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ABSTRACT 

Over the past decade, the control research community has given significant 

attention to formation control of multiple unmanned vehicles due to a variety of 

commercial and defense applications. Consensus-based formation control is considered to 

be more robust and reliable when compared to other formation control methods due to 

scalability and inherent properties that enable the formation to continue even if one of the 

vehicles experiences a failure.  In contrast to existing methods on formation control where 

the dynamics of the vehicles are neglected, this dissertation in the form of four papers 

presents consensus-based formation control of unmanned vehicles-both ground and aerial, 

by incorporating the vehicle dynamics.  

 First, neural networks (NN)-based optimal adaptive consensus-based formation 

control over finite horizon is presented for networked mobile robots or agents in the 

presence of uncertain robot/agent dynamics and communication.  In the second paper, a 

hybrid automaton is proposed to control the nonholonomic mobile robots in two discrete 

modes: a regulation mode and a formation keeping mode in order to overcome well-known 

stabilization problem. The third paper presents the design of a distributed consensus-based 

event-triggered formation control of networked mobile robots using NN in the presence of 

uncertain robot dynamics to minimize communication.  All these papers assume state 

availability. 

Finally, the fourth paper extends the consensus effort by introducing the 

development of a novel nonlinear output feedback NN-based controller for a group of 

quadrotor UAVs. 



v 

ACKNOWLEDGEMENTS 

I would like to express my sincere thanks to my advisors, Professor Jagannathan 

Sarangapani and Professor Levent Acar, for their close supervision, help and support 

during the entire research duration.  Without their patient and constant guidance, this 

dissertation would not have been possible.  I would like to thank Dr. Travis Dierks, for his 

timely help and valuable suggestions concerning my research.  In addition, I would like to 

thank my committee members, Dr. Kelvin Todd Erickson, Dr. Maciej Zawodniok and Dr. 

Cihan Dagli, for their valuable comments and suggestions. 

Finally, I want to thank my wife, Nurbanu Guzey, my sons, Fatih and Melih Guzey, 

my parents, Munure and Servet Guzey, and parents in-law, Nesrin and Cemal Akyuz, as 

well as the rest of my family for their infinite love, care and encouragement. Without their 

love and support, I would have not been able to arrive at this stage of my life. In addition, 

I would like to extend my deepest thanks to my dear friend Havva Malone for her help and 

support, and many other friends in Rolla who made the life of this PhD candidate more fun 

and interesting. 



vi 

TABLE OF CONTENTS 

Page 

PUBLICATION DISSERTATION OPTION ..................................................................  iii 

ABSTRACT.. .....................................................................................................................  iv 

ACKNOWLEDGEMENTS ...............................................................................................  v 

LIST OF ILLUSTRATIONS .............................................................................................  x 

SECTION 

INTRODUCTION .................................................................................................  1 

ORGANIZATION OF THE DISSERTATION............................................ 4 

CONTRIBUTIONS OF THE DISSERTATION .......................................... 9 

PAPER 

     I.  NEURAL NETWORK-BASED FINITE HORIZON OPTIMAL ADAPTIVE 

CONSENSUS CONTROL OF MOBILE ROBOT FORMATIONS ................... 13 

ABSTRACT.. ........................................................................................................ 13 

NOMENCLATURE ............................................................................................. 14 

1. INTRODUCTION .......................................................................................... 15

BACKGROUND AND PRELIMINARIES ................................................... 18 

MOBILE ROBOT DYNAMICS ................................................................ 18 

CONSENSUS BASED FORMATION CONTROL .................................. 21 

OPTIMAL REGULATION OF CONTINUOUS-TIME SYSTEMS ......... 23 

PROBLEM FORMULATION........................................................................ 26 

FORMATION DYNAMICS ...................................................................... 26 

CONSENSUS-BASED VALUE FUNCTION ........................................... 27 

OPTIMAL ADAPTIVE CONSENSUS CONTROL...................................... 29 



vii 

NN-BASED IDENTIFIER ......................................................................... 29 

FINITE HORIZON OPTIMAL CONSENSUS CONTROLLER 

HYHYHIDESIGN ...................................................................................................... 31 

SIMULATION RESULTS ............................................................................. 37 

FULL CONNECTIVITY ............................................................................ 39 

PARTIAL CONNECTIVITY ..................................................................... 43 

NO CONNECTIVITY ................................................................................ 44 

CONCLUSIONS............................................................................................. 46 

APPENDIX… ....................................................................................................... 47 

REFERENCES ..................................................................................................... 58 

II. HYBRID CONSENSUS-BASED CONTROL OF NONHOLONOMIC

MOBILE ROBOT FORMATION ........................................................................ 61 

ABSTRACT… ...................................................................................................... 61 

INTRODUCTION .......................................................................................... 62 

BACKGROUND ON HYBRID AUTOMATA ............................................. 65 

REGULATION AND CONSENSUS-BASED FORMATION CONTROL OF 

NONHOLONOMIC ROBOTS ....................................................................... 68 

REGULATION CONTROL OF MOBILE ROBOTS ................................ 70 

CONSENSUS-BASED FORMATION CONTROL .................................. 73 

HYBRID CONSENSUS-BASED FORMATION CONTROL OF 

NONHOLONOMIC ROBOTS ....................................................................... 76 

SIMULATION RESULTS ............................................................................. 84 

CONCLUSION AND FUTURE WORK ....................................................... 92 

APPENDIX… ....................................................................................................... 93 

REFERENCES ................................................................................................... 106 



viii 

III. DISTRIBUTED CONSENSUS-BASED EVENT-TRIGGERED

APPROXIMATE CONTROL OF NONHOLONOMIC

MOBILE ROBOT FORMATIONS .................................................................... 108 

ABSTRACT.. ...................................................................................................... 108 

INTRODUCTION ........................................................................................ 109 

BACKGROUND AND PRELIMINARIES ................................................. 113 

EVENT-SAMPLED CONTROL.............................................................. 113 

MOBILE ROBOT DYNAMICS .............................................................. 114 

CONSENSUS BASED FORMATION CONTROL ................................ 115 

PERIODICALLY DRIVEN DISTRIBUTED CONTROLLER DESIGN ... 118 

EVENT-TRIGGERED CONTROLLER DESIGN ...................................... 124 

RESULTS AND DISCUSSIONS ................................................................. 133 

MINIMUM COMMUNICATION CASE ................................................ 133 

FULL COMMUNICATION CASE ......................................................... 140 

CONCLUSIONS........................................................................................... 143 

APPENDIX… ..................................................................................................... 144 

REFERENCES ................................................................................................... 157 

IV. MODIFIED CONSENSUS-BASED OUTPUT FEEDBACK CONTROL OF

QUADROTOR UAV FORMATIONS USING NEURAL NETWORKS ......... 159 

ABSTRACT… .................................................................................................... 159 

INTRODUCTION ........................................................................................ 160 

BACKGROUND AND PRELIMINARIES ................................................. 165 

NEURAL NETWORKS ........................................................................... 165 

RANDOM GRAPH .................................................................................. 166 

QUADRATOR UAV DYNAMICS ......................................................... 167 

MODIFIED CONSENSUS-BASED FORMATION CONTROL ........... 170 



ix 

SINGLE UAV CONTROL ........................................................................... 172 

FORMATION LEADER NN OBSERVER DESIGN .............................. 172 

LEADER UAV CONTROLLER DESIGN .............................................. 174 

CONSENSUS-BASED FORMATION CONTROL .................................... 177 

EXTENDED OBSERVER DESIGN ........................................................ 178 

CONSENSUS CONTROLLER DESIGN ................................................ 184 

CONTROLLER DESIGN ........................................................................ 195 

SIMULATION RESULTS ........................................................................... 203 

CONCLUSION AND FUTURE WORK ..................................................... 208 

REFERENCES ................................................................................................... 209 

SECTION 

CONCLUSIONS AND FUTURE WORK ........................................................  211 

CONCLUSIONS....................................................................................... 211 

FUTURE WORK ...................................................................................... 213 

REFERENCES ............................................................................................................... 214 

VITA……….. ................................................................................................................. 218 



x 

 

  

LIST OF ILLUSTRATIONS 

SECTION                                                                                                                        Page 

Figure 1.1 Flowchart of the dissertation. ............................................................................ 8 

PAPER I 

Figure 2.1 Differentially riven mobile robots. .................................................................. 19 

Figure 2.2 Communication topology among robots. ........................................................ 19 

Figure 5.1 Robot movements on x-y plane. ...................................................................... 39 

Figure 5.2 Value function estimation NN weight history. ................................................ 40 

Figure 5.3 Error convergences with full communication. ................................................ 42 

Figure 5.4 Effect of cost function on performance of controller. ..................................... 42 

Figure 5.5 Hamiltonian and terminal constraint errors. .................................................... 43 

Figure 5.6 Error convergences with connected communication. ...................................... 44 

Figure 5.7 Error convergences with unconnected communication graph. ........................ 45 

PAPER II 

Figure 2.1 General hybrid scheme considered in this work.............................................. 66 

Figure 3.1 Multiple Lyapunov function values versus time (m = 2). ............................... 68 

Figure 3.2 Nonholonomic mobile robot............................................................................ 72 

Figure 4.1 Formation and regulation modes for nonholonomic systems. ......................... 81 

Figure 5.1 Connectivity Graph of four nonholonomic mobile robots. ............................. 85 

Figure 5.2 Movements of four nonholonomic mobile robots. .......................................... 88 

Figure 5.3 Distances of each robot to their goal positions. ............................................... 88 

Figure 5.4 Blended formation velocity tracking errors  

                  (linear (m/s) and angular (rad/sec)). ................................................................ 89 



xi 

 

  

Figure 5.5 Blended regulation velocity tracking errors  

                  (linear (m/s) and angular (rad/sec)). ................................................................ 90 

Figure 5.6 Composite blended formation velocity tracking errors  

                  (linear (m/s) and angular (rad/sec)), kd=2. ..................................................... 90 

Figure 5.7  Composite blended formation velocity tracking errors  

                   (linear (m/s) and angular (rad/sec)), kd=50. .................................................. 91 

PAPER III 

Figure 2.1 Differentially driven mobile robots. .............................................................. 117 

Figure 5.1 Mobile robots moving to their desired formation.......................................... 134 

Figure 5.2 Formation errors. ........................................................................................... 135 

Figure 5.3 Velocity tracking errors. ................................................................................ 136 

Figure 5.4 NN weights (continuous). .............................................................................. 136 

Figure 5.5 NN weights (event triggered). ....................................................................... 137 

Figure 5.6 Robot Trajectories with event trigger controllers. ......................................... 137 

Figure 5.7 Formation errors. ........................................................................................... 138 

Figure 5.8 Velocity tracking errors. ................................................................................ 138 

Figure 5.9 Cumulative number of events of each robot.................................................. 139 

Figure 5.10 Robot trajectories. ........................................................................................ 140 

Figure 5.11 Formation errors. ......................................................................................... 141 

Figure 5.12 Velocity tracking errors. .............................................................................. 142 

PAPER IV 

Figure 2.1 Consensus based flight formation of a group of quadrotor UAVs. ............... 171 

Figure 5.1 Communication topologies before and after the th7   second. ....................... 204 

Figure 5.2 UAV trajectories. ........................................................................................... 205 



xii 

 

  

Figure 5.3 Formation tracking errors on all three axes. .................................................. 206 

Figure 5.4 Estimated linear velocity tracking errors of all four follower UAVs. ........... 207 

Figure 5.5 NN weight estimates of four UAVs. ............................................................. 207



1 

 

  

 INTRODUCTION 

Over the last few decades, the control research community has given significant 

attention to formation control of multiple unmanned vehicles. These vehicles can be very 

beneficial for numerous tasks when compared to a single, heavily equipped vehicle, which 

may require much more power and lack the robustness needed to avoid failure. For 

example, in military missions, a group of autonomous vehicles are required to keep in a 

specified formation for area coverage and reconnaissance; hence, multiple vehicles can 

complete tasks requiring a large area coverage much faster than a single vehicle. Therefore, 

the coordination of multiple wheeled robots, unmanned air/ocean vehicles, satellites, 

aircraft and spacecraft [1]–[8] have been investigated as applications of vehicle formation 

control. 

      Consensus-based formation control [4]–[8] is considered to be more robust and 

reliable when compared to other formation control methods due to scalability [4], [7] and 

inherent properties that enable the formation to continue even if one of the robots 

experiences a failure. In consensus-based formation control, the robots share information 

regarding their position errors from their respective goal positions.  The shared information 

is then synthesized into a control law which seeks to achieve the same position error for all 

robots until each robot has reached its goal position. The desired formation is achieved and 

maintained by reaching and maintaining consensus on the position errors.  Therefore, the 

main tasks in consensus-based formation control are described as: i) given an initial state, 

achieve a desired formation, and ii) maintain this formation while the robots move through  
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the environment to reach their desired goal position. Completing task ii) is equivalent to 

solving the regulation problem for the formation. 

         In earlier works [1]–[4], consensus-based schemes have been studied for 

generalized linear systems with known system dynamics and applied to systems with time 

varying communication graphs [8], bounded disturbances [9], and communication delays 

during state information sharing [4]. In addition, the majority of consensus-based formation 

control methods for mobile robots [10]–[12] also takes into consideration linearized robot 

dynamics for a controller design. In contrast, nonlinear robot dynamics play a vital role 

[13] in maintaining a predefined formation as shown before.  

The consensus-based optimal formation control scheme was also introduced in 

[14]. Similar to the aforementioned approaches [4]–[8], optimal control [14] was designed 

for linearized robot dynamics in a backward-in-time manner and requires complete 

knowledge of the robots’ system dynamics. The backward-in-time solution for optimal 

control is not suitable for practical implementation. 

            Various schemes [15]–[17] are now available in the literature to solve the optimal 

control online and the forward in time movements with complete or partial knowledge of 

the system dynamics. These online approaches, referred to as adaptive dynamics 

programming (ADP) [16], [17], require a significant number of iterations [18] to maintain 

stability. However, to control the robot formation, both iterative [16] and backward-in-time 

techniques [19] are unsuitable [18] because an insufficient number of iterations can lead to 

instability. 

         In the event-sampled framework [20]–[23], the measured state vector is sampled 

based on certain state dependent criteria referred to as the event-triggering condition, and 
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the controller is executed at these aperiodic sampling instants. The event-triggering 

condition is designed by taking into account the stability and the closed-loop performance, 

and hence, it’s proven to be advantageous over its periodic counterpart.  

      Initially, the event-triggered techniques from [20],[22],[23] were designed for 

ensuring stable operations of the closed-loop system by assuming that a stabilizing 

controller exists for the system under consideration. Developing an event-triggering 

condition and establishing the existence of positive inter-event time with the proposed 

event-sampling condition was the main focus in these works [20],[22],[23]. An event-

sampled adaptive controller design was presented in [21] for physical systems with 

uncertain dynamics. 

         Quadrotor UAVs are easier to build and maintain when compared to conventional 

helicopters [24]. However, the dynamics of the quadrotor UAVs are not only nonlinear, 

but also coupled and under-actuated. They have six degree of freedom and can be modeled 

as having four independent control inputs; one for elevation adjustments and three 

rotational control inputs. Many controller schemes are proposed in the literature for 

trajectory tracking problems of quadrotors [25]-[26], where the control objective is to track 

the Cartesian position and a yaw angle. Others research focused on ways to control a group 

of quadrotor UAVs [24]-[35].   

        The quadrotor UAV leader-follower formation controller design was introduced in 

[27] while considering the fourth order linearized dynamics of quadrotors. A relative 

distance approach is utilized for adaptive leader-follower formation keeping when the GPS 

signal lost in [31]. The nonlinear quadrotor dynamics are assumed to both be known 

[27],[31] . An NN based adaptive formation controller is developed for quadrotor UAVs 
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in [24]. The availability of position, orientation and velocities of the follower as well as the 

leader for the leader-follower based formation controller design in [24] is quite a strong 

assumption as it may not be practical. Further, there are several limitations of leader-

follower based formation control over the consensus-based approach.   

 ORGANIZATION OF THE DISSERTATION 

      The dissertation is organized as it is shown in Figure 1.1. For nonholonomic 

systems, the regulation problem is not straightforward due to nonholonomic constraints 

and Brockett’s theorem. In [36], the robot kinematics were transformed into polar 

coordinates to satisfy Brockett’s theorem, and control velocities were developed to solve 

the regulation problem. However, the work in [36] assumed perfect velocity tracking and 

did not consider the robot dynamics. In addition, several others [4]–[8] have considered 

consensus-based formation control but failed to consider velocity tracking error dynamics 

in their controller design.   

       Motivated by the aforementioned limitations of existing stabilizing consensus [4]–

[8] controllers, adaptive dynamic programming (ADP) controllers [15]–[17] and the 

optimal consensus controller [14] , a novel online, forward-in-time, finite horizon optimal 

adaptive formation control is proposed for mobile robots by modeling the robots as 

nonlinear continuous-time systems in affine form in the first paper. A novel value function 

is introduced as a quadratic function of consensus-based formation keeping, regulation 

errors of each individual robot and control inputs. 

      The ADP is utilized to solve the optimal control by using two neural networks 

(NNs). One NN is used to identify the unknown mobile robot formation dynamics and the 
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other is utilized to approximate the time varying value function, which becomes the 

solution of the HJB equation.      

       Both the NN estimation error and the Hamiltonian estimation convergence have 

been proven to show that the estimated value function becomes the solution of the HJB 

equation. The identified formation dynamics and the approximated time-varying value 

function were subsequently utilized for designing the optimal control policy for each robot. 

The NN weights were updated by using a novel update law, which is derived by using both 

the Lyapunov stability technique and to minimize formation keeping regulation and 

terminal constraint errors. An initial admissible controller is not needed. 

      In the second paper, the limitations of existing stabilizing consensus [4]–[8] and 

regulation controllers [36] are considered and a novel time-varying velocity tracking error 

system is designed to solve the formation regulation control problem with guaranteed 

performance for nonholonomic wheeled mobile robots.  A hybrid automaton is proposed 

to control the nonholonomic mobile robots with nonlinear dynamics in two discrete modes: 

a regulation mode and a formation keeping mode. The regulation mode drives each robot 

to a constant goal position while the formation-keeping mode ensures that the robots 

achieve and maintain a specified geometric formation prior to reaching their goal position 

to solve the formation regulation problem.  

       In order to avoid hard switches between regulation and formation keeping modes, 

a novel blended time-varying velocity tracking error approach is developed. The blended 

error approach ensures the robots’ velocity tracking errors and control torques are 

continuous at the switching conditions.  Time-varying Lyapunov functions are used in 

conjunction with multiple Lyapunov methods [37] to provide stability of the hybrid system. 
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Unlike current approaches available in [4]-[7], this work considers the kinematics and 

dynamics of each mobile robot as well as the formation.      

         The third paper describes the development of an adaptive event-based distributed 

formation control of mobile robots wherein the dynamics of the individual robot and the 

controlled formation are explicitly taken into account. The NN are utilized as function 

approximators to learn the dynamics of each mobile robot in the formation. Traditionally, 

adaptive NN controllers require more computations when compared to the proportional-

integral-derivative (PID) controllers whereas event sampling of feedback reduces 

computations for adaptive formation control. Moreover, since the mobile robots need 

location and velocity information from neighborhood robots to reach consensus, they share 

their information with each other through a resource-limited communication network. 

Therefore, utilizing the communication network in an event sampled context can lead to 

minimizing network congestion and undesired performance of the controller. 

         However, event-based sampling can make stability analysis complex and a suitable 

adaptive sampling condition is needed to obtain consensus-based formation errors. These 

formation errors are then utilized to obtain the desired velocities for each robot in order to 

drive the robots to a predefined formation as a tracking problem. Further, to determine the 

formation error, a unique virtual cart is defined using the regulation errors of the 

neighborhood robots in the network. However, due to the dynamics of each robot, a 

persistent velocity tracking error continues to exist. Using the NN-based representation of 

the mobile robot dynamics, the control inputs can be obtained to minimize this velocity 

tracking error with event-sampled feedback.  
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         It is worth mentioning that the velocity tracking errors of each robot acts as a virtual 

subsystem for the formation error subsystem. Thus, by using the distributed back-stepping 

controller design, the velocity tracking errors are reduced leading to fewer formation errors 

and the robots reach a desired formation. The overall control scheme is distributed since 

the controllers for each robot are designed using a consensus-based formation error, which 

is a function of the position and velocity of all the robots.  

         Since the unknown NN weights are tuned at the event-sampled instants, 

computations were reduced when compared to traditional NN and adaptive control 

schemes, but the innovation also introduced aperiodic weight tuning. A novel event-

sampling condition was derived, in such a way that the robots use locally available 

information and previous information from others to determine the feedback instants 

thereby reducing communication costs and ensuring stability and performance of the 

overall formation due to this intermittent feedback. In other words, the event-sampling 

mechanism enables asynchronous broadcast of position and velocity information, reducing 

network congestion. Finally, the extension of the Lyapunov direct method is used to prove 

the local uniform ultimate boundedness (UUB) of the tracking and the parameter 

estimation errors with event-sampled feedback.  

      The fourth paper presents the development of a novel consensus-based output 

feedback formation controller for a group of quadrotor UAVs in the presence of uncertain 

quadrotor dynamics. The leader quadrotor UAV is assumed to track a pre-defined desired 

trajectory while the others have no knowledge of the desired trajectory. Since the NN-

based output feedback controller has already been developed for a single UAV in [35], it 

was briefly introduced in the fourth paper and utilized to demonstrate the control of a leader 
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UAV. In this UAV leader controlled setup, follower UAVs only need the position and 

orientation of the quadrotor UAVs in the neighborhood, thereby relaxing the need for linear 

and angular velocities.  
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Figure 1.1 Flowchart of the dissertation. 
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            The position and velocities were designed to be shared among the UAVs enabling 

each UAV to obtain information about position and velocities of neighbor UAVs through 

local sensors when communications are not available. A novel NN-based extended 

observer was developed in this dissertation research allowing each follower UAV to 

estimate its own velocities as well as that of its neighbors. To support UAVs joining or 

leaving a formation or neighborhood, a novel size reduction matrix was defined to remove 

the zero elements in the observer design corresponding to the states of a UAV that has left 

the formation.  The size reduction matrix provides a method to ensure that an invertible 

observer matrix is always available.  

       By using the position, orientation, reference location and estimated velocities of 

neighbors, each UAV determines its consensus-based formation errors. Since the under-

actuated quadrotor UAVs have no control over the position error along x  and y  directions, 

novel desired pitch and roll angles were developed in this research to reach consensus on 

position errors in those directions, the author also utilized as a virtual controller in the 

controller design. An elevation controller was also developed by considering the formation 

error along z  direction and other position and orientation errors. 

 CONTRIBUTIONS OF THE DISSERTATION 

      The consensus-based formation controllers [4]–[8] mainly dealt with linear systems 

prior to the research developed in this dissertation. Developing controllers for 

nonholonomic unmanned systems had it its own challenges, which were met and are 

presented here in as objectives achieved. The achievements include defining the consensus 

error of each unmanned vehicle, deriving the error dynamics and contribution to the 
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understanding of nonlinear under-actuated error dynamics. Each chapter of this dissertation 

provides contributions to the consensus control and unmanned vehicle control research 

community.       

      In the first paper, a novel consensus-based finite horizon optimal formation control 

is presented. It was developed for the mobile robots in the presence of uncertain nonlinear 

dynamics by using a novel cost function. By doing so, a group of nonholonomic mobile 

robots can now reach consensus on their regulation error and reach their desired location 

thereby minimizing a cost function that is based on consensus error and regulation error as 

well as the control torque in a given finite time. The ideal cost function which enhances 

the Hamiltonian zero and the robot formation dynamics are approximated by using novel 

NN weights adaptation laws derived in the first paper. By using the Lyapunov’s stability 

theorem, the closed loop robot formation dynamics, and regulation dynamics are shown to 

be bounded and the overall formation errors are also shown to be bounded.  

         In real life applications, unmanned vehicles may be expected to form a desired 

shape first and move to a desired location in the given desired shape. Therefore, the 

combined regulation-formation controller developed in the first paper may not be suitable 

for all applications. In the second paper, a novel hybrid method is designed for 

nonholonomic mobile robots to take care of the consensus seeking and regulation problems 

sequentially. In order to avoid the hard switches between the regulation and consensus 

seeking tasks, a novel blending of velocity tracking errors was developed which improves 

transactions between different modes of the hybrid system.  Additionally, analysis of the 

nonlinear hybrid system’s stability using time-varying Lyapunov functions to prove the 

guaranteed performance of the approach is another contribution of the second paper. Two 
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separate Lyapunov functions were separately assigned for both regulation and consensus 

seeking tasks. It is shown that each Lyapunov function dies while the corresponding task 

is being taken care of by the controller. The initial values of each Lyapunov function at the 

time of its corresponding time period is also shown to be decreasing. This provides the 

stability of the hybrid system.           

         In the first two papers, it is assumed that each robot broadcasts its state information 

continuously, and others use it to obtain their consensus error and learn where they stand 

currently. However, this may cause communication over traffic in real applications. 

Therefore, the author considered reducing communication as possible by using a novel 

event trigger condition that can be triggered by each robot individually. To accomplish 

this, in the third paper, a novel distributed adaptive consensus-based formation control of 

mobile robots is presented, which was developed by taking into account the uncertain 

dynamics of each robot and its formation. A novel adaptive event-sampling condition was 

determined through the Lyapunov analysis using both current information of the robot 

under consideration and previous information from neighborhood robots to determine the 

feedback instants, which in turn resulted in asynchronous communication. At the end of 

the paper, overall stability of the robot formation was demonstrated even if the state 

information was only broadcasted when the event was triggered by using the Lyapunov 

stability theory.  

       The controllers in the first three papers were developed for nonholonomic mobile 

robots formation. The fourth paper deals with formation control of quadrotor UAVs which 

is also under-actuated in the same manner as that done for the nonholonomic mobile robots. 

The first contribution of the fourth paper is the design of a novel NN-based nonlinear 
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extended observer to estimate the velocity of the UAV under consideration and its 

neighbors which enables the quadrotors to maintain any desired formation shape even 

without communication among each other. By using the observer, each UAV is able to 

observe their neighbors’ velocities through their positions and orientations.  Secondly, the 

development of a nonlinear consensus based output feedback adaptive formation controller 

for a group of quadrotor UAVs is one of the major contributions of the fourth paper. 

Finally, showing that any number of quadrotors can form any given desired shape in the 

presence of switching communication topologies through Lyapunov analysis is a 

contribution to the research community and the state of the art. 
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PAPER   

I. NEURAL NETWORK-BASED FINITE HORIZON OPTIMAL ADAPTIVE 

CONSENSUS CONTROL OF MOBILE ROBOT FORMATIONS 

ABSTRACT 

In this paper, a novel NN-based optimal adaptive consensus-based formation 

control scheme over finite horizon is presented for networked mobile robots or agents in 

the presence of uncertain robot/agent dynamics. The uncertain robot formation dynamics 

are approximated online by using an NN-based identifier and a suitable weight tuning law. 

In addition, a novel time-varying value function is derived by using the augmented error 

vector, which consists of the regulation and consensus-based formation errors of each 

robot. By using the value function approximation and the identified dynamics, the near 

optimal control input over finite horizon is derived.  This finite horizon optimal control 

leads to a time varying value function, which becomes the solution of the Hamilton-Jacobi-

Bellman (HJB) equation, and control input is approximated by a second NN with time 

varying activation function. A novel weight update law for the NN value function is 

developed to tune the value function, satisfy the terminal constraint, and relax an initial 

admissible controller requirement. The Lyapunov stability method is utilized to 

demonstrate the consensus of the overall formation. Finally, simulation results are given to 

verify theoretical claims. 
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NOMENCLATURE 

 :x x Cartesian position of the robot 

 :y y Cartesian position of the robot 

 : Bearing angle of the robot 

 :rx x position of the robot with 

respect to robot frame 

 :ry  y position of the robot with 

respect to robot frame 

  :v State vector of the robot 

  : Controller torque of the robot 

 :f Internal dynamics of robot 

velocities 

 :g Controller input matrix of robot 

velocity dynamics 

:rf Internal dynamics of the robot 

 :rg Input matrix of the robot  

 :dv Desired robot states 

  :v Regulation error of robot states 

 :rf Internal regulation error dynamics 

of robot  

 :rg Regulation error dynamics matrix 

of robot 

 : Consensus based formation error 

of the robot  

 : Augmented error vector of robot 

 :f Internal formation dynamics of 

robot 

 :g Formation control input matrix of 

the robot  
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1. INTRODUCTION 

Formation control of multi-agent systems has been studied broadly [1]- [6] in recent 

times and various formation control techniques have been in the literature, which have 

traditionally favored the consensus based approach [1], 0, [4], [6]-[8]. This consensus 

approach 0 continues to receive increased attention since it is more robust and scalable 

when compared to other methods. The aim of consensus-based formation control is to 

guarantee that the state information of each agent in the network converges to a common 

value. 

         In earlier works [1]-[4], consensus-based schemes have been studied for 

generalized linear systems with known system dynamics and applied to systems with time 

varying communication graphs [8], bounded disturbances [9], and communication delays 

during state information sharing [4]. In addition, the majority of consensus-based formation 

control methods for mobile robots [10]-[12] also takes into consideration linearized robot 

dynamics for a controller design. In contrast, nonlinear robot dynamics play a vital role 

[13] in maintaining a predefined formation as shown before.  

         The consensus-based optimal formation control scheme was also introduced in 

[14]. Similar to the aforementioned approaches, optimal control [14] was designed for 

linearized robot dynamics in a backward-in-time manner and requires complete knowledge 

of the robots’ system dynamics. The backward-in-time solution for optimal control is not 

suitable for practical implementation.  

         Various schemes [15]-[17] are now available in the literature to solve the optimal 

control online and forward in time with complete or partial knowledge of the system 
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dynamics. These online approaches, referred to as adaptive dynamics programming (ADP) 

[16], [17], require a significant number of iterations [18] to maintain stability. However, to 

control the robot formation, both iterative [16] and backward-in-time techniques [19] are 

unsuitable [18] because an insufficient number of iterations can lead to instability. 

          A novel ADP-based online optimal control over infinite horizon of mobile robots 

is presented in [18], which does not require value and /or policy iterations. Therefore, the 

problem of solving the consensus-based optimal formation control problem of mobile 

robots or agents with uncertain nonlinear dynamics in an online and forward-in-time 

manner within a finite time horizon remains open. The objective of adaptive optimal 

consensus based finite horizon controller is to regulate the robot state vector in an optimal 

manner from an arbitrary initial position and orientation to a desired target position and 

orientation while maintaining the formation. The finite horizon optimal control is more 

practical for formation control. Because of the terminal constraint, the value function, 

which is the solution of the Hamilton-Jacobi-Bellman (HJB) equation, becomes  time 

varying [15],[19] and involved, and the closed-loop system becomes non-autonomous.  

              Motivated by the aforementioned challenges, a novel online, forward-in-time, 

finite horizon optimal adaptive formation control is proposed for mobile robots by 

modeling the robots as nonlinear continuous-time systems in affine form. A novel value 

function is introduced as a quadratic function of consensus-based formation keeping, 

regulation errors of each individual robot and control inputs. 

              The ADP is utilized to solve the optimal control by using two neural networks 

(NNs). One NN is used to identify the unknown mobile robot formation dynamics and the 

other is utilized to approximate the time varying value function, which becomes the 
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solution of the HJB equation. Both the neural network estimation error and the Hamiltonian 

estimation convergence have been proven to show that the estimated value function 

becomes the solution of the HJB equation. The identified formation dynamics and the 

approximated time-varying value function are subsequently utilized for designing the 

optimal control policy for each robot. The NN weights are updated by using a novel update 

law, which is derived by using both the Lyapunov stability technique and to minimize 

formation keeping regulation, and terminal constraint errors. An initial admissible 

controller is not needed. 

              The main contributions of this paper include: 1) the design of a consensus based 

optimal formation control of mobile robots or agents in finite time in the presence of 

uncertain nonlinear dynamics by using a novel cost function; 2) the derivation of novel 

adaptation laws for the NN weights to approximate the robot dynamics and the value 

function; and 3) demonstration of the boundedness of the closed-loop robot dynamics and 

overall formation stability.   

              The remainder of the paper is organized as follows. Section 2 presents a brief 

background on consensus based control of mobile robots. The problem formulation is given 

in Section 3.  Section 4 discusses the design of the finite horizon optimal controller design. 

Before offering conclusions in Section 6, simulation results are presented to support our 

theoretical work in Section 5. An appendix gives detailed proofs for the theorems and the 

lemmas. 
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 BACKGROUND AND PRELIMINARIES 

             In this section, the dynamics of an individual robot is formulated in an affine form, 

and a brief background on the consensus-based formation control is discussed. Later, the 

finite horizon optimal control design for nonlinear affine systems is revisited.  

