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ABSTRACT

The dynamic pose of an object, where the object can represent a spacecraft, aircraft, or

mobile robot, among other possibilities, is defined to be the position, velocity, attitude, and angular

velocity of the object. A new method to perform dynamic pose estimation is developed that lever-

ages directional statistics and operates under the Bayesian estimation framework, as opposed to the

minimum mean square error (MMSE) framework that conventional methods employ. No small atti-

tude uncertainty assumption is necessary using this method, and, therefore, a more accurate estimate

of the state can be obtained when the attitude uncertainty is large.

Two new state densities, termed the Gauss-Bingham and Bingham-Gauss mixture (BGM)

densities, are developed that probabilistically represent a state vector comprised of an attitude

quaternion and other Euclidean states on their natural manifold, the unit hypercylinder. When the

Euclidean states consist of position, velocity, and angular velocity, the state vector represents the

dynamic pose. An uncertainty propagation scheme is developed for a Gauss-Bingham-distributed

state vector, and two demonstrations of this uncertainty propagation scheme are presented that show

its applicability to quantify the uncertainty in dynamic pose, especially when the attitude uncertainty

becomes large.

The BGM filter is developed, which is an approximate Bayesian filter in which the true tem-

poral and measurement evolution of the BGM density, as quantified by the Chapman-Kolmogorov

equation and Bayes’ rule, are approximated by a BGM density. The parameters of the approximat-

ing BGM density are found via integral approximation on a component-wise basis, which is shown

to be the Kullback-Leibler divergence optimal parameters of each component. The BGM filter is

then applied to three simulations in order to compare its performance to a multiplicative Kalman

filter and demonstrate its efficacy in estimating dynamic pose. The BGM filter is shown to be more

statistically consistent than the multiplicative Kalman filter when the attitude uncertainty is large.
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1. INTRODUCTION

1.1. MOTIVATION AND PREVIOUS WORK

As a motivating example, consider the planar translation and rotation of a body, which are

quantified by Cartesian position coordinates and heading angle, respectively. The position of the

body is typically assumed Gaussian-distributed since it is not bounded to a given interval; however,

the heading angle cannot be assumed Gaussian-distributed since it is required to be in the interval

[−π, π), and the support of the Gaussian density is infinite. A circular density, such as the wrapped

normal density or von Mises density, which are defined on the interval [−π, π), can be used to

probabilistically quantify the heading angle. The position and heading angle of the body are corre-

lated in general, but they are properly quantified by two different densities; they must, therefore, be

considered under a common state density in order to properly represent their correlation.

Estimation approaches have been developed when the state consists of only a von Mises-

or wrapped normal-distributed circular variable [1, 2]. These approaches quantify the temporal and

measurement evolution of the von Mises or wrapped normal density; however, they do not extend to

a state with both a circular variable and other Euclidean (additive and unbounded) variables. Mardia

and Sutton first proposed a density to quantify a circular and Euclidean variable in which the state

density is constructed as the product of a von Mises density and a Gaussian density conditioned on

the von Mises-distributed random variable [3]. The Gauss von Mises density is constructed in a

similar manner to quantify a state with both a circular variable and other Euclidean variables as the

product of a multivariate Gaussian density and a von Mises density conditioned on the multivariate

Gaussian-distributed random variable [4].

A single circular variable can be used to quantify the heading angle, or one-dimensional

attitude, of a body. While the aforementioned methods operate on a single circular variable, a more

general problem is given by the case when the three-dimensional attitude and other Euclidean states

(such as position, velocity, angular velocity, etc.) of a body are quantified by an attitude quaternion

and Cartesian coordinates, respectively. The attitude quaternion exists on the unit hypersphere and

is antipodally symmetric; that is, opposing quaternions represent the same attitude. The attitude

quaternion is a globally nonsingular attitude representation, and thus, it is a popular choice to repre-

sent the three-dimensional attitude of a body [5, 6, 7]. The wrapped normal and von Mises densities,

which can be used to quantify the heading angle of a vehicle, cannot be used to quantify the attitude

quaternion since they are not antipodally symmetric densities.
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The Bingham density, which is developed in References [8] and [9], is constructed as a

zero-mean Gaussian density that is conditioned to lie on the unit sphere. As such, it is an antipo-

dally symmetric distribution for a unit vector of arbitrary dimension. Since the quaternion repre-

sentation of attitude is constrained to be unit-norm, it also lies on the unit sphere. In addition, as

mentioned previously, antipodal quaternions represent the same physical attitude, which implies

that, in a probabilistic context, they must be equiprobable. As such, given the properties of the

Bingham density, the Bingham density can be a proper probabilistic representation of the attitude

quaternion. Estimation approaches have been developed for a state that consists only of an attitude

quaternion [10, 11, 12]. In particular, Reference [12] leverages an unscented transform to propagate

the uncertainty of a Bingham-distributed attitude quaternion when the system dynamics are non-

linear; however, Reference [12] assumes that the quaternion state is measured and is corrupted by

Bingham-distributed noise. This assumption does not allow for nonlinear measurements of the atti-

tude state to be considered. Furthermore, the approaches pursued in References [10, 11, 12] do not

quantify the correlation between the Bingham-distributed attitude quaternion and other Euclidean

variables.

A state density that is similar to the Bingham density has been proposed to quantify the

dual quaternion representing the pose (position and attitude) of a body [13]; however, this density

does not extend to arbitrarily high dimensions to include the velocity, angular velocity, and other

Euclidean states since it is constructed using a dual quaternion. The partially wrapped normal

density has recently been proposed, which wraps m coordinates of an n-dimensional Gaussian

density in order to quantify the correlation between m angular and n−m Euclidean states [14]. This

density applies to arbitrarily high m and n, so it can potentially be used to represent the uncertainty

of a rotation sequence representing the three-dimensional attitude and other Euclidean states of a

body. Because the temporal evolution of a rotation sequence is potentially singular [5, 6, 7], the

temporal evolution of this uncertainty representation will be potentially singular as well.

Typically, the multiplicative extended Kalman filter (MEKF) [5] is used to estimate a state

vector that consists of an attitude quaternion and other Euclidean states. The MEKF operates under

the linear minimum mean square error (MMSE) framework, in which a small attitude uncertainty

assumption is used to project the error in the attitude quaternion into a three-parameter local tan-

gent space that is constructed about the current estimated attitude quaternion. This small attitude

uncertainty assumption incurs little error when enough measurement information is available such

that the attitude uncertainty assumption remains small; however, if the attitude uncertainty is large,

this assumption can potentially incur error and degrade the state estimate. Furthermore, the MEKF

quantifies only the estimated state, which is given by the attitude quaternion, and its error covari-

ance, which is quantified in the three-parameter tangent space. The MEKF does not quantify the
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probability density function (pdf) of the state vector, which is an artifact of its operation under the

linear MMSE framework.

1.2. CONTRIBUTIONS

This dissertation proposes an approximate Bayesian filter to estimate a state vector that

consists of an attitude quaternion and other Euclidean states. Since this filter operates under the

Bayesian framework, it quantifies the pdf of the state vector and not just its estimate and error covari-

ance, like the MEKF. In order to develop this filter, two new state densities, termed the Bingham-

Gauss and Gauss-Bingham densities, are developed. These densities probabilistically quantify a

state vector consisting of an attitude quaternion and other states that exist in Euclidean space. When

these other states consist of the body’s position, velocity, and angular velocity, the dynamic pose

of the body is probabilistically quantified. These densities are constructed by conditioning a Gaus-

sian density on the Bingham-distributed random variable, and conditioning a Bingham density on

the Gaussian-distributed random variable, respectively. Furthermore, the Bingham-Gauss density is

extended to develop the Bingham-Gauss mixture density, which is used to probabilistically quan-

tify non-Bingham-Gauss-distributed state vectors. The approximation of a Bingham-Gauss density

by a Bingham-Gauss mixture (BGM) density is developed, which includes the development of an

approximation method of both a uniform and non-uniform Bingham density by an Bingham mix-

ture (BM) density.

Additionally, a minimum divergence filtering framework is developed, which approximates

each step in the Bayesian recursion by an assumed density. The parameters of the assumed density

are found by minimizing an information divergence measure of the true state density, as defined by

the Chapman-Kolmogorov equation and Bayes’ rule, with respect to the assumed density. An ana-

lytic result for this minimization is proved for general exponential family pdfs, which includes the

well-known Gaussian density and the Bingham-Gauss density. The minimum divergence filtering

framework is specialized to a Gaussian mixture (GM) state density to develop the Gaussian mixture

minimum divergence filter (GMMDF), and the GMMDF is then compared and contrasted to other

GM Kalman filters. This allows for the minimum divergence filtering framework to be analyzed in

a more typical application before it is extended to estimate the dynamic pose of a body using an

assumed Bingham-Gauss mixture density.

Finally, an approximate Bayesian filter, termed the BGM filter, that estimates a state vector

consisting of an attitude quaternion and other states that exist in Euclidean space is developed.

Since the estimation scheme operates under the approximate Bayesian minimum divergence filtering

framework (as opposed to the linear MMSE framework), no small attitude uncertainty assumption

is necessary to project the attitude uncertainty into the three-parameter tangent space, as is inherent
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to the MEKF. Because of this, the BGM filter lends itself to applications in which the attitude

uncertainty is large, in which case the small attitude uncertainty assumption inherent to the MEKF

is violated.

1.3. ORGANIZATION

The remainder of this dissertation is organized as follows:

• Section 2 first provides an overview of one- and three-dimensional attitude, including the

various attitude representations used throughout the dissertation. The concept of orientation

is presented, which is a higher-dimensional extension to attitude.

• Section 3 provides an overview of the pdfs used throughout the dissertation, including the

established Gaussian, GM, and Bingham densities. The BM, Gauss-Bingham, Bingham-

Gauss, and BGM densities are then developed.

• Section 4 provides an overview of Kalman filtering, including the Kalman filter (KF), ex-

tended Kalman filter (EKF), unscented Kalman filter (UKF), and quadrature Kalman fil-

ter (QKF). The MEKF is then presented, which is the most common filter used to estimate the

attitude quaternion and other Euclidean states of a body. Quadrature variations of the MEKF,

including the multiplicative unscented Kalman filter (MUKF) and multiplicative quadrature

Kalman filter (MQKF) are presented.

• Section 5 provides an overview of Bayesian filtering, including the Bayesian Kalman filter,

Gaussian mixture Kalman filter (GMKF), Gaussian mixture extended Kalman filter (GMEKF),

Gaussian mixture unscented Kalman filter (GMUKF), and Gaussian mixture quadrature Kalman

filter (GMQKF). The minimum divergence filtering framework is developed and is used to

develop the GMMDF.

• Section 6 provides the development of an unscented uncertainty propagation scheme using the

Gauss-Bingham density. Two examples of this uncertainty propagation are shown in order to

illustrate the efficacy of this method of uncertainty propagation.

• Section 7 provides the development of the BGM filter, which is derived using the minimum

divergence filtering framework developed in Section 5.

• Section 8 presents three simulations to evaluate the BGM filter:

– First, a Monte Carlo analysis is performed on a single component BGM filter and a

multiplicative Kalman filter applied to estimate the one-dimensional attitude quaternion
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and angular velocity of a body with an initially equiprobable attitude quaternion, given

measurements of the heading angle of the body.

– Next, two instantiations of the BGM filter, the first operating on a single component

BGM density and the second operating on a multiple component BGM density, are

applied to estimate the planar dynamic pose of an inspector spacecraft performing prox-

imity operations about a chief spacecraft, given nonlinear measurements of the range

and bearing between the spacecraft.

– Finally, the BGM filter is applied to estimate the three-dimensional dynamic pose of a

spacecraft in low-Earth orbit, given measurements of the spacecraft’s position and the

Earth’s magnetic field.

• Section 9 draws conclusions regarding the material presented in Sections 2-8.
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2. ATTITUDE AND ORIENTATION

The attitude of a body is fundamentally quantified by the rotation from a reference coordi-

nate frame to a body-fixed coordinate frame of interest and exists in either one or three dimensions.

To illustrate the idea of attitude in one dimension, consider a robot translating in a plane. The atti-

tude of the robot contains only one degree of freedom, which is typically quantified by its heading

angle, the angle of rotation about the axis perpendicular to the plane in which it travels. Attitude

in one dimension is, in fact, a subset of attitude in three dimensions, in which case the axis of

rotation relating the reference coordinate frame to the body-fixed coordinate frame is known and

fixed. The angle of rotation about this axis fully defines the attitude in one dimension. Attitude in

three dimensions requires that both the axis and the angle of rotation about this axis be quantified in

order to fully define the attitude. In three dimensions, attitude has three degrees of freedom, which

is apparent because the axis of rotation contains two degrees of freedom and the angle of rotation

about this axis contains the third degree of freedom. In order to easily denote attitude in one and

three dimensions, “attitude” is used to denote attitude in three dimensions, and “one-dimensional

attitude” is used to denote attitude in one dimension hereafter.

The concept of attitude can be extended to arbitrarily high dimension, in which case the

concept of orientation is born. In higher dimensions, multiple rotations are necessary to specify

an an orientation, in general. In fact, in r-dimensional space, b r2c higher-dimensional rotations

are necessary to construct an orientation, where b r2c represents the floor of r
2 , which rounds r

2

towards negative infinity. In three-dimensional space, b32c = 1 rotation is necessary to specify

an orientation, and the concept of rotation and orientation are the same. This is stated by Euler’s

theorem, which says that any rotation in three dimensions can be accomplished by a single rotation

about a stationary (fixed) axis. When r > 3, the concepts of rotation and orientation are no longer

the same, and multiple rotations are necessary to specify an orientation, in general.

In this chapter, first, attitude is defined in terms of the attitude matrix, which fundamen-

tally defines the attitude of a body as the direction cosine matrix (DCM) relating the body-fixed

and reference coordinate frames. Because the attitude matrix can be difficult to quantify directly,

alternate attitude representations, including the axis-angle, rotation vector, and attitude quaternion

are also presented. Each attitude representation is also specialized to its equivalent one-dimensional

attitude representation. The explicit relationships between the attitude quaternion and the other at-

titude parameterizations are also presented, because the attitude quaternion is commonly used to

quantify attitude due to its global nonsingularity and single constraint (as compared to the attitude

matrix, which is nonsingular, but possesses six constraints). Next, the kinematic relationship be-

tween the attitude quaternion and the angular velocity of the body is presented. An overview of
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attitude dynamics is presented next, which govern the temporal evolution of the angular velocity of

the vehicle given the inertia tensor of the body and the external moments acting on the body. Fi-

nally, the concept of orientation is introduced, which is a higher-dimensional extension to attitude.

Furthermore, a method using left- and right-isoclonic rotations to construct the orientation matrix

in four dimensions from a minimum set of parameters is presented.

2.1. ATTITUDE

Many different parameterizations can be used to represent attitude [5, 6, 7]. These different

attitude representations have either three, four, or nine parameters; however, attitude possesses only

three degrees of freedom. Because of this, four- and nine-parameter representations have one and

six constraints, respectively. Three- and four-parameter representations satisfy certain properties,

regardless of the specific representation chosen. All three-parameter attitude representations pro-

vide a one-to-one representation of attitude; however, they are singular. Three-parameter attitude

parameterizations can either be singular in representing an attitude or in propagation. The former of

these singularities occurs when a parameterization becomes infinite in order to represent a certain

rotation. The latter occurs when the temporal derivative of the representation becomes infinite for

certain values of the parameterization. Four-parameter attitude representations are globally nonsin-

gular, but are constrained because attitude contains only three degrees of freedom. Four-parameter

attitude representations provide a two-to-one representation of attitude; that is, two different sets

of parameters quantify the same attitude. Because of the unique advantages and disadvantages of

three- and four-parameter attitude representations, a four-parameter representation is typically used

to globally quantify attitude and a three-parameter representation is used to locally quantify attitude

errors in order to avoid their singularities.

2.1.1. Attitude Matrix. The attitude of a body is fundamentally quantified by the attitude

matrix, A, which is a nine-parameter attitude representation. In order to formally define the attitude

matrix, first, the DCM, denoted in general by T , must be defined. The DCM that transforms the

expression of an arbitrary, physical vector in the I coordinate frame to its expression in the B

coordinate frame, which is denoted by TB
I , is defined according to

xB = TB
I xI , (2.1)

where xI and xB denote the arbitrary, physical vector x ∈ R3 expressed in the I and B frames, re-

spectively. Rr is used to denoted Euclidean space in r dimensions; thus, R3 represents 3-dimensional
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Euclidean space. The vector x expressed in the I frame, xI , is formally defined as

xI ,

xy
z

 = xuI
x + yuI

y + zuI
z , (2.2)

where uI
x, uI

y, and uI
z are the vectors defining the basis of the I coordinate frame, and xB is defined

similarly. If uI
x, uI

y, and uI
z are defined such that

uI
x × uI

y = uI
z (2.3a)

uI
x · uI

y = uI
x · uI

z = uI
y · uI

z = 0 (2.3b)

||uI
x|| = ||uI

y|| = ||uI
z|| = 1 , (2.3c)

then the coordinate frame is said to be a right-handed, orthonormal (orthogonal and normal) coor-

dinate frame. The right-handed property is defined by Eq. (2.3a), the orthogonal property is defined

by Eq. (2.3b), and the normal property is defined by Eq. (2.3c). All coordinate frames are assumed

right-handed and orthonormal in this work, unless otherwise stated.

Through the definition of the DCM in Eq. (2.1), it can be shown that coordinate transfor-

mations can be applied sequentially according to

xB = TB
C xC = TB

C TC
I xI︸ ︷︷ ︸
xC

, (2.4)

where the C coordinate frame is an arbitrary, intermediate coordinate frame. Equating Eqs. (2.1)

and (2.4) shows the property of DCMs to compose coordinate transformations by multiplying the

matrices according to

TB
I = TB

C TC
I . (2.5)

DCMs exist in the special orthogonal group of dimension three, which is denoted by SO(3).

The special orthogonal group of arbitrary dimension r is defined by

SO(r) , {T ∈ Rr×r : T TT = I = TT T , det {T } = 1},

where det {T } represents the determinant of T and the “T ” superscript is used to represent the

matrix transpose operator and not a coordinate frame. Because T ∈ SO(3), it is a matrix of row-

and column-dimension three, but is subject to the constraints T TT = I = TT T and det {T } = 1.

DCMs possess nine parameters, but only three degrees of freedom, which implies that they have six
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constraints. The constraint imposed on the DCM of T TT = I is now post-multiplied by T−1 and

simplified to show an important property of the DCM, which is given by

T T = T−1 , (2.6)

where the “−1” superscript is used to represent the matrix inverse operator and not a coordinate

frame.

In order to show another important property of DCMs, Eq. (2.1) is solved for xI to yield

xI =
[
TB
I

]−1
xB ,

and the property of DCMs given in Eq. (2.6) is exploited to yield

xI =
[
TB
I

]T
xB . (2.7)

Through the definition of the DCM given in Eq. (2.1), Eq. (2.7) can also be expressed as

xI = T I
Bx

B . (2.8)

Equations (2.7) and (2.8) are now combined, which shows that transposed DCMs represent opposite

coordinate transformations according to

T I
B =

[
TB
I

]T
. (2.9)

Now that the DCM and some of its important properties have been defined, the attitude

matrix is defined as

A , TB
I , (2.10)

which shows that the attitude matrix is defined as the DCM quantifying the coordinate transforma-

tion from the I to the B coordinate frame. Typically, the I frame is taken to be an inertially-fixed

frame and the B frame is taken to be a body-fixed frame, but it is not required for the I frame to be

inertially fixed in order for the attitude matrix to be valid. Because the attitude matrix is defined as

a DCM, it follows that the attitude matrix possesses equivalent properties to a DCM. This means

that the attitude matrix possesses nine parameters, but only three degrees of freedom, which implies

that they have six constraints. In practice, these constraints make it difficult to quantify the attitude

matrix directly. Typically the attitude matrix is parameterized by a three- or four-parameter attitude

representation in order to overcome this difficulty.
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The properties of DCMs can be used to quantify the error between an estimated attitude

and the true attitude of a body. This error is defined as the DCM relating the estimated body frame,

B̂, and the true body frame, B, which is given by TB
B̂

. This DCM defines the attitude matrix

representation of the attitude error, denoted by δA, and is given by

δA , TB
B̂

= TB
I T I

B̂
= TB

I [T B̂
I ]T = AÂT , (2.11)

where Â is the estimated attitude matrix. As the attitude error approaches zero, the estimated

attitude matrix, Â, approaches the true attitude matrix, A, and the attitude matrix representation

of the attitude error, δA, approaches the identity matrix. This is an intuitive result because, as the

estimated body frame and the true body frame approach each other, the rotation between the frames

approaches identity.

When quantifying one-dimensional attitude, the axis of rotation is known and fixed, and is

typically taken to be uI
z , uB

z , [0 0 1]T . This stems from the fact that the translational motion

is typically taken to be in the plane defined by uI
x and uI

y, and, equivalently, uB
x and uB

y . In order

to simplify the attitude matrix to quantify this one-dimensional attitude, first note that the attitude

matrix, as defined by Eqs. (2.1) and (2.10), can be expressed in scalar components according tox
B

yB

zB

 =

A11 A12 A13

A21 A22 A23

A31 A32 A33


x

I

yI

zI

 .

Because the axis of rotation is defined as uI
z , uB

z , it follows that the z-component of both xI and

xB must be equal for arbitrary x, which implies that five of the parameters of the attitude matrix

become constant and the attitude matrix must be equal to

A =

A11 A12 0

A21 A22 0

0 0 1

 . (2.12)

Because the z-component of both xI and xB must be equal due to the definition of the axis of rota-

tion, the z-component of xI and xB is typically not quantified when considering one-dimensional

attitude. This allows the third row and column to be neglected in Eq. (2.12), which gives the final

form of the attitude matrix quantifying one-dimensional attitude as

A =

[
A11 A12

A21 A22

]
.
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An abuse of notation is committed when using A to quantify both the attitude matrix and the one-

dimensional attitude matrix; however, which attitude matrix is meant by A will be clear in context.

For one-dimensional attitude, A is a DCM with both row and column dimension two, and, thus,

A ∈ SO (2). In this case, the attitude matrix contains four parameters, and only one degree of

freedom (or, equivalently, three constraints).

2.1.2. Axis-Angle. An intuitive four-parameter representation of a rotation in three dimen-

sions is the axis-angle representation. Euler’s theorem states that any rotation in three dimensions

can be accomplished by a single rotation about a stationary (fixed) axis. The axis of this rotation is

known as the Euler axis and is denoted by the unit vector e. Let the corresponding rotation angle

about the Euler axis be θ ∈ [−π, π). The axis-angle representation of this rotation is then given by

the parameter set {e, θ}.

The Euler axis is invariant under a rotation about itself, i.e. eB = eI . Because of this,

the frame in which the Euler axis is expressed is omitted in order to simplify notation according to

eB = eI , e. This rotational invariance allows the Euler axis corresponding to the rotation to be

found from the attitude matrix according to the relationship

Ae = e , (2.13)

which defines the Euler axis according to the eigenvector/eigenvalue decomposition of the attitude

matrix. The eigenvalues, λi, and eigenvectors, vi, of the attitude matrix are defined according to

Avi = λivi, for i = 1, 2, 3 . (2.14)

Comparing Eq. (2.13) and Eq. (2.14) shows that the Euler axis is defined as the eigenvector of

the attitude matrix corresponding to the unity eigenvalue; the other two eigenvalues are a complex

conjugate pair [5, 15, 16]. These properties of the eigenvalues stem from the fact that the attitude

matrix exists in the special orthogonal group of dimension three.

In order to find the attitude matrix corresponding to the axis-angle attitude parameterization,

the arbitrary vector x ∈ R3 is first decomposed into components that are parallel and perpendicular

to e according to [5]

x = x‖ + x⊥ , (2.15)

where x‖ and x⊥ represent the parallel and perpendicular components, respectively, and are ex-

pressed as

x‖ , (e · x)e =
(
eeT

)
x (2.16a)
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x⊥ , x− (e · x)e =
(
I − eeT

)
x . (2.16b)

Equation (2.15) is now expressed in the I frame, and the resulting expression is then transformed to

the B frame by pre-multiplying both sides of the expression by the attitude matrix, which yields

AxI = A(xI
‖ + xI

⊥) .

The portion of x that is parallel to the Euler axis, x‖, is invariant to rotation about the Euler axis;

therefore,

AxI = xI
‖ +AxI

⊥ . (2.17)

It is now necessary to quantify AxI
⊥, which represents the rotation of xI

⊥ about e through the angle

θ, which are the Euler axis and angle of rotation, respectively, corresponding to A. This rotation

is performed by decomposing AxI
⊥ into the sum of two vectors: The vector in the xI

⊥ direction

that remains after the rotation, and the vector produced perpendicular to e and xI
⊥ after the rotation.

This decomposition of AxI
⊥ into these vectors allows it to be expressed directly in terms of the

Euler axis and rotation angle according to

AxI
⊥ = cos(θ)xI

⊥ − sin θ
(
e× xI

)
. (2.18)

The first term in the right-hand-side of Eq. (2.18) represents the vector component of AxI
⊥ in

the xI
⊥ direction, while the second term represents the vector component of component of AxI

⊥
perpendicular to e and xI

⊥ (that is, the direction defined by e × xI ). If a rotation of either −180◦

or 0◦ is performed, the second term vanishes. Similarly, if a rotation of either −90◦ or 90◦ is

performed, the first term vanishes. These results are consistent with what is expected of rotations of

these magnitudes about the Euler axis and provide a verification that the decomposition of AxI
⊥ into

these components is correct. Equation (2.18) is now substituted into Eq. (2.17), and the definitions

of x‖ and x⊥ from Eqs. (2.16) are then substituted into the resulting expression to yield

AxI =
(
eeT

)
xI + cos(θ)

(
I − eeT

)
xI − sin θ

(
e× xI

)
. (2.19)

Equation (2.19) defines the relationship between the attitude matrix and the axis-angle attitude pa-

rameterization; however, it is not yet in a useful form since is still depends on xI .
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In order to manipulate Eq. (2.19) into a useful form, the skew-symmetric cross product

matrix is first defined. This matrix is defined for e , [ex ey ez]
T as

[e×] ,

 0 −ez ey

ez 0 −ex

−ey ex 0

 , (2.20)

such that [e×]x = e×x for arbitrary x ∈ R3. The skew-symmetric cross product matrix possesses

the following properties for the arbitrary unit vector u [5]:

[u×]2 = uuT − I (2.21a)

[u×]3 = −[u×] (2.21b)

tr [u×] = 0 (2.21c)

tr [u×]2 = −2 (2.21d)

an[u×]n = [au×]n , (2.21e)

where [u×]2 , [u×][u×], “tr ” represents the trace operator, a is an arbitrary constant, and n is a

positive integer.

Noting the definition of the skew-symmetric cross product matrix given in Eq. (2.20), as

well as the property given in Eq. (2.21a), the relationship between the attitude matrix and the axis-

angle attitude parameterization, given in Eq. (2.19), can now be expressed as

AxI =
(
I − sin θ[e×] + (1− cos θ) [e×]2

)
xI , (2.22)

Because Eq. (2.22) must be valid for arbitrary xI , the attitude matrix is given in terms of the Euler

axis and rotation angle about the Euler axis by

A = I − sin θ[e×] + (1− cos θ) [e×]2 , (2.23)

which defines the attitude matrix solely in terms of the Euler axis and rotation angle.

In order to find the Euler axis and rotation angle given the attitude matrix, the Euler axis is

first found according to the eigenvector/eigenvalue decomposition defined by Eq. (2.13). The angle

of rotation is then found by taking the trace of Eq. (2.23), which yields

trA = 3 + 2 (1− cos θ) , (2.24)

where the properties of the skew-symmetric cross product matrix given in Eqs. (2.21c) and (2.21d)

are exploited to arrive at this result. Equation (2.24) is then solved for θ to yield the rotation angle



14

about the Euler axis in terms of the attitude matrix as

θ = cos−1

(
trA− 1

2

)
. (2.25)

The solution to the eigenvalue problem posed by Eq. (2.13) and Eq. (2.25) define the Euler axis and

rotation angle, respectively, solely in terms of the attitude matrix.

Reference [17] gives the axis-angle parameterization for sequential rotations about non-

parallel Euler axes. Opposite rotations are given by changing the sign of either the Euler axis or

the rotation angle, i.e., {e, θ} and {−e, θ} represent opposite rotations, as do {e, θ} and {e,−θ}.

If the sign of both the Euler axis and the rotation angle are changed, the rotation is unaffected,

which can be observed by substituting {−e,−θ} for {e, θ} into Eq. (2.23). This shows the two-

to-one nature of the axis-angle parameterization of attitude; two sets of the Euler axis and rotation

angle parameters correspond to the same attitude matrix. Another important property of the axis-

angle parameterization is apparent when θ = ±π. In this case {e,±π} and {−e,±π} represent

equivalent rotations.

When quantifying one-dimensional attitude, the axis of rotation (which is the definition

of the Euler axis) is known and fixed, and is typically taken to be e = uI
z , uB

z , [0 0 1]T .

Therefore, Eq. (2.23) is specialized to one-dimensional attitude according to

A = I − sin θ


00
1

×

+ (1− cos θ)


00
1

×


2

,

which is simplified to yield

A =

 cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 . (2.26)

This result is further simplified by neglecting the third row and column of Eq. (2.26), similarly to

Eq. (2.12), to yield

A =

[
cos θ sin θ

− sin θ cos θ

]
, (2.27)

which defines the attitude matrix representing one-dimensional attitude in terms of the rotation angle

about the known axis of rotation. This shows that the attitude matrix quantifying one-dimensional

attitude possesses a single degree-of-freedom, given by θ, which is expected because the attitude
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matrix quantifying one-dimensional attitude motion exists in the special orthogonal group of di-

mension two.

2.1.3. Rotation Vector. A three-parameter representation of the attitude matrix is born as

the product of the Euler axis and the rotation angle about the Euler axis as

θ = θe . (2.28)

This attitude parameterization is known as the rotation vector. In order to find the attitude matrix in

terms of the rotation vector, the sin θ and 1 − cos θ terms in Eq. (2.23) are first replaced with their

Taylor series expansions to yield [5]

A = I −
∞∑
i=0

(−1)i θ2i+1

(2i+ 1)!
[e×]−

∞∑
i=1

(−1)i θ2i

(2i)!
[e×]2 . (2.29)

Exploiting the property of the skew-symmetric cross product matrix given in Eq. (2.21b), Eq. (2.29)

can be expressed as

A = I +

∞∑
i=0

[−θe×]2i+1

(2i+ 1)!
+

∞∑
i=1

[−θe×]2i

(2i)!
. (2.30)

It is now apparent from Eq. (2.28) that the rotation vector is present in Eq. (2.30), which is now

expressed explicitly using the rotation vector as

A = I +
∞∑
i=0

[−θ×]2i+1

(2i+ 1)!
+

∞∑
i=1

[−θ×]2i

(2i)!
.

The summations are now manipulated such that this can be simplified to yield

A =

∞∑
i=0

[−θ×]i

i!
, exp {−[θ×]} , (2.31)

where exp {−[θ×]} represents the matrix exponential of −[θ×]. Equation (2.31) defines the attitude

matrix solely in terms of the rotation vector.

In order to find the rotation vector in terms of the attitude matrix, the Euler axis and rotation

angle are first found according to the solution to the eigenvalue problem posed by Eq. (2.13) and

Eq. (2.25), respectively. Equation (2.28) is then used to find the rotation vector. In order to find the

Euler axis and angle of rotation in terms of the rotation vector, first, the Euler axis is found, which

is observed from Eq. (2.28) to be the unit vector representing the direction of the rotation vector,
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and is given by

e =
θ

||θ||
. (2.32)

Equation (2.32) shows that the Euler axis is undefined if ||θ|| = 0. This is not an issue, however,

because this corresponds to a rotation angle of zero and A = I in this case. Equation (2.28) shows

that the rotation angle is defined according to

θ = ||θ|| . (2.33)

Equations (2.32) and (2.33) define the Euler axis and rotation angle solely in terms of the rotation

vector.

It is intuitive from Eq. (2.32) that θ and −θ represent opposite rotations since the Euler axis

is negated. Because the rotation vector is a three-parameter representation of attitude, it possesses

a singularity either in representing a certain attitude, or in its temporal evolution. The singularity of

the rotation vector occurs when propagating the rotation vector. The norm of the rotation vector is

constrained to be no greater than π because θ ∈ [−π, π). During propagation, if the magnitude of

the rotation vector is equal to π and has a positive temporal derivative, then the rotation vector must

instantaneously change sign because {e,±π} and {−e,±π} represent equivalent rotations. This

discontinuity makes the rotation vector a poor choice to globally represent the attitude of a rigid

body; however, it does not encounter this singularity when quantifying small rotations, making it a

good choice to quantify small attitude errors.

When quantifying one-dimensional attitude, the axis of rotation (which is the definition

of the Euler axis) is known and stationary, and is typically taken to be e , [0 0 1]T . Because

the rotation vector is the product of the Euler axis and rotation angle, it is an intuitive result that

the norm of the rotation vector defines the angle of rotation about the known and fixed Euler axis.

Because the norm of the rotation vector is defined as the rotation angle, as is shown in Eq. (2.33), it

follows that the attitude matrix quantifying one-dimensional attitude for the axis-angle and rotation

vector attitude parameterizations are identical, and is given by Eq. (2.27), where θ is defined by the

norm of the rotation vector according to Eq. (2.33).

2.1.4. Attitude Quaternion. In 1840, Olinde Rodrigues introduced a four-parameter rep-

resentation of a rotation in three dimensions, known as the Euler-Rodrigues symmetric parameters,

quaternion of rotation, or simply quaternion. In 1843, Sir William Hamilton introduced the quater-

nion, which was developed as a new algebra and not as an attitude representation. Arthur Cayley

connected the work of Rodrigues and Hamilton. Hamilton defined the quaternion as a hypercomplex
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extension of a complex number according to

q̄ = q4 + iq1 + jq2 + kq3 , (2.34)

where i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, and ki = −ik = j, which shows

that the attitude quaternion is given in terms of the basis {1, i, j, k}. When using the quaternion to

represent rotations in three dimensions, it is more convenient to consider the attitude quaternion as

a four-component unit “vector” according to

q̄ =

[
q

q

]
∈ S3 ,

where q , [q1 q2 q3]
T and q , q4 are the vector and scalar parts of the quaternion, respec-

tively. Ss is used to represent the s-dimensional unit-hypersphere, which is defined by Ss ,{
z ∈ Rs+1×s+1 : zTz = 1

}
; thus, S3 represents the 3-dimensional unit hypersphere. The exis-

tence of the attitude quaternion on the unit hypersphere stems from the fact that the quaternion is

constrained to unit-length. In order to illustrate S3, first consider S1 and S2, which represent the

unit-circle and unit-sphere, respectively. S3 extends the concept of the unit-sphere one dimension

higher and, therefore, cannot easily be visualized.

Two important quaternion operations are multiplication and inversion, which are given for

unit quaternions by [5]

q̄ ⊗ p̄ =

[
pq + qp− q × p

qp− q · p

]
=

[
qI − [q×] q

−qT q

]
p

and

q̄−1 =

[
−q

q

]
,

respectively. Quaternion multiplication is not commutative, i.e. q̄ ⊗ p̄ 6= p̄⊗ q̄ in general.

The attitude quaternion is arguably the most widely used attitude representation because it

is globally nonsingular, and quaternion multiplication and inversion are used to represent sequential

and opposite coordinate transformations, respectively. Sequential and opposite coordinate transfor-

mations, which are represented in terms of DCMs in Eqs. (2.5) and (2.9), are represented using their

equivalent quaternion representations according to

q̄BI = q̄BC ⊗ q̄CI ,
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and

q̄IB =
[
q̄BI
]−1

,

respectively, where q̄BI is the attitude quaternion representing the coordinate transformation from

the I to the B frame, and similarly for q̄BC and q̄CI . The identity quaternion, which corresponds to

the identity attitude matrix, is defined as

p̄ ,

[
0

1

]

and is the quaternion representing zero rotation, such that

q̄ = q̄ ⊗ p̄ = p̄⊗ q̄

p̄ = q̄ ⊗ q̄−1 = q̄−1 ⊗ q̄ .

Using these relationships, the attitude error defined in Eq. (2.11) can be equivalently expressed using

the quaternion representations of the corresponding attitude matrices according to

δq̄ = q̄ ⊗ ˆ̄q−1 ,

where δq̄ is the quaternion representation of δA and ˆ̄q is the estimated attitude quaternion, which

corresponds to Â. As the attitude estimation error approaches zero, the estimated attitude quater-

nion, ˆ̄q, approaches the true attitude quaternion, q̄, and the quaternion representation of the attitude

error, δq̄, approaches the identity quaternion, p̄.

In order to find the attitude matrix in terms of the attitude quaternion, it is first necessary

to express the attitude quaternion in terms of its corresponding axis-angle attitude representation,

which is given by

q̄ =

[
q

q

]
=

[
sin θ

2e

cos θ
2

]
. (2.35)

The unit-norm constraint imposed on the attitude quaternion is evident in Eq. (2.35) due to trigono-

metric identities. It is also apparent in Eq. (2.35) that the attitude quaternion is a two-to-one attitude

parameterization. Recall that the axis-angle pairs given by {e, θ} and {−e,−θ} represent equiva-

lent rotations equivalent rotations given by the rotation vector θ. By substituting these axis angle

pairs and their corresponding rotation vector into Eq. (2.35) and noting the even and odd symme-

try of cosine and sine, respectively, it is apparent that q̄ and −q̄ quantify equivalent coordinate

transformations.
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The attitude matrix is now found in terms of the attitude quaternion by substituting the

trigonometric identities

sin θ = 2 sin
θ

2
cos

θ

2

1− cos θ = 2 sin2
θ

2

into Eq. (2.23), which yields [5]

A = I − 2 sin
θ

2
cos

θ

2
[e×] + 2 sin2

θ

2
[e×]2 . (2.36)

Noting the properties of the skew-symmetric cross product matrix given in Eq. (2.21e), Eq. (2.36)

is now expressed as

A = I − 2 cos
θ

2

[
sin

θ

2
e×
]
+ 2

[
sin

θ

2
e×
]2

. (2.37)

Substituting the definition of the vector and scalar parts of the attitude quaternion in terms of the

Euler axis and rotation angle, given in Eq. (2.35), into Eq. (2.37) yields

A = I − 2 q [q×] + 2 [q×]2 , (2.38)

which defines the attitude matrix solely in terms of the attitude quaternion.

The attitude quaternion can be found in terms of the attitude matrix by normalizing any one

of the following four vectors [5, 6, 18]:
1 + 2A11 − trA

A12 +A21

A13 +A31

A23 −A32

 = 4q1q̄ (2.39a)


A21 +A12

1 + 2A22 − trA

A23 +A32

A31 −A13

 = 4q2q̄ (2.39b)


A31 +A13

A32 +A23

1 + 2A33 − trA

A12 −A21

 = 4q3q̄ (2.39c)
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A23 −A32

A31 −A13

A12 −A21

1 + trA

 = 4qq̄ . (2.39d)

The vector with the largest norm should be used to find the attitude quaternion from the attitude

matrix in order to minimize the numerical error. In order to find the vector with the largest norm

without having to compute all four norms, first, the largest of A11, A22, A33, and trA is found.

Next, Eq. (2.39a), (2.39b), (2.39c), or (2.39d) is used depending on whether A11, A22, A33, or trA

is the largest, respectively.

In order to find the Euler axis and rotation angle in terms of the attitude quaternion, the

system of equations relating the vector and scalar parts of the quaternion to the Euler axis and

rotation angle, defined by Eq. (2.35), is solved for the Euler axis and rotation angle. This defines

the Euler axis and rotation angle in terms of the attitude quaternion as

e = csc
θ

2
q

and

θ = 2 acos q ,

respectively. After finding the Euler axis and angle of rotation in terms of the attitude quaternion,

Eq. (2.28) is used to find the rotation vector in terms of the attitude quaternion according to

θ =
2 acos q

(1− q2)
1
2

q . (2.40)

In order to find the attitude quaternion in terms of the rotation vector, Eqs. (2.13) and (2.25) are

substituted into Eq. (2.35) to yield

q̄ =

[
sin ||θ||

2
θ

||θ||
cos ||θ||

2

]
.

The relationships presented in this subsection between the attitude quaternion and the attitude ma-

trix, Euler axis and rotation angle, and rotation vector are exploited when necessary in later sections.

When quantifying one-dimensional attitude, the Euler axis is known and stationary, and is

typically taken to be e , [0 0 1]T . Therefore, for one-dimensional attitude, Eq. (2.35) is specialized
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to one-dimensional attitude according to

q̄ =


0

0

sin θ
2

cos θ
2

 ,


0

0

qz

q

 ∈ S1 . (2.41)

Equation (2.41) is typically simplified because the first two zeros are constant in order to yield the

attitude quaternion quantifying one-dimensional attitude as

q̄ =

[
sin θ

2

cos θ
2

]
,

[
qz

q

]
∈ S1 . (2.42)

In order to find the attitude matrix quantifying one-dimensional attitude, Eq. (2.41) is substituted

into Eq. (2.38) to yield

A =

1− 2q2z 2qqz 0

−2qqz 1− 2q2z 0

0 0 1

 . (2.43)

This result is further simplified by neglecting the third row and column of Eq. (2.43), similarly to

Eq. (2.12), to yield

A =

[
1− 2q2z 2qqz

−2qqz 1− 2q2z

]
.

2.2. QUATERNION KINEMATICS

The temporal evolution of the attitude quaternion representing the rotation from the I frame

to the B frame is given by [5, 7]

˙̄qBI =
1

2
ω̄B
B/I ⊗ q̄BI , (2.44)

where ω̄B
B/I is the angular velocity vector of the B frame with respect to the I frame expressed

in the B frame, expressed as a pure quaternion. A pure quaternion is a quaternion with the scalar

component equal to zero and is constructed from the angular velocity vector according to

ω̄B
B/I =

[
ωB
B/I

0

]
.
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The angular velocity is defined as the instantaneous time rate of change of the rotation vector rep-

resenting the rotation from the I frame to the B frame, expressed in the B frame, which is denoted

by [θB
I ]

B . Therefore, the angular velocity is defined by

ωB
B/I(t) = lim

∆t→0

[θB
I ]

B(t+∆t)− [θB
I ]

B(t)

∆t
, (2.45)

where the explicit dependence on time is denoted for clarity. In general, rotation vectors cannot

be added or subtracted in order to quantify sequential rotations; however, because the limit as ∆t

approaches zero is taken in Eq. (2.45), [θB
I ]

B(t + ∆t) approaches [θB
I ]

B(t), and, therefore, the

subtraction is valid in the limit sense.

Equation (2.44) represents the kinematic relationship between the attitude quaternion and

the angular velocity of a body, which defines the temporal evolution of the attitude quaternion. No

restrictions on the I and B frames are made in order for this kinematic relationship to be valid. This

is the rotational equivalent of the kinematic relationship between translational position and velocity,

which defines the temporal evolution of the translational position.

2.3. ATTITUDE DYNAMICS

The temporal evolution of the angular velocity defined in Eq. (2.45) is given by [5, 7]

JBω̇B
B/I = τB − ωB

B/I × JBωB
B/I , (2.46)

where JB is the inertia tensor of the rigid body about the center of mass and τB is the external

torque acting on the rigid body relative to the center of mass, both expressed in the B frame. In

deriving Eq. (2.46), it is assumed that the I frame is an inertial frame. This assumption can be

relaxed to yield a similar expression to Eq. (2.46) if I is not an inertial frame. In the remainder of

this work, the I frame is restricted to be an inertial frame.

Equation (2.46) represents the dynamic relationship relating the temporal evolution of the

angular velocity to the inertia tensor of the rigid body and the net external torque acting on the rigid

body. This relationship is analogous to the dynamic relationship relating the temporal evolution of

the translational velocity to the mass and net external force acting on the rigid body.

2.4. ORIENTATION

Euler’s theorem, which states that an arbitrary rotation in three dimensions can be accom-

plished by a single rotation about a fixed axis, is now generalized to spaces of arbitrary dimension,
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in which case the concept of orientation (instead of rotation) is born [15, 16]. In three dimensions,

the concept of rotation and orientation are one-in-the-same; however, in dimensions greater than

three, the concepts of rotation and orientation diverge. Euler’s theorem extended to r-dimensional

space states that b r2c rotations are necessary to construct an orientation, in general. In order to

differentiate the concepts of rotation and orientation, R and M are used to represent rotation and

orientation matrices, respectively.

Before defining the orientation matrix, it is first necessary to extend the idea of a vector ex-

pressed in a right-handed, orthonormal coordinate frame in three dimensions, defined by Eqs. (2.2)

and (2.3), to spaces of arbitrary dimension. In r dimensions, the r-vector x expressed in terms of

the I basis, denoted by xI , is given by

xI ,


x1

x2
...

xr

 = x1u
I
1 + x2u

I
2 + . . .+ xru

I
r ,

where the I basis is denoted by {uI
1:r} and is defined as

{uI
1:r} , {uI

1,u
I
2, . . . ,u

I
r} .

The I basis is assumed right-handed and orthonormal, which means it possesses the following

properties:

det {[uI
1|uI

2| . . . |uI
r ]} = 1

uI
i · uI

j =

1 , if i = j

0 , if i 6= j
∀ i, j = 1, 2, . . . , r ,

where [uI
1|uI

2| . . . |uI
r ] represents the concatenation of the vectors uI

1, uI
2, and uI

r to form a square

matrix of dimension r. The r-vector x expressed in terms of the B basis, xB is defined in a similar

manner. If r = 3, the definition of a right-handed, orthonormal basis simplifies to the definition of

a right-handed, orthonormal coordinate frame given in Eqs. (2.2) and (2.3), as expected.

Now that the concept of a basis has been defined for arbitrary dimension, the orientation

matrix relating the I and B bases is defined according to

xB = MB
I xI , (2.47)
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where xB and xI denote the vector x ∈ Rr expressed in the B and I bases, respectively. Orientation

matrices exist in the special orthogonal group of dimension r, i.e., MB
I ∈ SO(r). Because of this,

the inverse of the orientation matrix is given by its transpose according to

M−1 = MT .

Furthermore, through the definition of the orientation matrix given in Eq. (2.47), it can be shown

that sequential orientations can be applied according to

xB = MB
C xC = MB

C MC
I xI︸ ︷︷ ︸
xC

, (2.48)

where the C basis is an arbitrary, intermediate basis. Equating Eqs. (2.47) and (2.48) shows the

property of orientation matrices to compose orientations by multiplying the matrices according to

MB
I = MB

C MC
I .

The properties of orientations are equivalent to the properties of the DCM in three dimensions,

which stems from the fact that a DCM in three dimensions is itself, an orientation matrix, because

only one rotation is necessary to quantify an orientation in three dimensions.

Euler’s theorem is extended to r-dimensional space [15], in which case a minimum of b r2c
rotations in orthogonal planes is necessary to describe an arbitrary orientation. In this case, the

orientation matrix is defined by the product of b r2c orthogonal rotations according to

M =

b r
2
c∏

i=1

R(Pi, φi) , (2.49)

where R(P , φ) represents the rotation matrix defined by the rotation of magnitude φ performed

in the plane defined by P . In order to define the plane of rotation, the matrix P is constructed

according to

P = [p1|p2] ,

where p1 and p2 are orthogonal unit r-vectors that lie in the plane of rotation, p1 defines zero

rotation, and p2 defines the direction of the rotation. The rotation matrix is now given in terms of

the plane of rotation and the magnitude of the rotation in this plane according to

R(P , φ) = I + (cosφ− 1)PP T + PJ2P
T sinφ ,
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where J2 is the 2× 2 symplectic matrix defined by

J2 =

[
0 −1

1 0

]
.

