
Scholars' Mine Scholars' Mine

Doctoral Dissertations Student Theses and Dissertations

Summer 2016

Models of leader elections and their applications Models of leader elections and their applications

Stephen Curtis Jackson

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

 Part of the Computer Sciences Commons

Department: Computer Science Department: Computer Science

Recommended Citation Recommended Citation
Jackson, Stephen Curtis, "Models of leader elections and their applications" (2016). Doctoral
Dissertations. 2510.
https://scholarsmine.mst.edu/doctoral_dissertations/2510

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2510&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2510&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/2510?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2510&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

MODELS OF LEADER ELECTIONS AND THEIR APPLICATIONS

by

STEPHEN CURTIS JACKSON

A DISSERTATION

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

2016

Approved

Dr. Bruce McMillin, Advisor

Dr. Ali Hurson

Dr. Wei Jiang

Dr. Sriram Chellappan

Dr. Sahra Sedigh Sarvestani

Copyright 2016

STEPHEN CURTIS JACKSON

All Rights Reserved

iii

ABSTRACT

New research about cyber-physical systems is rapidly changing the way we

think about critical infrastructures such as the power grid. Changing requirements

for the generation, storage, and availability of power are all driving the development

of the smart-grid. Many smart-grid projects disperse power generation across a wide

area and control devices with a distributed system. However, in a distributed system,

the state of processes is hard to determine due to isolation of memory. By using

information flow security models, we reason about a process’s beliefs of the system

state in a distributed system. Information flow analysis aided in the creation of

Markov models for the expected behavior of a cyber controller in a smart-grid system

using a communication network with omission faults. The models were used as part of

an analysis of the distributed system behavior when there are communication faults.

With insight gained from these models, existing congestion management techniques

were extended to create a feedback mechanism, allowing the cyber-physical system

to better react to issues in the communication network.

iv

ACKNOWLEDGMENTS

It is hard to believe I’ve spent nearly a decade at Missouri S&T. I am eternally

grateful to everyone at this university who helped me along the way. Bruce McMillin

got me started down this long path of research when he hired me to work with David

Cape and has provided me with so many opportunities. I have had so many wonderful

experiences with everyone I’ve worked with in the Computer Science department.

Special thanks to Ali Hurson, Wei Jiang, Sahra Sedigh Sarvestani, and Sriram

Chellappan for their service on my Ph.D. committee. I’m very grateful to every

instructor I’ve had at S&T who has inspired me to explore and learn. Thanks to

Dawn Davis, Christina Barton, and Rhonda Grayson for their years of administrative

support. Thanks to all my lab mates: Li Feng, Thomas Roth, Gerry Howser, and

everyone else along the way for making our lab such a great place to work.

My research was supported by the two excellent programs: the Future Renew-

able Electric Energy Delivery and Management Center, a National Science Foundation-

supported Engineering Research Center under grant NSF EEC-081212, and the United

States Department of Education GAANN program.

Special thanks to my family: Sue, Kent, Laura, and everyone else who encour-

aged me and supported me through this long journey. I also want to give thanks to

all of my friends for their support: Emily, Drew, Doug, Tony, Michaela, Liz, Robert,

Remington, Dwight and everyone else at KMNR; you’ve made this long stay at S&T

a lot more comfortable. I love you all.

v

TABLE OF CONTENTS

Page

ABSTRACT . iii

ACKNOWLEDGMENTS . iv

LIST OF ILLUSTRATIONS . ix

LIST OF TABLES . xii

LIST OF ACRONYMS. xiii

NOMECLATURE. xv

SECTION

1 INTRODUCTION . 1

2 BACKGROUND. 5

2.1 EXECUTION AND COMMUNICATION MODELS 5

2.1.1 Communication Channels . 6

2.1.2 Clocks . 6

2.1.3 Execution . 7

2.2 FAULTS, FAILURES, AND ERRORS 7

2.2.1 Crash Failure . 7

2.2.2 Failure Detectors . 7

2.2.3 Omission Fault . 8

2.2.4 Byzantine Fault . 9

2.3 PROBABILITY . 9

2.4 MARKOV MODELS . 10

2.4.1 Discrete Time Markov Chain 11

vi

2.4.2 Continuous Time Markov Chain 13

2.4.3 Hidden Markov Model . 14

2.5 INFORMATION FLOW . 16

2.5.1 Multiple Security Domain Model Non-Deducibility (MSDND) 17

2.5.2 BIT Logic . 19

2.6 EXPLICIT CONGESTION NOTIFICATION AND RANDOM EARLY
DETECTION . 20

2.7 DISTRIBUTED GRID INTELLIGENCE (DGI) 21

2.7.1 Real Time . 22

2.7.2 Group Management Algorithm 23

2.7.3 Power Management . 25

3 PROBLEM STATEMENT AND MOTIVATION . 29

3.1 INITIAL EXPERIMENTS . 30

3.1.1 Sequenced Reliable Connection (SRC) 30

3.1.2 Sequenced Unreliable Connection (SUC) 31

3.2 INITIAL RESULTS . 31

3.2.1 Sequenced Reliable Connection, Two Process Case 32

3.2.2 Sequenced Reliable Connection, Transient Partition Case . . . 33

3.2.3 Sequenced Unreliable Connection, Two Process Case 36

3.3 MARKOV MODELS . 38

3.4 REMARKS . 41

4 RELATED WORK . 43

4.1 ANALYSIS OF DISTRIBUTED SYSTEMS 43

4.2 PHYSICAL FAULTS CAUSED BY CYBER ENTITIES IN CPS . . . 44

4.3 COMMUNICATION IN THE SMART-GRID 45

vii

5 INFORMATION FLOW ANALYSIS OF DISTRIBUTED COMPUTING . . . 47

5.1 TWO ARMIES PROBLEM . 48

5.2 BYZANTINE GENERALS . 50

5.3 ELECTION IN AN ANONYMOUS COMPLETE NETWORK 51

5.4 MODEL CONSTRUCTION FOR THE TWO ARMIES PROBLEM . 53

5.4.1 Generalization . 53

5.4.2 State Determination . 54

6 ALGORITHM AND MODEL CREATION. 57

6.1 ORIGINAL INVITATION ELECTION ALGORITHM OVERVIEW . 57

6.2 EXECUTION ENVIRONMENT . 59

6.3 MODEL CONSTRUCTION . 59

6.4 MODIFIED ELECTION ALGORITHM 60

6.4.1 State Determination . 60

6.4.2 Memorylessness . 62

6.4.3 Model Construction . 66

6.4.4 Model Validation . 67

6.4.5 Profile Chain Analysis . 69

7 APPLICATION: ECN HARDENING . 75

7.1 THEORY OF OPERATION . 77

7.2 GROUP MANAGEMENT . 78

7.2.1 Soft ECN . 78

7.2.2 Hard ECN . 79

7.3 CYBER-PHYSICAL SYSTEM . 81

7.3.1 Soft ECN . 81

7.3.2 Hard ECN . 82

viii

7.4 RELATION TO OMISSION MODEL 83

7.5 PROOF OF CONCEPT . 85

7.6 RESULTS . 88

8 CONCLUSION . 97

APPENDIX. 99

BIBLIOGRAPHY. 105

VITA . 111

ix

LIST OF ILLUSTRATIONS

Figure Page

2.1 Behavior of a hidden Markov model. 15

2.2 Observable output of a hidden Markov model. 15

2.3 Real time scheduler. 23

2.4 State machine for an election. 26

2.5 Effects of migrations on power. 27

2.6 Example of a failed migration. 28

2.7 Example of a failed migration. 28

3.1 IGT over a 10 minute run for a two process system with a 100ms resend
time. 32

3.2 IGT over a 10 minute run for a two process system with a 200ms resend
time. 33

3.3 Average size of formed groups for the transient partition case with a
100ms resend time. 34

3.4 IGT over a 10 minute run for the transient partition case with a 100ms
resend time. 35

3.5 Average size of formed groups for the transient partition case with a
200ms resend time. 35

3.6 IGT over a 10 minute run for the transient partition case with a 200ms
resend time. 36

3.7 IGT over a 10 minute run for two process system with 100ms resend
time. 37

3.8 IGT over a 10 minute run for two process system with 200ms resend
time. 37

3.9 Comparison of in-group time as collected from the experimental plat-
form and the simulator (1 tick offset between processes). 39

x

3.10 Comparison of in-group time as collected from the experimental plat-
form and the simulator (2 tick offset between processes). 39

3.11 Comparison of in-group time as collected from the experimental plat-
form and the in-group time from the equivalent Markov chain (128ms
between resends). 40

3.12 Comparison of in-group time as collected from the experimental plat-
form and the in-group time from the equivalent Markov chain (64ms
between resends). 41

6.1 State machine for maintaining a group. 58

6.2 Diagram of message exchanges for an election. 64

6.3 Steady state distribution for 3 processes as well as the AGS as a fraction
of total processes. 71

6.4 Steady state distribution for 4 processes as well as the AGS as a fraction
of total processes. 72

6.5 Steady state distribution for 5 processes as well as the AGS as a fraction
of total processes. 72

6.6 Steady state distribution for 6 processes as well as the AGS as a fraction
of total processes. 73

6.7 Average group size as a percentage of all processes in the system for
larger systems. 73

7.1 Example DGI schedule. 76

7.2 Example of network queuing during DGI operation. 79

7.3 Example of process organization. 80

7.4 Execution schedule used in experiments. 86

7.5 Plot of the maximum observed average queue size as a function of the
overall background traffic. 87

7.6 Distribution of group sizes for process 0 in each scenario. 89

7.7 Test configuration A. 90

7.8 Test configuration A (detailed view). 91

7.9 Test configuration B. 92

xi

7.10 Test configuration C. 93

7.11 Count of lost migrations from all processes over time. 93

7.12 Test configuration D. 94

7.13 Test configuration E. 95

7.14 Test configuration F. 96

xii

LIST OF TABLES

Table Page

2.1 The axiomatic system. 18

2.2 Logical statement formulation rules. 18

3.1 Comparison of collected data compared to Markov chain. 42

6.2 Summary of χ2 tests performed. 69

7.1 Summary of RED parameters. 87

7.2 Summary of test configurations. 88

xiii

LIST OF ACRONYMS

AGS average group size

AP atomic proposition

AYC Are You Coordinator

AYT Are You There

BIT Belief, Information transfer, Trust

CDF Cumulative Distribution Function

CPS Cyber-physical systems

CTMC Continuous Time Markov Chain

CV critical value

DF degrees of freedom

DGI Distributed Grid Intelligence

DNP3 Distributed Network Protocol 3

DTMC Discrete Time Markov Chain

DoS Denial of Service

ECN Explicit Congestion Notification

EWMA Exponentially Weighted Moving Average

FIFO First In First Out

FREEDM Future Renewable Electric Energy Delivery and Management

HMM Hidden Markov Model

IGT in group time

IoT Internet of Things

M2M Machine to Machine

MSDND Multiple Security Domain Model Non-deducibility

NS-3 Network Simulator 3

xiv

RED Random Early Detection

SCADA Supervisory Control And Data Acquisition

SRC Sequenced Reliable Connection

SUC Sequenced Unreliable Connection

VANET Vehicular Ad Hoc Networks

pdf probability distribution function

wff Well-formed formula

xv

NOMENCLATURE

A Availability of a component.

Bi The modal belief operator.

Di The domain of an agent or process i.

E[X] Expected value of a random variable.

Ii,j The modal information transfer operator.

K A Kripke model.

P Transition probability matrix of a discrete time Markov chain.

R Set of relations between worlds in a Kripke model or frame.

R(t) Reliability of a component.

S Set of boolean state variables for a Kripke model.

T Test chain. A Markov chain sampled from a system.

Ti,j The modal trust operator.

V A valuation function.

W Set of worlds for a Kripke model or frame.

X A random variable, or the set of states for a Markov chain

Y A random variable or the set of observable states for a hidden Markov model

�ϕ The modal “it is necessary that” operator.

♦ϕ The modal “it is possible that” operator.

V Set of valuation functions in a Kripke model.

ϕ, γ, ψ Well-formed formulas.

1 INTRODUCTION

The design of stochastic models of distributed systems has a long history

as a challenging area of interest. Models of distributed systems have to consider

many factors, such as various types of failure the system could experience, a lack

of tightly synchronized execution, and a large complex state space when there are

many agents[31][8]. However, the concept of distributed systems plays a central role

in how critical infrastructures will operate in the future. These critical infrastruc-

tures are physical networks whose operation are so vital that if those networks failed

to operate correctly it would be highly detrimental to the population that relies on

those systems. Cyber-physical systems (CPS) are the integration of computational

systems with physical networks. Computational systems already play a major role

in most critical infrastructures, and as demand for security features, such as acces-

sibility, increases, distributed systems are a favorable choice over centralized control

for the computational needs for these systems because they offer intelligent, localized

control[71].

The Future Renewable Electric Energy Delivery and Management (FREEDM)

center[56], envisions a future power grid with widely distributed renewable power

generation and storage closely coupled with a distributed system that facilitates the

dispatch of power across those areas. Other systems like Vehicular Ad Hoc Networks

(VANET)[47][60][32] and air traffic control systems[64][6] also propose similar control

systems where many computers must cooperate to ensure both smooth operation

and the safety of the people using those systems. As a consequence, ensuring that

the computer systems that control those infrastructures behave correctly during fault

conditions is critical, especially when those computer systems rely on their interaction

with other computers to operate.

2

A robust CPS should be able to survive and adapt to communication network

outages in both the physical and cyber domains. When an outage occurs, the physical

or cyber components must take corrective action to allow the rest of the system to

continue operating normally. Additionally, processes may need to react to the state

change of some other process. Managing and detecting when other processes have

failed is commonly handled by a leader election algorithm and failure detector.

In a smart-grid system, misbehavior during fault conditions could lead to

critical failures such as a blackout or voltage collapse. In a VANET or air traffic

control system, vehicles could collide, injuring passengers or destroying property.

Additionally, because these systems are a part of critical infrastructure, protecting

them from malicious entities is an important consideration.

We were motivated by observations on the effects of lost messages on the

group management module of the Distributed Grid Intelligence (DGI) used by the

FREEDM smart-grid project. The original observations confirmed the need to explore

more well-defined models for the behaviors of CPS in order for them to better serve

the people who use them.

We present a framework for reasoning about inferable state in the context of

a distributed system. To do this, we exploit existing work in the field of information

flow security, which has been used to reason how attacks like Stuxnet can manipulate

operators’ beliefs while disrupting a system[26]. In particular, approaches in infor-

mation flow security reason how the operator in a Stuxnet attack has no avenue to

verify the reports from a compromised computing device. Using existing modal logic

frameworks and information flow security models[37][26][38], one can formally reason

where information, not normally known to a domain, can be inferred.

With the correct information flows, an agent in a distributed system can infer

the state of other agents in the system. With this information, an agent can construct

3

a reasonable model of the system to determine if the current behavior could lead to

an undesirable situation with either the cyber or physical network.

Using the framework, we present a leader election algorithm which can be

modeled with a Markov chain for a known omission fault[19] rate. The presented

algorithm maintains the Markov property for the observations of the leader despite

omission faults. Our approach to considering how a distributed system interacts

during a fault condition allows for the creation of new techniques for managing a

fault scenario in cyber-physical systems. In the context of FREEDM, these models

produce expectations of how much time the DGI will be able to spend coordinating

and doing useful work. With this information, the behavior of the control system for

the physical devices can be adjusted to prevent faults.