 MOBILE ROBOT DYNAMICS  

             The dynamics of an individual mobile robot [20] are functions of the Cartesian 

positions and the bearing angle. In Figure 2.1, ,r rx y  denote Cartesian positions with 

respect to the robot frame. They are also subject to non-holonomic constraints and 

represented by 

       1 2 2 2 1 1

T

dM v v Cv F v G v B v A        ,                                                           (1) 

where  1

T
v x y   and 

2

T

v x y     with x , y , and x , y  represent the Cartesian 

positions and velocities,   and  , denote bearing angles and angular velocity, respectively 

as shown in Figure 2.1 The matrices   3 2B   ,   3 3M   , 3 3C  , and 3 2A   

represent input transformation, inertial, Coriolis, and constraints matrices, respectively. 

The vectors 2 1  , 3 1

d
 , 2 1 ,   3 1G    and   3 1F    are, respectively, 

the control torque, bounded disturbance, constraint forces, and gravitational and friction 

vectors [20] .  By using the fact that the inertia matrix,  1M v , is invertible [21],  equation 

(1) can be rewritten as 

          
1 1

2 1 2 2 1 1 1

T

dv M v Cv F v G v A M v B v 
 

       .                                            (2) 
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Figure 2.1 Differentially riven mobile robots. 

 

 

 

Figure 2.2 Communication topology among robots. 

In terms of state space representation, equation (2) can be expressed as 

   
1 2

2

v v

v f v g v 



 
,                                                                                                                                    (3) 
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with 6 1

1 2

T
T Tv v v     ,         

1 3 1

2 1 1 2 2 1, T

df v v M v Cv F v G v A
        , 

and      
1 3 2

1 1 1g v M v B v
    denotes the nonlinear functions representing the system 

dynamics.  

Alternatively, equation (3) can be expressed in affine form as 

   r rv f v g v   ,                                                                                                                                   (4) 

where     6 1

2

T
TT

rf v v f v   
 

,     6 2

2 30
T

T

rg v g v 


  
 

 represents the 

nonlinear internal dynamics and the control coefficient matrix, respectively.  In the 

formation control problem where there are n  mobile robots present, the dynamics of the 

thi  mobile robot can be written as 

, ,( ) ( )i r i i r i i iv f v g v   ,  1,2, ,i n .                                                                               (5) 

 

The following assumption is needed before we proceed. 

 

Assumption 1: The state vector iv  in (5) is available and the input matrix satisfies

, max( )r i ig v g .  

             Without loss of generality, the system (5) is considered controllable in the sense 

that there exists a continuous control policy that stabilizes the robot error dynamics (8) 

with 0iv   being a unique equilibrium point on a setℝ6. The main objective of the 

formation control problem is to reach a desired state, 
6 1

,i dv  , by the  thi  mobile robot 

while maintaining the formation intact.                                                                   
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          Next, we define the regulation error as the difference between actual state, iv  and 

desired state vectors,
,i dv , as 

,i i i dv v v  ,                                                                                                                    (6) 

where 6 1

iv  is the regulation error for the thi  robot. Since the desired positions and 

velocities are assumed to be fixed, , 0i dv  , and the regulation error dynamics from (6) 

becomes  

, , ,( ) ( )i i i d i r i i r i i iv v v v f v g v      .                                                                                                            (7) 

The regulation error dynamics can be rewritten as 

   , ,i r i i r i i iv f v g v                                                                                                                                   (8) 

with      , , , ,r i i r i i r i i i df v f v f v v    and      , , , ,r i i r i i r i i i dg v g v g v v   .  

Remark 1: From (8) it is evident that the regulation error must be forced to zero in 

order for the formation to reach the target. Assumption 1 ensures that 
, max( )r i ig v g  is 

bounded.  On the other hand, in a formation control design, a consensus has to be reached 

to maintain formation. 

 CONSENSUS BASED FORMATION CONTROL 

In this subsection, the traditional consensus-based control is discussed in brief. 

Before introducing the consensus approach, the following assumption is needed to proceed. 

Assumption 2 [27], [9]: The connectivity graph of the formation network is assumed 

to be undirected and connected.  

        The primary goal of a formation control is to reach consensus by maintaining the 

formation error defined as 
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6 1( )
i

i i j

j N

v v 



     ,                                                                                                                            (9) 

where iv is the regulation error of the thi  robot and 
jv is the regulation error of 

thj  robot 

and iN  is the set of mobile robots in the neighborhood of the thi  robot. Similar to (9), the 

formation error can also be defined as 

6 1( )i ij i jl v v      ,                                                                                                                        (10) 

with 0,iil  1ijl  if information flows from vehicle j  to vehicle i  and 0,ijl  otherwise 

i j  . Then, the connectivity matrix of overall network is defined as 
ijL l     . However, 

for the sake of simplicity on notation, the neighboring set notation (9) is preferred during 

the paper.  

Remark 2: To ensure consensus among the robots in the network, each robot needs 

to be aware of regulation errors of other robots; hence, the robots need to communicate 

with each other. The set of robots from which the thi robot can receive regulation error is 

called a neighboring set or iN  of the thi   robot that is 

   1, , , 1, , ,ii n N j N i j G     ,                                                                                         (11) 

where G  designates the existence of a regulation error exchange between thi  and 
thj  robot. 

Additionally, all the robots have a two-way communication.  

        To achieve the desired formation, the difference among the regulation errors of the 

robots should converge to zero. Although each robot is not receiving the regulation error 

information from every other robot in the network, the connectedness of the network 
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provides consensus on regulation errors[14]. Consequently, the final regulation error of 

each individual robot will be in consensus [14] . In other words, even though there is no 

direct communication between thi  and thk  robots, since ,i j j kv v v v  , then i kv v

[14]. 

        Traditionally, in a consensus-based formation control [22] of agents described by a 

linear system [14], [23], the control input for linear systems is based on the formation error 

by using the information of their neighbors. To design an optimal consensus-based 

formation control of nonlinear systems, both the regulation and formation errors need to 

be accounted for. Next, traditional optimal control background is discussed before 

introducing the proposed scheme. 

 OPTIMAL REGULATION OF CONTINUOUS-TIME SYSTEMS 

            A brief background on optimal control of general nonlinear continuous-time 

systems in affine form is presented in this subsection. Consider the nonlinear mobile robot 

regulation error dynamics (8) in affine form. The objective here is to design an optimal 

control policy while minimizing the cost function, 

0
0( , ) ( ( ), ) ( ( ) )

ft
T

i i i i f f i i i
t

V v t v t t Q v R dt     ,                                                                                  (12) 

in a finite time 
0 ft t  where ( ) 0iQ v    is a positive semi-definite function to penalize 

the regulation error,  2 2R  , is a positive definite matrix to penalize the control input of 

the thi  robot while the terminal constraint, ( ( ), )i i f fv t t , penalizes the terminal state at the 

finial time , ft . It is important to mention here that due to fixed finite time, the cost function 

becomes an explicit function of time in contrast to the infinite time case where the cost 
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function is a time invariant function. Next, define the Hamiltonian 

, ,( , , ) ( ) [ ( ) ( ) ]
i

T T

i i it i i i v r i i r i i iH v t V Q v R V f v g v        ,                                                               (13) 

where 
( , )i i

it

V v t
V

t





and 

( , )
i

i i
v

i

V v t
V

v





 are the gradient of  the cost function, 0( , )i iV v t . 

Equation (13) has the time-dependency term, itV  ,in contrast with the infinite-horizon case. 

The optimal control policy [18] is obtained by using the stationary condition, 

( , , ) 0i i iH v t    , which yields 

* 1 *

,

1
( , ) ( )

2 i

T

i i r i i vv t R g v V   .                                                                                                                       (14) 

Substituting (14) into (13) yields the time-varying HJB equation as 

* * * 1 *

, , ,

1
( ) ( ) ( ) ( ) 0

4i i i

T T T

it v r i i i iv r i i r i i vV V f v Q v V g v R g v V    ,                                                              (15) 

with 
*

itV , 
*

ivV  representing the derivatives of optimal time-varying value function of thi

robot, 
*

iV , with respect to time and regulation error, respectively. The solution to the time 

varying HJB equation, which is essentially the value function, is used to obtain the optimal 

control input. On the other hand, finding an analytical closed form solution of the HJB 

equation is difficult and has been considered to be extremely difficult. Hence, 

approximation based ADP techniques are used to solve the solution online.  

            Lemma 1[18]: Consider the regulation error dynamics of thi   robot (8) with value 

function (12) and the optimal control policy (14). Let ( )iJ v  be a continuously 

differentiable, radially unbounded Lyapunov candidate such that 

T T *( ) ( ) ( )( ( ) ( ) ) 0
i ii v i i v i i i iJ v J v v J v f v g v      with ( )

iv iJ v  being the partial derivative of 
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( )iJ v  with respect to iv . In addition, let ( )iQ v  ℝ be a positive definite matrix, i.e., 

0,i iv v   , ( ) 0iQ v  , and 0 ( ) 0i iv Q v    , and 
min max( )iQ Q v Q  . 

Moreover, let ( )iQ v  satisfy lim ( )
ii

i
v

Q v


   as well as 

T * *T *( ) ( , ) ( )
i iiv i v i i i i iV Q v J r v Q v R                                                                                                         (16) 

Then, the following relation holds: 
T * T( ( ) ( ) ) ( )
i i iv i i i v i vJ f v g v J Q v J   . 

 In a consensus-based control, since the complete formation depends on both 

regulation and formation errors, the cost function has to be redefined. In the next section, 

the problem statement of the consensus-based optimal formation control is formulated.  
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 PROBLEM FORMULATION 

       In this section, the augmented formation dynamics are derived and the near optimal 

control of a consensus-based formation control of mobile robots is formulated.  

 FORMATION DYNAMICS 

            The formation dynamics are derived by augmenting the regulation and the 

formation errors. The dynamics of formation error discussed in (9) can be derived as  

        , , , ,

i

i r i i r i i i r j j r j j j

j N

f v g v f v g v  


    .                                                                    (17) 

      Now, augmenting the regulation and formation errors of thi  robot, 

12 1
T

T T

i i iv     
,  the dynamics of the formation error for the thi   robot by using 

(8) and (17) becomes             

      

, ,

, , , ,

( ) ( )

( )
i

r i i r i i i

i

r i i r i i i r j j r j j j

j N

f v g v

f v g v f v g v




 



 
 


   
  


  .                                                   (18)                                      

In an affine form, equation (18) can be represented as     

      

,

,

, , , ,

( )
( )

( )
i

r i i

r i i

i i

r i i r j j r j j j i r i i

j N

f v
g v

f v f v g v g v
 

 


 
  

         


                                                            (19) 

where i  being the number of robots in the neighborhood of the thi  mobile robot. The 

formation dynamics of the  thi  mobile robot  (19) can be expressed in a compact form as 

   ,i i Ni Ni i i if v g v                                                                                                                             (20) 
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with ,j Ni ij N    , ,j Ni iv v j N    being the control input and regulation error vector 

of all robots in the network, respectively, and 

 
      

,

12 1

, , ,

( )

, ,

i

r i i

i Ni Ni

r i i r j j r j j j

j N

f v

f v
f v f v g v








 
 

 
  
  


 
, 12 1

,

( )

( )

r i i

i i

i r i i

g v
g v

g v


 
  
 

.  

Remark 3: Note that, similar to [24], the thi  robot formation dynamics (19) are 

given as a function of the regulation errors and control inputs of its neighbors and its own 

regulation error dynamics. The controller, i , in the augmented error dynamics (20) of the 

thi  robot is formulated in a decentralized way. These formation dynamics are not known 

beforehand as they are a function of other robot dynamics in the formation.  Therefore, an 

NN identifier will be utilized to identify them for optimal consensus control. Next a novel 

cost function is defined for the optimal control problem to achieve optimality in a finite 

time by minimizing both the regulation and formation errors. 

 CONSENSUS-BASED VALUE FUNCTION 

        In order to control the consensus-based formation error dynamics (20) optimally 

in finite time, a novel value function is proposed for the thi  robot as 

0
0( , ) ( ( ), ) ( ( ) )

ft
T

i i i i f f i i i
t

V t t t Q R dt        ,                                                                                 (21) 

where 0t  and ft  are initial and final time instants, respectively, while 

1 2( ) T T

i i i i i i iQ v Qv Q       with
6 6

iQ   representing positive definite matrices to 

penalize regulation and formation errors, respectively.  In addition, 1 2,   are positive 

design parameters, R  is a positive definite constant matrix, and ( ( ), )i i f ft t  serves as a 



28 

 

  

terminal constraint for each robot. Note that the design parameters 1 2,and   define how 

much relative penalty needs to be given to regulation and formation errors.  In other words, 

for example, increasing 2  and reducing 1  increases priority of formation which prevents 

over minimization of the regulation error.  

             The time-varying value function (21) with augmented error, i , as its input can be 

expressed by using an NN with a time-varying activation function on a compact set in 

the form [15] as 

( , ) ( , ) ( , )
i i

T

i i V Vi i f V iV t t t t                                                                                                                (22) 

and the terminal constraint can be represented as 

( , ) ( ( ),0) ( , )
i i i

T

i i f V V i f V i fV t t t                                                                                                          (23) 

where Vi ℝ𝐿×1 is the target NN weight vector with L  being the number of hidden-layer 

neurons; hence, ( , ) :
iV i ft t   ℝ12 [0, )  → ℝ𝐿 is the bounded time-dependent activation 

function of augmented errors of each robot, while ( , )
iV i t   is the NN reconstruction error.  

             The target NN weights,
iV , and reconstruction error , ( , )

iV i t  , are assumed to be 

bounded above such that 
i iV VM   and ( , )

iV i Mit   , where 
iVM  and Mi  are positive 

constants [13]. In addition, it is assumed that the gradient of the NN reconstruction error 

with respect to i  is bounded above, such that ( , )
i Vi i VMit     [18], where VM  is also 

a positive constant. The quantities ( ( ),0)
iV i ft   and ( , )

iV i ft   have the same meaning but 

correspond to the terminal time and state. Next, an adaptive optimal consensus-based finite 

horizon NN-based controller scheme is derived. 



29 

 

  

 OPTIMAL ADAPTIVE CONSENSUS CONTROL 

       In this section, finite horizon optimal adaptive consensus-based formation control 

is designed for mobile robots in the presence of unknown robot formation dynamics. First, 

NN-based identification of the dynamics is introduced. In the second part of this section, a 

novel NN-based finite horizon optimal adaptive consensus controller is proposed. In this 

scenario, two NNs are utilized, one for identification and the other one for estimating time 

varying value function. 

       In contrast with the traditional actor critic methods where two NNs are utilized, in 

the proposed approach, only one NN is utilized in an online fashion. A Novel NN weight 

matrix adaptation law is derived to guarantee terminal constraint as well as maintaining 

stability of the system. The Lyapunov stability theorem is utilized to find an optimal 

controller and stability analysis of the closed-loop system incorporating the identifier. 

Without loss of generality, thi  robot’s adaptive optimal controller design is considered as 

follows. Further, the optimality and consensus ability of external robot network is 

demonstrated in Theorem 2 based on the controller defined for each robot individually. The 

next section introduces identification of thi  mobile robot dynamics. 

 NN-BASED IDENTIFIER 

       Consider the formation dynamics of mobile robots (20) in affine form. On a 

compact set , by using an universal function, the approximation property of NN-based 

identification of mobile robot formation dynamics can be expressed as [25] 

( , ) ( , )T

i Ni Ni fi fi Ni Ni fif v v      , ( ) ( )T

i i gi gi i gig v v    ,                                                              (24) 



30 

 

  

where
6

fi

l  , 
6

gi

l   are NN target weight matrices with l  being number of neurons, 

and 6: l

fi  , and 6 2 2: l

gi    are activation functions and 6 1

fi  , 6 2

gi 

 are NN reconstruction errors.  Even though the dynamics of other robots are unknown to 

thi  robot, the regulation errors and control inputs are transmitted for identification of 

formation dynamics. 

      Then, the mobile robot dynamics (20) can be represented by using (24) as 

( , ) ( )i i Ni Ni i i if v g v    ( , ) ( )T T

fi fi Ni Ni gi gi i i fi gi iv v                    

( , ) 0 1

0 ( )

T

fi fi Ni

fi gi i

gi gi i i

v

v

  
  

  

     
       

    
                       

( , )T

Ii Ii Ni Ni i Iiv      ,                                                                                                                               (25) 

where
2 6[ ]T T T

Ii fi g

l

i     and, ( ) { ( , ), ( )}Ii i fi Ni gi idiag v v     , 6 3 2 3:I

l

i    

represent the NN identifier target weights matrix and activation function, respectively, 

where 3[1 ]T T

i i    and Ii fi gi i      are being the augment control input and the 

NN identifier reconstruction error, respectively. Because ( )Ii v  is known, and  T

Ii  is 

unknown, equation (25) can be estimated as 

ˆ ˆ ( , )T

i Ii Ii Ni Ni i iv Ke      ,                                                                                                                          (26) 

with
2 6ˆ l

Ii   being an estimation of the NN weight matrix; furthermore, K  is a design 

parameter, which is used to maintain stability of the NN identifier, and ˆ
i i ie     presents 

the state estimation error. By substituting (26) with (25), the state estimation error 

dynamics for robot thi can be given as  
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ˆ ( , )T

i i i Ii Ii Ni Ni i Ii ie v Ke           ,                                                                                                (27) 

where   2 6ˆ
Ii Ii I

l

i       is the NN weight estimation error. The update law for ˆ
Ii  is 

defined to force the actual NN weights close to target NN weight in a finite time by using 

the Lyapunov stability theorem as 

ˆ ˆ ( , )Ii Ii Ii Ii Ni Ni i iv e        ,                                                                                                                      (28) 

with Ii  being the tuning parameter of the NN identifier satisfying 0Ii  . Since ˆ
Ii Ii  

, by using (28), the NN identifier weight estimation error dynamics can be written as 

ˆ ( , )Ii Ii Ii Ii Ni Ni i iv e                                                                                                                              (29) 

        The identification of robot formation dynamics (26) is utilized to determine the 

optimal controller of robot formation which is given in the next section.  

 FINITE HORIZON OPTIMAL CONSENSUS CONTROLLER DESIGN 

       To estimate the value function, ( , )i iV t , for thi  robot, we can define it as 

ˆˆ ( , ) ( , )
i i

T

i i V V i fV t t t     ,                                                                                                                       (30) 

The terminal condition then becomes 

ˆ ˆˆ ( , ) ( ,0)
i i

T

i i f V V iV t    ,                                                                                                                             (31) 

where ˆ ( , )i iV t  is the approximated value function, and ˆ
i

L

V   is the actual NN weights 

for the value function; additionally, ( , )i i fV t  is the approximated value function at the 

terminal time ft , and ˆ( ( ),0)
iV i ft  ℝ12 [0, )  → ℝ𝐿 is the activation function with 
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approximated terminal state  ˆ
i ft . Note that term  ˆ

i ft  is randomly chosen from a 

region of stability from the initial stabilizing control [26]. 

Using the NN approximation of value function (30), the approximated Hamiltonian 

is then given by 

ˆˆ ˆˆ ( , , ) ( , ) ( , ) ( )
i i i i i

T T

i i i V t V i f V V i f i iH t t t t t f             

1 ˆ ˆˆ( , ) ( ) ( , )
4 i i i i i i

T T

V V i f i V i f Vt t D v t t           ,                                                                                 (32) 

where 1ˆ ˆ ˆ( ) ( ) ( )T

i i i i iD v g v R g v  is obtained from the NN identifier.  Finally, the estimated 

control policy is given by 

11 ˆˆ ˆ( , ) ( ) ( , )
2 i i i

T T

i i i i V i f Vt R g v t t        .                                                                                           (33) 

             In order to derive the finite-horizon optimal control, both the time-varying nature 

of the value function and the terminal constraint needs to be included in a proper manner. 

With NN approximation, define the terminal constraint error as 

ˆ ˆ( ( ), ) ( ( ), )
f i i i

T

t i i f f V V i f fe t t t t      ˆ ˆ ( ( ), ( ), ) ( ( ), )
i i i i f i

T T

V V i f i f f V V i f f tt t t t t          , (34) 

where ˆ( ( ), ) ( ( ), ) ( ( ), )
i i iV i f f V i f f V i f ft t t t t t       . The objective is to minimize the 

approximated Hamiltonian (23) and the terminal constraint error (25) along the system 

trajectory, such that the optimality can be achieved while satisfying the terminal constraint. 

Hence, the total error is defined as 

2 4ˆ( ( , , )) 2 4
ftotali i i i t ie H t e    .                                                                                                               (35) 

The update law for tuning the NN weights is found by minimizing (35) using normalized 

gradient descent as 
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3

1 22 2

ˆ ˆˆ ˆ ( , , )
ˆ ˆ ˆ ˆ(1 ) (1 )i fV i i i t iT T

H t e
 

    
   

  
 

3 ˆ( , ) ( ) ( )
2 i i iV i f i it t D v J 


          (36) 

where 
1 ˆˆ( , ) ( ) ( , )
2 i i i i i

T

V i f i V i f Vt t D v t t          , 1 , 2 , 3 and ˆˆ ( ( ), )
iV i f ft t    are 

positive design parameters and ( )
i iJ   is the partial derivative of a Lyapunov candidate 

with respect to i . The last term in (36) ensures the system states remain bounded while 

the NN scheme learns the optimal cost function [18]. 

      Theorem 1: Consider the formation dynamics of the thi  mobile robot (20) in a 

network of robots. Assume that, each robot broadcasts its regulation errors and control 

torques over the network without any communication delays; furthermore, the topological 

graph of the robot in the communication network satisfies Assumptions 1 and 2 given in 

the paper. Let the NN weight update law for the identifier and the value functions 

approximation are given as (28), and (36), respectively, and the estimated control input is 

given as (33).  Then, there exists positive design constants, 1 0  , 2 0 

41 2
3

2

4 ,
2

i

 
 




     12

min max

1

3
,

2 4
K R


 



  , allowing all robots to have a small 

bounded formation error i  and, they are also able to reach their desired position and 

orientation with a small, bounded regulation error .iv  Additionally, identification error 

ie  and the NN weights estimation errors for the NN identifier,
Ii , and the controller, 

Vi , are bounded. Further, the bounds are the function of final time ft , initial system state 

bound 
,0

i
JB


, initial identification error bound ,0ieB  and initial weight estimation error 

bound for NN identifier and controller ,0 ,0,
Ii Vi

B B  , respectively. 
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      Proof:  Refer to the appendix. 

        In Theorem 1, consensus-based formation errors were proven to be bounded for 

each robot. The bounded formation error is due to NN approximation error. In the literature, 

many papers have dealt with consensus and bounded measurement error [27] as well as 

bounded disturbances [9] for decentralized control systems. Since the formation error has 

proven to be eventually traced to bounded NN reconstruction errors, by using the 

assumption stated for network topology [27], we can claim that all regulation errors of the 

networked mobile robots are due to bounded reconstruction errors. Next, the consensus of 

the overall network of mobile robots will be introduced. 

      Theorem 2: Consider the formation dynamics (20) of the thi  robot in a team of 

mobile robots based on the neighboring sets. Let the NN weight update laws for the 

identifier and the value functions be given by (28), and (36), respectively. Then, let the 

control inputs given by (33) of each robot minimize the cost functions (21) and also 

guarantee that the robots reach consensus over their regulation errors. Furthermore, the 

leaderless group of robots will move toward their goal position while maintaining 

consensus on the way and, they eventually reach close to the goal position in a finite time. 

       Proof: See appendix. 

 

        Next it is worth mentioning the benefits of the proposed consensus-based finite 

horizon adaptive optimal controller(33). In the traditional leader-follower based formation 

control [24], each follower needs to receive the controller input and the state information 

of its leader while the communication delays are ignored. Once the communication is lost 

between a leader and the follower, the follower and the robots behind the follower will lose 

formation. However, this is not the case in the consensus based approach. As long as the 
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communication graph of the robot formation is connected, which means each robot 

transmits its information to at least one neighbor robot and receives at least one neighbor 

robot’s information, the consensus is preserved over the entire group.  

           Now, assume that thi  robot receives information from only part of the group. Then 

the formation dynamics of thi  robot becomes  

( , , ) ( )i i Ni Ni i i i if v v g v    .                                                                                                                      (37) 

      The neighboring set iN  can contain up to n robots. As mentioned before, the thi  

robot neighboring set should have at least one robot. To demonstrate this, let us assume 

that the thi  robot is at the edge of the group, and it can only receive information from the 

thj  robot. Then the formation dynamics of the thi  robot will be a function of only the
thj  

robot’s regulation error and controller such as 

( , , ) ( )i i i j j i i if v v g v    .                                                                                                                         (38) 

       Since the communication links are undirected, the formation dynamics of the 
thj  

robot needs to have thi  robot’s information 

( , , ) ( ) ,i i Nj Nj j j j j i Nj i Njf v v g v v v        ,                                                                                  (39) 

one can realize that
thj  robot can be considered as the leader [24] of thi  robot for this case. 

         In the worst case, if the thi  robot cannot receive any of the other robots information. 

Then the dynamics become 

( ,0,0) ( )i i i i i if v g v   ,                                                                                                                          (40) 

which is a function of its own regulation error. Then the thi  robot runs to its goal position 

without considering other robots. If others get thi  robot’s information, then every robot in 
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the group will align themselves with respect to thi  robot; otherwise, the rebel (unaligned) 

robots will be separated from the group and run by themselves to the goal position.  

          In the simulations, the performance of the controller is demonstrated for several 

network topologies. The proposed controller (33) not only stabilizes the formation 

dynamics (20) of the robots, but also minimizes a cost function in a finite time. Therefore, 

a novel cost function is proposed based on consensus error, regulation error and minimized 

in a desired finite time. Regulation and formation errors are penalized with two different 

penalizing matrices. In the simulation section, different penalizing matrices are utilized to 

inspect how it will affect the formation performance. Next, simulation results are given. 
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 SIMULATION RESULTS 

      This section presents performance of finite horizon optimal consensus control (33) 

in mobile robot formation in the presence of uncertain robot dynamics. Four non-

holonomic mobile robots are utilized to simulate robots that reach their desired positions 

as well as show how formation stability is maintained along the way.  Initial robot positions 

and velocities are selected as  

         1 2 3 40 0 0 0 0 20 0 20
T T

x x x x     ,

         1 2 3 40 0 0 0 20 0 20 0
T T

y y y y      

         1 2 3 40 0 0 0 0 0 0 0
T T

x x x x    , 

         1 2 3 40 0 0 0 0 0 0 0
T T

y y y y    . 

       Each robot is controlled by using finite horizon optimal formation control (33) and 

forced to achieve their desired positions and velocities by using minimum energy in 10 

seconds. Desired locations are given as  

   1 2 3 4 14 8 14 22
T T

d d d dx x x x      ,

   1 2 3 4 21 15 9 15
T T

d d d dy y y y  , and desired accelerations are all set to zero.

 The basis vector of value function estimation is done in two steps because of its 

time varying feature. In the first step, time dependent basis matrix is defined as  

49 48 49 48 47 49 50 50, , ,1;1, , , ; ; , ,...,1,ti r r r r r r rt t t t t t t         where 10rt t   representing 

the time left to reach the final destination.  Secondly, we show the dependent part of a basis 

vector for value function estimation defined as  
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2 2 2 2 3 2 3 2 4 3 4 3 6 6 50 1

1 12 1 2 12 1 1 2 12 1 1 2 12 1 1 2, , , ,..., , ,..., , ,..., , ,
T

i                     where 

 1 6, ,   corresponds to the regulation error of the thi  robot, and  7 12, ,   corresponds 

to the formation error of thi robot. 

      Subsequently, the basis vector of value function estimation is given as 

multiplication of time-dependent and state-dependent parts,  
50 1

Vi ti i     .   For the 

identifier NN, activation function is selected in the same manner as the time-invariant part 

of the value function basis vector,  

2 2 2 2 3 2 3 2 4 3 4 3 6 6 50 1

1 12 1 2 12 1 1 2 12 1 1 2 12 1 1 2, , , ,..., , ,..., , ,..., , ,
T

fi                     , 

2 2 6 5 6 15 1

1 1 2 2 1 1 2 2, ,..., ,..., , ,...,
T

i i i i i i i iv v v v v v v v      and 
50 1 65 2

15 1

0

0

fi

Ii

gi






 



 
  
 

 . Initial NN 

weights are selected as small random numbers as  0 0.01*rand 65,12IW   and 

 0 0.02*rand 50,12VW   for both the identifier and value function NNs. The history of 

NN weights for value function approximation is illustrated in Figure 5.1. Moreover, the 

value function is defined as function of regulation error, formation error and control input 

of each robot as 

10

0
( ,0) ( (10),10) ( ( ) )TV Q u Ru dt                                                                                             (41) 

where  eye 2,2R   is identity matrix, 

       1 6 1 1 6 7 12 2 7 12

1 1
( ) , , , , , , , ,

2 2

T T
Q Q Q          where 6 6

1Q   and 

6 6

2Q   become positive definite matrices to penalize regulation error and formation  
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error, respectively; hence, terminal constraint is given as 

   ( (10),10) 1.2 1.2 1.2 1.2 1.2 1.2 ,3* 1.2 1.2 1.2 1.2 1.2 1.2
T

T T
   

 
. 

 

Figure 5.1 Robot movements on x-y plane. 

     The simulation results are given for three different communication scenarios among 

the four robots.  

 FULL CONNECTIVITY 

       In this case, it is assumed that each one of the four robots is able to receive the 

regulation errors and controller torques of all other robots, i.e., the connectivity matrix is 

chosen as  

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

L

 
 
 
 
 
 

 .  
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       Figure 5.1 depicts how robots move from their initial position to their goal 

positions. Since the initial position of the second robot is farther away from its desired 

position, it moves faster to minimize the formation error and reaches the goal position at 

the same time as the other robots. The NN weights converge in the first couple seconds as 

shown in Figure 5.2. 

 

Figure 5.2 Value function estimation NN weight history. 

        In Figure 5.3, regulation and formation errors are depicted for all four robots. It is 

assumed that each robot has all the information possessed by the other three robots. In the 

cost function (41), the regulation and formation errors are penalized equally, 1 2Q Q . 

        However, Figure 5.4 shows the effect of penalizing matrices on the formation 

performance of robots. In Figure 5.4, performance of controller (33) with two different cost 
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functions is compared. The first plot illustrates how regulation errors converge when 

formation errors are penalized five times larger than regulation errors, 1 20.2Q Q , and the 

second plot depicts the regulation errors with equal penalizing matrices. As can be 

observed in Figure 5.4, the third robot moves away from its goal position initially to 

maintain formation; however, in the second plot, the third robot converges to the goal 

position directly.   

          Analysis of the HJB equation and terminal constraint errors have been given in 

Figure 5.5, which show that not only the HJB equation error but also terminal constraint 

errors converge close to zero within the finite time (i.e.,  0,10t s ).     

        According to Theorem 2, the proposed finite horizon optimal design can ensure 

the boundedness of both HJB and terminal constraint errors within finite horizon. 

Moreover, the convergence of the HJB and terminal constraint errors confirm that the 

approximated control input (33) approaches the finite horizon optimal control input over 

finite time. 

          As shown in Figure 5.3, Figure 5.6 and Figure 5.7, the proposed finite horizon 

optimal control can force robot states to converge close to zero within a finite horizon; or, 

in other words, the proposed controller scheme can maintain the boundedness even in 

presence of uncertain robot dynamics. 
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Figure 5.3 Error convergences with full communication. 

 

Figure 5.4 Effect of cost function on performance of controller. 
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 PARTIAL CONNECTIVITY 

        In this second case, the communication graph of the robots is assumed to be 

similar to Figure 2.2 in terms of connectivity whereas each robot is able to receive only 

part of group member’s information, i.e., the connectivity matrix is chosen as

0 0 0 1

0 0 0 1

0 1 0 1

1 0 1 0

L

 
 
 
 
 
 

. 

        Even in this case, because the graph is connected, the performance of formation 

controller is almost similar to the full connected case. The performance of the controller is 

given in Figure 5.6. 

 

Figure 5.5 Hamiltonian and terminal constraint errors. 
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Figure 5.6 Error convergences with connected communication. 
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       From Figure 5.7, it is clear that the regulation error of the second robot converges 

to zero independently from others; however, the other three robots converge to the same 

value in the first couple of seconds.   
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Figure 5.7 Error convergences with unconnected communication graph. 
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 CONCLUSIONS 

            In this paper, a finite horizon optimal consensus-based formation controller was 

designed for mobile robot formation in the presence of uncertain robot dynamics. The 

consensus-based control was derived for a formation of mobile robots by taking into 

account their dynamics.  Subsequently, the cost function derived as a function of regulation 

and formation errors would be able to generate optimal inputs to each robot such that the 

entire formation will travel in consensus from an initial position to the goal position.  An 

NN identifier generated the formation dynamics while the time-varying value function 

approximated the solution to the HJB equation.  Simulation results confirm the theoretical 

conclusions. 
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APPENDIX 

           Proof of Theorem 1: Define Lyapunov candidate function as 
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            Moreover, where 1
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      Combining (A.1), (A.2) and (A.3), the first derivative of the overall Lyapunov 

function candidate, L , can be expressed as 
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where minQ  is defined similar to Lemma 1,  
2

i Mi   is the partial derivative of square of 

terminal constraint error 
2( , )i ft t    with respect to formation error i  of thi   robot. 