Equation (2.49) defines the orientation matrix in terms of its elementary orthogonal planes of rota-

tion and the magnitudes of the rotations in these planes. Because the planes of rotation are restricted

to be orthogonal for the validity of Eq. (2.49), the order in which the elementary rotations used to

construct the orientation matrix is arbitrary.

In practice, parameterizing these planes of rotation and their corresponding angles of rota-

tion in each plane in order to construct the orientation matrix can be difficult due to the constraints

imposed on these parameters. A minimum of r(r − 1)/2 parameters are necessary to specify an

orientation in r-dimensional space [16]; however, b r2c(2r + 1) parameters are required to specify

the planes of rotation and their corresponding angles of rotation directly. For example, in four- and

five-dimensional space, six and ten parameters are the minimum number of parameters necessary

to specify an orientation, respectively, but 18 and 33 parameters are necessary to specify the planes

of rotation and their corresponding angles of rotation, respectively. This implies that 12 and 23

constraints must be satisfied for four- and five-dimensional space in order to correctly parameterize

the planes of rotation and their corresponding angles of rotation.

In this work, it is only necessary to construct an orientation matrix in four-dimensional

space. In order to construct the orientation matrix without directly specifying the two planes of

rotation and their corresponding angles of rotation, the orientation matrix is specified in terms of

its elemental left- and right-isoclonic rotations [19]. In order to define the left- and right-isoclonic

rotations, first note that a basis can be found such that an arbitrary rotation matrix in four dimensions

can be expressed in that basis according to [20]

R =


cosα1 − sinα1 0 0

sinα1 cosα1 0 0

0 0 cosα2 − sinα2

0 0 sinα2 cosα2

 . (2.50)

If α1 = ±α2, then this rotation matrix defines an isoclonic rotation. Furthermore, if α1 = α2,

the rotation is defined as a right-isoclonic rotation, and if α1 = −α2, the rotation is defined as a

left-isoclonic rotation. The rotation matrices representing these left- and right-isoclonic rotations
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can be expressed as

RL =


`0 −`3 `2 −`1

`3 `0 −`1 −`2

−`2 `1 `0 −`3

`1 `2 `3 `0

 (2.51)

and

RR =


r0 −r3 r2 r1

r3 r0 −r1 r2

−r2 r1 r0 r3

−r1 −r2 −r3 r0

 , (2.52)

respectively, where `20 + `21 + `22 + `23 = 1 and r20 + r21 + r22 + r23 = 1. The zeros present in

the elements of Eq. (2.50) are not present in Eqs. (2.51) and (2.52), even though they all represent

isoclonic rotations. This is because Eqs. (2.51) and (2.52) are expressed in an arbitrary basis, and

not in the basis that results in the zero elements observed in Eq. (2.50). In order for a rotation to

be isoclonic, it is only necessary that a basis exists such that the matrix representing the rotation

can be expressed in this basis in the form in Eq. (2.50); it is not required that the rotation has to be

expressed in this basis.

It is now noted that RL and RR can be expressed in terms of the bases {I,A1,A2,A3}
and {I,B1,B2,B3}, respectively, according to

RL = `0I + `1A1 + `2A2 + `3A3

RR = r0I + r1B1 + r2B2 + r3B3 ,

where

A1 =


0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0

 A2 =


0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0

 A3 =


0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0



B1 =


0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

 B2 =


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

 B3 =


0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0

 .
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These bases satisfy the properties that

A2
1 = A2

2 = A2
3 = −I

A1A2 = −A2A1 = A3

A2A3 = −A3A2 = A1

A3A1 = −A1A3 = A2

and

B2
1 = B2

2 = B2
3 = −I

B1B2 = −B2B1 = B3

B2B3 = −B3B2 = B1

B3B1 = −B1B3 = B2 ,

which are observed to be the same properties that the basis for the attitude quaternion, given in

Eq. (2.34), satisfy. Because of this, the rotation matrices representing left- and right-isoclonic rota-

tions can be equivalently specified in terms of the attitude quaternion according to

RL =


q −qz qy −qx

qz q −qx −qy

−qy qx q −qz

qx qy qz q

 (2.53)

and

RR =


q −qz qy qx

qz q −qx qy

−qy qx q qz

−qx −qy −qz q

 . (2.54)

It is important to note that the quaternion parameterizations of the left- and right-isoclonic rotations

satisfy the `20 + `21 + `22 + `23 = 1 and r20 + r21 + r22 + r23 = 1 constraints. The orientation matrix is

then constructed from the left- and right-isoclonic rotation matrices according to

M = RLRR = RRRL . (2.55)
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If two attitude quaternions are specified, one to define each of the left- and right-isoclonic rotations,

eight parameters are necessary to specify the orientation matrix; thus, two constraints must be sat-

isfied, which is apparent because the attitude quaternion is constrained to be unit-norm. In order to

parameterize the orientation matrix by a minimum parameter set, each of the attitude quaternions is

first parameterized by a rotation vector. In this case, the orientation matrix is parameterized by six

parameters in total, i.e, three parameters for each of the two rotation vectors.
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3. PROBABILITY DENSITY FUNCTIONS

The pdf of a continuous random variable contains all of the statistical information about the

random variable. In order to define the pdf for a continuous random variable, it is first necessary to

define its probability distribution function (or cumulative density function to some) according to

F (x) = Pr (x < x) ,

where x is a realization of the random variable x. The probability distribution function of x is

nondecreasing and exists on the interval [0, 1]. Furthermore, the probability distribution function

satisfies F (−∞) = 0 and F (∞) = 1. The pdf of x is then defined in terms of the probability

distribution function according to

p(x) =
dF (x)

dx
.

From the definition of the derivative, the pdf can be expressed as

p(x) = lim
dx→0

F (x+ dx)− F (x)

dx
= lim

dx→0

Pr (x < x < x+ dx)
dx

, (3.1)

and thus, it is apparent that the probability density function quantifies the density of the probability

that x takes place in the infinitesimally small region surrounding x.

The inverse relationship between the probability distribution function and the pdf is given

according to

F (x) =

∫ x

−∞
p(u) du ,

and therefore

F (∞) =

∫ ∞

−∞
p(u) du = 1 ,

which shows that the pdf must integrate to unity over the support of x, that is, all regions such that

p(x) 6= 0. This is an important property of pdfs, and stems from the fact that the probability of any

x happening in the support of x must be unity, which is an intuitive result because x is a realization

of x.
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Now, consider the joint probability distribution function of two random variables, defined

as

F (x, y) = Pr (x < x, y < y) ,

where y is a realization of the random variable y. The joint pdf is then given by

p(x, y) =
δ2F (x, y)

δxδy
. (3.2)

The marginal probability distribution function of x is given by

Fx(x) = F (x,∞) ,

which yields the marginal pdf of x to be given by

px(x) =

∫ ∞

−∞
p(x, y) dy ;

that is, the pdf of x if y is “integrated out.” If the probability distribution function of x and y is equal

to the product of the marginal pdfs of x and y, that is

F (x, y) = Fx(x)Fy(y) , (3.3)

then x and y are said to be independent. If x and y are independent, the probability that x < x

does not depend on the probability that y < y. Substituting Eq. (3.3) into Eq. (3.2) and simplifying

yields

p(x, y) =
δ2Fx(x)Fy(y)

δxδy
=

δFx(x)

δx

δFy(y)

δy
= px(x)py(y) ,

which shows that, if x and y are independent, then the joint pdf of x and y is equivalent to the

product of the marginal pdfs of x and y. This is another important property of pdfs, and will be

exploited in certain applications.

The probability distribution and density functions can be extended to vector quantities.

Consider the random vector x = [x1 x2 · · · xr]
T , and a realization of this vector, x =

[x1 x2 · · · xr]
T . The probability distribution function of x is simply the joint probability dis-

tribution function of x1, x2, . . ., xr; that is,

F (x) = Pr (x1 < x1, x2 < x2, · · · , xr < xr) .
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The pdf of x is then found according to

p(x) =
δrF (x)

δx1δx2 · · · δxr
.

Using the definition of the partial derivatives (in a similar fashion to Eq. (3.1)), it can be shown that

the pdf of x quantifies the density of the probability that x takes place in the infinitesimally small

region surrounding x.

In this chapter, first the Gaussian and GM densities, which are established and well-studied

pdfs, are introduced. These densities probabilistically quantify a vector that exists in Euclidean (ad-

ditive and unbounded) space. Next, the Bingham density, as well as its efficacy to probabilistically

quantify the attitude quaternion on its natural manifold, the unit-hypersphere, is presented. The BM

density is then developed, including methods to approximate a nonuniform Bingham density on the

unit circle and a uniform Bingham density on the unit-hypersphere with a BM density. Next, the

Gauss-Bingham and Bingham-Gauss densities are developed, which probabilistically quantify the

joint density of a vector in Euclidean space and the attitude quaternion. Finally, the BGM density is

developed, including a method to approximate a Bingham-Gauss density with a BGM density. Note

that the remainder of this chapter uses x or z to denote a vector that exists in Euclidean space, q̄

or p̄ to denote a unit-vector (that is equivalent to the attitude quaternion under certain conditions),

and x = [q̄T xT ]T or z = [p̄T zT ]T to denote the concatenation of a unit-vector and a vector in

Euclidean space; these quantities are not to be confused with the notation used in the introductory

material of this chapter introducing the properties of the pdf.

3.1. GAUSSIAN DENSITY

The well-known Gaussian density is given for a random vector x ∈ Rr by

pg(x;m,P ) = det {2πP }−
1
2 exp

{
−1

2(x−m)TP−1(x−m)
}
, (3.4)

where m ∈ Rr is the mean and P = P T > 0 ∈ Rr×r is the covariance of the Gaussian density.

The Gaussian density is a two-parameter density in the exponential family and is parameterized

directly by its first moment (mean), and its second central moment (covariance). The mean and

covariance of the Gaussian density are formally defined as

m = E pg{x}

P = E pg

{
(x−m)(x−m)T

}
,
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where the expected value is defined for the arbitrary, (potentially) nonlinear function g(x) with

respect to the arbitrary pdf p(x) as

E p{g(x)} =

∫
Ω
g(x)p(x)dx , (3.5)

and Ω is the support of p(x), which is defined by all regions of x such that (x) 6= 0. The support

of the Gaussian density is Rr; thus, it is not restricted to a given interval and can only be used to

rigorously quantify states that are not restricted to a given interval (unbounded).

The standard normal density, which is denoted as the canonical Gaussian density for con-

sistent nomenclature with the canonical form of other densities, is introduced by substituting the

transformation

x = Sz+m (3.6)

into Eq. (3.4), which yields the canonical Gaussian density as

p̃g(z) , pg(z;0, I) = (2π)−
r
2 exp

{
−1

2z
T z
}
,

where the tilde notation is used to denote the canonical form of the density. In Eq. (3.6), S is defined

as the Cholesky factor of P according to

SST , P .

Through the change of variables defined in Eq. (3.6), the canonical Gaussian density becomes zero-

mean and possesses identity covariance; thus, the elements of the canonical Gaussian variable, z,

are independent. Certain operations can be performed for the canonical Gaussian density, and the

results of these operations can then be transformed according to the change of variables defined by

Eq. (3.6) to represent the Gaussian density of interest. In some cases, this allows these operations

to be performed off-line and saved for the standard normal density, and the saved result can be

transformed to the Gaussian density of interest when needed to reduce computational expense.

3.2. GAUSSIAN MIXTURE DENSITY

The GM density is defined by [21]

pgm(x) =

L∑
`=1

w(`) pg

(
x;m(`),P (`)

)
, (3.7)
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where w(`) is the weight of the `th component, m(`) and P (`) are the mean and covariance defining

the `th component, respectively, and L is the number of components in the GM. The weights of the

mixture are constrained such that

w(`) > 0 ∀ ` = 1, 2, . . . , L and
L∑

`=1

w(`) = 1 ,

which ensures that the GM is a valid pdf.

The GM density can be used to approximate arbitrary pdfs in Euclidean space. In fact,

if the pdf to approximate is “defined and continuous at all but a finite number of locations,” the

GM approximation of this pdf converges uniformly as the number of components in the mixture

increase [21]. This result implies that a GM density can be used to approximate many pdfs of

practical concern.

In this work, the approximation of a Gaussian density by a GM density is considered. This

approximation is considered in References [22, 23], among others. While the Gaussian density

can be equivalently expressed as a single-component GM density, it is advantageous in certain ap-

plications to approximate the Gaussian density by a GM density with more than one component.

By approximating the Gaussian density in this way, the covariance of each component of the ap-

proximating GM density is smaller than the Gaussian density, in general. In order to find the GM

approximation of a Gaussian density, first, the GM approximation of the canonical density is found.

The parameters of the GM approximation of the canonical Gaussian density are then transformed

according to the change of variables defined in Eq. (3.6) in order to approximate the Gaussian den-

sity of interest. Let the GM density approximating the canonical Gaussian density be defined by

pgm(z) =

L∑
`=1

w̃(`) pg

(
z; m̃(`), P̃ (`)

)
, (3.8)

where the tilde notation indicates that these parameters correspond to the GM approximating the

canonical Gaussian density. Ideally, w̃(`), m̃(`), and P̃ (`) for ` = 1, 2, . . . , L would be found for a

given L such that a given measure of the difference between the canonical Gaussian density and its

approximating GM density is minimized. The L2 distance between the canonical Gaussian density

and its approximating GM density is used as this measure, and is given by

L2[p̃g||pgm] =

∫
Rr

[
p̃g(ζ)− pgm(ζ)

]2 dζ . (3.9)

This L2 distance can be manipulated into a closed form, as is shown in Appendix A.

In general, finding w̃(`), m̃(`), and P̃ (`) for ` = 1, 2, . . . , L that minimize Eq. (3.9) without

first making simplifications becomes intractable, especially as the number of components in the
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mixture increases. In order to simplify this minimization problem, first, it is noted that the elements

of the canonical Gaussian-distributed variable, z, are independent and uncorrelated. This allows

the canonical Gaussian density to be expressed as the product of the canonical Gaussian-distributed

scalar elements of z , [z1 z2 · · · zr]
T according to

p̃g(z) =
r∏

i=1

p̃g(zi) .

Because of this, the problem of approximating the multivariate canonical Gaussian density with a

GM density in r dimensions reduces to the approximation of r scalar canonical Gaussian densities

by a scalar GM density. This allows Eq. (3.8) to be expressed as

pgm(z) =

r∏
i=1

pgm(zi) , (3.10)

where

pgm(zi) =

Li∑
`i=1

w̃
(`i)
i pg

(
zi; m̃

(`i)
i , P̃

(`i)
i

)
(3.11)

is the GM approximating the ith scalar element of the canonical Gaussian-distributed vector z.

Ideally, the parameters defining the scalar GM density would be found such that the L2 distance

to the scalar canonical Gaussian density is minimized; however, in practice, further simplifications

about these parameters need to be made in order to make this minimization feasible.

In order to reduce the number of parameters necessary to find via minimization, first, the

means of the GM density are assumed to be equally spaced away from zero, with the mean of the

central component placed at zero. This gives the mean of each component explicitly as a function

of the spacing between the means, ∆mi, as

m̃
(`i)
i ,

[
`i −

Li + 1

2

]
∆mi , (3.12a)

for `i = 1, 2, . . . , Li. Spacing the means of the components in this manner restricts Li to be odd.

Next, a power law [23] is assumed for the P̃
(`i)
i according to

P̃
(`i)
i = L

− 3
4

i , (3.13)
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for `i = 1, 2, . . . , Li. This power law showed the best performance in [23]; however, the mean of

each component is specified differently in this work, so no claim that the (−3/4) power law per-

forms best can be made. This power law was chosen heuristically and shows good performance in

this application. Using this power law, the covariance of each component is explicitly defined by

the number of components of the GM. Finally, the weights of the components are assumed sym-

metric about zero (which stems from the symmetry in the mean and covariance of the components)

according to

w̃
(`i)
i = w̃

(Li−`i+1)
i , (3.14)

for `i = 1, 2, . . . , (Li−1)/2. By parameterizing the weights in this manner, only (Li−1)/2 weights

are unique due to the fact that the weights must sum to unity.

Under these assumptions, only w̃
(`i)
i for `i = 1, 2, . . . , (Li − 1)/2 and ∆mi (a total of

(Li+1)/2 parameters) need to be found in order to find w̃
(`i)
i , m̃(`i)

i , and P̃
(`i)
i for `i = 1, 2, . . . , Li,

which fully define the scalar GM density. These parameters are found such that the L2 distance

between the scalar GM density and the scalar canonical Gaussian density is minimized. Constrained

numerical minimization is employed to find these parameters, which ensures that the weights and

spacing between the components are positive. After this minimization is performed, the parameters

of the scalar GM, which is given in Eq. (3.11), that minimize the L2 distance to the scalar canonical

Gaussian density are known. Two example GM densities approximating the standard normal density

are presented in Figure (3.1). It is observed that, as the number of components in the mixture

increases, the GM density becomes a better approximation of the Gaussian density, as expected.

(a) Li = 3 (b) Li = 11

Figure 3.1. GM approximations of the standard normal density. The Gaussian density is red, the
GM is black, and the components are green.
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Now that the GM approximation of a scalar canonical Gaussian density has been con-

structed, the GM approximation of the multivariate canonical Gaussian density can be constructed.

This is accomplished by substituting the scalar GM approximation of the ith component of z, given

by Eq. (3.11), into Eq. (3.10), which yields

pgm(z) =
r∏

i=1

Li∑
`i=1

w̃
(`i)
i pg

(
zi; m̃

(`i)
i , P̃

(`i)
i

)
. (3.15)

Equation (3.15) can be manipulated into vector-matrix form to yield the parameters of the GM

density approximating the multivariate canonical Gaussian density, given in Eq. (3.8), to yield

w̃(`) =
r∏

j=1

w̃
(`j)
j (3.16a)

m̃(`) =


m̃

(`1)
1

m̃
(`2)
2
...

m̃
(`r)
r

 (3.16b)

P̃ (`) =


P̃

(`1)
1

P̃
(`2)
2

. . .

P̃
(`r)
r

 , (3.16c)

where ` = 1, 2, . . . , L, the number of components in the resulting multivariate GM density is L =

L1L2 · · ·Lr, and each ` corresponds to a unique permutation of `1, `2, . . ., `r. The number of

components in the GM density approximating the canonical Gaussian density is given by the product

of the number of components of the scalar GM density approximating each entry of z. Special care

must be taken when selecting the number of components chosen to approximate each component of

z, because the number of components in the resulting multivariate mixture suffers from the curse of

dimensionality; that is, the number of components in the resulting mixture increase exponentially

with r. This can easily result in an infeasible number of components for large r.

The parameters of the GM density approximating a Gaussian density, defined by m and

P , are now found by transforming the parameters of the GM density approximating the canonical

Gaussian density according to the transformation of variables given in Eq. (3.6). This yields the

parameters of the GM density approximating the Gaussian density, defined by Eq. (3.7), according

to

w(`) = w̃(`) (3.17a)
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m(`) = Sm̃(`) +m (3.17b)

P (`) = SP̃ (`)ST (3.17c)

for ` = 1, 2, . . . , L.

3.3. BINGHAM DENSITY

The Bingham density is an antipodally symmetric density on the unit-hypersphere that is

defined as a zero-mean Gaussian density conditioned on the unit-hypersphere. In this context, “con-

ditioned” means that the Gaussian density is evaluated on the unit-hypersphere and is subsequently

renormalized such that it is a valid pdf. Because antipodal attitude quaternions (q̄ and −q̄) represent

the same attitude, the Bingham density can quantify the uncertainty in the quaternion representation

of attitude without ambiguity between q̄ and −q̄. The Bingham density is defined for a random

unit-vector q̄ ∈ Ss and is given by [8, 9]

pb(q̄;M ,Z) =
1

F (Z)
exp

{
q̄TMZMT q̄

}
, (3.18)

where M ∈ SO(s+ 1) is the orientation matrix describing the orientation of the density on the

unit-hypersphere, Z is a diagonal square matrix of dimension s + 1 of concentration parameters

with nondecreasing diagonal elements Z1 ≤ · · · ≤ Zs ≤ Zs+1 , 0, and F (Z) is the normalization

constant that ensures that pb(q̄;M ,Z) is a valid pdf. The Bingham density possesses the property

that pb(q̄;M ,Z) = pb(q̄;M ,Z + cI) for all c ∈ R; thus, Zs+1 is defined to be zero with an

appropriate choice of c for a given Bingham density without any change to the characteristics of the

density. An abuse of notation is used for q̄ because it is used to represent both a generic antipodally

symmetric unit-vector of arbitrary dimension s as well as the attitude quaternion; when q̄ ∈ S1 or

q̄ ∈ S3, q̄ is a valid attitude quaternion representing the one- and three-dimensional attitude of a

body, respectively. Whether q̄ represents a generic antipodally symmetric unit-vector or the attitude

quaternion is clear in the surrounding context.

The parameters of Z control how tightly clustered the Bingham density is around its mean

direction, while the orientation matrix, M , specifies the mean direction itself. The normalization

constant of the Bingham density is given by the hypergeometric function of a matrix argument

according to

F (Z) =

∫
Ss

exp
{
q̄TZq̄

}
dSs = |Ss| 1F1

(
1

2
;
s+ 1

2
;Z

)
, (3.19)
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where |Ss| represents the area of the unit-hypersphere of dimension s and ·F·(·; ·; ·) represents the

hypergeometric function of a matrix argument. The normalization constant is independent of the

orientation matrix, which is intuitive since the orientation matrix simply changes the orientation of

the density on the unit-hypersphere. Many methods exist for calculating the normalization constant,

including series expansions [24], saddle point approximations [25, 26], the holonomic gradient

method [27], and interpolation of precomputed tabulated values [28]. In this work, the normalizing

constant is interpolated from precomputed tabulated values. In order to generate the tabulated values

of the normalizing constant, the normalizing constant is approximated over a discrete grid of Z1,

Z2, . . . , Zs for s = 1, 2, and 3 using Gauss-Legendre quadrature in spherical coordinates to

approximate the integral in Eq. (3.19). This approximation is detailed in Appendix B.

Parallels between the parameters of the well-known and well-understood Gaussian density

and the parameters of the Bingham density can be drawn in order to better understand the Bingham

density. The Bingham density is a directional density; that is, it probabilistically quantifies the

direction of a unit-vector in Ss. The orientation matrix, M , is similar to the mean of the Gaussian

density, m, in that it specifies the mean direction of the Bingham density, while m specifies the

mean location of the Gaussian density. The matrix of concentration parameters of the Bingham

density, Z, is similar to the covariance matrix of the Gaussian density, P , in that it specifies how

tightly clustered the Bingham density is about its mean direction. Making the elements of Z more

negative leads to a more tightly clustered density about the mean direction for the Bingham density

similarly to how decreasing P towards 0 leads to a more tightly clustered density about the mean

for the Gaussian density. It is important to note that Z is not the covariance of the Bingham density;

however, they are directly related.

Representing the uncertainty of an attitude quaternion using the Bingham density has three

key advantages as compared to other methods of attitude uncertainty representation:

– The Bingham density is antipodally symmetric; thus, antipodal quaternions q̄ and −q̄ (which

represent the same physical attitude) are equiprobable,

– the Bingham density quantifies the uncertainty of the attitude quaternion q̄ on its natural

manifold (S1 or S3, for one- and three-dimensional attitude, respectively) instead of projecting

the attitude uncertainty into a local tangent space, which can potentially incur approximation

errors, and

– the Bingham density possesses a simple representation of a uniformly distributed attitude

quaternion on this manifold, which occurs when the Z matrix is null.
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In order to visualize how the Bingham density represents the distribution of an attitude

quaternion in S3, the Bingham density is illustrated in S1 and S2, where straightforward visualiza-

tions exist. The Bingham density is first shown for one-dimensional attitude uncertainty representa-

tion, where the axis of rotation is defined to be the z-axis. In this case, the one-dimensional attitude

quaternion is given by Eq. (2.42). Figure (3.2) shows the Bingham-distributed one-dimensional at-

titude quaternion for the identity orientation matrix and different values of Z1. Observation of Fig-

ure (3.2) shows that the Bingham density is antipodally symmetric; that is, q̄ and −q̄ are equiproba-

ble. Further observation highlights that as Z1 becomes more negative, the uncertainty in the attitude

quaternion decreases. Similarly, as Z1 approaches zero, the uncertainty in the attitude quaternion

increases until Z1 = 0, in which case the attitude quaternion is uniformly-distributed.

Figure (3.3) shows the Bingham density in S1 for a fixed matrix of concentration parame-

ters, Z, and varying values of the orientation matrix, M . In this dimension, the orientation matrix

is parameterized by a single parameter, according to Eq. (2.27). In this case, φ is used in place of θ

in Eq. (2.27) to yield the orientation matrix of the Bingham density in terms of φ according to

M =

[
cosφ sinφ

− sinφ cosφ

]
. (3.20)

The angle φ is used to parameterize the orientation matrix of the Bingham density instead of θ in

order to emphasize that φ defines the mean direction of the attitude quaternion, and is not the heading

angle of the vehicle, in general. Observation of Figure (3.3) shows that φ specifies the rotation of the

mean direction of the quaternion away from the direction of the identity quaternion (p̄ = [0 1]T ),

as expected from the definition of the orientation matrix. Observation of Figures. (3.3a) and (3.3d)

shows that the Bingham density is identical for orientation matrices defined by φ = 0 and φ = 180◦

and results in identical Bingham densities, which makes intuitive sense because ±M (which are

defined by φ = 0 and φ = 180◦), result in the same exponential argument in Eq. (3.18).

No valid attitude quaternion exists on S2; however, the Bingham density for the unit-vector

q̄ = [q1 q2 q3]
T ∈ S2 is illustrated in Figure (3.4) for the orientation matrix

M =


√
2
2

√
2
2 0

0 0 1
√
2
2 −

√
2
2 0


and varying values of Z1 and Z2 to demonstrate how the Z matrix affects the Bingham density

in this dimension. When Z1 = Z2 = 0, all q̄ are equiprobable. When Z2 = 0, the q̄ along a

great circle defined by the orientation matrix M are equiprobable, as observed in Figures. (3.4a)

and (3.4c). In this case, the Z1 parameter dictates how tightly clustered the pdf of q̄ is along the
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(a) Z1 = −100 (b) Z1 = −50

(c) Z1 = −25 (d) Z1 = −10

(e) Z1 = −2 (f) Z1 = 0

Figure 3.2. Bingham densities on S1 for M = I and varying values of Z1.
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(a) φ = 0 (b) φ = 10◦

(c) φ = 30◦ (d) φ = 60◦

(e) φ = 90◦ (f) φ = 180◦

Figure 3.3. Bingham densities on S1 for Z1 = −100 and varying values of M .
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great circle. When Z2 decreases from zero, the pdf of q̄ decreases in the direction defined by the

orientation matrix M , as observed in Figures. (3.4b) and (3.4d).

No straightforward visualization of the Bingham density exists in S3. Similar trends, how-

ever, are present as the entries of Z change for the Bingham densities in S3 as they do for the

Bingham density in S1 and S2. A uniformly distributed attitude quaternion is given by the null Z

matrix, and as Z1, Z2, and Z3 decrease, the uncertainty in the attitude quaternion decreases. If any

of the Z1, Z2, and Z3 are equal to zero, then the attitude quaternion becomes equiprobable around a

higher-dimensional circle or sphere, similarly to Figures. (3.4a) and (3.4c) for the Bingham density

in S2.

The canonical Bingham density is introduced by substituting the transformation

q̄ = Mp̄ (3.21)

into Eq. (3.18), which yields the canonical Bingham density as

p̃b(p̄;Z) = pb(p̄; I,Z) = F−1(Z) exp
{
p̄TZp̄

}
,

where the tilde notation is used to denote the canonical form of the density. The canonical Bingham

density still depends on the matrix of concentration parameters, Z; however, the elements of p̄

are uncorrelated (but not independent because p̄ is constrained to be unit-norm), which can be

exploited for certain operations. Similar to the canonical Gaussian density, certain operations can

be performed for the canonical Bingham density, and the results of these operations can then be

transformed according to the change of variables defined by Eq. (3.21) to represent the Bingham

density of interest. When using the canonical Bingham density, typically these operations cannot

be performed off line and saved for the canonical Bingham density, because the canonical Bingham

density still depends on the matrix of concentration parameters, Z.

While the canonical Bingham density is only defined on Ss, it is still possible to express its

mean and covariance in Rs+1. Due to the antipodal symmetry of the canonical Bingham density, its

mean in Rs+1 is

E p̃b{p̄} = 0 ,
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(a) Z1 = −100, Z2 = 0 (b) Z1 = −100, Z2 = −10

(c) Z1 = −25, Z2 = 0 (d) Z1 = −25, Z2 = −10

Figure 3.4. Bingham densities on S2 for varying values of Z1 and Z2.
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where the expected value is defined by Eq. (3.5). Because the elements of p̄ are uncorrelated, the

covariance of the canonical Bingham density in Rs+1 is given by Eq. (2.9) from Reference [8] as

Pp , E p̃b

{
p̄p̄T

}
=


f1

f2
. . .

fs+1

 , (3.22)

where the off-diagonal elements of the matrix in Eq. (3.22) are equal to zero. The fi terms are

defined in terms of the normalizing constant and its partial derivatives with respect to Zi according

to

fi , F−1(Z)
∂F (Z)

∂Zi
. (3.23)

The fi terms satisfy several important properties, given by

s+1∑
i=1

fi = 1 (3.24a)

fi > 0 , i = 1, 2, . . . , s+ 1 (3.24b)

lim
Zi→−∞

fi = 0+ , i = 1, 2, . . . , s (3.24c)

lim
Z1,Z2,...,Zs→−∞

fs+1 = 1− . (3.24d)

These properties can be interpreted from the fact that the f1, f2, . . . , fs+1 represent the diagonal

elements of the covariance matrix of the canonical Bingham density according to Eq. (3.22). The

canonical Bingham density exists on the unit-hypersphere and is antipodally symmetric, i.e., it

probabilistically quantifies an antipodally symmetric vector that is constrained to be unit-norm.

Because of this, the trace of its covariance matrix is constrained to be unity, which is given by

Eq. (3.24a). Furthermore, the diagonal elements of the covariance matrix must be positive, which

is given by Eq. (3.24b). Finally, the properties of the f1, f2, . . . , fs+1 given in Eqs. (3.24c) and

(3.24d) stem from the facts that Z1, Z2, . . ., Zs are less than or equal to zero, Zs+1 , 0, and the

unity trace constraint on the covariance matrix.

In this work, the partial derivatives of the normalizing constant, as defined by Eq. (3.23),

are interpolated from precomputed tabulated values. In order to generate these tabulated values, the

partial derivatives of Eq. (3.19) with respect to each of Z1, Z2, . . . , Zs are first found, and are then

numerically evaluated using Gauss-Legendre quadrature in spherical coordinates to approximate the
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remaining integral. This approximation is detailed in Appendix B, along with the approximation of

the normalizing constant itself.

The covariance of the canonical Bingham density, Pp, uniquely defines the canonical Bing-

ham density. If Pp is known, then the matrix of concentration parameters, Z, defining the canonical

Bingham density that possesses this covariance can be found. In order to find the elements of Z,

given by Z1, Z2, . . . , Zs, reverse interpolation of the tabulated values of f1, f2, . . . , fs (which are

the unique parameters of Pp) over the grid of Z1, Z2, . . . , Zs is used. Because of this, either the

covariance of the canonical Bingham density, or the matrix of concentration parameters is sufficient

to specify a unique canonical Bingham density.

Like the canonical Bingham density, the mean of the Bingham density is given in Rs+1 as

E pb{q̄} = 0

due to antipodal symmetry. The covariance of the Bingham density in Rs+1 is defined by E pb{q̄q̄T }.

In order to calculate this expected value, its argument is first pre- and post-multiplied by MMT =

I , such that the covariance can be expressed as

Pq , E pb{q̄q̄
T } = E pb{MMT q̄q̄TMMT } . (3.25)

Introducing the transformation of variables defined in Eq. (3.21) and noting that M is determinis-

tic, Eq. (3.25) can be expressed as

Pq = ME p̃b{p̄p̄
T }MT . (3.26)

E p̃b{p̄p̄T } is simply the covariance of the canonical Bingham density, which is defined by Eq. (3.22).

Substituting Eq. (3.22) into Eq. (3.26) yields the covariance of the Bingham density in Rs+1 as

Pq = MPpM
T , (3.27)

which is seen to be a similarity transformation of the covariance of the canonical Bingham density

according to the orientation matrix of the Bingham density.

The covariance of the Bingham density, Pq, uniquely defines the Bingham density. If Pq is

known, then the orientation matrix, M , and the matrix of concentration parameters, Z, defining the

Bingham density that possess this covariance can be found. In order to find M and the elements of

Z, given by Z1, Z2, . . . , Zs, first an eigen-decomposition is performed on Pq to find M and the

diagonal matrix Pp according to Eq. (3.27). Reverse interpolation of the tabulated values of f1, f2,

. . . , fs (which are the unique parameters of Pp) over the grid of Z1, Z2, . . . , Zs is then used to find

Z1, Z2, . . . , Zs. Because of this, either the covariance of the Bingham density or the orientation
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matrix and matrix of concentration parameters is sufficient to specify a unique Bingham density.

Special care must be taken when taking the eigen-decomposition of Pq in order to ensure that the

properties of M ∈ SO(s+ 1) and the diagonal matrix Pp (which are given by Eqs. (3.24)) are met.

3.4. BINGHAM MIXTURE DENSITY

The BM density is defined by

pbm(q̄) =

L∑
`=1

w(`) pb

(
q̄;M (`),Z(`)

)
, (3.28)

where w(`) is the weight of the `th component, M (`) and Z(`) are the orientation matrix and ma-

trix of concentration parameters defining the `th component, respectively, and L is the number of

components in the BM density. The weights of the mixture are constrained such that

w(`) > 0 ` = 1, 2, . . . , L and
L∑

`=1

w(`) = 1 ,

which ensures that the BM is a valid pdf.

The BM density can be used to approximate pdfs on the unit-hypersphere, similarly to how

the GM density can be used to approximate pdfs in Euclidean space. In this work, the approxima-

tion of the Bingham density by a BM density is considered. While the Bingham density can be

equivalently expressed as a single-component BM density, it is advantageous in certain applications

to approximate the Bingham density by a BM density with more than one component. By approx-

imating the Bingham density in this way, the uncertainty of each component of the approximating

BM density is smaller than that of the Bingham density it approximates, in general. The parameters

of the approximating BM density are found differently depending on whether the Bingham density

to approximate is a uniform density or not (i.e, whether Z is null or not). A method to find the

parameters of the BM density that approximate a nonuniform Bingham density on S1 is presented

first. Next, a method to find the parameters of the BM density that approximates a uniform Bingham

density for arbitrary dimension s is presented.

3.4.1. Approximation of the Nonuniform Bingham Density on S1. The approximation

of a nonuniform Bingham density by a BM density on S1 is now considered. The parameters of the

BM approximation of the nonuniform canonical Bingham density are first found, and then, these

parameters are transformed according to the change of variables defined in Eq. (3.21) in order to

yield the parameters of the BM density that approximates the Bingham density of interest. Let the
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BM density approximating the canonical Bingham density be defined by

pbm(p̄) =

L∑
`=1

w̃(`) pb

(
p̄;M̃ (`), Z̃(`)

)
, (3.29)

where the tilde notation indicates that these parameters correspond to the BM density that approxi-

mates the canonical Bingham density. Ideally, w̃(`), M̃ (`), and Z̃(`) would be found for a given L

such that a given measure of the difference between the canonical Bingham density and its approx-

imating BM density is minimized. The L2 distance between the canonical Bingham density and its

approximating BM density is used as this measure and is given by

L2[p̃b||pbm] =

∫
Ss

[
p̃b(ζ)− pbm(ζ)

]2 dζ . (3.30)

This L2 distance can be manipulated into a closed form, as is shown in Appendix C.

In general, finding the w̃(`), M̃ (`), and Z̃(`) that minimize Eq. (3.30) without first mak-

ing simplifications becomes intractable, especially as the number of components in the mixture

increases. When constructing the GM density, the fact that the elements of the canonical Gaussian-

distributed variable, z, are uncorrelated is exploited in order to simplify the construction of a GM

approximation of a multivariate Gaussian density in r dimensions into the construction of r scalar

GM approximations of a scalar canonical Gaussian density. While the elements of the canonical

Bingham state vector, p̄, are uncorrelated like the elements of z, the resulting densities of the el-

ements of p̄ are not Bingham. This is in contrast to the resulting densities of the elements of z,

which are canonical Gaussian; thus, a similar approach to constructing the GM for each component

of z and combining the result cannot be followed for the construction of the BM approximating the

Bingham density. This is why the approximation of a nonuniform Bingham density is only consid-

ered in S1, and not higher dimensions, in this work. In theory, a similar approach could be used

to construct a BM density in higher dimensions; however, in practice, the minimization vector be-

comes intractably large and, thus, does not provide a useful framework to construct the BM mixture

in these higher dimensions.

The parameters of the BM density approximating the canonical Bingham density in S1 are

now sought. Similarly to finding the parameters of the GM density, ideally, the parameters defining

this BM density would be found such that the L2 distance to the canonical Bingham density is

minimized; however, in practice, further simplifications about these parameters need to be made

in order to make this minimization feasible. Before making these simplifications, first note that
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Eq. (3.29) can be simplified to

pbm(p̄) =

L∑
`=1

w̃(`) pb

(
p̄;M(φ̃(`)), Z̃(`)

)
, (3.31)

where M(φ) represents the orientation matrix parameterized by the scalar parameter φ, according to

Eq. (3.20), which quantifies the mean direction of each component in terms an angular displacement

from the zero direction instead of the orientation matrix directly.

The mean directions of the BM density, φ̃(`) for ` = 1, 2, . . . , L, are assumed to be equally

spaced away from the zero direction, with the mean direction of the central component placed at

zero. This gives the mean direction of each component of the BM explicitly as a function of the

spacing between the means, ∆φ, as

φ̃(`) ,

[
`− L+ 1

2

]
∆φ , (3.32)

for ` = 1, 2, . . . , (L − 1)/2. Spacing the means of the components in this manner restricts L to be

odd. Next, a power law similar to that used to define the covariance of each component of the GM

desnity is used for the matrix of concentration parameters of each component of the BM density.

This yields the matrix of concentration parameters for each component as

Z̃(`) = L
3
4Z , (3.33)

for ` = 1, 2, . . . , L. This power law was chosen heuristically and shows good performance in this

application. Using this power law, the matrix of concentration parameters of each component is

explicitly defined by the number of components of the BM. Finally, the weights of the components

are assumed symmetric about zero because of this symmetry in the mean direction and covariance

of the components according to

w̃(`) = w̃(L−`+1) , (3.34)

for ` = 1, 2, . . . , (L − 1)/2, and, thus, only (L − 1)/2 weights are unique due to the fact that the

weights must sum to unity.

Under these assumptions, only w̃(`) for ` = 1, 2, . . . , (L−1)/2 and ∆φ (a total of (L+1)/2

parameters) need to be found in order to find w̃(`), M̃ (`), and Z̃(`) for ` = 1, 2, . . . , L, which fully

define the BM density. These parameters are found such that the L2 distance between the BM

density and the canonical Bingham density is minimized. Constrained numerical minimization

is employed to find these parameters, which ensures that the weights and spacing between the

components are positive. Two example BM densities approximating the canonical Bingham density
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in S1 are presented in Figure (3.5). It is observed that, as the number of components in the mixture

increases, the BM density becomes a better approximation of the Bingham density, as expected.

(a) L = 3 (b) L = 11

Figure 3.5. BM approximations of the Bingham density defined by Z1 = −10. The Bingham
density is red, the BM is black, and the components are green.

The parameters of the BM density approximating the Bingham density of interest, defined

by M and Z, are now found by transforming the parameters of the BM density approximating the

canonical Bingham density according to the transformation of variables given in Eq. (3.21). This

yields the parameters of the BM density approximating the Bingham density of interest, defined by

Eq. (3.28), according to

w(`) = w̃(`) (3.35a)

M (`) = MM̃ (`) (3.35b)

Z(`) = Z̃(`) (3.35c)

for ` = 1, 2, . . . , L.

3.4.2. Approximation of the Uniform Bingham Density on Ss. Now the approximation

of the uniform Bingham density, that is, a Bingham density with Z = 0, by a BM density is consid-

ered on the unit-hypersphere of arbitrary dimension, Ss. Before considering this approximation, first

note that the unit-vector q̄ = [q1 q2 · · · qs+1]
T can be expressed in terms of spherical coordinates

by [29]

q1 = sinφ1 cosφ2 (3.36a)

q2 = sinφ1 sinφ2 cosφ3 (3.36b)
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... (3.36c)

qs = sinφ1 sinφ2 · · · sinφs−1 cosφs (3.36d)

qs+1 = cosφ1 , (3.36e)

where φ1, φ2, . . . , φs−1 ∈ [0, π] and φs ∈ [0, 2π). The spherical coordinates φ1, φ2, . . . , φs

represent a minimum parameter set to quantify the unit-vector of arbitrary dimension, q̄ ∈ Ss. For

notational convenience, define the collection of spherical coordinates corresponding to q̄ as

φ =
[
φ1 φ2 · · · φs

]T
,

such that q̄(φ) represents the unit-vector parameterized by spherical coordinates. The differential

area of the hypersphere swept out by the unit-vector is given as a function of the spherical coordi-

nates and their differential variations according to

dA(φ) = sins−1 φ1 sin
s−2 φ2 · · · sinφs−1 dφ1 dφ2 · · · dφs , (3.37)

where “ d” is used to denote a differential variation in the following quantity. This relationship is

true in the limiting case as the variations in the spherical coordinates approach zero. In the general

case, the linear relationship between the area swept out on the unit-hypersphere and the angle swept

by each spherical coordinate is given by

∆A(φ) = sins−1 φ1 sin
s−2 φ2 · · · sinφs−1∆φ1∆φ2 · · ·∆φs , (3.38)

where ∆ is used to denote a finite variation in the following quantity. The spherical coordinates

defined in Eqs. (3.36), and the linear relationship between the area swept on the unit-hypersphere

and the angles swept by the spherical coordinates defined in Eqs. (3.38), are used in order to pa-

rameterize the weights and mean directions of the components of the BM density that is used to

approximate the uniform Bingham density.

Let the BM approximating the uniform Bingham density be defined by Eq. (3.28). The

parameters w(`), M (`), and Z(`) for ` = 1, 2, . . . , L, which define the BM density, are now sought

such that the BM density approximates the uniform Bingham density. Similarly to the GM and

BM approximations in Sections 3.2 and 3.4.1, the L2 distance between the canonical Bingham

density and its approximating BM density, as given by Eq. (3.30), would be minimized to find

the parameters of the BM density. If this L2 distance is minimized without restricting Z(`) for

` = 1, 2, . . . , L, each Z(`) would be null, and the BM mixture would become degenerate (because

each component of the mixture is identical). Because of this, the L2 distance is not explicitly

minimized to construct the BM density approximating the uniform Bingham density. First, the w(`)
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and M (`) for ` = 1, 2, . . . , L are specified using spherical coordinates and their differential area

swept out on the unit hypercylinder. Then, the Z(`) 6= 0 for ` = 1, 2, . . . , L are specified such that

the L2 distance is sufficiently small in the context of the given application.

Now, the mean directions of the BM components are specified by constructing a uniform

grid over the spherical coordinates. Note that the mean direction of each component does not

fully define the orientation matrix of the component; rather, it defines only the last column of the

orientation matrix. This can be observed from Eq. (3.21). It is straightforward to see that the identity

quaternion, p̄, represents the mean direction of the canonical Bingham density; therefore, the last

column of the orientation matrix, M , represents the mean direction of q̄ according to Eq. (3.21). In

order to specify the mean directions of the components, a uniform grid for each spherical coordinate

is constructed according to

φ
(`i)
i =

π(2`i − 1)

2L̄
(3.39)

for `i = 1, 2, . . . , L̄ and i = 1, 2, . . . , s, where L̄ is the number of points in the discrete grid of each

φi and is chosen to be the same for each spherical coordinate (thus, the Li notation is omitted in favor

of the L̄ notation). This choice stems from the fact that, if the angles swept out by each spherical

coordinate between points on the grid, ∆φ1, ∆φ2, · · · , ∆φs, are the same, the parameterization

of the weights of the BM density is simplified. The uniform grids for each spherical coordinate

are then combined to yield the grid of mean directions of the components of the BM, expressed as

spherical coordinates, according to

φ(`) =
[
φ
(`1)
1 φ

(`2)
2 · · · φ(`s)

s

]T
, (3.40)

where ` = 1, 2, . . . , L, L = L̄s is the number of components in the BM density approximating

the uniform Bingham density, and each ` corresponds to a unique permutation of `1, `2, . . ., `s.

Therefore, the mean direction of each component is expressed as unit-vector according to q̄(φ(`))

for ` = 1, 2, . . . , L. Figure (3.6) shows the grid of mean directions for L̄ = 10 on S1 and S2.

Note that the discrete grid for each spherical coordinate is constructed in the interval [0, π],

even though φs ∈ [0, 2π); this stems from the antipodal symmetry of each component of the BM. By

restricting the grid for φs to lie in the interval [0, π), the antipodal symmetry of each component then

covers the other half of the unit-hypersphere, as can be observed in Figure (3.6). By discretizing the

mean direction of each component over the spherical coordinates in this manner, it is observed that

L = L̄s components exist in the BM approximating the Bingham density on the unit-hypersphere.

Special care must be taken when selecting L̄, because the number of components in the resulting

BM suffers from the curse of dimensionality, similarly to the construction of the multivariate GM

density.
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(a) S1 (b) S2

Figure 3.6. Grid of mean directions for L̄ = 10 on S1 and S2. The black markers denote the mean
direction, and the gray markers denote the antipodal direction of each mean direction.

Now that the mean direction of each component, q̄(φ(`)) for ` = 1, 2, . . . , L, has been

defined, the orientation matrix of each component can be found. In order to find the orientation

matrix for each component of the BM density given its mean direction, it is first necessary to restrict

each component to be isotropic; that is, the concentration parameters of the each component are

restricted to be identical (Z1 = Z2 = · · · = Zs). Under this restriction, each component of the

BM is rotationally invariant about its mean direction, and the last column of the orientation matrix,

which is given by the mean direction of the component, sufficiently specifies the orientation matrix

of each component. The other columns of the orientation matrix are arbitrary as long as they are

found such that the orientation matrix belongs to SO(s+ 1). This gives the orientation matrix of

each component of the mixture as

M (`) =
[
v
(`)
1 |v(`)

2 | · · · |v(`)
s |q̄(φ(`))

]
, (3.41)

for ` = 1, 2, . . . , L, where v
(`)
1 , v(`)

2 , . . ., v(`)
s are arbitrary under the restriction that M (`) ∈

SO(s+ 1). This is performed by first defining the entries of the last column of the orientation

matrix using q̄(φ(`)), and then using Eq. (2.27) when s = 1 or Eq. (2.52) when s = 3 to find the

remaining entries of the orientation matrix. For the s = 3 case, the orientation matrix is defined

by a single right-isoclonic rotation, which is sufficient to specify the orientation matrix because its
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first three columns are arbitrary provided M (`) ∈ SO(s+ 1), which is satisfied by the rotation

matrix defining the right-isoclonic rotation. When s = 2, the first two columns of M (`) are found

as orthonormal vectors to q̄(φ(`)) and each other, and are ordered such that det {M (`)} = 1.

