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Generalized Rayleigh Waves in Layered Solid-Fluid Media 
Hua Hui Tan 
Senior Engineer, Norwegian Geotechnical Institute, Oslo, Norway 

SYNOPSIS: A finite-element method for the propagation of Rayleigh-type waves in layered solid-fluid media is presented. 
The method uses displacement as the only parameter to describe the solid and the fluid motions. A penalty function 
method and a selective integration technique are employed to change the elastic coefficient matrix of fluid from singu­
lar to nonsingular. Results obtained from the proposed method agree well with those obtained from available analytical 
solutions. The method can be used to study the propagation of Rayleigh-type waves in a two-dimensional, irregular 
solid-fluid system. 

INTRODUCTION 

The propagation of Rayleigh-type waves in a system con­
sisting of a fluid layer over an elastic solid half-space 
has previously been solved analytically (Stoneley, 1926; 
Biot, 1952). These solutions are valid only when both 
the solid and the fluid are homogeneous materials. For 
the situation where the solid and/or the fluid are multi­
layered materials, numerical methods based on Thomson­
Haskell matrix formulation are available (Haskell, 1953; 
Dorman, 1962). Dorman's method can only compute the ver­
tical, but not the horizontal, distribution of particle 
motion and stress in the normal modes. Therefore, it ca~ 
not be used to study the propagation of Rayleigh waves 
in a two-dimensional, irregular, heterogeneous system 
located between two horizontally layered solid-fluid 
systems. It should also be noted that all methods men­
tioned above use mixed parameters to describe the equa­
tions of motion, i.e., they use pressure or displacement 
potentials in the fluid, and use displacement for the 
solid. Obviously, extra effort is required to couple the 
equations in the solid and fluid domains. 

A finite-element approach to solve the problem of 
Rayleigh-type wave propagation in layered solid-fluid 
media is presented herein; it uses displacement as the 
only parameter in both the solid and the fluid. A pen­
alty function and a selective integration technique are 
employed to convert the elastic coefficient matrix in the 
fluid from singular to nonsingular. The proposed method 
can compute both the horizontal and vertical distribu­
tions of particle motion and stress in the normal modes. 
More importantly, the method can further be used to form 
the dynamic stiffness matrix for a layered solid-fluid 
medium (Tan, 1990). 

EQUATIONS OF MOTION AND BOUNDARY CONDITIONS 

Let us consider harmonic plane wave propagating in a 
solid-fluid system. Using cartesian coordinates, the 
displacements for Rayleigh-type waves in the solid and 
fluid can be expressed as 

[&]S [XY]Tei(wt-Kx) in the solid domain os 

[&]f [QP]Tei(wt-Kx) in the fluid domain Qf 

(1) 

(2) 

in which the superscripts s, f, and T represent solid, 
fluid and the transposition, [&] denotes the displacement 
vector, i is v:T, w is the angular frequency, t is the 
time, K is the wave number, x is the distance, X and Y 
(or P and Q) are the amplitudes of solid (or fluid) dis­
placements in the x andy directions at t = 0 and x = 0, 
and 0 is the domain. Neglecting the body forces and ini­
tial stresses, the equations of motion in the solid 
domain are 
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[K 2 (~+2~) - w2 pS)X- ~X,yy + iK(~+~)Y,y = u (3) 

[K 2~- w2 pSjy- (~-2~)Y,yy + iK(~+~)X,y 0 (4) 

in which the subscripts ,y and ,yy represent the first 
and the second order of differential operation with 
respect toy, ~ and ~ are the Lame's constant and shear 
modulus for the solid, and pis the density. 

In the fluid domain, the displacement approach is 
employed and the fluid is treated as an elastic solid 
with a negligible shear modulus. Thus, for a fluid 
layer, introducing a zero shear modulus into equations 
(3) and (4) and replacing~. X, Y, and pS with B. P, Q, 
and pf produce 

(K 2 6 - w• pf)p + iKBO,y = 0 

-w• pf Q- BO,yy + iKBP,y 0 

where B is the bulk modulus of the fluid. 