We also propose using existing schemes to detect communication network con-

gestion and inform processes in a CPS of impending congestion. Processes act on

congestion information to change their behavior in anticipation of message delays or

loss. Using an alternative behavior allows them to harden themselves against the

congestion, and allows them to continue operating as normally as possible during

the congestion. The technique involves changing the behavior of both the leader

election[30] and physical device management algorithm during congestion.

To detect and inform agents of that congestion, we extend existing network-

ing concepts of Random Early Detection (RED), Explicit Congestion Notification

(ECN)[59], and ICMP source quench[9]. When a network device detects congestion, it

notifies processes of the congestion, and they should react appropriately. We demon-

strate an implementation of the FREEDM DGI in a Network Simulator 3 (NS-3)

simulation environment[18] with our congestion detection feature. The DGI oper-

ates normally until the simulation introduces a traffic flow, congesting the network

devices in the simulation. After congestion has been identified by the RED queuing

algorithm, the DGI are informed. When the congestion notifications are introduced,

4

the DGI maintains configurations which they would normally be unable to maintain

during congestion. Additionally, we show a greater amount of work can be done

without the work causing unstable power settings to be applied.

5

2 BACKGROUND

Distributed systems are a computing paradigm characterized by independence

of computational units and no universal clock. Components in a distributed system

may not directly share computational resources or memory. Instead, computers in a

distributed system typically interact through a message-passing interface.

As a result, distributed computing is a challenging area of research. In a dis-

tributed system, because processes do not share a universal clock, the ordering of

messages and events needed to be carefully considered to ensure correct operation

of the system. Additionally, when individual components fail, determining which

components failed and how they affected the system as a whole is difficult in a dis-

tributed system. Different types of failures can cause different kinds of information

to be withheld or changed, disrupting those processes.

In this section, the core concepts of distributed systems are presented. This

section also describes the concepts necessary to understand the models presented in

subsequent sections.

2.1 EXECUTION AND COMMUNICATION MODELS

We consider a distributed system where no processes in the system share an

address space. All processes must use a message-passing interface to communicate

with other processes to exchange information. As a result of the complexities of

distributed systems, various execution models have been developed to define how the

execution of a distributed system proceeds. Different execution models affect how

easy it is to reason about the system’s execution, the types of algorithms the system

can execute, and how complicated they are to implement.

6

2.1.1 Communication Channels. We describe the avenues of communica-

tion between processes as channels. A channel is classified as reliable if it meets three

axioms[31]:

Axiom 1. Every message sent by a sender is received by a receiver and every received

message was sent by a sender in the system.

Axiom 2. Every message has an arbitrary but not infinite propagation delay.

Axiom 3. Every channel is a First In First Out (FIFO) channel. If process P sends

messages x and y to Q (in that order) then Q receives the messages in order (x then

y).

Reliable channels are often referred to as synchronous channels. In our system,

however, channels are not assumed to be perfectly reliable. Instead, we respect Axiom

3, partially fulfill Axiom 1, and disregard Axiom 2. Therefore, we assume the following

about communication channels in our systems (replacing Axiom 1):

Axiom 4. Every message received by a receiver was sent by a sender in the system.

Without the constrained propagation delay from Axiom 2, this type of com-

munication channel is typically referred to as an asynchronous channel. Additionally,

The communication model can be synchronous or asynchronous. In the synchronous

communication model, processes can only send a message when the receiving process

is ready to receive it. Algorithmically, sending in a synchronous model is usually

considered a “blocking” operation, meaning, once a process tries to send a message,

it cannot proceed until the message is received. In this work, communication is asyn-

chronous: a process does not wait for the successful delivery of a message, typically

referred to as a non-blocking send.

2.1.2 Clocks. Clocks are considered synchronized if every clock in the system

reads the same time. Since it is impossible for independent clocks to tick at the same

rate, weak synchronization is used to describe when clocks in the system have an

upper bound on drift rate from each other.

7

2.1.3 Execution. In a system with synchronous processes, processes execute

in lockstep. At each step, a process executes its next available action. Synchronous

execution requires the strong organization of the processes executing the algorithm.

The systems presented rely on partially synchronous execution by processes. In the

partially synchronous model, execution proceeds in rounds or phases. The start of

each round or phase is synchronized between processes, using a synchronized clock.

2.2 FAULTS, FAILURES, AND ERRORS

Processes can encounter incorrect behavior or issues during execution. Errors,

faults, and failures describe the severity and consequence of the issue.

Definition 1. An error is a difference between what is considered “correct” output for

a given component, and the actual output: an incorrect result.

Definition 2. A fault is the manifestation of an error in software or an incident where

an incorrect step or data definition is performed in a computer program.

Definition 3. A failure is the inability of a component or system to perform its re-

quired function or within its specified limits.

2.2.1 Crash Failure. A crash failure, or its more generalized form, a fail-

stop failure, describes a failure in which a process stops executing. In general, it is

considered to be an irreversible failure, since a process typically does not resume from

a crashed state. There is a special category of crash failures, called napping failures,

where a process will appear to have crashed for a finite amount of time before resuming

normal operation. Crash failures are impossible to detect with absolute certainty in

an asynchronous system[31]. Processes can be suspected of failure by other processes

through the use of challenge/response messages or heartbeat messages that allow a

process to prove that it has not crashed yet.

2.2.2 Failure Detectors. Failure detectors[13] (sometimes referred to as un-

reliable failure detectors) are a special class of processes in a distributed system used

to detect other failed processes. Distributed systems use failure detection to identify

8

failed processes for leader election routines. Because it isn’t possible to directly detect

a failed process in an asynchronous system, there has been a wide breadth of work

related to different classifications of failure detectors with different properties. Some

of the properties include[13]:

• Strong Completeness - Every faulty process is eventually suspected by every

other working process.

• Weak Completeness - Every faulty process is eventually suspected by some other

working process.

• Strong Accuracy - No process is suspected before it fails.

• Weak Accuracy - There exists some process that is never suspected of failure.

• Eventual Strong Accuracy - There is an initial period where strong accuracy

is not kept. Eventually, working processes are identified as such, and are not

suspected unless they actually fail.

• Eventual Weak Accuracy - There is an initial period where weak accuracy is not

kept. Eventually, working processes are identified as such, and there is some

process that is never suspected of failing again.

One class of failure detectors, Omega class Failure detectors, are particularly

interesting because of Gomez-Calzado et al.[33]. In their work, the authors analyze a

leader-election with crash failures by determining the number of messages needed to

come to a consensus. An eventual weak failure (weak completeness and eventual weak

accuracy) detector is the weakest detector which can still solve consensus. Related

works note it in a number of ways: �W [13], W [12] [14] and Ω (Omega) [33].

2.2.3 Omission Fault. An omission fault[19] occurs when a message is never

received by the intended recipient. Omission faults can occur when the communica-

tion medium is unavailable or when the latency of message exceeds a timeout for

its expected delivery. Protocols like TCP do not allow omission faults to propa-

gate beyond the transport layer: a packet is resent until it is acknowledged by the

9

receiver[48]. If the acknowledgment never comes, the connection is closed. As a con-

trast, UDP assumes that any datagram could be lost, and it is the responsibility of

the programmer to handle missing datagrams appropriately. An omission failure can

have the same observable effects as a napping failure[31].

2.2.4 Byzantine Fault. A Byzantine fault causes processes in the distributed

system to send information that is incorrect or misleading to other processes. Con-

straints for detecting processes exhibiting Byzantine behavior are a famous result in

distributed systems[49].

2.3 PROBABILITY

Several concepts are useful for reasoning about the stochastic properties of a

distributed system. A random variable, typically denoted X or Y , is a variable whose

value is the outcome of a random event. The variable numerically represents possible

outcome of an event. Random variables may be discrete or continuous, depending

on the range of the possible outcomes of the random event it describes. A random

variable is discrete if its range is finite or countably infinite.

The expected value represents the long-term average output of a probability

distribution. If xi is a value the random variable X can produce, and pi is the

probability the random variable produces the value, the expected value, E[X], is:

E[X] = x1p1 + x2p2 + ...+ xkpk. (2.1)

Conceptually, the expected value is the weighted average of the outcomes of a stochas-

tic system.

Definition 4. Availability, denoted as A, is the probability a system or component is

operational and accessible when required for use.

A =
E[uptime]

E[uptime] + E[downtime]
(2.2)

10

Definition 5. Reliability is the ability of a system or component, in specified condi-

tions, to be able to perform its required functions for a specified period.

Let R(t) be the probability a system or component function up until at least

time t:

R(t) = Pr(T > t) =

∫ ∞
t

f(x)dx (2.3)

where f(x) is the probability density function for the component’s survival. Unfortu-

nately, there is a clash of the term for reliability in distributed systems and reliability

analysis. We try to constrain the discussion about reliability in the distributed sys-

tems sense to communication channels.

2.4 MARKOV MODELS

A Markov chain is a finite set of states X = {x1, x2, ..., xn} and probabilistic

transitions between those states. States in a Markov chain are mutually exclusive.

When a system is in some state xi, it has some probability of transitioning to some

other state xj at the next time-step. A Markov chain is a first order chain if the

probability of transitioning from i to j does not depend on the history of transitions

that lead to state i. First order chains are described as being memoryless because

they have the Markov property. The Markov property formalizes the independence

of the next state from the history of previous states. If we describe a Markov chain as

a sequence of random variables X1, X2, X3, ..., the Markov property states the value

of Xn+1 only depends Xn: [10]

Pr(Xn+1 = x | X1 = x1, X2 = x2, . . . , Xn = xn)

= Pr(Xn+1 = x | Xn = xn). (2.4)

11

An irreducible Markov chain is a chain where it is possible to go from any

state to any other state. A state is considered periodic with period k if returns to

a state must occur in nk steps (where n is a positive whole number and k ≥ 1). If

k = 1 a state is considered aperiodic. If every state is aperiodic, the Markov chain

is aperiodic. A state is recurrent if Pr(Xn = iforsomen ≥ 1|X0 = i) = 1. In an

irreducible chain, if any state is recurrent, every state is recurrent. A state is positive

recurrent if expected return time for the state is finite. A chain is positive recurrent

if every state is positive recurrent. A Markov chain is ergodic if it is aperiodic and

positive recurrent.

A stationary, or time homogeneous, Markov chain is one where the transition

probabilities do not change over time. In a stationary Markov chain, the nth visit to

a state is indistinguishable from the (n+ 1)th visit to a state.

2.4.1 Discrete Time Markov Chain. A Discrete Time Markov Chain

(DTMC) is one where the transitions between states happen at discrete time steps.

A DTMC with m states can be represented by an m×m matrix. For simplicity when

creating the model, matrices in this work are 1-indexed. In a matrix P , the value

of Pij represents the probability of the transition from xi to xj. The matrix is row

stochastic, meaning the sum of each row in the matrix is equal to one:

m∑
i=1

Pij = 1. (2.5)

A useful companion to the transition matrix is a state distribution vector. While

the transition matrix describes how a system will transition between states, the state

distribution vector describes the probability of observing a given state.

12

If every Pij is positive and non-zero, the DTMC is said to be positive regular.

Every positive regular Markov chain is ergodic[39]. As a consequence every regular

Markov is periodic and positive recurrent.

Definition 6. A state distribution vector is an m-dimensional vector composed of the

probability of observing each state in the system at a given instant.

Let v be a state distribution vector:

v = [P1 P2 . . . Pm]

where Pi corresponds to the probability of observing state xi.

A DTMC is a suitable model for a memoryless random process with a finite

number states which is observed at fixed time intervals. By utilizing a Markov chain, a

variety of statistical analyses can be performed on the modeled system. For example,

if a Markov chain is stationary, aperiodic, and positive recurrent it can be analyzed

for its steady state probabilities. The steady state is a state distribution vector that

describes the probability a random observation of a long-running process will observe

some state xi. The steady state probability distribution vector can by found via a

system of equations: [10]

0 ≤ πj ≤ 1.0 (2.6)

m∑
j=1

πj = 1.0 (2.7)

πj =
m∑
i=1

πipij. (2.8)

The computation of the steady state will be noted as Steady(). A Markov chain can

also be used to predict what state a process will be in at some point in the future.

Given an initial state and a number of time-steps, a matrix operation will yield the

13

likelihood of the process being in each state after the time interval has passed. The

mean passage time, a measure of how many time-steps will pass before a process

returns or arrives in some state, can also be calculated.

We model a leader election algorithm with a closed-form representation of the

behavior of the algorithm. The closed-form representation is a profile Markov chain

(noted as P) and will be validated against a chain generated from execution of the

algorithm. The chain constructed from sampled data is known as a test chain (noted

as T).

2.4.2 Continuous Time Markov Chain. Transitions in a Continuous Time

Markov Chain (CTMC) depend on the amount of time spent in a given state. Let

X(s) = xi indicate the model is in state xi at time s. If the model is time homo-

geneous, then the probability of transitioning to state xj only depends on the time

spent in the current state (t).

Pr{X(s+ t) = xj|X(s) = xi} = Pr{X(t) = xj|X(0) = xi} (2.9)

Each transition has some expected value or holding time which describes the

amount of time before a transition occurs. The probability distribution function (pdf)

of the exponential distribution can be written as: [58]

f(x;λ) =


λe−λx x ≥ 0

0 x < 0

. (2.10)

As a result, the expected or mean value of an exponential distribution is a

function of the parameter λ: [58]

E[X] =
1

λ
. (2.11)

14

When there are multiple possible transitions from a state, each with their own

expected transition time, the expected amount of time in the state is: [57]

∑
λ(x, y) =

∑
λpx,y = λ(x) (2.12)

where λ(x, y) is the expected amount of time before state x transitions to state y.

The expected time in a state (λ(x)) is related to the expected time for an individual

transition (λ(x, y)) by a probability px,y. Each transition contributes to an expected

amount of time in the state.

2.4.3 Hidden Markov Model. A Hidden Markov Model (HMM), pictured

in Figure 2.1, is a Markov chain where the state is not directly visible to an observer[24].

Instead, the HMM outputs observations related to the underlying, hidden chain. The

hidden chain is assumed to meet the Markov property. A HMM can be described by

the notation λ = (Π, P, B), where Π is the initial state distribution vector, P is the

matrix of state transition probabilities, and B is a matrix describing the probability

of observing an output given the hidden state. Each row in B maps each state in X

to a probability distribution for an observation from Y . Let y be some observation,

where y ∈ Y , a finite set of discrete, possible observations. B then is a |X| × |Y |

matrix where Bij = Pr(Y = yj|X = xi), the probability of observing yj given the

system is in some hidden state xi. This relationship is pictured in Figure 2.2.

A model where the state is a combination of X and Y from a HMM is

also a Markov model. The state space for the new model, Z, is a set of tuples

Z = {(X0, Y0), (X0, Y1), ...(X1, Y0), ...(Xn, Ym)} where Pr(Zk + 1 = (xk+1, yk+1)|Zk =

(xk, yk)) = Pr(Yk+1 = yk+1|Xk+1 = xk+1) Pr(Xk+1 = xk+1|Xk = xk). Stated plainly,

the probability that the joint model is some state (xk+1, yk+1) is the probability that

the hidden part of the model transitions to state xk+1 and the observation for xk+1

15

Xk+1Xk Xk+2

Yk Yk+1 Yk+2

Figure 2.1 Behavior of a hidden Markov model. The model goes through a sequence
of hidden states (Xk) and produces an observable output at each state (Yk).

x2x1 xn

y1 y2 ym

...

...

B11 B21 B1m

Bnm

B2m

Bn2

B22

Figure 2.2 Observable output of a hidden Markov model. Each hidden state (xi) has
a corresponding probability distribution (Bi) for the observable outputs (yj).

is yk+1. The probability distribution for the transition to the next state does not

depend on the yk of the current state.

