem 2 achieves

‘ap (t

consensus on the Cartesian coordinate regulation errors, Ax and Ay as defined in (74).

Therefore, define  Ax (t,)=Ax,, (t,)+ 0o (1.), Ay, (t,) = Ay,, (t,)+ oy (t,)
A% (t, ) = A%, (t,) + 0 (1), AY; (L, ) = Ay, (L, )+ oy (1,) where Ax,, )=%§:Axi (t) .

N
Ay, (t)= lZ:Ayi (t) are the average Cartesian coordinate distance errors on x and y

directions respectively, oay;(t),i = 1,2...V are the deviations of the regulation error in

the y- component of the Cartesian coordinate system, oay;(t),i =1,2..V are the

deviations of the regulation error in the x- component of the Cartesian coordinate system,

and Z GA)« Z O-AXI Z O-Ayl Z GAY' -

Since the robots reach consensus on their Cartesian coordinate regulation errors
during their formation mode, deviations among the robots’ regulation errors decrease

‘ Now, consider

> ‘O-Axi (tb )‘ ! ‘O-Ayl ‘ Ayl

during the formation mode, i.e. ‘ani (t

the polar coordinate transformation (46)
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ipf = iAxﬁ +Ay? or
i=1 =1

N

Nprjv + % ZN:O-pi (ta )2 = N (ijv + ijv ) + % Z(O-Axi (ta )2 + O-Ayi (ta )2 ) (Al7)
i=1

i=1

From the definition of p; , N p2, = N (AX, +AyZ,) and (A.17) can be rewritten as

13 2 1 2 5

72 (t,) =§iZ_1:(ani (t) +ou (L)) (A.18)
Since [ (t,)] > |0 (t )], | o ()] > |0 (&)], it follows from (A.18) that

‘Gpi (ta) >‘Gpi (tb)‘ .

Then, the bounding function EFl(ta) in (A.14) decreases during the formation keeping
mode. In the Theorem 1, it is proven that the regulation errors based Lyapunov function
decreases over the regulation mode time period, [t,,t.) such that Lgy(ty) > Lgy(tc).
Therefore, the regulation errors are decreasing during both the regulation mode and the
formation keeping mode revealing that L., (t, ) > L, (t.) -

Since Lp;(ty) > L (ty) > Lp1(t,) > Lpq(tg) for all switching times ¢, < t, <

te < tg, it follows that L, (t) —>0ast >oo.

Next, define the lower bounding function of Lz, (T) as Ly, (T) = %Z’l\’ pZ(T)
such that Lp; (T) < Lp,(T) forall T = t,, tp, t., ... Using the same techniques as above, it
is straight forward to show that Ly (t,) > Lg1(ty) > Lp(te) > Lp1(ty) and Lg,(T) - 0

as T — oo.
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Therefore, Lp,(T) is upper and lower bounded by positive definite functions that

each converge to zero asymptoticallyas T — oo. Thatis, Lg,(T) is an asymptotically stable
decrescent Lyapunov function [18] illustrating that L, (t,) > L, (t.) .

Thus, it follows that Lg(t,) > Lp(t.) and Lg(t,) > Lg(ty) Where t, <t, < t. <

tq4 satisfying Lemma 1 and completing the proof.



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

106

REFERENCES

R.R. Nair, L. Behera, V. Kumar, M. Jamshidi, "Multisatellite Formation Control
for Remote Sensing Applications Using Artificial Potential Field and Adaptive
Fuzzy Sliding Mode Control," IEEE Sys. Jour., vol.9, no.2, pp.508-518, June 2015.

Y. Wang, W. Yan, J. Li, "Passivity-based formation control of autonomous
underwater vehicles,” IET Control Theory & Applications, vol.6, no.4, pp.518-525,
March 2012.

T. Dierks and S. Jagannathan, "Neural Network Control of Mobile Robot
Formations Using RISE Feedback,” IEEE Trans. on Systems, Man, and
Cybernetics, Part B: Cybernetics, vol.39, pp.332-347, Apr. 2009.

W. Ren and E. Atkins, “Distributed multi-vehicle coordinated control via local
information exchange,” International Journal of Robust and Nonlinear Control,
vol. 17, no. 10-11, pp. 1002-1033, 2007.

R. Olfati-Saber and R. M. Murray, ‘Consensus problems in networks of robot
switching topology and time-delays’, IEEE Trans. on Automatic Control, vol. 49,
no. 9,pp. 1520-1533, Sep. 2004.

C. Kecal, J. Bin, Y. Dong, "Distributed consensus of multiple nonholonomic mobile
robots,"” IEEE/CAA Journal of Automatica Sinica, vol.1, no.2, pp.162-170, April
2014.

D. Di Paola, D. Naso, B. Turchiano, "Consensus-based robust decentralized task
assignment for heterogeneous robot networks,” American Control Conference
(ACC), 2011, June 2011, pp.4711-4716.

X. Geng, "Consensus-reaching of Multiple Robots with Fewer Interactions,” 2009
WRI World Congress on Computer Science and Information Engineering, , March
2009, pp.249-253.

S. Mastellone, D. Stipanovi'c, C. Graunke, K. Intlekofer, and M. Spong,
“Formation control and collision avoidance for multi- agent nonholonomic
systems: Theory and experiments,” Int. J. Rob. Res.,vol. 27, no. 1, pp. 107-126,
Jan. 2008.

M. Breivik, M. Subbotin, and T. Fossen, “Guided formation control for wheeled
mobile robots,” in Proc. IEEE Int. Conf. Robot.Autom .,Dec. 2006, pp. 1-7.



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

107

Y. Liang and H. Lee, “Decentralized formation control and obstacle avoidance for
multiple robots with nonholonomic constraints,” in Proc. IEEE Am. Control Conf.,
Jun. 2006, pp. 5596-5601.

S. S. Ge and C. H. Fua, “Queues and artificial potential trenches for multirobot
formations,” IEEE Trans. Robot., vol. 21, no. 4, pp. 646-656,Aug. 2005.

S. Feng and H. Zhang, "Formation control for wheeled mobile robots based on
consensus protocol,” IEEE International Conference on Information and
Automation (ICIA), June 2011, pp.696-700.

A. D. Luca, G. Oriolo, and M. Vendittelli, “Control of wheeled mobile robots: An
experimental overview,” in RAMSETE—Articulated and Mobile Robotics for
Services and Technologies, S. Nicosia, B. Siciliano, A. Bicchi, and P. Valigi, Eds.
New York: Springer-Verlag, vol. 270, pp. 181-223, 2001.

M. S. Branicky, "Multiple Lyapunov functions and other analysis tools for switched
and hybrid systems,” IEEE Trans. on Automatic Control, vol.43, no.4, pp.475-482,
Apr. 1998.

H. M. Guzey, T. Dierks and S. Jagannathan, "Hybrid consensus-based formation
control of agents with second order dynamics," in American Control Conference
(ACC), 2015, July 2015, pp.4386-4391.

R. Fierro and F. L. Lewis, "Control of a nonholonomic mobile robot using neural
networks," IEEE Trans. on Neural Networks, vol. 8, pp. 589-600, Jul. 1998.

S. Miah, H. Chaoui, and P. Sicard, "Linear time-varying control law for
stabilization of hopping robot during flight phase,” 2014 IEEE 23rd Int. Symp on
Industrial Electronics (ISIE), Jun. 2014 , pp.1550-1554.

F. L. Lewis, S. Jagannathan, and A. Yesildirek. Neural Network Control of Robot
Manipulators and Nonlinear Systems, New York: Taylor & Francis, 1999.



108

1. DISTRIBUTED CONSENSUS-BASED EVENT-TRIGGERED
APPROXIMATE CONTROL OF NONHOLONOMIC
MOBILE ROBOT FORMATIONS

ABSTRACT

In this paper, the distributed consensus-based formation control of networked
nonholonomic mobile robots using neural networks (NN) in the presence of uncertain robot
dynamics with event-based communication is presented. The robots communicate their
location and velocity information with their neighbors, at event-based sampling instants,
to drive themselves to a pre-defined desired formation by using a distributed control
technique. For relaxing the perfect velocity tracking assumption, control torque is designed
to reduce the velocity tracking error, by explicitly taking into account each robot dynamics
and the formation dynamics of the network of robots via NN approximation. The
approximated dynamics are employed to generate the control torque with event-sampled
measurement updates and communication. With a distributed formation control approach,
the Lyapunov stability method is utilized to develop a decentralized event-sampling
condition and to demonstrate the consensus of network of mobile robot formation. Finally,
simulation results are presented to verify theoretical claims and to demonstrate the

reduction in computations and communication cost.
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1. INTRODUCTION

In the literature, there are several approaches which accomplish the formation
control objective - leader-follower control [1],[2], virtual structure [3] or behavior-based
approaches [4], to name a few. Of all these approaches, consensus-based formation
control[5]-[10] is considered to be more robust and reliable due to scalability and its
inherent properties that enable the robots to maintain their formation even if one of the
robots experiences a failure.

In earlier works[5],[8]-[12], consensus-based schemes have been studied for
generalized linear systems with known system dynamics and applied to systems with time-
varying communication graphs [5], bounded disturbances [8], and communication delays
during state information sharing [9]. In these works [4][5][7][12][13], the individual robot
and the formation dynamics are neglected which can affect the formation keeping as shown
here. In addition, due to periodic sampling in these controllers, they are computationally
inefficient.

In contrast, in this paper, an adaptive event-based distributed formation control of
networked robots is introduced wherein the dynamics of the individual robot and the
formation are explicitly taken into account. Neural-network (NN) are utilized as function
approximators to learn the dynamics of each mobile robot and the formation.

To mitigate computational complexity of control techniques, in the recent years,
event-based sampling has become more popular [14]-[18] wherein the execution time of
the control inputs is based on the real-time operation of the system. Thus, event sampling

of feedback information reduces computations for adaptive formation control when the
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dynamics are uncertain. Moreover, since the mobile robots need location and velocity
information from their neighbors to reach consensus, they share their information among
each other through a resource limited communication network. Therefore, utilizing the
communication network in an event sampled context lead to minimizing network
congestion and undesired performance of the controller.

In the event-sampled framework [14]-[18], the measured state vector is sampled
using certain state dependent criteria referred to as the event-triggering condition and the
controller is executed at these aperiodic sampling instants. The event-triggering condition
is designed by taking into account the stability and the closed-loop performance, and hence,
it is proven to be advantageous over its periodic counterpart.

Initially, the event-triggered techniques from the literature [14][17][18] were
designed for ensuring stable operations of the closed-loop system by assuming that a
stabilizing controller exists for the system under consideration. Developing an event-
triggering condition and establishing the existence of positive minimum inter-event time
was the main focus in these works [14][17][18].

Similarly, when the robot and formation dynamics become uncertain, a suitable
adaptive sampling condition is needed for formation control which ensures formation
stability and also the NN adaptation. However, event-based sampling can make the
stablility analysis involved. The formation errors are obtained at these sampling instants
and are utilized to obtain the desired velocities for each robot in order to drive the robots
to a predefined formation. Then the control torque is designed to ensure that the velocities

of each robot track the desired velocities.
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First, to determine the formation error, a unique virtual reference cart is defined
using the regulation errors of the neighborhood robots in the network. However, due to the
uncertain dynamics of each robot, there will be a persistent velocity tracking error. Using
the NN-based representation of the mobile robot dynamics, the control inputs are obtained
to minimize this velocity tracking error with event-sampled feedback.

It is worth mentioning that the velocity tracking errors of each robot acts as a virtual
subsystem for the formation error dynamics. Thus by using the distributed backstepping
controller design, it will be shown that by reducing the velocity tracking errors, the
formation error reduces and the robots reach a desired formation. It should be noted that,
in contrast to the existing consensus based formation control approaches [5]-[9],[12], the
uncertain dynamics of the mobile robots are explicitly taken into account, relaxing the
perfect velocity tracking assumption. The overall control scheme will be distributed since
the controllers at each robot are designed using the consensus based formation error, which
is a function of the position and velocities of all the neighborhood robots.

Since the unknown NN weights are tuned only at the event-sampled instants, the
computations are reduced when compared to traditional and adaptive NN control schemes,
but it introduces aperiodic weight tuning. A novel event-sampling condition is derived in
such a way that the robots use locally available and previously transmitted information
from others to determine the feedback instants. This reduces the communication costs and
ensures stability and performance of the overall formation. In other words, the adaptive
event-sampling mechanism enables asynchronous broadcast of position and velocity

information of each robot, reducing the network congestion. Finally, the extension of the



112

Lyapunov direct method is used to prove the local uniform ultimate boundedness (UUB)
of the tracking and the parameter estimation errors with event-sampled feedback.

The contributions of this paper include the development of - a) a novel distributed
adaptive consensus-based formation control of networked robots by taking into account
both the uncertain dynamics of each robot and its formation; b) a novel adaptive event-
sampling condition using both current information of the robot under consideration and
previous information for neighborhood robots to determine the feedback instants which in
turn results in asynchronous communication; and c) the demonstration of overall stability
of the robot formation using the Lyapunov stability theory.

In this paper, R" is used to denote n dimensional Euclidean space. Euclidean-norm

is used for vectors and for matrices, Frobenius norm is used.
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2. BACKGROUND AND PRELIMINARIES

In this section, a brief background on the event-sampled control implementation is
provided. Later, the dynamics of the mobile robots are introduced.

2.1 EVENT-SAMPLED CONTROL

In contrast to periodic/continuous feedback based control techniques, the event
sampled controller implementation is relatively new and involves many challenges. Here,
the event-based control problem is introduced by highlighting the challenges involved in
the design with respect to controller adaptation and system stability.

In an event sampled framework, the system state vector is sensed continuously but

available to the controller only at the event-sampled instants. To denote the sampling
instants we define an increasing sequence of time instants{t, },",, referred to as the event
sampled instants satisfyingt,,; >t,,vk=0,1---,n. Let t; =0 be the initial sampling
instant. At the instantt, , the sampled state X(t, ), is available to the controller, and the last
sampled state at the controller denoted by x(t) is updated.
The error, e (t), introduced due to the event sampled state can be written as

e () =x(t)—x(), t <t<t.,,vk=0,1---,n, (75)
where e (t) is referred to as event sampling error. Thus, the event sampling error becomes
zero at every sampling instant and update of the state, that is, e (t,)=0 ,vk =0,1--,n.

For the event-triggered controllers, as mentioned before, an event-sampling
mechanism/condition is required to determine the sampling instants, without jeopardizing

the system stability. Also, if the controller parameters are adaptive and updated from the
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feedback information, the parameter adaptation process is also dependent on the event-
based sampling instants. Therefore, the event-sampling mechanism should be carefully
designed so that event-based feedback does not impede with the adaptation process of the
controller. Next, the dynamics of the mobile robots will be presented.

2.2 MOBILE ROBOT DYNAMICS

Consider the non-holonomic robot shown in Figure 2.1, where Xy, denote
Cartesian positions with respect to the robot frame, d is the distance between the rear-axis
and the center of mass of the robot, r,R are the radius of the rear wheels,and half of the
robot width, respectively.

The equations of motion about the center of mass, C, for the i robot in a networked

robot formation are written as

X; | [cosé —d;siné, y
G =|Yy |=|sing d,cosé, { i :|= S (@)V, (76)
6| | o T

where g, =[x, Y, 6] denotes the Cartesian position of the center of mass and orientation

of the it" robot; v;, and w; represent linear and angular velocities, respectively, and

V =[v, @] for the i*" robot. Mobile robotic systems, in general, can be characterized as
underactuated systems with constraints [1].