       Using the standard Lyapunov theory [28] and previous derivation (A.4-A.5), 

within finite horizon, all the signals are bounded. 
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           Proof of Theorem 2: Define the sum of Lyapunov functions given in (A.1) as  
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     Then, it is straightforward to realize from Proof of Theorem 1 that 0L   provided  
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are bound, and there is only 

a finite number, n  , of robots in the group, then 
1 1 1 1
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n n n n
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

   

    are also 

bounded. These bounds can be minimized by choosing proper design parameters, which 

guarantees that all the formation errors are bounded (resulting in consensus on the 

leaderless robot group’s regulation errors), and the robots get their goal position with some 

bounded regulation errors. 
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II. HYBRID CONSENSUS-BASED CONTROL OF NONHOLONOMIC 

MOBILE ROBOT FORMATION     

ABSTRACT 

       This paper addresses the hybrid consensus-based formation keeping problem for 

nonholonomic mobile robots in the presence of a novel time-varying, composite, nonlinear 

velocity-tracking error system. First, continuous-time regulation and consensus-based 

formation controllers are developed for a group of wheeled mobile robots. These 

controllers are then used to create a hybrid automaton, which drives the robots to their goal 

positions while maintaining a specified formation. In order to avoid the hard switches 

between regulation and formation keeping controllers, a novel blended velocity tracking 

error approach is proposed in this work to create nonlinear, time-varying velocity error 

dynamics.  Therefore, the hybrid controller consists of two discrete modes, each with 

continuous dynamics, and the novel blended velocity tracking error approach provides a 

smooth transition between each mode. The controller in the regulation mode drives the 

robot to a goal position while the formation keeping controller ensures that the robots 

achieve a specified geometric formation prior to reaching their goal-position. Time-

varying Lyapunov functions are used to rigorously demonstrate that the formation errors 

converge to a small bounded region around the origin and the size of the bound can be 

adjusted by using the switching conditions. Convergence to goal position while in 

formation is also demonstrated in the same Lyapunov analysis illustrating that the robots 

are converging to their goal positions while operating in both regulation and formation 

keeping mode.  Simulation results verify the theoretical conjectures.    
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 INTRODUCTION 

       Over the last few decades, the robot control research community has given 

significant attention to formation control of multiple vehicles since using multiple vehicles 

can be very beneficial for certain tasks since a single, heavily equipped vehicle may require 

much more power and lack the robustness needed to avoid failure. For example, in military 

missions, a group of autonomous vehicles are required to keep in a specified formation for 

area coverage and reconnaissance; hence, multiple vehicles can complete tasks requiring a 

large area coverage much faster than a single vehicle. Therefore, the coordination of 

multiple wheeled robots, unmanned air/ocean vehicles, satellites, aircraft and spacecraft 

[1]-[8] have been investigated as applications of vehicle formation control.  

       Mobile robot formation control is also the focus of researchers [9]-[12] and several 

different approaches such as behavior-based, generalized coordinates, virtual structure and 

leader-follower strategies, have been proposed. In the formation control of wheeled mobile 

robots [13], kinematics are considered and either perfect velocity tracking is assumed or 

only a nominal part of the nonlinear velocity tracking error dynamics are considered. A 

novel leader-follower-based formation control algorithm was developed in [3], which 

considers complete nonlinear dynamics of both the leader and the followers. 

     Consensus-based formation control [4]-[8] is considered to be more robust and 

reliable when compared to other formation control methods due to scalability [4], [7] and 

inherent properties that enable the formation to continue even if one of the robots 

experiences a failure. In consensus-based formation control, the robots share information 

regarding their position errors from their respective goal positions.  The shared information 
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is then synthesized into a control law which seeks to achieve the same position error for all 

robots until each robot has reached its goal position. The desired formation is achieved and 

maintained by reaching and maintaining consensus on the position errors.  Therefore, the 

main tasks in consensus-based formation control are described as: i) given an initial state, 

achieve a desired formation, and ii) maintain this formation while the robots move through 

the environment to reach their desired goal position. Completing task ii) is equivalent to 

solving the regulation problem for the formation. 

        For nonholonomic systems, the regulation problem is not straightforward due to 

nonholonomic constraints and Brockett’s theorem. In [13], nonholonomic robot kinematics 

are transformed into polar coordinates to satisfy Brockett’s theorem, and control velocities 

are developed to solve the regulation problem. However, the work in [13] assumed perfect 

velocity tracking and did not consider the robot dynamics. In addition, several others [4]-

[8] have considered consensus-based formation control but failed to consider velocity 

tracking error dynamics in their controller design.   

         Motivated by the aforementioned limitations of existing consensus [4]-[8] and 

regulation controllers [13], this work develops a novel time-varying velocity tracking error 

system to solve the formation regulation control problem with guaranteed performance for 

nonholonomic wheeled mobile robots.  A hybrid automaton is proposed to control the 

nonholonomic mobile robots with nonlinear dynamics in two discrete modes: a regulation 

mode and a formation keeping mode. The regulation mode drives each robot to a constant 

goal position while the formation-keeping mode ensures that the robots achieve and 

maintain a specified geometric formation prior to reaching their goal position to solve the 

formation regulation problem. In order to avoid hard switches between regulation and 
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formation keeping modes, a novel blended time-varying velocity tracking error approach 

is developed. The blended error approach ensures the robots’ velocity tracking errors and 

control torques are continuous at the switching conditions.  Time-varying Lyapunov 

functions are used in conjunction with multiple Lyapunov methods [15] to provide stability 

of the hybrid system. Unlike current approaches available in the literature [4]-[7], this work 

considers the kinematics and dynamics of each mobile robot as well as the formation.      

         The main contributions of the paper include the development of: a) a nonlinear 

consensus-based formation control technique which considers the nonlinear robot 

dynamics; b) a hybrid regulation-formation controller design for nonholonomic mobile 

robots; c) a novel blended velocity tracking error approach to avoid hard switches between 

different modes of the hybrid system; and d) analysis of the nonlinear hybrid system’s 

stability using time-varying Lyapunov functions to prove the guaranteed performance of 

the approach.        

         The remainder of the paper is organized as follows. Section 2 presents a brief 

background on hybrid automata while Section 3 derives the continuous time regulation and 

formation controllers used by our hybrid controller.  Section 4 discusses the main result and 

derives the hybrid regulation-formation controller of nonholonomic mobile robots. Before 

offering conclusions in Section 6, Section 5 provides simulation results to support the 

theoretical results. 
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 BACKGROUND ON HYBRID AUTOMATA 

       In this section, the hybrid automata problem considered in this work is introduced 

first, followed by the necessity for a specialized method for analyzing hybrid controller 

designs.  

       The goal of the proposed control scheme is to keep the networked robots in a 

predefined formation while they move toward their desired positions. Therefore, two 

different discrete modes will be considered: regulation and formation modes. The general 

hybrid approach is depicted in Figure 2.1 where the regulation and formation modes are 

identified. The robots move to their respective goal locations in the regulation mode while 

monitoring the formation error. If the formation error threshold is exceeded, the robots 

transition to the formation mode wherein the robots are controlled to achieve their desired 

formation.  Once the formation tracking is achieved, the robots return to the regulation 

mode.  This cycle repeats until the each robot reaches its goal position.   

          The switching cycle creates a hybrid system with both continuous and discrete 

dynamics. Due to the hybrid nature of the system, traditional analysis techniques that 

consider purely discrete or purely continuous system dynamics may not be sufficient to 

analyze the system. The work in [15] illustrates through counter examples that two 

asymptotically stable systems may become unstable due to switching conditions when a 

hybrid system is formed. 

        Therefore, to prove the stability of hybrid systems such as the one modeled in Figure 

2.1, the authors from [15] introduced an analysis method involving multiple Lyapunov  
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functions.  In order to claim that the switched system is stable, the stability of each discrete 

state must be individually proven while considering restrictions on  switching conditions.  

Formation Mode 
Control Scheme

Regulation Mode 
Control Scheme

Formation Error > Upper Threshold

Formation Error < Lower Threshold  

Figure 2.1 General hybrid scheme considered in this work. 

        Consider the switched hybrid system given by 

 kX f X  ,                                                                                                          (42) 

where 𝑋 is the state variable and each 𝑓𝑘(𝑋) describes continuous dynamics of the kth 

discrete mode. It is assumed that each 𝑓𝑘 is globally Lipchitz continuous and that a finite 

number of switches occur among the discrete modes in a finite time. The following lemma 

presents the necessary and sufficient conditions needed to achieve the stability of a hybrid 

system.    

Lemma 1 [15]: Given a hybrid system with m modes, let each mode contain 

continuous dynamics in the form of (42) with 1,2, ,k m   and let each continuous system 

have an equilibrium point at the origin. Define m Lyapunov candidate functions 

corresponding to each of the m modes as 1 2, , , mV V V    respectively. Let time ckt denote the 
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time instant that mode k becomes active, and let time akt denote the time instant that mode 

k was previously activated where ak ckt t . Then, the hybrid system is stable if the following 

criteria are satisfied for all modes, 1,2, ,k m . 

1. kV  decreases when the dynamics kf   are active, and 

2.    k ck k akV t V t . 

           Proof: See [15] for detailed proof. 

        Graphically, the conditions for lemma can be illustrated by plotting the Lyapunov 

functions as shown in Figure 3.1.     The multiple Lyapunov function-based approach given 

in Lemma 1 will be utilized to prove the stability of the hybrid controller presented in 

Section IV. Next, the regulation and formation controller design is given. 
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 REGULATION AND CONSENSUS-BASED FORMATION CONTROL OF 

NONHOLONOMIC ROBOTS 

            In this section, first, a nonlinear continuous time regulation controller is designed 

for a single nonholonomic mobile robot. Then, the consensus-based formation control 

problem is considered for a group of nonholonomic mobile robots.  For nonholonomic 

systems, additional considerations are required to solve both the regulation problem and 

the formation control problem due to the added complexities introduced by the 

nonholonomic constraint.   

 

Figure 3.1 Multiple Lyapunov function values versus time (m = 2).  

      Solid lines indicate the system is active while dashed lines indicate that the system 

is inactive [15]. 

      Consider the nonholonomic robot shown in Figure 3.2. The equations of motion 

about the center of mass, 𝐶, for the ith robot are written as [16] 
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  ,                                                           (43) 

where id  is the distance from the rear axle to the robot’s center of mass; [ ]T

i ci ci iq x y   

denotes the Cartesian position of the center of mass and orientation of the 𝑖𝑡ℎ robot; 𝑣𝑖, and 

𝜔𝑖 represent linear and angular velocities, respectively, and [ ]T

i i iv v      for the 𝑖𝑡ℎ robot.   

        Many robotic systems can be characterized as having an n-dimensional 

configuration space 𝒞 with generalized coordinates 1( ,... )nq q   subject to   constraints [16].  

Applying the transformation [16], the dynamics of the 𝑖𝑡ℎ mobile robot are given by 

__

( , ) ( )i i mi i i i i i di iM v V q q v F v       ,                                                                                                      (44) 

where x

iM       is a constant positive definite inertia matrix, x

miV    is the bounded 

centripetal and Coriolis matrix, iF   is the friction vector, 
di

   represents unknown 

bounded disturbances such that di Md        for a known constant, Md , x

iB    is a 

constant, nonsingular input transformation matrix, i i iB     is the input vector, and 

i

   is the control torque vector.  For complete details on (44) and the parameters that 

comprise it, see [16]. For this work 3n  , 1 and 2  .  

        Next, a controller is designed to enable the 𝑖𝑡ℎ nonholonomic robot to drive to its 

goal position during the regulation mode.  
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 REGULATION CONTROL OF MOBILE ROBOTS  

        The kinematics of the 𝑖𝑡ℎ mobile robot can be written as  

 

 

cos 0

sin 0

0 1

i i

i

i i

i

i

x
v

y
w







  
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    
      

,                                                                                                                        (45) 

where (𝑥𝑖, 𝑦𝑖) is the point centered between the 𝑖𝑡ℎ robot’s driving wheels.  The objective 

of the regulation controller design synthesis is to stabilize (45) about a desired posture, 

𝑞𝑖𝑑 = [𝑥𝑖𝑑   𝑦𝑖𝑑    𝜃𝑖𝑑]𝑇. However, due to Brockett’s theorem [18], smooth stabilizability of 

the driftless regular system (45) requires the number of inputs to equal to the number of 

states, a property not satisfied by (45). The above obstruction has a significant impact on 

controller design. In fact, to obtain a posture stabilizing controller, it is necessary to use 

discontinuous and/or time-varying control laws [13]. 

        A technique which allows us to overcome the complication presented by the 

Brockett theorem is to apply a change of coordinates such that the input vector fields of the 

transformed equations are singular at the origin. This approach is carried out using a polar 

coordinate transformation, and the control law, once rewritten in terms of the original state 

variables, is discontinuous at the origin of the configuration space 𝒞. 

         Consider again the robot shown in Figure 3.2.  Let 𝜌𝑖 be the distance of the point 

(𝑥𝑖, 𝑦𝑖) of the robot to the goal point (𝑥𝑖𝑑, 𝑦𝑖𝑑). Let 𝛼𝑖 be the angle of the pointing vector 

to the goal with respect to the robot’s main axis (labeled as 𝑋𝑅 in Figure 3.2), and define 

𝛽𝑖 to be the angle of the same pointing vector with respect to the orientation error [13]. 

That is, 
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2 2

i i ix y     ,  atan2 ,i i i iy x         , 𝛽𝑖 = 𝛼𝑖 + 𝜃𝑖 − 𝜃𝑖𝑑 ,                               (46) 

where Δ𝑥𝑖 = 𝑥𝑖𝑑 − 𝑥𝑖 and Δ𝑦𝑖 = 𝑦𝑖𝑑 − 𝑦𝑖. Then, the polar coordinate kinematics of a 

mobile robot can be given as discussed in [13] and expressed as 

cos( ) 0

sin( ) / 1

sin( ) / 0

i i

i

i i i

i

i i i

v
 

  


  

   
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      
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.                                                                                                                (47) 

        From (47), it is observed that the input vector field associated with 𝑣𝑖 is singular for 

𝜌𝑖 = 0, thus satisfying Brockett’s Theorem. To drive mobile robots from any initial 

position to a goal position, a nonlinear control law is given as [13] 

icosαid iv k  ,   
sin  cosi i

id i i i

i

k k k  

 
   



 
   

 
,                                                     (48) 

where 𝑘𝜌, 𝑘𝛼, and 𝑘𝛽 are positive design constants.  As shown in [13], the controller (48) 

provides asymptotic converge to the constant desired posture. However, the results are 

obtained using the perfect velocity tracking assumption [16] (assuming that 𝑣𝑖𝑑 = 𝑣𝑖 and 

𝜔𝑖𝑑 = 𝜔𝑖) which does not hold in practice.   

To relax the perfect velocity tracking assumption, the backstepping technique will be 

employed next. 

      Define the velocity tracking error as  

𝑒𝑖𝑣
𝑅 = [

𝑒𝑖𝑣1
𝑅

𝑒𝑖𝑣2
𝑅 ] = 𝑣̅𝑖𝑑 − 𝑣̅𝑖,                                                                                                                            (49) 

where 𝑣̅𝑖𝑑 = [𝑣𝑖𝑑   𝜔𝑖𝑑]𝑇.  Rearranging (49) gives 𝑣̅𝑖 = 𝑣̅𝑖𝑑 − 𝑒𝑖𝑣
𝑅 , and substituting this 

expression into the open loop system (47)  while using (7) reveals 
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]
 
 
 
 

.                                                      (50) 

 

Figure 3.2 Nonholonomic mobile robot. 

        The closed loop kinematic system (50) explicitly considers the velocity tracking 

error (49).  Therefore, the backstepping technique ensures the robot tracks the design 

velocities (48). 

       Differentiating (48) and using (44), the mobile robot velocity tracking error system 

as 

( , ) ( )R R

i iv mi i i iv i i i diM e V q q e f z      ,                                                                                                    (51) 

where ( ) ( , ) ( )i i id mi i i id i if z M v V q q v F v   and contains the mobile robot parameters such 

as masses, moments of inertia, friction coefficients, and so on. When the robot dynamics  

 



73 

 

  

are known, the control torque applied to the robot system (44), which ensures the desired 

velocity (48), is achieved and is written as 

𝜏𝑖̅ = 𝐾𝑣𝑒𝑖𝑣
𝑅 + 𝑓(𝑧𝑖) + λi(𝜌𝑖, 𝛼𝑖, 𝛽𝑖),                                                                                                        (52)    

where 𝜆𝑖(𝜌𝑖 , 𝛼𝑖, 𝛽𝑖) = [
cos 𝛼𝑖 (𝜌𝑖 + 0.5(𝑎𝑖

2 + 𝑘𝛽𝛽𝑖
2)) − sin 𝛼𝑖 (𝛼𝑖 + 𝑘𝛽𝛽𝑖)

𝜌𝑖𝛼𝑖
] is a function 

of the polar coordinate error system (46) and is required for stability.  Substituting (52) into 

(51) reveals the closed loop velocity tracking error dynamics  

 i ,) , ( , λRR

i iv v mi

R

iv iv i i ii i diM e ee K V q q        .                                                                            (53) 

The control torque (52) will be used in the development of the hybrid approach considered 

in Section 4 where stability is also considered. Next, the consensus-based formation 

controller is considered. 

 CONSENSUS-BASED FORMATION CONTROL 

        In [16], a controller was designed to ensure that all regulation errors for the linear 

systems achieved a common value. Due to the nonholonomic constraints considered in this 

paper, the formation consensus error is defined as the difference between the robot’s own 

regulation error and the regulation error of its neighbor, referred to as robot j. As shown in 

[5], average consensus is achieved if the information exchange topology is both strongly 

connected and balanced. In the case that the information exchange topology has a spanning 

tree, the final consensus value is equal to the weighted average of initial conditions of those 

agents that have a directed path to all the other agents [5]. In this work, we will assume that 

the information exchange topology forms a spanning tree. 

        To begin, define the consensus error between the thi  robot and robot 𝑗 as 

xi i jx x     , yi i jy y      and i i j     for the 𝑥 and 𝑦 directions and the 
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bearing angle, respectively. In this work, it will be assumed that the desired heading angles, 

𝜃𝑖𝑑, are common for each robot in the formation so that each robot is oriented in the same 

direction when arriving at the goal points.  Under this mild assumption, 𝛿𝜃𝑖 = 𝜃𝑖 − 𝜃𝑗 . 

        Next, the consensus formation error is transformed into the reference frame attached 

to the mobile robot as 

𝑒𝑖𝐹 = [

𝑒𝑖1

𝑒𝑖2

𝑒𝑖3

] = [
cos 𝜃𝑖 sin 𝜃𝑖 0

− sin 𝜃𝑖 cos 𝜃𝑖 0
0 0 1

] [

𝛿𝑥𝑖

𝛿𝑦𝑖

𝛿𝜃𝑖

] .                                                                                     (54)

Taking the derivative of (54) reveals 

[

𝑒̇𝑖1

𝑒̇𝑖2

𝑒̇𝑖3

] = [

𝑒𝑖2𝜔𝑖 + 𝑣𝑖 − 𝑣𝑗 cos(𝜃𝑖 − 𝜃𝑗)

−𝑒𝑖1𝜔𝑖 + 𝑣𝑗 sin(𝜃𝑖 − 𝜃𝑗)
𝜔𝑖 − 𝜔𝑗

],                                                                                             (55)

which resembles the trajectory tracking error system from single robot control architectures 

that track a virtual reference cart [16]. In this work, instead of tracking a virtual cart, the 

robot attempts to reach consensus with its neighbor to achieve a desired formation, and 

each 𝑒𝑖(−) represents the consensus error instead of the trajectory tracking error. 

        Under the perfect velocity tracking assumption, the consensus-based formation 

control velocity is given by 

𝑣̅𝑖𝑑
𝐹 = [

𝑣𝑖𝑑
𝐹

𝜔𝑖𝑑
𝐹 ] = [

−𝑘1𝑒𝑖1 + 𝑣𝑗 cos(𝜃𝑖 − 𝜃𝑗)

𝜔𝑗 − 𝑘2𝑣𝑗𝑒𝑖2 − 𝑘3 sin(𝜃𝑖 − 𝜃𝑗)
].                                                         (56) 

         Next, the backstepping technique is once again employed. For convenience, we 

again denote the velocity tracking error using the definition in (49) with 𝑣̅𝑖𝑑 replaced by 

𝑣̅𝑖𝑑
𝐹  for formation control. Defining 1 2  

T
F FT FT F

iiv iv iv ide e e v v       reveals, 𝑣̅𝑖 = 𝑣̅𝑖𝑑
𝐹 − 𝑒𝑖𝑣

𝐹 , 

and (55) becomes 
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[

𝑒̇𝑖1

𝑒̇𝑖2

𝑒̇𝑖3

] = [

𝑒𝑖2𝜔𝑖 − 𝑘1𝑒𝑖1 − 𝑒𝑖𝑣1
𝐹

−𝑒𝑖1𝜔𝑖 + 𝑣𝑗 sin(𝜃𝑖 − 𝜃𝑗)

−𝑘2𝑣𝑗𝑒𝑖2 − 𝑘3 sin(𝜃𝑖 − 𝜃𝑗) − 𝑒𝑖𝑣2
𝐹

].                                                                (57) 

        Finally, from the velocity tracking error in the form of dynamics (51), define the 

control torque which ensure the robot tracks the desired velocity (58) as  

𝜏𝑖̅ = 𝐾𝑣𝑒𝑖𝑣
𝐹 + 𝑓(𝑧𝑖) + γ(𝑒𝑖1, 𝑒𝑖2, 𝑒𝑖3),                                                                              (59) 

where γ(𝑒𝑖1, 𝑒𝑖2, 𝑒𝑖3) = [−𝑒𝑖1    −
1

𝑘2
sin 𝑒𝑖3]

𝑇

 is a function of the consensus error states  

and is required for stability. Substituting (59) into (51) reveals the closed loop velocity 

tracking error dynamics  

 1 2 3γ ,  ,( , )F F F

i iv v iv mi i i i i i iv diM e K e V q q e ee e     .                                                           (60) 

         The control torque (61) will be used in the development of the hybrid approach in 

Section 4, considered next, for the development of the hybrid consensus-based 

regulation/formation controller design. 
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 HYBRID CONSENSUS-BASED FORMATION CONTROL OF 

NONHOLONOMIC ROBOTS 

       In this section, the regulation error based desired velocities (48) and the consensus 

based desired velocities  are used to formally develop the hybrid regulation-formation 

controller for a group of nonholonomic mobile robots described by (44) and (45). The 

hybrid controller ensures that the nonholonomic systems reach their desired positions while 

keeping the formation on their way. 

In our previous work [16], the linear and angular velocity tracking errors for point 

mass systems are switched between regulation and formation modes without consideration 

of discontinuities in the control input observed during a switching event. In practice, 

physical systems may not respond well to the high frequency signals introduced by the 

non-smooth controllers.  Therefore, to avoid the discontinuous control inputs during a 

mode switch, novel blended velocity tracking errors are first introduced for both regulation 

and formation modes. Under the hybrid control approach, the regulation and formation 

mode controllers will be functions of the blended velocity tracking errors discussed next. 

        First, define the novel blended velocity tracking error for the regulation mode as 

         0 1 0 2 0, , , ,R F R

vi iv ivE t t B t t e t B t t e t                                                                       (62) 

where 𝑒𝑖𝑣
𝑅 (𝑡) is the regulation mode velocity tracking error from (8) using the desired 

regulation velocity (7), and 𝑒𝑖𝑣
𝐹   is the formation mode velocity tracking error written in the 

form of (8) using the desired consensus-based velocity (56).  The time-varying functions 

 𝐵1(𝑡, 𝑡0) = exp(−𝑘𝑑(𝑡 − 𝑡0)) and 𝐵2(𝑡, 𝑡0) = 1 − exp(−𝑘𝑑(𝑡 − 𝑡0)), are the blending 

functions with ot  being the time that the current mode (regulation or formation mode) was 
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initiated, and dk  is a design constant controlling the exponential convergence rate. 

Similarly, the blended velocity tracking error for the formation mode is written as 

         0 1 0 2 0, , ,F R F

vi iv ivE t t B t t e t B t t e t  .                                                                                           (63) 

Remark: In both modes (regulation and formation), the velocity tracking errors 𝑒𝑖𝑣
𝑅  

and 𝑒𝑖𝑣
𝐹  are both calculated to form the blended mode errors (62) and (63). 

       The blending functions are chosen to satisfy the desired continuity properties at the 

switching conditions. At 𝑡 = 𝑡0, 𝐵1(𝑡, 𝑡0) = 1 and 𝐵1(𝑡, 𝑡0) → 0 as 𝑡 → ∞.  Conversely, 

𝐵2(𝑡, 𝑡0) = 0 at 𝑡 = 𝑡0 and 𝐵2(𝑡, 𝑡0) → 1 as 𝑡 → ∞.  Also, the blended regulation velocity 

tracking error,  0,R

viE t t , converges to the actual regulation velocity tracking error,  R

ive t , 

as time goes to infinity and the blended formation velocity tracking error,  0,vi

FE t t    , 

converges to the actual formation velocity tracking error,  F

ive t  , as time goes to infinity as 

well.  

        Moving on, the blended velocity tracking error dynamics are formed by 

differentiating (62) and (63) and applying the results from Section 3.  First, differentiating 

(62) and applying steps similar to those used to form (51) and (60) gives 

𝑀̅𝐸̇𝑣𝑖
𝑅 (𝑡, 𝑡0) = 𝑀̅ (𝐵̇1(𝑡, 𝑡0)𝑒𝑖𝑣

𝐹 (𝑡) + 𝐵̇2(𝑡, 𝑡0)𝑒𝑖𝑣
𝑅 (𝑡)) 

+(𝐵1(𝑡, 𝑡0) (−𝑉𝑚𝑒𝑖𝑣
𝐹 + 𝑓𝑖(𝑧𝑖

𝐹)) + 𝐵2(𝑡, 𝑡0) (−𝑉𝑚𝑒𝑖𝑣
𝑅 + 𝑓𝑖(𝑧𝑖

𝑅)) − 𝜏̅).                                 (64) 

Next, differentiating (63), and applying steps similar to those used to form (51) and (60) 

reveals 
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𝑀̅𝐸̇𝑣𝑖
𝐹 (𝑡, 𝑡0) = 𝑀̅ (𝐵̇1(𝑡, 𝑡0)𝑒𝑖𝑣

𝑅 (𝑡) + 𝐵̇2(𝑡, 𝑡0)𝑒𝑖𝑣
𝐹 (𝑡)) + (𝐵1(𝑡, 𝑡0) (−𝑉𝑚𝑒𝑖𝑣

𝑅 +

𝑓𝑖(𝑧𝑖
𝑅)) + 𝐵2(𝑡, 𝑡0) (−𝑉𝑚𝑒𝑖𝑣

𝐹 + 𝑓𝑖(𝑧𝑖
𝐹)) − 𝜏̅).                                                                   (65) 

         To stabilize the blended regulation and formation velocity tracking error systems 

(64) and (65), respectively, the novel  torque control inputs are found to be 

                4 1 2 1 2, , , ,R R F R R F R

i vi b iv b iv M vi b i i c i iK E M B t t e t B t t e t V E B t t f z B t t f z        

       1 2 31 2, γ ,  , , ,  , i i i i i ib bB t t e e e B t t                                                                                           (66) 

and 

        4 2 1, ,F F F R

i vi c iv c ivK E M B t t e t B t t e t   

       2 1, ,F F R

M vi c i i c i iV E B t t f z B t t f z     

       2 1 2 3 1, γ ,  , , ,  , c i i i c i i iB t t e e e B t t                                                                                           (67) 

where 𝐾4 ∈ R2×2is a positive definite matrix. 

         As discussed in [16], stability of the individual continuous controllers does not 

guarantee that the discrete dynamics and the hybrid switched system are also stable [15]. 

Therefore, the switching conditions between the modes must also be defined. The 

switching conditions considered in this work will be based on two criteria.  First, the robots 

must consider the size of the formation errors to assess how well the formation is being 

maintained.  Second, to enable smooth control inputs at the switching conditions, the robots 

must also measure the convergence of the blended velocity tracking errors (31) and (32) to 

their respective mode velocity tracking errors in the form of (8). First, the switching 

thresholds for assessing the formation keeping performance are defined.  The upper and 

lower thresholds for switching between the formation and regulation modes are given as 
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    0

min

t t

i t e  


                                                                                                                                (68) 

    0

min /
t t

i t e   


  ,                                                                                                                        (69)    

respectively, where min0, 1, 0      are design constants, and 0t  is the initial time of 

all states.  By construction of the time varying upper and lower bounds, a finite number of 

mode switches occurs in a finite time as required until Lemma 1 is satisfied.  

       A robot switches from the regulation mode to the formation mode when the 

formation errors based Lyapunov function,    2 2

11 2 3 22 1 cosiF i i ie e e kL     with 2k  

being a design constant, exceeds the upper-threshold, 𝜂̅𝑖(𝑡). In the formation keeping 

mode, the formation controller design in (70) brings the robots to a desired formation. Once 

the Lyapunov function converge to values below a lower-threshold of formation error, 

𝜂𝑖(𝑡), the robots transition back to the regulation mode. As long as the formation error 

Lyapunov, 1iFL   remains below the upper-threshold, the regulation controller (66) is 

applied the systems and the nonholonomic robots arrive at their target positions in 

formation. 

       The second switching condition is based on the convergence of the blended velocity 

tracking errors.  Under the hybrid approach, the regulation and formation mode controllers 

are functions of the blended velocity tracking errors, 𝐸𝑣𝑖
𝑅  and 𝐸𝑣𝑖

𝐹 , and it takes time for the 

blended errors to converge to the modal velocity tracking errors, 𝑒𝑣𝑖
𝑅  and 𝑒𝑣𝑖

𝐹  , respectively.  

It is observed, however, that the time durations that the robot controller operates in any 

single mode are unlikely to approach infinity.  Therefore, the blended velocity tracking 

error for the formation mode is only approximately equal to the blended tracking error for 
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the regulation mode when switching from formation keeping to regulation and vice versa. 

The difference between the two blended errors is dependent upon the duration of the current 

operating mode and can be controlled through the switching conditions and the 

convergence rate, 𝑘𝑑. 

      Therefore, the additional switching conditions enforce the continuity condition and 

are written as 

   || , ||R

vi c b

R

iv evE t t e t    ,                                                                                                                         (71) 

   || , ||F F

vi b a iv evE t t e t        ,                                                                                                                     (72)                 

with ev   being a defined constant.  The blended regulation velocity tracking error needs to 

satisfy (71) before the transitioning to the formation keeping mode while the blended 

formation velocity tracking error must satisfy (72) before switching back to the regulation 

mode.   

         The controller of each discrete state and the thresholds needed to move between 

each of the modes are demonstrated in Figure 4.1. 

         As illustrated in Figure 4.1, the 𝑖𝑡ℎ robot is initiated in formation state at time at . 

Then, once the switching conditions are satisfied, the 𝑖𝑡ℎ robot transitions to the regulation 

state at time bt . The regulation state is active until the formation error exceeds the upper 

threshold at time ct , and the formation state is activated once again and remains active until 

time dt when the switching condition is satisfied.  
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         Next, the following theorems are given to provide the stability of the blended 

velocity tracking error dynamics (64) and (65) under the control of the input torques (66) 

and (67), respectively.   First, Theorem 3 presents the stability of the  

Formation Mode Regulation Mode

bt

ctat

ct

dt

d c b at t t t  

bt

     
2

|| , ||, R r

v ci b ivF eF i vE t t et te   

1 ( )iF iL t 1 ( )iF iL t

     
2

|| , ||, F F

v bi a ivF eF i vE t t et te   

        

       
       

4 1 2

1 2

1 1 2 3 2

, ,

, ,

, γ ,  , , ,  , 

R R F R

i vi b iv b iv

R F R

M vi b i i b i i

b i i i b i i i

K E M B t t e t B t t e t

V E B t t f z B t t f z

B t t e e e B t t



   

 

  

 

        

       
       

4 2 1

2 1

2 1 2 3 1

, ,

, ,

, γ ,  , , ,  , 

F F F R

i vi c iv c iv

F F R

M vi c i i c i i

c i i i c i i i

K E M B t t e t B t t e t

V E B t t f z B t t f z

B t t e e e B t t



   

  

  

 

   || , ||

OR

F F

v b a iv evE t t e t      || , ||

OR

R r

v c b iv evE t t e t  
 

Figure 4.1 Formation and regulation modes for nonholonomic systems. 

blended velocity tracking error for regulation followed by the stability of the blended 

velocity tracking error for formation keeping in Theorem 4.  Theorem 5 presents the 

stability of the hybrid controller. 