16

2.5 INFORMATION FLOW

A Kripke frame is a pair < W,R >[28] such that W is a set of possible worlds,

where each world corresponds to a unique global state of the system. Each element of

R describes a binary relationship for how the described system can move from world

to world as events occur in the described system.

In the case of a distributed system, a world could be described as one of the

possible combinations of values of all boolean state variables S = {s0, s1, ...sn} in

the system. As execution occurs, messages, time, or events cause these variables

to change. Each change in boolean variables corresponds to a relationship in R[52].

Therefore, a world w is one possible valuation of all the variables in S and a transition

from w to another w′ (with its own valuation) can be noted as wRw′. Without loss

of generality, each relationship in R must result in the change of at least one variable

in S. Additionally, the set of worlds is complete: every possible combination of state

variable values is represented in the set of worlds. No relationship in R can lead to a

world that does not exist.

Additionally, we can define a set of valuation functions, V. Each function

V i
sx(w) ∈ V describes the value observed by in a domain Di of a boolean state variable

sx in some world w. If a valuation function for a particular state variable is not defined

for an agent, the agent cannot determine the value of the state variable, and cannot

determine the value of any logical statement based on the variable. In the case of

a distributed system, the valuation function concept is analogous to the isolation of

memory for each agent. For example, an agent i cannot simply determine the value

of a variable for agent j.

The combination of a Kripke Frame < W,R > and a set of valuation functions

V is a Kripke model K = {W,R,V}, frequently known as a modal model. The

complete model describes all the possible worlds, the relation between those worlds

and the information available in the domains of the system.

17

Let ϕ ∈ Φ0 be an atomic proposition in a set of countably many propositions.

The set of Well-formed formulas (wffs), as defined by the formulation rules in Table

2.1, is the least set containing Φ0. Additionally, we use the modal operator � as an

abbreviation for ¬♦¬ϕ. The complete axiomatic system is outlined in Table 2.2. For

the uninitiated, the modal box operator (�), “it is necessary that,” states (in the case

of �ϕ) “in every world w, ϕ is true.” As its dual, the diamond operator (♦) states

“there is a world where ϕ is true.”

2.5.1 Multiple Security Domain Model Non-Deducibility (MSDND).

In the domain of security, there are a wide variety of aspects worth protecting in every

system. These are grouped into the core security concepts of integrity, accessibility,

and privacy. Many traditional security approaches rely heavily on cryptography to

provide privacy. However, accidental information leakage can still occur, which com-

promises the privacy of the system. For CPS, the leakage is difficult to prevent.

Unlike their purely cyber counterparts, the actions taken by the physical components

cannot be easily hidden from an observer. For example, a plane changing altitude

or a car turning or changing speed cannot be hidden from an observer. More com-

plicated systems, like the power grid, have actions that are more difficult to observe.

However, a well-motivated attacker can potentially collect critical information about

the behavior of the cyber components with observations of the physical network[62].

Information flow security models are invaluable for assessing what informa-

tion, if any, is leaked by either the cyber of physical components of the CPS. Many

information flow security models, have been proposed, all based on similar concepts.

Typically, the models partition the system into two domains: the high-security do-

main and the low-security domain. However, the MSDND security model allows the

system to be partitioned into any number of domains. The MSDND model has been

used to describe how the Stuxnet attack was able to hide its malicious behavior from

the plant operators. The MSDND security model is expressed using modal logic to

18

Table 2.1 The axiomatic system.

Definition of logical and modal operators (abbreviations)
D1. ϕ ∧ ψ ≡ ¬(¬ϕ ∨ ¬ψ)
D2. ϕ⊕ ψ ≡ (ϕ ∨ ψ) ∧ ¬(ϕ ∧ ψ) (exclusive or)
D3. ϕ→ ψ ≡ ¬ϕ ∨ ψ
D4. ϕ↔ ψ ≡ (ϕ→ ψ) ∧ (ψ → ϕ)
D5. ♦ψ ≡ ∃w ∈W : w ` ϕ
D6. �ϕ ≡ ¬♦¬ϕ
D7. Biϕ agent i believes the truth of ϕ
D8. Ii,jϕ agent j informs i that ϕ ≡ >
D9. Ti,jϕ agent i trusts the report from j about ϕ

Axioms
P. All the tautologies from the propositional calculus.
K. �(ϕ→ ψ)→ (�ϕ→ �ψ)
M. �ϕ→ ϕ

A1. ¬�ϕ→ �¬�ϕ
A2. ♦(ϕ ∨ ψ)→ ♦ϕ ∨ ♦ψ
A3. �ϕ ∧�ψ → �(ϕ ∧ ψ)
B1. (Biϕ ∧Bi(ϕ→ ψ))→ Biψ
B2. ¬Bi⊥
B3. Biϕ→ BiBiϕ
B4. ¬Biϕ→ Bi¬Biϕ
I1. (Ii,jϕ ∧ Ii,j(ϕ→ ψ))→ Ii,jψ
I2. ¬Ii,j⊥

C1. (BiIi,jϕ ∧ Ti,jϕ)→ Biϕ
C2. Ti,jϕ ≡ BiTi,jϕ

Rules of Inference
R1. From ` ϕ and ` ϕ→ ψ infer ψ (Modus Ponens)
R2. ¬(ϕ ∧ ψ) ≡ (¬ϕ ∨ ¬ψ) (DeMorgan’s)
R3. From ` ϕ infer ` �ϕ (Generalization)
R4. From ` ϕ ≡ ψ infer ` �ϕ ≡ �ψ
R5. From ` ϕ ≡ ψ infer ` Ti,jϕ ≡ Ti,jψ

Table 2.2 Logical statement formulation rules.

1. if ϕ is a wff, so are ¬ϕ, �ϕ, and ♦ϕ.
2. if ϕ is a wff, so are Biϕ and ¬Biϕ
3. if ϕ is a wff, so are Ti,jϕ and ¬Ti,jϕ
4. if ϕ is a wff, so are Ii,jϕ and ¬Ii,jϕ
5. if ϕ and ψ are both wff, so are ϕ ∧ ψ
6. if ϕ and ψ are both wff, so are ϕ ∨ ψ

19

determine what information in a domain is deducible to an observer in another do-

main. The model exploits the possible worlds of modal logic to determine if there are

worlds where the value of a logical atom is deducible by an agent outside the domain.

As a consequence, it can be used to determine what an agent in a distributed system

can determine about another agent. The exact specification of timing the distributed

system becomes unnecessary as the modal model can express any combination of

logical atoms in one of its worlds.[37][26][38]

The MSDND security model can be expressed as follows[26]: Consider a pair

of state variables sx and sy which may or may not be in the same security domain.

The value of sx and sy have a logical xor relationship: if sx is true, sy must be false.

Given an agent i that does not have a valuation function for either of those two

variables, the system is MSDND secure for the agent and pair of variables. Written

formally:

MSDND = ∃w ∈ W : w ` �[(sx ∨ sy) ∧ ¬(sx ∧ sy)]

∧[w � (6 ∃V i
x(w)∧ 6 ∃V i

y (w))] (2.13)

Of particular interest is the special case where sx and sy are relation on the same wff:

(sx = ϕ and sy = ¬ϕ):

MSDND = ∃w ∈ W : w ` �[ϕ⊕ ¬ϕ]

∧[w � (6 ∃V i
ϕ(w))] (2.14)

In a system where the above logical relationship holds, the agent i cannot determine

the value of sx or sy. However, if the relationship does not hold, there is some world

where the agent can determine the value of sx and sy.

2.5.2 BIT Logic. Belief, Information transfer, Trust (BIT) was developed

to formalize logic about belief and information transfer. BIT logic has typically

20

been applied to distributed systems but has also played roles in CPS security. The

operations of the BIT logic allow formal definition of how entities pass information,

and how they will act on the information passed to them. BIT logic utilizes several

modal operators:

• Ii,jϕ defines the transfer of information directly from agent j to an agent i.

• Ti,jϕ defines trust an agent i has in a report from j that ϕ is true.

• Biϕ defines the belief that an agent i has about ϕ. The actual value of ϕ is

irrelevant: the agent i believes it to be true.

These operators allow reasoning about information transfer between entities.

In the context of a distributed system, these operators allow the division of the actual

state held by some agent i to what some other agent j believes is agent i’s state.

2.6 EXPLICIT CONGESTION NOTIFICATION AND RANDOM EARLY
DETECTION

ECN is a technique for managing congestion in IP networks. When an ECN-

capable network device detects congestion, it can drop the packets, or it can signal

senders using flags in the packet headers that the network is congested. For a TCP

application, the result of the dropped packets causes the slow-start congestion control

strategy to reduce the rate packets are sent. A more advanced implementation, using

ECN, sets specific bits in the TCP header to indicate congestion. By using ECN,

TCP connections can reduce their transmission rate without re-transmitting packets.

UDP applications have not typically utilized ECN. Although the ECN stan-

dard has flags in the IPv4 header, access to the IPv4 header is not possible on most

systems. Furthermore, there is not a “one size fits all” solution to congestion in UDP

algorithms.

The RED queuing algorithm is a popular algorithm for switches and routers. It

uses a probabilistic model and an Exponentially Weighted Moving Average (EWMA)

to determine if the average queue size exceeds predefined values. The values are

21

used to identify potential congestion and manage it. Congestion identification is

accomplished by determining the average size of the queue, and then probabilistically

dropping packets to maintain the size of the queue. In RED, when the average queue

size, avg, exceeds a minimum threshold (minth), but is less than a maximum threshold

(maxth), new packets arriving at the queue may be “marked”. A packet is marked

based on the following relation between pb and pa:

pb = maxp(avg −minth)/(maxth −minth) (2.15)

pa = pb/(1− count ∗ pb) (2.16)

where pa is the final probability a packet will be marked, maxp is the maximum

probability a packet will be marked when the queue size is between minth, and maxth

and count is the number of packets since the last marked packet. With RED, the

probability a packet is marked varies linearly with the average queue size and as a

function of the time since the last packet was marked. If avg is greater than maxth,

the probability of marking trends toward one as the average queue size approaches

2 ∗ maxth. In the event the queue fills completely, the RED queue operates as a

drop-tail queue. In a simple implementation of the RED algorithm, marked packets

are dropped.

2.7 DISTRIBUTED GRID INTELLIGENCE (DGI)

The DGI is a smart-grid operating system that organizes and coordinates

power electronics. It also negotiates contracts to deliver power to devices and regions

that cannot effectively facilitate their own needs. DGI leverages common distributed

algorithms to control the power grid, making it an attractive target for modeling a

distributed system. Algorithms employed by the DGI and grouped into modules work

together to migrate power from areas of excess supply to excess demand.

22

DGI utilizes several modules to manage a distributed smart-grid system. Group

management, which is our main focus, implements a leader election algorithm to dis-

cover which processes are reachable within the cyber domain. Other modules provide

additional functionality, such as collecting global snapshots, negotiating the migra-

tions, and giving commands to physical components.

DGI is a real-time system; certain actions (and reactions) involving power

system components need to be completed within a pre-specified time frame to keep

the system stable. It uses a round robin schedule where each module is given a

predetermined window of execution which it may use to perform its duties. When a

module’s round ends, the next module in the line is allowed to execute.

The DGI uses the leader election algorithm, “Invitation Election Algorithm,”

written by Garcia-Molina[30]. The algorithm provides a robust election procedure

which allows for transient partitions. Transient partitions are formed when a faulty

link inside a group of processes causes the group to divide temporarily. When the

link becomes more reliable, the transient partitions merge.

2.7.1 Real Time. Real-time requirements were designed to enforce a strict

upper bound on the amount of time used creating groups, discovering peers, collecting

the global state, and performing migrations.

To enforce these bounds, the real-time DGI has distinct phases which modules

were allowed to use for all processing. Each module was given a round with a specific

amount of processor time allocated to the module. Modules used the allocated time to

complete any tasks they had prepared. When the allotted time was up, the scheduler

changed context to the next module. This interaction is illustrated in Figure 2.3.

Modules informed the scheduler of tasks they wish to perform. The tasks could

be scheduled for some point in the future, or scheduled to be executed immediately.

When a task became ready, it was inserted into a ready queue for the module which

scheduled the task.

23

Module Ready Queues

Tasks

Group Management

Load Balancing

...

State Collection

Worker
Process

...

...

Ready Task

Active Module

Next Task

Phase
Change

Group
Management

Task

State
Collection

Task

Load
Balancing Task

Scheduling Request

Timers

Ready Task

1

2

3

4 Executes

Figure 2.3 Real time scheduler. The real time scheduler used a round robin
approach to allot execution time to modules. 1© Modules requested a task be

executed by specifying a time in the future to execute the task. 2© A timer was set
to count down to the specified moment. Modules could place tasks immediately into

the ready queue if the task could be executed immediately. 3© When the timer
expires, the task is placed into the ready queue. 4© Modules were assigned periods
of execution (called phases) of a predetermined length. After the specified amount
of time had passed, the module’s phase ends and the next module in the schedule

began to execute. 5© The worker selected the next ready task for the active module
from the ready queue and executed it. These tasks could also schedule other tasks

to be run in the future.

When the module’s phase was active, tasks were pulled from the ready queue

and executed. When the phase was complete, the scheduler stopped pulling tasks

from the previous module’s queue and began pulling from the next module’s queue.

Using a round robin scheduler allowed enforcement of an upper bound on message

delay.

2.7.2 Group Management Algorithm. The DGI uses the leader election

algorithm, “Invitation Election Algorithm,” written by Garcia-Molina[30]. Originally

24

published in 1982, the algorithm provides a robust election procedure that allows for

transient partitions. Transient partitions are formed when a faulty link between two

or more clusters of DGI causes the groups to divide temporarily. These transient

partitions merge when the link becomes more reliable. The election algorithm allows

for failures that disconnect two distinct sub-networks. These sub-networks are fully

connected, but connectivity between the two sub-networks is limited by an unreliable

link.

Since Garcia-Molina’s original publication[30], a large number of election al-

gorithms have been created. Each algorithm is designed to be well-suited the problem

space where it is used. Specialized algorithms exist for wireless sensor networks[66][22],

detecting failures in certain circumstances[69][54], and of course, transient partitions.

Work on leader elections has been incorporated into a variety of distributed frame-

works: Isis[11], Horus[61], Totem[55], Transis[5], and Spread[4] all have methods for

creating groups. Despite the broad range of work, the fundamentals of leader election

are consistent across all work. Processes arrive at a consensus of a single peer that

coordinates the group. Processes that fail are detected and removed from the group.

The elected leader is responsible for making work assignments and identifying

and merging with other coordinators when they are found, as well as maintaining an

up-to-date list of peers for the members of its group. Group members monitor the

group leader by periodically checking if the group leader is still alive by sending a

message. If the leader fails to respond, the querying process will enter a recovery state

and operate alone until they can identify another coordinator. Therefore, a leader

and each of the members maintains a set of processes which are currently reachable,

a subset of all known processes in the system.

Leader election can also be classified as a failure detector[33]. Failure detectors

are algorithms which detect the failure of processes within a system; they maintain a

list of processes that they suspect have crashed. This informal description gives the

25

failure detector strong ties to the leader election process. The group management

module maintains a list of suspected processes which can be determined from the set

of all processes and the current membership.

The leader and the members have separate roles to play in the failure detection

process. Leaders use a periodic search to locate other leaders to merge groups. This

query also serves to detect failures within the system. The member sends a query to

its leader. The member will only suspect the leader and not the other processes in

their group.