At higher velocities, V,, the dynamics of the robots become significant [1] and
have to be explicitly considered. The dynamics of the i*"* mobile robot are given by
MV, +Vii (@, GV + R (%) +74 =7, (77)

where M, e R” is a constant positive definite inertia matrix, V_, € R” is the bounded
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centripetal and Coriolis matrix, F, € R” is the friction vector, 7,; € )R” represents unknown
bounded disturbances such that |7,||<d,, for a known constant,d,, , B eR”* is a
constant, nonsingular input transformation matrix, 7, = Biz, € R” is the input vector, and

7. € R” is the control torque vector. For complete details on (44) and the parameters, refer
to [1].
Assumption 1: The robotic system (44) satisfies the following properties: M; is a

known positive definite matrix and it is bounded by B,, and0<M.* < B, , the norm of V__,

and |7, <d, are all bounded. The matrix M,—2V,, is the skew-symmetric [1]. The

cartesian position and the velocity are assumed to be measurable.
Next, the consensus based formation control problem will be introduced.

2.3 CONSENSUS BASED FORMATION CONTROL

Consensus in a group decision making process is a scenario in which the group
members reach an agreement in the best interest of the whole group [10]. In consensus
based control of networked systems, the controller forces the states of each system in the
network to the same value, which is called the consensus point [13]. Further, in formation
control of mobile robots, reaching consensus on positions and orientations of each robot
will bring the network of robots to the same location which will cause collision. Therefore,
consensus on regulation errors is required [5] to avoid collision.

Hence, we first define the regulation errors for each robot in the network, in terms of their
positions and orientations as AX =x —X', Ay,=VY,—-V/, A6 =6-6 withx,y/, 0

being the reference position and bearing angles. The time invariant desired positions ,
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X',y , and the orientations, 6, will provide the desired formation for the networked

system.
Now, the consensus errors are defined for each robot as a function of the regulation

error of the robot and its neighbors as

S, _1 Z (A% —AX )= AX, 1 Z AX, S, = 1 Z (Ay, - Ay, ) = Ay, 1 Z Ay,, and
gi keN; gi keN; gi keN; gi keN;
1 1

S == (A6 -AG,) =A0-=> A6, (78)
gi keN; gi keN;

along x and y directions and the bearing angle, respectively with N.,¢ being the set of

robots and number of robots in the neighborhood of the i" robot. The main purpose of the
consensus based controller will be to force formation errors (78) go to zero so that the
network of robots is in consensus.

Achieving a formation by a network of robots depends on the reference
coordinates of each robot provided the robots in the network share the position and velocity
information with at least one of its neighbors. Therefore, the following assumption is
needed.

Assumption 2: The robots determine their formation errors, (78), based on the
information exchange topology of the communication network. The information exchange
topology is connected similar to [5].

Remark 1: Driving the formation errors (78) close to zero will not result in the
desired formation unless Assumption 2 is satisfied [5]. The minimal communication that
is required for four robots to satisfy the connectedness is given in Figure 2.1.

Connectedness of the network ensures that there is no isolated agent/robot in the network.
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In other words, each agent receives information from one agent and transmits information

to at least one other agent which requires ¢; 21,Vi=12,...,N.

Figure 2.1 Differentially driven mobile robots.

Remark 2: In [5], a controller was designed to ensure that all regulation errors for
the linear systems achieved a common value. The benefit of such consensus based
formation controller is that thei" robot will be able to reach consensus with its neighbor
when the communication is not available with the j" robot anymore. As shown in [5]

average consensus is achieved if the information exchange topology is both strongly

connected and balanced.
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3. PERIODICALLY DRIVEN DISTRIBUTED CONTROLLER DESIGN

The main focus of this section is to formulate the back-stepping formation control
of mobile robots by minimizing the consensus-based formation error. For this to happen,
this formation error is obtained from the robot kinematics and utilized to derive the
velocities at which the robots should move. The perfect velocity tracking assumption [1]
becomes undesirable due to the robot dynamics. Therefore, by explicitly taking into
account the dynamics of each robot, controllers are designed to minimize the velocity
tracking error. The velocity tracking error acts as a virtual control input to the formation
error dynamics and makes the robots reach consensus.

First, define the states for the virtual nonholonomic mobile robot as

X; :EZXK,yJ. :lZyk,ej :129, v, _1 DV, :12@ This definition

gi keN; gi keN; gi keN; gi keN; gi keN;
of the virtual cart is unique in the sense that the average values of the neighbor states are
utilized to generate consensus errors for the formation. Then, the formation errors can be

rewritten as o, =Ax —AX;, o, = Ay, —Ay;, 06, =A0 —A0,. If the reference bearing

angles of each robot in the network are different, then the robots move in different
direction, which is undesirable for maintaining a formation. Therefore, the following
assumption is needed.

Assumption 3: The desired heading angles, 8,4, are same for each robot in the
formation so that each robot is oriented in the same direction [5], which yields &5; = 6; —

6;. Next, the consensus-based formation errors (78) are transformed into the reference

frame attached to the mobile robot using the transformation [1] given by
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cosf; sinf; 07[0xi
eir = [612] = [— sin 6; cosH 0] 6yi] . (79)
11 | 6p;

Taking the derivative of (54) reveals

—-sinbw.o,, +C0S0.5.. +CosO.wS, +SinO.S,

i“xi ii%yi i“yi

ér =| —cosQwd, —sinb,5, —sin w5 +cos¢95 : (80)

1% xi i1y

55

Using the expression (76) in (80) gives

=|:5xi 5yi Sei]T (81)

11%xi

coséyv, —d. sinfw,
—sin8.w.35,; +c0s 6,

—CO0S vaj +dj sin Hja)j

with &, = , and

+Coswo,; +sin 6,

sinQv, +d; cos bw,
—sing,v; —d; cos 0,w;

s g cos gy, —d; sinfa,
—COs —sIng i
10,0y NG —COSQJ—VJ +dj Sin Hja)j

"= (sin 6y, +d. cos G, ]

—sin6.w,d,; +Cos b, )
ATy —smejvj—djcoseja)j

On simplification, using the trigonometric identities and (54), the formation error
dynamics are obtained as

ellw + vJ sine;z |. (82)

ei;W; + V; — Vj CoS ;3
Remark 3: It can be observed that (55) resembles the error system for a single robot
tracking a virtual reference cart [1]. In this work, instead of tracking a virtual cart, the

mobile robots attempt to reach consensus with their neighbors, and each e;_) represents

the consensus error instead of the trajectory tracking error. In order to stabilize the open-
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loop formation error dynamics (55), linear and angular velocities are designed as virtual
control inputs.

Under the perfect velocity tracking assumption, the consensus-based formation
control velocity is proposed as

o [vi’;l _ [ —kqe;; + vjcose; )

Uiy = . .
t ol wj — kavje;; — ks sinegs

with k;,k,,k; >0, being the design constants. If each robot perfectly tracks its desired

velocities (56), the group of robots will reach the desired formation. Since the perfect

velocity tracking assumption is undesirable [1],[19], there will be an error in tracking

F
ivl

velocities defined for each robot as e/, =[e], e[,]' =V, -V , which reveals,v =V} +e .

Remark: The desired velocities (56) will make the formation errors of robots less

than a pre-defined lower threshold, (le +1,e; +1.e])<7. Once the norm of the formation

errors becomes less than the threshold, the regulation or tracking controller can be applied
similar to our work in [16].
The consensus error system (55) becomes
_ - i}
iz J{ii:/lj c::i(la -0, )J_Vi cog (6,-6,)
e, |= v;sin(6,-0;)-e,m : (84)
(eis2 + 0, — kv ie, =k, sin (6, - 6, ))—mj

Simplifying the expression in (84) leads to the consensus based formation error

dynamics similar to [1] as
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. F
éi1 epw; — kiey —ejy

éiZ = —ej w; + Vj sm(@i - 9]) (85)
€3 —k,vje;; — kysin(6; — 6),) — ef,

Using (44), the velocity tracking error dynamics of the individual robot are obtained as
Mgy, =M Vi, (0, 6) (Vg +el ) -F(%) -7, +7,. (86)

Since the nonlinear dynamics of each robot are uncertain, defining
f(Z)=M¥§ +V,, (. 6)% +F (%), yields

Miéi': =_\7mi (qi’Qi)ei'\j —f (Z)_z_-dl +7 (87)

where z, :[L\‘/iT,\‘/i':dT,\"/i';T,Q,@j,e.TF,éHis the set of inputs required to construct the

uncertain function f(Z;) which brings the dynamics of the neighbor robots through the

velocity tracking error. The uncertain dynamics in [1] is a function of the dynamics of the

leader, whereas, in the consensus based scenario, it can be from any neighbor or neighbors
of i" robot and hence the formation. Note thatZis a function of individual robot and

formation dynamics, therefore all the position and velocity information need to be
communicated among the robots.

The uncertain nonlinear dynamics (87) are represented as

f(Z)=0ly;(H'z)+x (88)

where ®, € R*" is the desired NN weights with h, being the number of hidden layer
neurons, . (HTTi ) is the basis function with H™ € R is the mapping between the inputs
and the hidden-layer neurons , ni is the number of inputs to the NN, ; is the bounded NN

reconstruction error satisfying | x| < x\  with z,, being a positive constant. The unknown
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NN weights can be estimated as (:)i and estimated uncertain dynamics can be given by
f(2)=0lyi(z) - (89)
Now, the NN weight estimation error is defined as ®, = ®, — @, and the estimation

error dynamics can be obtained as @i = —(:)i . The control torque, using (87), is obtained as
7 =—K.el +f(z)v(e185) (90)
where y is the stabilizing term required due to the formation error system. Substituting
(90) into (87) reveals the closed-loop velocity tracking error dynamics with

F(Zi)ZG"//i (Zi)+Zi ,as Méf Z—Kveﬁ + 74 _Y(eiF)"' f(zi)_vmi (qi’Qi)ei'\j (91)

Next, the following standard assumption is needed.

Assumption 4: The target NN weights are bounded by positive values, for all the

robots in the network i =1,2,..., N, such that ||®,] < ®,, with ©,, being a positive bounded
constant.

Remark 4: Calculation of the term, f(zi), requires computation of V| , which is a
function of the dynamics of robot j, and \7j . Therefore, the proposed control law not only
compensates the dynamics of the it* robot, but also the dynamics of the formation. To
calculate V|, it is assumed the neighbor robots communicate their state information to the
i*" robot, which includes X;,Y;,0; and the linear, angular velocities, through a lossless

wireless network.
Next, the formation stability results for the group of mobile robots in the presence

of uncertain robot dynamics with continuous or periodically driven feedback are presented.
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Theorem 1: Given the consensus error dynamics (55) for the i" robot in the
network, let the consensus-based formation controller (56) be applied to thei™ robot under
minimal communication scenario. Consider the Assumptions 1,2, and 3 holds. Let the

control torque be defined by (90) with
—€i1
K, i3
Further, tune the unknown NN weights by using

éi = A (Zi )e':T _AlKiC:)i (93)

where A, >0,x; > 0are small positive design parameters. Then, the velocity tracking error
(91) and consensus error (57) and the NN weight estimation errors remain bounded. In

addition, a) i" robot tracks its desired velocity and b) the network of mobile robots reach a

desired formation under the minimum communication topology, when the gains are chosen

such thatk, >0, %>0, K,>0,x >0.

2
Proof: See Appendix.

In the next section, the event-based sampling instants will be determined and then

the event sampled controller design for the formation control of mobile robots will be

introduced unlike the periodic sampling given in this section.
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4. EVENT-TRIGGERED CONTROLLER DESIGN

In this section, the NN controller design with event-sampled feedback, for the
network of nonholonomic mobile robots will be presented and the aperiodic NN weight
adaptation law will be derived from the Lyapunov stability analysis. The event-sampling
mechanism is designed using stability analysis such that the event-sampling error (75)
satisfies a state-dependent threshold for every inter-event period for each robot, which is

of the form

|Eer| <o |Ei,  tost<t., k=123. (94)

withO< o, <1, and g, is a positive design parameter and E,,E, are functions of event-

sampling error and the formation, and velocity tracking errors respectively. By using the
event-sampled feedback, the objective is to reduce the computations from periodic
parameter adaptation without compromising the stability while ensuring acceptable
tracking performance.

Remark 5: Once an event is triggered for the i" robot, it broadcasts its position and
velocity information to its neighbors and also updates its own control torque with its current
sensor measurement, resetting the measurement error to zero in the sensor measurement.

Remark 6: The event-sampling mechanism is designed at each robot with the event-
sampling error satisfying (94). This makes the event-based broadcast instants
asynchronous, which ensures that the communication link shared by the network of robots
is not accessed by all the robots at the same time, reducing the conjestion in the network.

Since the formation and the velocity tracking errors of each robot are functions of

both its own as well as its neighbor robots states, the event triggering errors will have two
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parts due to: a) its own state vector; and that of b) its neighbors. Realize that the first part
of the event trigger error is continuously available for each robot whereas the second part
of the event triggering error is not available except at event sampled instants. Therefore, a
novel decentralized sampling scheme is developed to determine the event sampling instants
of each robot by using last sampled information of neighborhood robots. The following

definitions are needed.

Definition 1: Define first, Vi=12,...,N , t <t<t,,

<

£)=2% (6). A7, (t) = Ay, (1), A6 (1) = A4 (1),

& () =e.(t) &, (t)=e,(t). & () =es(tt) - (95)
The superscript in the sampling instants will be dropped from hereon for notational
simplicity. By using (95), the event triggered consensus errors are defined as
Sy =A% —AX; , 8, =AY, - Ay, and S, =Af —AQ, ,along xandy directions and the
bearing angle, respectively. The event triggered formation errors can be represented in

terms of the continuous-time formation and the measurement errors as
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r r
X +&; — X —(xj+ng—xj) 5,

i gxi ng
= yi+gyi—y{—(yj+eyj—y;) =6, |+ & |- &, |- (96)
Opi Epi Eoj

O +e5—0 —(0,+2,-0))

Define the event triggering errors by using (96) as

gil éil ei1 éil cos HI Sin el O gm 8XI 8xj

& =| &, |=| & |~|€|=|& || ~SINE cosd O gyi 1S |7 G - (97)
i3 € €is €i3 0 0 1 6i Eoi Eyj

Also define
& € cosg, sing 0]|3, 2

& =|&,|=|6,|-|-sing cosd 0|3, || ||
&l €5 0 0 1|5, |s,
&) cosd, sing 0] &,

gl =gl |=|-sing cosd 0 &, |, then the event trigger errors (97) can be written as
el 0 0 1]gy

=& +¢& . (98)

Remark 7: The event trigger error given by (98) has two parts as mentioned before

with the second part &/ is not available continuously because the state information of the

j" robot is not updated at thei® robot. A novel event-sampling condition is derived in
Theorem 3, using the Lyapunov stability theory, in such a way that only locally available
information from thei" robot along with the past position and velocity information for the
j™ robot are utilized.

Now, to define the formation error dynamics with event-sampled measurement

error, consider (56), during the k™ inter-event period, the desired virtual control equations
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are obtained as
V.- —k€&, +V; COsE;

- V. i i

T B N A A S (99)
@ @; —KV;6, —k;sing;

id
where o, = o, (t, ),V; =V, (t,) are event-sampled angular and linear velocities of the i

robot, respectively. After defining the event-sampled signals, (99) can be rewritten with

the measurement errors as

< Vi —ke, +V. cose, +V,
\zgz[ -d}{ v : },tkgtdm, (100)

—F = H
¥ w; —kzvjeil—k33|nei3+a;,g

where V.,

ie?

@, are given by v, =-v[cose, —cos€,;]+¢, cos€, —keg, and

@, =k;[sine, _Slnéi3]+gwj _kzngiz _kzgvjeiz _kzgngiz .

To get the closed-loop formation error dynamics in the presence of measurement

error, use (100) in (55), which reveals the event-sampled formation error dynamics as

; F
€1 €, — ke, +V,, —€,

€, |= —€,, +V;sine, (101)
. - F

€is _kzvjeiz —kssine,; + o, — €,

The closed loop formation error dynamics in the presence of event trigger errors
are obtained in (101). Similarly, the velocity tracking errors in the event sampled

framework is derived next.