While this grid is uniform and equally spaced in the spherical coordinates, the resulting

mean directions are not equally spaced on the hypersphere for dimensions s > 1, as is observed

in Figure (3.6b). In order to compensate for this, the weights of the components are chosen to be

proportional to the linearized area according to Eq. (3.38) of the unit-hypersphere swept out by the

spherical coordinates defining the mean direction of each component. By selecting the weights in

this manner, the components that are spaced closer together possess lower weights. This weighting

scheme will yield a perfectly uniform BM density (with nonuniform components) as the number of

components in the mixture approaches infinity. This yields the weights of the mixture as

w(`) =
w̄(`)∑L
i=1 w̄

(i)
, (3.42)

for ` = 1, 2, . . . , L, where

w̄(`) ∝ ∆A(φ(`)) (3.43)

∝ sins−1 φ
(`)
1 sins−2 φ

(`)
2 · · · sinφ(`)

s−1 . (3.44)

Because the grid is uniform in each spherical coordinate, ∆φ1, ∆φ2, · · · , ∆φs are constant in

the evaluation of Eq. (3.43) and may be neglected in its calculation due to the proportionality and

not equality. Analysis of Eqs. (3.42) and (3.43) shows that the weight of each component of the

BM is approximately proportional to the area of the unit-hypersphere assigned to each grid point.

This proportionality is approximate because the area assigned to each grid point is the calculated

using the linear relationship between the area of the unit-hypersphere and grid size of each point in

the discrete grid. Equation (3.42) ensures that the weights of the BM density sum to unity while

maintaining their desired proportionality to the area on the unit-hypersphere. Parameterizing the

weights in this manner accounts for the nonuniform grid of mean directions on the unit-hypersphere

and will allow for the uncertainty of each component to approach zero in the limiting case as L̄ goes

to infinity.

So far, the weights and orientation matrices of the BM density have been specified; now,

the matrix of concentration parameters must be specified. Recall that the matrix of concentration

parameters for each component has been restricted to be isotropic; that is, Z1 = Z2 = · · · =

Zs in the matrix of concentration parameters. Furthermore, the BM is restricted such that each

component possesses the same matrix of concentration parameters. Under these restrictions, the

matrix of concentration parameters for all components can be parameterized by a single parameter,
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ζ, according to

Z(`) = ζ

[
I 0

0T 0

]
, (3.45)

for ` = 1, 2, . . . , L, where ζ < 0. If ζ = 0, the BM density would be a perfect approximation of

the uniform Bingham density; however, in this case, the mixture is degenerate, which is why ζ is

restricted to be strictly negative. As ζ decreases, the error (in the L2 sense) between the BM density

and the uniform Bingham density increases, while the uncertainty of each component decreases.

The parameter ζ should be chosen as small as possible, which yields the smallest uncertainty in

each of the components, without incurring “significant error” between the BM approximation and

the uniform Bingham density, where “significant” is problem dependent, and, thus, not further

guidelines can be imposed.

Two example BM densities in S1 approximating the uniform Bingham density are presented

in Figure (3.7). Both of these Bingham mixture densities approximate the uniform density well;

however, as the number of components increases, the uncertainty in each component is decreases,

which can be desirable for certain applications.

(a) L = 11 (b) L = 51

Figure 3.7. BM approximations of the uniform Bingham density. The Bingham density is red, the
BM is black, and the components are green.

3.5. GAUSS-BINGHAM DENSITY

The Gauss-Bingham density probabilistically represents a state vector composed of a Gaussian-

distributed vector, x ∈ Rr, and a Bingham-distributed unit-vector, q̄ ∈ Ss, on its natural manifold
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defined by Ss × Rr. Before constructing the Gauss-Bingham density, first consider the motivating

example of manipulating two jointly Gaussian-distributed random vectors given by x and y into the

product of the density of x and the density of y conditioned on x. The joint density of [xT yT ]T is

Gaussian and is given by

p(x,y) = pg

([
x

y

]
;

[
mx

my

]
,

[
Px Pxy

P T
xy Py

])
,

where m and P represent the mean and covariance of their subscripted vector(s), respectively, and

Pxy quantifies the correlations between x and y. The density of y conditioned on x is Gaussian-

distributed and is given by [30]

pg(y|x;my|x(x),Py|x) = pg(y|x;my + P T
xyP

−1
x (x−mx),Py − P T

xyP
−1
x Pxy) ,

where my|x(x) and Py|x are the mean and covariance, respectively, of y conditioned on x. It is

interesting to note the functional dependence of my|x on x. From the definition of conditional

probability, it follows that the joint density of x and y can be expressed as

p(x,y) = pg(x;mx,Px) pg(y|x;my + P T
xyP

−1
x (x−mx),Py − P T

xyP
−1
x Pxy) . (3.46)

The conditional mean and covariance of p(y|x) are not restricted to be

my|x(x) = my + P T
xyP

−1
x (x−mx) (3.47a)

Py|x = Py − P T
xyP

−1
x Pxy (3.47b)

for the definition of conditional probability to be valid; however, Eqs. (3.47) must hold for the result

to be Gaussian-distributed.

The left- and right-hand sides of Eq. (3.46) express the joint Gaussian density of [xT yT ]T

in two different forms. In the case where the vectors x and y are jointly Gaussian-distributed, as

they are in this example, little (if anything) is gained by manipulating the left-hand side of Eq. (3.46)

into the ride-hand side of Eq. (3.46); however, in the case when one or both of the jointly distributed

vectors are not Gaussian-distributed, correlation between the vectors can be introduced in a similar

fashion to Eq. (3.46) by utilizing the definition of conditional probability. This allows the density

of two jointly distributed random vectors, x1 and x2, to be written as the product of the density of

x1 and the density of x2 conditioned on x1; i.e.,

p(x1,x2) = p(x1) p(x2|x1) .
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Using the definition of conditional probability, the Gauss-Bingham density is constructed

as the product of a Gaussian density and a Bingham density conditioned on the Gaussian-distributed

random variable as

pgb(x;m,P ,M(z),Z) , pg(x;m,P ) pb(q̄;M(z),Z) , (3.48)

where x represents the state vector comprised of the antipodally symmetric unit-vector, q̄ ∈ Ss, and

a vector of other Euclidean states, x ∈ Rr, according to

x =

[
q̄

x

]
∈ Ss × Rr , (3.49)

and x and z are related according to Eq. (3.6). Ss × Rr represents the unit hypercylinder of dimen-

sion s and r, which is the intersection of the unit-hypersphere of dimension s, Ss, and Euclidean

space of dimension r, Rr. If s = 1 and r = 1, the unit hypercylinder is defined by S1 × R1,

which reduces to a unit cylinder, as expected. The conditional orientation matrix, M(z), quantifies

the correlation between the Gaussian-distributed random variable x and the conditional Bingham-

distributed random variable q̄.

The Gauss-Bingham density, as defined by Eq. (3.48), is constructed as the product of

the Gaussian-distributed x, and the conditional Bingham-distributed q̄, in which the orientation

matrix of the conditional Bingham density is functionally dependent on the Gaussian-distributed

variable, x. The conditional Bingham density is conditioned on the Gaussian-distributed random

variable x through the orientation matrix M(z), using the transformation of variables that defines

the canonical Gaussian density, which is given by Eqs. (3.6). Because of this, the conditional

orientation matrix of the Gauss-Bingham density can be equivalently parameterized by

M(z) = M(x;m,P ) ,

such that the Gauss-Bingham density in Eq. (3.48) can be equivalently expressed as

pgb(x;m,P ,M(x;m,P ),Z) , pg(x;m,P ) pb(q̄;M(x;m,P ),Z) , (3.50)

The orientation matrix is expressed using z instead of x for better numerical stability because z

is nondimensional. The functional dependence of the orientation matrix on z is discussed in Sec-

tion 3.5.1.

The Gauss-Bingham density possesses the following favorable properties for probabilisti-

cally quantifying the attitude quaternion (when s = 1 or s = 3) and other Euclidean states:
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– The Gauss-Bingham density is antipodally symmetric in the attitude quaternion; thus, antipo-

dal quaternions q̄ and −q̄ (which represent the same physical attitude) are equiprobable,

– the Gauss-Bingham density quantifies the uncertainty of Euclidean states and the attitude

quaternion on their natural manifold Ss × Rr, and

– the Gauss-Bingham density possesses a simple representation of an equiprobable attitude

quaternion for a given angular velocity when the Z matrix is null.

In order to illustrate these properties, consider an application of the Gauss-Bingham density

to quantify the uncertainty of the one-dimensional attitude quaternion and angular velocity of a body

undergoing rotation about the z-axis. In this case, the state vector is defined as

x =

[
q̄

ω

]
∈ S1 × R1 , (3.51)

where ω ∈ R1 is the angular velocity of the body about the z-axis and q̄ ∈ S1 is the one-dimensional

attitude quaternion of the body, which is defined by Eq. (2.42). No correlation structure for the ori-

entation matrix, M(z), has yet been defined. Before formally defining this correlation structure,

first consider two types of correlation, which are introduced into a set of parameters used to specify

M(z): linear and quadratic. Figures (3.8a) and (3.8b) show examples of the Gauss-Bingham den-

sity (with Z1 6= 0) for the linear and quadratic correlation structures, respectively. The marginalized

attitude quaternion for the linear and quadratic correlation structures are shown in Figures. (3.8c)

and (3.8d), respectively. It can be observed in these figures that the probability of the antipodal

attitude quaternions is equal for any given angular velocity, which is a desirable property as these

quaternions represent the same physical attitude.

When Z = 0, the marginalized attitude quaternion is equiprobable regardless of the correla-

tion structure used. This is illustrated in Figures. (3.9a) and (3.9b), which show the Gauss-Bingham

density in S1×R1 and the marginal density of the attitude quaternion when Z1 = 0. This property of

the Gauss-Bingham density is advantageous for representing the attitude quaternion as equiprobable

when no prior attitude information is available.

3.5.1. Correlation Structure. In order to define the correlation structure for the orienta-

tion matrix M(z), it is important to note that M(z) ∈ SO(s+ 1) ∀ z ∈ Rr. In order to ensure

that this condition is met, the correlation structure is introduced into a minimum set of parameters

necessary to specify the orientation matrix, denoted by φ(z), such that the orientation matrix is

given by M(φ(z)). A minimum parameter set, which is comprised of s(s+1)/2 , nφ parameters,

is necessary to define the orientation matrix; therefore φ(z) ∈ Rs(s+1)/2 [15, 16]. The method

for constructing the orientation matrix from the set of minimum parameters depends on s and the
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(a) Linear correlation (b) Quadratic correlation

(c) Marginalized quaternion (d) Marginalized quaternion

Figure 3.8. Gauss-Bingham densities on S1 × R1 for a linear and quadratic correlation structure.

parameter set chosen. Methods for constructing the orientation matrix for dimensions s = 1, 2, and

3 are now presented.

3.5.1.1. Correlation Structure for s = 1. First, consider the Gauss-Bingham density spe-

cialized to s = 1. Only one parameter is necessary to specify the orientation matrix in this di-

mension because nφ = 1. This parameter is chosen to be the rotation about the known axis of

rotation, which is given by θ(z), such that φ(z) = θ(z). The orientation matrix is then defined by a
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(a) Gauss-Bingham density (b) Marginalized quaternion density

Figure 3.9. Gauss-Bingham density on S1 × R1 for Z1 = 0.

specialization of Eq. (2.27) according to

M(φ(z)) = M(θ(z)) =

[
cos θ(z) sin θ(z)

− sin θ(z) cos θ(z)

]
.

This orientation matrix is constructed identically to the one-dimensional attitude matrix defined by

the heading angle of the body; however, it is important to realize that θ(z) defines the mean direction

of the quaternion, which in turn defines the heading angle of the body. This orientation matrix is not

defined by the heading angle directly. The angle of rotation, θ(z), is defined on the interval [−π, π)

for all z. Because

M(θ(z)) = M(θ(z) + 2πk) for all k ∈ Z,

where Z is the set of integers, θ(z) can be bounded to the interval [−π, π) for all z by adding the

appropriate multiple of 2π.

3.5.1.2. Correlation Structure for s = 2. Now, consider the Gauss-Bingham density spe-

cialized to s = 2. Three parameters are necessary to specify the orientation matrix in this dimen-

sion. These parameters are chosen to be the rotation vector, such that φ(z) = θ(z). The orientation
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matrix is then given by the specialization of Eq. (2.31) according to

M(φ(z)) = M(θ(z)) = exp {−[θ(z)×]} .

Similarly to the correlation structure for s = 1, θ(z) represents the mean direction of the conditional

Bingham-distributed unit-vector in s = 2 like θ(z) does for s = 1. Instead of using the matrix

exponential operator to find the orientation matrix in this dimension, first, the equivalent axis-angle

parameterization of the rotation vector, θ(z), can be found according to Eqs. (2.32) and (2.33). The

orientation matrix can then be found by substituting the equivalent axis-angle parameterization into

Eq. (2.23) to yield

M(φ(z)) = M(θ(z)) = I − sin ||θ(z)||
[

θ(z)

||θ(z)||
×
]
+ (1− cos ||θ(z)||)

[
θ(z)

||θ(z)||
×
]2

.

If ||θ(z)|| = 0, it follows that M(z) = I , because the angle of rotation is zero. The norm of the

rotation vector, ||θ(z)||, is defined on the interval [−π, π) for all z. Because

M(θ(z)) = M

(
θ(z) + 2πk

θ(z)

||θ(z)||

)
for all k ∈ Z ,

||θ(z)|| can be bounded to the interval [−π, π) for all z by adding the appropriate multiple of

2πθ(z)/||θ(z)||.
3.5.1.3. Correlation Structure for s = 3. Finally, consider the Gauss-Bingham density

specialized to s = 3. Six parameters are necessary to specify the orientation matrix in this dimen-

sion. These parameters are chosen to be two rotation vectors representing a left- and right-isoclonic

rotation, as detailed in Section 2.4. Let these rotation vectors be denoted by θL(z) and θR(z),

respectively, such that φ(z) is given by the concatenation of these vectors according to

φ(z) =

[
θL(z)

θR(z)

]
.

Given these two rotation vectors representing the left- and right-isoclonic rotations, the method

presented in Section 2.4 is used to construct the orientation matrix for s = 3, which yields the

orientation matrix as

M(φ(z)) = M

([
θL(z)

θR(z)

])
= RL(q̄L(θL(z)))RR(q̄R(θR(z))) ,

where the functional dependence of q̄L on θL(z), and subsequently RL on q̄L(θL(z)), is shown

explicitly for clarity, and similarly for the right-isoclonic rotation.
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The norm of each of these rotation vectors, ||θL(z)|| and ||θR(z)||, is defined on the interval

[−π, π) for all z. Because

M

([
θL(z)

θR(z)

])
= M

([
θL(z) + 2πkL

θL(z)
||θL(z)||

θR(z) + 2πkR
θR(z)

||θR(z)||

])

for all kL, kR ∈ Z, ||θL(z)|| and ||θR(z)|| can be bounded to the interval [−π, π) for all z by

adding the appropriate multiple of 2πθL(z)/||θL(z)|| and 2πθR(z)/||θR(z)|| to θL(z) and θR(z),

respectively.

Now that the functional dependence of the orientation matrix, M(φ(z)), on the minimal set

of parameters, φ(z), has been defined for s = 1, 2, 3, the functional dependence of φ(z) on z needs

to be defined. Two choices for this functional dependence are considered: linear and quadratic.

It is noted that the quadratic form of this functional dependence is not used after it is presented;

however, it is a valid form of this functional dependence and is presented to show the flexibility of

the Gauss-Bingham density.

First, consider the quadratic dependence of φ(z) on z, which is defined by

φ(z) = φ0 + βz+
[
zTΓ1z zTΓ2z · · · zTΓnφ

z
]T

, (3.52)

where φ0 ∈ Rnφ , β ∈ Rnφ×r and Γi ∈ {Rr×r : Γi = ΓT
i }, i = 1, . . . , nφ quantify the zeroth-

, first-, and second-order correlation, respectively, of z on φ(z). The choice of implementing z

instead of x in the correlation structure results in nondimensional coefficients β and Γi, which is

preferred for numerical stability. Noting that the orientation matrix M(z) is now explicitly defined

by z, φ0, β, Γ1, . . . ,Γnφ
and that z is explicitly defined by x, m, and P , the orientation matrix

using the quadratic correlation structure is parameterized as

M(z) = M(x;m,P ,φ0,β,Γ1, . . . ,Γnφ
) ,

and the Gauss-Bingham density is given by the specialization of Eq. (3.50) as

pgb(x;m,P ,φ0,β,Γ1, . . . ,Γnφ
,Z) =

pg(x;m,P ) pb(q̄;M(x;m,P ,φ0,β,Γ1, . . . ,Γnφ
),Z) .

The number of parameters necessary to quantify the quadratic correlation between z and φ(z) is
1
2nφ(2+2r+r(r+1)), which increases quadratically with r. For one-dimensional attitude (R1×S1),

three-dimensional attitude (S3 × R3), and dynamic pose (S3 × R9) quantification, 3, 60, and 330

unique parameters are needed to quantify the quadratic relationship between φ(z) and z.
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Now, consider the linear correlation structure for φ(z), which is given by a simplification

of Eq. (3.52) as

φ(z) = φ0 + βz .

Using the linear correlation structure, the orientation matrix is parameterized as

M(z) = M(x;m,P ,φ0,β) ,

and the Gauss-Bingham density is given by the specialization of Eq. (3.50) as

pgb(x;m,P ,φ0,β,Z) = pg(x;m,P ) pb(q̄;M(x;m,P ,φ0,β),Z) . (3.53)

The number of parameters necessary to quantify the linear correlation between z and φ(z) is nφ(1+

r), which increases linearly with r. For one-dimensional attitude, three-dimensional attitude, and

dynamic pose quantification, 2, 24, and 60 unique parameters are needed to quantify the linear

relationship between φ(z) and z. Because the number of parameters necessary to quantify the

linear correlation between z and φ(z) increases linearly (as opposed to quadratically) with r, the

linear correlation structure is used in the remainder of this work.

3.5.2. Canonical Gauss-Bingham Density. The canonical Gauss-Bingham density is in-

troduced by substituting the transformations

x = Sz+m (3.54a)

q̄ = M(z) p̄ (3.54b)

into Eq. (3.48), which yields the canonical Gauss-Bingham density as

p̃gb(z;Z) = p̃g(z) p̃b(p̄;Z) , (3.55)

where z = [p̄T zT ]T . The elements of z are uncorrelated and zero mean, such that the covariance

of z is defined by the diagonal concatenation of I and Pp according to

E p̃gb{zz
T } =

[
E p̃b{p̄p̄T } 0

0 E p̃g{zzT }

]
=

[
Pp 0

0 I

]
.

The canonical Gauss-Bingham density still depends on the matrix of concentration parameters, Z;

however, the elements of z are uncorrelated, which can be exploited to make certain operations

easier to implement. Similar to the canonical Gaussian and Bingham densities, certain operations

can be performed for the canonical Gauss-Bingham density, and the results of these operations can
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then be transformed according to the change of variables defined by Eq. (3.54) to represent the

Gauss-Bingham density of interest. When using the canonical Gauss-Bingham density, typically

these operations cannot be performed off line and saved, because the canonical Gauss-Bingham

density still depends on the matrix of concentration parameters, Z.

The orientation matrix of the conditional Bingham density used to construct the Gauss-

Bingham density, as given in Eq. (3.53), is parameterized by m, P , φ0, and β. Because the

orientation matrix is nonlinearly related to these parameters, quantifying these parameters for certain

applications can become numerically intensive and potentially intractable.

3.6. BINGHAM-GAUSS DENSITY

In order to overcome this apparent intractability, consider an alternate definition of the

Gauss-Bingham density in which the order of the conditioning is reversed; that is, the Gaussian

density is conditioned on the Bingham-distributed variable instead of conditioning the Bingham

density on the Gaussian-distributed variable. This density is called the Bingham-Gauss density, as

is performed in Eq. (3.48). The naive definition of the Bingham-Gauss density is given by

p∗bg(x;mx,Px,Pq,Pqx) (3.56)

= pb(q̄;M ,Z) pg(x;mx + P T
qxP

−1
q q̄,Px − P T

qxP
−1
q Pqx) ,

where M and Z are the orientation matrix and matrix of concentration parameters defining the

Bingham density of covariance Pq and the fact that the quaternion is zero-mean is exploited n the

definition of the naive form of the Bingham-Gauss density. The definition of the naive version of

the Bingham-Gauss density is motivated by the expression of the density of two jointly-Gaussian

distributed random variables, as given by Eq. (3.46). The naive version of the Bingham-Gauss

density is parameterized directly by the first moment of the Gaussian portion of the state vector,

mx, as well as the second central moment of the total state vector, which are defined by

mx = E p∗bg
{x}[

Pq Pqx

P T
qx Px

]
, E p∗bg


[

q̄

x−mx

][
q̄

x−mx

]T
=

[
E p∗bg

{q̄q̄T } E p∗bg
{q̄(x−mx)

T }
E p∗bg

{(x−mx)q̄
T } E p∗bg

{(x−mx)(x−mx)
T }

]
.

Equation (3.56) is the naive definition of the Bingham-Gauss density because it is not antipodally

symmetric in q̄, in general; that is, q̄ and −q̄, which quantify the same physical attitude, are not
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equiprobable. This can be observed by evaluating Eq. (3.56) for −q̄ instead of q̄, which yields

p∗bg

([
−q̄T xT

]T
;mx,Px,Pq,Pqx

)
(3.57)

= pb(−q̄;M ,Z) pg(x;mx + P T
qxP

−1
q (−q̄),Px − P T

qxP
−1
q Pqx)

= pb(q̄;M ,Z) pg(x;mx − P T
qxP

−1
q q̄,Px − P T

qxP
−1
q Pqx) .

Comparison of Eqs. (3.56) and (3.57) shows that the naive version of the Bingham-Gauss density is

only antipodally symmetric if Pqx = 0; that is, the quaternion and Euclidean portions of the state

vector are uncorrelated. This is an undesirable condition to enforce, because, in general, correlations

are present between these portions of the state vector. Thus, the naive definition of the alternate

form of the Gauss-Bingham density is not an appropriate density for a state vector consisting of a

quaternion portion and other Euclidean quantities.

In order to define the Bingham-Gauss density as an appropriate density for the quaternion,

its naive form is split between the two hemispheres of the unit-hypersphere and the correlation

parameter, Pqx, is negated on one of the halves to yield

pbg(x;mx,Px,Pq,Pqx) =

p∗bg (x;mx,Px,Pq,Pqx) q̄ ∈ Ss+

p∗bg (x;mx,Px,Pq,−Pqx) q̄ ∈ Ss−
(3.58)

where Ss+ and Ss− represent opposing hemispheres of the unit-hypersphere. In order to appropri-

ately split Ss, the pole of each hemisphere is defined by the antipodal pair of most-likely quaternions.

In order to determine which quaternion of the antipodal pair defines Ss+ and which quaternion de-

fines Ss−, the last nonzero element of the quaternion is used; if the last nonzero element of the

quaternion is positive, that quaternion defines Ss+. Similarly, if the last nonzero element of the

quaternion is negative, that quaternion defines Ss−. Because the quaternion is constrained to be

unit-norm, all of its entries cannot be zero; thus, this logic correctly splits the unit-hypersphere into

two halves such that one of each pair of antipodal quaternions is contained in each Ss+ and Ss− for

any and all pairs of antipodal quaternions.

In order to analyze the splitting of the unit-hypersphere into Ss+ and Ss−, first consider the

S1 case, which contains the one-dimensional attitude quaternion according to Eq. (2.42). The “pos-

itive” and “negative” hemispheres of S1 are shown in Figure (3.10), which are used to determine

which of the antipodal pair of quaternions is used to define S1+ and which is used to define S1−.

Observation of Figure (3.10) shows that, for any pair of antipodal quaternions in S1, one quater-

nion is included in the “positive” hemisphere, and the other quaternion is included in the “negative”

hemisphere. The two halves of the hemisphere are shown in Figure (3.10), in which a closed end-

point of a line represents a point included in the line, and an open endpoint of a line represents a
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point that is not included in the line. The quaternion of the antipodal pair that lies on the “positive”

hemisphere is defined as the pole that subsequently defines S1+. The quaternion antipodal to the

quaternion that lies on the “positive” hemisphere must lie on the “negative” hemisphere, and defines

the pole that subsequently defines S1−.

(a) “positive” hemisphere (b) S1 (c) “negative” hemisphere

Figure 3.10. Hemispheres of S1 used to determine which of the antipodal quaternions defines S1+
and which defines S1−.

Now, consider the S2 case, which contains the arbitrary unit-vector q̄ = [q1 q2 q3]
T and

does not contain a valid attitude quaternion. The “positive” and “negative” hemispheres of S1 are

shown in Figure (3.11), which are used to determine which of the antipodal pair of unit-vectors is

used to define S2+ and which is used to define S2−. Similarly to the observation of Figure (3.10)

for the S1 case, observation of Figure (3.11) shows that, for any pair of antipodal unit-vectors in

Ss, one unit-vector is included in the “positive” hemisphere, and the other quaternion is included

in the “negative” hemisphere. The two halves of the hemisphere are shown in Figure (3.11), in

which a closed endpoint of a line represents a point included in the line, and an open endpoint of

a line represents a point that is not included in the line. Furthermore, a line drawn on the edge of

a surface represents an edge of the surface included in the surface; the edge of a surface with no

line represents an edge that is not included in the surface. The unit-vector of the antipodal pair that

lies on the “positive” hemisphere is defined as the pole that subsequently defines S2+. The unit-

vector antipodal to the unit-vector that lies on the “positive” hemisphere must lie on the “negative”

hemisphere, and defines the pole that subsequently defines S2−. The same logic is applied to split

S3, which contains the attitude quaternion, into S3+ and S3−; however, it is not possible to visualize

the splitting in this dimension.

Because the Bingham-Gauss density is constructed by splitting its naive form across Ss+

and Ss−, it is discontinuous across the boundary joining these two hemispheres; however, if the

density is numerically zero on both sides of this boundary, the density is effectively continuous. To
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(a) “positive” hemisphere (b) S2 (c) “negative” hemisphere

Figure 3.11. Hemispheres of S2 used to determine which of the antipodal unit-vectors defines S2+
and which defines S2−.

illustrate this, consider the Bingham-Gauss density in S1 × R1, which can be used to quantify the

uncertainty in the one-dimensional attitude quaternion and angular velocity about the z-axis as given

by Eq. (3.51). Two example Bingham-Gauss densities are shown in Figure (3.12). Observation of

Figure (3.12a) shows that, if the Bingham-Gauss density is not effectively zero at the boundary

between the hemispheres, the discontinuity between the hemispheres is apparent and potentially

problematic. Alternatively, the observation of Figure (3.12b) shows that, if the Bingham-Gauss

density is numerically zero at the boundary between the hemispheres, the Bingham-Gauss density

is effectively continuous. This motivates the need for a Bingham-Gauss mixture to represent an

arbitrary state density, because a Bingham-Gauss mixture can be constructed such that each of its

components is small enough that it has numerically zero probability along the boundary splitting

Ss+ and Ss− corresponding to each component.

The canonical Bingham-Gauss density is introduced by substituting the transformations

q̄ = Mp̄ (3.59a)

x =
√

Px + P T
qxP

−1
q Pqx z+ P T

qxP
−1
q Mp̄+mx q̄ ∈ Ss+ (3.59b)

x =
√

Px + P T
qxP

−1
q Pqx z− P T

qxP
−1
q Mp̄+mx q̄ ∈ Ss− , (3.59c)

where
√
A
√
A

T
, A into Eq. (3.58), which yields the canonical Bingham-Gauss density as

p̃bg(z;Pp) =

p̃b(p̄;Z) p̃g(z) q̄ ∈ Ss+

p̃b(p̄;Z) p̃g(z) q̄ ∈ Ss−
(3.60)



67

(a) nonzero boundary probability (b) effectively zero boundary probability

Figure 3.12. Bingham-Gauss densities on S1 × R1.

where Z is the matrix of concentration parameters defining the canonical Bingham density with

covariance Pp. This transformation defines the poles of the hemispheres Ss+ and Ss− as the positive

and negative identity quaternions, since the canonical Bingham-Gauss density has mean direction

defined by the identity quaternion. Equation (3.60) can be simplified to yield

p̃bg(z;Pp) = p̃b(p̄;Z) p̃g(z) (3.61)

The elements of z are uncorrelated and zero mean, such that the covariance of z is defined by the

diagonal concatenation of Pp and I according to

E p̃gb{zz
T } =

[
Pp 0

0 I

]
.

The canonical Bingham-Gauss density still depends on the matrix of concentration parameters, Z

(because Z defines the covariance of the canonical Bingham density, Pp); however, certain opera-

tions can be performed for the canonical Gauss-Bingham density, and the results of these operations

can then be transformed according to the change of variables defined by Eq. (3.54) to represent a
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Gauss-Bingham density. When using the canonical Gauss-Bingham density, typically these oper-

ations cannot be performed off line and saved, because the canonical Gauss-Bingham density still

depends on the matrix of concentration parameters, Z.

Comparison of Eqs. (3.55) and (3.61) show that the canonical forms of the Gauss-Bingham

and Bingham-Gauss densities are identical, which is expected since the Bingham and Gaussian

portions of both densities are uncorrelated. This is a convenient result because techniques can be

developed for the identical canonical Gauss-Bingham and canonical Bingham-Gauss densities, and

the results can then be transformed according to the change of variables in either Eqs. (3.54) or

Eqs. (3.59) in order to yield the desired Gauss-Bingham or Bingham-Gauss density of interest.

3.7. BINGHAM-GAUSS MIXTURE DENSITY

The BGM density is defined as

pbgm(x) =

L∑
`=1

w(`) pbg
(
x;m(`)

x ,P (`)
x ,P (`)

q ,P (`)
qx

)
, (3.62)

where w(`) is the weight of the `th component, m(`)
x , P (`)

x , P (`)
q , and P

(`)
qx are the parameters

defining the `th component, and L is the number of components in the mixture. The weights of the

mixture are constrained such that

w(`) > 0 ` = 1, 2, . . . , L and
L∑

`=1

w(`) = 1 ,

which ensures that the BGM is a valid pdf. The explicit dependence on the parameters of the BGM

density is not included in pbgm(x) in order to avoid cumbersome notation.

The problem of approximating a Bingham-Gauss density by a BGM density is now consid-

ered. In order to find the parameters of the BGM density that approximate a Bingham-Gauss density,

first, the Bingham-Gauss density approximating the canonical form of the desired Bingham-Gauss

density is found. The parameters of this BGM density approximating the canonical Bingham-Gauss

density are then transformed according to the change of variables defined in Eqs. (3.59) to yield the

parameters of the BGM density that approximate the Bingham-Gauss density of interest.

Because p̄ and z, the random variables associated with the Bingham and Gaussian portions

of the Bingham-Gauss density, respectively, are uncorrelated, the BM and GM densities approximat-

ing the canonical Bingham and Gaussian densities, respectively, can be constructed independently

using the methods presented in Sections 3.2 and 3.4. Let the BGM approximating the canonical
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Bingham-Gauss density be given by

pbgm(z) =

L∑
`=1

w̃(`) pbg
(
z; m̃(`)

x , P̃ (`)
x , P̃ (`)

q , P̃ (`)
qx

)
, (3.63)

where the tilde notation indicates that these parameters correspond to the BGM density that approx-

imates the canonical Bingham-Gauss density. Because p̄ and z are uncorrelated, Eq. (3.63) can be

expressed as the product of the BM and GM densities approximating the canonical Bingham and

canonical Gaussian densities, respectively, according to

pbgm(z) =

Lb∑
`b=1

w̃
(`b)
b pb

(
p̄;M̃ (`b), Z̃(`b)

) Lg∑
`g=1

w̃
(`g)
g pg

(
z; m̃(`g), P̃ (`g)

)
, (3.64)

where the weights, indices, and number of components of the BM and GM densities are subscripted

with a “b” and “g,” respectively, to differentiate them from each other. Manipulating Eq. (3.64) into

a single summation of the form given in Eq. (3.63) and comparing the two yields the parameters of

the BGM density that approximate the canonical Bingham-Gauss density in terms of the parameters

of its elemental GM and BM densities according to

L = LbLg

w̃(`) = w̃
(`g)
g w̃

(`b)
b ,

m̃(`)
x = m̃(`g)

P̃ (`)
x = P̃ (`g) ,

P̃ (`)
q = P̃

(`b)
q,b

P̃ (`)
qx = 0 ,

for ` = 1, 2, . . . , L and each ` corresponds to a unique pair of `b and `g. These parameters de-

fine the BGM density approximating the canonical Bingham-Gauss density defined by Pp, and are

transformed to define the BGM mixture density approximating the BGM density of interest defined

by pbg(x;mx,Px,Pq,Pqx) according to the change of variables in Eqs. (3.59), which yields

w(`) = w̃(`)

m(`)
x =

√
Px − P T

qxP
−1
q Pqx m̃

(`)
x +mx[

P
(`)
q P

(`)
qx

P
(`)
qx

T
P

(`)
x

]
= A

[
P̃

(`)
q P̃

(`)
qx

P̃
(`)
qx

T
P̃

(`)
x

]
AT ,
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where ` = 1, 2, . . . , L, and A is defined as

A ,

 M 0

P T
qxP

−1
q M

√
Px − P T

qxP
−1
q Pqx

 .

The parameters w(`), m(`)
x , P (`)

q , P (`)
qx , and P

(`)
x for ` = 1, 2, . . . , L now define the BGM density

approximating the Bingham-Gauss density of interest.
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4. KALMAN FILTERING

Under the MMSE filtering framework, commonly referred to as the Kalman filtering frame-

work, the mean and error covariance of the state vector are used to probabilistically quantify the state

vector. The pdf of the state is not explicitly quantified because only its mean and error covariance

(first moment and second central moment) are quantified. The mean of the state vector serves as

the estimated state, and the error covariance of the state vector serves to quantify the uncertainty in

the state estimate. Two types of Kalman filtering are considered in this work: “additive” Kalman

filtering (referred to hereafter as simply “Kalman filtering”) and multiplicative Kalman filtering.

Kalman filtering [31, 32] operates on state and measurement vectors that exist in Euclidean (additive

and unbounded) space where a linear combination of the state and measurement vectors provides

a meaningful result. Multiplicative Kalman filtering [5, 33] is an augmentation to Kalman filtering

that operates on a state vector containing an attitude quaternion and other Euclidean states, in which

case the state vector does not exist in Euclidean space because the attitude quaternion exists on the

unit hypersphere, S1 or S3.

To illustrate why Kalman filtering requires that the state and measurement vectors exist in

Euclidean space, consider the case when the state and measurement vectors are defined as attitude

quaternions. First, quaternions are antipodally symmetric, meaning that q̄ and −q̄ represent the

same attitude and are equiprobable; thus, the mean of the attitude quaternion is 0 /∈ S1 or S3. The

mean and covariance of the attitude quaternion are therefore not a useful probabilistic representation

of the attitude quaternion under the Kalman framework because they describe characteristics of the

quaternion in R2 or R4 that are not meaningful on S1 or S3. Second, the measurement update would

assume that the posterior quaternion mean is a linear function of the measured quaternion, which

is invalid because the unit norm constraint implies that quaternions are not additive in general, i.e.

q̄1 + q̄2 /∈ S3. Because of these properties of the attitude quaternion, the Kalman filtering approach

must be augmented when the state and/or measurement contains an attitude quaternion. One such

augmentation is the multiplicative extended Kalman filter, which is addressed in this work. Other

augmentations include the norm-constrained extended Kalman filter [34] and the q-method extended

Kalman filter [35].

A numerical issue also presents itself when a Kalman filter is used to operate on a con-

strained state or measurement vector (such as the attitude quaternion). The state and measurement

covariance matrices become ill-conditioned due to the quadratic norm constraint on the state vector

as the attitude uncertainty approaches zero [5]. If the constraint on the state vector were linear, the

covariance matrix would be singular. When the attitude uncertainty becomes small, the quadratic
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constraint is well approximated by a linear constraint; thus, the covariance matrix becomes ill-

conditioned. This numerical issue can be masked by process and measurement noise; however, the

amount of process and measurement noise necessary to mask these numerical issues may not rep-

resent the true underlying noise processes of the dynamic system and measurement model and can

lead to poor performance of the filter.

Both Kalman filtering and multiplicative Kalman filtering quantify the temporal and mea-

surement evolution of the mean and error covariance of the state vector according to a dynamical

system and measurement model. In the most general case, these models can be expressed as a

nonlinear function of the state and noise according to

xk = f(xk−1,wk−1) (4.1a)

zk = h(xk,vk) , (4.1b)

where f is the nonlinear function representing the dynamical system, h is the nonlinear function

representing the measurement model, x is the state, z is the measurement, w and v are zero-mean

white-noise sequences, and the k and k−1 subscripts refer to the subscripted variable at times tk and

tk−1, respectively. The process and measurement noises are assumed zero-mean for convenience

and clarity of the following sections and resulting algorithms; however, it is straightforward to

relax this assumption through the introduction of a bias into f or h, if desired. The process and

measurement noise sequences have covariances defined by

E {wjw
T
k } = Qkδjk

E {vjvT
k } = Rkδjk ,

where δjk represents the Kronecker delta which is defined by

δjk =

{
1 if j = k

0 if j 6= k

and the process and measurement noise are independent of each other and the initial state. It is

important to note that no assumption about the pdfs of the process noise and measurement noise

have been made, only that they are zero-mean white-noise sequences with the given covariances.

Equations (4.1) can be expressed in an equivalent form according to

xk = f̃(x̃k−1) (4.2a)

zk = h̄(x̄k) , (4.2b)
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where f̃ is the nonlinear function representing the dynamical system, h̄ is the nonlinear function

representing the measurement model, x̃k−1 , [xT
k−1 wT

k−1]
T is the state vector augmented with

the process noise and x̄k , [xT
k vT

k ]
T is the state vector augmented with measurement noise. The

representations of the dynamical system and measurement model given in Eqs. (4.1) and (4.2) are

equivalent; however, the forms given in Eqs. (4.2) are generally more convenient when using certain

implementations of the Kalman filter.

If the process and measurement noise are additive, the discrete-time dynamics and mea-

surement model given in Eqs. (4.1) can be expressed as

xk = f(xk−1) +wk−1 (4.3a)

zk = h(xk) + vk , (4.3b)

An abuse of notation is used for f and h between Eqs. (4.1) and Eqs. (4.3); the meaning of which

f or h is meant is clear depending on whether each has one or two arguments. If desired, the

process noise and measurement noise can be premultiplied by shape matrices, typically denoted

by Mk−1 and Lk, in order to map the process noise and measurement noise into the dynamical

system and measurement model, respectively. These shape matrices are omitted in this work for

simplicity; however, it is straightforward to include them in the following algorithms. Furthermore,

if the discrete-time system dynamics and measurement model are linear, Eqs. (4.3) can be expressed

according to

xk = Fk−1xk−1 +wk−1 (4.4a)

zk = Hkxk + vk , (4.4b)

where Fk−1 and Hk are the matrices defining the dynamical system and the measurement model,

respectively. The additivity of the process and measurement noise, as well as the linearity of the

discrete-time system dynamics and measurement are exploited, when possible, in order to simplify

subsequent filtering algorithms.

4.1. KALMAN FILTERING

Consider the case when the state and measurement vectors exist in Euclidean space; that is,

the state and measurement vectors are additive and unbounded. To denote that state and measure-

ment vectors exist in Euclidean space, they are denoted by x and z, respectively. In this case, the

mean and error covariance of the state are defined as

m = E {x} (4.5a)
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P = E {δxδxT } , (4.5b)

respectively, where δx is the additive state error and is defined by

δx , x−m . (4.6)

To simplify the notation of the Kalman filter equations, the p(x) subscript is omitted from the ex-

pected value operator, as defined in Eq. (3.5), when it is used in the context of the Kalman filter

since p(x) is not quantified. Under the Kalman filtering paradigm, the evolution of the mean and

covariance of the state vector is quantified. This evolution is quantified either exactly or approxi-

mately, depending on the type of dynamical system and measurement model used, as well as the

type of Kalman filter used. Before the different types of Kalman filters are presented, first, the gen-

eral Kalman filtering equations, which are the linear MMSE estimator, are presented in terms of the

expected value operator. The different types of Kalman filters are then obtained by calculating or

approximating these expected values differently.

The predictor of the Kalman framework uses Eqs. (4.5) and the dynamic system model to

calculate the prior mean and covariance at tk, which are given for the most general expression of

the dynamic system, as defined by Eq. (4.2a), according to

m−
k = E {xk}

= E {f̃(x̃k−1)} (4.7a)

P−
k = E {δx−

k δx
−
k
T }

= E {(xk −m−
k )(xk −m−

k )
T }

= E {(f̃(x̃k−1)−m−
k )(f̃(x̃k−1)−m−

k )
T } , (4.7b)

where δx−
k , xk−m−

k is the “prior” state error. The superscript “−” is used to represent the “prior”

of the superscripted quantity; that is, the value prior to incorporating any measurement information

at tk. Ideally, the expected values in Eqs. (4.7) are calculated exactly; however, this is only possible

when the dynamic system can be expressed according to Eq. (4.4a), in which case the predictor

of the KF is obtained and the temporal evolution of the mean and error covariance of the state

are quantified without approximation. In general, these expected values must be approximated, in

which case the approximate temporal evolution of the mean and error covariance of the state are

obtained.

The corrector of the Kalman framework assumes that the posterior mean is a linear function

of the measurement according to [36]

m+
k = ak +Kkzk , (4.8)
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where ak and Kk are to be determined. The superscript “+” represents the posterior of the su-

perscripted quantity; that is, the value after incorporating measurement information at tk. The

parameters of the linear function of the measurement, ak and Kk, are found by minimizing the

mean square error of the posterior state density while enforcing an unbiased estimator. The mean

square error of the posterior state density is given by

J = E {δx+
k
T
δx+

k } = tr E {δx+
k δx

+
k
T } = trP+

k , (4.9)

where δx+
k , xk−m+

k and P+
k are the posterior estimation error and error covariance, respectively.

Minimizing Eq. (4.9) and forcing an unbiased estimator (that is, forcing E {δx+
k } = 0) yields the

linear MMSE corrector, which is given by

m+
k = m−

k +Kk(zk − ẑk) (4.10a)

P+
k = P−

k −KkPzzK
T
k , (4.10b)

where Kk is the Kalman gain, which is given by

Kk = PxzP
−1
zz , (4.11)

and the expected measurement, innovation (or residual) covariance, and state-measurement cross-

covariance are given by

ẑk = E {zk}

= E {h̄(x̄k)} (4.12a)

Pzz = E {(zk − ẑk)(zk − ẑk)
T }

= E {(h̄(x̄k)− ẑk)(h̄(x̄k)− ẑk)
T } (4.12b)

Pxz = E {(xk −m−
k )(zk − ẑk)

T }

= E {(xk −m−
k )(h̄(x̄k)− ẑk)

T } , (4.12c)

respectively. This corrector is known as the linear MMSE estimator since it is derived by assuming

that the posterior mean is a linear function of the measurement, not because any linearization has

been performed to arrive at Eqs. (4.10). Ideally, the expected values in Eqs. (4.12) are calculated

exactly; however, this is only possible when the measurement model can be expressed according

to Eq. (4.4b), in which case the corrector of the KF is obtained and the measurement evolution of

the mean and error covariance of the state are quantified without approximation. In general, these

expected values must be approximated, in which case the approximate measurement evolution of

the mean and error covariance of the state are obtained.
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4.1.1. The Kalman Filter. The Kalman filter [30, 31, 32] is applicable only to linear dy-

namic systems and measurement models with additive process and measurement noise, where the

process and measurement noise are independent of each other and the initial state, as given in

Eqs. (4.4). In this case, the predictor of the Kalman framework, as defined by Eqs. (4.7), simplifies

to

m−
k = Fk−1m

+
k−1 (4.13a)

P−
k = Fk−1P

+
k−1F

T
k−1 +Qk−1 , (4.13b)

and the expected values necessary to implement the corrector of the Kalman framework, as given

by Eqs. (4.12), simplify to

ẑk = Hkm
−
k (4.14a)

Pzz = HkP
−
k HT

k +Rk (4.14b)

Pxz = P−
k HT

k . (4.14c)

If the dynamical system and measurement model are linear with additive process and measurement

noise, the Kalman filter is the exact implementation of the linear MMSE estimator without any

approximation. Many dynamical systems and measurement models are nonlinear and/or possess

non-additive process or measurement noise. In these cases, it is necessary to make approximations

to obtain the expected values in Eqs. (4.7) and (4.12).

4.1.2. The Extended Kalman Filter. The EKF [30] uses linearization of the system dy-

namics and measurement model about the posterior mean at tk−1 and the prior mean at tk, respec-

tively, to approximate the expected values in Eqs. (4.7) and (4.12). First consider the case when the

dynamical system and measurement model are nonlinear with additive process and measurement

noise, as given by Eqs. (4.3). In this case, the predictor of the Kalman framework, as defined by

Eqs. (4.7), simplifies to give the predictor of the EKF according to

m−
k = f(m+

k−1) (4.15a)

P−
k = F (m+

k−1)P
+
k−1F

T (m+
k−1) +Qk−1 , (4.15b)

where F (m+
k−1) is the Jacobian matrix of the dynamical system model, which is given by

F (m+
k−1) ,

∂f(x)

∂x

∣∣∣∣
x=m+

k−1

.
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The expected values necessary to implement the corrector of the Kalman framework, as given by

Eqs. (4.12), simplify to give the corrector of the EKF according to

ẑk = h(m−
k )

Pzz = H(m−
k )P

−
k HT (m−

k ) +Rk

Pxz = P−
k HT (m−

k ) ,

where H(m−
k ) is the Jacobian matrix of the measurement model, which is given by

Hk ,
∂h(x)

∂x

∣∣∣∣
x=m−

k

.

Now, consider the most general case when the dynamical system and measurement model

are nonlinear with non-additive process and measurement noise, as given by Eqs. (4.1) or Eqs. (4.2).

In this case, the predictor of the Kalman framework, as defined by Eqs. (4.7), simplifies to give the

predictor of the EKF according to

m−
k = f(m+

k−1,0)

P−
k = F (m+

k−1)P
+
k−1F

T (m+
k−1) +M(m+

k−1)Qk−1M
T (m+

k−1) ,

where the F (m+
k−1) and M(m+

k−1) matrices are given by

Fk−1(m
+
k−1) ,

∂f(x,w)

∂x

∣∣∣∣
x=m+

k−1,w=0

(4.17a)

Mk−1(m
+
k−1) ,

∂f(x,w)

∂w

∣∣∣∣
x=m+

k−1,w=0

, (4.17b)

and are evaluated at w = 0 because the process noise is zero-mean. The expected values necessary

to implement the corrector of the Kalman framework, as given by Eqs. (4.12), simplify to give the

corrector of the EKF according to

ẑk = h(m−
k ,0)

Pzz = H(m−
k )P

−
k HT (m−

k ) +L(m−
k )RkL

T (m−
k )

Pxz = P−
k HT (m−

k ) ,
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where the H(m−
k ) and L(m−

k ) matrices are given by

H(m−
k ) ,

∂h(x,v)

∂x

∣∣∣∣
x=m−

k ,v=0

L(m−
k ) ,

∂h(x,v)

∂v

∣∣∣∣
x=m−

k ,v=0

,

and are evaluated at v = 0 because the measurement noise is zero-mean.