       Theorem 1: Given the 𝑖𝑡ℎmobile robot system described by (44) and (45), let the 

blended velocity tracking error and its dynamics for driving the nonholonomic system to 

the goal configuration, 𝑞𝑖𝑑, be given by (62) and (64), respectively, and let the control 

torque vector be defined by (66).   Then, in the absence of disturbances (𝜏𝑑̅𝑖 = 0), the 
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velocity tracking error system (64) and kinematic system (47) converge to the origin 

asymptotically, and the thi robot tracks its desired velocity and converges to its desired 

posture.  That is,  0, 0R

viE t t   and 𝑞𝑖 → 𝑞𝑖𝑑. 

       Proof: See appendix. 

       Theorem 2: Given the consensus error dynamics (55) for the thi   robot in the 

network, let the blended velocity tracking error and the error dynamics, (63) and (65) be 

defined for the thi  robot, respectively, and let the control torque be given by (67).  Then, in 

the absence of disturbances (𝜏𝑑̅𝑖 = 0), the velocity tracking error system (65) and 

consensus error system (57) converge to the origin asymptotically, and the thi robot tracks 

its desired velocity to achieve consensus with its neighbor robot j.  That is,  0, 0i

F

vE t t   

and Δ𝑥𝑖 → Δ𝑥𝑗, Δ𝑦𝑖 → Δ𝑦𝑗, and Δ𝜃𝑖 → Δ𝜃𝑗 .  Further, if the information exchange topology 

has a directed spanning tree, the final consensus errors are equal to the weighted average 

of initial consensus errors.  

         Proof: See appendix. 

            Remark:  Theorems 1 and 2 provide stability of each discrete mode by using 

different time-varying Lyapunov functions. However, a hybrid system can become 

unstable by using improper switching conditions among modes [15]. In our case, the 

formation errors may become unbounded during regulation modes or the distance error 

may eventually go to infinity during formation modes. Therefore, the stability of the 

switched system is provided next. 

        Theorem 3: Given the error dynamics of 𝑁 networked nonholonomic robots in the 

form of (47), let the regulation velocity controller and torque control provided by Theorem 
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1 be applied to the 𝑖𝑡ℎ robot when the Lyapunov function, 1iFL  is less than the 𝑖𝑡ℎ upper-

threshold (68) and the blended velocity tracking error satisfies (71). Let the formation 

velocity controller and torque controller from Theorem 2 be applied to the 𝑖𝑡ℎ robot when 

1iFL  exceeds the 𝑖𝑡ℎ upper threshold until 1iFL  converges to a value below the 𝑖𝑡ℎ lower-

threshold (69), and the blended velocity tracking error satisfies (72). Then, the 

nonholonomic system (44) and (45)will become stable converges to its desired posture 

while in formation.  

        Proof: See appendix.  

        Next, simulation results are given to verify the theoretical conjectures. 
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 SIMULATION RESULTS 

       To illustrate the effectiveness of the proposed hybrid controller, a group of four 

nonholonomic mobile robots in the form of (44) is considered. The robots are initiated from 

an arbitrary position and move to a desired position around origin in the shape of a square. 

Using the hybrid approach, the robots establish the square shape prior to moving to the 

goal position. The desired and initial positions, initial bearing angles and the initial 

velocities of the nonholonomic mobile robots are given by  

       1 0 2 0 3 0 4 0156, 132, 96, 120,x t x t x t x t   

       1 0 2 0 3 0 4 0y 108, y 156, y 168, y 120t t t t       

1 2 3 4 1 2, 5, 5, 5, 5, y 5, y 5,d d d d d dx x x x          

     3 4 1 0 2 0 3 0y 5, y 5, 2 , 2 , 2 ,d d t t t          

 4 0 1 2 3 42 , 2 , 2 , 2 , 2 .d d d dt                

      These desired positions inherently provide a square shape when the robots reach 

their desired locations. The connectivity graph among the robots is selected as given in 

Figure 5.1. It is observed that the graph is connected and satisfies the required assumption 

stated in [8]. Each robot receives one of its neighbor robot’s regulation errors, and the 

overall formation is established since the graph is connected. The parameters for the robot 

dynamics (44) are selected as 

2
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with 10, 2, 0.05, 0.4, 0.1,i i i i im mW r b d      1, 5, 0.5, 0.8Iyy IT Fv Fd     being 

the total mass of the thi  robot, mass of one wheel of the thi  robot , wheel radius of the thi  

robot, half of the width  of the thi  robot, the distance of the rear axle of the thi  robot from 

its center of mass, wheel moment of inertia, total moment of inertia of the robot platform, 

coefficient of the Viscous friction and the coefficient of the Coulomb friction, respectively.  

 

Figure 5.1 Connectivity Graph of four nonholonomic mobile robots. 

          The controller gains are then selected with 4 30K  , 1 2 32, 1, 0.5k k k    

0.5, 0.25 ,k k k k k         .  The decay rate of the blended velocity tracking errors in 

(62) and (63) are shown as 2dk   , the switching parameters for the upper (68) and lower 

(69) thresholds are selected as 𝛽 = 𝜂𝑚𝑖𝑛 = 1 and 𝜅 = 1.34, respectively, and the blended 

velocity tracking error convergence threshold is selected as 0.1ev  . 

      The performance of the controller analyzed in Theorem 3 (the hybrid blended 

approach) is presented next. The four mobile robots described above are considered along 
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with the controller torques (66) and (67). Figure 5.2 shows the movements of the four 

nonholonomic mobile robots. The desired set points are selected in such a way that the 

robots form a square shape around origin when they arrive to their desired set points. The 

initial positions of each robot is pointed via text arrows in Figure 5.2. 

             The robots move to reach consensus with their respective neighbors and 

subsequently achieve the square shape prior to reaching their goal positions. When 

comparing Figure 5.2 and the robot movements in [16], the effect of nonholonomic 

constraints can be realized easily. In [16], the omnidirectional robots travel directly to the 

temporary set point to form a square shape; however, in Figure 5.2, the nonholonomic 

mobile robots’ motions are subject to nonholonomic constraints requiring different paths 

to form the square shape. 

           Figure 5.3 presents the time-evolution of polar coordinate distance errors, i , 𝑖 =

1, 2, 3, 4, defined in (5) for each robot. Initially, the formation error Lyapunov function,

1FL , exceeds the defined threshold and the robots begin in formation keeping mode. The 

robots travel from their initial positions and achieve their desired formations, and the robots 

remain in the formation mode until the distance errors reach consensus.  Once in formation, 

the Lyapunov function, 1FL ,  becomes less than the defined threshold, and the robots 

transition to the regulation mode. Subsequently, the distance errors converge to zero all 

together as the robots travel to the goal positions simultaneously. 

         The smooth blended regulation and formation velocity tracking errors, (62) and 

(63), of the robots are presented in Figure 5.4 and Figure 5.5, respectively. Since the robots 

are initiated in formation mode, the formation velocity tracking error converges to zero 
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after the first couple of seconds as can be seen in Figure 5.5. The time at which the robots 

transition from the formation mode to the regulation mode lasts 3.7 seconds for robot 1, 

and 2.3, 4.3, and 3.5 seconds for robots 2, 3, and 4, respectively. 

          The composite blended velocity tracking error, which combines Figure 5.4 during 

the formation mode and Figure 5.5 for the regulation mode is shown in Figure 5.6. Figure 

5.6 also provides a zoomed in time span for the time period that contains the switch from 

the formation mode to the regulation mode. After examining Figure 5.6, we see that the 

switch from the formation mode to the regulation mode is smooth and does not produce 

large peaks in the velocity tracking error as a result of the blended velocity tracking error 

approach. 

          As the value of decay rate of the blending function, 𝑘𝑑 , is increased, the blended 

approach converges to hard switching conditions where smoothness is not considered. The 

experiment was repeated for 𝑘𝑑 = 50.  The formation trajectory for this scenario is similar 

to the trajectories shown in Figure 5.2.  However, the composite blended velocity tracking 

errors shown in Figure 5.7 illustrate that large peaks in the velocity tracking errors are 

present at both the beginning of the simulation and when each robot transitions from the 

formation state to the regulation state at 11. 95 seconds.  It is interesting to observe that the 

switching time where 𝑘𝑑 = 50 is actually larger than the case where 𝑘𝑑 = 2.  The later 

switching time is attributed to the formation errors taking longer to converge to below the 

switching threshold as a result of the large initial transient response when 𝑘𝑑 = 50. 
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Figure 5.2 Movements of four nonholonomic mobile robots. 

 

Figure 5.3 Distances of each robot to their goal positions. 
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         Comparing the transient behaviors in Figure 5.6 and Figure 5.7, it is observed that 

the choice of 𝑘𝑑 is a tradeoff between the magnitude of errors and the duration of their 

transient responses.  Selecting smaller values of 𝑘𝑑 produces small, smooth crests in the 

velocity tracking error at the penalty of a longer transient period before the velocity 

tracking errors converge back to zero.  In contrast, larger values of 𝑘𝑑 allow the velocity 

tracking errors to converge to zero quickly while transitioning from one state to another at 

the cost of large, abrupt spikes in the error signals. In practice, large and abrupt spikes in 

signals used by the control laws are undesirable. 

 

Figure 5.4 Blended formation velocity tracking errors (linear (m/s) and angular 

(rad/sec)). 
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Figure 5.5 Blended regulation velocity tracking errors (linear (m/s) and angular 

(rad/sec)). 

 

Figure 5.6 Composite blended formation velocity tracking errors (linear (m/s) and 

angular (rad/sec)), kd=2. 
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Figure 5.7  Composite blended formation velocity tracking errors (linear (m/s) and 

angular (rad/sec)), kd=50. 
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 CONCLUSION AND FUTURE WORK 

    The results of the paper provide controllers to the user to regulate a single robot to a 

desired posture and for a group of nonholonomic robots to reach consensus on their 

regulation errors to achieve a desired posture in a desired shape. This was accomplished 

through the development of two novel continuous time regulation and formation controllers 

for nonholonomic mobile robots. Then, a novel hybrid regulation-formation controller was 

developed by using a novel blended velocity tracking error approach. Time-varying 

Lyapunov functions were used to prove the stability of the hybrid approach, and simulation 

results verified the performance improvements of the proposed approach over traditional 

hard switched hybrid control architectures. The blended velocity tracking error approach 

reduced the size of the discontinuity at the switching conditions which led to smaller peak 

velocity tracking errors and smaller peak required torques at the switching conditions. The 

blended hybrid controller is beneficial when multiple tasks need to be accomplished at the 

same time. Future work will investigate extending the approach to include other discrete 

modes, such as obstacle avoidance. 
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A2)  

APPENDIX 

           Proof of Theorem 1: Define the blended regulation Lyapunov candidate function for 

each robot as   

      2 2 2

1 1 2 3 2,   2 1 cosRi b i i iL B t t e e e k    𝐵2
2(𝑡, 𝑡𝑏)

1

2
(𝜌𝑖

2 + 𝜌𝑖(𝛼𝑖
2 + kβ𝛽𝑖

2)) +

1

2
𝐸𝑣𝑖

𝑅𝑇
𝑀̅𝑖𝐸𝑣𝑖

𝑅                                                                                                                         (A1) 

     Then, the derivative of (A1) is calculated to be 

        2 2

1 1 1 2 3 22 , ,   2 1 cosRi b b i i iL B t t B t t e e e k   

      2 2 2

2 2 β

1
2 , , k

2
b b i i i iB t t B t t      

  2 2 2

1 1 1 3 3 2 21 1 3 2,   sin   sinF F

b i i i iv i ivB t t k e k e k ke e e e       

 

 
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2 2 2 2 2 2

i i β
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R

b iv i i i i i i i

R

i i iv

k
k k

B t t e

e



     

      



 
    
 
   

        
   

 
 
 

 
TR R

vi i viE M E .         (A2)                                    

        Next, applying the definitions of 𝜆(𝜌𝑖, 𝛼𝑖, 𝛽𝑖) and γ(𝑒𝑖1, 𝑒𝑖2, 𝑒𝑖3) defined in (13) 

and (22), respectively, gives 

        2 2

1 1 1 2 3 22 , ,   2 1 cosRi b b i i iL B t t B t t e e e k   

      2 2 2

2 2 β

1
2 , , k

2
b b i i i iB t t B t t        

    2 2 2

1 1 1 3 3 2 1 2 3,   sin   γ ,  ,FT

b i i iv i i iB t t k e k e k e e e e      
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 
   

2 2 2

i2

2 2 2 2

i β
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,

cos α k 2 ,  , 

i i i

b RT

i i i iv i i i

k k
B t t

k e
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
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      
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 
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 

 
TR R

vi i viE M E  .                    (A3) 

      Now, substituting the blended regulation tracking error dynamics (64) into (A3), 

𝐿̇𝑅𝑖 becomes 

        2 2

1 1 1 2 3 22 , ,   2 1 cosRi b b i i iL B t t B t t e e e k   
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   2 2

1 1 2 3 2( , ) ( , , ) , ,  , FT RT

b iv i i i b iv i i iB t t e e e e B t t e      .                                             (A4) 

         Moving on, adding and subtracting  

𝐵1(𝑡, 𝑡𝑏)𝐵2(𝑡, 𝑡𝑏)𝑒𝑖𝑣
𝑅 𝑇

γ(𝑒𝑖1, 𝑒𝑖2, 𝑒𝑖3) and  𝐵1(𝑡, 𝑡𝑏)𝐵2(𝑡, 𝑡𝑏)𝑒𝑖𝑣
𝐹 𝑇

𝜆(𝜌𝑖 , 𝛼𝑖, 𝛽𝑖) to (A4) and 

collecting like terms yields 

        2 2

1 1 1 2 3 22 , ,   2 1 cosRi b b i i iL B t t B t t e e e k   

      2 2 2

2 2 β

1
2 , , k

2
b b i i i iB t t B t t          2 2 2

1 1 1 3 3 2,   sinb i iB t t k e k e k  

  2 2 2 2

2 i, cos αb i i iB t t k k         2 2 2 2

2 i β, cos α k 2b i i iB t t k      

+𝐸𝑣𝑖
𝑅𝑇

(𝑀̅ (𝐵̇1(𝑡, 𝑡𝑏)𝑒𝑖𝑣
𝐹 (𝑡) + 𝐵̇2(𝑡, 𝑡𝑏)𝑒𝑖𝑣

𝑅 (𝑡)) + 𝐵1(𝑡, 𝑡𝑏) (−𝑉𝑚𝑒𝑖𝑣
𝐹 + 𝑓𝑖(𝑧𝑖

𝐹)) +

𝐵2(𝑡, 𝑡𝑏) (−𝑉𝑚𝑒𝑖𝑣
𝑅 + 𝑓𝑖(𝑧𝑖

𝑅)) − 𝜏̅) − 𝐵1(𝑡, 𝑡𝑏)(𝐵1(𝑡, 𝑡𝑏)𝑒𝑖𝑣
𝐹 𝑇

+
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𝐵2(𝑡, 𝑡𝑏)𝑒𝑖𝑣
𝑅 𝑇

)γ(𝑒𝑖1, 𝑒𝑖2, 𝑒𝑖3)  

+𝐵2(𝑡, 𝑡𝑏)(𝐵2(𝑡, 𝑡𝑏)𝑒𝑖𝑣
𝑅 𝑇

+ 𝐵1(𝑡, 𝑡𝑏)𝑒𝑖𝑣
𝐹 𝑇

)𝜆(𝜌𝑖, 𝛼𝑖 , 𝛽𝑖) 

+ 𝐵1(𝑡, 𝑡𝑏)𝐵2(𝑡, 𝑡𝑏)𝑒𝑖𝑣
𝑅 𝑇

γ(𝑒𝑖1, 𝑒𝑖2, 𝑒𝑖3) − 𝐵2(𝑡, 𝑡𝑏)𝐵1(𝑡, 𝑡𝑏)𝑒𝑖𝑣
𝐹 𝑇

𝜆(𝜌𝑖, 𝛼𝑖 , 𝛽𝑖).               (A5) 

         Then, apply the definition of 𝐸𝑣𝑖
𝑅  to factor the bottom rows of (A5) into terms pre-

multiplied by 𝐸𝑣𝑖
𝑅𝑇

, and the rows containing 𝑉𝑚are factored into 𝐸𝑣𝑖
𝑅𝑇

𝑉𝑀𝐸𝑣𝑖
𝑅  to give 
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2
b b i i i iB t t B t t          2 2 2

1 1 1 3 3 2,   sinb i iB t t k e k e k  

  2 2 2 2

2 i, cos αb i i iB t t k k         2 2 2 2

2 i β, cos α k
2

b i i i

k
B t t


   

  2 2 2 2

2 i, cos αb i i iB t t k k         2 2 2 2

2 i β, cos α k 2b i i iB t t k     

+𝐸𝑣𝑖
𝑅𝑇

(𝑀̅ (𝐵̇1(𝑡, 𝑡𝑏)𝑒𝑖𝑣
𝐹 (𝑡) + 𝐵̇2(𝑡, 𝑡𝑏)𝑒𝑖𝑣

𝑅 (𝑡)) − 𝑉𝑀𝐸𝑣𝑖
𝑅 + 𝐵1(𝑡, 𝑡𝑏)𝑓𝑖(𝑧𝑖

𝐹) +

𝐵2(𝑡, 𝑡𝑏)𝑓𝑖(𝑧𝑖
𝑅) − 𝜏̅ − 𝐵1(𝑡, 𝑡𝑏)γ(𝑒𝑖1, 𝑒𝑖2, 𝑒𝑖3)+𝐵2(𝑡, 𝑡𝑏)𝜆(𝜌𝑖, 𝛼𝑖, 𝛽𝑖)) +

 𝐵1(𝑡, 𝑡𝑏)𝐵2(𝑡, 𝑡𝑏)𝑒𝑖𝑣
𝑅 𝑇

γ(𝑒𝑖1, 𝑒𝑖2, 𝑒𝑖3) − 𝐵2(𝑡, 𝑡𝑏)𝐵1(𝑡, 𝑡𝑏)𝑒𝑖𝑣
𝐹 𝑇

𝜆(𝜌𝑖, 𝛼𝑖, 𝛽𝑖)  .                (A6)  

      Finally, use the torque equation (66) in (A6) and write the derivatives 𝐵̇1 and 𝐵̇2 in 

terms of 1B   and substitute in (A.6)    

    2 2 2

1 1 2 3 22 ( , )   2 1 cosRi d b i i iL k B t t e e e k      

      2 2 2

2 1 β, , kd b b i i i ik B t t B t t         

  2 2 2

1 1 1 3 3 2,   sinb i iB t t k e k e k      2 2 2 2

2 i, cos αb i i iB t t k k      
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   2 2 2 2

2 i β, cos α k 2b i i iB t t k    4

TR R

vi viE K E + 𝐵1(𝑡, 𝑡𝑏)𝐵2(𝑡, 𝑡𝑏)𝑒𝑖𝑣
𝑅 𝑇

γ(𝑒𝑖1, 𝑒𝑖2, 𝑒𝑖3) −

𝐵2(𝑡, 𝑡𝑏)𝐵1(𝑡, 𝑡𝑏)𝑒𝑖𝑣
𝐹 𝑇

𝜆(𝜌𝑖, 𝛼𝑖, 𝛽𝑖).                                                                                 (A7) 

        The first and last lines in (A7) also go to zero as 𝑡 → ∞ exponentially fast (controlled 

through 𝐵1(∙) and the control gain , 𝑘𝑑).  

Again examining the behavior of (A7) as 𝑡 → ∞,  

𝐿̇𝑅𝑖 → −𝑘𝜌𝜌𝑖
2 cos2 αi − 𝑘𝛼𝜌𝑖𝛼𝑖

2 −
𝑘𝜌

2
𝜌𝑖 cos2 αi (𝛼𝑖

2 + kβ𝛽𝑖
2) − 𝑒𝑖𝑣

𝑅 𝑇
𝐾4𝑒𝑖𝑣

𝑅  .                (A8) 

since 𝐵1(∙) → 0, 𝐵2(∙) → 1, and  𝐸𝑣𝑖
𝑅 (𝑡, 𝑡𝑏) → 𝑒𝑖𝑣

𝑅 (𝑡).  

         It is observed that 𝐿̇𝑅𝑖 is only negative semi-definite since at 𝛼𝑖 = ±𝜋/2, 𝐿̇𝑖 is no 

longer a function of 𝛽𝑖. Thus, the velocity tracking error and kinematic error states are 

bounded. To achieve asymptotic convergence, Barbalat’s Lemma is invoked [25].  First, 

taking the derivative of (A.8) reveals that 𝐿̈𝑖 is bounded since all of the system states are 

bounded.  Therefore, since 𝐿̈𝑖 is bounded, 𝐿̇ is uniformly continuous and converges to zero.  

Thus, 𝜌𝑖, 𝜌̇𝑖, |𝑒𝑖𝑣
𝑅 | and ||𝑒̇𝑖𝑣|| are also guaranteed to converge to zero.  

         Then, using  iλ , ,  i i i     and (A.1), it can be concluded that 𝛼𝑖 and 𝛽𝑖 also 

converge to zero revealing that the velocity tracking error system (64) and kinematic 

system (47) converge to the origin asymptotically, and the thi robot tracks its desired 

velocity and converges to its desired posture.  That is, 𝑒𝑖𝑣
𝑅 → 0 and 𝑞𝑖 → 𝑞𝑖𝑑.    

           Proof of Theorem 2:  Define the blended formation Lyapunov candidate function 

for each robot as 

      2 2 2

2 1 2 3 2,   2 1 cosFi c i i iL B t t e e e k    𝐵1
2(𝑡, 𝑡𝑐)

1

2
(𝜌𝑖

2 + 𝜌𝑖(𝛼𝑖
2 + kβ𝛽𝑖

2)) +

1

2
𝐸𝑣𝑖

𝐹𝑇
𝑀̅𝑖𝐸𝑣𝑖

𝐹   .                                                                                                                   (A9) 
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Remark: The Lyapunov function, (A9) is slightly different than the Lyapunov 

function, (A1) defined in Theorem 1. The difference between (A1) and (A9) is the blended 

function squares are switched in (A9) which causes the regulation term vanish while the 

formation terms vanishes in (A1) as t   . Since the proof of Theorem 2 has similarities 

with the proof of Theorem 1, some intermediate steps are combined in the proof of Theorem 

2. 

          Now, taking derivative of (A9) , using the definitions of γ(𝑒𝑖1, 𝑒𝑖2, 𝑒𝑖3) and  

𝜆(𝜌𝑖 , 𝛼𝑖, 𝛽𝑖), and inserting the blended formation tracking error dynamics (65), adding and 

subtracting 𝐵1(𝑡, 𝑡𝑐)𝐵2(𝑡, 𝑡𝑐)𝑒𝑖𝑣
𝑅 𝑇

γ(𝑒𝑖1, 𝑒𝑖2, 𝑒𝑖3) and 𝐵1(𝑡, 𝑡𝑐)𝐵2(𝑡, 𝑡𝑐)𝑒𝑖𝑣
𝐹 𝑇

𝜆(𝜌𝑖, 𝛼𝑖, 𝛽𝑖) into 

(A9) and collecting like terms yields 

        2 2

2 2 1 2 3 22 , ,   2 1 cosFi c c i i iL B t t B t t e e e k   

      2 2 2

1 1 β

1
2 , , k

2
c c i i i iB t t B t t          2 2 2

1 1 1 3 3 2,   sinb i iB t t k e k e k     

  2 2 2 2

1 i, cos αc i i iB t t k k         2 2 2 2

1 i β, cos α k
2

c i i i

k
B t t


     

+𝐸𝑣𝑖
𝐹𝑇

(𝑀̅ (𝐵̇2(𝑡, 𝑡𝑐)𝑒𝑖𝑣
𝐹 (𝑡) + 𝐵̇1(𝑡, 𝑡𝑐)𝑒𝑖𝑣

𝑅 (𝑡)) + 𝐵2(𝑡, 𝑡𝑐) (−𝑉𝑚𝑒𝑖𝑣
𝐹 + 𝑓𝑖(𝑧𝑖

𝐹)) +

𝐵1(𝑡, 𝑡𝑐) (−𝑉𝑚𝑒𝑖𝑣
𝑅 + 𝑓𝑖(𝑧𝑖

𝑅)) − 𝜏̅) − 𝐵2(𝑡, 𝑡𝑐)(𝐵2(𝑡, 𝑡𝑐)𝑒𝑖𝑣
𝐹 𝑇

+

𝐵1(𝑡, 𝑡𝑐)𝑒𝑖𝑣
𝑅 𝑇

)γ(𝑒𝑖1, 𝑒𝑖2, 𝑒𝑖3) 

+𝐵1(𝑡, 𝑡𝑐)(𝐵1(𝑡, 𝑡𝑐)𝑒𝑖𝑣
𝑅 𝑇

+ 𝐵2(𝑡, 𝑡𝑐)𝑒𝑖𝑣
𝐹 𝑇

)𝜆(𝜌𝑖, 𝛼𝑖 , 𝛽𝑖) 

+ 𝐵1(𝑡, 𝑡𝑐)𝐵2(𝑡, 𝑡𝑐)𝑒𝑖𝑣
𝑅 𝑇

γ(𝑒𝑖1, 𝑒𝑖2, 𝑒𝑖3) − 𝐵2(𝑡, 𝑡𝑐)𝐵1(𝑡, 𝑡𝑐)𝑒𝑖𝑣
𝐹 𝑇

𝜆(𝜌𝑖, 𝛼𝑖 , 𝛽𝑖).              (A11) 
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         Then, substitute the torque equation (67), apply the definition of 𝐸𝑣𝑖
𝐹  to factor the 

bottom rows of (A11) into terms pre-multiplied by 𝐸𝑣𝑖
𝐹𝑇

, and factor the rows containing 𝑉𝑚 

into the form of 𝐸𝑣𝑖
𝐹𝑇

𝑉𝑀𝐸𝑣𝑖
𝐹  to give 

        2 2

2 1 1 2 3 22 , ,   2 1 cosFi d c c i i iL k B t t B t t e e e k   

    2 2 2 2

1 β2 , kd c i i i ik B t t       +𝐵2
2(𝑡, 𝑡𝑐) ( −𝑘1𝑒𝑖1

2 −
𝑘3

𝑘2
sin2 𝑒𝑖3) +

𝐵1
2(𝑡, 𝑡𝑐) (−𝑘𝜌𝜌𝑖

2 cos2 αi − 𝑘𝛼𝜌𝑖𝛼𝑖
2 −

𝑘𝜌

2
𝜌𝑖 cos2 αi (𝛼𝑖

2 + kβ𝛽𝑖
2)) − 𝐸𝑣

𝑅𝑇
𝐾4𝐸𝑣𝑖

𝑅  

+ 𝐵1(𝑡, 𝑡𝑐)𝐵2(𝑡, 𝑡𝑐)𝑒𝑖𝑣
𝑅 𝑇

γ(𝑒𝑖1, 𝑒𝑖2, 𝑒𝑖3) − 𝐵2(𝑡, 𝑡𝑐)𝐵1(𝑡, 𝑡𝑐)𝑒𝑖𝑣
𝐹 𝑇

𝜆(𝜌𝑖, 𝛼𝑖 , 𝛽𝑖) .                  (A12) 

          The lines contains  1 , cB t t   of (A12) goes to zero as 𝑡 → ∞ exponentially fast 

(controlled through control gain, 𝑘𝑑). Using the identities of blended functions used in the 

proof of Theorem 1 to simplify (A12) reveals 

𝐿̇𝐹𝑖 → −𝑘1𝑒𝑖1
2 −

𝑘3

𝑘2
sin2 𝑒𝑖3 − 𝑒𝑖𝑣

𝐹 𝑇
𝐾4𝑒𝑖𝑣

𝐹                                                                       (A13)    

as 𝑡 → ∞. 

       Since (A.13) is not a function of 𝑒𝑖2, 𝐿̇𝑖𝑓 is negative semi-definite, and the 

consensus errors and velocity tracking error are bounded. However, Barbalat’s Lemma 

[15] can be used to show asymptotic convergence.   

         First, take the derivative of (A.13) while using (55) and (60) while observing the 

boundedness of all signals to reveal that 𝐿̈𝑖𝐹 is also bounded.  Therefore, 𝐿̇𝑖𝐹 converges to 

zero and thus 𝑒𝑖1, 𝑒̇𝑖1,  𝑒𝑖3, 𝑒̇𝑖3, ||𝑒𝑖𝑣
𝐹 ||, and ||𝑒̇𝑖𝑣

𝐹 || all converge to zero as well.  Finally, 

examining the definition of 𝑒̇𝑖3 in (60) while noting that  𝑒̇𝑖3 → 0 reveals that 𝑒𝑖2 must also 

converge to zero. Therefore, the velocity tracking error system (60) and consensus error 
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system (57) converge to the origin asymptotically, and the thi robot tracks its desired 

velocity and reaches consensus with its neighbor robot j.  

           Proof of Theorem 3: Recall both the regulation and formation Lyapunov functions, 

(A1) and (A9) defined in Theorem 1 and Theorem 2, respectively. Theorems 1 and 2 

illustrated the asymptotic convergence of the blended regulation and formation controllers, 

respectively, independently of one another. Theorem 3 proves that the switched system is 

also stable. 

           Consider the following combined Lyapunov functions of all the mobile robots in 

the networked group as   1 2R R RL L L   , 1 2F F FL L L    with    

      2 2 2

1 1 1 2 3 2

1

,   2 1 cos
N

R b i i i

i

L B t t e e e k


         2 2 2 2

2 β

1

1
, k  , 

2

N

b i i i i

i

B t t    


 

      2 2 2

1 2 1 2 3 2

1

,   2 1 cos
N

F c i i i

i

L B t t e e e k


          2 2 2 2

1 β

1

1
, k  , 

2

N

c i i i i

i

B t t    


    

2 2

1 1

1 1
,

2 2

T T
N N

R R F F

R vi i vi F vi i vi

i i

L E M E L E M E
 

   . 

     The proof will be completed in two steps: a) showing that 𝐿𝑅2 and 𝐿𝐹2 satisfy         

      Lemma 1; and b) Showing that 𝐿𝑅1 and 𝐿𝐹1 satisfy Lemma 1.  That is, we will show 

that 𝐿𝐹(𝑡𝑎) > 𝐿𝐹(𝑡𝑐) and 𝐿𝑅(𝑡𝑏) > 𝐿𝑅(𝑡𝑑) where 𝑡𝑎 < 𝑡𝑏 < 𝑡𝑐 < 𝑡𝑑 are the switching 

times defined in Figure 4.1. 

a) First, consider 𝐿𝑅2 and 𝐿𝐹2 are functions of the blended velocity tracking errors. At the 

switching time from the formation mode to the regulation mode, 𝑡𝑏, the blended velocity 

tracking error is required to satisfy the switching condition defined in (69). 

To satisfy Lemma 1, we require ||𝐸𝑣𝑖
𝑅 (𝑡𝑏, 𝑡𝑏) − 𝐸𝑣𝑖

𝐹 (𝑡𝑏 , 𝑡𝑎)|| < 𝛿𝑒̅𝑣 (for a computable 
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constant, 𝛿𝑒̅𝑣). The blended regulation velocity tracking error (62) can be given at the 

switching time, 𝑡𝑏, as 

𝐸𝑣𝑖
𝑅 (𝑡𝑏, 𝑡𝑏) = 𝐵1(𝑡𝑏 , 𝑡𝑏)𝑒𝑖𝑣

𝐹 (𝑡𝑏) + 𝐵2(𝑡𝑏, 𝑡𝑏)𝑒𝑖𝑣
𝑅 (𝑡𝑏) = 𝑒𝑖𝑣

𝐹 (𝑡𝑏) since 𝐵1(𝑡𝑏, 𝑡𝑏) = 1 and 

𝐵2(𝑡𝑏, 𝑡𝑏) = 0. 

         Now assume 𝐸𝑣𝑖
𝐹 (𝑡𝑏 , 𝑡𝑎) = 𝑒𝑖𝑣

𝐹 (𝑡) + 𝛿𝑒𝑣  at time 𝑡𝑏 (from switching condition, (69) 

where ||𝛿𝑒𝑣|| < 𝛿𝑒̅𝑣), then it can be shown that 

||𝐸𝑣𝑖
𝑅 (𝑡𝑏 , 𝑡𝑏) − 𝐸𝑣𝑖

𝐹 (𝑡𝑏 , 𝑡𝑎)|| = ||𝑒𝑖𝑣
𝐹 (𝑡𝑏) − 𝑒𝑖𝑣

𝐹 (𝑡𝑏) − 𝛿𝑒𝑣|| = ||𝛿𝑒𝑣|| < 𝛿𝑒̅𝑣.                                  

      As 𝑡 → ∞, recall that   𝐸𝑣𝑖
𝑅 (𝑡, 𝑡𝑏) → 𝑒𝑖𝑣

𝑅 (𝑡). At the switching time from the 

regulation mode to the formation mode, 𝑡𝑐, the blended regulation velocity tracking error  

must satisfy the switching condition (68).  