The unknown NN weights can be estimated as ©, and estimate of the unknown
dynamics with event sampled feedback can be obtained as
f(z)=0ly,(z), t <t<t,. (102)

with Z, =z, +e,,, being the event-sampled signals at the i mobile robot. The unknown NN

1z
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weight estimation error is defined as ®, =©, — @, and the estimation error dynamics can

be given as @)i = —(é)i. The event-sampled control torque, using (102), is obtained as

7 =-Ke, +(2)7(6,,6,.85),  t <t<t., (103)
with
énf = eﬁ +€er (104)

where the event triggered velocity tracking error € (t)=e;, (t,)is defined similar to the

event triggered formation errors and v is the stabilizing term with measurement error due

to event-sampled mechanism.

F
iv !

Note the velocity tracking error, e, , is not available continuously as it is a function

of the states of the neighbor robots; the event trigger error, €. in (104) is also not

available continuously at the i robot in the network. Therefore, consider

&, —Ks[sine, —sing;]-¢,; +kV,&, +k,g,€

_ &£; —V;COS€; +V,; COSe, +Kg,
j vj Ui2

}. Using this, we define the components

of the measurement error due to the i and the j" robots as

- £; —V; COSE; + k&,
iET

= : s _|,el; =[v,cose, —¢, +ke.e,] . 105
gwi—k3[smei2—smei3]+k2ngij er =V, s o kel (105)

Substituting (103) into (87) reveals the closed-loop velocity tracking error dynamics

M éF Z—Kveﬁ 'H_'di _y(éil’éizﬁéis)_'_ f (Z)_ KveiET

i~iv

H f (Zi ) —f (Zi )] _\7mi (qi G )ei'\:/ o Lest<ty, (106)
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where f (z)=0,y; (z )+ x . With the formation error dynamics (101) and the velocity

tracking error dynamics (60) driven by the event-sampling errors, the stability results for

the network of mobile robots are presented. Next the definition for UUB is introduced.

Definition 2 [1]: An equilibrium point X, is said to be uniformly ultimately bounded
(UUB) if there exists a compact set S — R" so that for all X, €S there exists a bound B
and atime T (B, X,) such that |x(t)—x,|<B forall t>t,+T.

The following theorems provide the stability analysis for the control law that does
not require the perfect velocity tracking assumption. As noted before, the controller is
updated only at the event-sampling instants.

Theorem 2 (Input-to-state stability): Given the consensus error dynamics (101)
and the velocity tracking error dynamics (60) for the i" robot in the network, let the
consensus-based formation controller (103) be applied to thei" robot. Define the control

torque by (103) with
~ [ ) - - 1 . - T
Y(eileeizaeis) =[-€, _k_sm €l - (107)
2
further, tune the unknown NN weights using the adaptation rule (93) with the measurement

error satisfying the inequality |ez;||<Bigny , With By, being a positive constant. Consider

ETM
Assumptions 1,2 and 3 hold. The velocity tracking (60) and consensus errors (57) are UUB
and a) the i" robot tracks its desired velocity; b) the networked mobile robots reach any
desired formation under minimum communication scenario, in the presence of bounded

measurement error when the gains are chosen such that
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k, >kZ/2+3/2, k,/k, >0.5, K, >3/2,k, >0
and c) the closed-loop system is input-to-state stable (ISS), with the input being a function
of the measurement error €; .

Proof: See Appendix.

Remark 8: If the nonlinear dynamics of each robot satisfy Lipschitz continuity, then
by using Theorem 2, it can be shown that the event-sampling mechanism does not exhibit
zeno-behavior [14].

Remark 9: The result in Theorem 2 shows that the closed-loop system in the
presence of a bounded measurement error is locally ISS. That is, the continuous closed-
loop system admits an ISS Lyapunov function. However, for the event-sampled
implementation of the controller, the boundedness of the event-sampled measurement error

is required to be proven. Next, the closed-loop signals are indeed shown to be bounded
using which the measurement error and the existence of 0 < zz, <1, satisfying the event
trigger condition (94) will be demonstrated.

In the following theorem, the event-sampling mechanism is designed and stability

of the robot formation is analyzed by using the Lyapunov stability theory in the presence

of disturbance torque input and NN reconstruction error.

Theorem 3: Given the consensus error dynamics (60) for thei" robot in the network
with the disturbance torque and the NN approximation error 7, #0, y; #0, respectively.
Consider the Assumptions 1,2 and 3 hold. Let the consensus-based formation control input,

(103) with (107), be applied to the i" mobile robot at the event-based sampling instants

and the event-sampling condition be defined by (94). Further, consider the unknown NN
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weights are tuned at the event sampling instants using the aperiodic tuning rule (93). Then
the velocity tracking error (60) and consensus error systems (57) are UUB and a) the i"
robot tracks its desired velocity; and b) the networked mobile robots reach any desired

formation under minimum communication, when the gains are selected such that
k, >kZ/2+3/2, k,/k, >3/2, K,>5/2,k,>0.

Proof: See Appendix.

Remark 10: The event-sampling condition satisfying (94) is designed in Theorem

3 such that E; is a function of formation and velocity tracking errors calculated at thei"

robotand Eg; =[Ej; Ei I isthe event-sampling error available continuously at the i"

i 2 2 4 2 2qT i G
robot. The terms EIjET =[‘c"xyi ‘c"xyi 8xyi gxyi &i €ui gvi] and EiIET :[HeilET H HgillH

Hgiizuz HgiilH4 HgHF]T are function of the measurement errors defined in (97) and (105), with
&g = 2| +Hgyi Hz), &2 =8(eq|l +H5yiH4) . The design terms x4, =1\Ki,, is a function

of the control gains k;,k,,k;, K,.

Remark 11: It can be observed from Theorem 3 that the event-sampling condition
is dependent on the locally available position and velocity information. This ensures that
the communication among the mobile robots in the network is required only when there
are events. This considerably reduces that communication cost in contrast to the consensus
based controllers in [5]-[13].

Remark 12: From the results in Theorems 2 and 3, it can be seen that the

measurement error is bounded for all the inter-event period due to the event-sampling

condition (94) with the value of y, obtained from (94). By using the states of the closed-
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loop system and defining Z =[e, e O], the ISS characterization can be obtained. Thus
the existence of a positive minimum inter event-time can be established [14] .

Remark 13: The event-sampling condition obtained from (94) requires the
information regarding the last updated information of the j" robot to determine the event-
based sampling instants. Also, for the event-sampling condition, the formation errors for
the i™ robot can be calculated with the previously obtained information from the j" robot.

Remark 14: From the results in Theorem 2, it can be seen that the measurement

error is bounded for all the inter-event period due to the event-sampling condition (94) with

the value of ;, obtained from [15]. By choosing the gains as required in the Lyapunov

conditions in [15], we obtain 0 < z, <1, VK.

Remark 15: Once the velocity tracking and the formation errors converge to a small
value, a dead-zone operator can be used to prevent further events [15]. This way the
feedback information is not utilized frequently and computations, communication can be
reduced further.

Remark 16: It can also be observed that the event-sampling mechanism is not a
function of the NN weights as in [15]. This eliminates the need for a mirror estimator as in

the adaptive event-sampling mechanism designed in [15].
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5. RESULTS AND DISCUSSIONS

To illustrate the effectiveness of the proposed event-based NN controller, a group
of four non-holonomic mobile robots is considered. The robots are initiated from an
arbitrary position and move to a desired shape of a square. Using the proposed approach,
the robots establish the square shape while ensuring the velocity tracking error converges
to a small value. The main simulation results are given in the first part by using the
minimum communication information depicted in Figure 2.1, wherein each robot will have
information from one other robot. Even with minimum communication, acceptable results
are observed. In the second part of the simulation section, each robot is assumed to have
communication with all the other robots in the network. The results in the second part is
compared with the minimum communication case and discussed in the second part.

5.1 MINIMUM COMMUNICATION CASE

The desired and initial positions, initial bearing angles and the initial velocities of

the non-holonomic mobile robots are given by

X =25,X; =25x; =—25,X; =—25,y; =25y, =25,
X (t,) =192, (t,) =132,x,(t,) =96, , (t,) =120,
Y, =-25,y, = 25,y,(t,) =108y, (t, ) =156,
Y, (t,)=-168,y, (t,) =-120,6,(t,)=0,6,(t,) =0,
6,(t,)=0,0,(t,)=0,6' =70/ =7,0" = 7,6 = .
The controller gains are selected as K, =30 k, =0.065,k, =0.065,k, = 0.08 and the

steady state desired linear velocity is selected as v =0.9 m/s . The parameters for the
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robot dynamics are selected as m=5 kg, | =3kg?, R=0.15m,r=0.08m, d=0.4m for

each robot. Figure 5.1 depicts the motion of 4 independent non-holonomic mobile robots.

Robot Trajectories

Robots Get into the Square shape
and Moves in the Square shape

50 100 150
X (m)

Figure 5.1 Mobile robots moving to their desired formation.

They are initiated in a non-square shape which can be seen In Figure 5.1. Given
their desired locations, they form a square shape by minimizing consensus error along

X, ¥, 8. The nonlinear robot dynamics are considered uncertain as described in the problem

formulation.
The initial movements of the robots are oscillatory as the consensus error varies
over time. Since the robots have nonholonomic constraints, due to the consensus error

resulting from minimal communication, oscillations are observed but eventually this gets
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settled. The adaptation parameters for the NN weights estimation is selected as

F =1x =0.5. Once the unknown weights are tuned, the robots reach consensus along
X,y directions.

The robots reach consensus at about 500" second as observed in Figure 5.2 and
Figure 5.3. The difference between the desired and the actual linear and angular velocities
are plotted in Figure 5.3. The NN weight estimates of each robot converge into a steady
state bound as shown in Figure 5.4. Since the robots may move in different terrain, the
friction terms can change over time, and the total mass of each robot may change as well
as other dynamics parameters. Therefore, learning the robot dynamics online is valuable

and is achieved.

Formation Errors
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Figure 5.2 Formation errors.
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Velocity Tracking Errors
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Figure 5.3 Velocity tracking errors.
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Figure 5.4 NN weights (continuous).
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NN Weights

NN Weight Estimation

0 500 . 1000 1500
Time (s)
Figure 5.5 NN weights (event triggered).
Robot Trajectories
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Robots Get into the Square Shape
and Move in the Square Shape
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Figure 5.6 Robot Trajectories with event trigger controllers.
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Formation Errors
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Figure 5.7 Formation errors.
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Figure 5.8 Velocity tracking errors.
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The event-sampling mechanism was designed with k,k,,k;,k, as selected in the
controller witho =0.99. To compare the controller with continuous feedback, all the
controller gains and initial values of the parameters and the initial conditions of the robots
were unchanged. With the proposed event-sampled feedback, the mobile robots were able
to reach the desired consensus as seen in Figure 5.6.

The formation errors remain bounded in Figure 5.7 and the velocity tracking error
remains bounded as in Figure 5.8. However, due to the aperiodic feedback, these bounds

are slightly large when compared to the continuous counterpart.

Cummulative Number of Events

2000
1500
12
5
S 7
m
51000
3 -
e /
5 7
Z 7
500 y
//
Vi
0 Vi
0 500 1000 1500

Time (s)

Figure 5.9 Cumulative number of events of each robot.

The NN adaptation with aperiodic event-based updates resulted in a bounded

parameter estimation error as depicted in Figure 5.5. Clearly, the bounds on these errors
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were higher compared to the continuously updated case. Due to the designed event-
sampling mechanism at each robot, the total number of NN weight updates and the
communication instants are considerably reduced as seen in Figure 5.9.

5.2 FULL COMMUNICATION CASE

In this case, the initial conditions, controller gains and all the parameters are
chosen same as in case A. Only full communication is considered. The simulation is run
for sixteen seconds and event triggered controller results are given. Comparing Figure 5.10
with Figure 5.1 and Figure 5.6, it is obvious that the oscillations are reduced significantly

when the number of communication links are increased.

Robot Trajectories

Robots Keep the Square Shape
and Moves in the Square Shape

itial Conditions
of the Robots

_160 L A e ——— L ——— A g

60 80 100 120 140 160 180
X (m)

Figure 5.10 Robot trajectories.
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Each robot considers the positions and velocities of all other robots in it’s
formation error definition and uses their control torque to approximate the uncertain
formation dynamics. Though the network of robots reach consensus with minimal
communication in the previous case, oscillations are observed which can be eliminated
with additional communication from neighbors.

Increasing the communication links among robots not only reduces the
oscillations but also reduces the time of consensus. Figure 5.11 and Figure 5.12 plots the

formation and the velocity tracking errors of all four robots, respectively.

Formation Errors
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Figure 5.11 Formation errors.
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6. CONCLUSIONS

In this paper, an event-based formation control scheme for a network of mobile
robots was presented. The NN based event-sampled torque control of mobile robots was
able to bring the robots to consensus by stabilizing the formation as well as velocity
tracking errors in the presence of event sampled measurement errors, NN reconstruction
errors and bounded disturbance. The event-sampling mechanism was able to generate
additional events so that the formation error remains bounded and due to asynchronous
mode, communication overhead is minimized.

In the case of minimal communication, oscillatory behavior is observed initially
though this becomes better over time while full communication with other robots enhance
the formation control. The event-sampling condition at each robot and the NN adaptation
rules were derived using the Lyapunov stability analysis. The analytical results were
verified using the simulation examples and the efficiency of the event-sampled controller
execution was demonstrated in the presence of minimal communication information and
with full communication overhead. It was observed that the robots reached consensus even
in the presence of minimal communication. However, the consensus was reached much
faster and the robots moved with much less oscillations when the full communication was

available for all the robots.
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APPENDIX

Proof of Theorem 1: Consider the following combined Lyapunov candidate

L=>" L (108)

where the Lyapunov functions for each robot is given by

Lie :%(e,ﬁe +ef Mef +tr®TA(:)i)+ki(1—cosei3) (109)

2
with A =A;' . Taking the derivative of (109) and substituting the consensus error system

(55) and velocity tracking error dynamics (91) reveal

I;iF =_k1eii ( S/k )Sln e |v1 (]/k )Slne e|v2 FTKvelv _e|v 7(e|1'ei2’ei3)

+ef, " (O, () + 1 +fdi)+o.5(ei5T(|v|;i—2\7mi (6, )&l +tr{O7 A®})
Next, applying skew symmetric property [1] and recalling the definition of
v(ei1, €iz, €;3)in (92) results in
L = k2 — (K, /k, )sin® e, —ef 'K eF +e5T (@ (2)+ 7 +7,) +05t{OT A} (110)
Using the upper bound on the disturbance and the NN approximation error along

with the Young’s inequality yields

F
iv

l;iF < _k1€i21 _(ks/kz)Sin2 ei3 - Kv

+0.5((z3 +y, )2 +tr{el O (2,) + 6] AOY) (111)

Use the adaptation rule (93) and the rotation property of trace operator, combine

similar terms to get
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F
eiv

. K; . e AT E
L s—klefl—k—%mzeis—(Kv—%) 2—%tr®?®i +175
2

with 77, =0.5]d,, + 7|’ - Then the derivative of the combined Lyapunov function (108) is

given as

F
eiv

L<3 kel —(ki/k,)sin? e, —(K, ~0.5)[ef | ~0.5x tr}

[0, }+775) (112)
where 77, = N775,. It can be observed from (112) that the Lyapunov derivative is less than

zeroas long as K, >0.5,(k,/k,)>0, x; >0, provided

e, > !U—B or, sine, > ’kan ,or, >\/77—73, or, H(:)iH>\/£'
k, K, K, K

Therefore, a) all the formation errors, velocity tracking errors and NN weight

F
eiv

approximation errors are bounded; b) Since the Lyapunov function (108) contains all the
individual Lyapunov functions and it is proven that each robot reach consensus on
regulation errors, it will provide the desired formation shape for the networked mobile
robot group.