At the surface, the EKF appears to simply be a linearization of the nonlinear functions f and

h about the mean of the state vector, process noise, and measurement noise in order to implement

the Kalman filter equations; however, this linearization has an important ramification. When the

dynamical system and measurement model are linear with additive process and measurement noise,

the Kalman filter is the exact linear MMSE estimator. In this case, the evolution of the state error co-

variance is deterministic and it is not coupled with the evolution of the mean, which is stochastic be-

cause it depends on the stochastic measurements. When the dynamical system and/or measurement

model are nonlinear, the EKF uses linearization about the current mean to implement the Kalman

filter equations. Because of this, the evolution of the state error covariance becomes stochastic be-

cause its evolution now depends on the evolution of the mean, which is stochastic. This can cause

convergence issues in the EKF, especially if the filter is initialized poorly, because the evolution

of the state error covariance incurs more error when there is more error in the current mean. Even

though the EKF possesses this property, it is still very effective when implemented properly and has

been the most popular means for navigation since its conception in the early 1960s [37].

4.1.3. Quadrature-Based Kalman Filters. Quadrature methods [38, 39, 40, 41] can be

used to approximate the expected values in Eqs. (4.7) and (4.12) instead of the linearized system

dynamics and measurement model used by the EKF. First, consider the case when the dynamical

system and measurement model are nonlinear with additive process and measurement noise, as

given by Eqs. (4.3). In this case, the predictor of the Kalman framework, as defined by Eqs. (4.7),

simplifies to give the predictor of a quadrature-based Kalman filter according to

m−
k =

∑
i

w
(i)
k−1f

(
X (i)

k−1

)
(4.18a)

P−
k =

∑
i

w
(i)
k−1

[
f
(
X (i)

k−1

)
−m−

k

][
f
(
X (i)

k−1

)
−m−

k

]T
+Qk−1 , (4.18b)

where w
(i)
k−1 and X (i)

k−1 represent the quadrature weights and points used in the predictor of the

quadrature-based Kalman filter. How these weights and points are selected defines the type of

quadrature-based Kalman filter and is addressed later in this section. Note that it was assumed that

the same weights and points are used for each of the quadrature approximations given in Eqs. (4.18),
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respectively; however, this is not required in general, and is the case for some versions of the

unscented transform, including the scaled unscented transform [42].

The expected values necessary to implement the corrector of the Kalman framework, as

given by Eqs. (4.12), simplify to define the corrector of a quadrature-based Kalman filter according

to

ẑk =
∑
i

w
(i)
k h

(
X (i)

k

)
(4.19a)

Pzz =
∑
i

w
(i)
k

[
h
(
X (i)

k

)
− ẑk

][
h
(
X (i)

k

)
− ẑk

]T
+Rk (4.19b)

Pxz =
∑
i

w
(i)
k

[
X (i)

k −m−
k

][
h
(
X (i)

k

)
− ẑk

]T
, (4.19c)

where w
(i)
k and X (i)

k represent the quadrature weights and points used in the corrector of the

quadrature-based Kalman filter. Similarly to the predictor, the selection of these weights and points

defines the type of quadrature-based Kalman filter. Furthermore, it was assumed that the same

method is used to generate the weights and points for each of the quadrature approximations given in

Eqs. (4.19), respectively; however, this is not required in general, and different quadrature schemes

can be used for each of these equations.

Now, consider the most general case when the dynamical system and measurement model

are nonlinear with non-additive process and measurement noise, as given by Eqs. (4.1) or Eqs. (4.2).

In this case, the predictor of the Kalman framework, as defined by Eqs. (4.7), simplifies to give the

predictor of a quadrature-based Kalman filter according to

m−
k =

∑
i

w̃
(i)
k−1f̃

(
X̃

(i)

k−1

)
(4.20a)

P−
k =

∑
i

w̃
(i)
k−1

[
f̃
(
X̃

(i)

k−1

)
−m−

k

][
f̃
(
X̃

(i)

k−1

)
−m−

k

]T
, (4.20b)

where w̃
(i)
k−1 and X̃

(i)

k−1 represent the quadrature weights and points used in the predictor of the

quadrature-based Kalman filter.

The expected values necessary to implement the corrector of the Kalman framework, as

given by Eqs. (4.12), simplify to give the corrector of a quadrature-based Kalman filter according to

ẑk =
∑
i

w̄
(i)
k h̄

(
X̄ (i)

k

)
(4.21a)
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Pzz =
∑
i

w̄
(i)
k

[
h̄
(
X̄ (i)

k

)
− ẑk

][
h̄
(
X̄ (i)

k

)
− ẑk

]T
(4.21b)

Pxz =
∑
i

w̄
(i)
k

[
X̄ (i)

x,k −m−
k

][
h̄
(
X̄ (i)

k

)
− ẑk

]T
, (4.21c)

where w̄
(i)
k and X̄ (i)

k represent the quadrature weights and points used in the corrector, and X̄ (i)
x,k

represents the portion of the ith quadrature point corresponding to the original state vector; that is,

the state vector before it is augmented with the measurement noise. Similarly to Eqs. (4.18) and

(4.19), the weights and points used in each of Eqs. (4.20) and (4.21), respectively, define the type

of quadrature-based Kalman filter used, and different weights and points can be used in each of the

quadrature approximations, if desired.

The quadrature scheme chosen, which defines the weights and points used in the quadrature

approximations, is a trade between the accuracy of the quadrature approximation and its computa-

tional burden. The UKF leverages the unscented transform, which approximates the first and second

moments of the state density by a set of discrete weights and points. The unscented transform is

an efficient quadrature scheme requiring no fewer than n + 1 weights and points depending on the

specific type of unscented transform used [43, 44, 45], where n is the dimension of the (augmented)

state vector of interest, given by x, x̃, or x̄. Because the dimension of the augmented state vectors,

x̃ or x̄, is larger than the dimension of the original state vector, x, more points are required when

using the unscented transform for Eqs. (4.20) and (4.21) as compared to Eqs. (4.18) and (4.19);

this is why the additivity of the process and measurement noise is exploited, when possible, to save

computational expense in the quadrature approximation.

The QKF is an assumed density filter in which the state density is assumed Gaussian and

defined by the current mean and covariance. Gauss-Hermite quadrature is then used to generate

the quadrature weights and points for Eqs. (4.18) and (4.19). Gauss-Hermite quadrature is exact

for polynomials of degree 2q − 1, where q is the number of points used in the quadrature rule. In

general, arbitrarily high accuracy in calculating the expected values can be guaranteed by choosing

q to be arbitrarily large. Gauss-Hermite quadrature requires qn points due to the required Kro-

necker product between the dimensions and thus suffers from the curse of dimensionality; that is,

the number of quadrature points grows exponentially with the state dimension, n. In order to use

Gauss-Hermite quadrature for Eqs. (4.20) and (4.21), the process and measurement noise must be

assumed jointly Gaussian-distributed with the original state vector, x, such that the augmented state

vectors, x̃ and x̄, are Gaussian-distributed. Because Gauss-Hermite quadrature suffers from the

curse of dimensionality, applying the QKF to systems with non-additive process and measurement

noise can have a significant, and sometimes infeasible, computational burden since the dimension of

the augmented state vectors can become quite large for practical systems. More efficient quadrature

schemes, including sparse-grid methods [46] and the conjugate unscented transform [47, 48], can
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be used in a similar framework as the QKF to decrease computational expense; however, all of these

filters are still restricted by the linear measurement update used under the Kalman filter framework

to perform the measurement update.

4.2. MULTIPLICATIVE KALMAN FILTERING

Now, consider the case when the state vector consists of an attitude quaternion and other

Euclidean states. In this case, the state vector does not exist in Euclidean space due to the unit norm

constraint present on the attitude quaternion, and additive Kalman filtering suffers from numerical

issues due to this constraint. Let this state vector be defined by Eq. (3.49). Multiplicative Kalman

filtering quantifies the state error in a local tangent space constructed about the estimated state

vector, which is denoted by

x̂ =

[
ˆ̄q

mx

]
, (4.22)

where ˆ̄q is the estimated quaternion and mx is the mean (and also the estimate) of the Euclidean

portion of the state vector. The multiplicative state error is defined according to

δx ,

[
δθ

δx

]
, (4.23)

where δx = x − mx is the additive error and δθ is the multiplicative attitude error expressed

using a minimum parameter representation in the local tangent space. This minimum parameter

representation is linearly related to the quaternion representation of the multiplicative attitude error

according to [
αδθ

1

]
= δq̄ = q̄ ⊗ ˆ̄q−1 , (4.24)

where α is a constant relating the specific minimum parameter representation chosen and the attitude

quaternion and q̄ represents the true quaternion. This constant is observed to be α = 1/2 for the

rotation vector from Eq. (2.35) after this equation is linearized about θ = 0. The linear relationship

used to relate the minimum parameter error representation and the quaternion error representation

requires the attitude error to be small, or else significant error can be incurred in this approximation.

A rigorous derivation of the multiplicative Kalman filter, as presented in Reference [49],

uses an arbitrary reference quaternion, q̄ref , in order to initially define the quaternion error according
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to

δq̄ = q̄ ⊗ q̄−1
ref ,

and then enforces the condition that E {δθ} = 0 to show that q̄ref must be ˆ̄q in order for this

condition to hold. Therefore, as long as ˆ̄q is used as the reference quaternion, which is used to

define the quaternion error, multiplicative Kalman filtering is unbiased and has error covariance

defined as

P = E {δxδxT } . (4.25)

Multiplicative Kalman filtering quantifies the temporal and measurement evolution of the estimated

state vector, as defined by Eq. (4.22), and its error covariance, as defined by Eq. (4.25). This

evolution is quantified approximately, because attitude motion is nonlinear and, furthermore, the

linearized relationship between the multiplicative quaternion error and the minimum parameter er-

ror representation is used. The predictor of the multiplicative Kalman filter cannot be expressed in

terms of expected values like the predictor of the Kalman filter can according to Eqs. (4.7), because

the error covariance is expressed in terms of a minimum parameter attitude representation and the

discrete time evolution of the state vector is defined in terms of the attitude quaternion. The pre-

dictor of the multiplicative Kalman filter is derived differently depending on the specific type of

multiplicative Kalman filter under consideration.

The corrector of the multiplicative Kalman filter leverages the standard Kalman corrector,

as defined by Eqs. (4.10) and (4.12), to calculate the correction to the estimated state vector in the

state error vector space. This correction is denoted by ∆δxk, and is calculated along with the state

error covariance update according to

∆δxk ,

[
∆δθk

∆δxk

]
= Kk(zk − ẑk) (4.26a)

P+
k = P−

k −KkPzzK
T
k , (4.26b)

where Kk is the Kalman gain which is given by Eq. (4.11), ∆δθk and ∆δxk are the updates to the

attitude quaternion and Euclidean portions of the state vector, respectively, and the measurement

is assumed to exist in Euclidean space, such that the measurement residual, zk − ẑk, provides a

meaningful result. The expected measurement, innovation (or residual) covariance, and state error-

measurement cross-covariance are given by

ẑk = E {zk} (4.27a)



83

Pzz = E {(zk − ẑk)(zk − ẑk)
T } (4.27b)

Pxz = E {δxk(zk − ẑk)
T } , (4.27c)

respectively. Note that Eq. (4.12c), which is the state-measurement cross-covariance as calculated

by the standard Kalman filter, is different from Eq. (4.27c), which is the state error-measurement

cross-covariance as calculated by the multiplicative Kalman filter. This is is because the correction

to the estimated state is calculated in the local error space for the multiplicative Kalman filter,

and not in the global space as it is calculated for the standard Kalman filter. After this update is

calculated in the error space, the estimated state vector is then updated according to

ˆ̄q+k = q̄(∆δθk)⊗ ˆ̄q−k (4.28a)

m+
x,k = m−

x,k +∆δxk , (4.28b)

where q̄(∆δθk) is the quaternion representation of ∆δθk and is given to first-order according to

q̄(∆δθk) =

[
α∆δθk

1

]
. (4.29)

Because the linearized relationship is used to obtain q̄(∆δθk), it is necessary to renormalize the

resulting quaternion estimate to ensure that it remains unit-norm. Similarly to the Kalman filter,

the expected values in Eqs. (4.27) are calculated or approximated differently based on the type of

multiplicative Kalman filter used.

The measurement is assumed to exist in Euclidean space in this work, such that the measure-

ment residual, zk − ẑk, provides a meaningful result. A “measurement” of the attitude quaternion,

which is placed in quotation marks because the attitude quaternion is not a physical quantity, and,

thus, cannot be measured, can also be processed, as is shown in Reference [50]. This quaternion

“measurement” is obtained by processing other data, such as the direction to stars observed by a

star camera, and is then treated as a measurement in the multiplicative Kalman filter.

4.2.1. The Multiplicative Extended Kalman Filter. Consider the most general, nonlinear

discrete time dynamical system and measurement model, which is given by Eqs. (4.1) or equiva-

lently Eqs. (4.2). In the spirit of the extended Kalman filter, the predictor of the MEKF propagates

the estimated state vector in time according to the dynamical system evaluated at the current esti-

mated state and the mean of the process noise according to

x̂−
k = f(x̂+

k−1,0) . (4.30)
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In order to propagate the error covariance in time, first note that the dynamical system, as given in

Eq. (4.1a), can be expressed as [
q̄k

xk

]
=

[
fq(xk−1,wk−1)

fx(xk−1,wk−1)

]
, (4.31)

such that the prior quaternion error and the additive error at tk can be expressed as

δq̄−k = q̄k ⊗ ˆ̄q−1
k = fq(xk−1,wk−1)⊗ fq(x̂

+
k−1,0)

−1

δx−
k = xk −mx,k = fx(xk−1,wk−1)− fx(x̂

+
k−1,0) .

These equations are then manipulated and linearized about the current state estimate, and Eq. (4.24)

is used to project the quaternion error, δq̄−k , into the minimum parameter representation error in the

local tangent space, δθ−
k . After these steps are performed, the approximate temporal evolution of

the error vector can be expressed as

δx−
k = F (x̂+

k−1)δx
+
k−1 +M(x̂+

k−1)wk−1 .

Because this linearization process to find F (x̂+
k−1) and M(x̂+

k−1) depends on the specific dynam-

ical system of interest, general expressions for them, as are given in Eqs. (4.17) for the extended

Kalman filter, cannot be found. This process is detailed in References [50, 51, 52], among others.

Noting the definition of the state error covariance in Eq. (4.25), its temporal evolution is obtained as

P−
k = F (x̂+

k−1)P
+
k−1F

T (x̂+
k−1) +M(x̂+

k−1)Qk−1M
T (x̂+

k−1) . (4.32)

In summary, the predictor of the MEKF is defined by Eqs. (4.30) and (4.32).

The expected values necessary to implement the corrector of the multiplicative Kalman

filter, defined by Eqs. (4.27), are for the MEKF are obtained by linearization in the local error space

about the current state estimate according to

ẑk = h(x̂−
k ,0)

Pzz = H(x̂−
k )P

−
k HT (x̂−

k ) +L(x̂−
k )RkL

T (x̂−
k )

Pxz = P−
k HT (x̂−

k ) ,

where the H(x̂−
k ) and L(x̂−

k ) matrices are given by

H(x̂−
k ) ,

∂h(x,v)

∂δx

∣∣∣∣
x=x̂−

k ,v=0

(4.33a)



85

L(x̂−
k ) ,

∂h(x,v)

∂v

∣∣∣∣
x=x̂−

k ,v=0

. (4.33b)

The partial derivative in Eq. (4.33a) is taken with respect to the state error, and is evaluated at the

current estimated state. Both of the partial derivatives in Eqs. (4.33a) can be found according to the

first-order Taylor series expansion of h(x,v) about the estimated state, which is given by

h(x,v) = h(x̂−
k ,0) +H(x̂−

k )δx+L(x̂−
k )v

and is rearranged to give

h(x,v)− h(x̂−
k ,0) = H(x̂−

k )δx+L(x̂−
k )v .

This allows for the quantity h(x,v)−h(x̂−
k ,0) to be expanded, linearized about the current state es-

timate, and manipulated while neglecting second-order and higher terms to find H(x̂−
k ) and L(x̂−

k ),

as is performed in Reference [51]. The details of this process depend on the specific measurement

quantified by the h function, and, thus, cannot be performed in general for an arbitrary h.

4.2.2. Quadrature-Based Multiplicative Kalman Filters. Motivation from the quadrature-

based Kalman filters can be used to develop quadrature-based multiplicative Kalman filters. The

predictor of the quadrature-based Kalman filters uses a set of discrete weights and points generated

around the estimated state and expected value of the process noise to approximate the estimated state

and its uncertainty at tk−1. These points are then transformed according to the dynamical system,

and their mean and covariance are then found, which define the estimated state and its uncertainty

at tk. This process is given in Eq. (4.20), which are observed to be the mean and covariance of the

transformed quadrature points. A similar process is now performed to develop the predictor of a

quadrature-based multiplicative Kalman filter.

Consider the most general case when the dynamical system and measurement model are

nonlinear with non-additive process and measurement noise, as given by Eqs. (4.1) or Eqs. (4.2).

The predictor of a quadrature-based multiplicative Kalman filter uses a set of discrete weights and

points, which are generated in the error space according to the desired quadrature rule to yield

w̃
(i)
k−1 and δX̃

(i)

k−1. Let the portions of these quadrature points corresponding to δθ+
k−1 be denoted

as δX̃
(i)

θ,k−1, and the portions of these quadrature points corresponding to δx+
k−1 be denoted by

δX̃
(i)

x,k−1. The quadrature points are then transformed from the local state error space into the global

state space according to

X̃
(i)

q,k−1 = q(δX̃
(i)

θ,k−1)⊗ ˆ̄q+k−1 (4.34)

X̃
(i)

x,k−1 = x̂+
k−1 + δX̃

(i)

x,k−1 , (4.35)
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where X̃
(i)

q,k−1 and X̃
(i)

x,k−1 represent the portions of the quadrature point in the global state space

corresponding to q̄ and x, respectively, such that

X̃
(i)

k−1 =

X̃ (i)

q,k−1

X̃
(i)

x,k−1

 , (4.36)

and q(δX̃
(i)

θ,k−1) is given by Eq. (4.29) (and thus X̃
(i)

q,k−1 must be renormalized since the linearized

relationship is used to define q(δX̃
(i)

θ,k−1)). The quadrature weights and points used by the predictor

of the multiplicative Kalman filter are now defined by w̃
(i)
k−1 and X̃

(i)

k−1. These points are now

transformed according to the dynamical system to yield the transformed sigma points according to

f̃(X̃
(i)

k−1) ,

f̃q(X̃ (i)

k−1)

f̃x(X̃
(i)

k−1)

 ,

where f̃q(X̃
(i)

k−1) and f̃x(X̃
(i)

k−1) are the portions of the transformed sigma points corresponding to

q̄ and x, respectively. The estimated quaternion, defined as ˆ̄q−k is then obtained as the “average”

quaternion [53], which is given by the eigenvector corresponding to the largest eigenvalue of the

matrix

M =
∑
i

w̃
(i)
k−1f̃q(X̃

(i)

k−1)f̃
T
q (X̃

(i)

k−1) .

The mean of the Euclidean portion of the state vector is obtained as the mean of the f̃x(X̃
(i)

k−1),

such that the prior estimated state at tk is given by

x̂−
k =

[
ˆ̄q−k
m−

x,k

]
=

maxeigvec
(∑

i w̃
(i)
k−1f̃q(X̃

(i)

k−1)f̃
T
q (X̃

(i)

k−1)
)∑

i w̃
(i)
k−1f̃x(X̃

(i)

k−1)

 , (4.37)

where the “maxeigvec” operator denotes the eigenvector corresponding to the maximum eigenvalue

of its input matrix.

In order to find the associated state error covariance, first, the quaternion representation of

the deviation from the estimated quaternion is found for each quadrature point according to

δq̄(i) = f̃q(X̃
(i)

k−1)⊗ ˆ̄q−k
−1

,

which is then transformed to find the equivalent representation in the local error space, denoted by

δθ(i), according to the linearized relationship given in Eq. (4.24). The error covariance is then found
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according to

P−
k =

∑
i

w̃
(i)
k−1

[
δθ(i)

f̃x(X̃
(i)

k−1)−m−
x,k

][
δθ(i)

f̃x(X̃
(i)

k−1)−m−
x,k

]T
. (4.38)

In summary, the predictor of a quadrature-based Kalman filter is given by Eqs. (4.37) and (4.38).

The corrector of a quadrature-based multiplicative Kalman filter uses a set of discrete

weights and points, which are generated in the error space according to the desired quadrature rule

to approximate the expected values in Eqs. (4.27). Let these discrete weights and points expressed

in the local error space be denoted by w̄
(i)
k and δX̄ (i)

k . These quadrature points are transformed from

the local state error space into the global state space the same way they were for the predictor, which

is given by Eqs. (4.34) and (4.36). The quadrature weights and points expressed in the global state

space are now defined by w̄
(i)
k and X̄ (i)

k . The expected values in Eqs. (4.27) are then approximated

according to

ẑk =
∑
i

w̄
(i)
k h̄

(
X̄ (i)

k

)
(4.39a)

Pzz =
∑
i

w̄
(i)
k

[
h̄
(
X̄ (i)

k

)
− ẑk

][
h̄
(
X̄ (i)

k

)
− ẑk

]T
(4.39b)

Pxz =
∑
i

w̄
(i)
k δX̄ (i)

x,k

[
h̄
(
X̄ (i)

k

)
− ẑk

]T
, (4.39c)

where δX̄ (i)
x,k represents the portion of δX̄ (i)

k corresponding to the state error vector; that is, the state

error vector before it is augmented with the measurement noise.

Similarly to the quadrature-based Kalman filters, the quadrature scheme chosen for the

quadrature-based multiplicative Kalman filters is a trade between accuracy of the quadrature ap-

proximation and its computational burden. The MUKF leverages the unscented transform to gen-

erate the quadrature weights and points in the error space, in a similar manner to how the UKF

leverages the unscented transformation. The MQKF assumes that the uncertainty in the error space

is Gaussian-distributed such that Gauss-Hermite quadrature can be used to generate the quadrature

weights and points in the error space, in a similar manner to the QKF. In general, better perfor-

mance from the MQKF can be obtained by using more points in the quadrature rule at the expense

of computational power required.

Because multiplicative Kalman filtering uses the small angle approximation given in Eq. (4.24)

to quantify the attitude error in a local minimum parameter representation constructed about the es-

timated attitude quaternion, the performance of a multiplicative Kalman filter will suffer as the

attitude uncertainty becomes large. This performance degradation is present, even if a “perfect”
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quadrature rule is used that perfectly captures the uncertainty representation in the local state er-

ror space, since these quadrature points must be transformed to the global state space using the

small angle assumption. Despite this property of multiplicative Kalman filtering, the MEKF is still

extremely effective in navigation applications, especially in applications when the attitude sensors

provide good enough information such that the attitude uncertainty remains small. In order to cir-

cumvent the small angle assumption inherent to multiplicative Kalman filtering, the uncertainty in

the attitude quaternion can be quantified on the unit hypersphere directly using the Bingham or

Bingham mixture density (if the state vector consists only of an attitude quaternion), or the Gauss-

Bingham, Gauss-Bingham mixture, Bingham-Gauss, or Bingham-Gauss density (if the state vector

consists of an attitude quaternion and other Euclidean states). The evolution of this uncertainty can

the be quantified or approximated under the Bayesian framework in order to quantify its temporal

and measurement evolution.
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5. BAYESIAN FILTERING

Under the Bayesian framework, the full state density, instead of just its first and second

moments as under the Kalman framework, is quantified. Assume that the state density is known at

an initial time t0 and is given by p(x0). The predictor of the Bayesian filter propagates the posterior

density from tk−1 to obtain the prior density at tk when a measurement is available. If the dynamical

system is a Markov process (xk depends only on the previous state, xk−1), the temporal evolution

of the state density is defined by the Chapman-Kolmogorov equation [30], which is given by

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1) dxk−1 , (5.1)

where p(xk|xk−1) is the state transition density, which is obtained from the dynamical system

model, p(xk−1|z1:k−1) is the posterior state density at tk−1, p(xk|z1:k−1) is the prior state density

at tk, and z1:k−1 represents all measurement information up to and including tk−1; that is, z1:k−1 =

{z1, z2, . . . , zk−1}. The integration in Eq. (5.1) is performed over the domain of xk−1, which is

not required to be Euclidean space; that is, the Chapman-Kolmogorov equation is valid for all state

densities, not just those that probabilistically quantify a Euclidean random variable.

The corrector of the Bayesian filter updates the prior density when a measurement is re-

ceived at tk. Let the measurement at tk be denoted by zk. The Bayesian corrector for a Markovian

system is given by Bayes’ rule [30], which is given by

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)∫
p(zk|ξ)p(ξ|z1:k−1) dξ

, (5.2)

where p(zk|xk, z1:k−1) is the measurement likelihood, which is obtained from the measurement

model and p(xk|z1:k−1) is the prior state density at tk−1. Unlike the Kalman framework, the

Bayesian framework does not enforce a linear update structure in the corrector; that is, it employs

a nonlinear update. Similar to Eq. (5.1), the integration in Eq. (5.2) is performed over the domain

of xk, which is not required to be Euclidean space. Because of this, the Bayes’ rule, and thus the

Bayesian recursion defined by Eqs. (5.1) and (5.2), is valid for all state densities, not just those that

probabilistically quantify a Euclidean random variable.

Equations (5.1) and (5.2) provide the exact Bayesian filter. If the recursion defined by

Eqs. (5.1) and (5.2) closes in a tractable manner, then the state density, and thus the complete prob-

abilistic description of the state, is known for all time. This recursion closes for linear systems

with additive noises, as defined by Eqs. (4.4), if the initial state and the process and measurement
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noises are Gaussian-distributed and mutually independent. In this case, the Bayesian Kalman fil-

ter is obtained, in which the temporal and measurement evolution of the mean and covariance of

the Gaussian-distributed state is identical to the Kalman filter. If the initial state is non-Gaussian-

distributed, the process or measurement noise is non-Gaussian, or the dynamical system or mea-

surement model is nonlinear or possesses non-additive noise, the recursion defined by Eqs. (5.1)

and (5.2) does not generally close in a tractable manner, and approximations are typically made

such that the recursion closes. These approximations result in an approximate Bayesian filter, in

which the recursion is forced to close; however, the approximate temporal and measurement evolu-

tion of the state density is now quantified, which allows the recursion to close.

The Bayesian Kalman filter and GMKF are now presented, which exactly quantify the evo-

lution of the Gaussian and GM densities under the Bayesian framework given a linear dynamical

system and measurement model with additive, Gaussian-distributed process and measurement noise.

Next, the GMEKF, GMUKF, and GMQKF are presented, which are extensions to the GMKF that

approximately quantify the evolution of a GM density under the Bayesian framework, given a non-

linear dynamical system and measurement model with additive, Gaussian-distributed process and

measurement noise. The concept of minimum divergence filtering is then presented and is subse-

quently used to derive the GMMDF. The GMMDF approximately quantifies the evolution of a GM

density under the Bayesian framework by approximating each step in the Bayesian recursion by a

GM density. The parameters of the GM density are found by minimizing the Kullback-Leibler (KL)

divergence of the true density, defined by the Chapman-Kolmogorov equation and Bayes’ rule, to

the approximating GM density on a component-wise basis. The corrector of a single component

GMMDF is then compared to the corrector of a single component GMEKF and GMQKF in order

to compare and contrast the GMMDF to conventional GM filters.

5.1. BAYESIAN KALMAN FILTER

The Bayesian Kalman filter quantifies the temporal and measurement evolution of a Gaus-

sian density when the dynamical system and measurement model are linear with additive, Gaussian-

distributed noise. This dynamical system and measurement model are given by Eqs. (4.4), under

the further restriction that wk−1 and vk are Gaussian-distributed. Let the initial Gaussian density

be defined by pg(x0;m
+
0 ,P

+
0 ). The temporal evolution is defined by Eq. (5.1) evaluated with the

Gaussian state density and is given by

p(xk|z1:k−1) =

∫
pg(xk;Fk−1xk−1,Qk−1)pg(xk−1;m

+
k−1,P

+
k−1) dxk−1 , (5.3)
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where pg(xk;Fk−1xk−1,Qk−1) is the Gaussian transition density defined by the linear dynamical

system with additive Gaussian-distributed noise. In order to solve the integral in Eq. (5.3), an impor-

tant and well-known result in Bayesian filtering [54] is exploited, which is derived in Appendix D.

Observation of Eq. (D.3) shows that the integral in Eq. (5.3) can be expressed as

p(xk|z1:k−1) = pg(xk;Fk−1m
+
k−1,Fk−1P

+
k−1F

T
k−1 +Qk−1) (5.4)

, pg(xk;m
−
k ,P

−
k ) ,

which shows that p(xk|z1:k−1) is Gaussian. Therefore, it can be observed that the temporal evolu-

tion of the mean and covariance defining the Gaussian density are given by

m−
k = Fk−1m

+
k−1 (5.5a)

P−
k = Fk−1P

+
k−1F

T
k−1 +Qk−1 , (5.5b)

which is algorithmically identical to the predictor of the Kalman filter given in Eqs. (4.13).

The corrector of the Bayesian Kalman filter, which incorporates the measurement data into

the prior Gaussian density, is given by Eq. (5.2) evaluated with the Gaussian state density according

to

p(xk|z1:k) =
pg(zk;Hkxk,Rk)pg(xk;m

−
k ,P

−
k )∫

pg(zk;Hkξ,Rk)pg(ξ;m
−
k ,P

−
k ) dξ

, (5.6)

where pg(zk;Hkxk,Rk) is the Gaussian measurement likelihood, which is defined by the linear

measurement model with additive Gaussian-distributed noise. Equations (D.1) and (D.3) are now

used to simplify the numerator and denominator of Eq. (5.6), respectively, which yields

p(xk|z1:k) =
pg(zk;Hkm

−
k ,HkP

−
k HT

k +Rk)pg(xk;m
+
k ,P

+
k )

pg(zk;Hkm
−
k ,HkP

−
k HT

k +Rk)

= pg(xk;m
+
k ,P

+
k ) ,

where

m+
k = m−

k +Kk(zk −Hkm
−
k ) (5.7a)

P+
k = P−

k −KkHkP
−
k , (5.7b)

and

Kk , P−
k HT

k (HkP
−
k HT

k +Rk)
−1 , (5.8)
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which shows that the posterior density is Gaussian with updated mean and covariance given by

Eqs. (5.7). The corrector of the Bayesian Kalman filter is observed to be algorithmically identical to

that of the Kalman filter, which is apparent if Eqs. (4.14) are substituted into Eqs. (4.10) and (4.11)

and simplified, which yields the form of the Kalman gain and mean and covariance update given in

Eqs. (5.7) and (5.8).

Observation of the Bayesian Kalman filter shows that, if a linear dynamical system and

measurement model with additive, Gaussian-distributed process and measurement noise is consid-

ered, and the initial state is Gaussian-distributed, that the state remains Gaussian-distributed under

the Bayesian recursion and the mean and covariance of the Gaussian density evolve identically to

that of the Kalman filter. It is important to note, however, that the Kalman filter is derived under

the linear MMSE framework, which quantifies only the first and second moment of the state density

and does not require that the process and measurement noise be Gaussian-distributed. The Bayesian

Kalman filter is derived under the Bayesian framework, which quantifies the evolution of the Gaus-

sian state density and requires the process and measurement noise to be Gaussian-distributed.

5.2. GAUSSIAN MIXTURE KALMAN FILTER

The GMKF [21] quantifies the temporal and measurement evolution of a GM density when

the dynamical system and measurement model are linear with additive, Gaussian-distributed noise.

This dynamical system and measurement model are given by Eqs. (4.4), under the further restriction

that wk−1 and vk are Gaussian-distributed. Let the initial GM density be defined by

L+
0∑

`=1

w
(`)+
0 pg

(
x0;m

(`)+
0 ,P

(`)+
0

)
.

The temporal evolution is defined by Eq. (5.1) evaluated using the GM state density and is given by

p(xk|z1:k−1) =

∫
pg(xk;Fk−1xk−1,Qk−1)

L+
k−1∑
`=1

w
(`)+
k−1 pg

(
xk−1;m

(`)+
k−1 ,P

(`)+
k−1

)
dxk−1 . (5.9)

Because integration and summation are both linear operators, their order can be reversed and

Eq. (5.9) can be manipulated to yield

p(xk|z1:k−1) =

L+
k−1∑
`=1

w
(`)+
k−1

∫
pg(xk;Fk−1xk−1,Qk−1)pg

(
xk−1;m

(`)+
k−1 ,P

(`)+
k−1

)
dxk−1 . (5.10)
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Equation (D.3) is now used in order to express Eq. (5.10) according to

p(xk|z1:k−1) =

L+
k−1∑
`=1

w
(`)+
k−1 pg(xk;Fk−1m

(`)+
k−1 ,Fk−1P

(`)+
k−1 F

T
k−1 +Qk−1) , (5.11)

which shows that p(xk|z1:k−1) is a GM density that is defined as

p(xk|z1:k−1) =

L−
k∑

`=1

w
(`)−
k pg

(
xk;m

(`)−
k ,P

(`)−
k

)
. (5.12)

Comparing Eqs. (5.11) and (5.12), it can be observed that the evolution of the number of compo-

nents, weights, means, and covariances defining the GM density are given by

L−
k = L+

k−1 (5.13a)

w
(`)−
k = w

(`)+
k−1 (5.13b)

m
(`)−
k = Fk−1m

(`)+
k−1 (5.13c)

P
(`)−
k = Fk−1P

(`)+
k−1 F

T
k−1 +Qk−1 , (5.13d)

which defines the predictor of the GMKF.

The corrector of the GMKF is defined by Eq. (5.6) evaluated using the GM state density

and is given by

p(xk|z1:k) =
pg(zk;Hkxk,Rk)

∑L−
k

`=1w
(`)−
k pg

(
xk;m

(`)−
k ,P

(`)−
k

)
∫
pg(zk;Hkξ,Rk)

∑L−
k

`=1w
(`)−
k pg

(
ξ;m

(`)−
k ,P

(`)−
k

)
dξ

,

which can be manipulated to yield

p(xk|z1:k) =

∑L−
k

`=1w
(`)−
k pg(zk;Hkxk,Rk)pg

(
xk;m

(`)−
k ,P

(`)−
k

)
∑L−

k
`=1w

(`)−
k

∫
pg(zk;Hkξ,Rk)pg

(
ξ;m

(`)−
k ,P

(`)−
k

)
dξ

, (5.14)

Equations (D.1) and (D.3) are now used to simplify the numerator and denominator of Eqs. (5.14),

respectively, which yields

p(xk|z1:k) =
∑L−

k
`=1w

(`)−
k k

(`)
k pg(xk;m

(`)+
k ,P

(`)+
k )∑L−

k
`=1w

(`)−
k k

(`)
k

, (5.15)
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where

k
(`)
k = pg(zk;Hkm

(`)−
k ,HkP

(`)−
k HT

k +Rk) (5.16a)

m
(`)+
k = m

(`)−
k +K

(`)
k (zk −Hkm

(`)−
k ) (5.16b)

P
(`)+
k = P

(`)−
k −K

(`)
k HkP

(`)−
k (5.16c)

and

K
(`)
k , P

(`)−
k HT

k (HkP
(`)−
k HT

k +Rk)
−1 .

Equation (5.15) can rearranged to be expressed as

p(xk|z1:k) =
L−
k∑

`=1

w
(`)−
k k

(`)
k∑L−

k
j=1w

(j)−
k k

(j)
k

pg(xk;m
(`)+
k ,P

(`)+
k ) , (5.17)

in which case it becomes apparent that the posterior density is a GM density, which is defined as

p(xk|z1:k) =
L+
k∑

`=1

w
(`)+
k pg

(
xk;m

(`)+
k ,P

(`)+
k

)
. (5.18)

Equations (5.17) and (5.18) are now compared to show that the corrector of the GMKF is given by

Eqs. (5.16b), (5.16c), and

L−
k = L+

k−1

w
(`)+
k =

w
(`)−
k k

(`)
k∑L−

k
j=1w

(j)−
k k

(j)
k

.

The weight update shows that the weights of each component are updated according to the relative

likelihood of the measurement from each component.

The GMKF shows that, if a linear dynamical system and measurement model with ad-

ditive, Gaussian-distributed process and measurement noise is considered, and the initial state is

GM-distributed, that the state remains GM-distributed under the Bayesian recursion and the mean

and covariance of each component of the GM density evolve identically to that of the Kalman fil-

ter. Furthermore, it is observed that, if a single component GM is used, the GMKF reduces to the

Bayesian Kalman filter. This is an expected result, since a single component GM density is simply

a Gaussian density. The GMKF can be extended to applications in which the process and measure-

ment noise are GM-distributed; however, this is not shown for clarity of the presented GMKF.
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5.3. GAUSSIAN MIXTURE EXTENDED KALMAN FILTER

The GMEKF [55] in an extension to the GMKF that quantifies the approximate tempo-

ral and measurement evolution of a GM density when the dynamical system and measurement

model are nonlinear with additive, Gaussian-distributed noise. This dynamical system and measure-

ment model are given by Eqs. (4.3), under the further restriction that wk−1 and vk are Gaussian-

distributed. Reference [55] provides a complete derivation of the GMEKF; therefore, the explicit

derivation of the GMEKF is omitted from this work.

Let the initial GM density be defined by

L+
0∑

`=1

w
(`)+
0 pg

(
x0;m

(`)+
0 ,P

(`)+
0

)
.

The temporal evolution is defined by Eq. (5.1), and is given by

p(xk|z1:k−1) =

∫
pg(xk;f(xk−1),Qk−1)

L+
k−1∑
`=1

w
(`)+
k−1 pg

(
xk−1;m

(`)+
k−1 ,P

(`)+
k−1

)
dxk−1 , (5.19)

where pg(xk;f(xk−1),Qk−1) is the Gaussian transition density defined by a nonlinear dynami-

cal system with additive, Gaussian-distributed noise. Because integration and summation are both

linear operators, their order can be reversed and Eq. (5.19) can be manipulated to yield

p(xk|z1:k−1) =

L+
k−1∑
`=1

w
(`)+
k−1

∫
pg(xk;f(xk−1),Qk−1)pg

(
xk−1;m

(`)+
k−1 ,P

(`)+
k−1

)
dxk−1 . (5.20)

The nonlinear function quantifying the dynamical system, f(xk−1), is now linearized about the

mean of each component, m(`)+
k−1 , and the result is manipulated similarly to the predictor of the

GMKF in order to derive the predictor of the GMEKF. This process shows that the density remains

approximately a GM density in the predictor, with the evolution of its parameters defined by

L−
k = L+

k−1 (5.21a)

w
(`)−
k = w

(`)+
k−1 (5.21b)

m
(`)−
k = f(m

(`)+
k−1 ) (5.21c)

P
(`)−
k = F (m

(`)+
k−1 )P

(`)+
k−1 F (m

(`)+
k−1 )

T
+Qk−1 , (5.21d)
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where F (m
(`)+
k−1 ) is the Jacobian matrix of the dynamical system and is given by

F (m
(`)+
k−1 ) ,

∂f(x)

∂x

∣∣∣∣
x=m

(`)+
k−1

.

The corrector of the GMEKF is defined by Eq. (5.6) and given by

p(xk|z1:k) =
pg(zk;h(xk),Rk)

∑L−
k

`=1w
(`)−
k pg

(
xk;m

(`)−
k ,P

(`)−
k

)
∫
pg(zk;h(ξ),Rk)

∑L−
k

`=1w
(`)−
k pg

(
ξ;m

(`)−
k ,P

(`)−
k

)
dξ

, (5.22)

where pg(zk;h(xk),Rk) is the Gaussian measurement density defined by a nonlinear measurement

model with additive, Gaussian-distributed noise. Equation (5.22) is manipulated to yield

p(xk|z1:k) =

∑L−
k

`=1w
(`)−
k pg(zk;h(xk),Rk)pg

(
xk;m

(`)−
k ,P

(`)−
k

)
∑L−

k
`=1w

(`)−
k

∫
pg(zk;h(ξ),Rk)pg

(
ξ;m

(`)−
k ,P

(`)−
k

)
dξ

. (5.23)

The nonlinear measurement model, h(xk), is now linearized about the mean of each component,

m
(`)−
k , and the result is manipulated similarly to the corrector of the GMKF in order to derive the

corrector of the GMEKF. This process shows that the density remains approximately a GM density

in the corrector, with the measurement evolution of its parameters defined by

L+
k = L−

k−1 (5.24a)

w
(`)+
k =

w
(`)−
k k

(`)
k∑L−

k
j=1w

(j)−
k k

(j)
k

(5.24b)

m
(`)+
k = m

(`)−
k +K

(`)
k

[
zk − h

(
m

(`)−
k

)]
(5.24c)

P
(`)+
k = P

(`)−
k −K

(`)
k H

(
m

(`)−
k

)
P

(`)−
k (5.24d)

where

k
(`)
k , pg

(
zk;h

(
m

(`)−
k

)
,H
(
m

(`)−
k

)
P

(`)−
k H

(
m

(`)−
k

)T
+Rk

)
(5.25a)

K
(`)
k , P

(`)−
k H

(
m

(`)−
k

)T [
H
(
m

(`)−
k

)
P

(`)−
k H

(
m

(`)−
k

)T
+Rk

]−1
, (5.25b)

and H
(
m

(`)−
k

)
is the Jacobian matrix of the dynamical system and is given by

H
(
m

(`)−
k

)
,

∂h(x)

∂x

∣∣∣∣
x=m

(`)−
k

.



97

The linearization of f(xk−1) and h(xk) about m+
k−1 and m−

k , respectively, in the GMEKF

allows the Bayesian recursion to close; however, because of this linearization, the resulting GM den-

sity that is quantified is only an approximation to the true state density. As the state uncertainty in

each component approaches zero, the error incurred by this linearization approaches zero and the

exact evolution of the GM state density is captured. Because of this, if the uncertainty in each

component of the the GM density is small, the error incurred by this linearization is small. This

can be exploited by using a GM density approximation of another state density in the GMEKF. If

the approximating GM has small uncertainty in each of its components, little error is incurred in

quantifying the temporal and measurement evolution of the approximating GM [55]. Furthermore,

an adaptive method to split Gaussian components can be implemented to monitor when the uncer-

tainty in the components of the GM becomes too large and split the components into several smaller

components [56].

5.4. QUADRATURE-BASED GAUSSIAN MIXTURE KALMAN FILTERS

The GMUKF and GMQKF are both quadrature-based GM Kalman filters. These filters

are obtained by first noting that the GMEKF, as defined by Eqs. (5.21), (5.24), and (5.25), ap-

pears to be a “bank” of extended Kalman filters coupled with their corresponding weight updates.

A quadrature-based GM Kalman filter replaces these extended Kalman filter equations with their

equivalent quadrature-based forms, in an effort to reduce the error incurred by the linearization in

the GMEKF. Therefore, the predictor of a quadrature-based GM Kalman filter is given by

L−
k = L+

k−1

w
(`)−
k = w

(`)+
k−1

m
(`)−
k =

∑
i

w
(i,`)
k−1f

(
X (i,`)

k−1

)
P

(`)−
k =

∑
i

w
(i,`)
k−1

[
f
(
X (i,`)

k−1

)
−m

(`)−
k

][
f
(
X (i,`)

k−1

)
−m

(`)−
k

]T
+Qk−1 ,

where w
(i,`)
k−1 and X (i,`)

k−1 represent the quadrature weights and points corresponding to the `th com-

ponent of the GM density used in the predictor of the quadrature-based GM Kalman filter.

The corrector of a quadrature-based GM Kalman filter is given by

L+
k = L−

k−1 (5.26)

w
(`)+
k =

w
(`)−
k k

(`)
k∑L−

k
j=1w

(j)−
k k

(j)
k

(5.27)
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m
(`)+
k = m

(`)−
k +K

(`)
k (zk − ẑ

(`)
k ) (5.28)

P
(`)+
k = P

(`)−
k −K

(`)
k P (`)

zz K
(`)
k

T
, (5.29)

where K
(`)
k is the Kalman gain corresponding to the `th component of the GM density, which is

defined by

K
(`)
k = P (`)

xz P
(`)
zz

−1
,

k
(`)
k is the likelihood that the measurement originated from the `th component, which is given by

k
(`)
k = pg(zk; ẑ

(`)
k ,P (`)

zz ) ,

and the expected measurement, innovation (or residual) covariance, and state-measurement cross-

covariance corresponding to the `th component of the GM density are given by

ẑ
(`)
k =

∑
i

w
(i,`)
k h

(
X (i,`)

k

)
P (`)
zz =

∑
i

w
(i,`)
k

[
h
(
X (i,`)

k

)
− ẑ

(`)
k

][
h
(
X (i,`)

k

)
− ẑ

(`)
k

]T
+Rk

P (`)
xz =

∑
i

w
(i,`)
k

[
X (i,`)

k −m
(`)−
k

][
h
(
X (i,`)

k

)
− ẑ

(`)
k

]T
,

where w
(i,`)
k and X (i,`)

k represent the quadrature weights and points corresponding to the `th com-

ponent of the GM density used in the corrector of the quadrature-based GM Kalman filter.

How the weights and points are selected for the predictor and corrector of a quadrature-

based GM Kalman filter defines the specific type of quadrature-based GM Kalman filter used. If

the unscented transform is used, the GMUKF is obtained. If Gauss-Hermite quadrature is used,

the GMQKF is obtained. Different and more efficient quadrature schemes can be implemented,

if desired; however, it is important to note that using quadrature methods for a GM Kalman filter

has potentially limited benefit. In general, the GM can be split such that the uncertainty in each

component is smaller, and, thus, the linearization in the GMEKF incurs less error. Because of this,

it is typically computationally advantageous to split the GM density into a larger number of smaller

components and use the GMEKF (or potentially the GMUKF) instead of using the GMQKF on the

original GM density, especially in systems with high-dimensionality in which the Gauss-Hermite

quadrature rule suffers from the curse of dimensionality.
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5.5. MINIMUM DIVERGENCE FILTERING

Consider an approximate Bayesian filter in which the state density, which evolves according

to Eqs. (5.1) and (5.2), is approximated by an assumed density at each step in the recursion. By

approximating the true density by an assumed density, the recursion defining the Bayesian filter is

now forced to close in a tractable manner. In order to find the parameters defining the assumed

density, an information divergence measure between the assumed density and the state density is

minimized.

An information divergence quantifies the directed distance between two state densities. An

information divergence measure of the state density p2(x) with respect to the state density p1(x) is

denoted by D[p1||p2]. D[p1||p2] is always non-negative and is zero only when p1(x) = p2(x). An

information divergence is a measure, but is not a metric, since D[p1||p2] 6= D[p2||p1] in general. By

minimizing an information divergence of an assumed density with respect to the true state density,

the parameters that define the assumed density that best fits the true state density are found. It is

important to note that the parameters of the best fit assumed density are defined according to the

chosen information divergence measure. In this work, the KL divergence [57] is chosen as the

divergence measure, which allows for an analytic minimization to be performed for exponential

family pdfs.

5.5.1. Minimizing the Kullback-Leibler Divergence. Let p(x) be a known state density

and q(x;θ) be the assumed state density, defined by the parameter set θ, that is chosen to approxi-

mate p(x). The parameter set θ is found by minimizing the KL divergence of q(x;θ) with respect

to p(x), which is defined by

J = DKL[p||q] =
∫

p(x) ln
p(x)

q(x;θ)
dx . (5.30)

The KL divergence is chosen because an analytic condition that minimizes the KL divergence of

an exponential family state density with respect to the true state density can be found, as will be

shown. The integration in Eq. (A.2) is performed over the domain of x, which is not required to

be Euclidean space; therefore, the KL divergence is valid for all state densities, not just those that

probabilistically quantify a Euclidean random variable, provided that the integral exists.