(5) 

(6) 

For Rayleigh-type waves traveling in a solid-fluid 
medium, it is assumed that the fluid motion remains irro­
tational (Biot, 1952). This assumption leads to 

wz = curl[&]f = o (7) 

where wz is the vorticity of the fluid. The assumption 
of zero vorticity is very important since it makes the 
displacement approach applicable in the fluid domain. 

By use of equation (2), the vorticity in equation (7) 
can be written in the form of 



wz = (dP/dy + iKO)ei(wt-Kx) = 0 (8) 

The boundary conditions of the semi-infinite solid-fluid 
system are: 

1) At the free surface, the normal stress in the fluid 
is zero 

2) 

3) 

0 (9) 

where Oyy represents normal stress in the vertical y 
direction. 

At the solid-fluid interface, the boundary conditions 
to be satisfied are continuity of normal stresses and 
continuity of vertical displacements between solid 
and fluid. In addition, since the shear stress in 
the fluid is zero, the shear stress in the solid at 
the solid-fluid interface must also be zero. These 
boundary conditions can be expressed as 

OS of (10) yy yy 

y 0 (11) 

"[~y 0 (12) 

where txy is the shear stress. 

On the rigid base, the solid displacements are forced 
to be zero 

X = Y 0 (13) 

PENALTY FUNCTION METHOD AND THE WEAK FORM FORMULATION 

The weak form which satisfies the basic equations of 
motion in the solid (equations 3 and 4) and in the fluid 
(equations 5 and 6) and all of the boundary conditions 
(equations 9 to 13) is 

W(X,Y,P,O) =Ins (equation(3)·X + equation(4)·V)dn 

+ Inf (equation(5)·P + equation(6)·q)dn = 0 (14) 

where W is the weak form. The parameters under the bar 
sign represent virtual displacements. Note that in equ­
ation (14), the constraint requirement of equation (7) 
has not been introduced; upon assembly, equation (14) 
will give a singular system of equations because the 
shear modulus of the fluid is zero. 

The singularity problem can be avoided if the con­
straint in equation (7) is included in the original 
problem. The irrotational constraint in the fluid can be 
introduced innto the system by a penalty function method 
(Zienkiewicz, 1986). The imposed penalty function will 
change the weak from in equation (14) to 

Wa(X,Y,P,O,a) = W(X,Y,P,O) + Inf(awz)wzdn = 0 (15) 

where a is a large penalty number, wz is the virtual 
vorticity in the fluid and Wa is the modified weak form 
which contains the penalty term. On assembly, equation 
(15) will produce a nonsingular system of equations in 
which solutions can be found. Results obtained from 
equation (15) are essentially independent of the chosen 
value of a, provided a is in the range of 
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10-' • B s a s 10' • B (16) 

Substituting equations (3), (4), (5), (6), and (7) into 
equation (15), integrating the high derivative terms by 
parts, and reorganizing the results yield 

Wa(X,Y,P,O,a) 

Ins (aSK• + ibSK + es - cSw 2 )dn + 

Inf (afK• + ibfK + ef - cfw 2 )dn + 

the boundary conditions 
in equations (9) through (13) = 0 

( 17) 

where as, bs, es, cs, af, bf, ef, and cf are defined by 
(Tan, 1988) 

as (11 + 2)J)XX + )JYV (18) 
bS 11(Y,yX- XY,y) + )J(X,yY- YX,y) (19) 

es )JX,yX,y + (11 + 2!l)Y,yY,y (20) 

cs pS(XX + YV) (21) 
af BPP + aoq (22) 
bf B(O,yP- pq,y) + a(-P,y~ + OP,y) (23) 

ef BO,y~.y + aP,yP,y (24) 

cf pf(PP + 0~) (25) 

FINITE-ELEMENT SPATIAL OJSCRETJZATJON 

A semi-discretization technique is used to discretize the 
layered solid-fluid system. In the horizontal direction, 
the system is treated as a continuum. In the vertical 
direction, one-dimensional, two-node, linear, solid or 
fluid elements are used to model the system according to 
standard finite-element techniques. 