        As before, we require ||𝐸𝑣𝑖
𝐹 (𝑡𝑐, 𝑡𝑐) − 𝐸𝑣𝑖

𝑅 (𝑡𝑐, 𝑡𝑏)|| < 𝛿𝑒̅𝑣 to ensure the Lemma 1 is 

satisfied. The blended formation velocity tracking error can be given at the switching time, 

𝑡𝑐, as 

𝐸𝑣𝑖
𝐹 (𝑡𝑐, 𝑡𝑐) = 𝐵1(𝑡𝑐, 𝑡𝑐)𝑒𝑖𝑣

𝑅 (𝑡𝑐) + 𝐵2(𝑡𝑐, 𝑡𝑐)𝑒𝑖𝑣
𝐹 (𝑡𝑐) = 𝑒𝑖𝑣

𝑅 (𝑡𝑐). Assume 𝐸𝑣𝑖
𝑅 (𝑡𝑐, 𝑡𝑏) =

𝑒𝑖𝑣
𝑅 (𝑡) + 𝛿𝑒𝑣  at time 𝑡𝑐 (through satisfaction of the switching condition, (33)). Then, 

||𝐸𝑣𝑖
𝐹 (𝑡𝑐, 𝑡𝑐) − 𝐸𝑣𝑖

𝑅 (𝑡𝑐, 𝑡𝑏)|| = ||𝑒𝑖𝑣
𝑅 (𝑡𝑐) − 𝑒𝑖𝑣

𝑅 (𝑡𝑐) − 𝛿𝑒𝑣|| < 𝛿𝑒̅𝑣 . As 𝑡 → ∞,    𝐸𝑣𝑖
𝐹 (𝑡, 𝑡𝑐) →

𝑒𝑖𝑣
𝐹 (𝑡). 

        At the switching conditions, we can therefore ensure the requirements of Lemma 1 

hold for the blended velocity tracking errors 𝐸𝑣𝑖
𝐹 (𝑡, 𝑡0) and 𝐸𝑣𝑖

𝑅 (𝑡, 𝑡0). Since the mass 

matrix, iM  , is constant, the Lyapunov functions   𝐿𝑅2 and    𝐿𝐹2 satisfy the Lemma 1. 

b) Next, we will show that the first parts of the Lyapunov functions, 𝐿𝑅1 and 𝐿𝐹1, satisfy 
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Lemma 1.  To accomplish this, we will illustrate that

       1 1 1 1andR b R d F a F cL t L t L t L t  for switching times 𝑡𝑎 < 𝑡𝑏 < 𝑡𝑐 < 𝑡𝑑.   

        To proceed, use the property of the blended function, 

   1 0 0 2 0 0 0, 1, , 0 ,B t t B t t t    at the switching time and consider the Lyapunov functions 

at the switching times  

         2 2

1 1 2 3

1 2

1 1
1 cos

2
b b b

N

R i i i

i

bL te e e
k

t t t


   

         2 2

1 1 2 3

1 2

1 1
1 cos

2
d d d

N

R i i i

i

dL te e e
k

t t t


      ,

           2 2 2

1 β

1

1
k

2
a a a a a

N

F i i i i

i

t t t t tL    


   ,and

           2 2 2

1 β

1

1
k

2
c c c c c

N

F i i i i

i

t t t t tL    


   . . 

From the switching conditions, it is automatically satisfied that    1 1R b R dL t L t . 

However, it is not trivial to show that    1 1F a F cL t L t . To prove the inequality, we will 

show that the function 𝐿𝐹1(𝑇), for 𝑇 = 𝑡𝑎 , 𝑡𝑏 , 𝑡𝑐 , …, is a decrescent function that is upper 

and lower bounded by Lyapunov functions 𝐿̅𝐹1(𝑇) and 𝐿𝐹1(𝑇), respectively, with 

𝐿̅𝐹1(𝑇) → 0 asymptotically and 𝐿𝐹1(𝑇) → 0 asymptotically as 𝑇 → ∞  and independently 

of the mode of operation.  That is, it will be shown that the upper and lower bounds decrease 

during both the regulation and formation modes. 

       First, define the upper bound of 𝐿𝐹1(𝑇)  as  

      2

1

1

1

2

N

F i i

i

T TL T 


                                                                                   (A.14)  
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where   is a computable constant. Since    ,t t   are both in the range of  ,  , one 

can easily compute   which satisfies the inequality. 

    The value of the upper bound (A.14) at the switching times 𝑡𝑎 and 𝑡𝑐 is a function of 

regulation error, 𝜌. To show 𝜌 is always decreasing, rewrite the regulation error, 𝜌, at the 

beginning and end of formation mode as 

     ai a v aiat t t                                                                                                                       (A.15) 

     ai b v biat t t                                                                                                                        (A.16) 

where    
1

1 N

a a iv a

i

t t
N

 


   is the average regulation error at the beginning of the 

formation mode, and 𝜎𝜌𝑖(𝑡), 𝑖 = 1,2…𝑁 are the deviations of the regulation errors.  It is 

observed that and   
1

0
N

ai

i

t


  ,  
1

0
N

bi

i

t


  by definition of 𝜌𝑎𝑣(𝑡).      

      Next, substitute (A.15) into (A.14) to rewrite the upper bound at time 𝑡𝑎, 𝐿̅𝐹1(𝑡𝑎), 

as 

        2

1

1

1

2
a a

N

F i iv v a

i

a aL t t t   


   

     
22

1 1 1

1 1
2

2 2 2 2 2

N N N

av i ia av a av ai

i i i

N N
t t t     

  

 
        

The second and the last terms evaluate to zero since  
1

0
N

ai

i

t


  . Then, 

   2

1

1

21

2 2 2
a a av

N

F av i

i

N N
t tL  




     

      Then, substitute (A.16) into (A.14) to rewrite the upper bound at time 𝑡𝑏,  𝐿̅𝐹1(𝑡𝑏), 

as  
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    2

1

1

1
( )

2

N

F b i i

i

b btL t t 


   2

1

21

2 2 2
b

N

av i v

i

a

N N
t  



 


    

 Now, compute the difference between  1 aFL t and 𝐿̅𝐹1(𝑡𝑏) to give  

    2

1

2

1

1

2
bF a

N

i i

i

L t t  


   . 

        In order to claim that 1 0FL   (i.e.,    1 1F a F bL t L t ), we will show that 

   i bi at t   .  First, recall that the formation controller of Theorem 2 achieves 

consensus on the Cartesian coordinate regulation errors, Δ𝑥 and Δ𝑦 as defined in (74). 

          Therefore, define            ,a av a x a a av a yi ai i ix t x t t y t y t t         

           ,b av a x b b av a yi bi i ix t x t t y t y t t           where    
1

Δ Δ
1

av i

N

i

t x t
N

x


    , 

   
1

Δy Δy
1

av i

N

iN
t t



   are the average Cartesian coordinate distance errors on x  and y  

directions respectively,  𝜎Δ𝑦𝑖(𝑡), 𝑖 = 1,2…𝑉 are the deviations of the regulation error in 

the 𝑦- component of the Cartesian coordinate system, 𝜎Δx𝑖(𝑡), 𝑖 = 1,2…𝑉 are the 

deviations of the regulation error in the 𝑥- component of the Cartesian coordinate system, 

and        
1 1 1 1

0xi xi

N N N N

a b a b

i i i

i

i

y yit t t t   
 

   

 

       .  

           Since the robots reach consensus on their Cartesian coordinate regulation errors 

during their formation mode, deviations among the robots’ regulation errors decrease 

during the formation mode, i.e.        ,xi xia b a byi yit t t t        . Now, consider 

the polar coordinate transformation (46) 
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2 2 2

1 1

N N

i i i

i i

x y
 

      or 

        2 2 22 22

1 1

1 1

2 2
a av av xi a yi

N N

av ai

i i

t x yN N t t  
 

                                  (A.17) 

           From the definition of 𝜌𝑖 ,  2 2 2

aav v avx yN N     and  (A.17) can be rewritten as  

      
1

2

1

2 21 1

2 2
a x

N N

i i a i

i

y

i

at t t  






                                                                    (A.18) 

        Since        ,xi xia b a byi yit t t t        , it follows from (A.18) that 

   i bi at t    . 

Then, the bounding function  1F aL t  in (A.14) decreases during the formation keeping 

mode. In the Theorem 1, it is proven that the regulation errors based Lyapunov function 

decreases over the regulation mode time period,  ,b ct t  such that 𝐿̅𝐹1(𝑡𝑏) > 𝐿̅𝐹1(𝑡𝑐). 

Therefore, the regulation errors are decreasing during both the regulation mode and the 

formation keeping mode revealing that    1 1F a F cL t L t . 

       Since 𝐿̅𝐹1(𝑡𝑎) > 𝐿̅𝐹1(𝑡𝑏) > 𝐿̅𝐹1(𝑡𝑐) > 𝐿̅𝐹1(𝑡𝑑) for all switching times 𝑡𝑎 < 𝑡𝑏 <

𝑡𝑐 < 𝑡𝑑, it follows that  1 0asFL t t  .     

       Next, define the lower bounding function of 𝐿𝐹1(𝑇) as 𝐿𝐹1(𝑇) =
1

2
∑ 𝜌𝑖

2(𝑇)𝑁
1  

such that 𝐿𝐹1(𝑇) < 𝐿𝐹1(𝑇) for all 𝑇 = 𝑡𝑎, 𝑡𝑏 , 𝑡𝑐, … Using the same techniques as above, it 

is straight forward to show that 𝐿𝐹1(𝑡𝑎) > 𝐿𝐹1(𝑡𝑏) > 𝐿𝐹1(𝑡𝑐) > 𝐿𝐹1(𝑡𝑑) and 𝐿𝐹1(𝑇) → 0 

as 𝑇 → ∞. 
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     Therefore, 𝐿𝐹1(𝑇) is upper and lower bounded by positive definite functions that 

each converge to zero asymptotically as 𝑇 → ∞.  That is, 𝐿𝐹1(𝑇) is an asymptotically stable 

decrescent Lyapunov function [18] illustrating that    1 1F a F cL t L t .  

     Thus, it follows that 𝐿𝐹(𝑡𝑎) > 𝐿𝐹(𝑡𝑐) and 𝐿𝑅(𝑡𝑏) > 𝐿𝑅(𝑡𝑑) where 𝑡𝑎 < 𝑡𝑏 < 𝑡𝑐 <

𝑡𝑑 satisfying Lemma 1 and completing the proof. 
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III. DISTRIBUTED CONSENSUS-BASED EVENT-TRIGGERED 

APPROXIMATE CONTROL OF NONHOLONOMIC                      

MOBILE ROBOT FORMATIONS 

ABSTRACT 

      In this paper, the distributed consensus-based formation control of networked 

nonholonomic mobile robots using neural networks (NN) in the presence of uncertain robot 

dynamics with event-based communication is presented. The robots communicate their 

location and velocity information with their neighbors, at event-based sampling instants, 

to drive themselves to a pre-defined desired formation by using a distributed control 

technique. For relaxing the perfect velocity tracking assumption, control torque is designed 

to reduce the velocity tracking error, by explicitly taking into account each robot dynamics 

and the formation dynamics of the network of robots via NN approximation. The 

approximated dynamics are employed to generate the control torque with event-sampled 

measurement updates and communication. With a distributed formation control approach, 

the Lyapunov stability method is utilized to develop a decentralized event-sampling 

condition and to demonstrate the consensus of network of mobile robot formation. Finally, 

simulation results are presented to verify theoretical claims and to demonstrate the 

reduction in computations and communication cost.  
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 INTRODUCTION 

        In the literature, there are several approaches which accomplish the formation 

control objective - leader-follower control [1],[2], virtual structure [3] or behavior-based 

approaches [4], to name a few. Of all these approaches, consensus-based formation 

control[5]-[10] is considered to be more robust and reliable due to scalability and its 

inherent properties that enable the robots to maintain their formation even if one of the 

robots experiences a failure. 

        In earlier works[5],[8]-[12], consensus-based schemes have been studied for 

generalized linear systems with known system dynamics and applied to systems with time-

varying communication graphs [5], bounded disturbances [8], and communication delays 

during state information sharing [9]. In these works [4][5][7][12][13], the individual robot 

and the formation dynamics are neglected which can affect the formation keeping as shown 

here. In addition, due to periodic sampling in these controllers, they are computationally 

inefficient. 

        In contrast, in this paper, an adaptive event-based distributed formation control of 

networked robots is introduced wherein the dynamics of the individual robot and the 

formation are explicitly taken into account. Neural-network (NN) are utilized as function 

approximators to learn the dynamics of each mobile robot and the formation. 

        To mitigate computational complexity of control techniques, in the recent years, 

event-based sampling has become more popular [14]-[18] wherein the execution time of 

the control inputs is based on the real-time operation of the system.  Thus, event sampling 

of feedback information reduces computations for adaptive formation control when the 
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dynamics are uncertain. Moreover, since the mobile robots need location and velocity 

information from their neighbors to reach consensus, they share their information among 

each other through a resource limited communication network. Therefore, utilizing the 

communication network in an event sampled context lead to minimizing network 

congestion and undesired performance of the controller. 

            In the event-sampled framework [14]-[18], the measured state vector is sampled 

using certain state dependent criteria referred to as the event-triggering condition and the 

controller is executed at these aperiodic sampling instants. The event-triggering condition 

is designed by taking into account the stability and the closed-loop performance, and hence, 

it is proven to be advantageous over its periodic counterpart.  

            Initially, the event-triggered techniques from the literature [14][17][18] were 

designed for ensuring stable operations of the closed-loop system by assuming that a 

stabilizing controller exists for the system under consideration.  Developing an event-

triggering condition and establishing the existence of positive minimum inter-event time 

was the main focus in these works [14][17][18]. 

             Similarly, when the robot and formation dynamics become uncertain, a suitable 

adaptive sampling condition is needed for formation control which ensures formation 

stability and also the NN adaptation. However, event-based sampling can make the 

stablility analysis involved. The formation errors are obtained at these sampling instants 

and are utilized to obtain the desired velocities for each robot in order to drive the robots 

to a predefined formation. Then the control torque is designed to ensure that the velocities 

of each robot track the desired velocities.  
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            First, to determine the formation error, a unique virtual reference cart is defined 

using the regulation errors of the neighborhood robots in the network. However, due to the 

uncertain dynamics of each robot, there will be a persistent velocity tracking error. Using 

the NN-based representation of the mobile robot dynamics, the control inputs are obtained 

to minimize this velocity tracking error with event-sampled feedback.  

            It is worth mentioning that the velocity tracking errors of each robot acts as a virtual 

subsystem for the formation error dynamics. Thus by using the distributed backstepping 

controller design, it will be shown that by reducing the velocity tracking errors, the 

formation error reduces and the robots reach a desired formation. It should be noted that, 

in contrast to the existing consensus based formation control approaches [5]-[9],[12], the 

uncertain dynamics of the mobile robots are explicitly taken into account, relaxing the 

perfect velocity tracking assumption. The overall control scheme will be distributed since 

the controllers at each robot are designed using the consensus based formation error, which 

is a function of the position and velocities of all the neighborhood robots.  

            Since the unknown NN weights are tuned only at the event-sampled instants, the 

computations are reduced when compared to traditional and adaptive NN control schemes, 

but it introduces aperiodic weight tuning. A novel event-sampling condition is derived in 

such a way that the robots use locally available and previously transmitted information 

from others to determine the feedback instants. This reduces the communication costs and 

ensures stability and performance of the overall formation. In other words, the adaptive 

event-sampling mechanism enables asynchronous broadcast of position and velocity 

information of each robot, reducing the network congestion. Finally, the extension of the 
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Lyapunov direct method is used to prove the local uniform ultimate boundedness (UUB) 

of the tracking and the parameter estimation errors with event-sampled feedback.  

            The contributions of this paper include the development of - a) a novel distributed 

adaptive consensus-based formation control of networked robots by taking into account 

both the uncertain dynamics of each robot and its formation; b) a novel adaptive event-

sampling condition using both current information of the robot under consideration and 

previous information for neighborhood robots to determine the feedback instants which in 

turn results in asynchronous communication; and c) the demonstration of overall stability 

of the robot formation using the Lyapunov stability theory.  

            In this paper, n is used to denote n dimensional Euclidean space. Euclidean-norm 

is used for vectors and for matrices, Frobenius norm is used. 
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 BACKGROUND AND PRELIMINARIES 

             In this section, a brief background on the event-sampled control implementation is 

provided. Later, the dynamics of the mobile robots are introduced.  

 EVENT-SAMPLED CONTROL 

             In contrast to periodic/continuous feedback based control techniques, the event 

sampled controller implementation is relatively new and involves many challenges. Here, 

the event-based control problem is introduced by highlighting the challenges involved in 

the design with respect to controller adaptation and system stability.   

              In an event sampled framework, the system state vector is sensed continuously but 

available to the controller only at the event-sampled instants.  To denote the sampling 

instants we define an increasing sequence of time instants
0{ }k kt 


, referred to as the event 

sampled instants satisfying 1k kt t  , 0,1, ,nk  . Let 0 0t   be the initial sampling 

instant. At the instant kt , the sampled state ( ),kx t is available to the controller, and the last 

sampled state at the controller denoted by ( )x t is updated.  

            The error , ( ),ETe t introduced due to the event sampled state can be written as 

( ) ( ) ( )ETe t x t x t  ,  1k kt t t   , 0,1, ,k n  ,                                                                                 (75) 

where ( )ETe t is referred to as event sampling error. Thus, the event sampling error becomes 

zero at every sampling instant and update of the state, that is,   0ET ke t   , 0,1, ,k n  . 

      For the event-triggered controllers, as mentioned before, an event-sampling 

mechanism/condition is required to determine the sampling instants, without jeopardizing 

the system stability. Also, if the controller parameters are adaptive and updated from the 
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feedback information, the parameter adaptation process is also dependent on the event-

based sampling instants. Therefore, the event-sampling mechanism should be carefully 

designed so that event-based feedback does not impede with the adaptation process of the 

controller.  Next, the dynamics of the mobile robots will be presented. 

 MOBILE ROBOT DYNAMICS  

      Consider the non-holonomic robot shown in Figure 2.1, where ,r rx y  denote 

Cartesian positions with respect to the robot frame, d is the distance between the rear-axis 

and the center of mass of the robot, ,r R  are the radius of the rear wheels,and half of the 

robot width, respectively. 

       The equations of motion about the center of mass, 𝐶, for the ith robot in a networked 

robot formation are written as  

 

cos sin

sin cos ( ) ,

0 1

ci i i i

i

i ci i i i i i i

i

i

x d
v

q y d S q v

 

 




   
    

      
       

                                                            (76) 

where [ ]T

i ci ci iq x y   denotes the Cartesian position of the center of mass and orientation 

of the 𝑖𝑡ℎ robot; 𝑣𝑖, and 𝜔𝑖 represent linear and angular velocities, respectively, and 

[ ]T

i i iv v   for the 𝑖𝑡ℎ robot.  Mobile robotic systems, in general, can be characterized as 

underactuated systems with constraints [1].   

       At higher velocities, iv , the dynamics of the robots become significant [1] and 

have to be explicitly considered.  The dynamics of the 𝑖𝑡ℎ mobile robot are given by 

( , ) ( )i i mi i i i i i di iM v V q q v F v      ,                                                                                                          (77) 

where iM    is a constant positive definite inertia matrix, miV    is the bounded 
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centripetal and Coriolis matrix, 
iF   is the friction vector, 

di

   represents unknown 

bounded disturbances such that  di Md   for a known constant, Md , 
iB    is a 

constant, nonsingular input transformation matrix,
i i iB     is the input vector, and  

i

   is the control torque vector.  For complete details on (44) and the parameters, refer 

to [1]. 

Assumption 1: The robotic system (44) satisfies the following properties: 𝑀̅𝑖 is a 

known positive definite matrix and it is bounded by iMB and 10 ,i imM B  the norm of ,miV

and di Md   are all bounded. The matrix 2i miM V  is the skew-symmetric [1]. The 

cartesian position and the velocity are assumed to be measurable.  

        Next, the consensus based formation control problem will be introduced. 

 CONSENSUS BASED FORMATION CONTROL 

              Consensus in a group decision making process is a scenario in which the group 

members reach an agreement in the best interest of the whole group [10]. In consensus 

based control of networked systems, the controller forces the states of each system in the 

network to the same value, which is called the consensus point [13]. Further, in formation 

control of mobile robots, reaching consensus on positions and orientations of each robot 

will bring the network of robots to the same location which will cause collision. Therefore, 

consensus on regulation errors is required [5] to avoid collision.  

Hence, we first define the regulation errors for each robot in the network, in terms of their 

positions and orientations as ,r

i i ix x x    ,r

i i iy y y    r

i i i      with , ,r r r

i i ix y 

being the reference position and bearing angles. The time invariant desired positions , 
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,r r

i ix y , and the orientations, r

i , will provide the desired formation for the networked 

system.  

          Now, the consensus errors are defined for each robot as a function of the regulation 

error of the robot and its neighbors as 

 
1 1

,
i i

xi i k i k

k N k Ni i

x x x x
  

         
1 1

,
i i

yi i k i k

k N k Ni i

y y y y
  

         and 

 
1 1

,
i i

i i k i k

k N k Ni i

    
  

                                                                                                (78) 

along 𝑥 and 𝑦 directions and the bearing angle, respectively with ,i iN   being the set of 

robots and number of robots in the neighborhood of the thi robot. The main purpose of the 

consensus based controller will be to force formation errors (78) go to zero so that the 

network of robots is in consensus.  

              Achieving a formation by a network of robots depends on the reference 

coordinates of each robot provided the robots in the network share the position and velocity 

information with at least one of its neighbors. Therefore, the following assumption is 

needed.  

Assumption 2: The robots determine their formation errors,  (78), based on the 

information exchange topology of the communication network. The information exchange 

topology is connected similar to [5]. 

Remark 1: Driving the formation errors (78) close to zero will not result in the 

desired formation unless Assumption 2 is satisfied [5]. The minimal communication that 

is required for four robots to satisfy the connectedness is given in Figure 2.1. 

Connectedness of the network ensures that there is no isolated agent/robot in the network. 
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In other words, each agent receives information from one agent and transmits  information 

to at least one other agent which requires 1, 1,2, ,i i N    . 

2r

2R

2r

2R

2r

2R

2r

2R

 

Figure 2.1 Differentially driven mobile robots. 

Remark 2: In [5], a controller was designed to ensure that all regulation errors for 

the linear systems achieved a common value. The benefit of such consensus based 

formation controller is that the thi robot will be able to reach consensus with its neighbor 

when the communication is not available with the
thj robot anymore.  As shown in [5] 

average consensus is achieved if the information exchange topology is both strongly 

connected and balanced.  
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 PERIODICALLY DRIVEN DISTRIBUTED CONTROLLER DESIGN 

            The main focus of this section is to formulate the back-stepping formation control 

of mobile robots by minimizing the consensus-based formation error. For this to happen, 

this formation error is obtained from the robot kinematics and utilized to derive the 

velocities at which the robots should move. The perfect velocity tracking assumption [1] 

becomes undesirable due to the robot dynamics. Therefore, by explicitly taking into 

account the dynamics of each robot, controllers are designed to minimize the velocity 

tracking error. The velocity tracking error acts as a virtual control input to the formation 

error dynamics and makes the robots reach consensus.  

               First, define the states for the virtual nonholonomic mobile robot as 

1 1 1
, y , ,

i i i

j k j k j k

k N k N k Ni i i

x x y  
    

      
1 1

v ,
i i

j k j k

k N k Ni i

v  
  

   . This definition 

of the virtual cart is unique in the sense that the average values of the neighbor states are 

utilized to generate consensus errors for the formation. Then, the formation errors can be 

rewritten as ,xi i jx x    ,yi i jy y     i i j     . If the reference bearing 

angles of each robot in the network are different, then the robots move in different 

direction, which is undesirable for maintaining a formation. Therefore, the following 

assumption is needed.  

Assumption 3: The desired heading angles, 𝜃𝑖𝑑, are same for each robot in the 

formation so that each robot is oriented in the same direction [5], which yields 𝛿𝜃𝑖 = 𝜃𝑖 −

𝜃𝑗 . Next, the consensus-based formation errors (78) are transformed into the reference 

frame attached to the mobile robot using the transformation [1] given by 
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𝑒𝑖𝐹 = [

𝑒𝑖1

𝑒𝑖2

𝑒𝑖3

] = [
cos 𝜃𝑖 sin 𝜃𝑖 0

− sin 𝜃𝑖 cos 𝜃𝑖 0
0 0 1

] [

𝛿𝑥𝑖

𝛿𝑦𝑖

𝛿𝜃𝑖

] .                                                                 (79) 

Taking the derivative of (54) reveals 

sin cos sin

c

cos

sin sin cos so

i i xi i xi i i yi i yi

iF i i xi i xi i i yi i yi

i

e


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 

  
 


 





 .                                                   (80) 

Using the expression (76) in (80) gives 

1

T

F xi yi ie                                                                                                                                           (81) 

with 

cos sin

cos sin

sin cos
cos

sin c

sin cos

n
os

si

i i i i i

j j j j j

i i i i i

j j j j

i i xi i

xi

i i yi

j

i

v d

v d

v d

v d

  



  

  

  

 

  

  
  
  
 

  
  
  


 




 
 

, and 

cos sin
sin

cos sin

sin c

co

os
sin cos

sin c

s

os

i i i i i

j j j j j

i i i i i

i i xi i

yi

j j j j j

i i yi i

v d

v d

v d

v d

  







 

 

  

 

  

  
  

 

 


 
  

  
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 .   

        On simplification, using the trigonometric identities and (54), the formation error 

dynamics are obtained as 

[

𝑒̇𝑖1

𝑒̇𝑖2

𝑒̇𝑖3

] = [

𝑒𝑖2𝜔𝑖 + 𝑣𝑖 − 𝑣𝑗 cos 𝑒𝑖3

−𝑒𝑖1𝜔𝑖 + 𝑣𝑗 sin 𝑒𝑖3

𝜔𝑖 − 𝜔𝑗

].                                                                                                             (82) 

Remark 3: It can be observed that (55) resembles the error system for a single robot 

tracking a virtual reference cart [1]. In this work, instead of tracking a virtual cart, the 

mobile robots attempt to reach consensus with their neighbors, and each 𝑒𝑖(−) represents 

the consensus error instead of the trajectory tracking error. In order to stabilize the open-
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loop formation error dynamics (55), linear and angular velocities are designed as virtual 

control inputs.  

        Under the perfect velocity tracking assumption, the consensus-based formation 

control velocity is proposed as 

𝑣̅𝑖𝑑
𝐹 = [

𝑣𝑖𝑑
𝐹

𝜔𝑖𝑑
𝐹 ] = [

−𝑘1𝑒𝑖1 + 𝑣𝑗 cos 𝑒𝑖3

𝜔𝑗 − 𝑘2𝑣𝑗𝑒𝑖2 − 𝑘3 sin 𝑒𝑖3
].                                                                                         (83) 

with 1 2 3, , 0,k k k   being the design constants. If each robot perfectly tracks its desired 

velocities (56), the group of robots will reach the desired formation. Since the perfect 

velocity tracking assumption is undesirable [1],[19], there will be an  error in tracking 

velocities defined for each robot as 1 2][F F F F

iv iv iv i id

Te e e v v   , which reveals, F F

i id ivv v e  .  

Remark: The desired velocities (56) will make the formation errors of robots less 

than a pre-defined lower threshold,  2 2 2

1 1 2 2 3 3
l e l e l e    . Once the norm of the formation 

errors becomes less than the threshold, the regulation or tracking controller can be applied 

similar to our work in [16]. 

The consensus error system (55) becomes 

 
 

 

  

1 1 1

2
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2 1
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i j i j

j i j
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Fi
iv j j i i j j

i

e k e
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e

e v e

e
e k v e k

  
 

  

   

  
    

       
     
   
       

 
  



.                                                                     (84) 

          Simplifying the expression in (84) leads to the consensus based formation error 

dynamics similar to [1] as 
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[

𝑒̇𝑖1

𝑒̇𝑖2

𝑒̇𝑖3

] = [

𝑒𝑖2𝜔𝑖 − 𝑘1𝑒𝑖1 − 𝑒𝑖𝑣1
𝐹

−𝑒𝑖1𝜔𝑖 + 𝑣𝑗 sin(𝜃𝑖 − 𝜃𝑗)

−𝑘2𝑣𝑗𝑒𝑖2 − 𝑘3 sin(𝜃𝑖 − 𝜃𝑗) − 𝑒𝑖𝑣2
𝐹

]                                                                                      (85) 

Using (44), the velocity tracking error dynamics of the individual robot are obtained as 

 ( , ) ( )F F F F

i iv i id mi i i id iv i i di iM e M v V q q v e F v         .                                                                   (86) 

        Since the nonlinear dynamics of each robot are uncertain, defining 

  ( , ) ( )F F

i i id mi i i id i if z M v V q q v F v   , yields   

 ( , )F F

i iv mi i i iv i di iM e V q q e f z                                                                                                         (87) 

where 1, v , v , v , , , ,eT F T F T T T

i i id id i j iF iFz e     is the set of inputs required to construct the 

uncertain function ( )if z  which brings the dynamics of the neighbor robots through the 

velocity tracking error. The uncertain dynamics in [1] is a function of the dynamics of the 

leader, whereas, in the consensus based scenario, it can be from any neighbor or neighbors 

of thi  robot and hence the formation. Note that iz is a function of individual robot and 

formation dynamics, therefore all the position and velocity information need to be 

communicated among the robots.  

        The uncertain nonlinear dynamics (87) are represented as  

 ( ) T T

i i i i if z H z                                                                                                  (88) 

where
2 ih

i


   is the desired NN weights with ih  being the number of  hidden layer 

neurons,  T

i iH z is the basis function with ih niTH


 is the mapping between the inputs 

and the  hidden-layer neurons , ni  is the number of inputs to the NN, i  is the bounded NN 

reconstruction error satisfying i M  , with M  being a positive constant. The unknown 
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NN weights can be estimated as ˆ
i  and estimated  uncertain dynamics can be given by 

 ˆ ˆ( ) T

i i i if z z  .                                                                                                          (89) 

        Now, the NN weight estimation error is defined as ˆ
i i i    and the estimation 

error dynamics can be obtained as ˆ
i i   . The control torque, using (87), is obtained as  

   1 2 3
ˆ -γ ,  ,F

i v iv i i i iK e f z e e e                                                                                       (90) 

where γ  is the stabilizing term required due to the formation error system.  Substituting 

(90) into (87) reveals the closed-loop velocity tracking error dynamics with

   i i i i if z z  , as     γ ( , )iF

F F F

i iv v iv di mi i ii ive fM e K e V q q ez                  (91) 

        Next, the following standard assumption is needed. 

Assumption 4: The target NN weights are bounded by positive values, for all the 

robots in the network 1,2, , ,i N such that i M   with M being a positive bounded 

constant. 

Remark 4: Calculation of the term,  ˆ
if z , requires computation of F

idv  , which is a 

function of the dynamics of robot  𝑗, and jv . Therefore, the proposed control law not only 

compensates the dynamics of the 𝑖𝑡ℎ robot, but also the dynamics of the formation. To 

calculate F

idv , it is assumed the neighbor robots communicate their state information to the 

𝑖𝑡ℎ robot, which includes , ,j j jx y   and the linear, angular velocities, through a lossless 

wireless network. 

             Next, the formation stability results for the group of mobile robots in the presence 

of uncertain robot dynamics with continuous or periodically driven feedback are presented. 
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       Theorem 1: Given the consensus error dynamics (55) for the thi  robot in the 

network, let the consensus-based formation controller (56) be applied to the thi robot under 

minimal communication scenario. Consider the Assumptions 1,2, and 3 holds. Let the 

control torque be defined by (90) with 

γ(𝑒𝑖1, 𝑒𝑖2, 𝑒𝑖3) = [
−𝑒𝑖1

−
1

𝑘2
sin 𝑒𝑖3

].                                                                                                                    (92) 

             Further, tune the unknown NN weights by using  

 1 1
ˆ ˆTF

ii vi i i iez                                                                                                                               (93) 

where 1>0, 0i  are small positive design parameters. Then, the velocity tracking error 

(91) and consensus error (57) and the NN weight estimation errors remain bounded. In 

addition, a) thi robot tracks its desired velocity and b) the network of mobile robots reach a 

desired formation under the minimum communication topology, when the gains are chosen 

such that 3
1

2

0, 0, 0, 0v i

k
k K

k
    .  

           Proof:  See Appendix. 