Proof of Theorem 2: Consider the Lyapunov candidate (108) and taking the

derivative of (109), we have

L, =e.6, +6,6, +(&,sine,/k,)+el " M€l +%ei5T M.eF +tr{®iTA(j)i}. (113)

1 (Y

Utilizing the consensus error dynamics and the velocity tracking error dynamics

with measurement error from (101) and (60), to get

L =e, (eiza)l — K&y +Vi, _ei51)+ei2 (_eila)l +V;sin (eis))

sine, .
+ = (_kzvjeiz _ka Sln(ei3)+a).é» —eﬁz)

2
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eul\jT (Kvei5 —?(ei)+0.5€i5T (MI _2\7mi (qiqi ))ei5 +Z_-di + F( )+ K e|ET)
Hf(z)-f(z)])+tr{O] AG}. (114)
Using the definition of e, and skew symmetry property and expanding the

expression, we obtain

k ks A2
L, =e,e,0 —ke’+e,V, —e,e,m +V,e,sine; vJelzsmeiB—k—sm (&)
2

@, Eioy .
+(i_L)Slnei3_e| vl Kvelv_eIV Y( )+e f( )+e Kve'ET
2 2

+ef [f(z)- T (2)]+tr{®] AG}.

E112
iv

: F F Flo
—SIn eiseivz/kz — €161 — €y Y(eiF )

e

. k, . ]
L= _k1ei21 +€1Vi, __3$|n2(ei3) "'iw.g sine,; — K,
K, k,

& BTy (2)+7, + 1) +e5 Ko +e5 [F(2)- 1 (2 )]+tr{©iTA(i)i}. (115)
Using (107) in (115) and defining the bound |y, (z,)|<w, Vi=12,...N , we

obtain

EI2
iv

+€,Vie +(a)|g/k2)3inei3 +(ei52/k2)5inei3

L, <—ke2 —(k,/k, )sin®(e,;) —(K, —0.5)|le
—(ei'jz/kz)[sine —sing,]+efe, +e- Oy (z)+e] Keg +202 |0 +ei (7u+1)
+ei51gil _(ei52/k2 )Sin € _eilei'\jl +1r {élTAc:)l }

Utilizing the definition of the formation errors in the presence of measurement errors as

well as v, , we get

i3/k2 _ei'\jZ[Sineis —sin éis]/kz

I;iS 1.1 (3/k )Sm (e
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— FTAT., (5 Fr F 2
—€,k, (Vj +5vj)5i2 _eilkzgvjeiZ +¢€, O, ‘//(Zi)+eiv K. 8er +8uén +2Wr\2/| ”@.”
+e,k;[sine, —sing,]—-(1/k, )sine, (v, +&,)[cose, —cose,]

+8,6,,; —€,K 6,6, + (1/k, )sin €46, COSE; —(V/k, )sine ke,

+Le +ef (Ty + 2 ) +tr {@:A@i}. (116)

Apply the norm operator, utilize the boundedness of the trigonometric terms and

the bounds on the disturbance torque and reconstruction error, to obtain

Li < _kieizl_(kS/kZ)Sinz(eiB)_(Kv _0-5) eis 2 +(]/k2) ei'\jl

+6,K, (&,V; + 6,6, —€6,) + ||ei1|| (kg +ngj H)

eiST (” K €er ” + 2'//1\2/| ”@i ”2 + ||5i1|| +dg + 2u)

+ei5T C:)ITI// ( Z ) +

+le, [+ K [len ]+ Dlsines] .- (117)

Hr{O]A6, |+ (k) (|, +2,)

Use Young’s and the triangular inequalities, and the trace operator in (117) to get

2

L, <—ke? —(k,/k, )sin’*(e;) —(K, —0.5) e,

i

+0.5(ei21k22 +

F
eiv

)2 el Oy (7))

) /z)+o.5(||gi2||uvjH+||gi2||

e

&, &,

FT
eiv

(Ao + 2 ) 4K o ||2)+||8u||2 el
tlealf /2 +aK2 +e, | f2+ 2w, k2 +0.5K2

+5

&l /2K + K2 e [2K2 + 2[sine, |+ tr {@rAéi }

Utilizing the parameter adaptation rule defined in (93) and the definition of the NN

weights estimation error, we have
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I;ig_ 1 |1 ( 3/k )Sm (el3) (Kv_0-5) eis 2

e’ [

Il

il+lE

+05(( v, |+ e ]2

(ke

2
" 2|V
el 20T ke

o)Ly 21K e+l 20 o+ i

iv

2

el Lot f6] (v (2 -x0) - 61w (2], (1)

Combining the similar terms and using the Young’s inequality once again yields
- R 2 2
L <—ke] —k;/k,sin’(e;) - (K, — O.S)Heif H +He§ H /2

2
+e5 [

il e

+05(( |V, |+ e ]2

1172

+0.5((dg + 20 )2 +[K | [eer ) + gl + 2072 |©1] + 42 +0.5(e, | +ng] Hz)

2 ef

jV

2k e’ f2K2 +Y 22 +2[sine, | - |6,

—d 2
+(v7]
Combining similar terms reveals

[, <—KE +B +2|ef| /k. (119)

jv

Where

)k ) 2+ 20 0] + 05K, feer [

B, =0.5k? +1/2k? + 2(ijd [ +]e

vj

gvj

el 5,

1 1
+0.5+k, /k,) e +1/K2 +§||eilgi2|| += H £y, H +( e i +§||5i I,
2
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and k, = (k,—(k; +3)/2),

[1]

=[e2sin’ey) 5] |61 Ki=[k Kk, k, ],

k, = (k,/k, —0.5), k,=(K,—3/2). The derivative of the Lyapunov (108) can be found
by combining individual Lyapunovs terms (119). In the combined Lyapunov function of
the network of robots, the j" terms can be switched between i" and " robot as

F
iv

2 ‘) Then, after combining velocity tracking error terms of the i"™ robot

2(—)2‘

e

F
€

yields the Lyapunov function

. N —_

L<> " (-KE+B). (120)
with the updated gains of velocity tracking error term k, = (K, —3/2+2/k2). From (120)

: a) it can be seen that the formation, velocity tracking and the NN weights estimation errors
are bounded in the presence of the bounded measurement errors as long as
k,>k2/2+3/2, k,/k, >0.5, K, >3/2—2/k?,x, >0; b) each robot reach consensus on
regulation errors, it will provides the desired formation shape for the networked mobile

robot group.

Proof of Theorem 3:
Case 1: With the event-sampled measurement error,e., =0, Vi=12,...,N . Since

it is already shown in the proof of the first theorem, the proof of the first case is omitted.

Case 2: During the inter-event period e, =0, Vt €[t, .t,,),® =0, therefore, using

the Lyapunov candidate function (108) and the first derivative is obtained as (113).
Utilizing the consensus error dynamics and the velocity tracking error dynamics with

event-sampled measurement error from (101) and (60), get
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I;i =€ (eiza)l — ke, +Vi, _ei51)+ei2 (_eila)l +V; sin (eis))

+ sin ei3 (_kzvjeiz - ks Sin(eis) +w, _eiSZ)
2
_ei'\jT (Kveis _V(ei)"'z_'di + f~(zi)"' KveiET)+[f (Zi)_ f (7.)]) (121)

Using the definition of ¢,,, we obtain

e j ks
L =e,e,0 —ke, +e,v;, —e,.,m +V,€,SIN€; —V;€,SINE;, _k_sm (&i3)

2
() e.F T T T~
+(k_lg_L2)3in €i3 _eilei':l _eis Kveis _eis ’?(ei )+ei5 f (ii)
2 2

e K+ [F(z)- ()]

: 2 Ks o2 1 : Fp 1 F F

L =—ke; +e,vi, ——=sin“(e;) + —a, sine; — K, |le;, [ ——sine.e,, —€,6,

k, K, k,
el 7(€1:8.8) + 65 Oy (7)+7y + 11) +ef Keer e [f(z)-F(Z)] (122)

Using (107) in (122) and do the similar steps done in Theorem 1 yields

E 2 . .
v | tEaVie TA, Sme‘s/kz +€,,SIn eis/kz

e

L, <kl —k,/k,sin’*(e,) — (K, —0.5)

F (e . F FTAT (o FT T 2
—€2 (Sm €is _Smeis)/kz +6,,8, +6, O, W(Zi )+eiv K. 8ier +O'5H®i Y H

FT (= F F : F
+€, (Tdi + X ) +€uéi _eivz/kz SIN€;; —€;,€,.

Utilize the definition of the event-sampled formation errors as well as the definition of v,

to get

F
F iv
iv

€ ro: o
2[sine, —sineg,]
k2

2 .
er |l +sine,/k, +el &, —

L, <-ke’ —%sin2 (es)—(K,-0.5)
2
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6k, (V; + £)2, —€yk,8,8, +6 Kieer +6 Oy (Z)+0.5|0]y, HZ

vji2

. o 1 . _ . 1. -
+€,Ks[sine; —sing,;]—e,k,e,6, —k—sm &5(V; +¢&,)[cose; —cose,]+ k—sm €i3€,; COSE;,
2 2

_kiSin ek, +Lg + ei':T (Z_-d| X ) €&, (123)
2

Applying the norm operator, we obtain the inequality as

+(|[sines|/k, ) +ef.&,

[, <kl (o /k,)sin?(e,) ~

1 . . _
+—e,, [[sine; —sine,]|+eyk,&,V,

k,
—e ke, e [[K.e Ty ()] +05]0w | +[ef 17 + 2l
+ey Jafsine, —sine,J| +e .,
+([sine Gl k) + (K /K ) [sine ] + [sine, o~ 058, k,

By utilizing the boundedness of the trigonometric terms and the bounds on the

disturbance torque and reconstruction error, we get

L, <—ke2 —(k, /K, )sin’(e;) —(K, —0.5) e, +eilk23i2\7j+||ei1||(k3+ &,
et 6T (1))
+e,K, 8,6, —€.K,E,8, +e |KveIET |+0. 5H®Tz//M H +a]+ds + 2u)
+(1/k, ) |V, + &)+ e D) [sine|- (124)

Use Young’s inequality and the triangular inequality in (124) to get
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E 2
L <-ke? —:z—zsinz(eis) —[KV —%) el ? +e% +2|sine,||
Vi ] + ol ]|+ ezl €D
1 ~ _ T |12 1
+0-5((k_+H®iT‘//(Zi )H)2 +0.5(e2K2 +lef || +(dg + 2 ) +IK I leer )+l Yoz
2 2

) 2 R 2 )
1 e E, 2|V S|e, 2le; .
+§H®IWM HZ@JAK&FH 2’” + Hkéu 2sz2 +k12”k;_1” .Combining similar terms
reveals
2
LaS—(kl—%k§/2—3/2)ei21—(ks/kz—0-5)Sin2(ei3)—(Kv—3/2) ef |

+0.5||K, [ leer I +(0.5+k, /k,)|w

+0.5K202 5, | +0.5 s, | +0.5]e,, | +(0.5k2 +0.5|j6, | +5/k,) |, | +0.5]f +B.

gwj
with the bounding term B =1/k} +0.5k} +0.5|6]y/(Z )H2 +1/2k +|2v, Hz/k2
+0.5((dg + 2 ) +[©] v Hz). It should be noted that v, represents the last updated velocity

information from the j" robot and it is held constant until the next event at the j" robot
and realize that ©, is bounded between two event sampled time instants as well as the
desired NN weights o,. For simplicity, defining
k, = (k, —k?/2-3/2), k, = (ks /k, —0.5), k, = (K, —3/2), K, =[k, Kk, k],

F
iv

. 2
E':[ei21 5|n2(ei3) € ]T’EiET:[”eiET”z ||8i1||2 ||‘9i2||2 ||5i15i2||2]T’

kile = 05||Kv||2 ! I(i2e = (l+ k1/k2)’ ki3e = 05(k22\7j2 +1+||éi1||2)’
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ki4e =05, Kier :[kile ki2e kiSe ki4e]’ yields

2 _
+B,.

(125)

[, <—KE, + K By +05],, [ +(0.5+0.5k + 056, +5/k,)]s,
Use the definitions of the event-trigger errors to get

_ N 2
PSRN i
(gil+gil)(gi2+gi2)H ,

, 12
i
€ip T 5i2” +kige

: 2 Ce
_ i ] 1 ]
KigrEier =Kige |€ier +eiETH +Kige 5i1+5i1H +Kize

and use the triangular inequality to obtain

2 12
i i
gil” +2Kipe gil”

Co2
i
€ier H + 2ki2e

KierEier < 2Ky, el [ + 2K

iET i

S 2 02 4 4 4 4
i i i i i i
2K etz + 2k | + ]| el +let] +led] (126)

. 2 .
- J _ T
Consider the second element, HeiJET H ,and recall ez, =[v; cose,; —¢,; +K,&,€,] , then,

2
s V, COSE€;, 2 , ) 2
He'j H - J =vicos’ e, +(—¢, +Ke,8,) SVi+2e +2k g€
iET j i3 @] 2°vji2 ] o] 27V i2
—&,; T K68 ( )
2 2 2 252 2 _4 2 i4 2 _j4
<V +2¢,; +4k 6,85 +8K e, +4K g, +AK g (127)

Then, using (127) in (126) yields

R R
i j
gil” +2Kipe 5i1”

K. EiET <2k; eiiETH2 + 2kiZe

iET ile

2 2 2 252 2_4 2 4 2 _j4
+2K;,, (vj +2¢,,; +4K 6,65 +8K e, + Ak g, +4K e )

2 12 4 4 4 4
i ] 1 J 1 J
+2ki et + 2as ]|+ +]ad] +|ee] +[=t] (128)

Define
KiiET :[Zkile 2kiZe 2ki3e 1 1+8ki1ek22]'
KinET =[2k,, 2k, 1 1 16k,k; 4k, +0.5 8kilek22éizz+kvj]

; : 2 212 S12 S 4 L4 . 112 S 112 4 L4
i _ i i i i i o j j j j 4 2 2
Ber =lleir| Jeul” el el el 3 Br =Heal " el el & <2, &51
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to get

KierBer <K E:ET+KijETEijET' (129)

ieT Cier = Migr

Use the inequality (129) in(125), then obtain

L, <-K.E, + K, Eie, TKIL EL + B, (130)
For the system of N robots in the robot network, we have the Lyapunov function

derivative as the sum of all the Lyapunov derivatives of the form, which yields

L, <-K.E + K Efg; + KiEL; + B, (131)
Recall that E}., is available for the i" robot however EL. is not. In the combined

Lyapunov function of the network of robots, the unknown parts can be switched between

i" and j" robotas EL; +V? <>E'g; +V . Then, the Lyapunov function can be written as

L< ZL—KiEi +KigrBigr + Kl Elgr + B +2v,'% + 265 2 (132)
Take the bounded term 2v°? into the bounded terms and redefine B, = B, +2v’? ,

update the last term of K, as

k, =(K,—-7/2). Note that v’ (t) =V’ (t,) , Vt €[t,,t,,,) . The switched part,

Ei,-ETZ[H(eLHz He}ZHZ “‘9}1”4 Hg}z‘r &b & 52} , is still not completely computable

wi \

continuously since the first four term needs bearing angle of the j" robot. Therefore, an

upper bound is found for the first four terms in the following step. Consider

&, cosd, sing; |[&; |, p _ 2
S New| =[cosb,e, +sin 0,z
i —sing; cosdo, || ¢,

yi

He}zuz =|-sing;z, +cos Oz, H2 (133)
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Since the bearing angle of the j" robot is not available, (133)should be simplified

by using triangular inequality, Young’s inequality and the upper bound on sinusoidal

function as

lesll < 2lel” +2e, " el < 2l +2]e [ (134)
Further,

H‘921H4 <8, ”4 +8H‘9yi H4 HgJZHA <8le,, ”4 +8H‘9yi H4 (135)

Now, by considering the inequalities (134) and(135), do the update

]_EijET :[gxyi Egi Eni Eni En Eu gvzl] with ¢, = 2(&, ||2 +H3yi HZ),ngyi =8(|&, ||4 +H5yiH4).