Using a leader election algorithm allows the FREEDM system to autonomously

reconfigure in the event of a failure. Cyber components are tightly coupled with the

physical components, and their reaction to faults is not limited to faults originating

in the cyber domain. Processes automatically react to crash-stop failures, network

issues, and power system faults. The automatic reconfiguration allows processes to

react immediately to issues, faster than a human operator, without relying on a

central configuration point. However, it is important that the configuration a leader

election algorithm supplies is one where the system can do viable work without causing

physical faults like voltage collapse or blackouts[16].

A state machine for the election portion of the election algorithm is shown

in Figure 2.4. In the normal state, the election algorithm regularly searches for

other coordinators. When another coordinator is identified, all other processes will

yield to their future coordinator. The method of selecting which process becomes

the coordinator of the new group differentiates the modified algorithm from other

approaches.

2.7.3 Power Management. We utilized the load balancing algorithm from

[3]. The load balancing algorithm performs work by managing power devices with

a sequence of migrations[68]. In each migration, a sequence of message exchanges

identify processes whose power devices are not sufficient to meet their local demand

26

Reorganization

Normal

Election

Reorganization

Normal

Recovery Election

AYC Response
Yes

Invite

AlwaysTimeout

Ready

Always

Timeout

Always

Are You Coordinator?
(AYC) AYC Response

Invite*

Invite
Accept*

Ready

No AYC
Response
Yes No Invite Message to future member

Message to future
coordinator

On message

Local event

Coordinator Future Member

Forward
InvitesRe

ad
y A

CK
* * Modified Component

Figure 2.4 State machine for an election. Processes start as coordinators in the
“Normal” state and search for other coordinators to join with. Processes

immediately respond to AYC messages they receive. The algorithm was modified by
adding a “Ready Acknowledgment” message as the final step of completing the

election. Additionally, processes only accept invites if they have received an “AYC
Response” message from the inviting process.

and other processes supply them with power by utilizing a shared bus. First, processes

that cannot meet their demand announce their need to all other processes. Processes

with devices that exceed their demand offer their power to processes that announced

their need. These processes perform a three-way handshake. At the end of the

handshake, the two processes have issued commands to their attached devices to

supply power from the shared bus and to draw power from the shared bus. An

example of how the power system is affected by migrations is depicted in Figure 2.5.

In the chart, processes with net power generation (generation > 0) share power with

processes with excess loads. As processes with excess loads are satisfied, both supply

and demand processes trend toward 0 net generation.

27

0 50 100 150 200 250 300

Time (seconds)

−300

−200

−100

0

100

200

300

G
en

er
at

io
n

Net Generation over Time (No Traffic)

Figure 2.5 Effects of migrations on power. Each migration consumes excess
generation capability and removes excess demand.

The DGI algorithms can tolerate packet loss and is implemented using UDP

to pass messages between DGI processes. Effects of packet loss on the DGI’s group

management module have been explored in [40] and [41]. The load balancing algo-

rithm can tolerate some message loss, but lost messages can cause migrations to only

partially complete, which can cause instability in the physical network. A failed mi-

gration is diagrammed in Figures 2.6 and 2.7. With the power migration algorithm,

uncompensated actions may occur in the power system. These actions can eventu-

ally lead to power instability through issues such as voltage collapse. Additionally,

the supply process may not always be certain if the second half of the action was

completed or not. If the “Draft Accept” message does not arrive from the demand

process, the supply process cannot be certain if its “Draft Select” message was re-

ceived. If the supply process takes action to compensate by reversing the migration

and the confirmation arrives later, the system will also be driven towards instability

because another process completed an uncompensated action. These failed migrations

28

drive the system towards physical instability. It is, therefore, desirable to manage the

processes to minimize the number of failed migrations.

Demand State

Draft
Request

Draftage

Draft Select*

Demand State Draftage

Draft Accept**

Supply

Demand

Demand

Figure 2.6 Example of a failed migration. (*) and (**) mark moments when power
devices change state to complete the physical component of the migration. In this
scenario, the message confirming the demand side made its corresponding physical

change is lost, leaving the supply process uncertain.

Demand State

Draft
Request

Draftage

Draft Select*

Demand State Draftage

Supply

Demand

Demand

Figure 2.7 Example of a failed migration. (*) marks a moment when power devices
change state to complete the physical component of the migration. In this scenario,

the supply process changes its device state, but the demand process does not.

29

3 PROBLEM STATEMENT AND MOTIVATION

The entry point to research in this area was asking the question: “How does

the software managing critical infrastructure, like FREEDM, behave when a critical

component, the communication infrastructure, is not operating correctly?” Histori-

cally, leader elections have had limited applications in critical systems. However, in

the smart-grid domain, there is a great opportunity to apply leader election algo-

rithms in a directly beneficial way. [3] presents a simple scheme for performing power

distribution and stabilization that relies on formed groups. Algorithms like Incre-

mental Consensus Algorithm[73], begin with the assumption that there is a group of

processes who coordinate to distribute power. In a system where 100% up time is not

guaranteed, leader elections are a promising method of establishing these groups. A

strong cyber-physical system should be able to survive and adapt to network outages

in both the physical and cyber domains. When one of these outages occurs, the phys-

ical or cyber components must take corrective action to allow the rest of the network

to continue operating normally.

This work observes the effects of message omission on the group management

module of the Distributed Grid Intelligence (DGI) used by the FREEDM smart-grid

project. This system uses a broker system architecture to coordinate several software

modules that form a control system for a smart power grid. These modules include:

group management, which handles coordinating processes via leader election; state

collection, a module which captures a global system state; and load balancing, which

uses the captured global state to bring the system to a stable state.

It is important for the designer of a cyber-physical system to consider what

effects the cyber components will have on the overall system. Failures in the cyber

domain can lead to critical instabilities which bring down the entire system if not

30

handled properly. In fact, there is a major shortage of work within the realm of the

effects cyber outages have on CPS[67][71]. The analysis presented in this work focuses

on quantifiable changes in the amount of time a DGI could spend participating in

energy management with other processes.

Using the DGI as a starting point, the analysis of the leader election algorithm

in the DGI began with analysis of its behavior when messages were lost. To do this,

the DGI software was subjected to omission faults while the state of the algorithm

was captured over a period of examination. The goal of these experiments was to

examine what behavior the DGI would exhibit during the fault conditions. Addi-

tionally, we hoped to determine the advantages and disadvantages of using a more

complicated, reliable message retransmission protocol over a more simple one without

retransmission.

3.1 INITIAL EXPERIMENTS

The initial experiments were collected from a non-real time version of the

DGI code. Experiments measured the in group time (IGT), a measure of availabil-

ity, for various sets of DGI running the leader election algorithm during omission

fault conditions. Additionally, the experiments examined two communication modes,

the Sequenced Reliable Connection, and the Sequenced Unreliable Connection. Both

methods of communication were valid approaches for the message passing require-

ments of the DGI.

3.1.1 Sequenced Reliable Connection (SRC). The Sequenced Reliable

Connection (SRC) is a modified send and wait protocol with the ability to stop

resending messages and move on to the next one in the queue if the message delivery

time is too long. When designing this scheme we wanted to achieve several criteria:

• Messages must be accepted in order - Some distributed algorithms rely on the

assumption that the underlying message channel is FIFO.

31

• Messages can become irrelevant - Some messages may only have a short period

in which they are worth sending. Outside of that time period, they should be

considered inconsequential and should be skipped. To achieve this, we have

added message expiration times. After a specified amount of time has passed,

the sender will no longer attempt to write that message to the channel. Instead,

it will proceed to the next unexpired message and attach a “kill” value to the

message being sent, with the number of the last message the sender knows the

receiver accepted.

• As much effort as possible should be applied to deliver a message while it is still

relevant.

There was one adjustable parameter, the resend time, which controls how

often the system would attempt to deliver a message it had not yet received an

acknowledgment for.

3.1.2 Sequenced Unreliable Connection (SUC). The Sequenced Unre-

liable Connection (SUC) protocol is simply a best effort protocol: it employs a sliding

window to try to deliver messages as quickly as possible. The receiver will look for

increasing sequence numbers and disregard any message that is of a lower sequence

number than is expected. The purpose of this protocol is to implement a bare mini-

mum: messages are accepted in the order they are sent.

Like the SRC protocol, the SUC protocol’s resend time can be adjusted. Addi-

tionally, the window size is configurable, but was left unchanged for the tests presented

in this work.

3.2 INITIAL RESULTS

The collected results from the tests were divided into several target scenarios

as well as the protocol used.

The first minute of each test in the experimental test was discarded so that

any transients in the test could be removed. The tests were run for ten minutes,

32

however the maximum result was 9 minutes of IGT. These graphs first appeared in

[40].

3.2.1 Sequenced Reliable Connection, Two Process Case. The 100ms

resend SRC test with two processes was considered a type of control in this study.

These tests, pictured in Figure 3.1, highlighted the availability of the DGI with the

SRC protocol. The maximum IGT of 9 minutes was achieved with only 15% of

datagrams arriving at the receiver.

Figure 3.2 demonstrates that as the rate at which lost datagrams were re-sent

was decreased to 200ms, the in-group time decreased. This behavior was expected.

Each exchange had a time limit for each message to arrive and the number of attempts

was reduced by increasing the resend time.

0

2

4

6

8

10

0 20 40 60 80 100

In
G

ro
up

Ti
m

e
(M

in
ut

es
)

Probability of Delivery

In-Group Time:
Two Process (SRC 100ms Resend)

Figure 3.1 IGT over a 10 minute run for a two process system with a 100ms resend
time.

33

0

2

4

6

8

10

0 20 40 60 80 100

In
G

ro
up

Ti
m

e
(M

in
ut

es
)

Probability of Delivery

In-Group Time:
Two Process (SRC 200ms Resend)

Figure 3.2 IGT over a 10 minute run for a two process system with a 200ms resend
time.

3.2.2 Sequenced Reliable Connection, Transient Partition Case. The

transient partition case was a simple example in which a network partition separates

two groups of DGI processes. In the simplest case, where the opposite side of the

partition was unreachable, processes formed a group with the other processes on the

same side of the partition. Two processes were present on each side of the partition.

The 100ms case is shown in Figures 3.3 and 3.4.

While messages could not cross the partition, the DGIs stay in a group with

the processes on the same side of the partition, leading to an in-group time of 9

minutes (the maximum value possible). As packets began to cross the partition

(as the omission probability decreased), DGI instances on either side attempted to

complete elections with the processes on the opposite partition and the in group

time began to decrease. During this time, however, the mean group size continued

to increase. Thus, while the elections were decreasing the amount of time that the

34

module spent in a state where it can actively do work, it typically did not fall into

a state where it was in a group by itself. As result, most of the lost IGT came from

elections.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100

Si
ze

of
A

ve
ra

ge
G

ro
up

Probability of Delivery

Average Group Size:
Transient Partition (SRC - 100ms Resend)

Figure 3.3 Average size of formed groups for the transient partition case with a
100ms resend time.

The 200ms case (illustrated in Figures 3.5 and 3.6) suggests a similar behav-

ior to Figures 3.3 and 3.4, with a wider valley produced by the reduced number of

datagrams. The mean group size dipped below two in Figure 3.5, possibly because

longer resend times allowed for a greater number race conditions between potential

leaders. The race conditions are discussed during the SUC section since it was more

prevalent in those experiments.

35

0

2

4

6

8

10

0 20 40 60 80 100

In
G

ro
up

Ti
m

e
(M

in
ut

es
)

Probability of Delivery

In-Group Time:
Transient Partition (SRC 100ms Resend)

Figure 3.4 IGT over a 10 minute run for the transient partition case with a 100ms
resend time.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100

Si
ze

of
A

ve
ra

ge
G

ro
up

Probability of Delivery

Average Group Size:
Transient Partition (SRC - 200ms Resend)

Figure 3.5 Average size of formed groups for the transient partition case with a
200ms resend time.

36

0

2

4

6

8

10

0 20 40 60 80 100

In
G

ro
up

Ti
m

e
(M

in
ut

es
)

Probability of Delivery

In-Group Time:
Transient Partition (SRC 200ms Resend)

Figure 3.6 IGT over a 10 minute run for the transient partition case with a 200ms
resend time.

3.2.3 Sequenced Unreliable Connection, Two Process Case. The SUC

protocol’s experimental tests revealed an immediate problem. There was a general

increasing trend for the amount of IGT, shown in Figure 3.7. However, there was a

high amount of variance for every trial.

In the 200ms resend case (illustrated in Figure 3.8), a greater growth rate

occurred in the IGT as the omission probability decreased. When an average was

taken across all of the collected data points from the experiment, the average IGT

is higher for the 200ms case than it was for the 100ms case (6.86 minutes vs 6.09

minutes). There was a large amount of variance in the collected IGT, however. As

a result, it is not possible to state with confidence that the there is a significant

difference between the two cases.

37

0

2

4

6

8

10

0 20 40 60 80 100

In
G

ro
up

Ti
m

e
(M

in
ut

es
)

Probability of Delivery

In-Group Time:
Two Process (SUC 100ms Resend)

Figure 3.7 IGT over a 10 minute run for two process system with 100ms resend time.

0

2

4

6

8

10

0 20 40 60 80 100

In
G

ro
up

Ti
m

e
(M

in
ut

es
)

Probability of Delivery

In-Group Time:
Two Process (SUC 200ms Resend)

Figure 3.8 IGT over a 10 minute run for two process system with 200ms resend time.

38

3.3 MARKOV MODELS

After collecting the results from the initial experiments, we sought to describe

the observed behavior through the use of continuous-time Markov chains. The be-

havior of the DGI transition between various states of grouping was calibrated with

initial results and applied to other scenarios to validate the results. This approach had

several shortcomings. First, for reasons we will demonstrate in subsequent chapters,

the leader election algorithm modeled in these chains was not memoryless: the state

used in the Markov chain was not sufficient to capture the interaction between pro-

cesses that was occurring. Secondly, the continuous time model could not accurately

capture the execution model of the DGI. In the DGI, processes synchronize with each

other to execute in a partially-synchronous manner. As a result, the execution and

transition between states is more accurately described with a discrete-time Markov

chain.

The presented methodology of constructing the model was initially calibrated

against the original two-process case. This calibration used a non-real-time version

of the DGI code. The resulting Markov chain was processed using SharpE[46][63],

a popular tool for reliability analysis. SharpE measured the reward collected in 600

seconds, minus the reward that was collected in the first 60 seconds. Discarding

the reward from the first 60 seconds emulated the 60 seconds that were discarded in

the experimental runs. The SharpE results are plotted along with the experimental

results in Figures 3.9 and 3.10.

The race condition between processes during an election is a consideration in

the original leader election algorithm, and is an additional factor here. The simulator

provided a parameter to allow the operator to select how closely synchronized the

peers were. The synchronization parameter was the time difference between when

each process would search for leaders. The exchange of messages, particularly during

an election, had a tendency to synchronize processes during elections. Processes

39

0

2

4

6

8

10

0 20 40 60 80 100

In
G

ro
up

Ti
m

e
(M

in
ut

es
)

Probability of Delivery

Simulated versus Experimental In-Group Time:
Two Process (SUC 100ms Resend)

Experimental Value
SharpE Uptime

Figure 3.9 Comparison of in-group time as collected from the experimental platform
and the simulator (1 tick offset between processes).

0

2

4

6

8

10

0 20 40 60 80 100

In
G

ro
up

Ti
m

e
(M

in
ut

es
)

Probability of Delivery

Simulated versus Experimental In-Group Time:
Two Process (SUC 200ms Resend)

Experimental Value
SharpE Uptime

Figure 3.10 Comparison of in-group time as collected from the experimental
platform and the simulator (2 tick offset between processes).