Usually, one horizontal displacement and one vertical 
displacement are used as the degrees of freedom for each 
node. However, the node at the solid-fluid interface has 
three degrees of freedom. One of these corresponds to 
the vertical solid and vertical fluid displacement, and 
the other two correspond to a horizontal displacement for 
the solid and a perhaps different, horizontal displace­
ment for the fluid. Therefore, the three degrees of 
freedom at this node are able to model a slip at the 
solid-fluid interface. 

For N fluid layers over M solid layers, as shown in 
Figure 1, the system's nodal displacement vector, [&], 
can be written as 

[&] = [V]ei (wt-kx) 

[V] is defined by 

[V]T = [V1V2···V2N+1V2N+2···V2(M+N)Y2(M+N)+1] 

(26) 

(27) 

where Vi(i=1, ••• 2(M + N) + 1) is solid of fluid nodal 
displacements as shown in Figure 1. Each element con­
sists of four nodal displacements, two on the top of the 
element and two on the bottom. 
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~ Layered solid-fluid system, direction of coor­
dinates and nubmering of degrees of freedom and 
layers. Note that at the solid-fluid interface, 
there are three degrees of freedom. 

For a typical jth fluid element (1 s j s N) 

T 
[V]j = [V2j-1 V2j V2j+1 V2j+2] (28) 

where [V]j represents the nodal displacement vector of 
element j. 

For the solid element at the solid-fluid interface, 
j = N + 1 only 

[V]~+1 = [V2N+3 V2N+2 V2N+4 V2N+5] (29 ) 

For a typical jth solid element (N + 2 s j s N + M) 

On the right hand side of equations (28) through (30), 
the first and the third terms are horizontal displace­
ments, the second and the fourth are vertical displace­
ments. The motions of a point within any solid or fluid 
element consist of both vertical and horizontal displace­
ments, and these displacements can be related to the ele­
menty nodal displacements by 

[v]j = [N]j[V]j 

in which [v]j is the displacement vector 
is the element nodal displacement vector 
equations (28) through (30), and [N]j is 
the interpolation function for element j 
by 

(31) 

of a point, [V]j 
as defined in 
the matrix of 
and is defined 

j 1, ••• , (M + N) (32) 

where Nij and N2j are one-dimensional interpolation func­
tions and are given by 

(y~ - y)/hj (33) 

(34) 

where hj is the thickness of layer j, Y1j and Y2j are the 
y coordinates of the top and bottom nodes of layer j. 
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Using standard finite-element discretization tech­
nique, the weak form can be changed from a continuous 
function to a discrete set of 2(N + M) + 1 homogeneous 
complei linear equations 

([A]K 2 + i[B]K + [E] - [C]w2 )[V] = 0 (35) 

where [A], [E], and [C] are [2(N + M) + 1]·[2(M + N)+ 1] 
symmetric matrices and [B] is a skew symmetric matrix 
with the same dimensions. 

The four characteristic matrices in equation (35) con­
sist of the contributions from the individual solid and 
fluid layer. A typical jth layer of one-dimensional, 
four-node, linear solid or fluid element contributes a 
set of 4·4 submatrices [A]ji, [E]ji, [C]ji, and [B]ji, 
where i represents solid or fluid and j represents the 
layer number. Formulas for computing these submatrices 
will be given in the following section. These sub­
matrices are then assembled according to the regular 
finite-element assembly technique to form the total [A], 
[E]. [C], and [B] matrices (Waas, 1973). 