Now combine the two terms as K, =[Kie, Kle |, Eir =[ Eier  Ejer | and get the

derivative of the Lyapunov as

L<>" —KE +Ki E +B. (136)
Separate the error vector as

~KE, =—(k, (éll +‘9ijl)2 +k, sin’ (&, +‘9ij3)+R3 & +eLr HZ)

__ .
+(ky-2K2)(ef ) +(k,-05) (e, )

where €, =6, +¢&,,6,=6,+&,,6 =e" +e, . Define Ri:[(Rl—ZRf) (Rg—zkg)} :

Eiz[éﬁ & 2}, gijL:[(Rl—OB)(gi{)z (@—0.5)“@’5”2} similar to the steps between

equations (131) and (132), the unknown event triggering errors, & <—>g}L , can be

switched among the robots in the combined Lyapunov function and the event triggering
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errors, and coefficients can be re-defined as Ki, =[Kier [1 1]], Eir =[Elr &) |-
Then, the inequality (136) is obtained as

L<> " (-KE +KiEiey +8,), (137)

Using the event-sampling condition (94) in(137), we get L <" (-K,E, +Ki, 44E, +B)).

Choosing z, =1/K!.; ,the Lyapunov derivative is further simplified such that
L<>"" —(K,~1)E, +B,. It can be seen that the formation and velocity tracking errors are

bounded during the inter-event period as long as k, >kZ/2+3/2,k,/k, >0.5, K, >5/2,

k, >2k? k, >2k? and since the unknown NN weights are not updated, they remain

constant during the inter-event period. Therefore, from Case (i) and Case (ii), it can be
concluded that: a) the velocity tracking errors, formation errors and the NN weights
estimation errors remain bounded during the inter-event period; b) Since the Lyapunov
function (108) contains all the individual Lyapunov functions and each robot reach
consensus on regulation errors. Due to the event-sampling condition, the measurement

error introduced by the event-sampled feedback is also bounded.
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IV.  MODIFIED CONSENSUS-BASED OUTPUT FEEDBACK CONTROL OF
QUADROTOR UAV FORMATIONS USING NEURAL NETWORKS

ABSTRACT

In this paper, a novel nonlinear output feedback neural network (NN)-based
consensus controller is developed for a group of quadrotor unmanned aerial vehicles
(UAVs). One UAV in the group tracks a desired trajectory while the rest of the group uses
consensus-based formation controllers without knowledge of the desired trajectory. Each
UAYV estimates its own and its neighbor’s velocities through a novel nonlinear NN-based
observer by using position and orientation information. Neighboring UAV positions and
orientation information is assumed to be available via wireless communication or obtained
through local sensors. Since quadrotor UAVs have six degree of freedom with only four
control inputs, the UAV’s pitch and roll angles are utilized as virtual control inputs to bring

all UAVs to consensus points along x and y directions. The Lyapunov stability theorem

is utilized to demonstrate that all the position errors, orientation errors, velocity tracking
errors, observer estimation errors, and NN weight estimation errors are semi-globally
uniformly ultimately bounded (SGUUB) in the presence of bounded disturbances. The
effectiveness of our consensus-based output feedback formation control of quadrotor

UAVs is demonstrated in simulation validating our theoretical claims.
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1. INTRODUCTION

Improvements on low-cost wireless communication has led to research on
networked autonomous systems in the past 20 years. Inspired by nature, these networked
unmanned systems are capable of accomplishing a given task without requiring external
supervision.

Quadrotor UAVs are easier to build and maintain when compared to conventional
helicopters [1]. However, the dynamics of quadrotor UAVs are not only nonlinear, but also
coupled and under-actuated. They have six degree of freedom and can be modeled as
having four independent control inputs; one for elevation adjustments and three for
rotational control inputs. Many controller schemes are proposed in the literature for
trajectory tracking problems of quadrotors [2]-[3] where the control objective is to track
the Cartesian position and a yaw angle. Much research has also been dedicated to
controlling groups of quadrotor UAVs [1]-[13].

Quadrotor UAV leader-follower formation controller design is introduced in [4]
while considering the fourth order linearized dynamics of quadrotors. A relative distance
approach is utilized for adaptive leader-follower formation keeping when the GPS signal
is lost in [8]. However, the nonlinear quadrotor dynamics are assumed to be exactly known
in both [4],[8] which is not realistic in practical applications

An NN-based adaptive formation controller is developed for quadrotor UAVS in
[1]. The availability of position, orientation and velocities of the follower as well as the

leader for the leader-follower based formation controller design in [1] is quite a strong
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assumption, and it may not be practical. Further, there are several limitations of leader-
follower-based formation control over the consensus based approach.

First in leader-follower approaches, the controller algorithms need to be uniquely
defined for each follower in the network based on its own leader’s state information.
Therefore, the scalability of traditional leader-follower approaches can be quite difficult
whereas the consensus-based formation controller algorithm is scalable since the
assignment of relative leaders is not required. In other words, the same algorithm can be
duplicated and used for each agent in the network in the consensus scenario to enable
scalability. Secondly, for leader-follower approaches, communication disruptions between
a leader and its followers results in the follower and the agents behind the follower to lose
the desired formation. Consensus-based approaches are not susceptible to these
degradations as explained next.

Robustness and reliability are two key benefits of the consensus-based formation
control [4]-[8]. In addition, scalability of the consensus-based formation controller enables
the formation to continue even if one of the agents in the network experiences a failure.
The quadrotor UAVs share information regarding their position errors from their respective
reference locations in consensus-based formation control. The shared information is then
synthesized into a control law which seeks to achieve the same position error for all
quadrotors until each of them has the same position error. The desired formation is
achieved and maintained by reaching and maintaining consensus on the position errors.
The desired shape of the formation is selected by choosing the reference points of each

UAYV accordingly.
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There are several consensus-based formation control techniques for quadrotor
UAVs in the literature [5],[6],[10],[11]. In [5], a consensus based formation control of
multiple quadrotor UAVs is developed in the presence of an unknown mass matrix while
the rest of the nonlinear dynamics are assumed to be bounded. Additionally, it is assumed
that each UAV can access its own states as well as the states of its neighbors. Consensus
control of quadrotor formation in the presence of switching topologies is considered in [6],
while time delays and switching topologies are considered for the consensus-based
controller design in [11]. In both works [6],[11], linearized quadrotor UAV dynamics are
considered.

Consensus-based formation control of quadrotor UAV formation is delivered in
the presence of second order nonlinear UAV dynamics and switching topologies in [10]
wherein the full state availability of the follower UAV, state measurements of the leader
UAYV and knowledge of the nonlinear UAV dynamics are needed. However, assuming the
dynamics are completely known is not practical [1]. Highly nonlinear dynamics of
quadrotor UAVs such as aerodynamics friction dynamics have either been simplified or
ignored in all previous consensus-based control techniques, which can be seen in
[51.[6].[10],[11].

In [12], the nonlinear dynamics-like aerodynamics friction became significant at
high speeds. In [13], the authors developed output feedback tracking control of a single
UAYV in the presence of uncertain nonlinear quadrotor dynamics, and its stability analysis
is demonstrated. Nevertheless, developing consensus-based output feedback formation

control of quadrotor UAVs in the presence of uncertain dynamics is still an open problem.
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In this paper, a novel consensus-based output feedback formation controller is
developed for a group of quadrotor UAVSs in the presence of uncertain quadrotor dynamics.
A modified consensus-based formation controller is considered where a designated
formation leader tracks its own trajectory independently from the other UAVS in the
formation [20]. The other UAVs in the formation have no knowledge about the leader’s
desired trajectory.

Each UAV is assumed to share its position and velocity states with neighboring
UAVs via wireless communication. Alternatively, each UAV may obtain the required
states through local sensors when the shared communication is not available. A novel NN-
based extended observer is developed for each follower UAV to estimate its own velocities
as well as its neighbors. To support UAVs joining or leaving a formation or neighborhood,
a novel size reduction matrix is defined to remove the zero elements in the observer design
corresponding to the states of a UAV that has left the formation. The size reduction matrix
provides a method to ensure that an invertible observer matrix is always available.

Each UAV determines its consensus-based formation errors by using the position,
orientation, reference location and estimated velocities of neighbors. Since the
underactuated quadrotor UAVs have no direct control over the position errors along X and

y directions, novel desired pitch and roll angles are utilized as virtual controllers to reach

consensus for those directions. An elevation controller is also developed by considering
the formation error along z direction.

The contribution of the NN-based consensus-based output feedback control of the
quadrotor UAV formation includes the following: 1) the design of a novel NN based

nonlinear extended observer which explicitly considers the time varying topology of the
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network to estimate the velocity of the UAV under consideration and its neighbors which
enables the quadrotors to maintain any desired formation shape—even without
communication among each other; 2) the development of a novel ‘size reduction matrix’
scheme to avoid invertibility issues in the observer design of the group of UAVSs in the
presence of time varying network topology; 3) the development of a nonlinear consensus-
based output feedback-adaptive formation control technique for a group of quadrotor
UAVs; and 4) demonstration of formation keeping using any number of quadrotors in the
presence of changing communication topologies through Lyapunov analysis.

The remainder of the paper is organized as follows. Section 2 presents a brief
background on quadrotor UAV dynamics, NNs, and random graphs. Section 3 provides
the observer and controller design of the leader UAV. Section 4 discusses the main results
and derives the consensus-based output feedback formation controller design. Before
offering conclusions in Section 6, Section 5 provides simulation results to support the

theoretical conjectures.
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2. BACKGROUND AND PRELIMINARIES

This section presents a brief background on NNs, random graphs, quadrotor UAV
dynamics, and the modified consensus formation control approach considered in this work.
Notice that an agent is interchangeably used throughout this paper for a UAV.

2.1 NEURAL NETWORKS

Two layer NNs are considered in this work which consist of one layer of tunable
hidden weights, W e R“®, and another randomly assigned constant weights layer,
N e R*", wherea denotes the number of inputs, b is the number of outputs and L being

the number of neurons on the hidden layer NN. Any smooth function f(x) can be
approximated [19] through a two-layer NN as f (x)=W'o(N"x)+&, where & is the

bounded NN approximation error such that|¢| <¢,, , ando(e):R* ->R" is the hidden
layer activation function. The approximation property holds for any input x since the input

layer weights N are randomly selected; therefore, the activation function, a(x) = 0'(\7T x)

, forms a stochastic basis in the compact set, S [19]. In this work, a sigmoid activation

function is utilized. Further, the target weights are assumed to be bounded by a known

positive value W,, such that|W|_ <W,, on any compact subset of R" [19]. Throughout

this work, e[| and |s|| will be used as the vector and Frobenius norm, respectively [19]. For

complete details of NN, refer to [19]. The definition of semi-globally uniformly ultimately

bounded (SGUUB) is introduced next.
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Definition 1: The equilibrium pointXx, is said to be SGUUB if there exists a ball
centered around the origin with an arbitrary radius r S(O,r):Sr cR" so that for all
X, €R", there exists a bound B>0 and atime T (B, x,) such that |x(t)—x,|<B forall
t>t,+T . Further, the stability result becomes globally uniformly ultimately bounded
(GUUB) if S, = R"[13].

Next, some background information is provided on the Random graph.

2.2 RANDOM GRAPH

A graph is a symbolical presentation of network connectivity, which can be
considered as a virtual set of connected nodes. A random graph is a graph that is obtained

by randomly sampling from a collection of graphs. In [10], the set of edges and the vertices

of a graph T'=(v, E) are denoted by v and E, respectively. In this work, for a random

graph on N vertices, the existence of an edge between a pair of vertices in the set

C={12,...,N} is determined at random and independent of other edges. Define the
sample space of the random graph as P and let p(t) be a topology indicator such that
p:R"— M . Also, let t,'s be the switching times of the edges in a dynamical graph, F(t)
, witht, e R,k =1,2,...Note that the indicator, p(t), is a piecewise left continuous
function which remains constant during the time interval tet,.t,.;) and changes to

another topology inP att, ;. In a realistic communication scenario, collisions, channel

fading or noises may cause packet exchanging problems among nodes.
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Assumption 1 [4]: Even though the connectivity graph can change at random in a
certain time instant, t,'s , the graph is assumed to remain connected at any given time.

Connectedness physically means, networked agents, that there is no isolated agent
in the network. In other words, each agent (or UAV) receives at least one other UAV’s

information and transmits its information to at least one other UAV.

For the dynamical networkF(t) with N vertices, the adjacency matrix is defined

H(t)={h; ()}, (138)
with h; (t) =1 if information flows from agent j to agent i at timet; otherwise, hy (t)=0.

The corresponding time varying Laplacian matrix is defined as L(p(t)):[lij(p(t))}NxN
N
where I, (t)=—h; (t) ifi=j, I, (t)=> h (t)ifi=].

k=1

Let the connectivity of the i" agent be fixed during the time period, which is

k

K15 | where t and t; begin with k" starting

Si !

known as a dwell time in the literature, [t

and final time of the i™ agent’s communication network topology, respectively. Assume
that 0 <inf, {t} —t§} <sup, {t§ —t&} <+ [10].
2.3 QUADRATOR UAV DYNAMICS

Consider a quadrotor UAV with six degree of freedom in the inertial coordinate

frame, E® , as [p,T @f]e E* where o] =[xy, z] €E* are the Cartesian positions

of i" UAV and ©7 =[¢ 6 w,] eE*describes the orientation of thei"” UAV referred
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to as roll, pitch, and yaw angles, respectively. The translational and angular velocities of

i"" UAV are given in the body-fixed frame attached to the center of the UAV E". The

dynamics of the UAV in the body fixed frame are given by [13]

sl e

where U=[0 0 u, uiTz]T eR®, M, =diag{ml,,J,} eR*® , m, is the total mass of

yi

the " UAV,J eR* v, :[vXi v, v,| eR®, andw :[WXi W, W, ]T eR®,
N, (e)eR>,i=12 represents the positive definite inertia matrix, the translational
velocities, the angular velocity and the nonlinear aerodynamic effects, respectively, u,
provides the thrust along the z direction while u,, € R® provides the rotational torques,
Ty =t Zin |€R®, 7y, €R®,7), eRorepresents the unknown, but  bounded
disturbances such that ||z, | <z, for all time t , withz,, being and unknown positive
constant, I eR™ isan nxn identity matrix, and 0, , e R™ isan mx| matrix of all
Zeros. Further, G (R)eR’ is the gravity vector,
S (w)=diag{-msS;(w),S, (Jw)} e R*with S (¢) e R*® representing the general form
of a skew symmetric matrix as defined in [13].

The matrix, R e R*®is the translational rotation matrix, which is used to rotate a

vector in the body fixed frame to the inertial coordinate frame given as a solution similar

to [13] as
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CoC, $,5C, —C,S, C,S,C, +S,8,

R(®;)=R =[C,S, §,5,C,+C,S, C,;8,C,—S,S, |

-s, $,Cy C,Cy
where the abbreviations s, andc,,, have been used for sin(e) and cos(e), respectively. It
is important to note that |R . =R, for a known constant, R, ,R™*=R", R =RS, (W)

,and R’ =-S. (w;)R'. It is also necessary to define a rotational transformation matrix

from the fixed body to the inertial coordinate frame as in [13]

1 ost, ct, 1 0 -5
Ti(®i):Ti =0 ¢, s, | T'=|0 c, s¢/cg where abbreviation t(.) has
0 s,/c, c,/c, 0 -s, c,/c,

been used for tan(e). The transformation matrix T, is bounded as long as
—(7/2)<¢ <(7/2), —(7/2)<6 <(x/2), and—w<w;<z. These regions will be
referred to as the stable operation regions of the UAV, and under these mild conditions, it

is observed that|[T;[|_ <7,

Using the notations defined above, the kinematics of the i" UAV can be written

as
£ =Ry,
&, =Tw,. (140)

Next, the modified consensus-base formation control approach considered in this

work is introduced.
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24 MODIFIED CONSENSUS-BASED FORMATION CONTROL

In this paper, a novel consensus-based NN output feedback formation controller
is developed for a group of N UAVSs. The leader UAV and N follower UAVs are assumed
to have the dynamics in the form of (139). In the modified-consensus based approach, the
leader tracks its own trajectory without considering the formation [20]. The remaining
UAVs in the formation, the followers, implement consensus-based controllers which allow
all UAVs within the formation to track the same trajectory as the formation leader even
though the leader’s desired trajectory is not explicitly known by the formation.