40

could synchronize even if they did not initially begin in a synchronized state. The

simulation results aligned best for the 100ms resend case with 1 tick (approximately

100ms difference in synchronization between processes) and 2 ticks (approximately

400ms) in the 200ms resend case.

The structure of the Markov Chain assumed that processes enter the election

state simultaneously. This was an appropriate assumption for the real-time system,

since the round-robin scheduler synchronized when processes ran their group man-

agement modules. The simulator was set to assume that the synchronization between

processes was very tight. New experimental data was collected for the 4 process, tran-

sient partition case. The collected data is overlaid with the results from the random

walker in Figures 3.11 and 3.12.

0

100

200

300

400

500

600

0 20 40 60 80 100

In
G

ro
up

Ti
m

e
(S

ec
on

ds
)

Probability of Delivery

Simulated versus Experimental In-Group Time:
Transient Partition (SUC 128ms Resend)

Experimental Value
Markov Value

Figure 3.11 Comparison of in-group time as collected from the experimental
platform and the in-group time from the equivalent Markov chain (128ms between

resends).

41

0

100

200

300

400

500

600

0 20 40 60 80 100

In
G

ro
up

Ti
m

e
(S

ec
on

ds
)

Probability of Delivery

Simulated versus Experimental In-Group Time:
Transient Partition (SUC 64ms Resend)

Experimental Value
Markov Value

Figure 3.12 Comparison of in-group time as collected from the experimental
platform and the in-group time from the equivalent Markov chain (64ms between

resends).

As a measure of the strength of the model, the correlation between the pre-

dicted value was compared. The average error was also computed for each of the

samples taken. This information is presented in Table 3.1. These results were not

sufficient to accurately describe the behavior of the system during fault conditions.

As a result, we sought to refine the analysis of the model in order to get an accurate

portrayal of the behavior of the system during faults.

3.4 REMARKS

To ensure the critical infrastructure can safely and reliably provides services

to those needing the service, it is necessary to understand how the infrastructure

behaves during faults. Conceptually, using unvetted critical infrastructure, especially

when the infrastructure relies heavily on communication, is the same as stepping into

42

Table 3.1 Comparison of collected data compared to Markov chain.

Re-send Correlation Error
128 0.7656 11.61%
64 0.8604 11.70%

an elevator without a safety brake. Strong analysis of a system’s behavior during a

failure scenario is paramount to ensuring the safety of those using the infrastructure.

We propose knowledge of the correctness of the operation may be more impor-

tant than the efficiency of the operation of that critical infrastructure. Through this

work we demonstrate how distributed algorithms can be improved by reasoning about

them using information flow security models. Using these models, one can analyze

where the certainty of the system is placed as well as ensuring that the algorithms

can be modeled without complete and perfect information of the system.

The models created in this way allow a distributed critical infrastructure sys-

tem to adjust its behavior, hardening itself against failures. With this hardening

technique, the algorithms used by the system can prevent critical failures that could

decrease quality of life for the people using that system. Subsequent chapters show

how information flow methods can be used to determine the memorylessness of as-

pects of a distributed system, how those aspects can be used to construct a model,

and applications of those models.

43

4 RELATED WORK

4.1 ANALYSIS OF DISTRIBUTED SYSTEMS

Dabrowski and Hunt’s work[20] focuses on examining the behavior of a collec-

tion of processes in a grid computing system processing a large dataset. In their work,

the authors use a DTMC to model a single process completing a task. The Markov

chain describes how a process in the system goes through the steps of acquiring a

task to work on, working on the task, and subsequently either completing or failing

the task. The created models are “absorbing” chains, meaning it has one or more

states the process cannot leave once it has arrived in those states. They consider the

Markov chain as a max-flow min-cut problem using the “task complete” and “task

failed” absorbing states as sinks. Their analysis uses minimal s-t cuts to determine

critical paths for the ideal operation of the system. By identifying “critical transi-

tions” in the graph, the edges that would most greatly affect the performance of the

system can be identified.

[33] studies an Omega class failure detector using OmNet++[17], a network

simulation software package. Instead of omission failures, however, it considers crash

failures. Each configuration goes through a predefined sequence of crash failures, and

OmNet++ is used to count the number of messages sent by each of three different

leader election algorithms. Additionally, [33] only considers the system to be in a

complete and active state when all participants have a consensus on a single leader.

Work by Halpern and Moses[35] shows that in a distributed system, when

there are omission faults, complete consensus cannot be achieved without access to

“common knowledge.” The authors use a logic system that isolates the atomic propo-

sitions (APs) a process can directly access to its memory space and a knowledge oper-

ator to access other APs when information is transferred between processes. It allows

44

the authors to reason about the necessary conditions to arrive at consensus when

there are omission faults. They conclude consensus can only be reached when there is

existing shared knowledge in a system that is both unaffected by the omission faults

and is useful for arriving at a correct consensus. The authors establish, for the two

armies problem, the generals would only reach consensus and attack successfully if it

was common knowledge they would attack together. Additionally, they establish the

common knowledge of the two generals attacking together could not be established

in a system with omission faults.

4.2 PHYSICAL FAULTS CAUSED BY CYBER ENTITIES IN CPS

Faults in CPS can originate from many sources. First, and most obviously,

the traditional physical system being augmented by the CPS is subject to its own

failures, either from component failure or the actions of an attacker. Secondly, the

CPS must employ sensors to detect the state of the physical components in the

system. Like the physical components, these sensors are subject to component failure

or the actions of an attacker. Lastly, if the CPS communicates between entities using

a communication network, the network can be disrupted by any number of issues,

including DoS or congestion caused by other users in a shared network.

Several works have shown[62][16][67] that for a computer-controlled smart-

grid, failures originating at sensors or the communication network have the potential

to cause the cyber entities controlling the physical networks to take incorrect actions.

Approaches exist to identify faulty sensing components in a network, but the iden-

tification of bad sensing equipment may not always be possible. Additionally, it is

not always possible to identify if the origin of an issue is a faulty sensor or an outside

attacker.

If the cyber entity itself has been compromised, it could potentially exhibit

Byzantine behavior, causing it to try and trick other components into bad actions[62],

or it may try to disrupt the physical network directly. Work has been done to identify

45

when an entity in a cyber network is actively working to compromise the physical

network by using the underlying physical invariants. However, even if a cyber entity is

trying to behave correctly, disruptions to the communication network or the sensors it

uses can cause it to take actions similar to a process actively attempting to destabilize

the system. Under the right circumstances, these actions can be identified by using

the underlying invariants of the physical network. Ideally, however, the best goal is

to avoid situations where a “good” entity is forced to act badly.

4.3 COMMUNICATION IN THE SMART-GRID

Communication in the smart-grid is still a rapidly developing area. In par-

ticular, because of the interest in the Internet of Things (IoT) and in Machine to

Machine (M2M) communication, there are a wide range of communication protocols

being developed for “smart” infrastructures like smart-cities, smart-factories, and the

smart-grid. Historically, for the power grid, communication has been unidirectional.

Because generation of power was centralized, communication requirements only ne-

cessitated communication paths between measurement points and control centers and

from the control centers to individual substations[27]. The Supervisory Control And

Data Acquisition (SCADA) systems used in the power grid were almost exclusively

organized in a star topology where the individual devices had no means of communi-

cating directly with each other.

In a smart-grid where power generation is widely distributed and citizens are

encouraged to manage their energy usage for their own economic benefit as well as

the planet’s, the traditional SCADA design is not sufficient[27][34][45]. This version

of the smart-grid relies heavily on communication between devices, consumers, and

the utility company to coordinate access to energy generated across a wide area. The

internet has potential as the backbone for these communication requirements. Due

to its prevalence, using existing internet infrastructure is an attractive, affordable

option for realizing the requirements of a smart-grid[53][34]. Many companies in the

46

power generation industry have expressed an interest in using the internet in the

smart-grid[1].

Traditional SCADA systems for the power grid have used Distributed Network

Protocol 3 (DNP3), a data-link layer protocol, to control substations and related

devices[2]. For the smart-grid, IEC-61850 has emerged as a candidate for substa-

tion control[42][36][51]. IEC-61850 can be run over TCP/IP network or high speed

switched LANs[51].

A number of potential attacks on SCADA-based control systems have been

identified[70][7], including Denial of Service (DoS) attacks[50][43]. Regardless of the

communication medium or the source of the issue, handling interruptions to the

communication network in the smart-grid is an important concern. If a utility chooses

to use a public network like the internet for any portion of its control network, that

operator must consider the consequences of congestion on that network[25][29][72].

For congestion control in CPS, to our knowledge, only one other work has

advocated the ECN approach: [15]. In [15], the authors propose varying the sched-

ule and migration size of a load balancing-like algorithm in a network to maintain

physical network stability during congestion. We adapted their measure “K”, used to

determine when the system would collapse due to incomplete migrations, to evaluate

the success of our approach by counting the number of times migrations failed during

the simulation.

47

5 INFORMATION FLOW ANALYSIS OF DISTRIBUTED
COMPUTING

A model created for a distributed system must have sufficient information to

be accurate. The current state of a distributed system is difficult to obtain because

memory spaces are typically isolated. Without exact synchronization, an accurate

global snapshot of the system cannot be taken. Instead of attempting to capture

exact global snapshots, our approach relies on allowing an agent to reason about the

state of the other agents in the system. By doing so, an agent can construct a model.

We propose the following for the execution environment of the distributed system:

• Each agent has some set of logical variables which it manipulates as its algo-

rithms execute.

• Each agent belongs to a domain unique to the agent (agent i is the only member

of the logical domain Di).

• No agent can directly access a variable outside its domain.

• The authenticity of any information transfer (using modal operator Ii,j) is al-

ways trusted. However, the trust operator (Ti,j) is used to describe a message

that is lost in transit: in all logical formulas presented, the trust operator de-

scribes the omission of a message.

• Agents do not exhibit Byzantine failure, nor do they crash; only messages may

be omitted.

If no information is passed between agents, they are MSDND secure (ignoring

any sort of leakage from interactions in the physical world). As information is passed,

aspects of the agent’s state are leaked. However, depending on when messages are

sent and which messages are lost, the agent can be left in doubt as to the state of the

48

other agent. The two armies problem is a well-known thought experiment about the

ability of multiple parties to reach consensus when there are omission faults.

5.1 TWO ARMIES PROBLEM

First, we will show that information flow analysis can be used to determine

what state information is deducible to a particular agent in a system. We use the

common two armies problem as a starting point. Using the MSDND security model,

we will formally show which portions of the system state are leaked to an agent

through message exchanges.

In the two armies problem, two agents, which are generals of their respective

armies, must cooperate to attack an enemy city. However, the two armies are physi-

cally separated by the enemy city and must send messengers to coordinate their plan.

Any messenger the generals send can be captured by the enemy city, preventing their

message from being delivered. The attack will fail if the generals do not make an

agreement on when to attack. The generals must come to an agreement when their

channel for communication, a messenger, is unreliable.

After one message has been sent to one of the two generals, the state of the

intended recipient is MSDND secure to the sender. Let ϕ0 be an AP indicating

“General A will attack at dawn.”

Theorem 1. If no messages are exchanged, the state of the two generals is mutually

MSDND secure.

Proof. If no messages are exchanged and no information is leaked from the physical

world, the two generals have no way of determining the other’s state.

Theorem 2. Once at least one messenger delivers a message to one of the generals,

one of the generals is not MSDND secure.

Proof. Let {ϕi : i ∈ 1, 2...n} describe the state that a general has received ϕi−1.

Case 2.1. One messenger is sent by General A and arrives at General B.

49

If no confirmations are sent, then General A clearly cannot deduce if General

B has received the message. To General A, General B is MSDND secure because

General A has no way to valuate BBϕ0. However, if B believes A’s message, then A

is not MSDND secure to B, because B believes that ϕ0 is true:

1. ϕ0 General A decides to attack at dawn.

2. IB,Aϕ0 General A sends a messenger to B informing them of their

army’s intent.

3. BBIB,Aϕ0 ∧ TB,Aϕ0 General B believes the message from general A.

4. BBϕ0 By C1.

5. BBϕ0 → ϕ1 General B knows the plan.

6. w � V B
ϕ0

(w) V B
ϕ0

(w) always returns true.

Therefore, A is not MSDND secure to B. However, V A
ϕ1

(w) 6∈ V , so B is secure to A.

Case 2.2. Any number of messengers are sent and deliver their messages, alternating

from General A or General B to the other general.

As each messenger arrives, the receiving general will trust the integrity of the

message and believe its contents, resulting in that general assigning value to ϕi. The

state of the receiving general remains secure to the sending general until a response

is delivered.

1. BBϕ0 Continuing from Case 2.1.

2. BBϕ0 → ϕ1 General B decides to follow A’s plan.

3. IA,Bϕ1 General B sends a messenger to A informing them of their

army’s intent.

4. BAIA,Bϕ1 ∧ TA,Bϕ1 General A believes the message from general B.

5. BAϕ1 By C1.

6. BAϕ1 → ϕ2 General A agrees.

... The same logical chain repeats.

50

7. w � V x
ϕn

(w) V x
ϕn

(w) is always true. x is A or B depending on the

value of n.

Therefore, either A or B is not MSDND secure to the other for ϕn.

In the case n = 1, B is now unsure that A has received ϕ1 and cannot deduce

if BAϕ1. B is unsure of A’s state and, as a consequence, A is MSDND secure to B.

However, B is not MSDND secure to A because ϕ1 is known to A. By extension, for

i = 2, 4...n, B is secure to A, but not A to B. For i = 3, 5...n, A is secure to B, but

not B to A.

Theorem 3. If a messenger is captured and the message is not resent, both agents will

be secure on the last successfully delivered message ϕn or ϕ0 if the first messenger is

captured.

Proof. If a messenger carrying a reply is captured, original sender cannot determine

which message was captured.

Case 3.1. One messenger is sent and captured by the enemy.

If the messenger does not arrive, it is equivalent to the messenger never being

sent. (Theorem 1)

Case 3.2. If n − 1 messengers successfully deliver their message, but messenger n is

captured, both are secure on ϕn.

Suppose General A sends ϕn−1 to B. On the delivery of the message ϕn−1 to

B, the value of ϕn is secure in B to A, as A has no way of knowing if ϕn−1 was

delivered, unless B sends ϕn with a messenger. When B does send ϕn, the messenger

never arrives. As a consequence, General A has no way of assigning value to BAϕn

(V A
ϕn
6∈ V). However, as before, ϕn−1 at A is not secure to B.

5.2 BYZANTINE GENERALS

If General A is attempting to coordinate with multiple armies, the problem

becomes more complex. If we extend the messenger analogy to cover faulty generals

51

(ones sending incorrect information or omitting messengers), the generals can reach

consensus if, for every faulty general, there are three generals that work correctly.[49]

Theorem 4. In any message exchange that conforms to the constraints of the Byzan-

tine Generals problem, all agents are MSDND insecure on the plan ϕ.

Proof. Suppose agent i decides to use plan ϕ to attack and there is some set of

Byzantine generals T and some set of loyal generals G (i ∈ G). If |G| > 3|T |, the

algorithm executes successfully and Bxϕ : ∀x ∈ G. Therefore, every general in G can

valuate ϕ and the variable is insecure.

However, in a general omission model, the level of loyalty from processes may

be impractical to achieve. If the required number of “loyal” processes are not available,

the system cannot achieve consensus.

5.3 ELECTION IN AN ANONYMOUS COMPLETE NETWORK

Consider a version of the “coin-flipping” leader election[31] expressed in BIT

logic, presented as Algorithm 1. The algorithm is functionally identical, but con-

tains additional guards in the conditionals as an expression of the agents’ knowledge.