             In the next section, the event-based sampling instants will be determined and then 

the event sampled controller design for the formation control of mobile robots will be 

introduced unlike the periodic sampling given in this section. 
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 EVENT-TRIGGERED CONTROLLER DESIGN 

             In this section, the NN controller design with event-sampled feedback, for the 

network of nonholonomic mobile robots will be presented and the aperiodic NN weight 

adaptation law will be derived from the Lyapunov stability analysis. The event-sampling 

mechanism is designed using stability analysis such that the event-sampling error (75) 

satisfies a state-dependent threshold for every inter-event period for each robot, which is 

of the form  

1, , 1,2,3..iET i ik i k kt t t k                                                                                          (94) 

with 0 1, andi ik    is a positive design parameter and ,iET iE E  are functions of event-

sampling error and the formation, and velocity tracking errors respectively. By using the 

event-sampled feedback, the objective is to reduce the computations from periodic 

parameter adaptation without compromising the stability while ensuring acceptable 

tracking performance. 

Remark 5: Once an event is triggered for the thi  robot, it broadcasts its position and 

velocity information to its neighbors and also updates its own control torque with its current 

sensor measurement, resetting the measurement error to zero in the sensor measurement. 

Remark 6: The event-sampling mechanism is designed at each robot with the event- 

sampling error satisfying (94). This makes the event-based broadcast instants 

asynchronous, which ensures that the communication link shared by the network of robots 

is not accessed by all the robots at the same time, reducing the conjestion in the network.  

             Since the formation and the velocity tracking errors of each robot are functions of 

both its own as well as its neighbor robots states, the event triggering errors will have two 
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parts due to: a) its own state vector; and that of b) its neighbors. Realize that the first part 

of the event trigger error is continuously available for each robot whereas the second part 

of the event triggering error is not available except at event sampled instants. Therefore, a 

novel decentralized sampling scheme is developed to determine the event sampling instants 

of each robot by using last sampled information of neighborhood robots. The following 

definitions are needed. 

Definition 1: Define first, 11,2, , , k ki N t t t       

                   , , , , ,i i i i i

i i k i i k i i k i i k i i kx t x t y t y t t t v t v t t t         

           , , ,xi i i yi i i i i ix t x t y t y t t t            

       ,vi i i i i iv t v t t t         

           , , ,i i i

i i k i i k i i kx t x t y t y t t t           

           1 1 2 2 3 3, ,i i i

k k ki i i i i ie e e et t t e tet t   .                                                           (95)  

The superscript in the sampling instants will be dropped from hereon for notational 

simplicity. By using (95), the event triggered consensus errors are defined as 

,xi i jx x    yi i jy y    and ,i i j     along 𝑥 and 𝑦 directions and the 

bearing angle, respectively. The event triggered formation errors can be represented in 

terms of the continuous-time formation and the measurement errors as 
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.                                                    (96) 

Define the event triggering errors by using (96) as 
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.           (97)

Also define 
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, then the event trigger errors (97) can be written as  

i j

i i i     .                                                                                                                                               (98) 

Remark 7: The event trigger error given by (98) has two parts as mentioned before 

with the second part j

i is not available continuously because the state information of the

thj robot is not updated at the thi robot. A novel event-sampling condition is derived in 

Theorem 3, using the Lyapunov stability theory, in such a way that only locally available 

information from the thi robot along with the past position and velocity information for the

thj robot are utilized. 

Now, to define the formation error dynamics with event-sampled measurement 

error, consider (56), during the thk  inter-event period, the desired virtual control equations 
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are obtained as 

1 1 3

1

2 2 3 3

cos
, ,

sin

F
i j iF id

id k kF
j j i iid

k e v ev
v t t t

k v e k e


    
      

   
                                                                 (99) 

where    , vj j k j j kt v t    are event-sampled angular and linear velocities of the
thj

robot, respectively. After defining the event-sampled signals, (99) can be rewritten with 

the measurement errors as 

1 1

1 3 3

1

2

3cos
, ,

sin

F
j iF id

id k kF
j

i

i i

i

jid i

ek v vv
v t t t

k v k

e

e e



 


     
      

    
                                                              (100) 

where ,i iv    are given by  33 3 1 1[cos cos ] cosi j i vj i iiv v e ke e          and 

3 2 3[sin sin ]ii i jk e e     2 2 2 2 2 2j i vj i vj ik v k e k       . 

            To get the closed-loop formation error dynamics in the presence of measurement 

error, use (100) in (55), which reveals the event-sampled formation error dynamics as 

1 1 1

3

2 2 3 3 2

1 2

2 1

3 si

sin

n

i i i

i i i j

i

F

i i iv

i

F

j i i i iv

k ee e v e

e

k v e k e

e e

e

v

e











  
  

    
  

  

      

                                                                        (101) 

            The closed loop formation error dynamics in the presence of event trigger errors 

are obtained in (101). Similarly, the velocity tracking errors in the event sampled 

framework is derived next.  

            The unknown NN weights can be estimated as ˆ
i  and estimate of the unknown 

dynamics with event sampled feedback can be obtained as 

  1
ˆ ˆ( ) , .T

i i i i k kf z z t t t                                                                                                                 (102) 

with i i izz z e  , being the event-sampled signals at the thi  mobile robot. The unknown NN 
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weight estimation error is defined as ˆ
i i i    and the estimation error dynamics can 

be given as ˆ
i i   . The event-sampled control torque, using (102), is obtained as  

   1 2 3 1
ˆ -γ ,  , , ,F

i v iv i i i i k kt tK e f z e e te                                                           (103) 

with  

F F

iv i iETve e e                                                                                                                                                (104) 

where the event triggered velocity tracking error    F F

iv iv kt e te  is defined similar to the 

event triggered formation errors and γ  is the stabilizing term with measurement error due 

to event-sampled mechanism.   

             Note the velocity tracking error, F

ive , is not available continuously as it is a function 

of the states of the neighbor robots;  the event trigger error, iETe  in (104) is also not 

available continuously at the thi  robot in the network. Therefore, consider  

       d d

iET i

F F

iv i k kv i i ie v t v t v v te e t      [ ] [ ]T T

vi i i iv     

3 1 1

3 3 2 2

3

22 2

cos cos

[sin sin ]

vi j i j i

i i j j i vj i

i

i

e

e

v e v k

k e k v k e 

 

   

  
  

     




. Using this, we define the components 

of the measurement error due to the thi  and the
thj robots as    

3 1 1

3 2 3 2 2

cos

[sin sin ]

vi j i ii

iET

i i j ii

v e k
e

k ee k v

 

 

  
  

   
, 3 2 2[ cos ]j T

iET j j vj iie v k ee     .                   (105) 

Substituting (103) into (87) reveals the closed-loop velocity tracking error dynamics  

   1 2 3γ ,  ,F F

i iv v iv i idi vi iETiM e K e e K ee e f z       

    1( , ,)[ ] F

mi i i iv k ki i V q q e tf z t tf z                                                                  (106) 
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where    i i i i if z z   . With the formation error dynamics (101) and the velocity 

tracking error dynamics (60) driven by the event-sampling errors, the stability results for 

the network of mobile robots are presented. Next the definition for UUB is introduced. 

Definition 2 [1]: An equilibrium point ex is said to be uniformly ultimately bounded 

(UUB) if there exists a compact set nS   so that for all 0x S  there exists a bound B  

and a time  0,T B x  such that   ex t x B   for all 0 .t t T    

             The following theorems provide the stability analysis for the control law that does 

not require the perfect velocity tracking assumption. As noted before, the controller is 

updated only at the event-sampling instants.  

      Theorem 2 (Input-to-state stability): Given the consensus error dynamics (101) 

and the velocity tracking error dynamics (60) for the thi  robot in the network, let the 

consensus-based formation controller (103) be applied to the thi robot. Define the control 

torque by (103) with 

 1 2 3 1 3

2

1
γ ,  , [ sin ]Ti i i i ie e e e e

k
   .                                                                            (107)

further, tune the unknown NN weights using the adaptation rule (93) with the measurement 

error satisfying the inequality iET iETMe B , with 
iETMB  being a positive constant. Consider 

Assumptions 1,2 and 3 hold. The velocity tracking (60) and consensus errors (57) are UUB  

and a) the thi robot tracks its desired velocity; b) the networked mobile robots reach any 

desired formation under minimum communication scenario, in the presence of  bounded 

measurement error when the gains are chosen such that  
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31 22

2

2 , , 3 2, 02 3 2 0.5 vk kk k K k      

and c) the closed-loop system is input-to-state stable (ISS), with the input being a function 

of the measurement error iETe . 

      Proof: See Appendix. 

Remark 8: If the nonlinear dynamics of each robot satisfy Lipschitz continuity, then 

by using Theorem 2, it can be shown that the event-sampling mechanism does not exhibit 

zeno-behavior [14].  

Remark 9: The result in Theorem 2 shows that the closed-loop system in the 

presence of a bounded measurement error is locally ISS. That is, the continuous closed-

loop system admits an ISS Lyapunov function. However, for the event-sampled 

implementation of the controller, the boundedness of the event-sampled measurement error 

is required to be proven. Next, the closed-loop signals are indeed shown to be bounded 

using which the measurement error and the existence of 0 1,ik   satisfying the event 

trigger condition (94) will be demonstrated. 

            In the following theorem, the event-sampling mechanism is designed and stability 

of the robot formation is analyzed by using the Lyapunov stability theory in the presence 

of disturbance torque input and NN reconstruction error. 

        Theorem 3: Given the consensus error dynamics (60) for the thi robot in the network 

with the disturbance torque and the NN approximation error 0, 0d i   , respectively. 

Consider the Assumptions 1,2 and 3 hold. Let the consensus-based formation control input, 

(103) with (107), be applied to the thi  mobile robot at the event-based sampling instants 

and the event-sampling condition be defined by (94). Further, consider the unknown NN 
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weights are tuned at the event sampling instants using the aperiodic tuning rule (93). Then 

the velocity tracking error (60) and consensus error systems (57) are UUB and a) the thi

robot tracks its desired velocity; and b) the networked mobile robots reach any desired 

formation under minimum communication, when the gains are selected such that 

2

1 3 22 2 3 2 3, ,2k kk k   2, 05 2 .vK k      

      Proof:   See Appendix. 

Remark 10: The event-sampling condition satisfying (94) is designed in Theorem 

3 such that i  is a function of formation and velocity tracking errors calculated at the thi  

robot and [ ]i i T

iET iET jETE E E  is the event-sampling error available continuously at the thi  

robot. The terms
2 2 4 2 2[ ]xyi xyi xy

i T

jET vi i vi ii xy          and 
2 2

1[i i

iET iET

i

iE e    

4

2 1 2

2 4

]i i

i

Ti

i i    are function of the measurement errors defined in (97) and (105), with 

22
2( ),xyi xi yi   

442 8( )xyi xi yi    . The design terms 1\ ,i

ik iET   is a function 

of the control gains 1 2 3, , , .vk k k K   

Remark 11: It can be observed from Theorem 3 that the event-sampling condition 

is dependent on the locally available position and velocity information. This ensures that 

the communication among the mobile robots in the network is required only when there 

are events. This considerably reduces that communication cost in contrast to the consensus 

based controllers in [5]-[13]. 

Remark 12: From the results in Theorems 2 and 3, it can be seen that the 

measurement error is bounded for all the inter-event period due to the event-sampling 

condition (94) with the value of ik  obtained from (94).  By using the states of the closed-



132 

 

  

loop system and defining [ ]F T

i viZ e e  , the ISS characterization can be obtained. Thus 

the existence of a positive minimum inter event-time can be established [14] . 

Remark 13: The event-sampling condition obtained from (94) requires the 

information regarding the last updated information of the
thj  robot to determine the event-

based sampling instants. Also, for the event-sampling condition, the formation errors for 

the thi  robot can be calculated with the previously obtained information from the 
thj robot.  

Remark 14: From the results in Theorem 2, it can be seen that the measurement 

error is bounded for all the inter-event period due to the event-sampling condition (94) with 

the value of ik  obtained from [15]. By choosing the gains as required in the Lyapunov 

conditions in [15], we obtain 0 1, .ik k    

Remark 15: Once the velocity tracking and the formation errors converge to a small 

value, a dead-zone operator can be used to prevent further events [15]. This way the 

feedback information is not utilized frequently and computations, communication can be 

reduced further.  

Remark 16: It can also be observed that the event-sampling mechanism is not a 

function of the NN weights as in [15]. This eliminates the need for a mirror estimator as in 

the adaptive event-sampling mechanism designed in [15]. 
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 RESULTS AND DISCUSSIONS 

      To illustrate the effectiveness of the proposed event-based NN controller, a group 

of four non-holonomic mobile robots is considered. The robots are initiated from an 

arbitrary position and move to a desired shape of a square. Using the proposed approach, 

the robots establish the square shape while ensuring the velocity tracking error converges 

to a small value. The main simulation results are given in the first part by using the 

minimum communication information depicted in Figure 2.1, wherein each robot will have 

information from one other robot. Even with minimum communication, acceptable results 

are observed. In the second part of the simulation section, each robot is assumed to have 

communication with all the other robots in the network. The results in the second part is 

compared with the minimum communication case and discussed in the second part. 

 MINIMUM COMMUNICATION CASE 

       The desired and initial positions, initial bearing angles and the initial velocities of 

the non-holonomic mobile robots are given by 

1 2 3 4 1 2
25, 25, 25, 25, y 25, y 25,r r r r r rx x x x        

       1 0 2 0 3 0 4 0
192, 132, 96, 120,x t x t x t x t     

   3 4 1 0 2 0
y 25, y 25, 108, y 156,r r y t t         

       3 0 4 0 1 0 2 0
y 168, y 120, 0, 0 ,t t t t      

   3 0 4 0 1 2 3 4
0 , 0, , , , .d d d dt t                 

      The controller gains are selected as 30
v

K 
1 2 3

0.065, 0.065, 0.08k k k    and the 

steady state desired linear velocity is selected as 0.9 m/sr

i
v   . The parameters for the 
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robot dynamics are selected as 5m   kg, 23kg ,I  0.15m,r=0.08m, R  d=0.4m  for 

each robot.  Figure 5.1 depicts the motion of 4 independent non-holonomic mobile robots.  

 

Figure 5.1 Mobile robots moving to their desired formation. 

      They are initiated in a non-square shape which can be seen In Figure 5.1. Given 

their desired locations, they form a square shape by minimizing consensus error along 

, ,x y  . The nonlinear robot dynamics are considered uncertain as described in the problem 

formulation.  

      The initial movements of the robots are oscillatory as the consensus error varies 

over time. Since the robots have nonholonomic constraints, due to the consensus error 

resulting from minimal communication, oscillations are observed but eventually this gets 
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settled. The adaptation parameters for the NN weights estimation is selected as

1, 0.5
i i

F   . Once the unknown weights are tuned, the robots reach consensus along 

,x y  directions.  

      The robots reach consensus at about 500th second as observed in Figure 5.2 and 

Figure 5.3. The difference between the desired and the actual linear and angular velocities 

are plotted in Figure 5.3. The NN weight estimates of each robot converge into a steady 

state bound as shown in Figure 5.4. Since the robots may move in different terrain, the 

friction terms can change over time, and the total mass of each robot may change as well 

as other dynamics parameters. Therefore, learning the robot dynamics online is valuable 

and is achieved. 

 

Figure 5.2 Formation errors. 

0 500 1000 1500
-80

-60

-40

-20

0

20

40

60
Formation Errors

Time (s)

F
o

rm
a
ti

o
n

 E
rr

o
rs

 (
m

)



136 

 

  

 

Figure 5.3 Velocity tracking errors. 

 

Figure 5.4 NN weights (continuous). 
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Figure 5.5 NN weights (event triggered). 

 

Figure 5.6 Robot Trajectories with event trigger controllers. 
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Figure 5.7 Formation errors. 

 

Figure 5.8 Velocity tracking errors. 
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      The event-sampling mechanism was designed with 
1 2 3
, , ,

v
k k k k  as selected in the 

controller with 0.99  . To compare the controller with continuous feedback, all the 

controller gains and initial values of the parameters and the initial conditions of the robots 

were unchanged. With the proposed event-sampled feedback, the mobile robots were able 

to reach the desired consensus as seen in Figure 5.6.   

      The formation errors remain bounded in Figure 5.7 and the velocity tracking error 

remains bounded as in Figure 5.8. However, due to the aperiodic feedback, these bounds 

are slightly large when compared to the continuous counterpart. 

 

Figure 5.9 Cumulative number of events of each robot. 
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parameter estimation error as depicted in Figure 5.5. Clearly, the bounds on these errors 

0 500 1000 1500
0

500

1000

1500

2000
Cummulative Number of Events

Time (s)

N
u

m
b

e
r 

o
f 

E
v
e
n

ts



140 

 

  

were higher compared to the continuously updated case. Due to the designed event-

sampling mechanism at each robot, the total number of NN weight updates and the 

communication instants are considerably reduced as seen in Figure 5.9. 

 FULL COMMUNICATION CASE 

        In this case, the initial conditions, controller gains and all the parameters are 

chosen same as in case A. Only full communication is considered. The simulation is run 

for sixteen seconds and event triggered controller results are given. Comparing Figure 5.10 

with Figure 5.1 and Figure 5.6, it is obvious that the oscillations are reduced significantly 

when the number of communication links are increased.   

 

Figure 5.10 Robot trajectories. 
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        Each robot considers the positions and velocities of all other robots in it’s 

formation error definition and uses their control torque to approximate the uncertain 

formation dynamics. Though the network of robots reach consensus with minimal 

communication in the previous case, oscillations are observed which can be eliminated 

with additional communication from neighbors. 

        Increasing the communication links among robots not only reduces the 

oscillations but also reduces the time of consensus. Figure 5.11 and Figure 5.12 plots the 

formation and the velocity tracking errors of all four robots, respectively.  

 

Figure 5.11 Formation errors. 
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Figure 5.12 Velocity tracking errors. 
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 CONCLUSIONS 

              In this paper, an event-based formation control scheme for a network of mobile 

robots was presented. The NN based event-sampled torque control of mobile robots was 

able to bring the robots to consensus by stabilizing the formation as well as velocity 

tracking errors in the presence of event sampled measurement errors, NN reconstruction 

errors and bounded disturbance. The event-sampling mechanism was able to generate 

additional events so that the formation error remains bounded and due to asynchronous 

mode, communication overhead is minimized.  

        In the case of minimal communication, oscillatory behavior is observed initially 

though this becomes better over time while full communication with other robots enhance 

the formation control. The event-sampling condition at each robot and the NN adaptation 

rules were derived using the Lyapunov stability analysis. The analytical results were 

verified using the simulation examples and the efficiency of the event-sampled controller 

execution was demonstrated in the presence of minimal communication information and 

with full communication overhead. It was observed that the robots reached consensus even 

in the presence of minimal communication. However, the consensus was reached much 

faster and the robots moved with much less oscillations when the full communication was 

available for all the robots. 
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APPENDIX 

  Proof of Theorem 1: Consider the following combined Lyapunov candidate 

1

N

iFi
L L


 ,                                                                                                                                              (108) 

where the Lyapunov functions for each robot is given by 

 2 2

1 2 3

2

1 1
( 1 cos

2
)

TF F

iF i i iv i iv

T

ii iL e e e M e r e
k

t                                                              (109) 

with 1

1

    . Taking the derivative of (109) and substituting the consensus error system 

(55) and velocity tracking error dynamics (91) reveal 

   2 2    

1 1 3 2 3 1 1 2 3 2 1 2 3sin   1 sin ( , ,  ) F T F F T

iF i i i iv i iv iv v iv iv i i iL k e k k e e e k e e e K e e e e e        

   
˙

   ( ) 0.5(   2( ) { })F T F T

i

T F
iiv i i i di iv mi i i iv i ie z e M trV q q e            

        Next, applying skew symmetric property [1] and recalling the definition of 

γ(𝑒𝑖1, 𝑒𝑖2, 𝑒𝑖3)in (92) results in 

 2 2  

1 1 3 2 3sin F T F

iF i i iv v ivL k e k k e e K e      ( ) 0.5 { }( )F T

iv i i i

T

i i idie z tr              (110)  

        Using the upper bound on the disturbance and the NN approximation error along 

with the Young’s inequality yields 

 2 2

1 1 3 2

2

3

2

sin 0.5F F

iF i i v iv ivL k e k k e K e e    

  2 { }0.5( ) )( F T

iv i i i

T

M M i id tr e z                                                                    (111) 

        Use the adaptation rule (93) and the rotation property of trace operator, combine 

similar terms to get 
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2 23
1 1 3

2

2

sin (
1

2
)

2

F

iF i i v

Ti
i i Biv i

k
L k e K e tre

k


         

with
2

0.5Bi M Md   . Then the derivative of the combined Lyapunov function (108) is 

given as 

     2 2

1 1 3 2 3

2

1
0.5( s 0 5 )in .

N TF

i i v i i i i Bi vL k e k k e K e tr 


                          (112) 

where B BiN  . It can be observed from (112) that the Lyapunov derivative is less than 

zero as long as  3 20.5, 0, 0,v ik kK     provided  

1 3
2

31

, sin ,, , .,,F

i i i
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k K
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
      

        Therefore, a) all the formation errors, velocity tracking errors and NN weight 

approximation errors are bounded; b) Since the Lyapunov function (108) contains all the 

individual Lyapunov functions and it is proven that each robot reach consensus on 

regulation errors, it will provide the desired formation shape for the networked mobile 

robot group. 

Proof of Theorem 2: Consider the Lyapunov candidate (108) and taking the 

derivative of (109), we have  

     

1 1 2 2 3 3 2
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i itr   .                      (113)                

       Utilizing the consensus error dynamics and the velocity tracking error dynamics 

with measurement error from (101) and (60), to get 
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i ii i tf z f rz                                                                                                 (114) 

        Using the definition of 3ie  and skew symmetry property and expanding the 

expression, we obtain  
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       Using (107) in (115) and defining the bound   1,2, ,i i Mz i N      , we 

obtain 
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Utilizing the definition of the formation errors in the presence of measurement errors as 

well as jv , we get 
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 
22

2 2 2 21 1 1 1( ) 2
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v i di i i iL e tr                                                                                        (116) 

        Apply the norm operator, utilize the boundedness of the trigonometric terms and 

the bounds on the disturbance torque and reconstruction error, to obtain  
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 Use Young’s and the triangular inequalities, and the trace operator in (117) to get 

   3

2

3

2 2

1 1 2 sin ( ) 0.5i i

F

i v ivk e KL k k ee     

 2
2

2 2 22 0.5( )i j i vji vv i j

Fe v e          
TF T

i iivtr e z   

 
2 2 2 222 2 2

1 2

2

10.5 2
TF

i B M iET Mi iiv ve Ke k d e    
 

    
 

   

2 2
2

2

1

2
2

2 232 4 2 2 0.5j jie kk v k   

 2 22

2 3

2 2

12 12 2 2 sin5 .T
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       Utilizing the parameter adaptation rule defined in (93) and the definition of the NN 

weights estimation error, we have  
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Combining the similar terms and using the Young’s inequality once again yields 
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Combining similar terms reveals 
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Where 
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and  2

1 1 2k ( 3 2),k k  
22

2

3

2

1[ sin ( ) ],i

F

i i iv ie ee   1 32k kki i     ,

2 3 2k ( ).5 ,0k k  3k ( 3 2)vK  . The derivative of the Lyapunov (108) can be found 

by combining individual Lyapunovs terms (119). In the combined Lyapunov function of 

the network of robots, the 
thj   terms can be switched between thi  and 

thj  robot as 

2 2

2 2F F

iv jve e  . Then, after combining velocity tracking error terms of the thi   robot 

yields  the Lyapunov function 

 
1

.
N

i i i iL B


                                                                                                                                   (120) 

with the updated gains of velocity tracking error term 
23

2k ( 3 2 2 )vK k   .  From (120)

: a) it can be seen that the formation, velocity tracking and the NN weights estimation errors 

are bounded in the presence of the bounded measurement errors as long as

2 2

2 22 31 2 3 2 0., , 3 2 , 05 2v ikk k Kk k     ; b) each robot reach consensus on 

regulation errors, it will provides the desired formation shape for the networked mobile 

robot group. 

Proof of Theorem 3:  

Case 1: With the event-sampled measurement error, 0, 1,2, ,iETe i N   . Since 

it is already shown in the proof of the first theorem, the proof of the first case is omitted.  

Case 2: During the inter-event period 1
ˆ0, [t .t ), 0,iET k ke t      therefore, using 

the Lyapunov candidate function (108) and the first derivative is obtained as (113). 

Utilizing the consensus error dynamics and the velocity tracking error dynamics with 

event-sampled measurement error from (101) and (60), get 
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Using the definition of 3ie , we obtain  
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Using (107) in (122) and do the similar steps done in Theorem 1 yields 
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Utilize the definition of the event-sampled formation errors as well as the definition of jv  

to get 

  2
3 3 2

2
2

1 1 31

2

1 3

23

2

sisin ( ) 0. n si5 [ i ]n s n
F

F iv
i i i iv i i i

F

i v iv

e
L e e k e e e

k k

k
k e K e        



151 
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Applying the norm operator, we obtain the inequality as 
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       By utilizing the boundedness of the trigonometric terms and the bounds on the 

disturbance torque and reconstruction error, we get 
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Use Young’s inequality and the triangular inequality in (124) to get 
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 4 1 2 3 40.5,i e iET i e i e i e i ek K k k k k  , yields 

2 222

2 2 2(0.50.5 0.5 0.5 5 ) .i i iET iET j ii vj iK k e kL B                            (125) 

Use the definitions of the event-trigger errors to get  

  
22 2

1 1 2

2

1 2 3 2 24 1 1 2

i j i j i j i j

i

i j

iET iET i e iET iET i e ii i i i i i ie i eK k e e k k k                , 

and use the triangular inequality to obtain 

1

2 2 2 2

1 1 2 122 2 2 2i j

iET iET i e iET i e iET i ie

i j

e iiK k e k e k k     

2 2 4 4 4 4

2 2 1 13 3 2 22 2i j i j i j

i i i ie e ii iik k                                                                           (126)  

Consider the second element,
2

j

iETe  , and recall 3 2 2[ cos ] ,i

j T

iET j j vj ie v k ee     then, 

 
2

2 2
2 2

3 2 2

2 2

3cos
cos

jj

iET j i j vj i

j vj

i

i

v
e v e k e

k

e

e 


 
 

 
     

  
 

2 2 2 2 2

2 22 2j j vj iv k e      

2 2 2 2 2 2 4 2 4 2 4

2 2 2 2 2 2 22 4 8 4 4i j

j j vj i vj i iv k e k k k          .                                                                          (127) 

Then, using (127) in (126) yields  

2 2

11 21

2

22 2 2i

iET iET i e iET i ie i

i j

i eK k e k k      

 2 2 2 2 2 2 4 2 4 2 4

1 2 2 2 2 2 2 22 2 4 8 4 4i j

i e j j vj i vj i ik v k e k k k            

2 2 4 4 4 4

2 2 1 13 3 2 22 2i j i j i j

i i i ie e ii iik k                                                                            (128) 

Define  

2

1 2 3 1 2[2 2 2 1 1 8 ],i

iET i e i e i e i eK k k k k k   

2 2 2
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1 2 1 2 1 2 1 2

2 4 4 2 2 4 4
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to get  

i i j j

iET iET iET iETK E +K EiET iETK   .                                                                                                         (129) 

Use the inequality (129) in(125), then obtain 

i i j j

iET iET iET iETK Ε +K Ε .i i iiL B                                                                                              (130) 

        For the system of N  robots in the robot network, we have the Lyapunov function 

derivative as the sum of all the Lyapunov derivatives of the form, which yields 

i i i j

i i iET iET iET iET iiL K K B                                                                                                   (131) 

        Recall that i

iET  is available for the thi  robot however j

iET  is not. In the combined 

Lyapunov function of the network of robots, the unknown parts can be switched between 

thi  and 
thj  robot as 

2 2j i

iET j jET iv v     . Then, the Lyapunov function can be written as 

2

1

2

12 2i i i i d F

i i iET iET jET jET i i iv

N

i
K K B v eL


                                                                    (132) 

        Take the bounded term 22 d

iv  into the bounded terms and redefine 22 d

i i iB B v   , 

update the last term of iK   as 

3k ( 7 2)vK  . Note that 1( ) ( ) , [t , t )d d

i i k k kv t v t t    .  The switched part, 

2 2

1 2 1 2

4 4
4 2 2i i i i

j j j j

i

jET vi i vi        
  

 , is still not completely computable 

continuously since the first four term needs bearing angle of the 
thj  robot. Therefore, an 

upper bound is found for the first four terms in the following step.  Consider  

2 21
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cos sin
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xij i

j xi yii
yij

j j
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j j
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i

j xi yi       .                                                                                   (133) 



155 

 

  

        Since the bearing angle of the 
thj  robot is not available, (133)should be simplified 

by using triangular inequality, Young’s inequality and the upper bound on sinusoidal 

function as 

2 22 22 2

1 22 2 , 2 2i i

j xi yi j xi yi          .                                                                (134) 

Further,  

4 44 44 4

1 28 8 , 8 8i i

j xi yi j xi yi         .                                                                   (135) 

Now, by considering the inequalities (134) and(135), do the update 

2 4 2 22

xyi xyi xyi x

i

jET i iyi v i v           with 
2 42 422( ), 8( )xyi xi yi xyi xi yi         . 

Now combine the two terms as ,i i i i i i

iET iET jET iET iET jETK K K E E E          and get the 

derivative of the Lyapunov as 

1
.i i

i i iET iET i

N

i
L K B


                                                                                                          (136) 

        Separate the error vector as 
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 similar to the steps between 

equations (131) and (132), the unknown event triggering errors, 
j i

iL jL   , can be 

switched among the robots in the combined Lyapunov function and the event triggering 
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errors, and coefficients can be re-defined as  1 1 ,i i i i i

iET iET iET iET jLK K E E         . 

Then, the inequality (136) is obtained as 

 
1

.i i

i i iET i T ii E

N
L K B


                                                                                                      (137) 

Using the event-sampling condition (94) in(137), we get 
1

).( i

i i iET i ii i

N
L B


       

Choosing 1 ,i

ik iET   the Lyapunov derivative is further simplified such that 

 
1

1 .i

N

i ii
L B


     It can be seen that the formation and velocity tracking errors are 

bounded during the inter-event period as long as  2

1 2 3 22 ,3 2 0.5, 5 2,vk k k k K  

2 2

1 1 3 3k 2k ,k 2k    and since the unknown NN weights are not updated, they remain 

constant during the inter-event period. Therefore, from Case (i) and Case (ii), it can be 

concluded that: a) the velocity tracking errors, formation errors and the NN weights 

estimation errors remain bounded during the inter-event period; b) Since the Lyapunov 

function (108) contains all the individual Lyapunov functions and each robot reach 

consensus on regulation errors. Due to the event-sampling condition, the measurement 

error introduced by the event-sampled feedback is also bounded. 
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IV. MODIFIED CONSENSUS-BASED OUTPUT FEEDBACK CONTROL OF 

QUADROTOR UAV FORMATIONS USING NEURAL NETWORKS 

ABSTRACT 

            In this paper, a novel nonlinear output feedback neural network (NN)-based 

consensus controller is developed for a group of quadrotor unmanned aerial vehicles 

(UAVs). One UAV in the group tracks a desired trajectory while the rest of the group uses 

consensus-based formation controllers without knowledge of the desired trajectory. Each 

UAV estimates its own and its neighbor’s velocities through a novel nonlinear NN-based 

observer by using position and orientation information. Neighboring UAV positions and 

orientation information is assumed to be available via wireless communication or obtained 

through local sensors. Since quadrotor UAVs have six degree of freedom with only four 

control inputs, the UAV’s pitch and roll angles are utilized as virtual control inputs to bring 

all UAVs to consensus points along x  and y  directions. The Lyapunov stability theorem 

is utilized to demonstrate that all the position errors, orientation errors, velocity tracking 

errors, observer estimation errors, and NN weight estimation errors are semi-globally 

uniformly ultimately bounded (SGUUB) in the presence of bounded disturbances. The 

effectiveness of our consensus-based output feedback formation control of quadrotor 

UAVs is demonstrated in simulation validating our theoretical claims.   
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 INTRODUCTION 

             Improvements on low-cost wireless communication has led to research on 

networked autonomous systems in the past 20 years. Inspired by nature, these networked 

unmanned systems are capable of accomplishing a given task without requiring external 

supervision.  

             Quadrotor UAVs are easier to build and maintain when compared to conventional 

helicopters [1]. However, the dynamics of quadrotor UAVs are not only nonlinear, but also 

coupled and under-actuated. They have six degree of freedom and can be modeled as 

having four independent control inputs; one for elevation adjustments and three for 

rotational control inputs. Many controller schemes are proposed in the literature for 

trajectory tracking problems of quadrotors [2]-[3] where the control objective is to track 

the Cartesian position and a yaw angle. Much research has also been dedicated to 

controlling groups of quadrotor UAVs [1]–[13].   

             Quadrotor UAV leader-follower formation controller design is introduced in [4] 

while considering the fourth order linearized dynamics of quadrotors. A relative distance 

approach is utilized for adaptive leader-follower formation keeping when the GPS signal 

is lost in [8]. However, the nonlinear quadrotor dynamics are assumed to be exactly known 

in both [4],[8] which is not realistic in practical applications 

             An NN-based adaptive formation controller is developed for quadrotor UAVs in 

[1]. The availability of position, orientation and velocities of the follower as well as the 

leader for the leader-follower based formation controller design in [1] is quite a strong 
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assumption, and it may not be practical. Further, there are several limitations of leader-

follower-based formation control over the consensus based approach.  