For any given frequency, w, equation (35) constitutes 
an eigenvalue problem in K and [V]. The eigenvalue [K]s, 
s = 1 to 4(N + M) + 2, can be determined as the roots of 
the polynomial 

I[A]K 2 + i[B]K + [E] - [C]w•l = 0 (36) 

and for each Ks, the corresponding eigenvectors [V]s can 
then be determined as a normalized solution to the homo­
geneous linear equations in equation (35). The physical 
meaning of the eigenvalues, Ks, is that they are wave 
numbers for generalized Rayleigh waves in the layered 
solid-fluid media. 

SELECTIVE INTEGRATION METHOD 

As mentioned in the previous section, in the process of 
form~ng the fou~ characteristic submatrices, [A]ji, [E]ji 
[C]j,, and [B]j 1 , integration of polynomial functions is 
required. For a system containing both a solid and a 
fluid, the selective integration method should be used 
for the fluid elements. In this method, all terms being 
integrated are divided into two groups. The first group 
contains no penalty number, a, and the second group does. 
Any term with no a will be integrated with a normal order 
integration rule, and terms with a will be integrated 
with a lower order integration rule. 

The four characteristic submatrices for the solid and 
fluid are obtained by integrating the corresponding func­
tions of equations (18) to (25). The solid submatrices 
obtained using this method are identical to those 
obtained by Waas (1973). 



For fluid elements, the matrix [E]jf is generated by 
integrating the ef in equation (24). The highest order 
of the polynomial terms in ef is zero. Integrating them 
by one-point Gaussian quadrature rule yields 

[E]~ 
J 

where aj is 

1/h j 

the 

l 
a 0 

• o a J 
-a 0 
o -a J 

-a 0 l o -a J 
a 0 
0 aj 

bulk modulus of fluid at layer j. 

(37) 

By 
comparison, the corresponding submatrix [E]js for solid 
is 

llj 0 -llj 0 

[ E] ~ 
0 (2llj+hj) 0 -(2llj+hj) 

J 
1/h j" 

-llj 0 llj 0 (38) 

0 -(2llj+hj) 0 (2llj+hj) 

where llj and ?.j are the shear modulus and Lame's elastic 
constant of solid at layer. 

The submatrix [B]jf for fluid is obtained by inte­
grating the bf term in equation (23). The highest order 
or the polynomial terms in bf is one. Integrating them 
by one-point Gaussian quadrature rule yields 

0 (-aj-a) 0 
(0 j-U) 1 

[B]~ = ~· 
-(-aj-a) 0 (aj-a) 

-(-:j-U) 0 - (aj -a) 0 (3g) 

-<ara> 0 (-aj-a) 

For solid elements, the cDrresponding submatr•x [ B]j s is 

0 ( -?. j+ll j) 0 (hj+llj) 
-(-1-j+llj) 0 (?.j+llj) 0 

[ B] ~ ~· 0 -(hj+llj) 0 -(-1-j+llj) (40) 
J 

-(hj+llj) 0 ( -hj+llj) 0 

The submatrix [C]ji (i = solid of fluid) is derived by 
integrating cs or cf term in equation (21) or (25). 
(C)ji is a function of material density, Pj• and the 
thickness of a layer. It represents the mass matrix of 
the layer. The highest polynomial terms in cs or cf is 
two and they do not contain the penalty value a; there­
fore, they sould be integrated by two-point Gaussian 
quadrature rule. For solid and fluid, the submatrix 
[C]ji takes the form of 

ml 0 m2 

[ c 1 ~ 
0 ml 0 

J m2 0 ml 
0 m2 0 

in which m1 and m2 are 

ml Pj hj /3 

m2 Pj hj /6 

0 

m2 
0 

ml 

(41) 

(42) 

(43) 

The values of m1 and m2 above are derived from the con­
sistent mass formulation. If lumped mass formulation is 
used, then m2 is zero and m1 is 
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(44) 

In this study, the mass matrix actually used for solid or 
fluid elements is the average of the lumped and the con­
sistent mass matrices. 