An exponential family density is any density that can be expressed in the form

pe(x;θ) = c(x) exp {φ(θ)Tu(x) + g(φ(θ))} , (5.31)

where θ is the set of parameters defining the density, c(x) and g(φ(θ)) are known functions, φ(θ)

is the vector of natural parameters, and u(x) is the natural statistics vector. The natural statistics

vector, u(x), contains enough information to fully characterize x in the exponential density of
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interest, and φ(θ) scales the entries of u(x) according to the parameter set θ. For a given parameter

set θ, φ(θ) is constant, and thus it is sufficient to specify either θ or φ(θ) in order to define the

parameters of the general exponential density.

To illustrate the parameters of an exponential family density, consider the Gaussian density,

as defined by Eq. (3.4), which can be expressed in the form of Eq. (5.31) by choosing

θ = {m P } (5.32a)

c(x) = 1 (5.32b)

φT (θ)u(x) = mTP−1x− 1
2x

TP−1x (5.32c)

g(φ(θ)) = −1
2 ln det {2πP } − 1

2m
TP−1m . (5.32d)

The vectors φ(θ) and u(x) can be found according to Eq. (5.32c) through vector-matrix manip-

ulation and reorganization. It can be observed from Eq. (5.32c) that the natural statistics vec-

tor for the Gaussian density contains the first- and second-order monomials in xi, where x ,

[x1 x2 · · · xnx ]
T , and is given by

u(x) =
[
x1 x2 · · · xnx x21 x1x2 · · · x1xnx x22 x2x3 · · · x2xnx · · · x2nx

]T
.

The vector of natural parameters, φ(θ), is then defined as the appropriate coefficients corresponding

to the entries of u(x) according to Eq. (5.32c). For a given parameter set θ = {m P }, φ(θ) is

a constant vector; thus, it is sufficient to specify either the parameter set θ = {m P } or φ(θ) in

order to define the Gaussian density. Typically, the parameter set θ = {m P } is specified directly

for the Gaussian density since it provides more direct insight into the Gaussian density; however, for

some members of the exponential family density, it is more convenient to work with φ(θ) directly.

It is well known [58, 59, 60, 61] that the mean and covariance of the Gaussian density

that minimize the KL divergence with respect to an arbitrary density are defined by the mean and

covariance of the arbitrary density. This result can be derived directly, or, equivalently, a condition

can be derived for the exponential family state density and then specialized to the Gaussian density,

as it is here and in References [58] and [59].

Theorem 1. The KL divergence of an exponential family state density with respect to a known state

density is minimized when the expected value of the natural statistics vector of the exponential family

state density is equivalent for both the exponential family state density and known state density; that

is,

E pe(x;θ){u(x)} = E p(x){u(x)} . (5.33)
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Proof. The KL divergence of pe(x;θ) with respect to the known state density p(x) is given by

J = DKL[p||pe] =
∫

p(x) ln
p(x)

pe(x;θ)
dx . (5.34)

Necessary and sufficient conditions to minimize J are given by the first and second derivative con-

ditions [
∂J

∂φ(θ)

]T
= 0 and

∂2J

∂φ(θ)2
=

∂

∂φ(θ)

[
∂J

∂φ(θ)

]T
> 0 .

The differentiation is performed with respect to φ(θ) instead of the parameter set θ because it is

equivalent to specify either φ(θ) or θ in order to define the general exponential density. For this

application, it is more convenient to work with φ(θ) directly.

Differentiating Eq. (5.34) with respect to φ(θ), transposing the result, simplifying, and

enforcing the first derivative condition yields[
∂J

∂φ(θ)

]T
= −

∫
p(x)u(x) dx− ∂g(φ(θ))

∂φ(θ)
= 0 . (5.35)

Because pe(x;θ) is a pdf, it must integrate to one according to∫
pe(x;θ) dx = 1 . (5.36)

Differentiating Eq. (5.36) with respect to φ(θ) and simplifying yields

∂

∂φ(θ)

∫
pe(x;θ) dx =

∫
pe(x;θ)u(x) dx+

∂g(φ(θ))

∂φ(θ)
= 0 . (5.37)

Combining Eqs. (5.35) and (5.37) yields∫
pe(x;θ)u(x) dx =

∫
p(x)u(x) dx ,

which can be expressed with the expected value operator defined in Eq. (3.5) as

E pe(x;θ){u(x)} = E p(x){u(x)} . (5.38)

Equation (5.38) provides the necessary condition to minimize the KL divergence of an exponential

family state density, pe(x;θ), with respect to the known state density, p(x).

In order to ensure that Eq. (5.38) minimizes Eq. (5.34), the second derivative condition

must be verified. Equation (5.35) is differentiated with respect to φ(θ) and simplified to yield an
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equivalent condition to the second derivative condition, which is given by

∂2g(φ(θ))

∂φ(θ)2
< 0 . (5.39)

Equations (5.31) and (5.36) can be used to solve for g(φ(θ)) as

g(φ(θ)) = − ln

∫
c(x)expφT (θ)u(x) dx . (5.40)

Differentiating Eq. (5.40) with respect to φ(θ) and simplifying yields

∂g(φ(θ))

∂φ(θ)
= −E pe(x;θ){u

T (x)} , −ûT . (5.41)

Differentiating the transpose of Eq. (5.41) with respect to φ(θ) and simplifying yields

∂2g(φ(θ))

∂φ(θ)2
= −E pe(x;θ){(u (x)− û)(u (x)− û)T } < 0 . (5.42)

The inequality in Eq. (5.42) stems from the fact that E pe(x;θ){(u (x) − û)(u (x) − û)T } is the

covariance matrix of u (x) with respect to pe(x;θ); thus, it is positive definite, and the second

derivative condition is met for all g(φ(θ)) and Eq. (5.38) minimizes Eq. (5.34).

Corollary 1.1. The Gaussian state density is a member of the exponential family of state densities

with its natural statistics vector defined by the first- and second-order monomials in the entries of

x; therefore, the expected value of the natural statistics vector defines the first and second moments

of the Gaussian state density. Exploiting Theorem 1, the KL divergence of the Gaussian state den-

sity with respect to a known state density is minimized when the first and second moments of the

Gaussian state density and the known state density are equivalent. These first and second moments

are defined by

m = E p(x){x} and M = E p(x){xxT }

respectively. The second central moment (covariance) is used along with the first moment to param-

eterize the Gaussian state density and is defined by the first and second moments of the state density

according to

P = M −mmT = E p(x){(x−m)(x−m)T } .

Corollary 1.1 shows that the Gaussian density that best fits a given density in the KL sense is

defined by the first and second moments of the given density. This is a useful result because, as long
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as the first and second moments of the given density can be found, the best Gaussian approximation

of the given density in terms of minimizing the KL divergence is defined by the Gaussian density

with these moments.

5.5.2. The Minimum Divergence Filter. The minimum divergence filter (MDF) quanti-

fies the prior and posterior parameter sets of an assumed density, defined as θ−
k and θ+

k , respectively,

that minimize the KL divergence of the assumed density from the true state density at each step in

the Bayesian recursion. Let the prior and posterior assumed densities at tk be denoted by q(xk;θ
−
k )

and q(xk;θ
+
k ), respectively. Assume that the posterior parameter set is known at an initial time t0

and is given by θ+
0 . The predictor of the MDF is given by

p(xk|z1:k−1) =

∫
p(xk|xk−1)q(xk−1;θ

+
k−1) dxk−1 (5.43a)

θ−
k = argmin

θ

∫
p(xk|z1:k−1) ln

p(xk|z1:k−1)

q(xk;θ)
dxk , (5.43b)

where Eq. (5.43a) is a specialization of Eq. (5.1) and quantities the temporal evolution of the pos-

terior assumed density at tk−1 to the prior true density at tk given the transition density from tk−1

to tk. Equation (5.43b) then defines the parameter set, θ−
k , of the prior assumed density at tk that

minimizes the KL divergence from the prior true density, as defined by the Chapman-Kolmogorov

equation.

Similarly, the corrector of the MDF is given by

p(xk|z1:k) =
p(zk|xk, z1:k−1)q(xk;θ

−
k )∫

p(zk|ξ, z1:k−1)q(ξ;θ
−
k ) dξ

(5.44a)

θ+
k = argmin

θ

∫
p(xk|z1:k) ln

p(xk|z1:k)
q(xk;θ)

dxk , (5.44b)

where Eq. (5.44a) is a specialization of Eq. (5.2) and updates the prior assumed density to the

posterior true density upon receiving a measurement at tk given the measurement likelihood. Equa-

tion (5.44b) then finds the parameter set, θ+
k , of the posterior assumed density at tk that minimizes

the KL divergence from the posterior true density, which is defined by Bayes’ rule.

The MDF, as defined by Eqs. (5.43) and (5.44), makes no restriction that the state and

measurement vector exist in Euclidean space, as the Kalman filter does. The only requirements

to implement the MDF are that the integration and minimization can be performed to find θ−
k and

θ+
k . Ideally, this minimization and integration would be performed analytically; however, this is

only possible if further restrictions are imposed on the assumed state density, system dynamics, and

measurement model. If the minimization and integration to find θ−
k and θ+

k cannot be performed

analytically for the assumed state density, system dynamics, and/or measurement model, numerical

methods can potentially be used to perform this integration and/or minimization.
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No linear update structure is required for the MDF as is done for the Kalman framework.

Because the MDF approximates the true state density by an assumed density, it quantifies the pa-

rameters of the assumed density that best fit the assumed density to the true density according to

the KL divergence. While some error is incurred in approximating the true density by the assumed

density, the assumed density approach provides a tractable solution for the approximate Bayesian

filter. The error incurred by the assumed density can accumulate over time and lead to potentially

poor performance of the MDF. If the MDF is performing poorly due to this error, state density

flattening, which is a type of memory limiting operation that is related to the injection of process

noise into the dynamic system, can be implemented in order to improve its performance [62].

5.5.3. The Gaussian Mixture Minimum Divergence Filter. Consider the application of

the MDF to the case when an assumed GM density is used to approximate the true state density at

each step in the Bayesian recursion. The dynamical system and measurement model under consid-

eration are taken to be nonlinear with additive, Gaussian-distributed noise, as given by Eq. (4.3).

In this application, the MDF is not applied directly to the find the parameters of the assumed GM

density; it is instead applied on a component-wise basis to find the KL divergence optimal mean and

covariance of each component of the assumed GM density from the true evolution of the compo-

nent. The MDF is applied in this manner for computational tractability. If the MDF were employed

directly to find the parameters of the assumed GM density (instead of on a component-wise basis as

it is applied), one of two outcomes would occur, depending on if the number of components in the

assumed GM density is fixed or is included as a parameter to minimize the KL divergence. If the

number of components in the assumed GM density is not fixed, the number of components in the

mixture will approach infinity since a larger number of components allows for a better approxima-

tion of the true density. If the number of components in the assumed GM density is fixed, it is still

necessary to find the weight, mean, and covariance of each component numerically, because the GM

density is not an exponential family density and, thus, Theorem 1 cannot be used. Because of this,

the computational expense to directly find the parameters of the assumed GM density is intractably

high, in general, and thus a component-wise application of the MDF is employed instead. Because

the MDF is applied in a component-wise manner, the resulting assumed GM density approximating

the true density is not KL divergence optimal in general; however, this application minimizes the

KL divergence on a component-wise basis and results in a computationally tractable filter.

Let the initial GM density be defined by

L+
0∑

`=1

w
(`)+
0 pg

(
x0;m

(`)+
0 ,P

(`)+
0

)
,

which has temporal evolution given by Eq. (5.20) for a nonlinear dynamical system with additive,

Gaussian-distributed noise. This true predicted density in Eq. (5.20) is now approximated by a GM
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density according to

L−
k∑

`=1

w
(`)−
k pg

(
xk;m

(`)−
k ,P

(`)−
k

)
(5.45)

≈
L+
k−1∑
`=1

w
(`)+
k−1

∫
pg(xk;f(xk−1),Qk−1)pg

(
xk−1;m

(`)+
k−1 ,P

(`)+
k−1

)
dxk−1 ,

where it is necessary to find the parameters of the assumed GM density, w(`)−
k , m(`)−

k , and P
(`)−
k

for ` = 1, 2, . . . , L−
k . These parameters are found on a component-wise basis according to

w
(`)−
k pg

(
xk;m

(`)−
k ,P

(`)−
k

)
(5.46)

≈ w
(`)+
k−1

∫
pg(xk;f(xk−1),Qk−1)pg

(
xk−1;m

(`)+
k−1 ,P

(`)+
k−1

)
dxk−1 ,

for ` = 1, 2, . . . , L−
k . This dictates that the number of components in the mixture remains the same

in the predictor of the GMMDF; that is L−
k = L+

k−1. In order to obtain the weight update of the

predictor, the zeroth moments of both sides of Eq. (5.46) are matched, which yields

w
(`)−
k = w

(`)+
k−1 , (5.47)

for ` = 1, 2, . . . , L−
k . Equation (5.47) is substituted into Eq. (5.46) to yield the necessary approxi-

mation of each component of the prior GM density according to

pg

(
xk;m

(`)−
k ,P

(`)−
k

)
≈
∫

pg(xk;f(xk−1),Qk−1)pg

(
xk−1;m

(`)+
k−1 ,P

(`)+
k−1

)
dxk−1 , (5.48)

for ` = 1, 2, . . . , L−
k . In order to find m

(`)−
k and P

(`)−
k , the KL divergence of the right-hand side of

Eq. (5.48) with respect to its left-hand side is minimized. Because the left-hand side of Eq. (5.48)

is a Gaussian density, Corollary 1.1 is used to perform this minimization, which defines m
(`)−
k

and P
(`)−
k as the mean and covariance of the right-hand side of Eq. (5.48), respectively, which are

defined according to

m
(`)−
k =

∫
xk

∫
pg(xk;f(xk−1),Qk−1)pg(xk−1;m

(`)+
k−1 ,P

(`)+
k−1 ) dxk−1 dxk

P
(`)−
k =

∫
xkx

T
k

∫
pg(xk;f(xk−1),Qk−1)pg(xk−1;m

(`)+
k−1 ,P

(`)+
k−1 ) dxk−1 dxk

−m
(`)−
k m

(`)−
k

T
.
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Reversing the order of integration allows the prior mean and covariance to be expressed as expected

values with respect to pg(xk−1;m
(`)+
k−1 ,P

(`)+
k−1 ) according to

m
(`)−
k = E

pg(xk−1;m
(`)+
k−1 ,P

(`)+
k−1 )

{∫
xkpg(xk;f(xk−1),Qk−1) dxk

}
(5.50a)

P
(`)−
k = E

pg(xk−1;m
(`)+
k−1 ,P

(`)+
k−1 )

{∫
xkx

T
k pg(xk;f(xk−1),Qk−1) dxk

}
−m

(`)−
k m

(`)−
k

T
. (5.50b)

The integrals in the arguments of the expected values define the first and second moments of the

Gaussian density pg(xk;f(xk−1),Qk−1); thus, the solution of the integrals are given by the first

and second moments of pg(xk;f(xk−1),Qk−1) according to∫
xkpg(xk;f(xk−1),Qk−1) dxk = f(xk−1) (5.51a)∫

xkx
T
k pg(xk;f(xk−1),Qk−1) dxk = f(xk−1)f(xk−1)

T +Qk−1 . (5.51b)

Substituting Eqs. (5.51) into Eqs. (5.50) and simplifying yields the predictor of the MDF in terms

of expected values with respect to `th component of the the posterior GM density as

m
(`)−
k = E

pg(xk−1;m
(`)+
k−1 ,P

(`)+
k−1 )

{f(xk−1)} (5.52a)

P
(`)−
k = E

pg(xk−1;m
(`)+
k−1 ,P

(`)+
k−1 )

{(f(xk−1)−m
(`)−
k )(f(xk−1)−m

(`)−
k )T }+Qk−1 , (5.52b)

for ` = 1, 2, . . . , L−
k . These expected values are identical to the expected values defining the pre-

dictor of the Kalman framework, as defined by Eq. (4.7), under the further condition that the expec-

tation is taken with respect to pg(xk−1;m
(`)+
k−1 ,P

(`)+
k−1 ), instead of the unquantified state density like

the Kalman framework. Note that Eqs. (4.7) and (5.52) are slightly different because Eq. (4.7) is ex-

pressed for the most general dynamical system, as defined by Eq. (4.1a) or Eq. (4.2a), and Eq. (5.52)

is expressed for a nonlinear dynamical system with additive process noise, as defined by Eq. (4.3a).

If the nonlinear dynamical system with additive process noise is substituted into Eq. (4.7) and it

is simplified, it will take the identical form as Eq. (5.52), without the condition that the expected

value is calculated with respect to a Gaussian density. Similarly to the Kalman framework, the

expected values in Eqs. (5.52) can be approximated using several methods, including linearization

like is done in the EKF, or quadrature methods like is done in the UKF and QKF. Note that the

EKF, UKF, and QKF are derived under the linear MMSE framework, and the GMMDF is derived

under the Bayesian framework; however, the approximation of the expected values present under

both frameworks can be performed in the same way.
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The true measurement evolution of the prior GM density for a nonlinear measurement

model with additive, Gaussian-distributed noise is given by Eq. (5.23). This true corrected den-

sity is now approximated by a GM density according to

L+
k∑

`=1

w
(`)+
k pg

(
xk;m

(`)+
k ,P

(`)+
k

)
(5.53)

≈

∑L−
k

`=1w
(`)−
k pg(zk;h(xk),Rk)pg

(
xk;m

(`)−
k ,P

(`)−
k

)
∑L−

k
`=1w

(`)−
k

∫
pg(zk;h(xk),Rk)pg

(
xk;m

(`)−
k ,P

(`)−
k

)
dxk

.

The denominator of Eq. (5.53) is now manipulated according to

L−
k∑

`=1

w
(`)−
k

∫
pg(zk;h(xk),Rk)pg

(
xk;m

(`)−
k ,P

(`)−
k

)
dxk =

L−
k∑

`=1

w
(`)−
k k

(`)
k , (5.54)

where k
(`)
k is a constant which is defined by

k
(`)
k , E

pg(xk;m
(`)−
k ,P

(`)−
k )

{pg(zk;h(xk),Rk)} ,

which quantifies the likelihood that the measurement zk originated from the `th component of the

GM density. Equation (5.54) is now substituted into Eq. (5.53) and the result is manipulated to yield

L+
k∑

`=1

w
(`)+
k pg

(
xk;m

(`)+
k ,P

(`)+
k

)
(5.55)

≈
L−
k∑

`=1

w
(`)−
k∑L−

k
j=1w

(j)−
k k

(j)
k

pg(zk;h(xk),Rk)pg

(
xk;m

(`)−
k ,P

(`)−
k

)
,

where it is necessary to find the parameters of the assumed GM density, w(`)+
k , m(`)+

k , and P
(`)+
k

for ` = 1, 2, . . . , L+
k . These parameters are found on a component-wise basis according to

w
(`)+
k pg

(
xk;m

(`)+
k ,P

(`)+
k

)
≈

w
(`)−
k∑L−

k
j=1w

(j)−
k k

(j)
k

pg(zk;h(xk),Rk)pg

(
xk;m

(`)−
k ,P

(`)−
k

)
,

(5.56)

for ` = 1, 2, . . . , L+
k . This dictates that the number of components in the mixture remains the same

in the corrector of the GMMDF; that is L+
k = L−

k . In order to obtain the weight update of the
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corrector, the zeroth moments of both sides of Eq. (5.56) are matched, which yields

w
(`)+
k =

w
(`)−
k∑L−

k
j=1w

(j)−
k k

(j)
k

∫
pg(zk;h(xk),Rk)pg

(
xk;m

(`)−
k ,P

(`)−
k

)
dxk

=
w

(`)−
k∑L−

k
j=1w

(j)−
k k

(j)
k

E
pg(xk;m

(`)−
k ,P

(`)−
k )

{pg(zk;h(xk),Rk)}

=
w

(`)−
k k

(`)
k∑L−

k
j=1w

(j)−
k k

(j)
k

. (5.57)

for ` = 1, 2, . . . , L+
k . This weight update is observed to be identical to that of the GMKF, GMEKF,

and the quadrature-based GM Kalman filters (with the caveat that k(`)k is approximated differently),

which updates the weight of each component according to the relative likelihood that the measure-

ment originated from each component. Equation (5.57) is substituted into Eq. (5.56) to yield the

necessary approximation of each component of the posterior GM density according to

pg

(
xk;m

(`)+
k ,P

(`)+
k

)
≈ 1

k
(`)
k

pg(zk;h(xk),Rk)pg

(
xk;m

(`)−
k ,P

(`)−
k

)
, (5.58)

In order to find m
(`)+
k and P

(`)+
k , the KL divergence of the right-hand side of Eq. (5.58) with respect

to its left-hand side is minimized. Because the left-hand side of Eq. (5.58) is a Gaussian density,

Corollary 1.1 is used to perform this minimization, which defines m(`)+
k and P

(`)+
k as the mean and

covariance of the right-hand side of Eq. (5.58), respectively, which are defined according to

m
(`)+
k =

1

k
(`)
k

∫
xkpg(zk;h(xk),Rk)pg

(
xk;m

(`)−
k ,P

(`)−
k

)
dxk

P
(`)+
k =

1

k
(`)
k

∫
xkx

T
k pg(zk;h(xk),Rk)pg

(
xk;m

(`)−
k ,P

(`)−
k

)
dxk −m

(`)−
k m

(`)−
k

T
,

which are expressed as expected values with respect to the `th component of the prior GM density

according to

m
(`)+
k =

1

k
(`)
k

E
pg(xk;m

(`)−
k ,P

(`)−
k )

{xkpg(zk;h(xk),Rk)} (5.60a)

P
(`)+
k =

1

k
(`)
k

E
pg(xk;m

(`)−
k ,P

(`)−
k )

{(xk −m
(`)−
k )(xk −m

(`)−
k )T pg(zk;h(xk),Rk)} , (5.60b)

for ` = 1, 2, . . . , L+
k . In order to approximate the expected values in Eq. (5.60), quadrature tech-

niques are employed. When approximating these expected values, special care must be taken if
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the measurement noise is small. As the measurement noise becomes small, a higher-order poly-

nomial becomes necessary to approximate pg(zk;h(xk),Rk) without incurring significant error.

Since Gauss-Hermite quadrature is exact for polynomials of degree 2q − 1, where q is the number

of points used in the quadrature rule, more quadrature points must be used to approximate these

expected values in this case. Progressive Gaussian filtering [60, 63, 64] can be used to reduce

the quadrature order required to achieve sufficient accuracy by progressively introducing the mea-

surement information into the posterior density; however, this approach requires the density to be

assumed Gaussian at each iteration in introducing the measurement information. Progressive Gaus-

sian filtering exchanges error due to quadrature for error due to the assumed Gaussian density. In

some cases, this exchange in error sources is prudent and can provide improved results.

Observation of the GMMDF, with the predictor defined by Eqs. (5.47) and (5.52), and the

corrector defined by Eqs. (5.57) and (5.60), shows that the predictor of the GMMDF is identical to

the GMEKF, GMUKF, and GMQKF, depending on the type of approximation used to approximate

the expected values in Eq. (5.52). The corrector of the GMMDF, however, is different from that

of the GMEKF, GMUKF, and GMQKF because it approximates the mean and covariance of each

component of the GM density by evaluating the moments of Bayes’ rule, which is constructed

using the prior component of the GM density, instead of performing the Kalman-like update to each

component. The weight update used in the correctors of the GMMDF and the GMEKF, GMUKF,

and GMQKF are similar in that they update the weights of the GM density according to the relative

likelihood that the measurement originated from each component; however, the relative likelihood

is approximated differently between the different filters. Because the corrector of the GMMDF

is different from the correctors of the GMEKF, GMUKF, and GMQKF, they are now applied to

the lensing problem in order to compare and contrast them. In order to simplify the comparison

such that meaningful conclusions can be made, a single component GM density, which is simply a

Gaussian density, is considered. Because of this, the GMMDF, GMEKF, GMUKF, and GMQKF

reduce to the MDF, Bayesian EKF, Bayesian UKF, and Bayesian QKF, respectively.

The lensing problem occurs when the uncertainty in the position of an object has a rela-

tively large uncertainty with respect to the uncertainty of a range measurement taken from a nearby

observer. The shape of the resulting true posterior density resembles an optical lens (hence the name

lensing problem), which may not be well-approximated by a Gaussian density. In this case, the ob-

jective is not to capture the lens shape, which is the ultimate objective of the lensing problem, but

to accurately capture the first and second moments of the lens. The lensing problem is illustrated

in Figure (5.1). In this example, the mean position of the object is m = [2 0]T meters and the

observer is at the origin. A range measurement of 2 meters from the observer to the object is taken

and is assumed to be corrupted by additive zero-mean Gaussian noise of standard deviation 0.1 me-

ters. Two Gaussian prior densities for the initial position, one with relatively large uncertainty and
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one with relatively small uncertainty, are considered and are shown in Figures. (5.1a) and (5.1b),

respectively. The resulting true posterior density for both prior densities, which is defined by Bayes’

rule and computed by a grid-based approach, is also shown in Figures. (5.1a) and (5.1b).

When the uncertainty in the prior position density is relatively large with respect to the

uncertainty in the range measurement, as it is in Figure (5.1a), the posterior density is highly-

skewed and thus is not well-approximated by a Gaussian density. When the uncertainty in the prior

position density is relatively small with respect to the uncertainty in the range measurement, as

shown in Figure (5.1b), the posterior density is not highly-skewed and can be well-approximated by

a Gaussian density.

The corrector of the MDF, as well as the corrector of the Bayesian EKF and Bayesian

QKF, are applied to both scenarios to evaluate their performance. Gauss-Hermite quadrature with

1000 points per dimension is used to evaluate the expected values associated with the corrector of

the MDF and the Bayesian QKF in order to ensure that the approximation error of the quadrature

is negligible and the filters can be compared equally. The posterior assumed Gaussian densities

quantified by the corrector of each filter are shown in Figures. (5.1c) and (5.1d).

Before proceeding with analysis of the lensing problem, it is important to consider a prop-

erty of the Bayesian UKF and Bayesian QKF; these filters are an extension to the Bayesian EKF, in

which the evolution of the mean and covariance of the Gaussian density is observed to be identical

to that of the EKF (as derived under the linear MMSE framework). Because of this, the UKF and

QKF equations (as derived under the linear MMSE framework) are used to quantify the evolution of

the mean and covariance as originally quantified by the Bayesian EKF, in which case the Bayesian

UKF and Bayesian QKF are born. These filters have not been shown to be well-principled; that

is, they do not stem directly from the Chapman-Kolmogorov equation and Bayes’ rule. Because of

this, the Bayesian UKF and Bayesian QKF are restricted to perform a linear measurement update,

as is inherent to the linear MMSE framework. For the Bayesian EKF, this linear update is shown to

stem from Bayes’ rule; however, since the Bayesian UKF and Bayesian QKF do not stem directly

from Bayes’ rule, and rather from the linear MMSE framework, their linear measurement update

may not be representative of the true posterior as defined by Bayes’ rule. Rather, the Bayesian UKF

and Bayesian QKF aim to more accurately capture the evolution of the mean and covariance of the

Gaussian density than the Bayesian EKF.

The Bayesian EKF provides a very different posterior density than the MDF and Bayesian

QKF when the uncertainty in the prior position density is relatively large with respect to the uncer-

tainty in the range measurement, as it is in Figure (5.1c). In this case, the posterior density of the

Bayesian EKF reflects an overconfidence in a poor state estimate due to the linearization error in-

curred in processing the nonlinear range measurement. The posterior densities of the MDF and the

Bayesian QKF are very similar; however, the linear gain measurement update of the Bayesian QKF
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(a) Prior Gaussian density with “large” uncertainty, with
the measurement likelihood and true posterior densities.

(b) Prior Gaussian density with “small” uncertainty, with
the measurement likelihood and true posterior densities.

(c) Posterior densities for the prior Gaussian density with
“large” uncertainty.

(d) Posterior densities for the prior Gaussian density with
“small” uncertainty.

Figure 5.1. Prior, measurement likelihood, and true posterior densities for the lensing problem.
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does not allow it to incorporate any of the information gained due to the skewness of the true poste-

rior density. Since the MDF employs a nonlinear update, it is able to incorporate this information.

This can be observed by comparing the posterior densities of the MDF and the Bayesian QKF. The

two posterior densities are nearly identical in the range (x) direction, but the posterior density of the

MDF possesses smaller uncertainty in the y direction since it is the minimum divergence Gaussian

density with respect to the skewed true posterior density.

The MDF, Bayesian QKF, and Bayesian EKF all provide very similar posterior densities

when the uncertainty in the prior position density is relatively small with respect to the uncertainty

in the range measurement, as it is in Figure (5.1d). This is an expected result since the true posterior

density can be well-approximated as Gaussian in this case. Furthermore, it is postulated that the

correctors of the MDF, EKF, and QKF become identical as the uncertainty in the prior Gaussian

density approaches zero. This postulation stems from the fact that the error incurred by the lineariza-

tion approximation used by the Bayesian EKF, the linear measurement update used by the Bayesian

QKF, and the minimum divergence update used by the MDF approaches zero as the uncertainty in

the prior Gaussian density goes to zero. This implies that, if a GM density with sufficiently small

uncertainty in each component is used instead of a Gaussian density, that the GMMDF, GMEKF,

GMUKF, and GMQKF will perform very similarly.

The mean square error of the MDF can be smaller than that of the Bayesian QKF, as can be

observed in Figure (5.1c). At first, this may seem counterintuitive because the corrector used under

the Kalman filter framework is derived to minimize the mean square error; however, the corrector

used under the Kalman filter framework is derived by assuming the posterior mean to be a linear

combination of the prior mean and measurement; thus, it minimizes the linear mean square error.

By employing a nonlinear update, the MDF is able to capture more information from the update and

the posterior density possesses a smaller mean square error than does the Bayesian QKF.
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6. UNCERTAINTY PROPAGATION WITH THE GAUSS-BINGHAM DENSITY

Consider the Gauss-Bingham-distributed state vector that consists of the attitude quaternion

and other Euclidean states, as defined by Eq. (3.49). Ideally, the temporal and measurement evolu-

tion of the Gauss-Bingham density would be quantified, either exactly or approximately, under the

Bayesian framework. Quantifying this evolution, even approximately, is difficult due to the form

of the Gauss-Bingham density, which does not belong to the general exponential family, and, thus,

if the MDF is specialized to the Gauss-Bingham density, Theorem 1 cannot be used to perform

the associated minimization. Because of this, the MDF specialized to the Gauss-Bingham density

is computationally intractable. Theoretically, the MDF specialized to the Gauss-Bingham density

can be implemented numerically, which would yield the approximate Bayesian filter; however, this

is not performed in lieu of the BGM filter, which does not require numerical optimization, and is

presented in Section 7. Instead, an uncertainty propagation strategy is developed for the Gauss-

Bingham-distributed state vector [65] that parallels the predictor of the UKF, under the further

assumption that the state density is Gaussian-distributed.

In order to propagate the uncertainty of a given Gauss-Bingham-distributed state vector,

an unscented transform is used that generates a set of sigma points representing the initial Gauss-

Bingham density. These sigma points are then transformed according to the (potentially) nonlinear

dynamical system, and the weighted maximum log-likelihood parameters of the Gauss-Bingham

density are found. This process of uncertainty propagation is shown to be identical to that of the

predictor of the UKF, under the further assumption that the resulting state density is Gaussian-

distributed, as is shown in Appendix E.

Assume that discrete-time nonlinear system dynamics are given for the most general non-

linear dynamical system defined by Eq. (4.1a), or equivalently, Eq. (4.2a). Because of the antipodal

property of the attitude quaternion, these system dynamics must satisfy

[
q̄k

xk

]
= f̃


 q̄k−1

xk−1

wk−1


 and

[
−q̄k

xk

]
= f̃


−q̄k−1

xk−1

wk−1


 , (6.1)

which shows that the quaternion portion of the state vector remains antipodal through the transfor-

mation through the dynamical system. Equation (6.1) defines an important property of the system

dynamics, f̃ . This property states that the system dynamics preserve the antipodal symmetry of

the quaternion, which is exploited to reduce the amount of computation necessary to propagate the

sigma points representing the Gauss-Bingham density.
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In order to simplify the development of the uncertainty propagation scheme, the dynamical

system is assumed not to have process noise. When process noise is not present in the state vector,

the dynamical system property given in Eq. (6.1) simplifies to[
q̄k

xk

]
= f

([
q̄k−1

xk−1

])
and

[
−q̄k

xk

]
= f

([
−q̄k−1

xk−1

])
, (6.2)

which is observed to be the dynamical system defined in Eq. (4.3a) without the inclusion of process

noise, as expected. If desired, it is straightforward to extend the presented uncertainty propagation

scheme to include Gaussian-distributed process noise by appending it to the Gaussian-distributed

portion of the state vector, xk−1.

6.1. UNSCENTED TRANSFORM

In order to select a set of weights and locations for the sigma points of the unscented trans-

form for the canonical Gauss-Bingham density, the zeroth, first, and second moments between the

canonical Gauss-Bingham density and the sigma points are matched in Rr × Rs+1. The moments

will be matched in Rr × Rs+1; however, the sigma points will be parameterized such that they

remain on the manifold Rr × Ss. After finding sigma points for the canonical Gauss-Bingham

density, Eq. (3.54) is then used to convert the locations of the sigma points from the canonical

Gauss-Bingham to the given Gauss-Bingham density.

In order to reduce the number of sigma points, only one of each pair of antipodal sigma

points is considered and propagated since the system dynamics preserve the antipodal symmetry of

the sigma points as shown by Eq. (6.1). To illustrate this concept, consider the following example

antipodal sigma points in R1 × S1 at tk−1, X k−1 and X ∗
k−1, that are antipodal in q̄ and given by

X k−1 =
[

1√
2

−1√
2

3
]T

and X ∗
k−1 =

[
−1√
2

1√
2

3
]T

.

These sigma points are propagated by some (potentially) nonlinear function, f , that satisfies the

property given by Eq. (6.2). Assume that this propagation transforms the sigma points to

X k =
[
0 1 4

]T
and X ∗

k =
[

0 −1 4
]T

,

which are still antipodal in q̄; thus, the computational expense can be lowered by considering only

X k−1. X k−1 is transformed according to f to obtain X k, and antipodal symmetry can be used to

obtain X ∗
k, if desired.
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In order to generate the sigma points for the Gauss-Bingham density, motivation is drawn

from the 2n + 1 unscented transform [43]. The 2n + 1 unscented transform for the canonical

Gaussian density places two sigma points at equal but opposite deviations from zero for each of

the n = r canonical Gaussian states. A central sigma point is then placed at the origin. When

generating sigma points for the canonical Gauss-Bingham density, which considers only one of

each pair of antipodal points in the attitude quaternion, a similar approach to that of the 2n + 1

unscented transform for the canonical Gaussian density is used.

In order to generate the sigma points for the canonical Gauss-Bingham density, first a set

of sigma points that quantify deviations from the origin in each state of z (the portion of the state

vector that is canonical Gaussian-distributed) are introduced as ±δ while p̄ (the portion of the state

that is canonical Bingham-distributed) is held constant as the identity quaternion. The locations of

these 2r sigma points are given by

Z(1),(2) =
[ ∈Ss︷ ︸︸ ︷
0 · · · 0 1

∈Rr︷ ︸︸ ︷
±δ 0 · · · 0

]T
Z(3),(4) =

[
0 · · · 0 1 0 ± δ · · · 0

]T
...

Z(2r−1),(2r) =
[
0 · · · 0 1 0 · · · 0 ± δ

]T
,

with corresponding weights given by

w(1),(2) = w(3),(4) = · · · = w(2r−1),(2r) =
wg

4r
,

where Z(i),(j) and w(i),(j) represent the locations and weights of the ith and jth sigma points, re-

spectively, representing the canonical Gauss-Bingham density and wg is a parameter used to specify

the weights of these sigma points. The braces are used to denote the portions of Z which are the

Euclidean and quaternion states.

Next, angular deviations are introduced into the quaternion state as ±α` for ` = 1, 2, . . . , s

while z is held constant at zero in order to guarantee that the perturbed attitude quaternion remains

on the unit hypersphere. These 2s sigma points are given by

Z(2r+1),(2r+2) =
[ ∈Ss︷ ︸︸ ︷
±Sα1 0 · · · 0 Cα1

∈Rr︷ ︸︸ ︷
0 · · · 0

]T
Z(2r+3),(2r+4) =

[
0 ± Sα2 · · · 0 Cα2 0 · · · 0

]T
...

Z(2r+2s−1),(2r+2s) =
[
0 · · · 0 ± Sαs Cαs 0 · · · 0

]T
,
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with corresponding weights given by

w(2r+1),(2r+2) =
wb1

4

w(2r+3),(2r+4) =
wb2

4
...

w(2r+2s−1),(2r+2s) =
wbs

4
,

where wb` , for ` = 1, 2, . . . , s, are parameters used to specify the weights of these sigma points

and Sα and Cα represent the sine and cosine of α, respectively.

Finally, a central sigma point is placed at z = 0 and in the “zero” direction of p̄, which is

the identity quaternion. This single sigma point is given by

Z(N) =
[ ∈Ss︷ ︸︸ ︷
0 · · · 0 1

∈Rr︷ ︸︸ ︷
0 · · · 0

]T
,

with corresponding weight given by

w(N) =
wc

2
,

where wc is a parameter used to specify the weight of this sigma point and N = 2r + 2s+ 1 is the

total number of sigma points.

In order to find the parameters δ, α`, wc, wg, and wb` , where ` = 1, 2, . . . , s, which

fully define the weights and locations of the sigma points for the canonical Gauss-Bingham density,

the zeroth, first, and second moments between the sigma points and the canonical Gauss-Bingham

density are matched in Rs+1 × Rr. The zeroth and first moments of the canonical Gauss-Bingham

are 1 and 0, respectively. The second moment of the canonical Gauss-Bingham density is given

by Eq. (3.22). While only one of each antipodal pair of sigma points is stored and propagated,

it is important to note that both of the antipodal sigma points, which are equally weighted, are

considered when calculating the moments of the sigma points. After accounting for the antipodal

symmetry of each of the sigma points, the first moment of the sigma points is zero for any choice

of the parameters. Matching the zeroth and second moments of the sigma points with the canonical

Gauss-Bingham density yields

s∑
`=1

wb` + wc + wg = 1 (6.3a)

δ2wg

r
= 1 (6.3b)
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wb` sin
2 α` = f` , ` = 1, 2, . . . , s (6.3c)

s∑
`=1

wb` cos
2 α` + wc + wg = fs+1 , (6.3d)

where Eq. (6.3a) stems from the zeroth moment and Eqs. (6.3b)–(6.3d) stem from the second

moment. Summing Eq. (6.3c) for ` = 1, 2, . . . , s and Eq. (6.3d) while noting the proper-

ties in Eqs. (3.24) yields Eq. (6.3a); thus, Eq. (6.3d) is redundant and may be neglected. Solv-

ing Eqs. (6.3b) and (6.3c) for δ and α` gives the locations of the sigma points as a function of their

weights as

δ =

√
r

wg
and α` = asin

√
f`
wb`

, ` = 1, 2, . . . , s . (6.4)

Now, the weights must be selected for the sigma points. In order for Eqs. (6.4) to have real

solutions, wb` must be greater than or equal to f` for all ` = 1, 2, . . . , s. In order to ensure that

this condition is met, a somewhat nonintuitive choice for the weights of the sigma points for the

canonical Gauss-Bingham density is chosen that parallels the choice of weights of the sigma points

for the Bingham density presented in [12]. Noting the properties given in Eqs. (3.24), the weights

of the sigma points representing the Gauss-Bingham density which satisfy Eq. (6.3a) are chosen as

wb` = f` + (1− λ− κ)
fs+1

s
, ` = 1, 2, . . . , s (6.5a)

wc = λfs+1 (6.5b)

wg = κfs+1 , (6.5c)

where λ and κ are positive tuning parameters such that λ + κ < 1. While choosing the weights

according to Eqs. (6.5) is nonintuitive, this choice of weights satisfies Eq. (6.3a) and provides real

locations for the sigma points. λ and κ are chosen such that the weights of all the sigma points

approach an equal weight of 1/N as the uncertainty in the states corresponding to q̄ approaches

zero; that is, Z1, Z2, . . . , Zs → −∞. This choice of weights ensures that the sigma points possess

nearly equal weights, and thus have nearly equal importance, when the uncertainty in the attitude

quaternion is small. Using the properties in Eqs. (3.24), the λ and κ that yield equal weights for the

sigma points as the uncertainty in the quaternion goes to zero are given by

λ =
1

N
and κ =

2r

N
. (6.6)

The sigma points for the canonical Gauss-Bingham density, which are defined in terms of the param-

eters in Eqs. (6.4), (6.5), and (6.6), are transformed from the canonical Gauss-Bingham density to



118

the Gauss-Bingham density of interest defined by pgb(x;m,P ,φ0,β,Z) according to Eqs. (3.54).

These transformed sigma points and their associated weights representing the Gauss-Bingham den-

sity at tk−1 are denoted by X (i)
k−1 and w

(i)
k−1, respectively, where i = 1, 2, . . . , N . These sigma

points are then transformed according to the nonlinear system dynamics given by Eq. (6.2) to obtain

the sigma points and weights representing the Gauss-Bingham density at tk, denoted by X k and

w
(i)
k , respectively, where i = 1, 2, . . . , N and the weights are unchanged in the transformation; that

is, w(i)
k = w

(i)
k−1. If the dynamical system is governed by continuous-time dynamics, the nonlinear

discrete-time function in Eq. (6.2), f , is given by the integration of X k−1 from tk−1 to tk to obtain

X k.

6.2. MAXIMUM WEIGHTED LOG-LIKELIHOOD GAUSS-BINGHAM PARAMETERS

To obtain the parameters of the best-fit Gauss-Bingham density given the set of sigma points

and weights at tk, the parameters of the Gauss-Bingham density that maximize the weighted log-

likelihood of the sigma points are found. To illustrate why the maximum weighted log-likelihood

parameters are sought, consider the case when the unscented transform is used for a state that exists

in Rr. Given the sigma points and weights from the unscented transform, the mean and covariance

are recovered from the weighted sample mean and covariance of the sigma points. It is shown in

Appendix E that the weighted sample mean and covariance of the sigma points is the mean and

covariance of the Gaussian density that maximizes the weighted log-likelihood of the sigma points.

In this spirit, the parameters of the Gauss-Bingham density are recovered from the sigma

points according to

{mk,Pk,φ0,k,βk,Zk} = (6.7)

argmax
m,P ,φ0,β,Z

N∑
i=1

w
(i)
k ln pgb

(
X (i)

k ;m,P ,φ0,β,Z
)
,

This maximization can be performed analytically for the mean and covariance of the Gaussian

density, m and P , as is shown in Appendix F. First, note that the sigma points can be decomposed

into their Euclidean and quaternion portions according to X k = [X T
x,k X T

q̄,k]
T . The mean and

covariance of the Gaussian density that maximizes the weighted log-likelihood of the sigma points

is given by the sample mean and covariance of the Euclidean portion of the sigma points according

to

mk = 2
N∑
i=1

w
(i)
k X (i)

x,k (6.8a)
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Pk = 2

N∑
i=1

w
(i)
k

(
X (i)

x,k −mk

)(
X (i)

x,k −mk

)T
, (6.8b)

where the factor of two is included since only one of each antipodal pair of sigma points in the

quaternion state is quantified.

After using Eq. (6.8) to determine mk and Pk, Eq. (6.7) becomes

{φ0,k,βk,Zk} = argmax
φ0,β,Z

J(φ0,β,Z) , (6.9)

where

J(φ0,β,Z) =

N∑
i=1

w
(i)
k ln pgb

(
X (i)

k ;mk,Pk,φ0,β,Z
)
.

This maximization is carried out numerically to find φ0, β, and Z. In order to perform this numeri-

cal maximization, it is first transformed into a root-finding problem according to the first derivative

conditions of a maximum, i.e.

∂J(φ0,k,βk,Zk)

∂φ0,k
= 0 (6.10a)

∂J(φ0,k,βk,Zk)

∂βk
= 0 (6.10b)

∂J(φ0,k,βk,Zk)

∂Zk
= 0 , (6.10c)

where the explicit expressions for the derivatives are included in Appendix F. A root-finding al-

gorithm is used to find the φ0,k, βk, and Zk that satisfy Eqs. (6.10). To initialize the root-finding

algorithm, φ0,k−1, βk−1, and Zk−1 are used. By initializing the root-finding algorithm in this way,

if the propagation time step is chosen sufficiently small, φ0,k−1, βk−1, and Zk−1 remain close to

the local maximum, and a gradient-based root-finding algorithm will converge to φ0,k, βk, and Zk

without excessive iteration required or risk of diverging to a different root.

A number of root-finding algorithms can be used to find the φ0,k, βk, and Zk that sat-

isfy Eqs. (6.10). The Levenberg–Marquardt algorithm, a well-known optimizer, is chosen to find

these φ0,k, βk, and Zk [66, 67]. This algorithm is used to find the roots of an arbitrary system of

equations defined by g(x) = 0 by minimizing the cost function g(x)Tg(x) using x as the mini-

mization variable. The Levenberg–Marquardt algorithm was chosen to find φ0,k, βk, and Zk be-

cause the cost function will remain near the minimum if the time step is chosen sufficiently small and

φ0,k−1, βk−1, and Zk−1 are used to initialize the algorithm. Applying the Levenberg–Marquardt
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algorithm in this manner to find the roots of Eqs. (6.10) was found to be more computationally ef-

ficient than applying it to the optimization problem in Eq. (6.9) directly. In summary, the algorithm

used to propagate the Gauss-Bingham density is given by Algorithm 6.1.

Algorithm 6.1 Uncertainty Propagation of the Gauss-Bingham density.

• Given:

– A Gauss-Bingham-distributed state vector at t0, which is defined by the parameters m0,
P0, φ0,0, β0, Z0.

– System dynamics that preserve the antipodal symmetry of the quaternion as defined by
the property given by Eq. (6.2).

– A sequence of times to which to propagate the Gauss-Bingham density, t1, t2, . . ., tf .

1. Generate the sigma points and weights according to pgb(x;m0,P0,φ0,0,β0,Z0).

2. Set the time counter to k = 1

3. Propagate the sigma points from tk−1 to tk according to the given system dynamics.

4. Recover mk and Pk according to Eqs. (6.8).

5. Recover φ0,k, βk, and Zk according to the root-finding problem defined by Eq. (6.10) using
φ0,k−1 ,βk−1, and Zk−1 to initialize the root-finding algorithm.

6. If tk = tf , stop; if tk < tf , set k = k + 1 and return to step 3.

The sequence of times to which to propagate the Gauss-Bingham density, t1, t2, . . ., tf ,

should be chosen such that the time step is small enough that φ0,k−1, βk−1, and Zk−1 are close to

φ0,k, βk, and Zk in order to ensure that the root-finding algorithm converges to the proper solution

for φ0,k, βk, and Zk. The size of the time step is a compromise between computational cost and

ensuring that the root-finding algorithm converges to the correct root. Because the sigma points are

not resampled at each time step, no approximation error is introduced by choosing the time step too

small. Since the time step chosen is problem dependent, no general guidelines for choosing this

time step can be imposed.

6.3. DEMONSTRATIONS

Two demonstrations are performed to illustrate uncertainty propagation using the Gauss-

Bingham density. The first demonstration propagates the uncertainty of the planar attitude and

angular velocity of a body in R1 × S1, where the Gauss-Bingham density can be visualized on the



121

unit cylinder. This demonstration provides an intuitive example of uncertainty propagation using

the Gauss-Bingham density. The second demonstration propagates the uncertainty in the dynamic

pose (position, velocity, attitude, and angular velocity) of a chase spacecraft with respect to a target

spacecraft. This demonstration compares uncertainty propagation using the Gauss-Bingham density

to the predictor of the multiplicative extended Kalman filter and a Monte Carlo approach in order to

show the efficacy of uncertainty propagation using the Gauss-Bingham density.