             First in leader-follower approaches, the controller algorithms need to be uniquely 

defined for each follower in the network based on its own leader’s state information.  

Therefore, the scalability of traditional leader-follower approaches can be quite difficult 

whereas the consensus-based formation controller algorithm is scalable since the 

assignment of relative leaders is not required. In other words, the same algorithm can be 

duplicated and used for each agent in the network in the consensus scenario to enable 

scalability. Secondly, for leader-follower approaches, communication disruptions between 

a leader and its followers results in the follower and the agents behind the follower to lose 

the desired formation. Consensus-based approaches are not susceptible to these 

degradations as explained next. 

             Robustness and reliability are two key benefits of the consensus-based formation 

control [4]–[8]. In addition, scalability of the consensus-based formation controller enables 

the formation to continue even if one of the agents in the network experiences a failure. 

The quadrotor UAVs share information regarding their position errors from their respective 

reference locations in consensus-based formation control.  The shared information is then 

synthesized into a control law which seeks to achieve the same position error for all 

quadrotors until each of them has the same position error. The desired formation is 

achieved and maintained by reaching and maintaining consensus on the position errors. 

The desired shape of the formation is selected by choosing the reference points of each 

UAV accordingly. 
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          There are several consensus-based formation control techniques for quadrotor 

UAVs in the literature [5],[6],[10],[11]. In [5], a consensus based formation control of 

multiple quadrotor UAVs is developed in the presence of an unknown mass matrix while 

the rest of the nonlinear dynamics are assumed to be bounded. Additionally, it is assumed 

that each UAV can access its own states as well as the states of its neighbors. Consensus 

control of quadrotor formation in the presence of switching topologies is considered in [6], 

while time delays and switching topologies are considered for the consensus-based 

controller design in [11]. In both works [6],[11], linearized quadrotor UAV dynamics are 

considered.  

             Consensus-based formation control of quadrotor UAV formation is delivered in 

the presence of second order nonlinear UAV dynamics and switching topologies in [10] 

wherein the full state availability of the follower UAV, state measurements of the leader 

UAV and knowledge of the nonlinear UAV dynamics are needed. However, assuming the 

dynamics are completely known is not practical [1]. Highly nonlinear dynamics of 

quadrotor UAVs such as aerodynamics friction dynamics have either been simplified or 

ignored in all previous consensus-based control techniques, which can be seen in 

[5],[6],[10],[11].  

        In [12], the nonlinear dynamics-like aerodynamics friction became significant at 

high speeds. In [13], the authors developed output feedback tracking control of a single 

UAV in the presence of uncertain nonlinear quadrotor dynamics, and its stability analysis 

is demonstrated. Nevertheless, developing consensus-based output feedback formation 

control of quadrotor UAVs in the presence of uncertain dynamics is still an open problem. 
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            In this paper, a novel consensus-based output feedback formation controller is 

developed for a group of quadrotor UAVs in the presence of uncertain quadrotor dynamics. 

A modified consensus-based formation controller is considered where a designated 

formation leader tracks its own trajectory independently from the other UAVs in the 

formation [20]. The other UAVs in the formation have no knowledge about the leader’s 

desired trajectory.  

             Each UAV is assumed to share its position and velocity states with neighboring 

UAVs via wireless communication. Alternatively, each UAV may obtain the required 

states through local sensors when the shared communication is not available. A novel NN-

based extended observer is developed for each follower UAV to estimate its own velocities 

as well as its neighbors. To support UAVs joining or leaving a formation or neighborhood, 

a novel size reduction matrix is defined to remove the zero elements in the observer design 

corresponding to the states of a UAV that has left the formation.  The size reduction matrix 

provides a method to ensure that an invertible observer matrix is always available. 

             Each UAV determines its consensus-based formation errors by using the position, 

orientation, reference location and estimated velocities of neighbors. Since the 

underactuated quadrotor UAVs have no direct control over the position errors along x  and 

y  directions, novel desired pitch and roll angles are utilized as virtual controllers to reach 

consensus for those directions. An elevation controller is also developed by considering 

the formation error along z  direction. 

             The contribution of the NN-based consensus-based output feedback control of the 

quadrotor UAV formation includes the following: 1) the design of a novel NN based 

nonlinear extended observer which explicitly considers the time varying topology of the 
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network to estimate the velocity of the UAV under consideration and its neighbors which 

enables the quadrotors to maintain any desired formation shape—even without 

communication among each other; 2) the development of a novel ‘size reduction matrix’ 

scheme to avoid invertibility issues in the observer design of the group of UAVs in the 

presence of time varying network topology; 3) the development of a nonlinear consensus-

based output feedback-adaptive formation control technique for a group of quadrotor 

UAVs; and 4) demonstration of formation keeping using any number of quadrotors in the 

presence of changing communication topologies through Lyapunov analysis. 

             The remainder of the paper is organized as follows. Section 2 presents a brief 

background on quadrotor UAV dynamics, NNs, and random graphs. Section 3 provides 

the observer and controller design of the leader UAV.  Section 4 discusses the main results 

and derives the consensus-based output feedback formation controller design. Before 

offering conclusions in Section 6, Section 5 provides simulation results to support the 

theoretical conjectures.  
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 BACKGROUND AND PRELIMINARIES 

            This section presents a brief background on NNs, random graphs, quadrotor UAV 

dynamics, and the modified consensus formation control approach considered in this work. 

Notice that an agent is interchangeably used throughout this paper for a UAV. 

 NEURAL NETWORKS 

            Two layer NNs are considered in this work which consist of one layer of tunable 

hidden weights, L bW  ,  and another randomly assigned constant weights layer, 

a LN  , where a   denotes the number of inputs, b  is the number of outputs and L  being 

the number of neurons on the hidden layer NN. Any smooth function  f x  can be 

approximated [19] through a two-layer NN as    T Tf x W N x   , where   is the 

bounded NN approximation error such that M  , and   : a L    is the hidden 

layer activation function. The approximation property holds for any input x  since the input 

layer weights N are randomly selected; therefore, the activation function,    Tx V x 

, forms a stochastic basis in the compact set, S  [19]. In this work, a sigmoid activation 

function is utilized. Further, the target weights are assumed to be bounded by a known 

positive value MW   such that MF
W W  on any compact subset of n  [19]. Throughout 

this work,   and
F

 will be used as the vector and Frobenius norm, respectively [19].  For 

complete details of NN, refer to [19]. The definition of semi-globally uniformly ultimately 

bounded (SGUUB) is introduced next. 
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Definition 1: The equilibrium point ex  is said to be SGUUB if there exists a ball 

centered around the origin with an arbitrary radius r  0, n

rS r S    so that for all 

0

nx  , there exists a bound 0B    and a time  0,T B x  such that   ex t x B   for all 

0t t T  .  Further, the stability result becomes globally uniformly ultimately bounded 

(GUUB) if n

rS  [13].  

             Next, some background information is provided on the Random graph. 

 RANDOM GRAPH 

             A graph is a symbolical presentation of network connectivity, which can be 

considered as a virtual set of connected nodes. A random graph is a graph that is obtained 

by randomly sampling from a collection of graphs. In [10], the set of edges and the vertices 

of a graph  , E    are denoted by   and E , respectively. In this work, for a random 

graph on N   vertices, the existence of an edge between a pair of vertices in the set 

 1,2, ,C N  is determined at random and independent of other edges.  Define the 

sample space of the random graph as P  and let  p t  be a topology indicator such that

p : R M  . Also, let 'skt  be the switching times of the edges in a dynamical graph,  t

, with , 1,2,kt R k  Note that the indicator,  p t , is a piecewise left continuous 

function which remains constant during the time interval  1,k kt t t   and changes to 

another topology in P at 1kt  . In a realistic communication scenario, collisions, channel 

fading or noises may cause packet exchanging problems among nodes. 
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             Assumption 1 [4]: Even though the connectivity graph can change at random in a 

certain time instant, 'skt , the graph is assumed to remain connected at any given time. 

             Connectedness physically means, networked agents, that there is no isolated agent 

in the network. In other words, each agent (or UAV) receives at least one other UAV’s 

information and transmits its information to at least one other UAV. 

             For the dynamical network  t  with N vertices, the adjacency matrix is defined 

as  

    ij N N
t h t


                                                                                                                        (138)       

with   1ijh t   if information flows from agent j   to agent i  at time t ; otherwise,   0ijh t  . 

The corresponding time varying Laplacian matrix is defined as      ij
N N

L p t l p t


     

where    ij ijl t h t   if i j  ,    
1

N

ij ik

k

l t h t


  if i j . 

             Let the connectivity of the thi  agent be fixed during the time period, which is 

known as a dwell time in the literature, ,k k

si fit t    where k

sit  and 
k

fit   begin with thk  starting 

and final time of the thi agent’s communication network topology, respectively.  Assume 

that    0 inf supk k k k

k fi si k fi sit t t t       [10]. 

 QUADRATOR UAV DYNAMICS 

              Consider a quadrotor UAV with six degree of freedom in the inertial coordinate 

frame, aE  , as T T a

i i E     where  
TT a

i i i ix y z E    are the Cartesian positions 

of thi  UAV and  
TT a

i i i i E     describes the orientation of the thi UAV referred 
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to as roll, pitch, and yaw angles, respectively. The translational and angular velocities of 

thi   UAV are given in the body-fixed frame attached to the center of the UAV bE .  The 

dynamics of the UAV in the body fixed frame are given by [13] 

 
 

 
 1

2 3 10

i i i i

i i i i di

i i i

v v N v G R
M S w U

w w N w




      
          

      
                                                              (139) 

where 6

1 20 0
T

T

i iU u u     ,   6 6

3,i i iM diag m I J    , im   is the total mass of 

the thi   UAV, 3 3

iJ 
3

T

i xi yi ziv v v v    , and 3
T

i xi yi ziw w w w    ,

  3 1 , 1,2iN i    represents the positive definite inertia matrix, the translational 

velocities, the angular velocity and the nonlinear aerodynamic effects, respectively, 1iu  

provides the thrust along the z direction while 3

2iu   provides the rotational torques,

6

1 2

T T

di d i d i      , 3 3

1 2,T T

d i d i   represents the unknown, but bounded 

disturbances such that di M   for all time t  , with M   being and unknown positive 

constant, n n

n nI 

    is an n n   identity matrix, and 0 m l

m l



    is an m l   matrix of all 

zeros. Further,   3

iG R   is the gravity vector, 

       6 6,i i i i i i i iS w diag m S w S J w    with   3 3S    representing the general form 

of a skew symmetric matrix as defined in [13]. 

             The matrix, 3 3

iR  is the translational rotation matrix, which is used to rotate a 

vector in the body fixed frame to the inertial coordinate frame given as a solution similar 

to [13] as 
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 i i i

c c s s c c s c s c s s

R R c s s s c c s c s c s s

s s c c c

           

           

    

  
 

     
  

 , 

where the abbreviations 
 

s


and
 

c


have been used for  sin   and  cos  , respectively.  It 

is important to note that maxi F
R R  for a known constant, maxR , 1 T

i iR R  ,  i i i iR R S w  

, and  T T

i i i iR S w R  .  It is also necessary to define a rotational transformation matrix 

from the fixed body to the inertial coordinate frame as in [13]

 

1

0

0

i i i

s t c t

T T c s

s c c c

   

 

   

 
 

    
 
 

 , 1

1 0

0

0

i

s

T c s c

s c c



  

  



 
 

  
  

 where abbreviation 
 

t


  has 

been used for  tan  . The transformation matrix iT   is bounded as long as 

   2 2i     ,    2 2i     , and i     . These regions will be 

referred to as the stable operation regions of the UAV, and under these mild conditions, it 

is observed that maxi F
T T . 

            Using the notations defined above, the kinematics of the thi   UAV can be written 

as  

i i iR v   

i i iT w  .                                    (140) 

             Next, the modified consensus-base formation control approach considered in this 

work is introduced. 
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 MODIFIED CONSENSUS-BASED FORMATION CONTROL 

              In this paper, a novel consensus-based NN output feedback formation controller 

is developed for a group of N UAVs. The leader UAV and N follower UAVs are assumed 

to have the dynamics in the form of (139). In the modified-consensus based approach, the 

leader tracks its own trajectory without considering the formation [20]. The remaining 

UAVs in the formation, the followers, implement consensus-based controllers which allow 

all UAVs within the formation to track the same trajectory as the formation leader even 

though the leader’s desired trajectory is not explicitly known by the formation.  

              To achieve this objective, a time-invariant reference point is assigned to each 

follower UAV as well as the leader UAV in three dimensional space as illustrated in Figure 

2.1. The consensus based formation controllers of follower UAVs provide consensus on 

the distance of each UAV from its reference point, while each UAV also tracks an 

independent desired yaw angle, d

i . In other words, the shape of the formation is provided 

by choosing the reference points accordingly. In order to get the desired formation, 

consensus on regulation errors on the ,x y  and z  directions is provided through the 

controllers. In [20], a modified-consensus based approach is utilized for linear systems with 

known system dynamics through state feedback controller. However, our approach deals 

with uncertain nonlinear quadrotor dynamics and doesn’t require all states of the neighbor 

UAVs. 
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Figure 2.1 Consensus based flight formation of a group of quadrotor UAVs. 
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 SINGLE UAV CONTROL 

            In this work, a modified consensus-based formation controller is considered where 

designated formation leader tracks its own trajectory without considering the formation 

[20]. Therefore, this section presents a trajectory tracking controller for the single 

quadrotor UAV, or agent, which will serve as the formation leader. First the NN-based 

observer design is presented followed by the NN-based output feedback backstepping 

controller similar to [1]. 

 FORMATION LEADER NN OBSERVER DESIGN 

            To estimate the translational and angular velocities of UAVs, an NN based observer 

is designed in [13] without explicit knowledge of the UAV dynamics in (139). To begin, 

define the augmented vectors as
T

T TX     and
T

T TV v w     which have 

dynamics defined in (140) and (139), respectively. They can also be rewritten as [13] 

  1X A t V     

  1

o o dV f x G M U                                                                                                            (141) 

with 1  being bounded sensor measurement noise such that 1 1M   for a known 

constant M  ,         1

1 2

T

o of x M S w V N v N w      with 
0x V  ,

 1 6G M G R   ,
1 6

1 2 1 2

T T
T T T T

d d d d dm J              and 

  3 3

3 3

0

0

R
A t A

T





 
   

 
.                                                                                                             (142) 
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            Next, define a change of variable as Z V  whose time derivative is given as (141) 

[13]. Then, define the NN observer estimation of X  and Z  as X̂  , Ẑ  , respectively, as well 

as the observer estimation errors ˆX X X  . The observer is now proposed as [13] 

1
ˆ ˆ

oX AZ K X    

1 1

1 2
ˆˆ
o oZ f G K A X M U                                                                                                       (143) 

where 1oK  and 2oK   are positive design constants. The observer velocity estimation is 

written as [13] 

1

3
ˆ ˆˆ ˆ

T
T T

oV v w Z K A X                                                                                                       (144) 

with 3oK   being a positive design constant.  The uncertain nonlinear function in (143) is 

estimated through a two layer NN as  1
ˆ ˆ ˆˆ ˆT T T

o o o o o of W V x W    where ˆ T

oW  is the estimate 

of T

oW  , and ˆ
ox   is the NN input written in terms of the observer velocity estimates as 

ˆ ˆˆ 1
T

T T T

ox X V X 
 

 . Define the estimation error of the velocity vector as ˆV V V  , 

then the following lemma holds. 

Lemma 1 [13]: Let the NN observer be defined by (143) and (144), and let the NN 

observer weights be tuned by  

1
ˆ ˆˆ T

o o o o o oW F X F W                                                                                                                 (145) 

where 0T

o oF F   and 1 0o   are design parameters. Then, there exists positive constant 

design parameters 1 2,Ko oK and 3oK where  1 3 12o o o oK K N   ,  3 0 12o oK N  , and

 2 3 1 3o o o oK K K K   with 0N  the number of neurons in the hidden layer NN, such that 
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observer estimation errors X ,V and the NN observer weight estimation errors 

ˆ
o o oW W W   are SGUUB. 

Proof: See [13]. 

            Next, the controller of the leader UAV is given. 

 LEADER UAV CONTROLLER DESIGN 

            In this section, the desired linear and angular velocities are defined by considering 

the velocity tracking error. Since the velocity tracking errors on x  and y  directions are 

not directly actuated [13], desired pitch and roll angles are designed to bring the UAV to 

the desired x  and y  location. The velocity tracking error on z   axis is controlled through 

1u  while the angular velocity tracking errors are controlled through 2u . To begin, consider 

the position error  

r ae E                                                                                                                                (146) 

with ,r r   being the given reference position and velocity state vectors to track in three 

dimensional space. Differentiating (146) and using (140) yields  

re Rv    .                                                                                                                             (147)    

            The desired translational velocity is selected to stabilize the position error dynamics 

(147) as 

 
T

d d d d T r

x y zv v v v R K e                                                                                             (148) 
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where   3 3, ,x y zK diag k k k   

   is a diagonal positive definite matrix. Substituting 

(148) into (147) and considering the velocity tracking error 
T

d

c vx vy vze v v e e e       

yields the closed loop translational tracking error  

 ce K e Re        .                                                                                                                  (149) 

             Then, the translational velocity tracking error dynamics are obtained as  

     1

1 1
c d ce v v N v S w e G R

m m
       1 1

1 T r

z du E R K K Rv
m

           (150) 

with  0 0 1
T

zE  .  Realize that velocity tracking errors in (150) along x and y directions 

are not directly controllable through 1u . Therefore, x  and y  components of the velocity 

tracking errors are controlled through desired pitch and roll angles defined as 

1
ˆ

tan
d d v vx

d

c x s y k e
a

z g

 


  
  

 
 , 

2
ˆ

tan
d d v vy

d

d d d d d d

c y s x k e
a

gc c z s c y s c x

 

     


  

      

                                                                                (151) 

with
1 11

ˆˆ
d x d R cx x k x v f     ,

2 12
ˆˆ

d y d R cy y k y v f      
3 1 3

ˆˆ
d z d R cz z k z v f    , 

, ,d d dx y z  are the desired locations, 1 11 12 13
ˆ ˆ ˆ ˆ

T

c c c cf f f f 
 

 is the NN estimation of the 

unknown part of the translational velocity tracking error dynamics (150). Recall that the 

actual velocities are assumed to be unavailable in this work; therefore, the velocity tracking 

errors are written using observer estimated velocities defined as ˆ ˆ ˆ ˆ
T

d

vx vy vze e e v v     . 

Moving on, the thrust control input and the rotational control inputs are given as 

     1 3
ˆ

v vz d d d d d d d d d d d du mk e m c s c s s x m c s c s s y mc c y g                  ,       (152) 
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2 2
ˆ ˆ
cu f K e    ,                                                                                                                         (153) 

respectively, where
2

ˆ
cf  is the NN estimation of the unknown part of  angular velocity 

tracking error dynamics, K is a constant design matrix, and ê  is the estimated velocity 

tracking error. The details of the single UAV controller design (151),(152),(153) can be 

seen in [1]. 

             Next, an NN consensus-based output feedback formation controller design of 

quadrotor UAV formation is provided.  
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 CONSENSUS-BASED FORMATION CONTROL 

              In this section, a novel consensus-based NN output feedback formation controller 

is developed for the follower UAVs. The proposed consensus based approach has two 

fundamental benefits over traditional leader-follower based controllers [1]. First, output 

feedback formation control enables to keep desired formation with limited communication 

or using only local sensors without communication among the UAVs. Second, relative 

leaders for each UAV needs to be assigned in [1], and the follower UAVs will lose 

formation when the communication with its local leader. In this work, relative or local 

leaders are not required. Instead, each UAV utilizes its neighbors’ states for the formation 

controller, and the neighbors can be updated over time as UAVs join and leave the 

formation. 

             To being the controller development, the desired translational velocities are 

developed as a virtual kinematic controller. Then, the dynamic controller is developed to 

stabilize the velocity tracking error dynamics. Desired pitch and roll angles are obtained to 

make sure the translational velocities on x and y directions achieve the desired velocities. 

Each UAV tracks an independent desired yaw angle, d

i ; therefore, once the desired pitch 

roll and yaw angles are on hand, the desired angular velocity is developed to keep desired 

angles. Both the angular and translational velocities are assumed unmeasurable and NN-

based observers are utilized to recover the unknown states. 
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 EXTENDED OBSERVER DESIGN 

            Assume that each UAV is communicating with i   number of other UAVs in its 

neighborhood set , iN . Unlike traditional observers designed to estimate only local states, 

such as velocities [13], the extended observer presented in this section estimates the thi  

UAV’s velocities as well as its neighbor UAVs’ velocities.  

            The extended observer design considers the communication topology among the 

UAVs explicitly through the adjacency matrix commonly used in graph theory. Therefore, 

consider the thi   row of the adjacency matrix (138) of the thi  UAV and define it as  iH t . 

By using  iH t , a novel matrix is defined for size reduction and row shifting of matrices 

as      i N

i kjQ t q t
 

   where   1kjq t   if and only if  there is information flows from 

the
thj  UAV to the thi   UAV  and the 

thj  UAV is the thk  non-zero element in  iH t  at 

time t ; otherwise, 0kjq   . 

             Combine all the states of UAV’s in the network (neighboring set) and define the 

augmented vectors as  

6 1

1

T
T T N

NiX X X    
6 1

T
T T N

i NiV V V     . 

             Define the augmented states for each UAV as 

  6 6

T
TT

i i iX X Q I X 
  
 

  

  6 6

T
TT

i i iV V Q I V 
  
 

.                                                                                                    (154) 
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             The dynamics of the new augmented states (154) are given as 

  1i i i iX A t V       

  1

i o i o i i i i d iV f x G M U                                                                                                     (155) 

where   12 1

1

p

i


  represents bounded sensor measurement noises of each UAV such 

that 
1 1i Mi  , iN , 

 6 1i
T

T T

i i niU U U





     with   6

,iT

ni j iU U j N


    , and 

 12 1p

dNi


   are being the controller inputs and the bounded disturbances of the neighbor 

UAVs’.  The terms      6 1 6 1i i

i i niA diag A A
 



  
  ,      6 1 6 1i i

i i niG diag G G
 



  
   

     6 1 6 1i i

i i niM diag M M
 



  
  with 

     12 12

6 6 6 6 ,i i
T

ni i j iA Q I diag A Q I j N
 

        

     12 12

6 6 6 6 ,i i
T

ni i j iG Q I diag G Q I j N
 

       

     12 12

6 6 6 6 ,i i
T

ni i j iM Q I diag M Q I j N
 

       are square diagonal matrices, 

and 

        6 1i
T

T T

o i o i oi oi oni onif x f x f x


 


     where      6

,iT T

oni oni oi oi if x f x j N


     

are the uncertain nonlinear dynamics vector of all neighbor UAV with 
6 1i

onix
 

 being 

the vector which contains all the linear and angular velocities of the neighbor UAVs. 

Further, there exists a positive constant upper bound such that  1 I

i MiF
A A

   . 

              Define a change of variables as i iZ V  , and denote the NN observer estimation 

of iX   and iV   as ˆ
iX   and ˆ

iV , respectively, with observer estimation errors written as 
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ˆ
i i iX X X      and ˆ

i i iV V V    ,  respectively. Then, our proposed observer takes the 

form of 

1
ˆ ˆ

i i i o iX A Z K X      

1 1

1 2
ˆˆ

i o i i o i i i iZ f G K A X M U      

      .                                                                                      (156) 

              The reduction matrix is fixed during the dwell time, the time between two 

communication graphs switching, of thi   UAV as assumed before. Observe that
1 1,i iA M 

 
 

are needed in (156), and each can be calculated by using the matrices 

, , , ,i i j j j iR T R T M j N   since they are invertible individually and the zero terms are 

removed using the transformation matrix, iQ . Additionally, the inverse is upper bounded 

1

i MiA A

   with MiA    being a positive constant, [13]. Then, the velocity estimation of thi   

UAV and its neighbor UAVs are proposed as 

1

3
ˆ ˆˆ ˆ ˆ ˆ

T
T T T T

i i i Ni Ni i o i iV v w v w Z K A X   

                                                                                   (157) 

with 3 3ˆ ˆ,p p

Ni Niv w   being the linear and angular velocity estimates of neighbor 

UAVs, respectively. 

            Noting 1

3
ˆ ˆ

i i o i iZ V K A X   

   from (157) and the definition of ˆ
iZ  above, adding 

and subtracting  1

3

T

i o i iA K A X  

  to the error dynamics of the observer estimation error 

gives  

 1 3 1i i i o o i iX A V K K X          

  1

3 1
ˆT

i o i i o i i o iZ f A K A X f     

     1 1

2 3

T

o i i i o i i d iK A X A K A X          .                 (158)  
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              The uncertain function 
1o if   in (156) is written  1

T T

o i o i o i o i of W V x       with the 

constant ideal bounded weights  subject to
o i oMiF

W W  for a known constant oMiW .  The 

term o  represents the bounded NN approximation error such that oi oMi   for a constant 

oMi . The NN estimate is given as   1
ˆ ˆ ˆˆ ˆT T T

o i o i o i o i o i if W V x W         with 

 ˆ ˆ ˆ
o i oi oniW diag W W   where     6 6 6 6

ˆ ˆ ,
T

oni i oij iW Q I diag W Q I j N      and the NN 

weight estimation error is written as ˆ
o i o i o iW W W     with o iW    being the ideal NN 

weights and ˆ ˆ ˆ ˆˆ 1, , , , , , ,T T T T T T

o i i i i j j j ix X V X X V X j N
   
 

 is the NN input vector.   

             Moving on and adding and subtracting  ˆT T

o i o i o iW V x    , and using (158), the 

observer estimation error dynamics becomes 

  1

3 1 2 3 1 3i o i o i i o o o o iV K V f A K K K K X    

      2

T

i i iA X                                         (159) 

where  ˆT

o i o i if W    , ˆ
o i o i o iW W W     ,

1 6

2 3 1 ,i o d i o i i o i iK A W               and 

ˆ
i i i       . Realize that 

2 2i Mi  with 2Mi   being a positive computable design 

constant defined as 2 3 1 02I

Mi Moi Mi Mi o Mi Mi Mi oiM K A W N        where  1

Mi i F
M M  . 

The known constant oiN  is the number of neurons in the hidden layer NN of thi  UAV which 

allows the upper bound of the activation function vector to be written as oi oiN   . 

             Next, the theorem statement is given to provide stability of the extended observer 

design. 

             Theorem 1: Let the NN-based observer be defined by (156) and (157) for the UAVs 

and let the NN weights be tuned according to 
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1
ˆ ˆˆ T

o i o i o i i o o i o iW F X F W        .                                                                                                   (160)

Then, there exists computable positive design parameters 1 2,Ko oK   and 3oK  where 

 1 3 12o o oi oK K N   ,  3 0 12o i oK N   , and   2 3 1 3o o o oK K K K   such that the 

observer estimation errors, iX   and iV , and the NN observer weight estimation errors, 

o iW  , are all SGUUB. 

            Proof: Consider the following Lyapunov function 

  11

2

T T T

oi i i i i o i o i o iL X X V V tr W F W      

  

     

     

 

6 6 6 6

6 6 6 6

1

1

2

T
T T

T T

i i i i

T
T T

T T

i i i i

T

o i o i o i

X Q I X X Q I X

V Q I V V Q I V

tr W F W  

 

 



            
 
              
 
 
 
 

                                                          (161) 

with      6 6 6 6 ,
T

o i oi i oj iF diag F Q I diag F Q I j N      . The derivative of (161) is 

given as  

 1T T T

oi i i i i oi oi oiL X X V V tr W F W 

        6 6 6 6

T

i iQ I X Q I X      

     6 6 6 6

T

i iQ I V Q I V        1
T

T T

i oij i oni i oij itr Q diag W Q F Q diag W Q                    (162)  

with  6 6i iQ Q I   , j N   . Using the property of the Kronecker product and the 

reduction matrix iQ  in (162) yields 

 1T T T

oi i i i i oi oi oiL X X V V tr W F W 

    
i

T

j jj

j N

X X


  
i

T

j j

j N

V V


  
i

T

oj oij

j N

W W


 .              (163) 
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            Combine the similar terms in (163) to get 

 1T T T

oi i i i i oi oi oiL X X V V tr W F W 

    
i

T T T

j j j j oj oij

j N

X X V V W W


   .                                     (164)  

              Using the error dynamics (158),(159), and the NN weight update law (160) in 

(164), we have 

    1 3 1 3 2 1
ˆˆ ˆT T T T T T T

oi i o o i i i i o i i i oi oi i oi i o oiL X K K X X V K V V tr W X V W              

   1
ˆˆ ˆ

i

T T T

oj oj j oj j o oj

j N

tr W X V W  


            

  1 3 1 3 2

i

T T T T

j o o j j j j o j j j

j N

X K K X X V K V V 


         .                                                          (165)  

            Now, after completing the squares with respect to , , , , ,i i oi j j ojX V W X V W  

and utilizing the similar inequalities used in [1] yields 

      
2 2

1 1 3 1 1 3 12 / 2 2 / 2oi o o o o o i o o o o iL K K N X K N V           

      
2 2

1 1 1 3 1/ 4 2 / 2
i

o oi oi o o o o o j
F

j N

W K K N X   


        

     
2 2

1 3 1 12 / 2 / 4
i

o o o o i o oi oj
F

j N

K N V W   


                                                                (166) 

with     2 2

1 1 1 3 2 3/ 2 / 2oi o oMi i o o i oW K K K       . 

            Next, rewrite the inequality (166) in terms of augmented error sates as 

   
2

1 1 3 12 / 2oi o o o o o iL K K N X      

    
2 2

1 3 1 12 / 2 / 4o o o o i o o i o i
F

K N V W                                                                          (167) 
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where    
i

o i oi oj

j N

  


   .Finally, we can claim that (167) is negative provided 

 1 3 12 /o o o oK K N    ,  3 12 /o o oK N   and the following inequalities hold: 

   1 1 3 12 / 2i o i o o o o oX K K N                    or 

  1 3 12 / 2i o i o o o oV K N      or 
14o i o i oW     . 

The initial compact set can be made arbitrarily large by selecting proper gains; therefore, 

the system is SGUUB [1]. 

             Next, the consensus-based output feedback formation controller is derived in the 

presence of estimated velocities and uncertain dynamics. 

 CONSENSUS CONTROLLER DESIGN 

             The objective of the consensus-based control law is to maintain a specified 

formation shape, and the shape of the formation is provided by choosing the reference 

points accordingly. Therefore, consider a time-invariant reference point in three 

dimensional space for the thi   UAV as 

d d d d

i i i ix y z     ,                                                                                                                  (168) 

and define the position error as 
T

d a

i xi yi zi i ie e e e E        . Then, define the 

consensus errors on ,x y   and z   directions as 

 
i

xi xi xj

j N

e e


    ,
i

yi yi yj

j N

e e


   ,
i

zi zi zj

j N

e e


   , 

and the vector form of the consensus error for thi   UAV is                                        

 
i

T

i xi yi zi j i

j N

e e    


      .                                                                                         (169) 
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            Taking derivative of (169) and using (140) yields 

i

i i i i j j

j N

R v R v 


   .                                                                                                               (170) 

Choose the desired translational velocity as 

T
d d d d

i xi yi ziv v v v     
i

T
bi

i j j

j Ni

R
K R v E

 

 
   

 
   .                                                                 (171) 

              Using the desired translational velocity (171) in (170) as a virtual control input 

and considering the consensus velocity tracking error d

ci i ie v v    yields the closed loop 

consensus error dynamics as 

 
i

d

i i i i ci j j

j N

R v e R v 


     

i i

T

i
i i i j j ci j j

j N j Ni

R
R K R v e R v 

  

  
       

  
   

i i

j j i i ci j j

j N j N

K R v R e R v 
 

       

i i i ciK R e      .                                                                                                                       (172) 

            Then, the dynamics of the consensus velocity tracking error can be given as 

d

ci i ie v v    

    
i i

T
d i

i i i i i i j j j j j j j

j N j Ni

R
S w v K R v R v S w v R v 

  

  
         

  
   

     1 1 1

1 1 1
i i i i i i i z d i

i i i

S w v N v G R u E
m m m

     .                                                                   (173)

Using the definition of consensus velocity tacking error d

ci i ie v v   in (173) yields  
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    
i i

T

i
ci i i ci i i i j j j j j j j

j N j Ni

R
e S w e K R v R v S w v R v 

  

  
         

  
   

   1 1 1

1 1 1
i i i i z d i

i i i

N v G R u E
m m m

     .                                                                                    (174) 

             In the velocity tracking error dynamics, the control input 1iu  only influences the z 

direction error; therefore, the pitch and roll angles, d

i and d

i , respectively, are used as 

virtual control inputs to the x and y directions.  