To achieve this objective, a time-invariant reference point is assigned to each
follower UAV as well as the leader UAV in three dimensional space as illustrated in Figure
2.1. The consensus based formation controllers of follower UAVs provide consensus on

the distance of each UAV from its reference point, while each UAV also tracks an
independent desired yaw angle, . In other words, the shape of the formation is provided
by choosing the reference points accordingly. In order to get the desired formation,
consensus on regulation errors on the x,y and z directions is provided through the
controllers. In [20], a modified-consensus based approach is utilized for linear systems with

known system dynamics through state feedback controller. However, our approach deals

with uncertain nonlinear quadrotor dynamics and doesn’t require all states of the neighbor

UAVs.
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Figure 2.1 Consensus based flight formation of a group of quadrotor UAVSs.
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3. SINGLE UAV CONTROL

In this work, a modified consensus-based formation controller is considered where
designated formation leader tracks its own trajectory without considering the formation
[20]. Therefore, this section presents a trajectory tracking controller for the single
quadrotor UAV, or agent, which will serve as the formation leader. First the NN-based
observer design is presented followed by the NN-based output feedback backstepping
controller similar to [1].

3.1 FORMATION LEADER NN OBSERVER DESIGN

To estimate the translational and angular velocities of UAVs, an NN based observer

is designed in [13] without explicit knowledge of the UAV dynamics in (139). To begin,
; T T vi T T .
define the augmented vectors asX =|p' ©' ] andV=[v' w'| which have

dynamics defined in (140) and (139), respectively. They can also be rewritten as [13]
X=A(t)V +¢

V="F(%)+G+MU+7, (141)
with £, being bounded sensor measurement noise such that [ <<, for a known
constant ¢y, (%) =M SV H[N,(v) Nw)]') with x=V

G= M™G(R)eR® 7, [le deZJT :[Tgl/m J_lTL]T eR°® and

A(t)=A= {OR 03*3] (142)
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Next, define a change of variable as Z =V whose time derivative is given as (141)
[13]. Then, define the NN observer estimation of X andZ as X , Z , respectively, as well

as the observer estimation errors X = X — X . The observer is now proposed as [13]

X =AZ + K, X

Z=f +6+K,AX+MU (143)
where K, and K_, are positive design constants. The observer velocity estimation is
written as [13]

V=[V" W] =2+K,A'X (144)
with K ; being a positive design constant. The uncertain nonlinear function in (143) is
estimated through a two layer NN as f,, =W, o'(V, %,) =W, &, where W, is the estimate

of W' , and X, is the NN input written in terms of the observer velocity estimates as

A

A A ~ T ~ —
% :[1 XT V7 XT} . Define the estimation error of the velocity vector as V =V -V ,

then the following lemma holds.
Lemma 1 [13]: Let the NN observer be defined by (143) and (144), and let the NN

observer weights be tuned by

W, =F.6, X" —x FW (145)
where F, =F >0 and «,, >0 are design parameters. Then, there exists positive constant
design parameters K, K ,and K ,where K, > K, +(2N,)/x,, , Ko3 >(2N,)/x,, . and

Ko, = Kgs (Ko — Koz ) with Ny the number of neurons in the hidden layer NN, such that
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observer estimation errors X ,V and the NN observer weight estimation errors
W, =W, —W, are SGUUB.
Proof: See [13].

Next, the controller of the leader UAV is given.

3.2 LEADER UAV CONTROLLER DESIGN
In this section, the desired linear and angular velocities are defined by considering
the velocity tracking error. Since the velocity tracking errors on x and y directions are
not directly actuated [13], desired pitch and roll angles are designed to bring the UAV to
the desired x and y location. The velocity tracking error on z axis is controlled through
u, while the angular velocity tracking errors are controlled throughu,. To begin, consider
the position error
g, =p —pek’ (146)
with p", p" being the given reference position and velocity state vectors to track in three
dimensional space. Differentiating (146) and using (140) yields
e, =p" —-Rv. (147)
The desired translational velocity is selected to stabilize the position error dynamics

(147) as

v =[vf(’ vi oy ]T =R"(p'+KE,) (148)
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where K/ :diag{k k .,k }e]R?’X3 is a diagonal positive definite matrix. Substituting

px? pyt pz
. S . . _ q U
(148) into (147) and considering the velocity tracking error & =V’ -v=[e, ¢, e, ]
yields the closed loop translational tracking error
e,=-Kg +Rg . (149)
Then, the translational velocity tracking error dynamics are obtained as

&, =V, —V=—%Nl(v)—8(w)ec —%G(R) —%ulEz +R'(p'+K,p—K Rv)-7, (150)

withE, = [O 0 1]T . Realize that velocity tracking errors in (150) along X and y directions

are not directly controllable throughu,. Therefore, x and y components of the velocity

tracking errors are controlled through desired pitch and roll angles defined as

9 —atan Cu/di + Sl//d y + kvlévx
d Z _ g ’
4, = atan C,aY +5,4X+K,E, (151)
d = — — —
9Cp4 —CpaZ —SpaCpa Y —SpaCpaX

with X = X.d +kpXXd Vgt fc11 172 Ya +kpyyd Vgt fclz = "07- +pl<l = ¥t

A

A A A T
Xy, Yq,Zy are the desired locations, f, =|:fllc fioc fmJ is the NN estimation of the

unknown part of the translational velocity tracking error dynamics (150). Recall that the
actual velocities are assumed to be unavailable in this work; therefore, the velocity tracking
6, ] =v* V.

errors are written using observer estimated velocities defined as [évx €y

Moving on, the thrust control input and the rotational control inputs are given as

Uy = MK, +M(CyS0C,q +S44S,a ) X +M(ChaSpaCha —SyaSya ) T +MCiiCog (T—9),  (152)
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(153)
respectively, where fzc is the NN estimation of the unknown part of angular velocity

tracking error dynamics, K is a constant design matrix, and €_ is the estimated velocity

tracking error. The details of the single UAV controller design (151),(152),(153) can be
seen in [1].
Next, an NN consensus-based output feedback formation controller design of

quadrotor UAV formation is provided.
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4. CONSENSUS-BASED FORMATION CONTROL

In this section, a novel consensus-based NN output feedback formation controller
is developed for the follower UAVs. The proposed consensus based approach has two
fundamental benefits over traditional leader-follower based controllers [1]. First, output
feedback formation control enables to keep desired formation with limited communication
or using only local sensors without communication among the UAVSs. Second, relative
leaders for each UAV needs to be assigned in [1], and the follower UAVs will lose
formation when the communication with its local leader. In this work, relative or local
leaders are not required. Instead, each UAV utilizes its neighbors’ states for the formation
controller, and the neighbors can be updated over time as UAVs join and leave the
formation.

To being the controller development, the desired translational velocities are
developed as a virtual kinematic controller. Then, the dynamic controller is developed to
stabilize the velocity tracking error dynamics. Desired pitch and roll angles are obtained to

make sure the translational velocities on x and y directions achieve the desired velocities.
Each UAV tracks an independent desired yaw angle, i ; therefore, once the desired pitch

roll and yaw angles are on hand, the desired angular velocity is developed to keep desired
angles. Both the angular and translational velocities are assumed unmeasurable and NN-

based observers are utilized to recover the unknown states.
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4.1 EXTENDED OBSERVER DESIGN

Assume that each UAV is communicating with &£ number of other UAVs in its
neighborhood set , N, . Unlike traditional observers designed to estimate only local states,

such as velocities [13], the extended observer presented in this section estimates the "
UAV’s velocities as well as its neighbor UAVs’ velocities.
The extended observer design considers the communication topology among the

UAVs explicitly through the adjacency matrix commonly used in graph theory. Therefore,

consider the i row of the adjacency matrix (138) of the i UAV and define itas H,(t).
By using H, (t), a novel matrix is defined for size reduction and row shifting of matrices
as Q (t):{qkj (t)} eR*" where q,(t)=1 ifand only if there is information flows from
the | UAV to the i" UAV and the | UAV is the k™ non-zero element in H, (t) at

time t; otherwise, q,; =0 .

Combine all the states of UAV’s in the network (neighboring set) and define the

augmented vectors as
X=[X] .. XL] eR™V=[V .. V] eR™.
Define the augmented states for each UAV as

X;i :|:XiT ((Q. ® I6><6)X)T:|T

7, =V (@®1.)7) | (154)
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The dynamics of the new augmented states (154) are given as

chi - Acfi (t)\7§i +é/1§i

V, = foéi(xo‘fi)+ééi +MZU, +7,, (155)

where &, € R"™ represents bounded sensor measurement noises of each UAV such

that [[¢.a] < G Niv U =[U UL,

1] R with U, ={UT}eR%, jeN, , and
Tani € R™P? are being the controller inputs and the bounded disturbances of the neighbor
UAVSs’. The terms A, =diag {A A“} e RO -6+ Gfi =diag {Gi C_Eni} e RO+

M, =diag{M, M, }eR* it

Aﬁ :(QI ® Iﬁxﬁ)dlag {AJ}(QI ® IGXG)T eRlz‘file'fi ’ J € N
Gy =(Q ®ly)diag{G,}(Q ® 1) eR*™¥4, jeN

M, =(Q ®l,)diag {M }(Q ®1,,) R jeN are square diagonal matrices,
and

fo.fi (Xogi ) = I: fo-ir (Xoi ) fo-;i (Xoni ):'T € Rﬁ(é +l) Where fo-lr-ﬂ (Xoni ) :{ fo-li- (Xoi )} € Reé ,VJ € Ni
are the uncertain nonlinear dynamics vector of all neighbor UAV with x . e R*"being

the vector which contains all the linear and angular velocities of the neighbor UAVS.

Further, there exists a positive constant upper bound such that | A} <Ay .

Define a change of variables asZ :\7§i, and denote the NN observer estimation

of X, and \75 as )Zéi and ng respectively, with observer estimation errors written as
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Xa=Xg- X 4 and V, =V, —\75, respectively. Then, our proposed observer takes the
form of
xgi = Agizgi + Ko1x§i
A A — a9 _
Zgi = o +G§i + K02A§i X:fi + Mgi]U.fi . (156)

The reduction matrix is fixed during the dwell time, the time between two
communication graphs switching, of i" UAV as assumed before. Observe that Ag?il, M;il

are needed in (156), and each can be calculated by using the matrices

R, T, R;;T;;M; VjeN; since they are invertible individually and the zero terms are
removed using the transformation matrix, Q,. Additionally, the inverse is upper bounded
| A < A with A, being a positive constant, [13]. Then, the velocity estimation of i"
UAYV and its neighbor UAVs are proposed as

~ R R A n T A 1T
Va :[V'T WU Wiy ] =25+ KuAd X (157)

i Ni
with 9, e R*,W,, e R*® being the linear and angular velocity estimates of neighbor

UAVS, respectively.

Noting Z,, =V, —K,,A;'X,; from (157) and the definition of 2§i above, adding

03" ¢i

and subtracting (A; - KoSA;) X 5 to the error dynamics of the observer estimation error

gives

Xfi = A§i & _(Kol - Koa) )Zgi +§1§i

Z=(fon (AL~ KgAK )~ o ~Kop AR — (AL~ KoAZt) Ky + T (158)
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The uncertain function f,,; in (156) is written f,,., =W.l,o'(V.L X, )+, with the
constant ideal bounded weights subject to|W,; | <W,,, for a known constant W, . The

term &, represents the bounded NN approximation error such that ||g

oi|

| < &, foraconstant
Eni- The NN estimate is given as foas =Woio (VoaRos ) =Wz, with
W, =diag {V\A/Oi V\70ni} where W, =(Q ® IM)dlag{ }(Q ®ls6) ,jeN andthe NN
weight estimation error is written as V\70§i =W, —V\70§,i with W,; being the ideal NN
weights and R, =[1, XI VT X XT \717,)2}] ,Vj e N, is the NN input vector.

Moving on and adding and subtracting W,,c (V.

%%,) » and using (158), the

observer estimation error dynamics becomes
2 KOS(KOI_ Kos)) )Z.»;i _A;i)zgi +§2§i (159)

where f W'

= -1
o§|O-§| ’W W ofl ' 4/2.5 ‘90 +Td§i - K03A§i é/lél +Wo§|0- € R and

64=04—G, . Realize that || < &,with {5 being a positive computable design
constant defined as &, = &yoi + My T + KosAuSani + OM,«/ where M, _HM H .

The known constant N, is the number of neurons in the hidden layer NN of i" UAV which

oi

allows the upper bound of the activation function vector to be written as |o || < /Ny -

Next, the theorem statement is given to provide stability of the extended observer
design.
Theorem 1: Let the NN-based observer be defined by (156) and (157) for the UAVs

and let the NN weights be tuned according to
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W - Fo§|O-0§| XT KolFo§|W0§| ' (160)

Then, there exists computable positive design parameters KK, and K where
Ko > Koa +(2Ng )/ Koy >(2Ng )/ and K, =K ;3 (K, —K,,) such that the

observer estimation errors, )Zf and V.., and the NN observer weight estimation errors,

i

W,.., are all SGUUB.

Proof: Consider the following Lyapunov function

L, = ;(x X +VV +tr (WL F M )

T

[)ZJ ((Qi®|exﬁ)>Z)T}[>ZiT ((Qi®l6x6))Z)T}
+[\7j ((c;gicalsxe)\iﬂ[jT ((Qi®|M)\7)T}T (161)
+tr (W, P oW, |

o&i" o&i® Togi

N

with F, :diag{Foi (Q®1,,)diag{F, }(Q ® |M)T}, j € N . The derivative of (161) is
given as

[, = XX, +VIV, +tr{w FAW, } H(Q®1,0)X) ((Q ®|M)>Z)

oi ° oi

H(Q®165)V) ((Q ®14)V ) +1r{Qdiag (| QF.Qaiag (W, }QT} (62
with Qi :(Qi ®I6Xﬁ), jeN . Using the property of the Kronecker product and the

reduction matrix Q, in (162) yields

[, = X7 X, +VIV, +tr{wo,|:o,1vv} Z( ) Z( Tv)+z( ) (163)

jeN; jeN; jeN;
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Combine the similar terms in (163) to get

. ~ ~ 5T ~ ~TL ~T ~
Lo = RIX VIV 4 (W FM, | + ;(xjxjwjvj AW ). (164)
1eN;

oi oi

Using the error dynamics (158),(159), and the NN weight update law (160) in

(164), we have

i +>Z'T§1i _\7iT Ko3\7i +\ZT§2i {WT (G X! =6,V —x W)}

oi “Ni oi i ol” "oi

+ (=XT (Ko = Kos) X} + X[ 4 VKV, 4V, ) (165)

Now, after completing the squares with respect to H)Z,M\ZH

M X

and utilizing the similar inequalities used in [1] yields

Loi S_((K‘ol(Kol_KOS)_ZNO)/ZKM) ~i”z _((K01K03_2N0)/2K01)

—(K‘01/4) M/Oi 2F+770i - Z(((Kol(Kol_Koa)_ZNO)/ZKol) NJ' 2)
(e s s )
with 77, = K, W + &2 1 (2(Koy = Kog )+ 2 /(2K ).