Additionally, note the construct of labeling each ϕ that an agent receives is simply

assigning labels to make the algorithm easier to understand. The algorithm only

considers the complete collection of ϕs for execution and not the source of any ϕ the

algorithm uses.

Let ψi be the state where an agent i completes the algorithm as the leader,

and γi as the state where an agent i has terminated the algorithm. The algorithm

terminates when {γi = T : ∀i} is satisfied and exactly one ψi is true (
∑

i ψi = 1).

Theorem 5. Algorithm 1 may not terminate correctly unless there is detectable, per-

fect information transfer to all parties in the algorithm.

Proof. Let i be the agent that would correctly terminate as the leader. Let j be a

process that has selected ϕj = F .

52

1. ϕi = T, ϕj = F Initial conditions.

2a. Ij,iϕi i sends ϕi to j.

2b. Ii,jϕj j sends ϕj to i.

3a. ¬(BjIj,iϕi ∧ Tj,iϕj) j does not receive ϕi.

3b. BiIi,jϕj ∧ Ti,jϕi i receives ϕj.

4a. w 6� Vϕi
j(w) j cannot valuate ϕi.

4b. Biϕj By C1.

5a. 6 ∃V j
ϕi

(w) ∧ ¬ϕj → (ϕ← T) j Cannot determine that i can terminate and

incorrectly changes ϕ.

5b. ϕi ∧ w � V i
ϕj

(w) ∧ ¬ϕj → ψi i incorrectly terminates as the leader.

Therefore, i will terminate before j decides to go passive. This result agrees with

results from similar analysis[21].

Algorithm 1 Anonymous Coin Flipping Leader Election Expressed in BIT logic

1: ϕi ← random(T, F)
2: ψi ← F
3: γi ← F
4: Send ϕi to every active neighbor (∀j 6= i : Ij , iϕi)
5: Receive ϕj from every active neighbor
6: if ϕi ∧ (∀j 6= i, w � V i

ϕj
(w) : ¬ϕj) then

7: ψi ← T
8: γi ← T
9: else if (ϕi ∧ ∃j 6= i, w � V i

ϕj
(ϕj)(w) : ϕj) ∨ (∀k s.t. w � V i

ϕk
(w) : ¬ϕk then

10: ϕi ← random(T, F)
11: Go to next round
12: else if ∃j 6= i, w � V i

ϕj
(w) : ϕj then

13: γi ← T
14: end if

53

5.4 MODEL CONSTRUCTION FOR THE TWO ARMIES PROBLEM

Suppose for the two armies problem, A and B wish determine their chance

of success. If neither A nor B have any idea of the probability their messenger is

captured, they have no way of assessing their chances of a successful attack. However,

what can be determined if the two generals share some knowledge about the world?

Suppose that both generals know their messenger has the probability q = (1 − p) of

being captured in transit. When A sends a messenger to B, A will know there is a

probability p that the messenger arrives at B. If the messenger does indeed arrive

at B, B knows that A knows there is a p chance their attack will succeed. In this

situation, both generals can construct identical models of the success of the attack,

given the initial message arrives. It is also worth noting in this scenario, no additional

messages can improve the outlook of the two generals. Each additional message only

confirms there is a probability p the other general will also attack.

5.4.1 Generalization. The idea of converting a Kripke model to a Markov

model is mentioned in [44] and [65]. However, we could not locate a formal description

of the method, so we present one here: given a Kripke Model K =< W,R,V >,

where we obligate K to contain sufficient state information to ensure the probability

mapping is memoryless. Let fW : W → X be a bijective mapping from W to X, where

X is the set of states for a Markov model. Let fR be a mapping for a relationship

wRw′ ∈ R to Pr(Xi+1 = fW (w′)|Xi = fW (w)). Therefore, for a Kripke-Markov model

Pij = fR(w,w′) where i = fW (w) and j = fW (w′).

For a process i, information about the system state is restricted to those APs

in its domain, Di. Let O : D ×X → Y be a surjective mapping from the complete,

54

hidden system state to an observable state for a domain. With O, one can construct

B, the observation probability distribution matrix for a HMM:

Bij =


1, if O(Di, xi) = yj

0, otherwise.

(5.1)

Intuitively, one or more worlds will look identical to a process i, since the

information necessary to differentiate them is not in Di. As a side effect of O being

a deterministic, surjective mapping, a special case exists where the observed state

has the Markov property. Let v = {xi|O(Dx, xi) = a}, the set of hidden states that

produce the observation a. The observed state has the Markov property if:

Pr(Yk+1 = a|Yk = b) =
∑
v

Pr(Xk+1 = xi|Xk = xj),∀xj ∈ {xj|O(Dx, xj) = b}. (5.2)

The observed probability of going from Yk to Yk+1 is the probability that the

hidden state Xk transitions to a state Xk+1 such that the observation for Xk+1 is

Yk+1. It must also hold that the observed probability does not depend on the hidden

state: any Xk that results in an observation Yk must have the same probability of

transitioning to Yk+1 as the other Xks that yield the same observation.

5.4.2 State Determination. When an agent uses the information transfer

operator (Ii,j) to pass information to another agent in the system, it intends for that

agent to believe the passed wff. When an agent distributes a wff to many agents with

the information transfer operator, it leads to a set of beliefs about the beliefs of the

receiving agents. The set, Ni, is the set of beliefs agent i can have if all the wff it

passed to the other agents are believed. For example, if an agent distributes a wff ϕ

to a set of agents Ag (i 6∈ Ag), then Ni = {BiBjϕ : ∀j ∈ Ag}. Since the belief of

55

each Bjϕ is outside of the domain Di, the agent i can only valuate a wff in Ni which

has been leaked to i.

Let the set Li be the subset of Ni for which a valuation function exists in a

domain i. Li can be populated either by direct information transfer or information

leakage from interactions with agents. We can similarly define a set Mi which is the

subset of Ni and superset of Li. The values in Mi correspond to the beliefs of agent

i if i had perfect knowledge of the beliefs other agents (Li ⊆Mi ⊆ Ni).

Theorem 6. Each member of Li is MSDND insecure to i.

Proof. Each wff in Li has a valuation function in the domain i.

1. Ij,iϕ i informs some agent j of ϕ.

2. BjIj,iϕ ∧ Tj,iϕ j receives ϕ and believes its authenticity.

3 Bjϕ By C1.

4. Ii,jϕack j acknowledges Bjϕ.

5. BiIj,iϕack ∧ Ti,jϕack i receives ϕack.

6. Biϕack By C1.

7. Biϕack → BiBjϕ Because j acknowledged ϕ, i believes j believes ϕ.

8. w � V i
BiBjϕ

(w) i does believe ϕ.

9. w � V j
Bjϕ

(w) Is always true.

Therefore, j ∈ Li, and Bjϕ is MSDND insecure to i.

Theorem 7. Each wff in Mi and Ni but not Li is MSDND secure to i.

Proof. Each wff in Mi and Ni but not Li have no valuation in the domain i.

Case 7.1. The case where j receives some wff ϕ and is in Mi but not Li.

1. Ij,iϕ i informs some agent j of ϕ.

2. BjIj,iϕ ∧ Tj,iϕ j receives ϕ and believes its authenticity.

3 Bjϕ By C1.

4. Ii,jϕack j acknowledges Bjϕ.

5. ¬(BiIj,iϕack ∧ Ti,jϕack) i does not receive ϕack.

56

6. w¬ � V i
ϕack

(w) i is uncertain if Bjϕ.

7. w � V j
ϕ (w) Is always true.

Therefore, j ∈ Mi, and Bjϕ is MSDND secure to i. As a consequence of step 5, j is

not in Li.

Case 7.2. The case where j does not receive some wff ϕ and is in Ni but not Mi.

1. Ij,iϕ i informs some agent j of ϕ.

2. ¬(BjIj,iϕ ∧ Tj,iϕ) j does not receive ϕ.

3. w 6� V i
Bjϕ

(w) i is uncertain if Bjϕ.

4. w 6� V j
ϕ (w) j is uncertain of ϕ.

Therefore, j ∈ Ni, and Bjϕ is MSDND secure to i.We assumed any beliefs an agent

held stem from information transfer from another agent. Therefore, we can assert the

beliefs in Li for any process i must have a traceable history derived from a process

having a valuation for the referenced wff that aligns with the belief process i holds

about the wff. Furthermore, wff in Ni but not Li do not have valuation in domain

Di and cannot be used in an observation.

57

6 ALGORITHM AND MODEL CREATION

In order for the leader election algorithm to be analyzed with Markov chains,

the algorithm was modified from its original form. These modifications allowed the

observations of the highest priority process to be a DTMC. In this chapter, the mod-

ifications to the algorithm are presented, along with the reasoning for those changes,

motivated by the MSDND analysis presented previously. The probability of transi-

tioning between states is presented as a formula and the accuracy of the formula is

validated using a statistical inference test.

6.1 ORIGINAL INVITATION ELECTION ALGORITHM OVERVIEW

A state machine for the election portion of the invitation-election algorithm

is shown in Figure 2.4. In the normal state, the election algorithm regularly searches

for other coordinators to join. When another coordinator is identified, the identify-

ing coordinator will attempt to invite the other coordinator to their group. In the

invitation election algorithm, processes are assigned a priority based on their process

ID. The coordinator with the highest priority is the first to send invites. After a

brief delay, if it appears that coordinator did not send their invites, the next highest

process will send their invites. If a coordinator accepts an invitation, it will forward

the invite to its group members. Processes that receive an invite that are not already

in an election will accept the invite. Once a timeout expires, the coordinator will send

a “ready” message with a list of peers to all processes that accepted the invite. The

invited processes have timeouts for when they expect the ready message to arrive. If

the message does not arrive in time, the process will enter the recovery state where

it resets to a group with itself as the only member.

Once a group is formed it must be maintained. To do this, processes occa-

sionally exchange messages to verify the other is still reachable. The interaction is

58

shown in Figure 6.1. Coordinators send “Are You Coordinator” messages to members

of its group to check if the process has left the group. Group members send “Are

You There” messages to the coordinator to verify they haven’t been removed from

the group and to ensure the coordinator is still alive. If processes fail to reply to a

received message before a timeout, they will leave the group. Leaving the group can

initiated by the coordinator removing the process, or the process can enter a recovery

state and leave the group, forming a new group with itself as the only member.

Normal

Message to member

Message to coordinator

On message

Local event

Awaiting
Response

Recovery

Normal

Awaiting
Response

Remove Non-
Responders / Yes

Responses

Are You
There?

Are You
Coordinator?

After sending
Are You There

Timeout*/Response No

Response
Yes

Always

After sending
Are You Coordinator

Timeout

No “Yes”
Responses

Election“Yes”
Responses

Coordinator Member

* Modified Component

Figure 6.1 State machine for maintaining a group. The AYC messages are the same
as those in Figure 2.4. AYC and AYT are periodically sent by processes, and

responses to those messages are immediately sent by the receiving process. In the
modified algorithm, the member does not enter the recovery state if they do not

receive an AYT response before the timeout expires.

59

6.2 EXECUTION ENVIRONMENT

Execution occurred in a real-time, partially synchronous environment. The

execution environment was subject to omission failures. Processes synchronized their

clocks and executed steps of the election algorithm at predefined intervals. Processes

with clocks that were not sufficiently synchronized could not form groups. For this

work, process execution occurred in an environment where the clocks were sufficiently

synchronized to consistently form groups. In the real-time environment, messages

that were delayed and missed their real-time deadlines had the same appearance as

an omitted message. The execution environment for the election algorithm had an

omission fault occurrence modeled as a Bernoulli trial. In this model, each message

had some probability p of being delivered within the timing constraints imposed by

the real-time schedule. For the purpose of analyzing the effects of omission failures,

processes were not subject to other faults.

6.3 MODEL CONSTRUCTION

A process can construct a Markov chain if its observations are consistent with

the transition probabilities the process can determine with its observable state. In

each election, a process has some probability of joining a given process’ group. Let

Pr(i → j), be the probability the outcome of an election is i being a member of j’s

group. Since every process must be a member of some group:

∑
j

Pr(i→ j) = 1. (6.1)

Let Pr(i→ j|i ∈ k) be the probability i joins j at the end of an election given i starts

in k’s group at the start of the election. A similar relationship to Equation 6.1 must

exist for this circumstance:

∑
j

Pr(i→ j|i ∈ k) = 1. (6.2)

60

A leader process j can construct a Markov chain iff, for every i that can join j’s

group:

Pr(i→ j|i ∈ k) = Pr(i→ j), i 6= j 6= k (6.3)

where i ∈ k is a state where i is in k’s group. Therefore, the probability of i joining j’s

group must be independent of i’s membership at the start of the election. Equation

6.3 enforces the probability j observes some process i joining its group is independent

of i’s previous membership, which is hidden to j unless i was in j’s group. From

Equations 6.1 and 6.2:

∑
n6=j

Pr(i→ n|i ∈ k) =
∑
n6=j

Pr(i→ n). (6.4)

If more than one process can create a Markov chain, an algorithm which

allows for that circumstance will have undesirable behavior. Suppose there are three

processes A, B, and C. Without loss of generality, assume C is in A’s group. For B

to be able to construct a Markov chain, it must be equally likely that C leaves A’s

group to join B’s as it is likely C would join B given it was not in A’s group. In a

system with no omission faults, ideally, a process will join a group and never leave it,

especially if the election algorithm is being used to find a consensus value. Therefore,

we restrict model construction to the highest priority process.

6.4 MODIFIED ELECTION ALGORITHM

The complete, modified election algorithm is listed in the appendix.

6.4.1 State Determination. In the Garcia-Molina version of the algorithm,

processes distribute a list of processes that have accepted their invite. Let i be

the coordinator of a group distributing ready messages. The process i has a list of

processes who have accepted its invite. Let ϕx be a wff indicating some process x is

61

part of i’s group. Let G = {ϕx|x ∈ AcceptedInvite} ∪ {ϕi} be the set of processes

that have accepted i’s invite. To finalize the group, i will distribute G to each process

described in G. If a processes does not receive G it will not be in the group.

Theorem 8. In the original algorithm, each process is MSDND secure on ϕx for each

x that is not i or itself (j).

Proof. The receipt of G by other members of a group is secure to a process that

receives G.

Case 8.1. The case where x = i or x = j.

If we assume the authenticity of messages is not questioned in this environ-

ment, a ready message from i must mean i is a part of the group. Therefore, i’s

inclusion in the group is MSDND insecure to j.

If j accepts the ready message, that process will be a part of the group in G

and since j knows its own state, j knows it is a part of G.

Case 8.2. The case where x 6= i and x 6= j.

For process i, i distributes G to each other process in G. Let Q be some set

of processes that do not receive the G set.

1. Ij,iG∀j ∈ G i distributes the list of processes that have ac-

cepted the invite.

2. ¬(BxIx,iG ∧ Tx,iG)∀x ∈ Q Processes in Q do not receive G.

3. BxIx,iG ∧ Tx,iG∀x 6∈ Q Processes not in Q receive G.

4. w 6� V j
BxG

(w)∀{x|x 6∈ {i, j}} j does not know which processes received G

Therefore, the receipt of G by other members of the group is MSDND secure to j.

Corollary 9. The set of processes in the ready message is an Ni set, where i the

group’s coordinator.

Because every wff in G is MSDND secure, G must be an Ni set, and Li = ∅.

As a consequence, the group leader only has an estimate of the system, which may

be an overestimate (Mi ⊆ Ni).

62

With a ready acknowledgment message from members of the group, the leader

can construct an Li set, which underestimates the state of the system. From the

previous chapter, we have shown that with message passing and omission, at least

one process is left insecure to the other.