             Now, define the desired angles vector 
T

d d d d

i i i i       and  d d

i iR R  . 

Then, add and subtract   
1 d

i i

i

G R
m

 into (174) to give 

       
1 1 1d d

ci i i ci i i i i i i

i i i

e S w e G R G R G R
m m m

    

    1

1

i

i

i i i j jT
j Ni

i

j j j j j i i

j N i

K R v R v
R

S w v R v R N v
m

 







  
   

  
 
   
 
 




1 1

1
i z d i

i

u E
m

  .                                            (175) 

            Rearranging the above relation to move    
1 1 d

i i i i

i i

G R G R
m m

   into the 

parenthesis and leave    
1 d

i i

i

G R
m

  out of the parenthesis in (175) yields 

   
1 d

ci i i ci i i

i

e S w e G R
m

    
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  

     
1 1

1

1

1 1 1

i i

i i i j j j j j j j
T

j N j N
i

i z d i

i i d

i i i i i i

i i i

K R v R v S w v R v
R

u E
m

R N v G R G R
m m m

 




 

  
     

  
    

      
  

 
.                          (176) 

            Then, adding and subtracting 

   ˆ ˆ ˆ ˆ

i i

dT

i
i i j j j j j

j N j Ni

R
K R v K R v S w v 

  

 
   
 

  to (176) yields  

   
1 d

ci i i ci i i

i

e S w e G R
m

     ˆ ˆ ˆ ˆ

i i

dT

i
i i j j j j j

j N j Ni

R
K R v K R v S w v 

  

 
    

 
   

    

      1

1 1

i

i i

i i i j j

j N
T

i
j j j j j

j N j Ni

d

i i i i i i

i i

K R v K R v

R
S w v R v

R N v G R G R
m m

 





 

 
  
 
 
   
 
 

  
    

  



 

  ˆ ˆ ˆ

i i

dT

i
i i i j j j j j

j N j Ni

R
K R v K R v S w v 

  

 
    

 
  1 1

1
i z d i

i

u E
m

      .                        (177)

Now, combine the uncertain terms in (177) and define  

 

      

1

1

1 1

i

i i

i i i j j

j N
T

i
ci j j j j j

j N j Ni

d

i i i i i i

i i

K R v K R v

R
f S w v R v

R N v G R G R
m m

 





 

 
 
  
 
   
 
 

  
    

  



  , 

  ˆ ˆ ˆ ˆ

i i

dT

i
i i i j j j j j

j N j Ni

R
K R v K R v S w v 

  

 
    

 
    
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then, rewrite (177) as 

         1 1

1
ˆ ˆ ˆ ˆ

i

dT
d i

ci i i ci i i i i i ci ci j j j j j

j Ni i

R
e S w e G R K R v f x K R v S w v

m
 

 

 
        

 
  

1 1

1
i z d i

i

u E
m

                                                                                                                              (178)    

with,     3

1 1 11 12 13 1

T d

ci ci ci ci ci i i cif x f f f R f    being an unknown function.      

            The neural network expression of the uncertain function is written as

   1 11 12 13 1 1 1 1

T T T

ci ci ci ci ci i ci ci cif f f f W V x     where 1 1,ci ciW V  are the bounded target 

weights such that 1 1 1 1,ci Mci ci MciW W V V   with 1 1,Mci MciW V   being constants, and 1ci  is 

the NN approximation error, which satisfies 1 1ci Mci   for a constant 1Mci .  

            The NN estimate of the uncertain function 1cif   can then be written as  

 1 11 12 13 1 1 1 1 1
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ

T
T T T

ci ci ci ci ci i ci ci ci c if f f f W V x W    
 

 , 

where 1
ˆ

ciW   is the NN estimate of 1ciW , and 1
ˆ

cix   is the NN input given as 

1
ˆ ˆˆ 1, , , , , , , ,T T T dT dT T T T

ci i i i l l j j jx V X V X    
 

  ij N  . 

              Next, expand the consensus velocity tracking error dynamics (178)  in terms of 

its x, y, and z components as 
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 
cix d

ciy i i ci d d

ciz d d

e s

e S w e g c s

e c c



 

 

  
  

     
     

 

 

 

11

12

1

ˆˆ ˆ ˆ

1 ˆˆ ˆ ˆ

ˆˆ

i

i

x i xiR ci x xjR xjS

j N
d d d d d

d d d d d d d d d d d d y i yiR ci y yjR yjS

j Ni

d d d d d d d d d d d d

z i ziR ci

k v f k v v
c c c s s

s s c c s s s s c c s c k v f k v v

c s c s s c s s s c c c
k v f

 

    

             

           














   
 
 

       
   

 





 3
ˆ ˆ

i

z zjR zjS

j N

k v v


 
 
 
 
 
 
  
  



1

1

0
1

0 d i

i

i

m
u



 
 

 
 
  

                                                                                                              (179) 

while observing 

 3ˆ ˆ ˆ ˆ ˆ
T

iR xiR yiR ziR i iv v v v R v      

  3ˆ ˆ ˆ ˆ ˆ ˆ , , 1,2, ,
T

jS xjS yjS zjS j j jv v v v S w v i j N         

             Realize that the error states ,cix ciye e are not controllable through the thrust controller

1iu .  Therefore, the pith and roll angles are utilized as the virtual controller to these two 

error states. First, define the desired consensus velocity tracking error dynamics on x   and 

y  direction as 

 1

2

1 0
0 1 0 0

0 1
0 0 1 0

0 0

v

ci i i ci

v

k
e K S w e

k


  
     

       
      

.                                                                 (180) 

            The form of (180) was chosen due to its stability properties. Equating the difference 

between (180) and the first two rows of (179) to zero yields 



190 

 

  

1

2

01

0

xi

v cxi dd d d d d d

yi

v cyi dd d d d d d d d d d d d d di

zi

K k e cs c c c s s
g

K k e cc s s s c c s s s s c c s c

      

              

 
         

                     

   

                                                                                                                                       (181) 

with  

 11
ˆˆ ˆ ˆ ,

i

xi x i xiR ci x xjR xjS

j N

k v f k v v 


        12
ˆˆ ˆ ˆ ,

i

yi y i yiR ci y yjR yjS

j N

k v f k v v 


        

 13
ˆˆ ˆ ˆ

i

zi z i ziR ci z zjR zjS

j N

k v f k v v g 


        ,    cos ,s sin ,d d

d i d ic   

   cos ,s sin ,d d

d i d ic        cos ,s sind d

d i d ic     .  

            Note that the trigonometric functions of the desired pitch and roll angles, ,d dc c   

are used in (181) instead of ,c c   because the equality only holds when the UAV reaches 

the desired pitch and roll angles which is developed and utilized as virtual controller.                                                                                   

            Then, by applying some basic math operations, (181) yields 

 1d zi d d xi d yi v vxis c c s k e                                                                                                   (182) 

and  

 2d d yi d xi v vyic c s k e       d d d d zi d d yi d d xis gc s c s s s c               .               (183) 

             Define the estimated velocity tracking errors as 

   ˆ ˆ ˆ ˆ ˆ ˆ
T d d

ci cxi czi czi i i i i i ci ie e e e v v v v v e v         , 

where iv  is the translational velocity observer estimation error. Then, the desired pitch and 

roll angles are defined to satisfy (182) and (183). First, consider (182) as  
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1d xi d yi v vxid

d zi

c s k es

c

 



   



 and obtain 

1
ˆ

tan
d xi d yi v cxid

i

zi

c s k e
a

 


    
  

 
 .                                                                                              (184) 

Then consider (183) as 

2
ˆ

d yi d xi v cyid

d d d zi d d yi d d xi

c s k es

c gc c s c s c

 

      

   


     
 and use the inverse trigonometric function to get  

2
ˆ

tan
d yi d xi v cyid

i

d d zi d d yi d d xi

c s k e
a

gc c s c s c

 

     


    

         

 .                                                       (185) 

            The desired roll (184) and pitch (185) angles serve as the virtual control inputs that 

stabilize the under-actuated portion of the velocity error dynamics (174). Subsequently, the 

desired angular velocities and rotational torques will be considered to ensure the desired 

angles are tracked.  

Remark 1: In this work, it is assumed that one of the UAVs in the group, named as 

leader UAV or thl  UAV, tracks a time varying desired trajectory and the rest of the group 

reaches consensus on their regulation errors, ie , with their neighbor UAVs.. Note that the 

desired trajectory of the leader, 
r in (146), is time invariant and differs from the time in-

variant reference point of the leader UAV, d

l  defined as (168). Through the consensus-

based controller, the followers will eventually have the same regulation error as the leader 

UAV, i.e., 1,2, ,i le e i N    .   

Remark 2: In this work, the main purpose of the controller is to make the formation 

errors (169) go to zero. Making the formation errors (169) go to zero does not guarantee 

that the desired formation is achieved all the time. Assumption 1 is needed for the UAV 
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formation to be able to reach a consensus on their
'sie .  

Lemma 2: The formation error (169) can be obtained through communication 

among the UAVs or by using local sensors built in each UAV. 

Proof: The formation error  
i

i j i

j N

e e 


   is function of thi  UAVs own 

regulation error 
ie  , which is available, and the regulation errors of it’s neighbors, 

je  . 

Recall that 
d

j j je     and observe that it is function of the neighbors’ current positions 

and the reference point. Therefore, the current position, j  can be obtained by using 

relative distance plus the current position of the thi  UAV, i . Then, the formation errors 

(169) are available under the mild assumption that the time invariant reference positions, 

d

j ,  of all neighbors are available for the thi  UAV a priori.   

Remark 3: We propose two different scenarios to obtain the consensus-based 

formation errors (169): a) Each UAV broadcasts its own error states, ie , and its neighbors 

use this information; and b) Each UAV obtains the current states, j ij N   , and identity 

its neighbors by using local sensors and determining j ie j N   . The first Scenario is 

applicable when the UAVs are farther to each other, and the second scenario is preferable 

when the UAVs are closer and broadcasting the state information is insecure.   

             Since the desired yaw angle d

i  is specified initially for each UAV and desired 

roll and pitch angles are determined, the desired orientation vector, d

i  is now fully 

defined. Therefore, the desired angular velocity d

iw  needs to be defined to make sure 

d

i i   as t   . First, define the attitude tracking error  
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d a

i i ie E                                                                                                                          (186) 

and the dynamics of (186) as 

d

i i i ie T w    .                                                                                                                             (187) 

        The desired angular velocity is selected as 

 1d d

i i iw T K e

                                                                                                                     (188) 

where  1 2 3, ,K diag k k k      is a diagonal positive-definite design matrix with each 

0, 1,2,3ik i   . Define the angular velocity tracking error as 

d

wi i ie w w  ,                                                                                                                              (189) 

and by considering that d

i i wiw w e  ,  the closed loop orientation tracking error dynamics 

is given as 

wi i i wie K e Te     .                                                                                                                   (190) 

Since the desired angular velocity (188) requires d

i  which subsequently requires 1
ˆˆ ,i c iv f  , 

d

iw   will also be required for the development of 2iu  which needs the information of 1
ˆˆ ,i c iv f  

which is not a practical assumption [13]. Therefore, an NN-based virtual control input is 

proposed as in [13]; hence, 

1
ˆ ˆd d d

i i i iT K            

1

1 2
ˆˆ d d

i i if K T 

                                                                                                                         (191) 
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with 1 2,K K   being positive constants, 1d d

i i i iw T K e

    , ˆ ˆ,d d

i i    are the estimates of 

,d d

i i   respectively, ˆd d d

i i i   . Then, the estimate of the desired angular velocity is 

proposed as 

1 1

3
ˆˆ d d d

i i i i i iw T K e K T 

                                                                                                      (192) 

where 3K  is another design constant. 

            In (191),  the uncertain function  1 if x   is estimated through an NN similar to 

[13]. However, the NN input is different than [13] in our case since  1 if x  is a function 

of neighbor UAV states as well as the ith UAV states.  The NN expression is given as 

   1

T T

i i i i i if x W V x         by target weights ,i iW V   such that i M iW W   for a 

constant M iW    and i  is the NN approximation error wherein i M    for a constant

M i   . The NN estimate of 1if   is given as    1
ˆ ˆˆ ˆT T

i i i i i if x W V x         where ˆ T

iW  is 

the NN estimate of T

iW
 , ˆ

ix   is the NN inputs written in terms of the virtual control input 

estimates, and NN observer velocity estimates of the thi   UAV as well as the neighborhood 

UAVs. The NN input is selected as 

ˆ ˆ1, , , , ,
ˆ

ˆ ˆ, , , , ,

T
d T d T T d T d d

i i i i l l

i d d T d T T d T

l j j j j

V
x

V

 




   
  

    

. 

Lemma 3 [13]: Let the NN virtual controller be defined by (191) and (192), 

respectively, with the NN update law  

1
ˆ ˆdT

i i iW F F W                                                                                                                   (193) 
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where 
10, 0TF F       are design parameters. Then, there exists positive design 

constants 1 3 1K K N       ,   2 3 1 3K K K K      , and 3 12K N      where 

N  is the number of hidden layer neurons, such that the virtual controller estimation errors 

d

i   and d

iw ,  and the virtual control NN weight estimation errors 
iW
 are SGUUB. 

Proof: Define the Lyapunov function as 

 11 1

2 2

dT d dT d T

i i i i i i iL w w tr W F W

        .                                                                               (194) 

Then, the upper bound is given for iL  and is given in [13] as 

2

1 3

1

d

i i

N
L K K




  



 
     

 

22
3 1

12 4

d

i i i
F

K N
w W





  

 



 
    
 

.                      (195) 

See [13] for proof details. 

              Next, the translational and rotational controllers, 1iu , 2iu , are developed, 

respectively, to reach consensus. 

 CONTROLLER DESIGN  

              In the previous sections, the velocities were estimated through the extended 

observers (157) and kinematic controllers were given by (171) and (188).  The desired roll 

and pitch were provide by  (184) and (185), respectively, and a virtual control for 

generating the target angular rates was given in (191). Now, the actual thrust and rotation 

controllers, 1 2,i iu u , can be produced. 

              The thrust controller is addressed first. Consider the velocity tracking error 

dynamics (179). The dynamic controller is calculated to stabilize the last row of (179) as  

 1 3
ˆ

i i v i czi i d d d d d xiu m k e m c s c s s         i d d d d d yi i d d zim c s s s c m c c           .    (196) 
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              Using the virtual controllers (184) and (185), the thrust controller in (196), and 

adding and subtracting 
1 1

ˆdT T T

i c i c iR W   yields the closed loop translational consensus velocity 

tracking error dynamics (179) 

  1 1 1
ˆ ˆdT T T

ci i i ci v ci i c i c i c ie S w e K e R W         

   1 1 1
ˆdT T T

i i v ci v i i c i c i c iS w K e K v R W                                                                                     (197) 

with  
1 1 1 1 1

dT T T dT

c i i c i c i i c i d iR W R       , 1 1 1
ˆ

c i c i c iW W W   and 1 1 1
ˆ

c i c i c i     . Further 

d d

i iMaxF
R R  for a known constant d

iMaxR  , and 1 1c i Mc i   for a computable constant 

1 1 1 12d d

Mc i iMax Mc i iMax Mc i c Mi MiR R W N M      where MiM   is defined in previous sections, 

with 1cN  being the number of hidden layer neurons. 

            The rotational torques controller, 2iu ,  is addressed next. Take the first derivative 

of (189) , multiply with iJ ,  substitute the UAV dynamics (139), and add and subtract 

T

i iT e  to get 

d

i wi i i i iJ e J w J w   

    2 2 2

d T T

i i i i i i i i i i i d i i iJ w S J w w N w T e u T e          

 2 2 2 2

T

c i c i i d i i if x u T e                                                                                                       (198) 

where        3

2 2 2 2

d T

c i c i c i i i i i i i i i i if x f J w S J w w N w T e       is an uncertain function 

and approximated through a NN as    2 2 2 2 2 2

T T

c i c i c i c i c i c if x W V x     by target weights 

2 2,T T

c i c iW V   such that 2 2c i Mc iF
W W  for a known constant 2Mc iW  and 2c i   is the function 

approximation error such that 2 2c i Mc i    for a known constant  2Mc i  . The estimated 
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function is given with the estimated NN weights as    2 2 2 2 2 2 2
ˆ ˆ ˆˆ ˆT T T

c i c i c i c i c i c i c if x W V x W    

where 2
ˆ

c iW  is the NN estimate of 2c iW  and 

2
ˆ ˆˆ ˆ ˆ1, , , , , , , ,

T
T dT dT T T d T dT T

c i i i i i j j j j ix w e w e j N 
       
  

 is the NN input in terms of observer 

states of thi  UAV and the neighbor UAVs and virtual controller estimates. Since the actual 

and the desired angular velocities are not measurable and estimated, the estimated velocity 

tracking error is given as 

ˆ ˆ ˆd d

wi i i wi i ie w w e w w      .                                                                                                      (199) 

            The rotation torque control input can be given as  

2 2
ˆ ˆ

i c i w wiu f K e   .                                                                                                                       (200) 

       The closed loop angular velocity tracking error dynamics (198)comes along with 

the controller (200) and adding and subtracting 2 2
ˆT

c i c iW    

2 2 2
ˆT d T

i wi c i c i w wi w i w i i i c iJ e W K e K w K w T e                                                                          (201) 

where 2 2 2
ˆT T T

c i c i c iW W W   , 2 2 2 2 2

T

c i c i c i c i d iW       and 2 2 2
ˆ

c i c i c i     . Further, 

2 2c i Mc i   for a computable constant 
2 2 2 22Mc i Mc i Mc i c i dMiW N      where 2c iN  is the 

number of hidden layer neurons.  

        Combine both translational and rotational velocity tracking errors as 

T
T T

Si ci wie e e     whose closed loop dynamics are (197) and (201), respectively. Then, the 

overall velocity tracking error dynamics are given as 

  T

i Si di ci S Si i SiJ e A f K S w e   T d

Si i i i Si i iK V T e K w                                                      (202)     
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where   6 6

3 3 3 3 3 30 ; 0i iJ I J 

     is a constant, 

  6 6

3 3 3 30 ; 0 0S v wK K K 

    ,     6 6

3 3 3 3 3 30 ; 0 0Si i i iS w S w 

      ,

  0T

Si Si i Sie S w e   ,  3 6 3 30 ; 0i iT T  , 1 30
T

T

i ie e  
     ,  1 30

T
d dT

i iw w
     ,

6

1 2

T
T T

ci c i c i       , and ci Mci   for a positive computable constant 

2 2

Mci Mci Mci    . 

            Next, Theorem 2 is provided to show the stability. 

      Theorem 2: Given the dynamics of thi  quadrotor UAV (139) in a group of UAVs, 

let the NN observer be defined by (156) and (157) with the NN update law for the observer 

provided by (160). Given a time-invariant reference points for each UAV in the network, 

let the desired consensus velocity for the UAV to track be defined by (171) with the desired 

pitch and roll angles defined by (184) and (185), respectively. Let the NN virtual controller 

be given by (191) and (192) with the NN update law given by (193). Let the dynamic NN 

controller for thrust and rotational torques be defined by (196) and (200), respectively, with 

the NN update law  

  1
ˆ ˆˆ

ci c ci di Si c c ciW F A e FW                                                                                                          (203) 

where 0T

c cF F    and 1 0c   are constant design parameters. Then, there exists positive 

design constants 1 2 3 1 2, , , ,o o oK K K K K   and 3K  , and positive definite design matrices 

, ,v wK K K  and K  such that the UAVs reach consensus on their regulation errors on 

, andx y z  directions.  That is, the observer estimation error iX  and iV , the NN observer 

weight estimation errors oiW , the virtual control estimation errors ,d d

i iw , the virtual 
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control NN weight estimation errors 
iW
, the consensus and orientation errors, and velocity 

tracking errors ,i ie   and Sie , respectively, and the dynamic controller NN weight 

estimation errors 
ciW   are all SGUUB. 

            Proof: Define the combined formation Lyapunov function 

1

N

UAV UAVi

i

L L


                                                                                                                            (204) 

with  

2 2

UAVi SM oi SM i ciL K L K L L                                                                                                        (205)  

where ,oi iL L  are given in (161) and (194), respectively,
SMK  is the maximum singular 

value of SK  , and 

  11

2

T T T T

ci i i i i Si Si ci c ciL e e e e tr W F W  

     .  

             Now, observe the Lyapunov derivative  1T T T T

ci i i i i Si Si ci c ciL e e e e tr W F W  

      

and substitute the closed loop error dynamics (172), (190), and (202) to get 

T T T T T

ci i i i i ci i i Si S Si Si S iL K Re e K e e K e e K V          

   1 ˆ
TT d T T

Si S i Si ci ci c ci ci d Sie K w e tr W F W A e                                                                             (206)   

after some simplifications. Define 
T

T T

Ki i ie e 
    ,  3 3,0i idiag R   , 

 ,KK diag K K   and substitute the NN weight update law (203) in (206) to get 

T T T T

ci Ki K Ki Si S Si Ki i Si Si S iL e K e e K e e e e K V       

   1 ˆ
TT d T T

Si S i Si ci ci c ci ci d Sie K w e tr W F W A e      .     
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         Observe that   
2

T

ci ci ci ci i ci
F F

tr W W W W W W   , d d

i iw w , and constants 

,M McW exist such that i M   and ci MiW W .  Then, complete the squares with 

respect to ,Ki ci
F

e W and Sie  to get an upper bound for 
ciL  as 

2
2 21

2
2 2

Km M
ci Ki Sm Si

Km

K
L e K e

K

 
     

 
  

 
2

2 2
21

1

1
3

6 2

dM ci
c

ci SM i
F

c

A N
W K V





 
 

  
 
 
 

  

 
2

2
2

1

1
3

2

dM ci d

SM i ci

c

A N
K w 



 
 

  
 
 
 

                                                                                            (207) 

where  ,Sm KmK K  are the minimum singular values of SK  and KK   respectively, KMK   is 

the maximum singular value of KK  .  2

1 2 2ci c Mci cMi SmW K    , and d dMF
A A  for 

a known constant dMA .  

              Now, the derivative of the Lyapunov function (205) which deals with the observer 

estimation errors as well will be given . Define the velocity estimation errors of neighbor 

UAVs’ of the thi  UAV as n iV  by excluding its own velocity estimation error, 
iV   from iV  

. Realize that the triangular inequality can be utilized to show that  
i n i iV V V    . The 

upper bounds (167), (195), (207) for all Lyapunov functions is combined as  

   
2

2

1 1 3 12 / 2UAVi SM o o o oi o iL K K K N X    

 
2

2
2

3 2

1 1

2
3

2

dM ci
SM oi

o i

o c SM

A NK N
K V

K 

 
 

  
 
 
 
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2 2
2 2

3 1

1

2

2 4

SM o SM
o n i o o i

F
o

K N K
K V W 



 
   

 
 

2
2

1 3

1

di
SM i

N
K K K




 



 
    

 
  

 
2

2
2

3 2

1 1

2
1 3

2

dM ci dSM i
i

c SM

A NK N
K w

K 






 
 

   
 
 
 

 

2
22 2 11

2
2 2 6

Km cM
Ki Sm Si ci

F
Km

K
e K e W

K

 
     

 
  

2 2
2 2

1 1

4 4

o SM SM
o i i UAVi

F F

K K
W W

 


                                                                                      (208) 

with  2

UAVi SM o i i ciK        . Then,  0UAViL   by choosing the controller gain such 

that 

 
2

1 3 1 3 1 2

1

2 , 2 1 3
dM ci

o o oi o o oi o

c SM

A N
K K N K N

K
 


      

 
2

1 3 3 2

1 1 1

2
, 1 3 ,

dM ci

c SM

A NN N
K K K

K  
 

  

 

        

2

2M
Sm

Km

K
K


  and if one of the following inequalities holds:

   2

1 1 3 12 / 2

UAVi
i

SM o o o o o

X
K K K N





 


 
2

2
or

2

UAVi
Si

M
Sm

Km

e

K
K




 
  

 

  

2

1 3

1

2
or ordUAVi UAVi

Ki i

Km

SM

e
K N

K K K

 




 



  
 

  
 

 
2

1

4
or orUAVi

i
F

SM

W
K








   
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 
2

3 2

1 1

2

or

2
1 3

2

UAVi
i

dM ci
oi

o

o c SM

SM

V

A NN
K

K

K



 


 
   
 
 
 

 
2

3

1

or
2

2

UAVi
n i

SM o
o

o

V
K N

K








 

 
 

  

 
2

2

3 2

1 1

or

2
1 3

2

d UAVi
i

dM ci
SM i

c SM

w

A NK N
K

K



 







 
   
 
 
 

2

1 1

6 4
orUAVi UAVi

ci oi
F F

c o SM

W W
K

 

 
   . 

Since the stability region can be made arbitrarily large, all the error signals are SGUUB 

[13]. By showing the individual Lyapunovs (205) are negative in the given bounds, one 

can easily conclude that the combined Lyapunov (204)is also negative.   
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 SIMULATION RESULTS 

             To illustrate the effectiveness of the proposed controller, a group of four followers 

and a leader UAV are utilized in the simulation section. The Leader UAV is controlled to 

track a desired trajectory while the followers do not have knowledge about the desired 

trajectory and are controlled through consensus based formation controllers.  

            Initial positions, orientations, reference positions, linear and angular velocities are 

selected as 

           0 1 0 2 0 3 0 4 0 0 1.2 3.5 1.3 5.1xL x x x x         

           0 1 0 2 0 3 0 4 0 0 1.4 3 1.2 5.1yL y y y y         

         0 1 0 2 0 3 0 4 0zL z z z z     0 0 0 0 0 , 

     1 20.1 0.1 0.1 , 0.1 0.4 0.1 , 0.2 0.2 0.1d d d

l        

   3 40.5 0.2 0.1 , 0.1 0.5 0.1 .d d        

            The initial pitch, roll and yaw angles as well as the linear and angular velocities are 

selected as zero for all four followers and the leader. 

             The dynamics parameters of all the UAVs are selected as 0.9kgm  ,

  3 3J=diag 0.32,0.42,0.63  , 9.81g  . The desired trajectory for the leader is selected 

as 
2

2cos( * )(1 ))
q td

l x rx A t f e


  ,
2

2sin( * )(1 ))
q td

l y ry A t f e


  , 1(1 ))
q td

l zz A e   where 

5, 5, 10x y zA A A   1 2,q .25,q .05, 0.01rf    . The controller gains are selected as

 diag 0.01,0.01,0.03K  ,  1 2K =K =diag 22,60,25o o , 1 2 330, 80, 25K K K     , 

15, 15, 30x y zk k k     ,  diag 20,20,35K  ,  35,35,40wK diag , and the gain 
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selections satisfy the controller gain constraints in the theorem statements. The NN 

parameters are selected as 1 20.1, 0, 0.01,o o oF      1 20.1, 0, 0.01c c cF     ,

1 20.1, 0, 0.01F        . All the time varying NN weights are selected as zero initially 

and the hidden layer neurons are initiated randomly in the interval  0.5,0.5 . 

            In Figure 5.2, the trajectories of all four UAVs and the leader UAV is plotted. The 

simulation took 90  seconds in total. During the first seven seconds, the Leader UAV, the 

first and Second UAV moved only as it is shown on the communication topology graph, 

left part of Figure 5.1. After the 7th  second, the third and the fourth UAV joined the group 

as it is shown in the right side of Figure 5.1. The first and the second UAVs communicate 

directly with the leader UAV; however, the third UAV receives the second UAV’s 

information and the fourth UAV receives the first UAV’s information.  That is, the third 

and fourth UAVs do not directly communicate with the leader.  

 

Figure 5.1 Communication topologies before and after the th7   second. 
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            As it is shown in Figure 5.3 the first two UAVs quickly reach consensus with the 

leader UAV.  Note that the formation errors of the third and fourth UAVs are initially large 

since they do not start moving until the 7th  second of the simulation when they join the 

communication topology. As time progresses, each UAV achieves its required position 

within the formation with bounded error. 

 

Figure 5.2 UAV trajectories. 
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Figure 5.3 Formation tracking errors on all three axes. 

            Figure 5.4 depicts the linear velocity observer estimation errors of all four follower 

UAVs on , ,x y   and z  directions. After an initial transient response, it is observed that the 

observer errors converge to the true values within a small bound as predicted by the theory. 

NN weight estimates are presented in Figure 5.5. As predicted by the theory, the steady 

state NN weights converge to bounded values. 
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Figure 5.4 Estimated linear velocity tracking errors of all four follower UAVs. 

 

Figure 5.5 NN weight estimates of four UAVs. 
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 CONCLUSION AND FUTURE WORK 

        A novel output feedback consensus based formation controller was developed for 

a group of underactuated quadrotor UAVs. The follower UAVs kept the desired formation 

by using their time varying neighbor’s positions, orientations, and estimated velocities 

while the leader tracked a pre-defined trajectory. An NN-based adaptation was utilized to 

estimate velocities through positions and orientations as well as to learn the uncertain UAV 

dynamics, and a novel ‘size reduction matrix’ scheme was introduced which allowed for 

UAVs to join or leave the formation. Simulation results verified that the performance of 

the proposed output feedback controller was consistent with the theoretical conjectures 

developed within this paper. 

        Considering obstacle avoidance while keeping formation can be considered as a 

desirable future work. Optimal adaptive consensus-based formation control of quadrotor 

UAV formation can also be considered.   
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SECTION 

 CONCLUSIONS AND FUTURE WORK 

            In this dissertation, consensus-based formation controller implementation for a 

network of mobile robots and UAVs is presented. A finite horizon optimal consensus-based 

formation controller, a novel hybrid regulation-formation controller was developed by 

using a novel blended velocity tracking error approach and an event-based formation 

controller implementation for a network of mobile robots. Additionally, a novel output 

feedback consensus-based formation controller was developed for a group of under-

actuated quadrotor UAVs.  The analytical results were verified using the simulation 

examples and the efficiency of the controllers’ execution was demonstrated.  

 CONCLUSIONS 

             In this dissertation, first, a finite horizon optimal consensus-based formation 

controller was designed for mobile robot formation in the presence of uncertain robot 

dynamics. The consensus-based control was derived for a formation of mobile robots by 

taking into account their dynamics.  Subsequently, the cost function derived as a function 

of regulation and formation errors was able to generate optimal inputs to each robot such 

that the entire formation can travel in consensus from an initial position to the goal position.  

An NN identifier generated the formation dynamics while the time-varying value function 

approximated the solution to the HJB equation.  Simulation results confirmed the 

theoretical conclusions. 
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            The results of the second paper provided controllers to the user to regulate a single 

robot to a desired posture and for a group of nonholonomic robots to reach consensus on 

their regulation errors to achieve a desired posture in a desired shape. This was 

accomplished through the development of two novel continuous time regulation and 

formation controllers for nonholonomic mobile robots. Then, a novel hybrid regulation-

formation controller was developed by using a novel blended velocity tracking error 

approach. Time-varying Lyapunov functions were used to prove the stability of the hybrid 

approach, and simulation results verified the performance improvements of the proposed 

approach, which represents an improvement over traditional hard switched hybrid control 

architectures. The blended velocity tracking error approach reduced the size of the 

discontinuity at the switching conditions, which led to smaller peak velocity tracking errors 

and smaller peak required torques at the switching conditions. The blended hybrid 

controller is beneficial when multiple tasks need to be accomplished at the same time.  

             The third paper presents an event-based formation controller implementation for a 

network of mobile robots. The NN-based event-sampled torque control of mobile robots 

was able to bring the robots to consensus by stabilizing the formation as well as velocity 

tracking errors due to event sampled measurement errors, NN reconstruction errors and 

bounded disturbance. The event-sampling mechanism was able to generate additional 

events so that the formation error remains bounded and due to asynchronous mode, 

communication overhead is minimized. In the case of minimal communication, oscillatory 

behavior is observed initially although this improves over time while full communication 

is established with other robots thereby enhancing formation control. The event-sampling 

condition at each robot and the NN adaptation rules were derived using the Lyapunov 



213 

 

  

stability analysis. Analytical results were verified using simulation examples and the 

efficiency of the event-sampled controller execution was demonstrated in the presence of 

minimal communication information and with full communication overhead. It was 

observed that the robots reached consensus even in the presence of minimal 

communication. However, the consensus was reached much faster and the robots moved 

with much less oscillation when full communication was available to all the robots 

        A novel output feedback consensus-based formation controller was developed for 

a group of underactuated quadrotor UAVs. The follower UAVs kept the desired formation 

by using their time varying neighbor’s positions orientations and estimated velocities while 

the leader tracked a pre-defined trajectory. NN-based adaptation was utilized to estimate 

velocities through positions and orientations as well as to learn the uncertain UAV 

dynamics.    

 FUTURE WORK 

        Considering obstacle avoidance while keeping formation can be considered as a 

desirable future work for both nonholonomic mobile robot and quadrotor UAV 

applications. In the hybrid analysis, obstacle avoidance controller can be added as a third 

task in addition to consensus seeking and regulation tasks. 
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