Integrating af in equation {22) yields the submatrix 
[A]jf in fluid. The highest order of polynomial terms in 
af is 2. In fluid, [A]jf has the form of 

blaj 0 b2aj 0 
0 a1a 0 a2a 

hj /6• 
b2aJ 0 blaj 0 (45) 

0 a2a 0 a1a 

The values of b1, b2, a1 and a2 depend on the integration 
rule being used. When two-point Gaussian rule was 
applied 

However, when one-point integration rule was used 

(46) 

(47) 

(48) 

The best values of a1, a2, b1, and b2, using the men­
tioned selective integration rule, will be a1 = a2 = 1/4, 
b1 = 1/3 and b2 = 1/6. 

Using these values, the correct form of submatrix 
[A]jf reads 

2aj 0 aj 0 

[A]~ 
0 1.5a 0 1.5a 

h j /6· 
aj 0 2aj 0 (4g) 

J 

0 1.5a 0 1.5a 

By comparison, the submatrix [A]j s for solid is 

2(2llj+hj) 0 (2llj+hj) 0 
0 2llj 0 llj 

[A]s hj /6• (50) j (2llj+?.j) 0 2(2llj+?.j) 0 

0 llj 0 2llj 

NUMERICAL EXAMPLE 

The example given below concerns the propagation of fun­
damental Rayleigh waves in a system consisting of a 
finite depth of compressible fluid over an elastic solid 
half space. The analytical method presented by Biot 
{lg52) will be used to check the approximate method pre­
sented herein. 

The computational model used in the example is similar 
to Figure 1. The infinite depth of the elastic solid is 
represented by 10, 15, or 20 one-dimensional solid ele­
ments; the total solid depth (2100 meters) is about the 
length of a single fundamental Rayleigh wave. The den­
sity, S-wave velocity, and Poisson's ratio of the solid 
are 1000 kg/m', 2250 m/sec, and 0.25, respectively. The 
total fluid depth (375.5 meters) is modeled by 10 one­
dimensional fluid elements. The density and P-wave velo-



city of the fluid are 1000 kg/m' and 1500 m/sec. These 
parameters are chosen to match Biot's data. A frequency 
of 1.0 Hz and a penalty value of 10 times fluid modulus 
.are also used. 

When solved using Biot's method, the wave number, K, 
of the first Rayleigh mode has a value of 4.01 [1/km]. 
The values obtained b~ the proposed numerical method are 
3.94, 3.97, and 3.98 L1/km] when 10, 15, and 20 solid 
elements, respectively, were used in the computation. 
Thus, the numerical results can be improved and will con­
verge towards the analytical solution as a finer finite­
element mesh is used. 

The fundamental Rayleigh wave mode shapes for the 
model using 20 solid elements are plotted in Figure 2. 
The mode shapes are normalized so that the horizontal 
motion of the solid at the solid-fluid interface has an 
amplitude of unity. 

The example demonstrates that the finite-element 
method yields results that agree closely with Biot's 
solution. 
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fluid medium, normalized by the horizontal 
displacement at the top of the solid surface. 

CONCLUSIONS 

A displacement approach for the propagation of Rayleigh 
wave in layered solid-fluid media has been developed. 
The method leads to motion equations in terms of displa­
cements for both the solid and the fluid domains. The 
main advantages of this approach are that displacement 
compatibility and force equilibrium along the solid-fluid 
interface are easily satisfied and thus no special coup­
ling equation is required. With this method, the solid 
and the fluid domains can be treated as a single system. 
A general purpose finite-element computer program for 
solids can be easily modified to include a fluid region 
since the same assembly process can be used for both the 
solid and fluid elements. Numerical example shows the 
proposed method agrees with the analytical solution. The 
method can further be used to study the propagation of 
Rayleigh-type waves in a two-dimensional, irregular 
solid-fluid system and to derive the dynamic stiffness 
matrix of a layered solid-fluid medium. 
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