Theorem 10. If a process j sends a ready acknowledgment message to i, j’s inclusion

in the i’s view of the system state is MSDND secure to j.

Proof. When j sends the ready acknowledgment message to i, it is uncertain if the

acknowledgment message is actually delivered. From Theorem 2.1, we know that j

is now MSDND insecure to i, but i is secure to j. Using the ready acknowledgment

messages, i can then valuate BiBjϕj for every j sending an acknowledgment.

Once the ready acknowledgment messages have been sent to the leader, the

group can begin to interact. As it is impossible for the members of the group to be

distributed the Li set, they must operate using the Ni set they received from the

coordinator. Messages from other processes which could only have been sent if they

are a part of the Mi set can leak to the receiving processes their receipt of the G

set from i. For the purpose of model construction, the determination of members of

Mi that are not in Li may be undesirable for a DTMC since it may involve changing

the state captured for the chain at the incorrect moment. Instead, for simplicity,

while the leader can update their Li set with leaked information, we avoid doing so

to preserve the memorylessness property in the following sections.

6.4.2 Memorylessness. A process can update Li with leaked information.

To ensure the memorylessness property, we are particularly interested in the situation

where a process receives the ready message, but the acknowledgment is lost, meaning

the process is not included in the Li set. We wish to ensure that the process can

determine its own exclusion in Li so it can behave as though it is not in Mi. To do

this, we attach an additional field to the AYC message to indicate if the coordinator i

63

considers the receiving process j a part of the Li set. The receiving process can infer

it is not part of Li and it should behave accordingly.

Likewise, for the coordinator, an AYT message leaks that the sending process

is a part of the Mi set if it is not in Li. Since the behavior of the process in Mi is

defined to behave as though it was not in Li, the coordinator should do the same. This

should be the case even if the process sending AYT has already responded negatively

to an AYC from i. For the purpose of memorylessness, i should consider j to have

responded in the affirmative.

Processes determine which invitation to accept based on the exchange of the

AYC messages. Processes wish to be in a group led by the coordinator with the

highest priority. Processes will submit AYC messages to higher priority processes

that are not its coordinator, even if they are in a group. As a result, the processes

will always seek highest priority, regardless of their current group. More importantly,

this releases the process from obligations on its next state from the state of other

processes in the system. A process will only accept a received invitation if it has

determined the sending process is the highest priority process.

In Figure 6.2, we diagram the sequence of message exchanges and function

calls for two possible states for a process not in the leader’s group. In the first

state, the process nearly completed an election the previous round, but the ready

acknowledgement message was not delivered in time, resulting in the process being in

the Mi set. In the second state, the process is not in the leader’s group. Both cases

require the same number of messages to be delivered for the process to be considered

a part of the group.

Therefore, regardless of the hidden state of the system, the highest priority

process’ observations will produce a Markov chain. The probability of transitioning

to the next state is not influenced by the interactions of the other processes: it only

depends on the combinations of outcomes based on the current observable state.

64

Process 1
(Leader)

Process 3
(Future Member)

Check Check
Are You Coordinator?

Yes

Merge Invite

Accept

Ready Ready

Ready ACK

Cleanup

AYC?Check

AYT?

No
Recovery

Invite

Accept

Ready

Ready ACK

Process 2
(Partially Failed Previous Election)

Figure 6.2 Diagram of message exchanges for an election. Process 2 almost
completed the previous election and considers itself a part of process 1’s group, but

process 1 does not. Process 3 does not consider itself a part of process 1’s group
before the election begins. Both process 2 and process 3 need to successfully
exchange the same number of messages to successfully complete the election.

Theorem 11. The observations of the highest priority process are sufficient for pro-

ducing a Markov chain from the underlying HMM.

Proof. The state the highest priority process observes always has the same transition

probabilities, regardless of the hidden state of the other processes.

Case 11.1. The system has one other process (n = 1).

If there is only one other process, the probability of observing a group of two

processes given the current state is a direct observation.

65

Case 11.2. The system has two other processes (n = 2).

In this case, there are 3 possible states for each of the other processes to be

in: grouped with the highest priority process, ungrouped, and grouped without the

highest priority process. When the other processes are grouped with the highest pri-

ority process, the probability of the other processes remaining in the group depends

on the probability the current grouping is maintained. In the second scenario, where

processes are ungrouped, the probability only depends on the probability they suc-

cessfully contact the highest priority process. The last scenario is identical to the

second, as the processes will behave as though they are ungrouped when contacted

by the highest priority process.

The only observation that can be made by the highest priority process is the

inclusion or exclusion of the other processes in their group. The probability of the

processes excluded in the group joining the group is independent of their current state.

Let XG be the set of states for the HMM where the other processes are excluded from

P0’s group, and in their own group led by P1. XU is the set of states where the

processes are excluded from P0’s group and are themselves ungrouped. By the nature

of the algorithm:

Pr(O(D0, xk+1)|xk ∈ XG) = Pr(O(D0, xk+1)|xk ∈ XU). (6.5)

As a result, the ungrouped and grouped sub-cases have the same probability of result-

ing in a particular Yk+1. Furthermore, based on the observations of the ungrouped

process:

O(D0, xi) = O(D0, xj) = b, ∀xi ∈ XG, ∀xj ∈ XU . (6.6)

66

The equation indicates every observation of a state in XG and XU looks identical to

P0. With this restriction, where v = {xi|O(D0, xi) = a}:

Pr(Yk+1 = a|Yk = b) =
∑
v

Pr(Xk+1 = xi|Xk = xj),∀xj ∈ {xj|xj ∈ XU ∪XG}. (6.7)

Where XU ∪XG is the complete set of states for processes not in P0’s group.

Case 11.3. The system has a number of other processes (n > 2).

Since the interactions of the other processes do not affect the probability of

joining P0’s group, the previous case directly extends to this case.

6.4.3 Model Construction. Based on the state determination and memo-

rylessness arguments presented, the highest priority process operates independent of

the state of the other processes in the system. The structure of the algorithm prevents

any process from being locked out of participating in a round of execution based on

the outcome of the previous round. Therefore, for every observation of the system

state the highest priority process makes, the next round of execution for all the other

processes favors the high priority process, ensuring that its observation corresponds

directly with the system state.

The states of the Markov chain are the cardinality of the highest priority pro-

cess’ group. In each round, the behavior is described by two components: maintaining

a group and inviting other processes into the group. The coordinator will exchange

an “Are You Coordinator” message and the peer will respond to verify it is still

available. To maintain a group of m other processes, the probability is defined as a

random variable with the following pdf:

Pr
M

(Y = k;m) =


(
m
k

)
p4k(1− p4)m−k, if 0 ≤ k ≤ m

0, otherwise

(6.8)

67

where k is the number of processes remaining in a group selected from m processes.

A process will leave a group if, from the considered process’ perspective, they do not

respond to an “Are You Coordinator” message.

To invite other processes to the group, the two processes ultimately exchange

up to 8 messages. In a round, a single process can invite many other processes to

its group. From a selection of n other coordinators, the probability distribution for

joining a new group with k of the n processes is:

Pr
I

(Y = k;n) =


(
n
k

)
p8k(1− p8)n−k, if 0 ≤ k ≤ n

0, otherwise.

(6.9)

In the profile chain, in a state s that describes the number of processes in a group,

the probability of transitioning from s to s′ with n total processes (including the

considered process) is:

Pr
T

(Z = s′;n; s) =
s−1∑
i=0

Pr
M

(X = i; s− 1)∗

Pr
I

(X = s′ − i;n− s− 1). (6.10)

From this distribution, a set of transition probabilities can be calculated for a given

probability of delivery p and number of processes n. This set of transition probabilities

forms a profile Markov chain P , which can be evaluated for any number of processes n

and probability of delivery p. The generated profile chain is ergodic when 0 < p < 1.0.

The profile chain is a stationary Markov chain.

6.4.4 Model Validation. To assert the closed-form profile chain accurately

represents the implementation of the algorithm, it must be validated. Since T and

P are ergodic, they can be checked for equivalence using a goodness-of-fit test. If

68

the goodness-of-fit test indicates the chains are equivalent, they will generate similar

sequences and have similar properties when analyzed. Therefore, generated P chains

can be used to analyze the behavior of the algorithm during live execution with

changing conditions.

To verify the test chain T is equivalent to the profile chain P , a χ2 goodness-

of-fit test is employed. The null-hypothesis of the test (H0) asserts the profile chain

P is equivalent to the test chain T :

H0 : T = P. (6.11)

With an alternative hypothesis that the two chains are not equivalent:

H1 : T 6= P. (6.12)

The χ2 test measures the goodness-of-fit for a complete chain by combining the mea-

surements of goodness of fit for the transitions away from each state. Therefore, the

goodness of fit test for the chain is a summation of tests for each state:[10]

χ2 =
m∑
i

m∑
j

=
ni(Pij − Tij)2

Pij
(6.13)

where ni is the number of times the state i was observed in the input sequence used to

construct the test chain T . The summation is distributed as χ2 with m(m−1) degrees

of freedom (DF) if all entries in Pij are non-zero. In this work, all transitions in the

profile Markov chain P are non-zero when 0 < p < 1.0. However, the probability of

some transitions may be extremely small. The χ2 value was compared to a critical

value (CV) giving a measure of how likely it was H0 could not be rejected. This work

selected an α = 0.05 significance level to reject the hypothesis T = P .

69

If the hypothesis H0 were to be rejected, it would indicate the test chain and

profile chain differ significantly. As a consequence of rejecting the hypothesis, the

implementation would have behavior from the generated closed-form solution.

To verify the model, it was compared to runs of an implementation of the

algorithm. Test data was collected for systems with 3, 4, 5 and 6 processes. Informa-

tion was collected from sufficiently long runs of the system with a delivery probability

between 0.05 and 0.95 tested at intervals of 0.05. Table 6.2 shows the measured error

and p-value for the worst observed error for each number of processes. Since the

measured error is less than the critical value and the p-value is greater than 0.05, we

cannot reject H0. As a consequence, the profile chains (P) are representative of the

behavior of the algorithm.

Table 6.2 Summary of χ2 tests performed.

Processes DF CV Worst Error Pr(WorstError) p-value
3 6 12.6 8.90 0.80 0.18
4 12 21.0 14.55 0.75 0.27
5 20 31.4 23.47 0.65 0.27
6 30 43.8 32.69 0.85 0.34

6.4.5 Profile Chain Analysis. Resources can only be managed effectively

when multiple DGI coordinate together to manage those resources. Without another

DGI to coordinate with, the DGI has a limited range of options to manage power

generation, storage, and loads. Therefore, the amount of time the DGI will spend

coordinating with another process is of particular interest. [40] defines an In-Group

Time (IGT) metric to measure the amount of time a DGI process spends coordinating

70

with at least one other process. In this work, we define IGT based on the steady state

of the profile chain. Let π = Steady(P) for some profile chain.

The IGT is the sum of all states in π, save the first state where the process is

alone:

IGT =
m∑
i=2

πi (6.14)

The IGT is a number between 0 and 1. It represents the probability a random

observation sees a group of at least two members. The steady state distributions are

presented as stacked bar graphs in Figures 6.3, 6.4, 6.5 and 6.6. Each complete bar

in the graph indicates the IGT. Additionally, these figures contain the average group

size (AGS) when the system has reached the steady-state plotted as a fraction of the

total number of processes. Let P be the steady-state distribution vector for some

number of processes, n, and a given probability of delivery rate:

y =

∑n
i=1 Pi ∗ i
n

(6.15)

where y is the plotted average group size (AGS) as a fraction. The components of each

bar represent the probability the system is in a specific state for a random observation

of the system. The height of the component represents the relative probability of

observing that state when in a group.

The profile chain can be used to ensure the FREEDM smart-grid is able to

continue operating despite network issues. The profile chain can be combined with

different message-sending strategies to maintain service. For example, the DGI can

change its behavior to ensure operation continues normally despite connectivity issues.

By selecting different strategies depending on the message delivery probability, the

71

DGI can offer high performance in good network conditions and an acceptable level

of service during faults. The profile chain can be extended to an arbitrary number of

processes as shown in Figure 6.7. In the figure, the steady-state of the system is used

to compute a weighted average of the group size. To compare the produced steady

states, the weighted average is plotted as a percentage of all processes in the system.

Values in Figure 6.7 are plotted using Equation 6.15. Therefore, Figure 6.7 shows

the average percentage of total processes that will be in the group in a steady-state

system.

0

0.2

0.4

0.6

0.8

1

0.05
0.15

0.25
0.35

0.45
0.55

0.65
0.75

0.85
0.95

Pr
ob

ab
ili

ty
of

St
at

e
A

ve
ra

ge
G

ro
up

Si
ze

(A
G

S)
as

a
Fr

ac
tio

n

Probability of Delivery

Steady State For 3 Process Model

Group Size 2
Group Size 3

AGS as a Fraction

Figure 6.3 Steady state distribution for 3 processes as well as the AGS as a fraction
of total processes.

We had hoped to observe an upper limit for the number of processes in a group,

where adding processes to the system does not improve the amount time the system

72

0

0.2

0.4

0.6

0.8

1

0.05
0.15

0.25
0.35

0.45
0.55

0.65
0.75

0.85
0.95

Pr
ob

ab
ili

ty
of

St
at

e
A

ve
ra

ge
G

ro
up

Si
ze

(A
G

S)
as

a
Fr

ac
tio

n

Probability of Delivery

Steady State For 4 Process Model

Group Size 2
Group Size 3
Group Size 4

AGS as a Fraction

Figure 6.4 Steady state distribution for 4 processes as well as the AGS as a fraction
of total processes.

0

0.2

0.4

0.6

0.8

1

0.05
0.15

0.25
0.35

0.45
0.55

0.65
0.75

0.85
0.95

Pr
ob

ab
ili

ty
of

St
at

e
A

ve
ra

ge
G

ro
up

Si
ze

(A
G

S)
as

a
Fr

ac
tio

n

Probability of Delivery

Steady State For 5 Process Model

Group Size 2
Group Size 3
Group Size 4
Group Size 5

AGS as a Fraction

Figure 6.5 Steady state distribution for 5 processes as well as the AGS as a fraction
of total processes.

73

0

0.2

0.4

0.6

0.8

1

0.05
0.15

0.25
0.35

0.45
0.55

0.65
0.75

0.85
0.95

Pr
ob

ab
ili

ty
of

St
at

e
A

ve
ra

ge
G

ro
up

Si
ze

(A
G

S)
as

a
Fr

ac
tio

n

Probability of Delivery

Steady State For 6 Process Model

Group Size 2
Group Size 3
Group Size 4
Group Size 5
Group Size 6

AGS as a Fraction

Figure 6.6 Steady state distribution for 6 processes as well as the AGS as a fraction
of total processes.

0

0.2

0.4

0.6

0.8

1

0.05
0.15

0.25
0.35

0.45
0.55

0.65
0.75

0.85
0.95

A
ve

ra
ge

G
ro

up
Si

ze
as

a
Fr

ac
tio

n

Probability of Delivery

Mean Group Size as a Fraction During Omission Failure

3 Processes
4 Processes
5 Processes
6 Processes

10 Processes
25 Processes
50 Processes

100 Processes

Figure 6.7 Average group size as a percentage of all processes in the system for
larger systems.

74

can spend coordinating. If this limit existed, it would provide a suggestion for an

ideal group size when the DGI was being deployed. However, this was not observed.

Instead, we observed how fragile a grouping of processes would be during omission

failures: the omission probability strongly affects the grouping of processes. Cases

where omission caused processes to leave the group are particularly concerning. In

those cases, processes enter a state where they are not grouped with any of the other

processes, meaning they cannot coordinate to manage power resources. A balance

must be struck between preventing omission faults from breaking up the group and

halting work and keeping a grouping that causes physical faults with failed migrations.