Next, rewrite the inequality (166) in terms of augmented error sates as

I
[

Ly < =((00 (Ko = Kgs )= 2N )/ 25, )| X

(( /21c

H (k. !4)

+770§| (167)
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where 7, =7,+ . (n,) -Finally, we can claim that (167) is negative provided

jeN;

Ko > Ko +(2N,)/ &

ol !

Ko; >(2N,)/ x,; and the following inequalities hold:

H)Zgiu>\/770§i/((K01(K01_Kos)_ZNo)/ZKol) or

Ngi >\/770§i/((K01K03 _2N0)/2Kol) or ”Wogi >x[47705i [ -

The initial compact set can be made arbitrarily large by selecting proper gains; therefore,

the system is SGUUB [1].
Next, the consensus-based output feedback formation controller is derived in the
presence of estimated velocities and uncertain dynamics.

4.2 CONSENSUS CONTROLLER DESIGN

The objective of the consensus-based control law is to maintain a specified
formation shape, and the shape of the formation is provided by choosing the reference

points accordingly. Therefore, consider a time-invariant reference point in three

dimensional space for the i UAV as
p=[x v 2, (168)

and define the position error as e, :[eXi e, €, ]T =p —p €E*. Then, define the

yi

consensus errorson x,y and z directions as

04 = Z(exi —exj) 'Oy = Z(eyi _eyi) Oy = Z(ezi —ezj) ’

jeN; jeN; jeN;

and the vector form of the consensus error for i UAV is

2 :[5Xi é‘yi 0, ]T - Z (epi _epi) ' (169)

jeN;
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Taking derivative of (169) and using (140) yields

5 =—ERVi+ D Ry, . (170)

jeN;
Choose the desired translational velocity as

T R’
vi=[vgovgove | :?[K5d+2ijj]eEb. (171)

i jeN;
Using the desired translational velocity (171) in (170) as a virtual control input
and considering the consensus velocity tracking error e, =v’ —v, yields the closed loop

consensus error dynamics as

é.‘i :_SgiRi (Vid _eci)+ Z ijj

jeN;

:—éRi LR?IT[K&&I + Z ijjj_ecij—i_ Z ijj

i jeN; jeN;

=-K;6-D RV, +&Re; + D Ry,

jeN, jeN;
=—K,0,+&Re, - (172)
Then, the dynamics of the consensus velocity tracking error can be given as
&, =V -V,
;

=S, (W, )V +§—‘[K5[—§Rivi +y ijjj— > (S5 (w;)v; —Ry, )J

i jeN; jeN;

1 1 1
S (w)v,—N,(v.)——G, (R )——u,E —7 ... 173
+ |(VV|)V| m l(VI) m |( ) m ull z lel ( )

Using the definition of consensus velocity tacking error e, =v® —v. in (173) yields
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6 =S (W )e, +R—iT[Ks [—; Rvi+ 2. RJVJ]_ > (S (w)v; =Ry, )J

§i jeN; jeN;

N, (Vi)__Gi (R' )_iun E, —7uy - (174)

m. m. m.
In the velocity tracking error dynamics, the control input u,; only influences the z
direction error; therefore, the pitch and roll angles, 6°and ¢°, respectively, are used as

virtual control inputs to the x and y directions.

Now, define the desired angles vector © =[4' 6 ]T andR’ =R(©).

Then, add and subtract iGi (R?) into (174) to give
m.

<t _Hun E, — 7o (175)
' —; SJ<WJ-)VJ-—RJVJ)—RI—N1(VI) '
JeN; i
Rearranging the above relation to move —miGi(Ri)eriGi(Rid) into the

parenthesis and leave —iGi (Ri") out of the parenthesis in (175) yields
m.
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- ull Ez Tan + (176)
. [ 1 1 1
R (H. Nl(v,)+HiGi (RI)—EG, (R )]
Then, adding and subtracting
R;:T [_Ka‘é RV+K, Z RV, - Z (Sj (wj )\7j )]to (176) yields
i jeN; jeN;
1 R-dT
6 =-S5 (W)e; ——G;(R’) +— [—Kég‘iRi\7+ Ky D R, - Z(sj (W, )9, )j
m; gi jeN; jeN;
_Kaé Rivi + K5 Z RJ'Vi
jeN;
R' .
+— —Z(Sj(wj)vj)+Z(ijj)
§i jeN; jeN;
1 1
-R (H. Nl(vi)+a(Gi (R)-G (Rid ))}
RidT . R R 1
~ T K ERY +K, D R, —Z(sj(wj)vj) -—u,E, -7, . (177)
gi jeN; jeN; If‘ni

Now, combine the uncertain terms in (177) and define

_Kb‘gi Rivi + Ka‘ z RjVj

ieN;
_ RiT .
fer =? _Z S| (Wj)vi + Z R}V,
i JjeN; JjeN;

R [mi N, (v)+ (G (R)-G (R ))J

_Réi:_ﬂ[_Kéfi RV +K; X RV =3 (Sj ()9 )j

i jeN; jeN;
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then, rewrite (177) as

i i jeN;

6, =S, (W)e, ——G; (R?)+ R; (_KﬁéRNi B () + 2 (KGR, = (S, ()9, ))j

with, fiy (X ) =[fur  far  fass] €R® =R T, being an unknown function.

The neural network expression of the uncertain function is written as
foo=[fon far  fas] =Wanoi (VaiXey )+ 4 Where W,V are the bounded target
weights such that [W;,|| <Wy1 [Vl Vi With Wyi, Vi being constants, and &, is

the NN approximation error, which satisfies ||, | < &, for a constant &,

The NN estimate of the uncertain function f;, can then be written as
~ ~ ~ A T ~ A
foin :|:fcill faisz fci13:| =Wj0, (chlxcil) =Wi,Gy |
where W, is the NN estimate of W,,, and %, is the NN input given as
]

R =LV, O, XT, AT AT V] ©O7, K] | Ve,

Next, expand the consensus velocity tracking error dynamics (178) in terms of

its x, y, and z components as
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cix Sad
cy | _Su (Wi )eci — 01 CoySyq
ciz CHd C¢d
_k(sxcfivxiR + fcill + Z (kéxvij _ijs )
1 CoaCya CoaSyd —Sgg ) JeN;
+—18450Cya —CsaSpa SsSeaSya TCxCra  SsiCon || ~KsySiVyin T feina + Z (kayvyjrz Vs )
! CyaS0aCya T54aSya CpaSaaSya ~SpaCpa CpaCau R gl
_k§z ivziR + fci13 + ZN: (kazvsz _szs )
jeN;

(179)

u1i
while observing

.
A~ [w ~ n DY 3
ViR = [inR Viir VziR:I =RV, eR

. e s T WA -
v =[vXjS V. ijS] =Sj(Wj)VjeRs,‘v’l,jZLZ,...,N
Realize that the error states €, €, are not controllable through the thrust controller

u,;. Therefore, the pith and roll angles are utilized as the virtual controller to these two

I
error states. First, define the desired consensus velocity tracking error dynamics on X and
y direction as

1
k., 0] 1 00
e, =—| K;| + S, (w)[0 1]]e,. (180)

0 k,| [0 10 0 0

The form of (180) was chosen due to its stability properties. Equating the difference

between (180) and the first two rows of (179) to zero yields
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&l SpaSeaCpa —ChaSya SpaSeaS,a TCpaCha  SpaCou

zi

g { —Syq }+ i{ CoaCya CoaSya —Spd } A: + { K 5K\1€2xiCag } _ {O}
A Kb‘ kvze(:yi C¢d O
(181)

with

Axi = _kéxévxiR + fcill + Z (kﬁxvij _ijS )’ Ayi = _kb‘ygivyiR + fci12 + Z (kdyvij _Vij )’
jeN; jeN;

Ay = K5, GV, + fcilS + Z (kgzvsz _szs )_ 9 ,Cy = cos(@id )189d =sin (‘9id )’
jeN;

Cpo =COS(¢" )5,y =sin(4), c,q =cos(y’).s,, =sin(y') .
Note that the trigonometric functions of the desired pitch and roll angles, c,;,c,
are used in (181) instead of c,,c, because the equality only holds when the UAV reaches

the desired pitch and roll angles which is developed and utilized as virtual controller.

Then, by applying some basic math operations, (181) yields

Spalzi = Cyq (C«//d Ay + sn//dAyi + kvlevxi) (182)
and
C¢d (Cz//dAyi - Sq/dAxi + kvzevyi ) = S¢d (gcad - S¢d Cou )Azi — Sgq Sy/dAyi - SHdCz//d Axi : (183)

Define the estimated velocity tracking errors as

€ :[écxi éczi éczi]T :Vid _\7i :Vid _(Vi _Vi):eci +Vi,

where V; is the translational velocity observer estimation error. Then, the desired pitch and

roll angles are defined to satisfy (182) and (183). First, consider (182) as
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c A.+s A +k.e.
Sed _ Zvd i TPt T Ratvi a0 obtain
CE’d Azi
eid = atan [deAxi +Sy2Ayi + |(vlécxi j ) (184)
zi

Then consider (183) as

c A:+S A:+Kk €. . . . .
2 _ pd B Tyd d verol and use the inverse trigonometric function to get

C¢d OCyq _CHdAzi — Spq Cu/dAyi —Syq Cz//dAxi
¢d — atan CwdAyi +Sy/dAxi + I(vzecyi (185)
. .
0Cys —Cua Az —SpaC,alyi —SpaC,alxi

The desired roll (184) and pitch (185) angles serve as the virtual control inputs that
stabilize the under-actuated portion of the velocity error dynamics (174). Subsequently, the
desired angular velocities and rotational torques will be considered to ensure the desired
angles are tracked.

Remark 1: In this work, it is assumed that one of the UAVs in the group, named as
leader UAV or 1™ UAV, tracks a time varying desired trajectory and the rest of the group

reaches consensus on their regulation errors, e ;, with their neighbor UAVs.. Note that the
desired trajectory of the leader, p"in (146), is time invariant and differs from the time in-
variant reference point of the leader UAV, p defined as (168). Through the consensus-
based controller, the followers will eventually have the same regulation error as the leader
UAV,ie, e, —>e, Vi=12,...,N.

Remark 2: In this work, the main purpose of the controller is to make the formation
errors (169) go to zero. Making the formation errors (169) go to zero does not guarantee

that the desired formation is achieved all the time. Assumption 1 is needed for the UAV
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formation to be able to reach a consensus on theire,;’s.

Lemma 2: The formation error (169) can be obtained through communication

among the UAVs or by using local sensors built in each UAV.

Proof: The formation error o, =Z(epj —epi) is function of i" UAVs own
jeN;

regulation error e ; , which is available, and the regulation errors of it’s neighbors, € ; .
. d o . . . . ..
Recall that e ; = p; — p; and observe that it is function of the neighbors’ current positions
and the reference point. Therefore, the current position, p; can be obtained by using
relative distance plus the current position of the i" UAV, p.. Then, the formation errors

(169) are available under the mild assumption that the time invariant reference positions,

p . of all neighbors are available for the i"™ UAV a priori.

Remark 3: We propose two different scenarios to obtain the consensus-based

formation errors (169): a) Each UAV broadcasts its own error states, e ., and its neighbors

pi
use this information; and b) Each UAV obtains the current states, p; Vj € N;, and identity

its neighbors by using local sensors and determining e ; Vj e N;. The first Scenario is

applicable when the UAVs are farther to each other, and the second scenario is preferable

when the UAVs are closer and broadcasting the state information is insecure.

Since the desired yaw angle ' is specified initially for each UAV and desired
roll and pitch angles are determined, the desired orientation vector, ®° is now fully
defined. Therefore, the desired angular velocity w’ needs to be defined to make sure

@, - 0! ast — oo . First, define the attitude tracking error
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€, =0 -0, eE* (186)

and the dynamics of (186) as

€or = O] —TW, . (187)
The desired angular velocity is selected as

W =T, (6 +Kee, ) (188)

where K, =diag{Ke,,Ke, K3} is a diagonal positive-definite design matrix with each
ke >0,1=12,3. Define the angular velocity tracking error as

e. =W —w, (189)

wi I I

and by considering that w, =w/ —e,;, the closed loop orientation tracking error dynamics
IS given as

éwi = _Kei +Tiewi : (190)

i fcli !

Since the desired angular velocity (188) requires ®° which subsequently requires v

V! will also be required for the development of u,; which needs the information of v, f

ir 'cli
which is not a practical assumption [13]. Therefore, an NN-based virtual control input is

proposed as in [13]; hence,

~

®id :-ruéud + Kméid

Of = £ 1K, T 6 (191)
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with K, K, being positive constants, Q% =w —~T*K_e,,,0",Q" are the estimates of
0,0 respectively, @ =07 —@¢ . Then, the estimate of the desired angular velocity is
proposed as

W = O +T Ko + KoaT, 6] (192)
where K, is another design constant.

In (191), the uncertain function f, (X ) is estimated through an NN similar to

[13]. However, the NN input is different than [13] in our case since fm(in)is a function
of neighbor UAYV states as well as the ith UAV states. The NN expression is given as

ot (X ) =Weyo (Vey Xy ) + £ DY target weights WV, such that [We, | <W,q for a

constant W,,, and & is the NN approximation error wherein ||| < &, for a constant

A

Evai - The NN estimate of f, is given as fo, (Ry) =Wyo (ViyRey ) + £y Where Wy, is

the NN estimate of W, , X,

is the NN inputs written in terms of the virtual control input

estimates, and NN observer velocity estimates of the i UAV as well as the neighborhood

UAVSs. The NN input is selected as

T

o _|LOraTVION A A
YN e AN CH

Qi

Lemma 3 [13]: Let the NN virtual controller be defined by (191) and (192),

respectively, with the NN update law

VOQi = FgéidT _KQlFQWQi (193)
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where F,=F] >0,x,, >0 are design parameters. Then, there exists positive design
constants Ky, > Kos + Ny /K, =Kgy (K —Kg) » and Ko, > 2N, /5, where

N, is the number of hidden layer neurons, such that the virtual controller estimation errors

e’ and W°

and the virtual control NN weight estimation errors W,,, are SGUUB.

Proof: Define the Lyapunov function as

Lo = 076 + T tr (WIF W . (194)

Then, the upper bound is given for L, and is given in [13] as

R e o e e R (135

See [13] for proof details.
Next, the translational and rotational controllers,u;,u,, are developed,
respectively, to reach consensus.

43 CONTROLLER DESIGN

In the previous sections, the velocities were estimated through the extended
observers (157) and kinematic controllers were given by (171) and (188). The desired roll
and pitch were provide by (184) and (185), respectively, and a virtual control for

generating the target angular rates was given in (191). Now, the actual thrust and rotation
controllers, u;;, U, , can be produced.

The thrust controller is addressed first. Consider the velocity tracking error

dynamics (179). The dynamic controller is calculated to stabilize the last row of (179) as

U; =m kv3ieczi + M (C¢d SoaCyd T SpaSyd )Axi +m; (C¢d SeaSyd —SpaCya )Ayi + miC¢dC6dAzi . (196)
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Using the virtual controllers (184) and (185), the thrust controller in (196), and
adding and subtracting R""W_.&.. yields the closed loop translational consensus velocity

tracking error dynamics (179)
éci = _Si (Wi )eci - Kvéci + RidTVVcTn &chi +Cui

= _(Si (Wi ) + Kv )eci B vai + RidTWchié_chi + i (197)

: dT\AT ~T aTt Y \J ~ A
with ¢, =RF W6, + R 6y — 74y Wy =W, -W,,; and 6, =0y, —0; - Further

cli
iMax

|R?[l, = Rivex for a known constant Ry, , and [ | < Gy for a computable constant

Guer = RivacEntest + 2RiaWoresio[Nog + M7 Where My, is defined in previous sections,
with N, being the number of hidden layer neurons.