6.3.1. Planar Attitude and Angular Velocity. Consider the attitude quaternion and angu-

lar velocity representing the one-dimensional attitude motion of a body undergoing rotation about

the z-axis. In this case, the state vector of the body is defined by

x =

[
q̄

ω

]
∈ S1 × R1 , (6.11)

where q̄ represents the one-dimensional attitude quaternion and ω represents the one-dimensional

angular velocity of the body. The angular velocity comprises the Gaussian-distributed portion of

the state vector, with initial mean and covariance given by

m0 = 0 and P0 = (0.01 ◦/s)2 , (6.12)

respectively. The attitude quaternion comprises the conditional Bingham-distributed portion of the

state vector and is initially uncorrelated with the angular velocity (that is, β0 = 0). The parameters

defining the orientation and concentration of the conditional Bingham-distributed portion of the

state vector are given by

φ0 = 0 and Z1,0 = −100 ,

respectively. The Gauss-Bingham density representing the initial attitude quaternion and angular

velocity of the body, as well as the sigma points generated by the unscented transform, are shown in

Figure (6.1a). The marginalized density of the initial attitude quaternion is shown in Figure (6.1c).

The body undergoes torque-free motion, that is, τB = 0. The temporal evolution of the

attitude quaternion and angular velocity are given by Eqs. (2.44) and (2.46), respectively. The

uncertainty propagation algorithm summarized in Algorithm 6.1 is used to propagate the uncertainty

of the attitude quaternion and angular velocity forward in time. A time step of one minute is used to

propagate the uncertainty, which is small enough to ensure that the root-finding algorithm converges

to the proper φ0,k, βk, and Zk at each time step. Figure (6.1) shows the evolution of Gauss-

Bingham density and sigma points representing the attitude quaternion and angular velocity of the

body, as well as the marginalized density of the attitude quaternion over time. Table 6.1 provides

the corresponding parameters of the Gauss-Bingham density over time. It is observed that the mean
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Table 6.1. Gauss-Bingham parameters over time.

Time [hours] m [◦/s] P [(◦/s)2] φ0 β Z1

0 0 (0.01)2 0 0.0000 −100

0.25 0 (0.01)2 0 0.0785 −100

1 0 (0.01)2 0 0.3142 −100

6 0 (0.01)2 0 1.8850 −100

and covariance of the angular velocity, m and P , respectively, remain constant, which is expected

because the one-dimensional angular-velocity is constant under torque-free motion.

The concentration matrix of the conditional Bingham density, Z, remains constant (within

numerical accuracy of the root finding algorithm). The mean direction of the Gauss-Bingham den-

sity, φ0, remains at zero since the mean of the angular velocity is zero for all time; however the

linear correlation parameter, β evolves in time in order to quantify the effect of the uncertain an-

gular velocity on the attitude quaternion. It is interesting to note that β evolves linearly in time

for this problem. The Gauss-Bingham density eventually wraps around its cylindrical manifold as

it is propagated, which causes the attitude quaternion to become equiprobable as time increases,

and is apparent in Figure (6.1h). This is an expected result for a body undergoing one-dimensional

attitude motion with an uncertain angular velocity; as time increases, the uncertainty in the attitude

quaternion of the body grows until the attitude quaternion becomes equiprobable.

Several important properties of the Gauss-Bingham density and its utility in uncertainty

propagation can be observed in Figure (6.1). The Gauss-Bingham density is antipodally symmetric

in the quaternion state for all time, which is a necessary property to properly quantify the un-

certainty in the attitude quaternion. Because this example quantifies the one-dimensional attitude

motion in S1×R1, 2n+1 = 5 sigma points, which are generated similarly to the traditional 2n+1

unscented transform and account for implied antipodal symmetry, are required to quantify the tem-

poral evolution of the Gauss-Bingham density. The attitude quaternion becomes equiprobable as the

uncertainty is propagated; however, the concentration parameter Z1 does not approach zero. As the

uncertainty is propagated, the attitude quaternion becomes equiprobable due to the wrapping of the

Gauss-Bingham density around the cylinder, not because the concentration parameter approaches

zero.

6.3.2. Spacecraft Relative Dynamic Pose. Now, consider an example in which a chase

spacecraft is orbiting in close proximity to a target spacecraft. The state of the chase spacecraft

is defined to be [ωT δrT δvT q̄T ]T , where q̄ and ω represent the attitude quaternion and angu-

lar velocity of the chase spacecraft, respectively, and δr and δv represent the relative position and
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(a) Initial state density (b) State density at 15 minutes

(c) Initial quaternion density (d) Quaternion density at 15 minutes

(e) State density at 1 hour (f) State density at 6 hours

(g) Quaternion density at 1 hour (h) Quaternion density at 6 hours

Figure 6.1. Gauss-Bingham uncertainty propagation for one-dimensional attitude motion.
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velocity, respectively, of the chase spacecraft with respect to the target spacecraft. The chase space-

craft is taken to have an identity inertia tensor and undergoes torque-free motion, with the temporal

evolution of the attitude quaternion and angular velocity given by Eqs. (2.44) and (2.46), respec-

tively. Because the body undergoes torque-free motion and has an identity inertia tensor, Eq. (2.46)

shows that the angular velocity is constant in time.

In order to quantify the temporal evolution of the relative position and velocity, the Clohessy-

Wiltshire equations are used [68, 69, 70]. The Clohessy-Wiltshire equations approximate the rela-

tive motion of the chase spacecraft with respect to the target spacecraft under the assumptions that

the spacecraft are in close proximity and that the target spacecraft is in a circular orbit. If these

assumptions are valid, the Clohessy-Wiltshire equations governing the temporal evolution of the

relative position and velocity are

[
δṙ

δv̇

]
=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3n2 0 0 0 2n 0

0 0 0 −2n 0 0

0 0 −n2 0 0 0


[
δr

δv

]
, (6.13)

where n is the mean motion of the target spacecraft and δr and δv are expressed in a rotating

coordinate frame with origin at the target spacecraft. The rotating coordinate frame is defined by

the position and velocity vectors of the target spacecraft. The target spacecraft is taken to be in a

geostationary orbit with an orbital radius of 42, 164 km, which results in a mean motion of the target

spacecraft of 7.2920× 10−5 rad/s.

The Gauss-Bingham density is used to quantify the uncertainty of the state vector of the

chase spacecraft. The Gaussian portion of the Gauss-Bingham density quantifies the uncertainty of

the angular velocity, relative position, and relative velocity, with initial mean and covariance given
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by

m0 =



0.5 ◦/s

0.8 ◦/s

1.0 ◦/s

0

10 km

0

0

0

0


and P0 = diag



0.12 (◦/s)2

0.12 (◦/s)2

0.12 (◦/s)2

1 m2

1 m2

1 m2

0.012 (m/s)2

0.012 (m/s)2

0.012 (m/s)2


, (6.14)

respectively, where the diagv operator constructs a diagonal matrix with entires defined by the arbi-

trary vector v. The attitude quaternion of the chase spacecraft comprises the conditional Bingham-

distributed portion of the state vector, which is taken to be initially uncorrelated with the angular

velocity, relative position, and relative velocity (that is, β0 = 0). The parameters defining the initial

orientation and concentration of the conditional Bingham-distributed portion of the state vector are

given by

φ0 = 0 and Z1,0 = Z2,0 = Z3,0 = −5000 ,

respectively.

The uncertainty propagation algorithm given in Algorithm 6.1 is used to propagate the un-

certainty of the angular velocity, relative position, relative velocity, and attitude quaternion forward

in time. A time step of fifteen seconds is used to propagate the uncertainty, which is small enough

to ensure that the root-finding algorithm converges to the proper φ0,k, βk, and Zk at each time

step. Uncertainty propagation using the Gauss-Bingham density is compared to two other methods

of uncertainty propagation to evaluate its efficacy: a Monte Carlo approach and the predictor step

of the multiplicative extended Kalman filter (MEKF) [5, 33, 71]. 100,000 Monte Carlo samples

are realized from the initial Gauss-Bingham density using an acceptance sampling method, and

are propagated forward in time to quantitatively represent the true evolution of the initial Gauss-

Bingham density.

The predictor step of the MEKF quantifies the “mean” using the attitude quaternion and

relies on a small angle assumption to project the uncertainty in the attitude quaternion into a three-

parameter attitude representation (the rotation vector is used in this analysis). Quotation marks are

used around “mean” for the MEKF to indicate that it is not the mean as defined by the first moment

of the state vector; rather, it is the “mean” quaternion as defined by one of the antipodal pair used
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to quantify the quaternion estimate. In order to find the equivalent “mean” and covariance for the

MEKF given the initial Gauss-Bingham density, it is first noted that “mean” attitude quaternion

is the identity quaternion since φ0 = 0 and β0 = 0; thus, the mean for the MEKF is given by

the concatenation of the mean given in Eq. (6.14) and the identity quaternion. The equivalent

covariance of the MEKF state vector, which is expressed using the rotation vector instead of the

attitude quaternion, is found by converting the quaternion portion of the initial Monte Carlo samples

to their equivalent rotation vector according to Eq. (2.40), and calculating their sample covariance.

Because the angular velocity, relative position, and relative velocity are initially Gaussian-

distributed, evolve according to linear dynamics, and their temporal evolution is not a function of

the attitude quaternion, they remain Gaussian-distributed for all time. Because of this, both the

Gauss-Bingham and MEKF uncertainty propagation methods perfectly capture the evolution of

the uncertainty in these states, which is presented in Figures (6.2)–(6.4) and shows the standard

deviation of each component of these states quantified by both the MEKF and the Gauss-Bingham

density over time. Furthermore, the mean of these quantities is constant for all time since their mean

is a stationary solution to Eqs. (2.46) and (6.13) under torque-free motion with an identity inertia

tensor. Figure (6.2) shows that the uncertainty of the angular velocity is constant, as expected

because the angular velocity is constant. Figure (6.3) shows that the uncertainty in the relative

position grows as time increases. Figure (6.4) shows that the uncertainty in the x- and y-components

of the relative velocity increase, while the uncertainty in the z-component decreases. This decrease

in uncertainty is expected due to the periodicity present in the Clohessy-Wiltshire equations. If the

uncertainty is propagated for an entire orbit of the target spacecraft (approximately 24 hours), it

would complete one cycle of its period.

Uncertainty propagation using the Gauss-Bingham density does not require that the system

dynamics governing the Gaussian-distributed states be linear nor that their temporal evolution be

functionally independent of the attitude quaternion. These conditions are used in this example to

simplify the presentation and analysis of the results of the uncertainty propagation. If nonlinear

system dynamics are used, or if the system dynamics are a function of the attitude quaternion, the

best-fit Gaussian density that maximizes the weighted log-likelihood of the sigma points as defined

by Eqs. (6.8) is found.

Because the attitude uncertainty quantified by the Gauss-Bingham density and Monte Carlo

samples are expressed using the attitude quaternion and the uncertainty quantified by the MEKF

predictor is expressed using the rotation vector, the uncertainty quantified by the Gauss-Bingham

density and Monte Carlo samples are converted to rotation vector space in order to make a direct

comparison. The rotation vector space is chosen for this comparison since it is a three-parameter

representation of attitude. In order to convert the uncertainty quantified by the Gauss-Bingham

density and Monte Carlo samples from the attitude quaternion representation to the rotation vector



127

Figure 6.2. Gaussian-distributed angular velocity standard deviation quantified by the Gauss-
Bingham density (black) and the predictor of the MEKF (red).

Figure 6.3. Gaussian-distributed relative position standard deviation quantified by the Gauss-
Bingham density (black) and the predictor of the MEKF (red).
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Figure 6.4. Gaussian-distributed relative velocity standard deviation quantified by the Gauss-
Bingham density (black) and the predictor of the MEKF (red).

representation, first, 100,000 samples of the Gauss-Bingham density are generated using an ac-

ceptance sampling method. The quaternion portion of the Gauss-Bingham samples, as well as the

Monte Carlo samples, are then converted to their equivalent rotation vector according to Eq. (2.40).

Expectation maximization [72] is then performed for each set of samples to fit a Gaussian mixture

density to the x-y, y-z, and x-z projections of the rotation vector portion of the respective samples.

This process is used only to visualize the uncertainty of the attitude quaternion quantified by the

Gauss-Bingham density and the Monte Carlo samples in rotation vector space and is not an element

of the uncertainty propagation using the Gauss-Bingham density. Because the MEKF quantifies the

mean and covariance of the rotation vector and not its density, the density is assumed to be Gaussian.

The attitude uncertainty quantified by the Gauss-Bingham density, Monte Carlo samples,

and MEKF at a time of five minutes are presented in Figure (6.5). Figures (6.5a) and (6.5b) show

the x-y projection of the rotation vector for 1,000 of the Monte Carlo and Gauss-Bingham samples,

as well as the Gaussian mixture densities fit to these samples to show the agreement between the

samples and the densities. These plots are repeated without the samples in Figures. (6.5c) and (6.5d)

for clarity along with the uncertainty quantified by the MEKF in red in Figure (6.5d). Figures (6.5e)

and (6.5f) and Figures. (6.5g) and (6.5h) show the y-z and x-z projections, respectively, of the
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uncertainty quantified by the Gauss-Bingham density, true density (as approximated from the Monte

Carlo samples), and MEKF. At the time of five minutes, the Gauss-Bingham density agrees very

well with the true density. The MEKF quantifies the mean and covariance of the true density as

well, which is attributed to the fact that the attitude uncertainty is still relatively small at this time.

Figure (6.6) shows the uncertainty quantified by the Gauss-Bingham density, true density

(as approximated from the Monte Carlo samples), and MEKF at a time of one hour in the same

plots as Figure (6.5). After propagating the uncertainty for one hour, the attitude uncertainty quan-

tified by the MEKF does not agree with the true uncertainty, as it has outgrown the θ ∈ [−π π)

bound on the rotation vector. This uncertainty can potentially be wrapped such that it is expressed

in the appropriate bounded region; however, this is not common practice when using the MEKF.

The underlying small angle assumption used to derive the predictor of the MEKF becomes invalid

when the attitude uncertainties become large; thus, it is not well-suited to propagate large attitude

uncertainties.

After propagating the uncertainty for one hour, the Gauss-Bingham density is still in close

agreement with the true density as is shown in Figure (6.6). This is due to the fact that the un-

certainty propagation using the Gauss-Bingham density does not rely on a small angle assumption.

The uncertainty is also quantified on the natural manifold of the attitude quaternion and the other

Euclidean states, R9 × S3, so the uncertainty cannot escape the bounded region on which it is de-

fined. Because of these reasons, uncertainty propagation using the Gauss-Bingham density remains

well-suited to quantify attitude uncertainty, even as the attitude uncertainty becomes large.

6.4. GAUSS-BINGHAM CORRECTOR

Ideally, the uncertainty propagation step presented would be used as the predictor step in a

filter along with a corrector step to incorporate measurement data into the state density; however, a

corrector using the Gauss-Bingham density has been found to be computationally intractable. The

corrector of the MDF, as defined by Eqs. (5.44) can be specialized to the Gauss-Bingham density

according to

p(xk|z1:k) =
p(zk|xk, z1:k−1)pgb(xk;m

−
k ,P

−
k ,φ−

0,k,β
−
k ,Z

−
k )∫

p(zk|ξ, z1:k−1)pgb(ξ;m
−
k ,P

−
k ,φ−

0,k,β
−
k ,Z

−
k ) dξ

{m+
k ,P

+
k ,φ+

0,k,β
+
k ,Z

+
k } = argmin

m,P ,φ0,β,Z

∫
p(xk|z1:k) ln

p(xk|z1:k)
pgb(xk;m,P ,φ0,β,Z)

dxk .

Numerical methods must be employed in order to perform this integration and minimization, which

becomes computationally intractable, even for state vectors with small dimension, because the in-

tegration must be performed inside the cost function of the minimization scheme to find m+
k , P+

k ,
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(a) True θx-θy density and samples (b) GB θx-θy density and samples

(c) True θx-θy density (d) GB and MEKF θx-θy densities

(e) True θy-θz density (f) GB and MEKF θy-θz densities

(g) True θx-θz density (h) GB and MEKF θx-θz densities

Figure 6.5. True, Gauss-Bingham, and MEKF attitude uncertainties expressed in rotation vector
space at a time of five minutes. The MEKF density is shown in red.
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(a) True θx-θy density and samples (b) GB θx-θy density and samples

(c) True θx-θy density (d) GB and MEKF θx-θy densities

(e) True θy-θz density (f) GB and MEKF θy-θz densities

(g) True θx-θz density (h) GB and MEKF θx-θz densities

Figure 6.6. True, Gauss-Bingham, and MEKF attitude uncertainties expressed in rotation vector
space at a time of one hour. The MEKF density is shown in red.
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φ+
0,k, β+

k , and Z+
k . This minimization must be performed numerically because the Gauss-Bingham

density is not a member of the general exponential family due to the dependence of the orien-

tation matrix of the Bingham density on the Gaussian-distributed random variable according to

M(x;m,P ,φ0,β). This represents a nonlinear transformation of the parameters of the Gauss-

Bingham density to specify the orientation matrix of the conditional Bingham density. This non-

linear transformation is the reason that the Gauss-Bingham density does not belong to the general

exponential family and makes analytic results using this density difficult to obtain. Because of this,

the Bingham-Gauss density, which is a member of the general exponential family and parameterized

by its first and second moments, is used to construct an approximate Bayesian filter, as is presented

in Chapter 7.
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7. THE BINGHAM–GAUSS MIXTURE FILTER

Consider the application of the MDF to the case when an assumed BGM density is used

to approximate the true state density at each step in the Bayesian recursion. The dynamical system

and measurement model under consideration are taken to be the most general forms, as defined by

Eqs. (4.1) or, equivalently, Eqs. (4.2). In this application, the MDF is not applied directly to the find

the parameters of the assumed BGM density; it is instead applied on a component-wise basis to find

the KL divergence optimal parameters of each component of the assumed BGM density from the

true evolution of the component. This is the same manner in which the MDF is applied to develop

the GMMDF filter in Section 5.5.3. Because the MDF is applied in a component-wise manner,

the resulting assumed BGM density approximating the true density is not KL divergence optimal

in general; however, this application minimizes the KL divergence on a component-wise basis and

results in a computationally tractable filter.

The BGM filter is an assumed density Bayesian filter in which the temporal and measure-

ment evolution of each component of the BGM density is approximated by its KL optimal Bingham-

Gauss density. Because the Bingham-Gauss density is an exponential family density (similar to the

Gaussian density), the KL optimal Bingham-Gauss approximation of an arbitrary density is de-

fined by Theorem 1. This result is used to approximate the resulting pdfs from Bayes’ rule and the

Chapman-Kolmogorov equation in order to make the recursion of the (now approximate) Bayes’

filter close. The predictor and corrector of the BGM filter are developed and cast in terms of the

integrals defining the parameters of the components of the approximating BGM density, which are

then approximated using quadrature-type methods.

Let the initial BGM density, which probabilistically quantifies the initial state vector, x0,

be given by

p(x0) =

L+
0∑

`=1

w
(`)+
0 pbg

(
x0;m

(`)+
x,0 ,P

(`)+
x,0 ,P

(`)+
q,0 ,P

(`)+
qx,0

)
.

Recall that the state vector augmented with the process noise is defined by x̃k−1 , [xT
k−1 wT

k−1]
T .

By augmenting the state vector with the process noise in this way, x̃k−1 is BGM-distributed (pro-

vided that the process noise is Gaussian-distributed) according to

p(x̃k−1|z1:k−1) =

L+
k−1∑
`=1

w
(`)+
k−1 pbg

(
x̃k−1; m̃

(`)+
x,k−1, P̃

(`)+
x,k−1,P

(`)+
q,k−1, P̃

(`)+
qx,k−1

)
(7.1)
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,

L+
k−1∑
`=1

w
(`)+
k−1 q(`)+

(
x̃k−1

)
, (7.2)

where

m̃
(`)+
x,k−1 =

[
m

(`)+
x,k−1

0

]
P̃

(`)+
x,k−1 =

[
P

(`)+
x,k−1 0

0 Qk−1

]
P̃

(`)+
qx,k−1 =

[
P

(`)+
qx,k−1 0

]
,

and the q(`)+
(
x̃k−1

)
notation is introduced for notational convenience. Because the augmented state

vector includes all stochastic inputs, the transition density is given by the Dirac density according

to

p(xk|x̃k−1) = δ
(
xk − f̃(x̃k−1)

)
. (7.3)

Equations (7.1) and (7.3) are now substituted into Eq. (5.1) and simplified to yield the true prior

density at tk according to

p(xk|z1:k−1) =

L+
k−1∑
`=1

w
(`)+
k−1

∫
δ
(
xk − f̃(x̃k−1)

)
q(`)+

(
x̃k−1

)
dx̃k−1 . (7.4)

If the integral in Eq. (7.4) can be calculated exactly, then the true prior density at tk−1 is known, and

no approximation is necessary. In general, it is not possible nor tractable to calculate this integral,

and the true prior density at tk−1 is approximated by a BGM density in order to yield a tractable

recursion for the Bayesian filter, in which case an approximate Bayesian filter is obtained. This

approximation is performed according to

L−
k∑

`=1

w
(`)−
k pbg

(
xk;m

(`)−
x,k ,P

(`)−
x,k ,P

(`)−
q,k ,P

(`)−
qx,k

)

≈
L+
k−1∑
`=1

w
(`)+
k−1

∫
δ
(
xk − f̃(x̃k−1)

)
q(`)+

(
x̃k−1

)
dx̃k−1 ,

where it is necessary to find the parameters defining the BGM mixture approximating the prior

density at tk, which are given by w
(`)−
k , m(`)−

x,k , P (`)−
x,k , P (`)−

q,k , and P
(`)−
qx,k for ` = 1, 2, . . . , L−

k . A

component-wise approximation of the mixture is performed according to

w
(`)−
k pbg

(
xk;m

(`)−
x,k ,P

(`)−
x,k ,P

(`)−
q,k ,P

(`)−
qx,k

)
(7.5)

≈ w
(`)+
k−1

∫
δ
(
xk − f̃(x̃k−1)

)
q(`)+

(
x̃k−1

)
dx̃k−1 ,



135

for ` = 1, 2, . . . , L−
k , which dictates that the number of components remains the same in the predic-

tor; that is, L−
k = L+

k−1. In order to obtain the weight evolution in the predictor, the zeroth moments

of both sides of Eq. (7.5) are matched, which yields the weight evolution for the predictor as

w
(`)−
k = w

(`)+
k−1 , (7.6)

for ` = 1, 2, . . . , L−
k . Equation (7.6) is substituted into Eq. (7.5) to yield the necessary approxima-

tion of each component of the prior BGM according to

pbg
(
xk;m

(`)−
x,k ,P

(`)−
x,k ,P

(`)−
q,k ,P

(`)−
qx,k

)
≈
∫

δ
(
xk − f̃(x̃k−1)

)
q(`)+

(
x̃k−1

)
dx̃k−1 .

The parameters of the components of the approximating Bingham-Gauss density are now found

such that the KL divergence of the right-hand side of this approximation with respect to its left-hand

side is minimized. Because the Bingham-Gauss density is an exponential family density, Theorem 1

states that the parameters of the KL optimal Bingham-Gauss density are given by

m
(`)−
x,k = 2

∫
S+

xk

∫
δ
(
xk − f̃(x̃k−1)

)
q(`)+

(
x̃k−1

)
dx̃k−1 dxk (7.7a)

P
(`)−
x,k = 2

∫
S+

(xk −m
(`)−
x,k )(xk −m

(`)−
x,k )T (7.7b)

×
∫

δ
(
xk − f̃(x̃k−1)

)
q(`)+

(
x̃k−1

)
dx̃k−1 dxk

P
(`)−
q,k = 2

∫
S+

q̄kq̄
T
k

∫
δ
(
xk − f̃(x̃k−1)

)
q(`)+

(
x̃k−1

)
dx̃k−1 dxk (7.7c)

±P
(`)−
qx,k = 2

∫
S+

q̄k(xk −m
(`)−
x,k )T

∫
δ
(
xk − f̃(x̃k−1)

)
q(`)+

(
x̃k−1

)
dx̃k−1 dxk , (7.7d)

where the S+ notation on the integral is used to denote that this integration is performed over the

entire support of x, but only over the support S+ for q̄. In deriving this result, the antipodal sym-

metry of the Bingham-Gauss density is exploited to express these integrals defining the parameters

of the Bingham-Gauss density over S+ (instead of over the entire hypersphere, S), which results in

the factor of two in front of the integrals. Whether +P
(`)−
qx,k or −P

(`)−
qx,k is obtained, as well as why

there is ambiguity in this parameters, is addressed at the end of this subsection for clarity.

In order to manipulate Eqs. (7.7) into a more usable form, first the nonlinear function repre-

senting the system dynamics, f̃(x̃k−1), can be partitioned into two parts representing the quaternion

and Euclidean portions of the system dynamics according to

f̃(x̃k−1) =

[
f̃q(x̃k−1)

f̃x(x̃k−1)

]
.
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Now, the order of integration in Eqs. (7.7) is reversed and the sifting property of the Dirac delta

density is exploited to yield the parameters of the `th component of the approximating BGM as

m
(`)−
x,k = 2

∫
S+

f̃x(x̃k−1)q
(`)+
(
x̃k−1

)
dx̃k−1

P
(`)−
x,k = 2

∫
S+

(
f̃x(x̃k−1)−m

(`)−
x,k

)(
f̃x(x̃k−1)−m

(`)−
x,k

)T
q(`)+

(
x̃k−1

)
dx̃k−1

P
(`)−
q,k = 2

∫
S+

f̃q(x̃k−1)f̃q(x̃k−1)
T q(`)+

(
x̃k−1

)
dx̃k−1

±P
(`)−
qx,k = 2

∫
S+

f̃q(x̃k−1)
(
f̃x(x̃k−1)−m

(`)−
x,k

)T
q(`)+

(
x̃k−1

)
dx̃k−1 .

If these integrals can be calculated analytically for a certain f̃x(x̃k−1) and/or f̃q(x̃k−1), then these

parameters are known in closed-form. In general, analytic expressions for these integrals are not

possible, so a discrete approximation of the integrals is used to approximate these parameters ac-

cording to

m
(`)−
x,k ≈ 2

N∑
i=1

w
(i)
k−1 f̃x(X̃

(i)
k−1) (7.8a)

P
(`)−
x,k ≈ 2

N∑
i=1

w
(i)
k−1

(
f̃x(X̃

(i)
k−1)−m

(`)−
x,k

)(
f̃x(X̃

(i)
k−1)−m

(`)−
x,k

)T (7.8b)

P
(`)−
q,k ≈ 2

N∑
i=1

w
(i)
k−1 f̃q(X̃

(i)
k−1)f̃q(X̃

(i)
k−1)

T (7.8c)

±P
(`)−
qx,k ≈ 2

N∑
i=1

w
(i)
k−1 f̃q(X̃

(i)
k−1)(f̃x(X̃

(i)
k−1)−m

(`)−
x,k )T , (7.8d)

for ` = 1, 2, . . . , L−
k , where w(i)

k−1 and X̃ (i)
k−1 for i = 1, 2, . . . , N are the discrete weights and points

that approximate q(`)+
(
x̃k−1

)
on the “positive” half of the unit hypersphere, S+. The unscented

transform presented in Section 6.1, quadrature, or Monte Carlo integration, among other methods,

can be used to obtain these weights and points corresponding to the Bingham-Gauss density. If

the unscented transform presented in Section 6.1 is used, it is used to generate the weights and

points corresponding to the canonical Bingham-Gauss density (which is identical to the canonical

Gauss-Bingham density), and the points are transformed according to Eqs. (3.59) to represent the

Bingham-Gauss density of interest. A quadrature scheme and an efficient acceptance sampling

method have been developed for the Bingham density in References [73] and [74], respectively.

These can be combined with Gauss-Hermite quadrature and a sampling method for the Gaussian
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density to obtain a quadrature scheme and a Monte Carlo integration method for the Bingham-Gauss

density.

The sign ambiguity in ±P
(`)−
qx,k is now resolved, which depends on whether or not the

weights and quaternion portions of the transformed points, w(i)
k−1 and f̃q(X̃

(i)
k−1) for i = 1, 2, . . . , N ,

define the portion of the Bingham-Gauss density on S+ or S−, which is apparent from Eq. (3.58).

To determine which half of the Bingham-Gauss density is quantified by these weights and points,

first, Eqs. (7.8) are evaluated assuming that +P
(`)−
qx,k is obtained. A consistency check between the

weights and points and the Bingham-Gauss densities with ±P
(`)−
qx,k is then performed. The Bingham-

Gauss density that is most consistent with the weights and points determines whether +P
(`)−
qx,k or

−P
(`)−
qx,k is actually obtained, and should be used. In this work, the weighted log-likelihood is used

as the consistency check, such that if

N∑
i=1

w
(i)
k−1 ln pbg

(
f̃(X̃ (i)

k−1);m
(`)−
x,k ,P

(`)−
x,k ,P

(`)−
q,k ,+P

(`)−
qx,k

)
is greater than

N∑
i=1

w
(i)
k−1 ln pbg

(
f̃(X̃ (i)

k−1);m
(`)−
x,k ,P

(`)−
x,k ,P

(`)−
q,k ,−P

(`)−
qx,k

)
,

then the weights and transformed points define the portion of the Bingham-Gauss density on S+

and +P
(`)−
qx,k should be used; if it is not, then the weights and transformed points define the portion

of the Bingham-Gauss density on S− and −P
(`)−
qx,k should be used.

This consistency check is illustrated in Figure (7.1), which shows the bounds used to define

which of the antipodal pair of most likely quaternions defines S1+ as red lines. The one of the

antipodal pair of most likely quaternions lying on the right-hand side of the circle defines S1+,

as denoted by the green lines. Figure (7.1a) shows the prior Bingham-Gauss density, as well as

the X̃ (i)
k−1 for i = 1, 2, . . . , 5 which approximate the half of the Bingham-Gauss density on S1+.

Figures (7.1b) and (7.1c) show the transformed sigma points, f̃(X̃ (i)
k−1), which are observed to

approximate the half of the Bingham-Gauss density on S1−. Because of this, −P
(`)−
qx,k results in

the Bingham-Gauss density that is more consistent with the transformed points, as is shown in

Figure (7.1b), and, thus, −P
(`)−
qx,k instead of +P

(`)−
qx,k is used to quantify the prior Bingham-Gauss

density.

Let the prior BGM density at tk be given by

p(xk|z1:k−1) =

L−
k∑

`=1

w
(`)−
k pbg

(
xk;m

(`)−
x,k ,P

(`)−
x,k ,P

(`)−
q,k ,P

(`)−
qx,k

)
,

L−
k∑

`=1

w
(`)−
k q(`)−(xk) ,
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(a) prior density and points (b) transformed points with −P
(`)−
qx,k (c) transformed points with +P

(`)−
qx,k

Figure 7.1. Consistency check of the propagated density (with +P
(`)−
qx,k and −P

(`)−
qx,k ) with the

transformed points.

where the q(`)−(xk) notation is introduced for notational convenience. Equation (5.2) is used to

define the true posterior density, which is given after simplification according to

p(xk|z1:k) =
∑L−

k
`=1w

(`)−
k p(zk|xk)q

(`)−(xk)∑L−
k

j=1w
(j)−
k

∫
p(zk|ξ)q(j)−(ξ) dξ

. (7.9)

If this equation can be manipulated into a usable form, then the true posterior density at tk is known,

and no approximation is necessary. In general, it is not possible nor tractable to manipulate this into

a usable form, and the true posterior density at tk is approximated by a BGM density in order to

yield a tractable recursion for the Bayesian filter, in a similar manner to the approximation made in

the predictor.

Noting the antipodal symmetry of the Bingham-Gauss density, the integral in the denomi-

nator of Eq. (7.9) can be expressed as and approximated by

k
(`)
k , 2

∫
S+

p(zk|ξ)q(`)−(ξ) dξ ≈ 2
N∑
i=1

w
(i)
k p(zk|X

(i)
k ) , (7.10)

for ` = 1, 2, . . . , L−
k , where w

(i)
k and X (i)

k for i = 1, 2, . . . , N are the discrete weights and points

that approximate q(`)−(xk) on the “positive” half of the unit hypersphere, S+. These weights and

points are obtained similarly for the corrector as they are for the predictor. Equation (7.10) is now
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substituted into Eq. (7.9) and manipulated to yield

p(xk|z1:k) =
L−
k∑

`=1

w
(`)−
k∑L−

k
j=1w

(j)−
k k

(j)
k

p(zk|xk)q
(`)−(xk) . (7.11)

This true posterior density, as defined by Eq. (7.11), is now approximated by a BGM density ac-

cording to

L+
k∑

`=1

w
(`)+
k pbg

(
xk;m

(`)+
x,k ,P

(`)+
x,k ,P

(`)+
q,k ,P

(`)+
qx,k

)
≈

L−
k∑

`=1

w
(`)−
k∑L−

k
j=1w

(j)−
k k

(j)
k

p(zk|xk)q
(`)−(xk) ,

where it is necessary to find the parameters defining the BGM mixture approximating the posterior

density at tk, which are given by w
(`)+
k , m(`)+

x,k , P (`)+
x,k , P (`)+

q,k , and P
(`)+
qx,k for ` = 1, 2, . . . , L+

k . A

component-wise approximation of the mixture is used according to

w
(`)+
k pbg

(
xk;m

(`)+
x,k ,P

(`)+
x,k ,P

(`)+
q,k ,P

(`)+
qx,k

)
≈

w
(`)−
k∑L−

k
j=1w

(j)−
k k

(j)
k

p(zk|xk)q
(`)−(xk) , (7.12)

for ` = 1, 2, . . . , L+
k , which dictates that the number of components remains the same in the correc-

tor; that is L+
k = L−

k . In order to obtain the weight update in the corrector, the zeroth moments of

both sides of Eq. (7.12) are matched, which yields the weight update for the corrector as

w
(`)+
k =

w
(`)−
k∑L−

k
j=1w

(j)−
k k

(j)
k

2

∫
S+

p(zk|ξ)q(`)−(ξ) dξ (7.13)

=
w

(`)−
k k

(`)
k∑L−

k
j=1w

(j)−
k k

(j)
k

, (7.14)

for ` = 1, 2, . . . , L+
k , which is observed to be a similar weight update as is used by the corrector of

the GMKF, GMEKF, quadrature-based GM Kalman filters, and the GMMDF, which all update the

weights according to the relative likelihood that the measurement originated from the `th component

of the mixture density; however, this relative likelihood is approximated differently between the

filters. Equation (7.13) is now substituted into Eq. (7.12) and simplified to yield the necessary

approximation of each component according to

pbg
(
xk;m

(`)+
x,k ,P

(`)+
x,k ,P

(`)+
q,k ,P

(`)+
qx,k

)
≈ p(zk|xk)q

(`)−(xk)

k
(`)
k

.
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The parameters of the components of the approximating Bingham-Gauss mixture density are now

found such that the KL divergence of the right-hand side of this approximation with respect to its

left-hand side is minimized. Because the Bingham-Gauss density is an exponential family density,

Theorem 1 states that the parameters of the KL optimal Bingham-Gauss density are given by

m
(`)+
x,k =

2

k
(`)
k

∫
S+

xkp(zk|xk)q
(`)−(xk) dxk

P
(`)+
x,k =

2

k
(`)
k

∫
S+

(xk −m
(`)−
x,k )(xk −m

(`)−
x,k )T p(zk|xk)q

(`)−(xk) dxk

P
(`)+
q,k =

2

k
(`)
k

∫
S+

q̄kq̄
T
k p(zk|xk)q

(`)−(xk) dxk

±P
(`)+
qx,k =

2

k
(`)
k

∫
S+

q̄k(xk −m
(`)−
x,k )T p(zk|xk)q

(`)−(xk) dxk ,

where the factor of two stems from exploiting the antipodal symmetry of the Bingham-Gauss den-

sity. If these integrals can be calculated analytically for a certain p(zk|xk), then these parameters

are known in closed form. In general, analytic expressions for these integrals are not possible, so

quadrature approximation of the integrals is used to approximate these parameters according to

m
(`)+
x,k ≈ 2

k
(`)
k

N∑
i=1

w
(i)
k X (i)

x,k p(zk|X
(i)
k )

P
(`)+
x,k ≈ 2

k
(`)
k

N∑
i=1

w
(i)
k

(
X (i)

x,k −m
(`)−
x,k

)(
X (i)

x,k −m
(`)−
x,k

)T
p(zk|X

(i)
k )

P
(`)+
q,k ≈ 2

k
(`)
k

N∑
i=1

w
(i)
k X (i)

q,k X
(i)
q,k

T
p(zk|X

(i)
k )

±P
(`)+
qx,k ≈ 2

k
(`)
k

N∑
i=1

w
(i)
k X (i)

q,k

(
X (i)

x,k −m
(`)−
x,k

)T
p(zk|X

(i)
k ) ,

for ` = 1, 2, . . . , L+
k , where w(i)

k−1 and X (i)
k−1 for i = 1, 2, . . . , N are the weights and points defined

in Eq. (7.10), and X (i)
q,k and X (i)

x,k define the quaternion and Euclidean portions of X (i)
k , respectively.

These weights and points can be selected using the unscented transform presented in Section 6.1, a

quadrature rule, or Monte Carlo methods, among other methods, similarly to how the weights and

points are selected for the predictor.

The sign ambiguity in ±P
(`)+
qx,k is now resolved in a similar manner to how it is resolved in

the predictor. This is performed as a consistency check between the “weights,” given by w
(i)
k p(zk|X

(i)
k ),

and points, given by X (i)
k , for i = 1, 2, . . . , N , and the Bingham-Gauss densities with ±P

(`)+
qx,k . The
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weighted log-likelihood is used as the consistency check, such that if

N∑
i=1

w
(i)
k p(zk|X

(i)
k ) ln pbg

(
X (i)

k ;m
(`)+
x,k ,P

(`)+
x,k ,P

(`)+
q,k ,+P

(`)+
qx,k

)
is greater than

N∑
i=1

w
(i)
k p(zk|X

(i)
k ) ln pbg

(
X (i)

k ;m
(`)+
x,k ,P

(`)+
x,k ,P

(`)+
q,k ,−P

(`)+
qx,k

)
,

then +P
(`)−
qx,k should be used to define the posterior Bingham-Gauss density; if it is not, then −P

(`)−
qx,k

should be used.

While the number of components in the corrector strictly remains the same, significant com-

putational savings can be obtained by removing components with sufficiently small weights after

the corrector is applied. These components are removed, and the weights of the remaining compo-

nents are renormalized to ensure that they sum to unity. While some approximation error is incurred

in removing these components, this error is typically negligible if the weights are forced to be suffi-

ciently small before removing a component, and the computational savings typically outweighs this

approximation error.
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8. APPLICATIONS

In order to evaluate the efficacy of the Bingham-Gauss mixture filter, it is simulated to es-

timate the state of three systems: The one-dimensional attitude quaternion and angular velocity of

a body, the two-dimensional relative orbit and one-dimensional attitude of an inspector spacecraft

approaching a target spacecraft, and the three-dimensional attitude and angular velocity of a space-

craft in low-Earth orbit. The BGM filter is applied to the first system in order to compare it to a

multiplicative Kalman filter using a Monte Carlo analysis in order to perform a direct comparison.

The BGM filter is applied to the second system to illustrate its efficacy in estimating the planar

dynamic pose (two-dimensional relative position and velocity and one-dimensional attitude and an-

gular velocity) of a vehicle given nonlinear measurements of the range between the inspector and

target spacecraft and the angle from the inspector to the target spacecraft, taken in the inspector’s

body frame.

8.1. ONE-DIMENSIONAL ATTITUDE MOTION

In order to compare the BGM filter to the MEKF, both filters are applied to the one-

dimensional attitude and angular velocity of a body. The state vector quantifying this motion is

defined by

x =

[
q̄

ω

]
∈ S1 × R1 ,

where q̄ , [qz q]T is the attitude quaternion quantifying the one-dimensional attitude of the

body and ω is its angular velocity. Assume that no external torques act on the body, such that

the equations-of-motion governing the temporal evolution of the state vector are given by

ẋ =

q̇zq̇
ω̇

 =


1
2ωq

−1
2ωqz

0

 ,

The initial state vector is taken to be Bingham-Gauss distributed with parameters defined by

mx,0 = 0

Px,0 = 0.12 (◦/s)2
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Pq,0 = diag
[
0.5 0.5

]
Pqx,0 = 0 ,

which represents an equiprobable initial attitude quaternion (that is, no prior attitude knowledge is

present) that is uncorrelated with the angular velocity. This initial single-component BGM density

is shown in Figure (8.1a), which illustrates that the initial density represents an equiprobable quater-

nion and a Gaussian-distributed angular velocity, as expected. It is not necessary to implement a

multiple-component BGM density in this case to avoid potential discontinuity issues, as illustrated

in Figure (3.11), even though the density wraps around the cylinder. This is because the attitude

quaternion is equiprobable; thus, the single component BGM density is equal on both sides of the

boundary defining the split.

Assume that a sensor on the body measures the inertial x-direction in its body frame every

60 seconds, beginning at t = 0, according to

zk = atan2(yB, xB) + vk , (8.1)

where xB and yB are the inertial x- and y-directions expressed in the body frame, respectively, and

vk is wrapped-normal-distributed [9] noise with a standard deviation parameter of 3◦. The wrapped

normal density for a scalar random variable is defined by

pwn(θ; θ̂, P ) =

∞∑
k=−∞

pg(θ + 2πk; θ̂, P ) , (8.2)

where θ̂ and P represent the directional “mean” and “covariance” of the random variable θ, and

the summation is truncated when pg(x + 2πk;m,P ) is effectively zero in practical applications.

Equation (8.2) shows that the wrapped normal density represents the Gaussian density wrapped

infinitely around the unit circle, which is where the “wrapped normal” nomenclature derives. The

vectors xB and yB are related to the attitude quaternion according to[
xB

yB

]
=

[
cos θ(q̄) sin θ(q̄)

− sin θ(q̄) cos θ(q̄)

][
1

0

]
=

[
cos θ(q̄)

− sin θ(q̄)

]
, (8.3)

where θ(q̄) is the heading angle of the spacecraft parameterized by the attitude quaternion. Noting

Eqs. (8.1) and (8.3), the measurement likelihood function is given by

p(zk|xk) = pwn(zk; atan2(− sin θ(q̄k), cos θ(q̄k)), (3
◦)2) ,
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(a) initial single-component Bingham-Gauss density (b) corrected density at t = 0

(c) propagated density at t = 60 seconds (d) corrected density at t = 60 seconds

Figure 8.1. Single-component BGM density quantified by the BGM filter.
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where special attention is payed to the units used and the summation is performed for k = −1

to k = 1 to ensure that the periodicity of the atan2(− sin θ(q̄k), cos θ(q̄k)) is effectively covered.

If the measurement noise were larger, the summation could be truncated at a larger index; how-

ever, because the measurement noise is relatively small, k = −1 to k = 1 is sufficient because

the probability of zk is effectively zero when a distance of 2π away from the conditional mean,

atan2(− sin θ(q̄k), cos θ(q̄k)).

The BGM filter is implemented in order to quantify the temporal and measurement evolu-

tion of the single-component BGM density and observe its performance. The quadrature weights

and points used in the predictor of the BGM filter are generated using the unscented transform pre-

sented in Section 6.1. The unscented transform is first performed for the canonical Bingham-Gauss

density (which is identical to the canonical Gauss-Bingham density), and the points are then trans-

formed according to Eqs. (3.59) in order to represent a component of the BGM density. In order

to generate the quadrature weights and points for the corrector of the BGM filter, the Monte Carlo

sampling technique in Reference [74] is used for the Bingham portion of the BGM component and

a standard technique is used to sample the Gaussian portion of the BGM component. 10, 000 Monte

Carlo points are used in the corrector, which is found to provide sufficient accuracy.

The corrected density at t = 0, as well as the predicted and corrected densities at t = 60

seconds, are shown in Figure (8.1), along with the initial density. It is observed that, after the first

measurement is processed at t = 0, the corrected density, which is shown in Figure (8.1b), is ob-

served to have gained information in the attitude quaternion state, as expected due to the correlation

between the bearing measurement and the attitude quaternion; however, no correlation between the

attitude quaternion and the angular velocity exists, which is apparent because the density is not

“tilted” on the cylinder. Furthermore, it is observed that the corrected density has evolved such

that it is effectively zero along the splitting boundary between the two halves of the density. After

the density is propagated forward in time for 60 seconds, the attitude quaternion and the angular

velocity are correlated, as expected due to the dynamical relationship between these quantities. An-

other measurement is processed at t = 60 seconds to yield the corrected density at this time. It

is observed that, after processing this measurement, the uncertainty in the attitude quaternion has

decreased, as expected. Because the attitude quaternion and angular velocity are correlated before

the corrector is applied, the measurement also decreases the uncertainty in the angular velocity as

well. This trend will continue as the predictor/corrector recursion continues, which allows both the

attitude quaternion and angular velocity to be estimated given measurements of the bearing of the

vehicle.

In order to observe the performance of the BGM filter over a longer time span, the error in

the heading angle representation and the angular velocity, as well as their covariance, are calculated

over time by sampling the single-component BGM density 10, 000 times, The “average” quaternion
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is then found according to Reference [53] and is assumed to be the estimated quaternion. The

quaternion representation of the attitude error of each sample is then found and is subsequently

converted to its corresponding heading angle. The error covariance of the heading angle and angular

velocity are then found in order to calculate the 3σ intervals of error. The error in the heading

angle representation and the angular velocity, as well as their covariance, are shown over time in

Figure (8.2), alongside the same values as quantified by a multiplicative Kalman filter, which is

implemented for comparison.

The multiplicative Kalman filter implemented is a quadrature-based multiplicative Kalman

filter. In order to implement the multiplicative Kalman filter in as similar manner to the BGM filter

as possible, the predictor of the MUKF, which uses the unscented transform, is implemented along

with a Monte Carlo integration-based corrector. This corrector assumes that the error covariance

quantified by the multiplicative Kalman filter represents a zero-mean Gaussian density in order to

realize the Monte Carlo points in the error space necessary to implement Eq. (4.39). 10, 000 Monte

Carlo points are used in this corrector as well to ensure the filters are compared on an equal basis.

The initial estimated state and its error covariance are found for the MEKF by sampling the initial

BGM density 10, 000 times, finding the average quaternion [53] and angular velocity, calculating

the deviation of each sample expressed using the attitude quaternion, converting the deviations to

the single-parameter space using the small angle assumption, and collecting the covariance of the

deviations. The small angle assumption is used in this process because it is fundamental to the error

representation used by a multiplicative Kalman filter.

Observation of Figure (8.2) shows that the estimated heading angle and angular velocity

quantified by the BGM filter and multiplicative Kalman filter are very different initially, but con-

verge to very similar solutions over time. The BGM filter is able to converge more quickly on its

estimate, which is evident due to the fact that its 3σ interval is smaller than that of the multiplicative

Kalman filter, and is most apparent in the zero to ten minute window. In order to check the statistical

consistency of both filters, 100 Monte Carlo trials of each filter are run in order to calculate their

Monte Carlo error covariance. The results of this Monte Carlo analysis are shown in Figures. (8.3)

and (8.4) for the initial and long-term periods, respectively. Figure (8.3) shows that the BGM filter

is more statistically consistent than the multiplicative Kalman filter during the initial period, which

is when the attitude uncertainties are large. This is most apparent in the zero to one minute range,

which is after the first measurement is processed. The single-run and Monte Carlo error covariance

of the BGM filter are very close in this range; however, these quantities are not consistent for the

multiplicative Kalman filter. It is also observed that the single-run error covariance of the multiplica-

tive Kalman filter is typically smaller than its Monte Carlo error covariance, which is potentially

troublesome because it reflects an overconfidence in the estimated state. Because the measurements

are nonlinear functions of the state, measurement underweighting [75] can be implemented in order
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(a) heading angle

(b) angular velocity

Figure 8.2. Error (dashed lines) and 3σ intervals (solid lines) of the BGM filter and the multiplicative
Kalman filter.
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to mitigate this over-convergence of the multiplicative Kalman filter when the attitude uncertainty

is large with respect to the measurement uncertainty. In this case, the underweighting factor can be

chosen in order to make the single-run error covariance of the multiplicative Kalman filter consis-

tent with its Monte Carlo error covariance (which makes the multiplicative Kalman filter statistically

consistent). In this case, the state error uncertainty quantified by the multiplicative Kalman filter is

representative of the true state error uncertainty; however, this uncertainty is much larger than that

of the BGM filter, which shows that the BGM filter more accurately estimates the state than the

multiplicative Kalman filter does, even if measurement underweighting is implemented.