The rotational torques controller, u,,, is addressed next. Take the first derivative
of (189) , multiply with J,, substitute the UAV dynamics (139), and add and subtract
T. e, to get
Jié; = I — I

:(Jiwid -5 (‘]iWi)Wi —Ny (Vvi)"'TiTe@i)_UZi ~ Ty Ty €

[IC}

= fc2i (Xczi )_uzi — T4 _TiTeG)i (198)

where ., (X

)= foo = W =S, (Jw, )W, — N,; (W) +T,"e,; € R® is an uncertain function
and approximated through a NN as f_, (X ) =Wi,o (VX )+ £, by target weights

W3,V such that |W,, |- <W,,.,; for a known constant W,,.,; and &, is the function

approximation error such that ||, < &,., for a known constant &, . The estimated
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function is given with the estimated NN weights as f,,; (X, ) =W 0 (Vi %y ) =Wihi 6.y

A

where W,,; is the NN estimate of W,,, and

. . T
Ry =[1, wiT,Qi‘”,@?T,egi,W},Q‘;T,G)‘;T,e;J Vj e N, is the NN input in terms of observer

states of i" UAV and the neighbor UAVs and virtual controller estimates. Since the actual
and the desired angular velocities are not measurable and estimated, the estimated velocity

tracking error is given as

A~

6, =W —W =e, —W' +W . (199)
The rotation torque control input can be given as

u, = f +K.E, - (200)
The closed loop angular velocity tracking error dynamics (198)comes along with

the controller (200) and adding and subtracting W_,, 6.,

36 =W5i6.5 — Kot + KW — KW =T, e + 6. (201)

where W, =W, ~W., 6.0 =&y *WhiGopi —Tup @Nd Gy =0y — 6.y, . Further,

6621 < e FOT @ computable constant gy, = oo + 2Wieai [ Noar + 7o Where N, is the

number of hidden layer neurons.
Combine both translational and rotational velocity tracking errors as

ey =|e) ey ]T whose closed loop dynamics are (197) and (201), respectively. Then, the

overall velocity tracking error dynamics are given as

‘TiéSi = Agu f~ci _(Ks + SSi (Wi ))eSi _KSi\7i _-riTé@ + KSiV:Vid +G (202)
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where J, =[l,, 0,,; 0,, J;]eR>® isaconstant,

O3X3 ) 03X3 KW] >0e RGXG ’ SSi (\NI ) = I:SI (\NI ) 03><3 ; O3><3 03><3:| c RGXB ’

egissi (Vvi)eSi =0 ’-ri:[03><6 » Oy Ti]’§®i =|:01><3 ecT)i:IT ’ V:Vid :[les V~VidT:|T ’

Sa=|6h G ]T eR®, and |¢|| < gy for a positive computable constant

S :\lgnleci +§|\2/|ci :

Next, Theorem 2 is provided to show the stability.

Theorem 2: Given the dynamics of i quadrotor UAV (139) in a group of UAVs,
let the NN observer be defined by (156) and (157) with the NN update law for the observer
provided by (160). Given a time-invariant reference points for each UAV in the network,
let the desired consensus velocity for the UAV to track be defined by (171) with the desired
pitch and roll angles defined by (184) and (185), respectively. Let the NN virtual controller
be given by (191) and (192) with the NN update law given by (193). Let the dynamic NN
controller for thrust and rotational torques be defined by (196) and (200), respectively, with

the NN update law

W, =F.6,

cci

(Aubs ) — K FW, (203)
where F, =F >0 and x,, >0 are constant design parameters. Then, there exists positive
design constants K, K_,, K, Ky, K, and K, , and positive definite design matrices
K., K, K, and Kg such that the UAVs reach consensus on their regulation errors on
x, yandz directions. That is, the observer estimation error X ; and V., , the NN observer

weight estimation errors W,,, the virtual control estimation errors ®°,W’, the virtual
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control NN weight estimation errors W,,, , the consensus and orientation errors, and velocity
tracking errors 0,6, and €, respectively, and the dynamic controller NN weight

estimation errors W, are all SGUUB.

Proof: Define the combined formation Lyapunov function

Luav = Z Luavi (204)
with
Luavi = KSZM L + KSZM i+ Ly (205)

where L, L, are given in (161) and (194), respectively, K, is the maximum singular

value of Ky , and

L =%(5|T5| +el)ie®i +e;eﬁ +1r {WTFiwci})'

Now, observe the Lyapunov derivative L, =3 5 +e( €, +ewé +tr {VVJ Fcfl\/\;lci}
and substitute the closed loop error dynamics (172), (190), and (202) to get

Lci = _5iT Kpé} + é‘iT Rieci - e(;i K®e®i - egi KSeSi - e;i Ks\7i

+e-Sri KSV:Vid + egigci +1r {V\?CT (Fciwci + oA_ci ('A\jesi )T )} (206)

after  some  simplifications.  Define e, :[éT € ]T ., II; =diag{R;,0,,},
Ky =diag{K,, K, } and substitute the NN weight update law (203) in (206) to get
Lci = _eLi Ky _e;i Kses +e1I;iHieSi _egi Ks\Z

+egi KSV:Vid + egigci +1r {WJ (F(;]V\;/ci +0 (Aiesi )T )} .
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Observe that tr {VVJ (W, —W,, )} <|W V, ZFHVZ\/,"H:HV”\/,“ | and constants

IT,, W, exist such that |IT,|<IT,, and |W,|<W,;. Then, complete the squares with

respect to [e,|. ’Wci _and [le]| to get an upper bound for L as

ol o4 el

2

. K 1 I
e L )

+% K2, +3( \j_) H H +174 (207)

where Kq,,K,, are the minimum singular values of Ky and K, respectively, K, is

Sm?

the maximum singular value of K, . 7, =, Wi, /2+c4, /(2K ), and |A ] < A, for

a known constant A, .

Now, the derivative of the Lyapunov function (205) which deals with the observer

estimation errors as well will be given . Define the velocity estimation errors of neighbor

by excluding its own velocity estimation error, \7I from\/;i

Vo[ +[Vi] - The

upper bounds (167), (195), (207) for all Lyapunov functions is combined as

UAVSs’ of the i" UAV as V,,

. Realize that the triangular inequality can be utilized to show that |V, || <

LUAVi S_KSZM ((Kol(Kol_ Ko ) /ZK )

2
K2 2N, (Am Nci) .
_% o™ Ko - KK ’Vi

2




2

2 K
_SMK.O

4

,2: _KSZM [Km o Kgs _%]Hé:j H2
(031

K2 2N_ i~ -
_%[ 03 K_Olojrvn;fi 1 Moéi
K;\"[Kgg—ZNg' G J_) JH”’H

Koy

2
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2
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With 7, = K3y (70 +770 )+ 774 - Then, L, <O by choosing the controller gain such

that
(AN )
K01>K03+2Noi/Kol’K03>2Noi/Kol+1+3 . 2Ci
cl” “*SM
2
JN .
Ky, > Ko +Na k5 2Ng —1—3<A1M 2°') ,
Q1 Koy Ko1K
HZ
K, >—%+2and if one of the  following inequalities
Km
5 Tuavi i 21 pvi
Xal> or [leg]|>
H §H \/KSZM ((Kol(Kol_K03)_2N0)/2Kol) ) \/(KS _Hill _2]
) KKm

Ko

el > 2 o ] \/’ - - ) or or W, > [ e o

holds:
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”\ZH S Tuavi —or Nn.fi S I _ TTuavi or
K 2N,
K03_2N0i _1_3(AjMJ?) \/;M(Kos_ K, J
Ko Ko Ksu

\ Ko 2

led H N TTuavi — or
KSM K _ZNQi _1_3(AjMJN_m)
\ 2 o Koy KclKSZM

- 611 . - 4n ...
i, > [P or | > [

Since the stability region can be made arbitrarily large, all the error signals are SGUUB
[13]. By showing the individual Lyapunovs (205) are negative in the given bounds, one

can easily conclude that the combined Lyapunov (204)is also negative.
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5. SIMULATION RESULTS

To illustrate the effectiveness of the proposed controller, a group of four followers
and a leader UAV are utilized in the simulation section. The Leader UAV is controlled to
track a desired trajectory while the followers do not have knowledge about the desired
trajectory and are controlled through consensus based formation controllers.

Initial positions, orientations, reference positions, linear and angular velocities are

selected as

[XL(0) x1(0) x2(0) x3(0) x4(0)]=[0 -12 35 -13 51
[YL(0) ¥1(0) y2(0) ¥3(0) y4(0)]=[0 14 -3 -12 51]
[2L(0) 21(0) 22(0) 23(0) z4(0)] =[0 0 0 0 0],
pl=[01 01 01].p'=[0.1 04 01] oy =[-02 -02 0]
p5=[05 -02 0.1],p =[0.1 -05 0.1].

The initial pitch, roll and yaw angles as well as the linear and angular velocities are

selected as zero for all four followers and the leader.

The dynamics parameters of all the UAVs are selected as m=0.9kg,
J=diag{0.32,0.42,0.63} e R*®, g =9.81. The desired trajectory for the leader is selected
as  x'=Acost* f,)1-e ")), y' = Asint* f,)1-e ")), z' = A (1-e*)) where
A =5A =5A =10,q,=.25,q, =.05, f, =0.01z. The controller gains are selected as
K, =diag{0.01,0.01,0.03}, K=K ,=diag{22,60,25}, K =30,K,, =80,K,,=25,

ks =15,k;, =15,k;, =30, K, =diag{20,20,35},K,, =diag{35,35,40}, and the gain
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selections satisfy the controller gain constraints in the theorem statements. The NN

parameters are selected as F,=0.1x,=0,x,=001, F =0.1x,=0x,=0.01,
F,=0.1x, =0,x,,=0.01 . All the time varying NN weights are selected as zero initially
and the hidden layer neurons are initiated randomly in the interval [-0.5,0.5] .

In Figure 5.2, the trajectories of all four UAVs and the leader UAV is plotted. The
simulation took 90 seconds in total. During the first seven seconds, the Leader UAV, the
first and Second UAV moved only as it is shown on the communication topology graph,
left part of Figure 5.1. After the 7" second, the third and the fourth UAV joined the group
as it is shown in the right side of Figure 5.1. The first and the second UAVs communicate
directly with the leader UAV; however, the third UAV receives the second UAV’s
information and the fourth UAV receives the first UAV’s information. That is, the third

and fourth UAVs do not directly communicate with the leader.

UAV 1 UAV1 === UAV4
Leader Leader
\ \
- \
UAV 2 UAV 2 e UAV 3

Figure 5.1 Communication topologies before and after the 7" second.
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As it is shown in Figure 5.3 the first two UAVSs quickly reach consensus with the
leader UAV. Note that the formation errors of the third and fourth UAVs are initially large
since they do not start moving until the 7" second of the simulation when they join the
communication topology. As time progresses, each UAV achieves its required position

within the formation with bounded error.

UAV Formation Trajectories

The Third UAV—
T
20 The Fourth UAV —
10fK
’é - i 7-—I—m4_.-‘._\_-._
Ng_ |
The FirstUAV-—
o TheLeaderUav — = =~ -

- TheSecondUAV—

5 20 15 19 s
Y (m) 0

Figure 5.2 UAV trajectories.
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Figure 5.3 Formation tracking errors on all three axes.

Figure 5.4 depicts the linear velocity observer estimation errors of all four follower
UAVson x,y, and z directions. After an initial transient response, it is observed that the
observer errors converge to the true values within a small bound as predicted by the theory.
NN weight estimates are presented in Figure 5.5. As predicted by the theory, the steady

state NN weights converge to bounded values.
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20 First UAV 10 Second UAV
0
§, 10 5
g La
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8
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Figure 5.4 Estimated linear velocity tracking errors of all four follower UAVs.
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Figure 5.5 NN weight estimates of four UAVSs.
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6. CONCLUSION AND FUTURE WORK

A novel output feedback consensus based formation controller was developed for
a group of underactuated quadrotor UAVSs. The follower UAVs kept the desired formation
by using their time varying neighbor’s positions, orientations, and estimated velocities
while the leader tracked a pre-defined trajectory. An NN-based adaptation was utilized to
estimate velocities through positions and orientations as well as to learn the uncertain UAV
dynamics, and a novel ‘size reduction matrix’ scheme was introduced which allowed for
UAVs to join or leave the formation. Simulation results verified that the performance of
the proposed output feedback controller was consistent with the theoretical conjectures
developed within this paper.

Considering obstacle avoidance while keeping formation can be considered as a
desirable future work. Optimal adaptive consensus-based formation control of quadrotor

UAYV formation can also be considered.
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SECTION

2. CONCLUSIONS AND FUTURE WORK

In this dissertation, consensus-based formation controller implementation for a
network of mobile robots and UAVs is presented. A finite horizon optimal consensus-based
formation controller, a novel hybrid regulation-formation controller was developed by
using a novel blended velocity tracking error approach and an event-based formation
controller implementation for a network of mobile robots. Additionally, a novel output
feedback consensus-based formation controller was developed for a group of under-
actuated quadrotor UAVs. The analytical results were verified using the simulation
examples and the efficiency of the controllers’ execution was demonstrated.

2.1 CONCLUSIONS

In this dissertation, first, a finite horizon optimal consensus-based formation
controller was designed for mobile robot formation in the presence of uncertain robot
dynamics. The consensus-based control was derived for a formation of mobile robots by
taking into account their dynamics. Subsequently, the cost function derived as a function
of regulation and formation errors was able to generate optimal inputs to each robot such
that the entire formation can travel in consensus from an initial position to the goal position.
An NN identifier generated the formation dynamics while the time-varying value function
approximated the solution to the HJB equation. Simulation results confirmed the

theoretical conclusions.



212

The results of the second paper provided controllers to the user to regulate a single
robot to a desired posture and for a group of nonholonomic robots to reach consensus on
their regulation errors to achieve a desired posture in a desired shape. This was
accomplished through the development of two novel continuous time regulation and
formation controllers for nonholonomic mobile robots. Then, a novel hybrid regulation-
formation controller was developed by using a novel blended velocity tracking error
approach. Time-varying Lyapunov functions were used to prove the stability of the hybrid
approach, and simulation results verified the performance improvements of the proposed
approach, which represents an improvement over traditional hard switched hybrid control
architectures. The blended velocity tracking error approach reduced the size of the
discontinuity at the switching conditions, which led to smaller peak velocity tracking errors
and smaller peak required torques at the switching conditions. The blended hybrid
controller is beneficial when multiple tasks need to be accomplished at the same time.

The third paper presents an event-based formation controller implementation for a
network of mobile robots. The NN-based event-sampled torque control of mobile robots
was able to bring the robots to consensus by stabilizing the formation as well as velocity
tracking errors due to event sampled measurement errors, NN reconstruction errors and
bounded disturbance. The event-sampling mechanism was able to generate additional
events so that the formation error remains bounded and due to asynchronous mode,
communication overhead is minimized. In the case of minimal communication, oscillatory
behavior is observed initially although this improves over time while full communication
is established with other robots thereby enhancing formation control. The event-sampling

condition at each robot and the NN adaptation rules were derived using the Lyapunov
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stability analysis. Analytical results were verified using simulation examples and the
efficiency of the event-sampled controller execution was demonstrated in the presence of
minimal communication information and with full communication overhead. It was
observed that the robots reached consensus even in the presence of minimal
communication. However, the consensus was reached much faster and the robots moved
with much less oscillation when full communication was available to all the robots

A novel output feedback consensus-based formation controller was developed for
a group of underactuated quadrotor UAVSs. The follower UAVs kept the desired formation
by using their time varying neighbor’s positions orientations and estimated velocities while
the leader tracked a pre-defined trajectory. NN-based adaptation was utilized to estimate
velocities through positions and orientations as well as to learn the uncertain UAV
dynamics.

2.2 FUTURE WORK

Considering obstacle avoidance while keeping formation can be considered as a
desirable future work for both nonholonomic mobile robot and quadrotor UAV
applications. In the hybrid analysis, obstacle avoidance controller can be added as a third

task in addition to consensus seeking and regulation tasks.
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