The single-run and Monte Carlo angular velocity error covariance are very similar after

processing the first measurement at t = 0, but not after processing the second measurement at

t = 1 minute; this is because no correlation is initially present between the attitude and angular

velocity in either filter, and thus, no significant updates (only changes due to numeric artifacts) are

applied to the angular velocity when processing the first measurement. After processing the first

measurement, correlation between the attitude and angular velocity are quantified by both filters,

and, therefore, the second measurement updates the angular velocity. The BGM filter quantifies

this correlation more accurately, which is apparent because the single-run and Monte Carlo error

covariances match very closely for the BGM filter, but not for the multiplicative Kalman filter, after

the second measurement is processed. Figure (8.4) shows that the filters converge to the same, and

statistically consistent, state estimates as time increases, which is expected because the attitude un-

certainty becomes progressively smaller and the small uncertainty assumption of the multiplicative

Kalman filter incurs less error.

8.2. PLANAR DYNAMIC POSE

Consider the two-dimensional relative orbit and one-dimensional attitude, which quantifies

the planar dynamic pose, of an inspector spacecraft approaching a target spacecraft. In this case, the

state vector representing the planar dynamic pose of the inspector spacecraft is given by

x =

[
q̄

x

]
=


q̄

r

v

ω

 ∈ S1 × R5 ,

where q̄ , [qz q]T is the attitude quaternion quantifying the one-dimensional attitude of the vehicle

with respect to the Hill frame in which the relative motion of the inspector spacecraft is quanti-

fied [70], r , [rx ry]
T and v , [vx vy]

T are the relative position and velocity, respectively, of the
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(a) vehicle heading angle

(b) angular velocity

Figure 8.3. BGM filter and multiplicative Kalman filter initial period single-run (dashed lines) and
Monte Carlo (solid lines) error standard deviation.
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(a) vehicle heading angle

(b) angular velocity

Figure 8.4. BGM filter and multiplicative Kalman filter single-run (dashed lines) and Monte Carlo
(solid lines) error standard deviation.
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inspector spacecraft with respect to the chief spacecraft, and ω is the angular velocity of the space-

craft with respect to the Hill frame. Assuming no external torques act on the inspector spacecraft,

the target spacecraft is in a circular orbit Earth orbit of 500 km, and that only two-body gravitational

acceleration acts on the spacecraft, the equations of motion governing the temporal evolution of the

state vector are given by [5, 70]

ẋ =



q̇z

q̇

ṙx

ṙy

v̇x

v̇y

ω̇


=



1
2ωq

−1
2ωqz

vx

vy

2nvy + 3n2rx

−2nvx

0


,

where n = 0.0634 ◦/s is the mean motion of the target spacecraft. The initial state vector is taken

to be Bingham-Gauss distributed with parameters defined by

mx,0 =
[
0 1000 m 0.5534 m/s 0 0

]T
Px,0 = diag

[
102 m2 102 m2 0.12 (m/s)2 0.12 (m/s)2 0.12 (◦/s)2

]T
Pq,0 = diag

[
0.5 0.5

]
Pqx,0 = 0 ,

which represents an equiprobable initial attitude quaternion (that is, no prior attitude knowledge is

available) that is uncorrelated with the Gaussian states. The mean of the position and velocity define

a two-by-one ellipse of the inspector spacecraft about the target spacecraft, and their uncertainty

represents approximately what would be expected from a GPS solution of these quantities. The

initial angular velocity of the inspector spacecraft is assumed zero-mean with a 0.1 ◦/s standard

deviation.

Now, assume that the spacecraft no longer uses GPS to navigate and instead switches to a

sensor that measures the range and angle in the spacecraft frame to the target spacecraft, located at

the origin of the Hill frame, at a frequency of once per minute. This sensor measures the range and

angle in the body frame from the inspector spacecraft to the target spacecraft according to

zk =

√rBx
2 + rBy

2 + v1,k

atan2(rBy , r
B
x ) + v2,k

 ,
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where v1,k is zero mean Gaussian-distributed noise with a standard deviation of 3 m, and v2,k is

wrapped-normal-distributed noise with a standard deviation parameter of 2◦. rBx and rBy represent

the components of the position vector expressed in the spacecraft frame, which is related to the

attitude quaternion and inertial position vector according to[
rBx

rBy

]
=

[
cos θ(q̄) sin θ(q̄)

− sin θ(q̄) cos θ(q̄)

][
rx

ry

]
,

where θ(q̄) is the heading angle of the spacecraft parameterized by the attitude quaternion, which

shows that the attitude measurement depends not only on the attitude quaternion but also on the

relative position of the inspector spacecraft.

Two BGM filters are implemented in order to observe and compare their performance. The

first filter is the BGM filter operating on the initial Bingham-Gauss density, which is a single com-

ponent BGM density, directly. The second filter is the BGM filter which is initialized with BGM

density that approximates the initial Bingham-Gauss density with 11 components in the Bingham

portion of the density, 11 components in the position channels of the Gaussian density, and a sin-

gle component in the velocity and angular velocity channels of the Gaussian density. A ζ value of

−22, which defines the size of the Bingham components in the Bingham-Gauss mixture according

to Eq. (3.45), is found to provide acceptably small Bingham components without incurring unac-

ceptably large approximation error. The Bingham portion of the density and the position channels

of the Gaussian portion of the density are approximated with mixtures because they are the states

on which the measurements directly depend; by using mixtures in these states, fewer points can be

used in the necessary quadrature approximations since the components of the mixture are smaller

than the single component that they approximate.

In order to generate the quadrature weights and points for the predictor of the BGM fil-

ter, the unscented transform presented in Section 6.1 is used. In order to generate the quadrature

weights and points for the corrector of the BGM filter, the Monte Carlo sampling technique in Ref-

erence [74] is used for the Bingham portion of the BGM component, and a standard technique is

used to sample the Gaussian portion of the BGM component.Both the unscented transform and the

Monte Carlo techniques are used to sample the canonical Bingham-Gauss density (while ensuring

that only samples in S1+ are generated), and then the samples are converted to the desired Bingham-

Gauss density according to Eqs. (3.59). 100, 000 samples are used in the Monte Carlo integration

for the corrector of the single-component BGM filter, and 1, 000 samples per component are used

for the multiple-component filter. Components are removed from the mixture if their weights are

smaller than 10−12. In order to quantify the uncertainty represented by each filter, each BGM den-

sity is sampled at the prior and posterior of each time step 10, 000 times, the error of each sample is

calculated, the attitude error portion of the samples is converted to the heading angle representation
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of the attitude error, and the 3σ intervals of the heading angle, relative position, relative velocity,

and angular velocity are calculated.

The results of both filters are shown for the first 20 minutes of the simulation in Figure (8.5)

in order to observe their transient performance. It is observed that the performance of both filters

is similar, with the apparent small differences between the filters due to a few reasons. First of all,

the error incurred in the approximation of the integrals used in the correctors between the filters is

slightly different since the single component filter uses 100, 000 points in the integral approxima-

tion, and the mixture filter uses 1, 000 points per component in the integral approximation. While

the overall computational effort required by both filters is roughly the same at the beginning of

the simulation, fewer points are required for the integral approximation in each component by the

mixture filter. As the simulation progresses and components that do not maintain sufficient agree-

ment with the measurement data are trimmed, the mixture filter requires less computation than the

single component filter. Second, the BGM filter is capable of quantifying non-Bingham-Gauss den-

sities, which typically occur due to nonlinear system dynamics and/or measurements. The single

component filter makes the best Bingham-Gauss approximation (in the KL sense) of these non-

Bingham-Gauss densities, which, in general, will incur more approximation error in quantifying the

true state density than the mixture filter will. Finally, sampling the densities to discretely calculate

the error and 3σ intervals of the single component and mixture densities quantified by the filter

introduces some error in these values as well. This sampling to calculate these values is only used

for a straightforward visualization of the filter performance; it is not integral to the BGM filter. The

initial disagreement in the attitude state between the filters is an artifact of this sampling because the

initial attitude quaternion is equiprobable. Because of this, the estimated attitude quaternion quan-

tified by this sampling technique is arbitrary and therefore is not meaningful. After measurement

data is incorporated into the filters, the attitude error and its 3σ interval are very similar.

Figure (8.6) show the errors and 3σ intervals of the filters for 150 minutes in order to

observe their steady state behaviors. Both filters perform very similarly to each other over this time

interval as well, with slight differences between the filters due to the aforementioned reasons in the

discussion of Figure (8.5). It is interesting to note that, during the beginning of the simulation, when

the uncertainty in the relative position of the inspector spacecraft is still high, the attitude uncertainty

remains relatively high as well. This is because the angle to the target spacecraft measured by the

inspector spacecraft in the body frame depends on the relative position of the inspector spacecraft.

Because of this, as the uncertainty in the relative position of the inspector spacecraft decreases,

the attitude uncertainty decreases as well. It is also interesting to note that, during the beginning

of the simulation, the uncertainty in the relative position is exchanged between the rx and ry over

time. This is because range measurements between the spacecraft are taken, and measurement

information can only be gained into the position density in the direction of this range. As the range
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Figure 8.5. Error (dashed lines) and 3σ interval (solid lines) after initialization for the single-
component (red) and multiple-component (black) BGM filters.
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direction changes, this causes the uncertainty in rx and ry to grow and shrink at different times.

After sufficient time, the measurement data incorporated into the state density, which is constrained

in time by the system dynamics, cause the uncertainty in both rx and ry to decrease, as is observed

in Figure (8.6).

8.3. INERTIAL MEASUREMENT UNIT-BASED DYNAMIC POSE ESTIMATION

Consider the case when a small spacecraft in low-Earth orbit uses an inertial measurement

unit (IMU), magnetometer, and GPS receiver to determine its dynamic pose. The IMU measures

the angular velocity and non-gravitational acceleration of the spacecraft, which are used to propa-

gate the state (and its uncertainty) forward in time. The GPS receiver is assumed to provide direct

measurements of the spacecraft’s position, which is ultimately obtained from processing the pseu-

dorange measurements to the GPS spacecraft in view. The magnetometer measures the Earth’s

magnetic field over time to resolve the three-dimensional attitude of the spacecraft. The measure-

ments of the Earth’s magnetic field provide information about the direction of the magnetic field,

but do not provide any information regarding the rotation about the axis defined by this direction.

If a magnetometer measurement is taken at a single time, the attitude of the spacecraft is unobserv-

able because the rotation of the spacecraft about the magnetic field direction cannot be resolved;

however, taking measurements of the Earth’s magnetic field over time can resolve this ambiguity

because the attitude of the spacecraft over time is constrained according to its dynamic model. By

measuring the angular velocity (and non-gravitational acceleration) of the vehicle and using these

measurements to propagate the probabilistic state of the vehicle through time, a three-axis attitude

solution of the spacecraft can typically be obtained.

The state vector of the spacecraft is defined to be

x =

q̄r
v

 ∈ S3 × R6 ,

where q̄ represents the attitude quaternion defining the attitude of the spacecraft, which is defined as

the rotation from the Earth-centered inertial (ECI) coordinate-frame to the spacecraft body frame,

and r and v are defined to be the position and velocity of the spacecraft, respectively, which are

expressed in the ECI frame. The angular velocity is not included in the state vector, even though it

is typically part of the state vector quantifying dynamic pose, because it is measured by the IMU.

If a model-based approach (as opposed to the IMU-based approach) were used, then it would be

necessary to include the angular velocity in the state vector.
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Figure 8.6. Error (dashed lines) and 3σ interval (solid lines) after initialization for the single-
component (red) and multiple-component (black) BGM filters.
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The measurements of the angular velocity and acceleration of the spacecraft, which are

provided by the three-axis gyroscope and accelerometer within the IMU, are assumed to be cor-

rupted only by zero-mean white noise which produces a measurement of the angular velocity and

acceleration of the vehicle discretely at time tk according to

ωm,k = ωk +wg,k (8.4)

am,k = ang,k +wa,k . (8.5)

In the gyroscope model, ωm,k is the measured angular velocity from the gyroscope, ωk is the true

angular velocity of the vehicle, and wg,k is a zero-mean, Gaussian-distributed, white-noise sequence

of covariance Qg,k. In the accelerometer model, am,k is the measured non-gravitational acceleration

from the accelerometer, ang,k is the true acceleration acting on the spacecraft that is not due to

gravity, and wa,k is a zero-mean, Gaussian-distributed, white-noise sequence of covariance Qa,k.

The covariances of the white-noise sequences in the IMU model are chosen to model the Epson

M-G3641 IMU. The relevant specifications from this IMU are summarized in Table 8.1. These IMU

specifications are converted into the covariances of the underlying white-noise sequences according

to [76]

Qg,k =

[
0.09 ◦√

hr√
∆tk

]2
I3 =

[
0.0015 ◦√

s√
∆tk

]2
I3

Qa,k =

0.025m/s√
hr√

∆tk

2

I3 =

4.167× 10−4m/s√
s√

∆tk

2

I3 ,

where ∆tk = tk − tk−1 is the sampling time of the IMU and I3 represents the identity matrix of

dimension three. The IMU is assumed to provide measurements of the acceleration and angular

velocity at a frequency of 10 Hz, which defines ∆tk as 0.1 s.

Table 8.1. Specifications for the Epson M-G364 IMU.

Angular Random Walk 0.09 ◦√
hr

Velocity Random Walk 0.025m/s√
hr

A three-axis magnetometer is used to measure the Earth’s magnetic field vector expressed

in the spacecraft’s body frame (which is assumed coincident with the magnetometer frame) at a

frequency of 0.5 Hz. This magnetic field measurement is assumed to be corrupted by zero mean,
1http://global.epson.com/products and drivers/sensing system/imu/g364/
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Gaussian-distributed noise according to

zB,k = T (q̄k)Bk(rk) + vB,k ,

where Bk(rk) represents the Earth’s magnetic field vector expressed in the ECI frame, which is

functionally dependent on the position of the spacecraft, T (q̄k) represents the attitude matrix pa-

rameterized by the attitude quaternion, and vB,k is zero-mean, Gaussian-distributed noise with co-

variance matrix defined by

RB,k = (1667 nT)2I3 ,

which is chosen to model the Billingsley TFM100G2 magnetometer2. The magnetic field vec-

tor, Bk(rk), is calculated from the 2015 World Magnetic Model3 [77] for both the filter and the

measurement synthesis. A transformation between the ECI and Earth-centered Earth-fixed (ECEF)

coordinate frames [78] is used to express the magnetic field vector in the ECI frame. The simulation

is assumed to start at 19:00 UTC on October 19th, 2016, which defines the secular effects in the

World Magnetic Model and the orientation of the ECEF frame with respect to the ECI frame.

A GPS receiver is assumed to provide measurements of the position of the spacecraft at a

frequency of 0.5 Hz, and at the same times as the magnetometer, according to

zr,k = rk + vr,k ,

where vr,k is zero-mean, Gaussian-distributed noise that is independent of vB,k with covariance

matrix defined by

Rr,k = (10 m)2I3 .

This position measurement assumes that the measured pseudoranges between the spacecraft and

the GPS spacecraft in view of the GPS antenna are preprocessed to provide a “measurement” of

the position of the spacecraft. These pseudoranges can be processed into the BGM directly instead

of processing the resolved position “measurement,” if desired. The resolved position measurement

is processed in this application, since the motivation is to show the applicability of the single-

component BGM filter to estimate the dynamic pose of a spacecraft and not to analyze different

methods of processing GPS data. The position measurements are generated by adding Gaussian-

distributed noise to the true position of the spacecraft. Noting the measurement models for the
2http://magnetometer.com/products/fluxgate-magnetometers/tfm100g2/
3MATLAB’s implementation of the 2015 World Magnetic Model, “wrldmag,” was used in this analysis.
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magnetometer and GPS receiver, the measurement likelihood is given by

p(zk|xk) = pg(zB,k;T (q̄k)Bk(rk),RB,k)pg(zr,k; rk,Rr,k) ,

where zk , [zT
B,k zT

r,k]
T .

Assume that an initial single-component BGM density probabilistically represents the atti-

tude quaternion and gyroscope bias according to

mx,0 =
[
6878.137 km 0 0 0 6.59 km/s 3.81 km/s

]T
Px,0 = diag

[
202 m2 202 m2 202 m2 0.12 (m/s)2 0.12 (m/s)2 0.12 (m/s)2

]T
Pq,0 = diag

[
0.001 0.001 0.001 0.997

]
Pqx,0 = 0 ,

where mx,0 corresponds to a 500 km altitude circular orbit inclined at 30◦ and Pq,0 corresponds

to a most-likely quaternion of [0 0 0 1]T and an approximate 10◦ 3σ interval along each of the

body axes. The BGM filter is used to quantify the temporal and measurement evolution of this

single-component BGM density.

The predictor of the BGM filter uses the unscented transform presented in Section 6.1 to

generate the quadrature weights and points. Each predictor step of the BGM filter augments the

state vector with the process noise corrupting the angular velocity and acceleration measurements

from the IMU, according to Eqs. (8.4), in order to quantify its effect on the temporal evolution of

the parameters. Furthermore, the predictor runs at a frequency of 10 Hz, the same frequency that

the IMU returns measurements of the angular velocity of the spacecraft. In order to reduce the error

present in the single-component BGM filter that accumulates due to the repeated approximations of

the true state density at each step in the Bayesian recursion, artificial process noise is added to the

accelerometer measurement model used by the filter according to

am,k = ang,k +wa,k +wtune,k , (8.6)

where wtune,k is zero-mean, Gaussian-distributed process noise of covariance

Qtune,k = 0.001
(m/s2)2

s
∆tkI .

This level of “tuning” process noise is found to provide a stable filter without over convergence over

time due to approximation error.
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The corrector of the BGM filter uses the Monte Carlo sampling technique in Reference [74]

for the Bingham portion of the BGM component, and a standard sampling technique for the Gaus-

sian portion of the BGM component in order to generate the quadrature weights and points. Both

the unscented transform and the Monte Carlo techniques are used to sample the canonical Bingham-

Gauss density (while ensuring that only samples in S3+ are generated), and then the samples are

converted to the desired Bingham-Gauss density according to Eqs. (3.59). 100, 000 samples are

used in the Monte Carlo integration for the corrector of the single-component BGM filter.

In order to quantify the uncertainty represented by each filter, each BGM density is sampled

at the prior and posterior of each time step 100, 000 times, the error of each sample is calculated, the

attitude error portion of the samples is converted to the heading angle representation of the attitude

error, and the 3σ intervals of the attitude, position, and velocity error are calculated.

The true initial attitude, position, and velocity are realized from the initial single-component

BGM density. The initial angular velocity of the spacecraft is taken to be

ω0 =

1
◦

0

0

 ,

and the spacecraft is assumed to have an identity inertia tensor and undergo torque-free motion. The

true orbit of the spacecraft is propagated according to two-body dynamics.

The performance of the single-component BGM filter is shown in Figures (8.7)–(8.9) for the

attitude, position, and velocity error, respectively. It is observed that the attitude uncertainty about

the body-fixed x-axis decreases more quickly than the attitude uncertainty about the body-fixed

y- and z-axes, which occurs because the spacecraft is rotating about the x-axis. Furthermore, it is

observed that the uncertainty in the y- and z-axes of the attitude error fluctuates between the axes, as

expected since the magnitude of the magnetic field in these directions fluctuates between these axes.

Because of this, the amount of information incorporated into each of these axes fluctuates, and, thus,

the 3σ intervals of these axes fluctuate. As time increases, the attitude uncertainty decreases even

though it still fluctuates about the y- and z-axes, which is expected since more attitude information

is incorporated into the filter as time increases.

The position uncertainty decreases quickly to reach a steady-state value along all three axes,

as is observed in Figure (8.8). This is expected because linear measurements of the position are

processed by the filter. The position error remains inside its 3σ interval (which is a good heuristic

to determine whether a filter is performing well), with the exception of a brief time interval just

after five minutes along the x-component of velocity. This is likely due to a specific sequence of

position measurements that occur, because the error quickly reenters its 3σ interval and remains

there throughout the simulation. The velocity uncertainty also decreases to reach a steady-state
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Figure 8.7. Attitude error (dashed lines) and 3σ interval (solid lines) for the single-component BGM
filter.
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value along all three axes, as is observed in Figure (8.9). This is also expected due to the time-wise

correlation between position and velocity and the linear position measurements.

Ideally, a multiple-component BGM filter could be applied to this scenario, in which little

or no tuning process noise, as defined by Eq. (8.6), would be necessary to prevent over conver-

gence of the filter due to the accumulation of error due to the repeated approximations of the true

state density at each step in the Bayesian recursion. Less error is incurred when using a multiple-

component BGM density to quantify the state vector when compared to a single-component BGM

density, which is equivalent to the Bingham-Gauss density. This is because the error incurred in the

approximation of the true state density at each step in the Bayesian recursion by a Bingham-Gauss

mixture density decreases as the uncertainty in each component of the mixture becomes smaller, or

equivalently, the number of components in the mixture increases. This becomes computationally in-

feasible for this application, however, since the approximating mixture would have to be constructed

in nine dimensions, which becomes computationally demanding due to the curse of dimensional-

ity. If three, five, and seven components per dimension are used to construct the mixture, 19, 683,

1, 953, 125, and 40, 353, 607 components exist in the BGM mixture. The inclusion of the tuning

process noise added to the single-component BGM filter causes a mismatch between the true dy-

namical system and the modeled dynamical system for the filter; however, its inclusion results in

a computationally feasible filter capable of quantifying the dynamic pose of the spacecraft in this

scenario.
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Figure 8.8. Position error (dashed lines) and 3σ interval (solid lines) for the single-component BGM
filter.
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Figure 8.9. Velocity error (dashed lines) and 3σ interval (solid lines) for the single-component BGM
filter.
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9. CONCLUSIONS

Two new probability density functions (pdfs) were developed, termed the Gauss-Bingham

and Bingham-Gauss mixture (BGM) densities, that probabilistically represent a state vector con-

sisting of an attitude quaternion and other Euclidean states. When the state vector consists of the

attitude quaternion, position, velocity, and angular velocity of a body, its dynamic pose is probabilis-

tically quantified by these pdfs. The Gauss-Bingham and BGM densities quantify the state vector on

its natural manifold, the unit-hypercylinder, and therefore, no small angle assumption is necessary

to project the uncertainty in the attitude quaternion portion of the state vector into an approximately

additive three-parameter attitude space, as is done by the multiplicative quaternion error represen-

tation used by the multiplicative extended Kalman filter (MEKF). An unscented transform-based

uncertainty propagation scheme was developed for the Gauss-Bingham density, which quantifies the

temporal evolution of the density given a (potentially) nonlinear dynamical system. This uncertainty

propagation scheme was shown to quantify the uncertainty in the dynamic pose state vector more

accurately than the uncertainty propagation scheme employed by the MEKF, which requires a small

attitude uncertainty assumption. Because of this, the increased accuracy of the Gauss-Bingham un-

certainty propagation scheme as compared to that of the MEKF is especially apparent when the

attitude uncertainty grows large and can be advantageous in situations with sparse or poor attitude

information.

A minimum divergence filtering framework was developed, which approximates the true

state density at each step in the Bayesian recursion by an assumed density. The parameters of

the assumed density are found by minimizing the Kullback-Leibler (KL) divergence of the true

density with respect to the assumed density. It was shown that this divergence is minimized for

exponential family pdfs when the expected value of the natural statistics vector is identical for both

the true and assumed densities. This result is employed to develop the Gaussian mixture minimum

divergence filter (GMMDF), which approximates the true temporal and measurement evolution

of each component of the Gaussian mixture (GM) pdf with its KL divergence optimal Gaussian

density. The predictor of the GMMDF is shown to be identical to other GM filters, with the specific

type of GM filter it is identical to defined by the type of calculation or approximation used to

evaluate the necessary expected values. The corrector of the GMMDF has a similar weight update

to other GM filters, which updates the weight of each component according to the relative likelihood

that the measurement originated from that component. The parameters of each component of the

GM density are defined by the moments of Bayes’ rule, which performs a nonlinear update for

each component. This nonlinear update was compared to the update used by the extended Kalman

filter (EKF) and quadrature Kalman filter (QKF) for the “lensing” problem, which occurs when an
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accurate range measurement is taken to an object with a large position uncertainty, which results in

a highly non-Gaussian posterior density. The nonlinear update performed for each component of

the GMMDF is capable of incorporating information from the range measurement in the direction

perpendicular to the range, which stems from the curvature of the posterior density. The linear

update used by the EKF and QKF is not capable of incorporating information in this direction.

The minimum divergence filtering framework was used to develop the BGM filter, which

quantifies the temporal and measurement evolution of the parameters of a BGM density according

to (potentially) nonlinear dynamical system and measurement models. The BGM filter was cast

in terms of its defining integrals, and an unscented transform, which was developed in this work,

or Monte Carlo integration was used to approximate these integrals. The BGM filter was applied

to three simulations in order to evaluate its efficacy in estimating a state vector that consists of an

attitude quaternion and other Euclidean states. The first application compared a single-component

BGM filter to an MEKF in estimating the one-dimensional attitude and angular velocity of a body

given measurements of a known direction expressed in the body-fixed frame. No initial attitude

information was known, and a Monte Carlo analysis of both filters was performed. When the attitude

uncertainty was large at the beginning of the simulation, the single-component BGM filter proves

to be more statistically consistent than the MEKF, which is expected because the MEKF assumes

the attitude uncertainty to be small. When the attitude uncertainty decreases as more measurement

information is incorporated, the single-component BGM filter and the MEKF converge to similar

state estimates.

The second application of the BGM filter compared the performance of a single-component

and a multiple-component BGM filter to estimate the planar relative dynamic pose of a chase space-

craft with respect to a target spacecraft given range and bearing measurements between the space-

craft. Both the single-component and multiple-component filter perform well in estimating the

planar relative dynamic pose of a chase spacecraft, which is due to the linear dynamics defining

the relative motion between the spacecraft and the amount of attitude information available to the

filter, which causes the attitude uncertainty to decrease quickly, and thus, the single-component and

multiple-component mixture filters perform nearly identically. The mixture filter requires fewer

evaluations of the measurement likelihood, and thus has a lower computational demand, after the

first few measurements are processed, however, because the components with significantly low like-

lihood are trimmed from the mixture over time.

The final application of the BGM filter demonstrates the ability of a single-component

BGM filter to estimate the three-dimensional dynamic pose of a spacecraft in low-Earth orbit, given

measurements of the Earth’s magnetic field and the position of the spacecraft. This application

demonstrates the applicability of the BGM filter to a nonlinear dynamical system and measure-

ments. Instead of using a model-based approach, as was used in the first two applications of the
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BGM filter, this application uses an inertial measurement unit (IMU)-based approach, in which

the non-gravitational acceleration and angular velocity of the spacecraft are measured by the IMU.

These measurements are used in the predictor of the single-component BGM filter to propagate the

parameters of the BGM filter forward in time. The single-component BGM filter is capable of es-

timating the dynamic pose of the spacecraft, even though the magnetometer measurements provide

relatively little attitude information because they provide a measurement of the direction of a single

direction (the direction of the Earth’s magnetic field), which changes over time.

Future work includes the development of a pdf that probabilistically represents a state vector

comprised of an attitude quaternion and other Euclidean states that exists in the general exponential

family and does not require splitting across the unit-hypersphere, as the Bingham-Gauss density

does. This will facilitate a filter developed under the minimum divergence filtering framework that

is similar to the BGM filter that does not require the consistency check of the parameters with the

unscented or Monte Carlo points, as the BGM filter does. This will provide a more computationally

efficient and robust approximate Bayesian filter that does not require a small angle assumption to

quantify the attitude uncertainty.

The integral approximation inherent to the GMMDF and the BGM filter was performed

using an unscented transformation or Monte Carlo integration. Future work includes the investi-

gation and implementation of more efficient and/or accurate approximation methods for these inte-

grals, because the current methods of approximating these integrals restricts the applicability of the

GMMDF and BGM filter to situations with significant computing resources. If these more accurate

and efficient methods of integral approximation can be developed, the GMMDF and BGM filter can

potentially be implemented in situations with more limited computing resources, including dynamic

pose estimation in near real-time aboard spacecraft and other vehicles.



APPENDIX A

THE L2 DISTANCE BETWEEN A GAUSSIAN AND A GAUSSIAN MIXTURE DENSITY
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The L2 distance between a Gaussian density, as defined by Eq. (3.4), and a Gaussian mix-

ture (GM) density, as defined by Eq. (3.7), is defined by

L2[pg||pgm] =

∫ [
pg(x;m,P )− pgm(x)

]2 dx . (A.1)

This L2 distance is found in closed-form for an arbitrary Gaussian and GM density, which can

then be specialized to the case when the Gaussian density becomes the canonical Gaussian density

through the substitution m = 0 and P = I , if desired. In order to simplify the L2 distance given

in Eq. (A.1), the integrand is expanded, the definition of the GM is substituted from Eq. (3.7), and

the linearity of the integral and summation is exploited to yield

L2[pg||pgm] =

∫
pg(x;m,P )2 dx− 2

L∑
`=1

w(`)

∫
pg(x;m,P ) pg

(
x;m(`),P (`)

)
dx

+

L∑
`=1

L∑
j=1

w(`)w(j)

∫
pg

(
x;m(`),P (`)

)
pg

(
x;m(j),P (j)

)
dx . (A.2)

Before simplifying Eq. (A.2) further, it is necessary to consider the product of two Gaussian pdfs,

which is a scaled Gaussian pdf and is given by [22, 79]

pg(x;a,A)pg(x; b,B) = Γ(a, b,A,B)pg(x; c,C) , (A.3)

where

C = (A−1 +B−1)−1 c = C(A−1a+B−1b)

Γ(a, b,A,B) = det
{
2π(A+B)}−1/2 exp {−1

2
(a− b)T (A+B)−1(a− b)

}
.

Equation (A.3) is substituted into Eq. (A.2) and simplified (while noting that Γ(a, b,A,B) is a

constant and the Gaussian pdf integrates to unity over its support) to yield

L2[p||pgm] = Γ(m,m,P ,P )− 2
L∑

`=1

w(`) Γ(m,m(`),P ,P (`))

+

L∑
`=1

L∑
j=1

w(`)w(j)Γ(m(`),m(j),P (`),P (j)) .
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The function Γ(m,m,P ,P ) is further simplified, which yields the final form of the L2 distance

between a Gaussian density and a Gaussian mixture (GM) density as

L2[p||pgm] = det {4πP }−1/2 − 2

L∑
`=1

w(`) Γ(m,m(`),P ,P (`))

+
L∑

`=1

L∑
j=1

w(`)w(j)Γ(m(`),m(j),P (`),P (j)) .



APPENDIX B

TABULATING THE NORMALIZING CONSTANTS OF THE BINGHAM DENSITY
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The normalization constant of the Bingham density is given by the hypergeometric function

of a matrix argument according to Eq. (3.19), which is given by

F (Z) =

∫
Ss

exp
{
q̄TZq̄

}
dSs = |Ss| 1F1

(
1

2
;
s+ 1

2
;Z

)
, (B.1)

where |Ss| represents the area of the unit-hypersphere of dimension s and ·F·(·; ·; ·) represents the

hypergeometric function of a matrix argument. In order to approximate this normalization constant,

the integral in Eq. (B.1) is approximated directly instead of approximating the hypergeometric func-

tion of a matrix argument. This integral is approximated using Gauss-Legendre quadrature over the

spherical coordinates, which is a minimum parameter set defining the unit vector q̄ (which is a valid

attitude quaternion when s = 1 or s = 3). Integrating over these spherical coordinates transforms

the integral in Eq. (B.1) from integration over the unit-hypersphere to integration over the area of

the unit-hypersphere defined by the spherical coordinates according to

F (Z) =

∫
A(φ)

exp
{
q̄(φ)TZq̄(φ)

}
dA(φ) , (B.2)

where q̄(φ) represents the attitude quaternion parameterized by spherical coordinates according

to Eqs. (3.36) and dA(φ) represents the differential area of the hypersphere swept out by q̄(φ).

Equation (3.37) is substituted into Eq. (B.2) to yield the integral defined directly over the spherical

coordinates according to

F (Z) =

∫ 2π

0

∫ π

0
· · ·
∫ π

0

∫ π

0
exp

{
q̄(φ)TZq̄(φ)

}
× sins−1 φ1 sin

s−2 φ2 · · · sinφs−1 dφ1 dφ2 · · · dφs−1 dφs ,

These integrals can be approximated using quadrature techniques in this form, if desired; however,

it is advantageous to exploit the symmetry of the Bingham pdf first to decrease the computational

expense of the approximation according to

F (Z) = cs

∫ π/2

0

∫ π/2

0
· · ·
∫ π/2

0

∫ π/2

0
exp

{
q̄(φ)TZq̄(φ)

}
× sins−1 φ1 sin

s−2 φ2 · · · sinφs−1 dφ1 dφ2 · · · dφs−1 dφs , (B.3)

where cs is the factor that is gained due to the symmetry of the Bingham pdf and is given by the

recursion

cs = 2cs−1 ,
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and is initialized with c1 = 4. Noting that the bounds of integration of each spherical coordinate are

now identical, Gauss-Legendre quadrature [80] is used to generate N quadrature weights and points

for each of the s spherical coordinates over the interval [0 π/2], which are denoted by w(i) and φ
(i)
` ,

respectively, for ` = 1, 2, . . . , s and i = 1, 2, . . . , N . The integral in Eq. (B.3) is then approximated

according to

F (Z) ≈ cs

N∑
i1=1

N∑
i2=1

· · ·
N∑

is=1

w(i1)w(i2) · · ·w(is)

× exp


q̄



φ
(i1)
1

φ
(i2)
2
...

φ
(is)
s




T

Z q̄



φ
(i1)
1

φ
(i2)
2
...

φ
(is)
s





sins−1 φ
(i1)
1 sins−2 φ

(i2)
2 · · · sinφ(is−1)

s−1 . (B.4)

If more points are used per dimension, that is, N becomes larger, less error is incurred in the approx-

imation at the expense of computational burden. This computational burden is further exacerbated

for higher dimensions due to the curse of dimensionality, which is apparent due to the embedded

summations in Eq. (B.4). In this work, N = 200 points per dimension is found to provide a suffi-

cient approximation of the normalizing constant.

In order to approximate the fi for i = 1, 2, . . . , s, which are the unique elements of the

diagonal covariance matrix defined by the canonical Bingham pdf and defined by Eq. (3.23), the

partial derivatives with respect to each Zi for i = 1, 2, . . . , s of Eq. (B.4) are taken and subsequently

normalized by F (Z). This is equivalent to taking the partial derivatives of the integral definition

of F (Z) defined in Eq. (B.1), normalizing by F (Z), and then using Gauss-Legendre quadrature to

approximate the resulting integrals. Noting that Z is a diagonal matrix, the fi for i = 1, 2, . . . , s

are approximated according to

fi(Z) , F−1(Z)
∂F (Z)

∂Zi

≈ F−1(Z) cs

N∑
i1=1

N∑
i2=1

· · ·
N∑

is=1

w(i1)w(i2) · · ·w(is)q̄i



φ
(i1)
1

φ
(i2)
2
...

φ
(is)
s




2

(B.5)
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× exp


q̄



φ
(i1)
1

φ
(i2)
2
...

φ
(is)
s




T

Z q̄



φ
(i1)
1

φ
(i2)
2
...

φ
(is)
s





sins−1 φ
(i1)
1 sins−2 φ

(i2)
2 · · · sinφ(is−1)

s−1 ,

where the explicit functional dependence of fi is shown for clarity and q̄i (φ) denotes the ith com-

ponent of the quaternion defined by the collection of spherical coordinates, φ. Similar to the ap-

proximation of the normalization constant itself, N = 200 points per dimension is found to provide

a sufficient approximation of the fi for i = 1, 2, . . . , s.

For a given Z, Eqs. (B.4) and (B.5) are used to approximate F (Z) and fi for i = 1, 2, . . . , s.

These approximations can potentially be performed online; however, in typical applications, this

approximation is too slow to perform online. To circumvent this, these values are approximated and

stored over an appropriate range of Z values and then interpolated online. 100 points over the range

[−100000 0] were used for each Zi for i = 1, 2, . . . , s in this work to store these values for later

interpolation. These points are chosen to be more densely spaced as they approached zero, which is

found to decrease the interpolation error incurred for values of Z close to zero, where the changes

in F (Z) and fi for i = 1, 2, . . . , s are larger for a given change in Z.



APPENDIX C

THE L2 DISTANCE BETWEEN A BINGHAM AND BINGHAM MIXTURE DENSITY
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The L2 distance between a Bingham density, as defined by Eq. (3.18), and a Bingham

mixture (BM) density, as defined by Eq. (3.28), is defined by

L2[pb||pbm] =

∫ [
pb(q̄;M ,Z)− pbm(q̄)

]2 dq̄ . (C.1)

This L2 distance is found in closed-form for an arbitrary Bingham and BM density, which can

them be specialized to the case when the Bingham density becomes the canonical Bingham density

through the substitution M = I , if desired. In order to simplify the L2 distance given in Eq. (C.1),

the integrand is expanded, the definition of the BM is substituted from Eq. (3.28), and the linearity

of the integral and summation is exploited to yield

L2[pb||pbm] =

∫
pb(q̄;M ,Z)2 dq̄ − 2

L∑
`=1

w(`)

∫
pb(q̄;M ,Z) pb

(
q̄;M (`),Z(`)

)
dq̄

+

L∑
`=1

L∑
j=1

w(`)w(j)

∫
pb

(
q̄;M (`),Z(`)

)
pb

(
q̄;M (j),Z(j)

)
dq̄ . (C.2)

Before simplifying Eq. (C.2) further, it is necessary to consider the product of two Bingham pdfs,

which is given for two arbitrary Bingham pdfs according to

pb(q̄;M1,Z1)pb(q̄;M2,Z2) =
1

F (Z1)
exp

{
q̄TM1Z1M

T
1 q̄
} 1

F (Z2)
exp

{
q̄TM2Z2M

T
2 q̄
}

=
1

F
(
Z1

)
F
(
Z2

)exp {q̄T (M1Z1M
T
1 +M2Z2M

T
2 )q̄} . (C.3)

This can be expressed using an eigen-decomposition of M1Z1M
T
1 +M2Z2M

T
2 , which is defined

according to

V ΛV T = M1Z1M
T
1 +M2Z2M

T
2 ,

where V ∈ SO(s+ 1) is a matrix with columns consisting of the eigenvectors and Λ is the cor-

responding diagonal matrix of nondecreasing eigenvalues with maximum eigenvalue denoted by λ.

The product of the Bingham densities, given in Eq. (C.3), is now expressed as

pb(q̄;M1,Z1)pb(q̄;M2,Z2) =
1

F
(
Z1

)
F
(
Z2

)exp {q̄TV ΛV T q̄} .

λI is subtracted and added to Λ to yield

pb(q̄;M1,Z1)pb(q̄;M2,Z2) =
1

F
(
Z1

)
F
(
Z2

)exp {q̄TV
[
Λ− λI + λI

]
V T q̄}
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=
exp {λ}

F
(
Z1

)
F
(
Z2

)exp {q̄TV
[
Λ− λI

]
V T q̄} . (C.4)

It is now observed that V , M3 and Λ − λI , Z3 are a valid orientation matrix and matrix of

concentration parameters. Substituting these definitions into Eq. (C.4) yields

pb(q̄;M1,Z1)pb(q̄;M2,Z2) =
exp {λ}

F
(
Z1

)
F
(
Z2

)exp {q̄TM3Z3M
T
3 q̄} .

This is manipulated to show that the product of two Bingham densities is a scaled Bingham density

according to

pb(q̄;M1,Z1)pb(q̄;M2,Z2) =
exp {λ}F

(
Z3

)
F
(
Z1

)
F
(
Z2

) 1

F
(
Z3

)exp {q̄TM3Z3M
T
3 q̄}

=
exp {λ}F

(
Z3

)
F
(
Z1

)
F
(
Z2

) pb(q̄;M3,Z3) . (C.5)

This expression can be specialized to the case when a Bingham density is squared, that is M1 =

M2 , M and Z1 = Z2 , Z. In this case, the the square of the Bingham density is given by

pb(q̄;M ,Z)2 =
exp {0}F

(
2Z
)

F
(
Z
)
F
(
Z
) pb(q̄;M ,Z) =

F
(
2Z
)

F
(
Z
)2 pb(q̄;M , 2Z) , (C.6)

Now that the product of Bingham densities has been quantified, Eq. (C.2) is simplified

using Eqs. (C.5) and (C.6), while noting that the Bingham pdf integrates to unity over its support,

according to

L2[pb||pbm] =
F
(
2Z
)

F
(
Z
)2 − 2

L∑
`=1

w(`) exp {λ(`)}F
(
Z

(`)
3

)
F
(
Z
)
F
(
Z(`)

)
+

L∑
`=1

L∑
j=1

w(`)w(j) exp {λ(`j)}F
(
Z

(`j)
3

)
F
(
Z(`)

)
F
(
Z(j)

) , (C.7)

where λ(`) and Z
(`)
3 are the largest eigenvalue and matrix of concentration parameters, respec-

tively, defined by the eigen-decomposition of MZMT + M (`)Z(`)M (`)T and λ(`j) and Z
(`j)
3

are the largest eigenvalue and matrix of concentration parameters, respectively, defined by the

eigen-decomposition of M (`)Z(`)M (`)T +M (j)Z(j)M (j)T . At the surface, it appears as though

Eq. (C.7) does not depend on the orientation matrices of the Bingham density and BM compo-

nents; however, these orientation matrices are used in the calculation of λ(`), Z(`)
3 , λ(`j), and Z

(`j)
3 .

Because of this, the L2 distance is affected by the orientation matrices, as intuition suggests.



APPENDIX D

PROOF OF EQUATION 32 IN REFERENCE [54]
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Equation (32) in Reference [54] is a crucial relationship used in the derivations of the

Bayesian Kalman and Gaussian sum filters. This relationship transforms the product of a Gaus-

sian distribution in x and a Gaussian distribution in z linearly conditioned on x to the product

of a Gaussian distribution in z and a Gaussian distribution in x linearly conditioned on z. This

relationship is given by

pg(x;m,P )pg(z;Hx,R) = pg(z;Hm,HPHT +R)pg(x;µ,Π) , (D.1)

where

µ = m+K(z −Hm) , Π = P −KHP , K = PHT (HPHT +R)−1 ,

and the Gaussian pdf is defined by Eq. (3.4). In order to prove Eq. (D.1), its left-hand side is

manipulated to yield its right-hand side [81]. The matrix inversion lemma [82] and Sylvester’s de-

terminant theorem [83] are used in the process of the proof. This proof is omitted from Ho and Lee’s

original paper and cannot be found in literature in the form presented here to the best knowledge

of the author. Several references, including References [79, 84, 85], use Eq. (D.1) in deriving the

Bayesian Kalman or Gaussian sum filter; however, they omit the proof and cite another source for

the equation, which can ultimately be tracked back to Ho and Lee’s original paper. Reference [86]

shows this derivation using a different approach, in which the order of the conditioning is reversed

by treating x and z as jointly-Gaussian-distributed random variables and using these properties to

obtain a result similar to Eq. (D.1).

Before presenting the proof of Eq. (D.1), another important result is presented, which occurs

when Eq. (D.1) is integrated over x according to∫
pg(x;m,P )pg(z;Hx,R) dx =

∫
pg(z;Hm,HPHT +R)pg(x;µ,Π) dx . (D.2)

Noting that pg(z;Hm,HPHT+R) does not depend on x and that the Gaussian density integrates

to unity over its support, Eq. (D.2) becomes∫
pg(x;m,P )pg(z;Hx,R) dx = pg(z;Hm,HPHT +R) , (D.3)

which is also used in deriving the Bayesian Kalman or Gaussian sum filter.

Proof. To begin the proof, the definition of the Gaussian distribution given in Eq. (3.4) is substituted

into the left-hand side of Eq. (D.1) to give
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pg(x;m,P )pg(z;Hx,R) = det {2πP }−1/2exp
{
−1

2
(x−m)TP−1(x−m)

}
× det {2πR}−1/2exp

{
−1

2
(z −Hx)TR−1(z −Hx)

}
.

The exponential terms are now combined according to

pg(x;m,P )pg(z;Hx,R) = det {2πP }−1/2det {2πR}−1/2

exp
{
−1

2

[
(x−m)TP−1(x−m) + (z −Hx)TR−1(z −Hx)

]}
.

The argument of the exponential is now expanded and grouped to make a quadratic equation in x

to give

pg(x;m,P )pg(z;Hx,R) = det {2πP }−1/2det {2πR}−1/2

× exp−1

2

[
xTΠ−1x− 2xT

(
HTR−1z + P−1m

)
+ zTR−1z +mTP−1m

]
, (D.4)

where

Π−1 , HTR−1H + P−1 . (D.5)

The matrix inversion lemma is used to solve Eq. (D.5) for Π as

Π = P − PHT (HPHT +R)−1HP = P −KHP , (D.6)

where

K , PHT (HPHT +R)−1 . (D.7)

Adding a factor of Π−1Π into the term that is linear in x in Eq. (D.4) yields

pg(x;m,P )pg(z;Hx,R) = det {2πP }−1/2det {2πR}−1/2

× exp−1

2

[
xTΠ−1x− 2xTΠ−1µ+ zTR−1z +mTP−1m

]
, (D.8)

where

µ , Π
(
HTR−1z + P−1m

)
. (D.9)
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In order to manipulate Eq. (D.9) into a more convenient form, first note that an alternate form for

K can be derived by pre- and post-multiplying Eq. (D.5) by Π and P , respectively, to yield

P = ΠHTR−1HP +Π . (D.10)

Equation (D.10) is now post-multiplied by HTR−1 and manipulated to yield

PHTR−1 = ΠHTR−1(HPHT +R)R−1 . (D.11)

Solving Eq. (D.11) for ΠHTR−1 yields

ΠHTR−1 = PHT (HPHT +R)−1 . (D.12)

Combining Eqs. (D.7) and (D.12) yields the alternate expression for K as

K = ΠHTR−1 . (D.13)

Equations (D.13) and (D.6) is now substitued into Eq. (D.9) to yield

µ = Kz + (I −KH)m = m+K(z −Hm) , (D.14)

which is the desired form for µ. Substituting the definition for µ given in Eq. (D.9) into Eq. (D.8)

yields

pg(x;m,P )pg(z;Hx,R) = det {2πP }−1/2det {2πR}−1/2

× exp−1

2

[
xTΠ−1x− 2xTΠ−1µ+ zTR−1z +mTP−1m

]
. (D.15)

Completing the square for x in Eq. (D.15) yields

pg(x;m,P )pg(z;Hx,R) = det {2πP }−1/2det {2πR}−1/2

× exp−1

2

[
(x− µ)TΠ−1(x− µ)− µTΠ−1µ+ zTR−1z +mTP−1m

]
. (D.16)

Now, the term µTΠ−1µ is manipulated. Substituting Eq. (D.14) into µTΠ−1µ and expanding the

result yields

µTΠ−1µ =

mTΠ−1m+ 2(z −Hm)TKTΠ−1m+ (z −Hm)TKTΠ−1K(z −Hm) . (D.17)
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Equation (D.13) can be manipulated to yield

KTΠ−1 = R−1H ,

which is substituted into Eq. (D.17) and expanded to yield

µTΠ−1µ = mTΠ−1m+ 2zTR−1Hm− 2(Hm)TR−1Hm

+ zTR−1HKz − 2(Hm)TR−1HKz + (Hm)TR−1HKHm . (D.18)

Substituting Eq. (D.5) into Eq. (D.18) and simplifying yields

µTΠ−1µ = mTP−1m+ zTR−1HKz − (Hm)T [R−1 −R−1HK](Hm)

+ 2(Hm)T [R−1 −R−1HK]z . (D.19)

Noting Eq. (D.7), the term R−1 −R−1HK can be expressed as

R−1 −R−1HK = R−1 −R−1HPHT (HPHT +R)−1

= R−1[I −HPHT (HPHT +R)−1]

= R−1[HPHT +R−HPHT ](HPHT +R)−1

= (HPHT +R)−1 . (D.20)

Combining Eqs. (D.19) and (D.20) yields

µTΠ−1µ = mTP−1m+ zTR−1HKz − (Hm)T (HPHT +R)−1(Hm)

+ 2(Hm)T (HPHT +R)−1z . (D.21)

Equation (D.20) can be solved for R−1HK according to

R−1HK = R−1 − (HPHT +R)−1 . (D.22)

Equations (D.21) and (D.22) are now combined and the result is simplified to yield

µTΠ−1µ = mTP−1m+ zTR−1z − (z −Hm)T (HPHT +R)−1(z −Hm) . (D.23)

Equation (D.23) is substituted into Eq. (D.16) to yield

pg(x;m,P )pg(z;Hx,R) = det {2πP }−1/2det {2πR}−1/2
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× exp
{
−1

2

[
(x− µ)TΠ−1(x− µ) + (z −Hm)T (HPHT +R)−1(z −Hm)

]}
. (D.24)

The exponential term is now broken apart to yield

pg(x;m,P )pg(z;Hx,R) = det {2πP }−1/2det {2πR}−1/2exp
{
−1

2
(x− µ)TΠ−1(x− µ)

}
× exp

{
−1

2
(z −Hm)T (HPHT +R)−1(z −Hm)

}
. (D.25)

In order to force these exponential arguments to be Gaussian distributions, Eq. (D.25) is manipulated

by multiplying and dividing by the appropriate normalizing constants according to

pg(x;m,P )pg(z;Hx,R) =
det {2πP }−1/2det {2πR}−1/2

det {2πΠ}−1/2det {2π(HPHT +R)}−1/2
(D.26)

× det {2πΠ}−1/2exp
{
−1

2
(x− µ)TΠ−1(x− µ)

}
× det {2π(HPHT +R)}−1/2exp

{
−1

2
(z −Hm)T (HPHT +R)−1(z −Hm)

}
.

Noting the definition of the Gaussian pdf in Eq. (3.4), Eq. (D.26) becomes

pg(x;m,P )pg(z;Hx,R) =
det {2πP }−1/2det {2πR}−1/2

det {2πΠ}−1/2det {2π(HPHT +R)}−1/2

× pg(x;µ,Π)pg(z;Hm,HPHT +R) . (D.27)

The term

det {2πP }−1/2det {2πR}−1/2

det {2πΠ}−1/2det {2π(HPHT +R)}−1/2

is now simplified according to

det {2πP }−1/2det {2πR}−1/2

det {2πΠ}−1/2det {2π(HPHT +R)}−1/2
=

[
det {Π}det {(HPHT +R)}

det {P }det {R}

] 1
2

(D.28)

=
[
det {ΠP−1}det {(HPHT +R)R−1}

] 1
2

=
[
det {ΠP−1}det {HPHTR−1 + I}

] 1
2
.

Using Sylvester’s determinant theorem [83], which is given by

det {In +BA} = det {Ip +AB} ,
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Eq. (D.28) can be expressed as

det {2πP }−1/2det {2πR}−1/2

det {2πΠ}−1/2det {2π(HPHT +R)}−1/2

=
[
det {ΠP−1}det {PHTR−1H + I}

] 1
2
. (D.29)

Equation (D.5) can be solved for HTR−1H as

HTR−1H = Π−1 − P−1 . (D.30)

Equations (D.29) and (D.30) are now combined to yield

det {2πP }−1/2det {2πR}−1/2

det {2πΠ}−1/2det {2π(HPHT +R)}−1/2
=
[
det {ΠP−1}det {P (Π−1 − P−1) + I}

] 1
2

=
[
det {ΠP−1}det {PΠ−1}

] 1
2

=
[
det {ΠP−1PΠ−1}

] 1
2

=
[
det {I}

] 1
2

= 1 . (D.31)

Substituting Eq. (D.31) into Eq. (D.27) yields Eq. (D.1) according to

pg(x;m,P )pg(z;Hx,R) = pg(z; (Hm),HPHT +R)pg(x;µ,Π) ,

which completes the proof.



APPENDIX E

GAUSSIAN PARAMETERS FROM A SET OF WEIGHTED DISCRETE POINTS
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Consider the case when a set of discrete points and weights is used to probabilistically

represent a state vector x. Let these weights and associated points be denoted by w(i) and X (i), re-

spectively, where i = 1, 2, . . . , N , respectively. Assume that the points represent a valid probability

mass function; that is

N∑
i=1

w(i) = 1 . (E.1)

It is desired to find the parameters of the Gaussian distribution, m and P , that best fit the weighted

points. These best fit parameters are found using the sum of the weighted log-likelihood of the

discrete points as the performance index, which is given by

J(m,P ) =

N∑
i=1

w(i) ln pg(X (i);m,P ) , (E.2)

One may be inclined to use the sum of the weighted likelihood or log weighted-likelihood of the

sigma points; however, either of these approaches make the performance index independent of the

weights, which is undesirable. The definition of the Gaussian density is substituted from Eq. (3.4)

into Equation (E.2) to yield the cost function as

J(m,P ) = −1

2

[
ln det {2πP }+

N∑
i=1

w(i)
(
X (i) −m

)T
P−1

(
X (i) −m

)]
. (E.3)

Equation (E.3) can be minimized without enforcing the symmetry and positive definiteness

of P . This method, obviously, does not guarantee the symmetry and positive definiteness of P ,

which may lead to a solution that results in an invalid Gaussian density. Differentiating Eq. (E.3)

with respect to m and P and setting the results equal to zero yields the optimality conditions as

∂J(m,P )

∂m
=

1

2

N∑
i=1

w(i)
(
X (i) −m

)T (
P−T + P−1

)
= 0T (E.4a)

∂J(m,P )

∂P
= −1

2

[
P−T −

N∑
i=1

w(i)P−T
(
X (i) −m

)(
X (i) −m

)T
P−T

]
= 0 . (E.4b)

If P is forced to be symmetric, then Eqs. (E.4) can be simplified to

N∑
i=1

w(i)
(
X (i) −m

)T
P−1 = 0T (E.5a)
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P−1 −
N∑
i=1

w(i)P−1
(
X (i) −m

)(
X (i) −m

)T
P−1 = 0 . (E.5b)

If P is forced to be positive definite, then P is full rank (and hence invertible), and Eq. (E.5) can be

simplified to

N∑
i=1

w(i)
(
X (i) −m

)T
= 0T (E.6a)

I −
N∑
i=1

w(i)
(
X (i) −m

)(
X (i) −m

)T
P−1 = 0 . (E.6b)

Equations (E.6) can then be solved for m and P according to

m =
N∑
i=1

w(i)X (i) (E.7a)

P =
N∑
i=1

w(i)
(
X (i) −m

)(
X (i) −m

)T
. (E.7b)

Observation of Eqs. (E.7) shows that the covariance is both positive definite and symmetric, pro-

vided that there are at least N linearly independent deviations from the mean, X (i) −m, and this

mean and covariance represents a valid Gaussian pdf.

In order to prove that Eqs. (E.7) maximize Eq. (E.3), a second-derivative condition must be

shown. Showing this condition for arbitrary dimension becomes quite cumbersome and is omitted

for brevity. Instead, the second-derivative condition is shown for the scalar case. In the scalar case,

the performance index, as given by Eq. (E.3), simplifies to

J(m,σ2) = −1

2

[
ln{2πσ2}+

N∑
i=1

w(i)

(
X (i) −m

)2
σ2

]
, (E.8)

and the first derivative condition given in Eqs. (E.4) simplifies to

∂J(m,σ2)

∂m
=

N∑
i=1

w(i)X (i) −m

σ2
(E.9a)

∂J(m,σ2)

∂σ2
= −1

2

[
1

σ2
−

N∑
i=1

w(i)

(
X (i) −m

)2
σ4

]
. (E.9b)
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The second derivatives are now found by differentiating each of Eqs. (E.9) with respect to m and

σ2 to yield

∂2J(m,σ2)

∂m∂m
= −

N∑
i=1

w(i)

σ2
=

−1

σ2
(E.10a)

∂2J(m,σ2)

∂m∂σ2
=

∂2J(m,σ2)

∂σ2∂m
= −

N∑
i=1

w(i)X (i) −m

σ4
(E.10b)

∂2J(m,σ2)

∂σ2∂σ2
=

1

2

[
1

σ4
− 2

N∑
i=1

w(i)

(
X (i) −m

)2
σ6

]
. (E.10c)

Equations (E.10) are evaluated at the optimum point defined by Eqs. (E.7) to yield

∂2J(m,σ2)

∂m∂m
= −

N∑
i=1

w(i)

σ2
=

−1

σ2
(E.11a)

∂2J(m,σ2)

∂m∂σ2
= 0 (E.11b)

∂2J(m,σ2)

∂σ2∂σ2
=

−1

2σ4
, (E.11c)

which shows that the optimum point is a maximum because

∂2J(m,σ2)

∂m∂m

∂2J(m,σ2)

∂σ2∂σ2
−
(
∂2J(m,σ2)

∂m∂σ2

)2

=
1

2σ6
> 0 ,

and

∂2J(m,σ2)

∂m∂m
< 0 ,

which are sufficient conditions for a local maximum of a performance index of two variables.
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GAUSS-BINGHAM PARAMETERS FROM A SET OF WEIGHTED DISCRETE POINTS
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Consider the case when a set of discrete points with associated weights is used to proba-

bilistically represent the vector x = [q̄T xT ]T ∈ Ss × Rr. Let these weights and associated points

be denoted by w(i) and X (i) , [X (i)
q

T
X (i)

x

T
]T , where i = 1, 2, . . . , N , respectively. Assume that

each point, X (i), has an implied point that is antipodal in the quaternion portion of the state vec-

tor, given by X̃(i) , [−X (i)
q

T
X (i)

x

T
]T . Assume that the points (including the implied antipodal

points) represent a valid probability mass function; that is

N∑
i=1

w(i) =
1

2
. (F.1)

It is desired to find the parameters of the Gauss-Bingham distribution, as defined by Eq. (3.53), that

best fit the given points in the weighted log-likelihood sense. An equivalent form of the Gauss-

Bingham density is used, which is given by

pgb(x;m,P ,φ0,β,Z) = pg(x;m,P ) pb(q̄;M(z;φ0,β),Z) , (F.2)

and uses the canonical Gaussian variable z, as defined by Eq. (3.6), instead of x for better numerical

stability. The best-fit parameters can be found using the sum of the weighted log-likelihood of the

discrete points (including the implied antipodal points) as the performance index, which is given by

J(m,P ,φ0,β,Z) =

N∑
i=1

w(i) ln
[
pgb(X (i);m,P ,φ0,β,Z)

]
+

N∑
i=1

w(i) ln
[
pgb(X̃

(i);m,P ,φ0,β,Z)
]
. (F.3)

One may be inclined to use the sum of the weighted likelihood or log weighted-likelihood of the

sigma points; however, either of these approaches makes the performance index independent of the

weights, which is undesirable. Since the Gauss-Bingham distribution is antipodally symmetric in q̄,

this reduces to

J(m,P ,φ0,β,Z) = 2
N∑
i=1

w(i) ln
[
pgb(X (i);m,P ,φ0,β,Z)

]
. (F.4)

Substituting Eqs. (F.2), (3.4), and (3.18) into Eq. (F.4) and exploiting the properties of the natural

logarithm yields

J(m,P ,φ0,β,Z) = −1

2

[
ln det {2πP }+ 2

N∑
i=1

w(i)
(
X (i)

x −m
)T

P−1
(
X (i)

x −m
)
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+ 2 lnF (Z)− 4

N∑
i=1

w(i)X (i)
q

T
M(X (i)

z ;φ0,β)ZM(X (i)
z ;φ0,β)

TX (i)
q

]
, (F.5)

where X (i)
z represents the transformed X (i)

x according to

X (i)
x = SX (i)

z +m , (F.6)

where

SST , P .

Equation (F.5) can be maximized analytically for m and P without enforcing the symmetry

and positive definiteness of P , in a similar manner to how they are found for the Gaussian pdf in

Appendix E. Differentiating Eq. (F.5) with respect to m and P and setting the results equal to zero

yields the optimality conditions as

∂J(m,P ,φ0,β,Z)

∂m
=

N∑
i=1

w(i)
(
X (i)

x −m
)T (

P−T + P−1
)
= 0T (F.7a)

∂J(m,P ,φ0,β,Z)

∂P
=

− 1

2

[
P−T − 2

N∑
i=1

w(i)P−T
(
X (i)

x −m
)(

X (i)
x −m

)T
P−T

]
= 0 . (F.7b)

If P is forced to be symmetric, then Eqs. (F.7) can be simplified to

2

N∑
i=1

w(i)
(
X (i)

x −m
)T

P−1 = 0T (F.8a)

P−1 − 2
N∑
i=1

w(i)P−1
(
X (i)

x −m
)(

X (i)
x −m

)T
P−1 = 0 . (F.8b)

Furthermore, if P is forced to be positive definite, then P is full rank (and hence invertible), and

Eq. (F.8) can be simplified to

2

N∑
i=1

w(i)
(
X (i)

x −m
)T

= 0T (F.9a)

I − 2
N∑
i=1

w(i)
(
X (i)

x −m
)(

X (i)
x −m

)T
P−1 = 0 . (F.9b)
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Equation (F.9) can then be solved for m and P according to

m = 2

N∑
i=1

w(i)X (i)
x (F.10a)

P = 2

N∑
i=1

w(i)
(
X (i)

x −m
)(

X (i)
x −m

)T
. (F.10b)

Observation of Eqs. (F.10) shows that the covariance is both positive definite and symmetric, pro-

vided that there are at least N linearly independent deviations from the mean, X (i)
x −m. Note that

the dependence of X (i)
z on m and P is neglected in finding these parameters analytically. This is

not an issue, however, because m and P define a linear transformation of the points for a given m

and P . Similarly, φ0 and β define a linear function of X (i)
z . Because of this, any deviations in m

and P (which would be present if they were not first found analytically) will simply be absorbed by

φ0 and β. This implies that m and P can be found first and held constant, and then φ0, β, and Z

can be found that maximize the performance index.

The parameters m and P are now known, so an appropriate cost function is given by a

simplification of Eq. (F.5) (noting that m and P are now known and constant) according to

J(φ0,β,Z) = 2

N∑
i=1

w(i)X (i)
q

T
M(X (i)

z ;φ0,β)ZM(X (i)
z ;φ0,β)

TX (i)
q − lnF (Z) . (F.11)

Recall that the conditional orientation matrix of the Gauss-Bingham density is parameterized by

a minimum set of parameters that are functionally dependent on X (i)
z , φ0, and β according to

M(X (i)
z ;φ0,β) = M [φ(X (i)

z ;φ0,β)], such that Eq. (F.11) can be expressed according to

J(φ0,β,Z) = 2

N∑
i=1

w(i)X (i)
q

T
M [φ(X (i)

z ;φ0,β)]ZM [φ(X (i)
z ;φ0,β)]

TX (i)
q

− lnF (Z) , (F.12)

where

φ(X (i)
z ;φ0,β) = φ0 + βX (i)

z . (F.13)

It is now desired to find the optimality conditions by differentiating Eq. (F.12) with respect

to each entry of φ0, β, Z and setting the result equal to zero. In order to do this, first, the chain rule

for the case of differentiating the function G(F (X)) with respect to the entry in the ith row and jth
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column of X , Xi,j , is introduced and is given by [87]

∂G(F (X))

∂Xi,j
=

M∑
k=1

N∑
l=1

∂G(F )

∂Fk,`

∂Fk,`

∂Xi,j
. (F.14)

If F is a column vector denoted now by f , Eq. (F.14) simplifies to

∂G(f(X))

∂Xi,j
=

M∑
k=1

∂G(f)

∂fk

∂fk
∂Xi,j

. (F.15)

If G is a scalar denoted now by g, Eq. (F.14) simplifies to

∂g(F (X))

∂Xi,j
=

M∑
k=1

N∑
l=1

∂g(F )

∂Fk,`

∂Fk,`

∂Xi,j
, (F.16)

which can be expressed in matrix form as

∂g(F (X))

∂Xi,j
= tr

{
∂g(F )

∂F

∂F

∂Xi,j

}
. (F.17)

These relationships are used in the remainder of this appendix to differentiate the appropriate quan-

tities.

The optimality conditions for the performance index given in Eq. (F.12) are now consid-

ered for the s = 1 and s = 3 cases, separately. These cases are considered because they are the

dimensions in which the one- and three-dimensional attitude quaternion exists. For s = 1, the cost

function simplifies to

J(φ0,β,Z) = 2

N∑
i=1

w(i)X (i)
q

T
M [φ(X (i)

z ;φ0,β)]ZM [φ(X (i)
z ;φ0,β)]

TX (i)
q

− lnF (Z) . (F.18)

where

Z =

[
Z1 0

0 0

]
and M (φ) =

[
cosφ sinφ

− sinφ cosφ

]
(F.19)

For notational simplicity, let the cost function be defined by

J(φ0,β,Z) , 2
N∑
i=1

w(i)Ki(φ0,β,Z)− lnF (Z) , (F.20)
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where

Ki(φ0,β,Z) = X (i)
q

T
M [φ(X (i)

z ;φ0,β)]ZM [φ(X (i)
z ;φ0,β)]

TX (i)
q

The partial derivative of the cost function with respect to and arbitrary parameter that is denoted by

the symbol “?” can then be expressed as

∂J(φ0,β,Z)

∂?
= 2

N∑
i=1

w(i)∂Ki(φ0,β,Z)

∂?
− ∂lnF (Z)

∂?
.

It is now necessary to find these partial derivatives with respect to Z1, φ0, and β. The term lnF (Z)

is solely a function of Z1; therefore, its only nonzero partial derivative is with respect to Z1 accord-

ing to

∂lnF (Z)

∂Z1
= tr

{
∂lnF (Z)

∂F (Z)

∂F (Z)

∂Z1

}
= F−1 (Z)

∂F (Z)

∂Z1
= f1 .

Now the partial derivatives of Ki(φ0,β,Z) with respect to Z1, φ0, and β must be found.

Its partial derivative with respect to Z1 is given by

∂Ki(φ0,β,Z)

∂Z1
= tr

∂X (i)
q

T
M [φ(X (i)

z ;φ0,β)]ZM [φ(X (i)
z ;φ0,β)]

TX (i)
q

∂Z

∂Z

∂Z1

 . (F.21)

Calculating the derivatives in Eq. (F.21) yields

∂Ki(φ0,β,Z)

∂Z1
= tr

{
M [φ(X (i)

z ;φ0,β)]
TX (i)

q X (i)
q

T
M [φ(X (i)

z ;φ0,β)]1
2,2
1,1

}
. (F.22)

where the 1k,`i,j matrix represents a k by ` matrix of all zeros, except the i, j entry which is one.

Using the cyclic property of the trace, Eq. (F.22) can be expressed as

∂Ki(φ0,β,Z)

∂Z1
= X (i)

q

T
M [φ(X (i)

z ;φ0,β)]1
2,2
1,1M [φ(X (i)

z ;φ0,β)]
TX (i)

q .

The partial derivative of Ki(φ0,β,Z) with respect to φ0 is given by

∂Ki(φ0,β,Z)

∂φ0
= tr

∂X (i)
q

T
M [φ(X (i)

z ;φ0,β)]ZM [φ(X (i)
z ;φ0,β)]

TX (i)
q

∂M [φ(X (i)
z ;φ0,β)]

(F.23)

×∂M [φ(X (i)
z ;φ0,β)]

∂φ0

}
.



195

The former derivative of the chain rule in Eq. (F.23) is calculated as

∂X (i)
q

T
M [φ(X (i)

z ;φ0,β)]ZM [φ(X (i)
z ;φ0,β)]

TX (i)
q

∂M [φ(X (i)
z ;φ0,β)]

= (F.24)

2X (i)
q X (i)

q

T
M [φ(X (i)

z ;φ0,β)]Z .

The latter derivative of the chain rule in Eq. (F.23) is calculated (using the chain rule again) as

∂M [φ(X (i)
z ;φ0,β)]

∂φ0
=

∂M [φ(X (i)
z ;φ0,β)]

∂φ(X (i)
z ;φ0,β)

∂φ(X (i)
z ;φ0,β)

∂φ0
. (F.25)

The derivatives in the right hand side of Eq. (F.25) can now be calculated from Eqs. (F.13) and (F.19)

as

∂M (φ)

∂φ
, M ′ (φ) =

[
− sinφ cosφ

− cosφ − sinφ

]
and

∂φ(X (i)
z ;φ0,β)

∂φ0
= 1 , (F.26)

such that Eq. (F.25) becomes

∂M [φ(X (i)
z ;φ0,β)]

∂φ0
= M ′[φ(X (i)

z ;φ0,β)] (F.27)

Substituting Eqs. (F.24) and (F.27) into Eq. (F.23) becomes

∂Ki(φ0,β,Z)

∂φ0
= tr

{
2X (i)

q X (i)
q

T
M [φ(X (i)

z ;φ0,β)]ZM ′
[
φ(X (i)

z ;φ0,β)
]}

. (F.28)

Using the cyclic property of the trace, Eq. (F.28) can be expressed as

∂Ki(φ0,β,Z)

∂φ0
= 2X (i)

q

T
M [φ(X (i)

z ;φ0,β)]ZM ′
[
φ(X (i)

z ;φ0,β)
]
X (i)

q . (F.29)

The partial derivative of Ki(φ0,β,Z) with respect to β1,k, where k = 1, 2, . . . , r is given

by

∂Ki(φ0,β,Z)

∂β1,k

= tr

∂X (i)
q

T
M [φ(X (i)

z ;φ0,β)]ZM [φ(X (i)
z ;φ0,β)]

TX (i)
q

∂M [φ(X (i)
z ;φ0,β)]

∂M [φ(X (i)
z ;φ0,β)]

∂β1,k

 . (F.30)
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The former derivative of the chain rule in Eq. (F.30) is given by Eq. (F.24). The latter derivative of

the chain rule in Eq. (F.30) is calculated (using the chain rule again) as

∂M [φ(X (i)
z ;φ0,β)]

∂β1,k
=

∂M [φ(X (i)
z ;φ0,β)]

∂φ(X (i)
z ;φ0,β)

∂φ(X (i)
z ;φ0,β)

∂β1,k
. (F.31)

The former derivative of the right hand side of Eq. (F.31) is given by Eq. (F.26). The latter derivative

is given by (using the chain rule again)

∂φ(X (i)
z ;φ0,β)

∂β1,k
=

∂φ(X (i)
z ;φ0,β)

∂β

∂β

∂β1,k
(F.32)

The former derivative in the right hand side of Eq. (F.32) can now be calculated from Eq. (F.19) as

∂φ(X (i)
z ;φ0,β)

∂β
= X (i)

z

T
(F.33)

Substituting Eq. (F.33) into Eq. (F.32) yields

∂φ(X (i)
z ;φ0,β)

∂β1,k
= X (i)

z,k , (F.34)

where X (i)
z,k represents the kth entry of X (i)

z . Substituting Eqs. (F.26) and (F.34) into Eq. (F.31) yields

∂M [φ(X (i)
z ;φ0,β)]

∂β1,k
= M ′

[
φ(X (i)

z ;φ0,β)
]
X (i)
z,k . (F.35)

Substituting Eqs. (F.24) and (F.35) into Eq. (F.30) yields

∂Ki(φ0,β,Z)

∂β1,k
= tr

{
2X (i)

q X (i)
q

T
M [φ(X (i)

z ;φ0,β)]ZM ′
[
φ(X (i)

z ;φ0,β)
]
X (i)
z,k

}
. (F.36)

Using the cyclic property of the trace, Eq. (F.36) can be expressed as

∂Ki(φ0,β,Z)

∂β1,k
= 2X (i)

q

T
M [φ(X (i)

z ;φ0,β)]ZM ′
[
φ(X (i)

z ;φ0,β)
]
X (i)

q X (i)
z,k . (F.37)

In summary the optimality conditions are given for s = 1 (with some minor algebraic

simplification) by

∂J(φ0,β,Z)

∂φ0
= 4

N∑
i=1

w(i)
[
X (i)

q

T
M [φ(X (i)

z ;φ0,β)]ZM ′
[
φ(X (i)

z ;φ0,β)
]
X (i)

q

]
= 0
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∂J(φ0,β,Z)

∂Z1
= 2

N∑
i=1

w(i)
[
X (i)

q

T
M [φ(X (i)

z ;φ0,β)]1
2,2
1,1M [φ(X (i)

z ;φ0,β)]
TX (i)

q

]
− f1 = 0

∂J(φ0,β,Z)

∂β1,k
= 4

N∑
i=1

w(i)
[
X (i)

q

T
M [φ(X (i)

z ;φ0,β)]ZM ′
[
φ(X (i)

z ;φ0,β)
]
X (i)

q X (i)
z,k

]
= 0

For s = 3, the cost function is given by

J(φ0,β,Z) = 2
N∑
i=1

w(i)X (i)
q

T
M [φ(X (i)

z ;φ0,β)]ZM [φ(X (i)
z ;φ0,β)]

TX (i)
q

− lnF (Z) . (F.38)

where

Z =


Z1 0 0 0

0 Z2 0 0

0 0 Z3 0

0 0 0 0

 and M

([
θL

θR

])
= RL(q̄(θL))RR(q̄(θR)) , (F.39)

RL(q̄) =


q4 −q3 q2 −q1

q3 q4 −q1 −q2

−q2 q1 q4 −q3

q1 q2 q3 q4

 and RR(q̄) =


q4 −q3 q2 q1

q3 q4 −q1 q2

−q2 q1 q4 q3

−q1 −q2 −q3 q4

 , (F.40)

and

q̄(θ) =

[
θ
θ sin

θ
2

cos θ
2

]
. (F.41)

For convenience, φ0 and β are now decomposed into their top and bottom halves representing the

left and right isoclonic rotations, respectively, according to

φ0 =

[
θ0,L

θ0,R

]
and β =

[
βL

βR

]
,

such that Eq. (F.42) can be equivalently parameterized by the according to

J(θ0,L,θ0,R,βL,βR,Z) = 2
N∑
i=1

w(i)

[
X (i)

q

T
RL

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}
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×RR

{
q̄
[
θ
(
Z(i);θ0,R,βR

)]}
ZRT

R

{
q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]}
×RT

L

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}
X (i)

q

]
− lnF (Z) , (F.42)

where θ
(
X (i)

z ;θ0,L,βL

)
= θ0,L + βLX (i)

z . The cost function is now defined by

J(θ0,L,θ0,R,βL,βR,Z) = 2

N∑
i=1

w(i)Ki(θ0,L,θ0,R,βL,βR,Z)− lnF (Z) . (F.43)

where

Ki(θ0,L,θ0,R,βL,βR,Z) = X (i)
q

T
RL

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}
RR

{
q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]}
×ZRT

R

{
q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]}
RT

L

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}
X (i)

q

The partial derivative of the cost function with respect to an arbitrary parameter denoted by the

symbol ? can then be expressed as

∂J(θ0,L,θ0,R,βL,βR,Z)

∂?
= 2

N∑
i=1

w(i)∂Ki(θ0,L,θ0,R,βL,βR,Z)

∂?
− ∂lnF (Z)

∂?
.

It is now necessary to find these partial derivatives with respect to Z1, Z2, and Z3, as well as each

entry of θ0,L, θ0,R, βL, and βR. The term lnF (Z) is solely a function of Zk, where k = 1, 2, 3;

therefore, its only nonzero partial derivative is with respect to these Zk according to

∂lnF (Z)

∂Zk
= tr

{
∂lnF (Z)

∂F (Z)

∂F (Z)

∂Zk

}
= F−1 (Z)

∂F (Z)

∂Zk
= fk .

Now the partial derivatives of Ki(θ0,L,θ0,R,βL,βR,Z) with respect to Z1, Z2, and Z3, as

well as each entry of θ0,L, θ0,R, βL, and βR must be found. Its partial derivative with respect to the

Zk is given by

∂Ki(θ0,L,θ0,R,βL,βR,Z)

∂Zk
= (F.44)

tr


∂X (i)

q

T
[
RL

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}
RR

{
q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]}]
Z

[
. . .

]T
X (i)

q

∂Z

∂Z

∂Zk

 ,
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where the [· · · ] represents the same term as what is in the previous [ ]. Calculating the derivatives

in Eq. (F.44) yields

∂Ki(θ0,L,θ0,R,βL,βR,Z)

∂Zk
= (F.45)

tr

{[
RL

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}
RR

{
q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]}]T
X (i)

q X (i)
q

T
[
. . .

]
14,4k,k

}
.

Using the cyclic property of the trace, Eq. (F.45) can be expressed as

∂Ki(θ0,L,θ0,R,βL,βR,Z)

∂Zk
=

X (i)
q

T
[
RL

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}
RR

{
q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]}]
14,4k,k

[
. . .

]T
X (i)

q .

The partial derivative of Ki(θ0,L,θ0,R,βL,βR,Z) with respect to the kth entry of θ0,L,

θ0,L,k for k = 1, 2, 3, is given by

∂Ki(θ0,L,θ0,R,βL,βR,Z)

∂θ0,L,k
= (F.46)

tr


∂X (i)

q

T
[
RL

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}
RR

{
q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]}]
Z

[
. . .

]T
X (i)

q

∂RL

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}

×
∂RL

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}
∂θ0,L,k

 .

The former derivative of the chain rule in Eq. (F.46) is calculated as

∂X (i)
q

T
[
RL

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}
RR

{
q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]}]
Z

[
. . .

]T
X (i)

q

∂RL

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]} (F.47)

= 2RR

{
q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]}
ZRT

R

{
q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]}
×RT

L

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}
X (i)

q X (i)
q

T
.
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The latter derivative of the chain rule in Eq. (F.46) is calculated as

∂RL

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}
∂θ0,L,k

=
4∑

a=1

∂RL

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}
∂qa

[
θ
(
X (i)

z ;θ0,L,βL

)] (F.48)

×
∂qa

[
θ
(
X (i)

z ;θ0,L,βL

)]
∂θ0,L,k

.

The former derivative of the right hand side of Eq. (F.48) is calculated from Eq. (F.40) according to

∂RL

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}
∂q1

[
θ
(
X (i)

z ;θ0,L,βL

)] =


0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0

 (F.49a)

∂RL

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}
∂q2

[
θ
(
X (i)

z ;θ0,L,βL

)] =


0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0

 (F.49b)

∂RL

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}
∂q3

[
θ
(
X (i)

z ;θ0,L,βL

)] =


0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0

 (F.49c)

∂RL

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}
∂q4

[
θ
(
X (i)

z ;θ0,L,βL

)] =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (F.49d)

The latter derivative of the right hand side of Eq. (F.48) is calculated according to

∂qa

[
θ
(
X (i)

z ;θ0,L,βL

)]
∂θ0,L,k

=
∂qa

[
θ
(
X (i)

z ;θ0,L,βL

)]
∂θ
(
X (i)

z ;θ0,L,βL

) ∂θ
(
X (i)

z ;θ0,L,βL

)
∂θ0,L,k

. (F.50)

The former derivative of the right hand side of Eq. (F.50) is calculated from Eq. (F.41) and is given

by

∂q̄ (θ)

∂θ
=

[(
1

2θ2
cos θ

2 − 1
θ3

sin θ
2

)
θθT + 1

θ sin
θ
2I

− 1
2θ sin

θ
2θ

T

]
. (F.51)
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The latter derivative of the right hand side of Eq. (F.50) is calculated from Eq. (F.13) is given by

∂θ
(
X (i)

z ;θ0,L,βL

)
∂θ0,L,k

=
3∑

b=1

∂θ
(
X (i)

z ;θ0,L,βL

)
∂θ0,L,b

∂θ0,L,b
∂θ0,L,k

= 13,1k,1 . (F.52)

Substituting Eq. (F.52) into Eq. (F.50) yields

∂qa

[
θ
(
X (i)

z ;θ0,L,βL

)]
∂θ0,L,k

=
∂qa

[
θ
(
X (i)

z ;θ0,L,βL

)]
∂θ
(
X (i)

z ;θ0,L,βL

) 13,1k,1 . (F.53)

It is now noted that Eq. (F.53) can be expressed as

∂qa

[
θ
(
X (i)

z ;θ0,L,βL

)]
∂θ0,L,k

=

∂q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]
∂θ
(
X (i)

z ;θ0,L,βL

)

a,k

, αL,a,k , (F.54)

where Ma,k represents the entry in the ath-row and kth-column of the arbitrary matrix M . Substi-

tuting Eq. (F.54) into Eq. (F.48) yields

∂RL

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}
∂θ0,L,k

=

4∑
a=1

∂RL

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}
∂qa

[
θ
(
X (i)

z ;θ0,L,βL

)] αL,a,k . (F.55)

which can be simplified noting Eqs. (F.49) to yield

∂RL

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}
∂θ0,L,k

=


αL,4,k −αL,3,k αL,2,k −αL,1,k

αL,3,k αL,4,k −αL,1,k −αL,2,k

−αL,2,k αL,1,k αL,4,k −αL,3,k

αL,1,k αL,2,k αL,3,k αL,4,k

 , AL,k . (F.56)

Substituting Eqs. (F.47) and (F.56) into Eq. (F.46) yields

∂Ki(θ0,L,θ0,R,βL,βR,Z)

∂θ0,L,k
= tr

{
2RR

{
q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]}
Z (F.57)

×RT
R

{
q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]}
RT

L

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}
X (i)

q X (i)
q

T
AL,k

}
.
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Exploiting the cyclic property of the trace, Eq. (F.57) can be expressed as

∂Ki(θ0,L,θ0,R,βL,βR,Z)

∂θ0,L,k
= 2X (i)

q

T
AL,kRR

{
q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]}
Z (F.58)

RT
R

{
q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]}
RT

L

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}
X (i)

q .

The partial derivative of Ki(θ0,L,θ0,R,βL,βR,Z) with respect to the kth row and `th entry

of βL, βL,k,` for k = 1, 2, 3 and ` = 1, 2, . . . , r, is given by

∂Ki(θ0,L,θ0,R,βL,βR,Z)

∂βL,k,`
= (F.59)

tr


∂X (i)

q

T
[
RL

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}
RR

{
q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]}]
Z

[
. . .

]T
X (i)

q

∂RL

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}

×
∂RL

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}
∂βL,k,`

 .

The former derivative of the chain rule in Eq. (F.59) is given by Eq. (F.47). The latter derivative of

the chain rule in Eq. (F.59) is calculated as

∂RL

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}
∂βL,k,`

=
4∑

a=1

∂RL

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}
∂qa

[
θ
(
X (i)

z ;θ0,L,βL

)] (F.60)

×
∂qa

[
θ
(
X (i)

z ;θ0,L,βL

)]
∂βL,k,`

.

The former derivative of the right hand side of Eq. (F.60) is given by Eq. (F.49). The latter derivative

of the right hand side of Eq. (F.60) is calculated according to

∂qa

[
θ
(
X (i)

z ;θ0,L,βL

)]
∂βL,k,`

=
∂qa

[
θ
(
X (i)

z ;θ0,L,βL

)]
∂θ
(
X (i)

z ;θ0,L,βL

) ∂θ
(
X (i)

z ;θ0,L,βL

)
∂βL,k,`

. (F.61)

The former derivative of the right hand side of Eq. (F.61) is given by Eq. (F.51). The latter derivative

of the right hand side of Eq. (F.61) is calculated from Eq. (F.13) and is given by

∂θ
(
X (i)

z ;θ0,L,βL

)
∂βL,k,`

=
3∑

b=1

r∑
c=1

∂θ
(
X (i)

z ;θ0,L,βL

)
∂βL,b,c

∂βL,b,c
∂βL,k,`
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= X (i)
z,` 1

3,1
k,1 . (F.62)

Substituting Eq. (F.62) into Eq. (F.61) yields

∂qa

[
θ
(
X (i)

z ;θ0,L,βL

)]
∂βL,k,`

=
∂qa

[
θ
(
X (i)

z ;θ0,L,βL

)]
∂θ
(
X (i)

z ;θ0,L,βL

) X (i)
z,` 1

3,1
k,1 . (F.63)

It is now noted that Eq. (F.63) can be expressed as

∂qa

[
θ
(
X (i)

z ;θ0,L,βL

)]
∂βL,k,`

=

∂q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]
∂θ
(
X (i)

z ;θ0,L,βL

)

a,k

X (i)
z,` , αL,a,kX

(i)
z,` . (F.64)

Substituting Eq. (F.64) into Eq. (F.60) yields

∂RL

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}
∂βL,k,`

=

4∑
a=1

∂RL

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}
∂qa

[
θ
(
X (i)

z ;θ0,L,βL

)] αL,a,kX
(i)
z,` . (F.65)

which can be simplified to yield

∂RL

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}
∂βL,k,`

= AL,kX
(i)
z,` . (F.66)

Substituting Eqs. (F.47) and (F.66) into Eq. (F.59) yields

∂Ki(θ0,L,θ0,R,βL,βR,Z)

∂βL,k,`
= tr

{
2RR

{
q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]}
Z (F.67)

×RT
R

{
q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]}
RT

L

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}
X (i)

q X (i)
q

T
AL,kX

(i)
z,`

}
.

Exploiting the cyclic property of the trace, Eq. (F.67) can be expressed as

∂Ki(θ0,L,θ0,R,βL,βR,Z)

∂βL,k,`
= 2X (i)

z,`X
(i)
q

T
AL,kRR

{
q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]}
Z (F.68)

RT
R

{
q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]}
RT

L

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}
X (i)

q .

The partial derivative of Ki(θ0,L,θ0,R,βL,βR,Z) with respect to the kth entry of θ0,R,

θ0,R,k for k = 1, 2, 3, is given by

∂Ki(θ0,L,θ0,R,βL,βR,Z)

∂θ0,R,k
= (F.69)
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tr


∂X (i)

q

T
[
RL

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}
RR

{
q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]}]
Z

[
. . .

]T
X (i)

q

∂RR

{
q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]}

×
∂RR

{
q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]}
∂θ0,R,k

 .

The former derivative of the chain rule in Eq. (F.69) is calculated as

∂X (i)
q

T
[
RL

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}
RR

{
q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]}]
Z

[
. . .

]T
X (i)

q

∂RL

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]} =

2ZRT
R

{
q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]}
RT

L

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}
(F.70)

×X (i)
q X (i)

q

T
RL

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}
.

The latter derivative of the chain rule in Eq. (F.69) is calculated as

∂RR

{
q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]}
∂θ0,R,k

=

4∑
a=1

∂RR

{
q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]}
∂qa

[
θ
(
X (i)

z ;θ0,R,βR

)] (F.71)

×
∂qa

[
θ
(
X (i)

z ;θ0,R,βR

)]
∂θ0,R,k

.

The former derivative of the right hand side of Eq. (F.71) is calculated from Eq. (F.40) according to

∂RR

{
q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]}
∂q1

[
θ
(
X (i)

z ;θ0,R,βR

)] =


0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

 (F.72a)

∂RR

{
q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]}
∂q2

[
θ
(
X (i)

z ;θ0,R,βR

)] =


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

 (F.72b)
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∂RR

{
q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]}
∂q3

[
θ
(
X (i)

z ;θ0,R,βR

)] =


0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0

 (F.72c)

∂RR

{
q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]}
∂q4

[
θ
(
X (i)

z ;θ0,R,βR

)] =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 . (F.72d)

The latter derivative of the right hand side of Eq. (F.71) is calculated according to

∂qa

[
θ
(
X (i)

z ;θ0,R,βR

)]
∂θ0,R,k

=
∂qa

[
θ
(
X (i)

z ;θ0,R,βR

)]
∂θ
(
X (i)

z ;θ0,R,βR

) ∂θ
(
X (i)

z ;θ0,R,βR

)
∂θ0,R,k

. (F.73)

Substituting Eqs. (F.51) and (F.52) into Eq. (F.73) yields

∂qa

[
θ
(
X (i)

z ;θ0,R,βR

)]
∂θ0,R,k

=
∂qa

[
θ
(
X (i)

z ;θ0,R,βR

)]
∂θ
(
X (i)

z ;θ0,R,βR

) 13,1k,1 . (F.74)

It is now noted that Eq. (F.74) can be expressed as

∂qa

[
θ
(
X (i)

z ;θ0,R,βR

)]
∂θ0,R,k

=

∂q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]
∂θ
(
X (i)

z ;θ0,R,βR

)

a,k

, αR,a,k . (F.75)

Substituting Eq. (F.75) into Eq. (F.71) yields

∂RR

{
q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]}
∂θ0,R,k

=
4∑

a=1

∂RR

{
q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]}
∂qa

[
θ
(
X (i)

z ;θ0,R,βR

)] αR,a,k . (F.76)

which can be simplified to yield

∂RR

{
q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]}
∂θ0,R,k

=


αR,4,k −αR,3,k αR,2,k αR,1,k

αR,3,k αR,4,k −αR,1,k αR,2,k

−αR,2,k αR,1,k αR,4,k αR,3,k

−αR,1,k −αR,2,k −αR,3,k αR,4,k

 , AR,k . (F.77)
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Substituting Eqs. (F.70) and (F.77) into Eq. (F.69) yields

∂Ki(θ0,L,θ0,R,βL,βR,Z)

∂θ0,R,k
= (F.78)

tr
{
2ZRT

R

{
q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]}
RT

L

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}
X (i)

q X (i)
q

T

×RL

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}
AR,k

}
.

Exploiting the cyclic property of the trace, Eq. (F.78) can be expressed as

∂Ki(θ0,L,θ0,R,βL,βR,Z)

∂θ0,L,k
= 2X (i)

q

T
RL

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}
AR,kZ (F.79)

×RT
R

{
q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]}
RT

L

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}
X (i)

q .

The partial derivative of Ki(θ0,L,θ0,R,βL,βR,Z) with respect to the kth row and `th entry

of βR, βR,k,` for k = 1, 2, 3 and ` = 1, 2, . . . , r, is given by

∂Ki(θ0,L,θ0,R,βL,βR,Z)

∂βR,k,`
= (F.80)

tr


∂X (i)

q

T
[
RL

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}
RR

{
q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]}]
Z

[
. . .

]T
X (i)

q

∂RR

{
q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]}

×
∂RR

{
q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]}
∂βR,k,`

 .

The former derivative of the chain rule in Eq. (F.80) is given by Eq. (F.70). The latter derivative of

the chain rule in Eq. (F.80) is calculated as

∂RR

{
q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]}
∂βR,k,`

=

4∑
a=1

∂RR

{
q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]}
∂qa

[
θ
(
X (i)

z ;θ0,R,βR

)] (F.81)

×
∂qa

[
θ
(
X (i)

z ;θ0,R,βR

)]
∂βR,k,`

.
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The former derivative of the right hand side of Eq. (F.81) is given by Eq. (F.72). The latter derivative

of the right hand side of Eq. (F.81) is calculated according to

∂qa

[
θ
(
X (i)

z ;θ0,R,βR

)]
∂βR,k,`

=
∂qa

[
θ
(
X (i)

z ;θ0,R,βR

)]
∂θ
(
X (i)

z ;θ0,R,βR

) ∂θ
(
X (i)

z ;θ0,R,βR

)
∂βR,k,`

. (F.82)

The former derivative of the right hand side of Eq. (F.82) is given by Eq. (F.51). The latter derivative

of the right hand side of Eq. (F.82) is calculated from Eq. (F.13) and is given by

∂θ
(
X (i)

z ;θ0,R,βR

)
∂βR,k,`

=
3∑

b=1

r∑
c=1

∂θ
(
X (i)

z ;θ0,R,βR

)
∂βR,b,c

∂βR,b,c

∂βR,k,`

= X (i)
z,` 1

3,1
k,1 . (F.83)

Substituting Eq. (F.83) into Eq. (F.82) yields

∂qa

[
θ
(
X (i)

z ;θ0,R,βR

)]
∂βR,k,`

=
∂qa

[
θ
(
X (i)

z ;θ0,R,βR

)]
∂θ
(
X (i)

z ;θ0,R,βR

) X (i)
z,` 1

3,1
k,1 . (F.84)

It is now noted that Eq. (F.84) can be expressed as

∂qa

[
θ
(
X (i)

z ;θ0,R,βR

)]
∂βR,k,`

=

∂q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]
∂θ
(
X (i)

z ;θ0,R,βR

)

a,k

X (i)
z,` , αR,a,kX

(i)
z,` . (F.85)

Substituting Eq. (F.85) into Eq. (F.81) yields

∂RR

{
q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]}
∂βR,k,`

=
4∑

a=1

∂RR

{
q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]}
∂qa

[
θ
(
X (i)

z ;θ0,R,βR

)] αR,a,kX
(i)
z,` . (F.86)

which can be simplified to yield

∂RR

{
q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]}
∂βR,k,`

= AR,kX
(i)
z,` . (F.87)

Substituting Eqs. (F.70) and (F.87) into Eq. (F.80) yields

∂Ki(θ0,L,θ0,R,βL,βR,Z)

∂βR,k,`
= tr

{
2ZRT

R

{
q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]}
(F.88)
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×RT
L

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}
X (i)

q X (i)
q

T
RL

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}
AR,kX

(i)
z,`

}
.

Exploiting the cyclic property of the trace, Eq. (F.88) can be expressed as

∂Ki(θ0,L,θ0,R,βL,βR,Z)

∂βR,k,`
= 2X (i)

z,`X
(i)
q

T
RL

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}
AR,kZ (F.89)

×RT
R

{
q̄
[
θ
(
X (i)

z ;θ0,R,βR

)]}
RT

L

{
q̄
[
θ
(
X (i)

z ;θ0,L,βL

)]}
X (i)

q .

In summary the optimality conditions for s = 3 are given (with some minor algebraic

simplification) by

∂J(θ0,L,θ0,R,βL,βR,Z)

∂Zk
= 2

N∑
i=1

w(i)X (i)
q

T
R

(i)
L R

(i)
R 14,4k,kR

(i)
R

T
R

(i)
L

T
X (i)

q − fk = 0

∂J(θ0,L,θ0,R,βL,βR,Z)

∂θ0,L,k
= 4

N∑
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q

T
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R ZR

(i)
R

T
R

(i)
L

T
X (i)

q = 0

∂J(θ0,L,θ0,R,βL,βR,Z)

∂βL,k,`
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N∑
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q

T
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R ZR

(i)
R

T
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(i)
L

T
X (i)
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N∑
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q

T
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R

T
R

(i)
L

T
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q = 0
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= 4

N∑
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where

R
(i)
L = RL

{
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[
θ
(
X (i)

z ;θ0,L,βL
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R

(i)
R = RR

{
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[
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(
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