75

7 APPLICATION: ECN HARDENING

We considered the effects of network congestion on a cyber communication

network used by the FREEDM smart-grid using a model of DGI processes in a par-

titioned network. By applying background traffic to the partitioned network, we

create a situation where real-time deadlines are missed due to queuing delays. In the

FREEDM smart-grid, the consequences of network congestion could result in sev-

eral problematic scenarios. First, if the congestion prevents DGI from autonomously

configuring using its group management system, processes cannot work together to

manage power devices. Secondly, if messages arrive too late, or are lost, the DGI could

apply settings to the attached power devices, driving the physical network to insta-

bility. Unstable settings could lead to problems in the power grid such as frequency

instability, blackouts, and voltage collapse. Congestion response techniques allow the

DGI to anticipate behavior during a fault and allow it to harden itself against the

fault. In a smart-grid system, interfering traffic can originate from the use of public

infrastructure[53][34], a misconfigured device, changing networking requirements as

new devices enter the network, or from an attacker in a DoS attack.

The DGI employed a round-robin schedule where each module was given a

predetermined amount of time to execute. The schedule was determined by the

number of DGI that could be grouped together and the expected cyber network con-

ditions. Additionally, the load balance module, which managed the power resources,

was scheduled to run multiple times in a long block before the group was evaluated

for failure. This schedule is depicted in Figure 7.1.

The system began by using group management to organize groups. Next, load

balancing ran to manage power resources in the created group. Finally, state collec-

tion obtained a causally consistent state to be used for reporting and offline analysis.

76

For the purpose of the ECN experiments presented in the subsequent sections, we

opted to not use the state collection module. If message delays occurred, the number

of migrations load balancing could perform was reduced. However, by reducing the

group size, the number of messages sent by load balancing could be reduced, allowing

for a greater amount of work to be done. The outcome of an election had a direct

effect on how effectively the DGI can manage resources.

Group
Management Load BalancingState Collection Group

Management
...

Group
Management Load BalancingState Collection Group

Management
...
...

P0

Pn

time

Normal Operation Migration Migration Migration Migration Migration

Delayed Operation MigrationMigration Migration

Reduced Group
Operation

Migration Migration Migration Migration Migration

Figure 7.1 Example DGI schedule. Normal operation accounts for a fixed number of
migrations each time the load balancing module runs. Message delays reduce the
number of migrations that can be completed each round. However, reducing the
group size allows more migrations to be completed (because fewer messages are

being exchanged) at the cost of flexibility for how those migrations are completed.

This information can also be used to anticipate faults and mitigate them before

they occur. Modern routers can supply an expected congestion notification as part of

the IP header[23]. When congestion is anticipated, the coordinator can preemptively

77

split the group to reduce congestion. This is possible because the load balancing

algorithm’s message complexity is O(n2). If future congestions causes an omission

probability of as little as 0.15, performing a coordinated group division can potentially

avoid transient states where processes cannot coordinate.

The coordinated group division has three main benefits: Breaking the large

groups into smaller groups drastically reduces the number of messages transmitted

and helps relieve congestion. The coordinator can design the split to ensure work

continues by mixing supply and demand processes. The division can also account for

the placement of routers for targeted congestion relief.

7.1 THEORY OF OPERATION

In the simulated network, the router and the two switches were ECN enabled

devices. The devices monitored their incoming packet queues for each of their inter-

faces and used the RED algorithm to determine when to mark a packet for ECN.

Since ECN fields in an IPv4 header are not directly available to an application, the

notifications were multicast onto the source interface(s) of the packet that triggered

the notification. Each network device ran an application responsible for generating

the multicast ECN message.

When the RED algorithm identifies congestion, it must notify senders. Be-

cause the approach is non-standard and most UDP applications would not understand

the notification, we opted to create an application to run on switches and routers.

When congestion is detected, the application sends a multicast beacon to a group

of interfaces informing the attached devices of the level of congestion. For similarity

with the RED algorithm and the NS-3 implementation, the notification is classified

as either “soft” or “hard.” A soft notification is an indication the congestion in the

network is approaching a level where real-time processes can expect message delays

which may affect their normal operation. A hard notification indicates the congestion

has reached a level where messages are subject to both delay and loss.

78

7.2 GROUP MANAGEMENT

The group management module’s execution schedule is broken into several

periods of message generation and response windows. Because the schedule of the

DGI is partially synchronous, the traffic generated by modules occurs in bursts. The

number of messages sent by group management is O(n2) (where n is the number of

processes in the system). The duration of the response window is dependent on the

amount of time it takes for messages to propagate to the hardest-to-reach process.

To contend with congestion, slack, in the form of idle time, must be added to allow

the RED algorithm to detect congestion before it reaches a critical level. Figure 7.2

depicts typical queuing behavior for a network device serving DGI processes under

different circumstances.

Because the traffic generated by DGI modules occurs in bursts, there is a

phenomenon where the traffic bursts mix with steady background traffic to cause

the packet queue at the network device to fill. With no background traffic, the

impulse queues many messages, but those messages are distributed within real-time

constraints. When the background traffic is introduced, the queue takes longer to

empty. At a critical threshold, the queue does not empty completely before the next

burst is generated by the DGI and services provided by the DGI are disrupted. If the

level of other traffic is sufficiently high, the queue completely fills, and no messages

can be distributed. The RED algorithm and ECN are used to delay or prevent the

queue from reaching this critical threshold.

7.2.1 Soft ECN. A soft ECN message indicates the network has reached

a level of congestion where the router suspects processes will not be able to meet

their real-time requirements. The soft ECN message encourages the DGI processes

to decrease the number of messages they send, reducing the amount of congestion

they contribute to the network and to allow for reliable distribution techniques to

have additional time to deliver messages (since fewer messages are being sent). In

79

Time

Q
ue

ue
 S

iz
e

Figure 7.2 Example of network queuing during DGI operation. DGI modules are
semi-synchronous and create traffic bursts on the network. When there is no other
traffic on the network (solid line), the traffic bursts cause many packets to queue
quickly, but the queue empties at a similar rate. With background traffic (dashed
line), the traffic bursts cause many packets to be queued suddenly. More packets

arrive continuously, causing the queue to drain off more slowly. When the
background traffic reaches a certain threshold (dotted line), the queue does not
empty before the next burst occurs. When this happens, messages will not be

delivered in time, and the queue may completely fill.

the case of potential congestion, the group management module can reduce its traffic

bursts by disabling elections during the congestion. When elections are disabled,

messages for group management are only sent to members of the group. Processes

do not seek out better or other leaders with which to merge. As a consequence, the

message complexity for processes responding to the congestion notification reduces

from O(n2) to O(n).

7.2.2 Hard ECN. In a hard ECN scenario, the router will determine con-

gestion has reached a threshold where the real-time processes will soon not be able to

meet their deadlines. In this scenario, the real-time process will likely split its group.

In an uncontrolled situation, the split will be random, and time will be wasted while

the system is reorganizing. It is therefore desirable when this level of traffic is reached

to split the group. Splitting the group reduces the number of messages sent across

80

the router for modules with O(n2) (where n is the number of processes in the origi-

nal group) message complexity. For larger groups, splitting them provides significant

savings in the number of messages that must be queued by the router, especially since

the traffic occurs in bursts.

Consider a network like one depicted in Figure 7.3, where processes are divided

by a router. Here, there are n processes on one side of the network and m on the

other. In normal operation, the omission-modelable algorithm has an O(n2) message

complexity. In Soft ECN maintenance mode, the reduced number of messages reduces

the complexity to O(n) by disabling elections.

15

...

2

1

Sw
itc

h
A

Router
30

...
17

16
Sw

itc
h

B

Figure 7.3 Example of process organization. Two groups of processes are connected
by a router.

During elections (and with each group update) the leader distributes a fallback

configuration that will coordinate the division of the groups during intense congestion.

When the ECN notification is received, the processes will halt all current group

management operations and enter a splitting mode where they switch to the fallback

configuration. The leader of the group distributes a fallback notification to ensure all

processes in the group apply their new configuration. The complexity of distributing

the notification is linear O(n) and processes that already received the notification will

81

have halted their communication. This approach will ideally avoid the burst/drain

phenomena from Figure 7.2.

The design of the fallback configuration can be created to optimize various

factors. The factors include cyber considerations, such as the likely network path the

processes in the group will use to communicate. By partitioning the group around

cyber network resources, the group can be selected to minimize the amount of traffic

that crosses the congested links in the future. Additionally, constraints of the physical

network can be considered. Fallback groups can be created to ensure they can continue

to facilitate the needs of the members. The design of the configuration can take into

the consideration the distribution of supply and demand processes in the current

group. By having a good mix of process types in the fallback group, the potential for

work can remain high.

7.3 CYBER-PHYSICAL SYSTEM

For a real-time CPS, message delays could affect coordinated actions. As a

result, actions may not happen at the correct moments, or at all. Since the two-army

problem prevents any process from being entirely certain a coordinated action will

happen in concert, problems arising from delay or omission of messages is of particular

interest. Specifically, we are interested in the scenario from [16], where only half of

a power migration is performed. Other power management algorithms could have

similar effects on the power system based on this idea of a process performing an

action that does not have a corresponding, compensating action.

7.3.1 Soft ECN. In a soft congestion mode, the process being informed of

the congestion can reduce its effect on the congestion by changing how often it gener-

ates traffic bursts. Processes running the load balancing algorithm make several traffic

bursts when they exchange state information and prepare migrations. As shown be-

fore, if the interval between these bursts is not sufficient for the queue to drain before

the next burst occurs, then critical, overwhelming congestion occurs. The schedule of

82

the DGI is fixed at run-time and processes cannot simply extend the duration of the

load balancing execution phase. However, on notification from the leader, the pro-

cess can reduce the number of migrations to increase the message delivery interval.

The notification to reduce the schedule originates from the coordinator as part of the

message exchange necessary for the process to remain in the group. Every process

in the group must receive the message to participate in load balancing, ensuring all

processes remain on the same real-time schedule. By using this approach, the amount

of traffic generated is unchanged but the period a process waits for the messages to

be distributed is increased.

7.3.2 Hard ECN. When the DGI process receives a hard congestion notifi-

cation, the processes switch to a predetermined fallback configuration. The configura-

tion creates a cyber partition. By partitioning the network, the number of messages

sent by applications with O(n2) message complexity can be reduced significantly.

Each migration of the load balancing algorithm begins with an O(n2) message burst

and so benefits from the reduced group size created by the partition.

Consider a network like the in Figure 7.3 with n processes on one half and

m on the other. The number of messages sent across the router for the undivided

group is of the order 2mn as the n processes on side A send a message to the m

on side B and vice-versa. Let i1 and j1 be the number of processes from side A

and side B (respectively) in the first group created by the partition. Let i2 and j2

be the number of processes in the second group created by the partition under the

same circumstances of i1 and j1. The number of messages sent that pass through the

router, is then:

2i1j1 + 2i2j2. (7.1)

83

For an arbitrary group division, the following can be observed. Suppose i1 and j2

are the cardinality of two arbitrarily chosen sets of processes from side A and side B

respectively. Following the same cut requirements as before:

i2 = n− i1 and j2 = m− j1. (7.2)

The number of messages that must pass through the router for this cut is:

2i1j1 + 2(n− i1)(m− j1). (7.3)

The benefits of the cut are minimized when i1 and j1 are n
2

and m
2

:

2(2
mn

4
+mn− mn

2
− mn

2
) = mn (7.4)

which is a reduction of half as many messages. For systems with many participating

processes, a significant reduction in the number of messages sent across the router is

achieved. As a consequence, this further extends the delivery window for processes

sending messages by decreasing channel utilization.

7.4 RELATION TO OMISSION MODEL

The synchronization of clocks in the environment is assumed to be normally

distributed around a true time value provided by the simulation. The shape of the

curve created by plotting the queue is a Cumulative Distribution Function (CDF) of

the normal distribution, noted as F (x). A simple description of the traffic behavior

can then be described in terms of that curve. First, when the queue hits a specific

threshold, even if the queue is drained at an optimal rate, the nth queued packed will

84

not be delivered in time:

Qsize−min(Qsize, (DequeueRate ∗∆t)) ≥ 0 (7.5)

where ∆t is the deadline for the message to be delivered. If the size of the queue

exceeds the number of messages that can be delivered before ∆t passes, some messages

will not be delivered. The size of the queue during the message bursts created by the

DGI depends on the message complexity of the algorithm, the number of messages

already in the queue, the other traffic on the network, and any replies needing to be

delivered in that interval. Therefore, let c represent the rate traffic is generated by

other processes. Let initq represent the number of messages in the queue at the start

of a burst. Let initm represent the number of messages sent in the beginning of the

burst. Let resp represent the number of messages sent in response to the burst that

must still be delivered before ∆t passes. We can then express Qsize as two parts:

Qsize = Burst+Obligations (7.6)

where Burst takes the form of the CDF for the normal distribution:

Burst = initm ∗ F (x) (7.7)

and

Obligations = c ∗∆t+ initq + resp. (7.8)

From this we can derive the equation:

F (x) ≥ DequeueRate ∗∆t− c ∗∆t− initq − resp
initm

(7.9)

85

where, from Equation 7.5, DequeueRate ∗∆t is less than or equal to the number of

messages in the queue. Solving for F (x) gives a worst case estimate of the probability

of delivery for a specific algorithmic or network circumstance. DequeueRate is af-

fected by the amount of traffic in the system. It should be noted, a greater amount of

background traffic corresponds to a greater average queue size. From a relationship

between the background traffic, the average queue size, and the results presented in

the previous chapters, Equation 7.9 can be used to select the ECN parameters.

7.5 PROOF OF CONCEPT

Experiments were run in a Network Simulator 3.23[18] test environment. The

simulation time replaced the wall clock time in the DGI for the purpose of trigger-

ing real-time events. As a result, the computation time on the DGI for processing

and preparing messages was neglected. However, to compensate for the lack of pro-

cessing time, the synchronization of the DGI was randomly distributed as a normal

distribution. This was done to introduce realism to ensure events did not occur si-

multaneously. Additionally, the real-time schedules used by the DGI were adjusted

to remove the processing time that was neglected in the simulation. The schedule

used is depicted in Figure 7.4. Each burst of messages was allotted one second for

those messages and their replies to propagate. During the load balancing execution

period, ten migrations are performed on the normal schedule. Soft ECN increased the

message propagation time for the load balancing module to 1.5 seconds and reduced

the number of migrations each round to six.

The DGI were placed into a partitioned environment. The test included 30

nodes. Each of the nodes ran one DGI process. Two sets of 15 DGI were each

connected to a switch and each switch was in turn connected to the router. The

network is pictured in Figure 7.3. Node identifiers were randomly assigned to nodes

in the simulation and used as the process identifier for the DGI. In the experiments,

86

Check Merge Ready Cleanup
Group Management

Load Balancing
Migration Migration

1 2 3

5

...

3 t t+2

time

time

Figure 7.4 Execution schedule used in experiments.

the load at each process was randomly assigned: each side is mix of supply and

demand processes.

The links between the router and the switches had a RED enabled queue

placed on both network interfaces. The RED parameters for all queues were set

identically. A summary of RED parameters are listed in Table 7.1. Any parameters

not included in the table used the NS-3 default value. All links in the simulation

were 100Mbps links with a 0.5ms delay. RED was used in packet count mode to

determine congestion. ARP tables were populated before the simulation began. RED

parameters were selected using results from the previous chapter.

The relationship between the background traffic and the average queue size

was estimated through runs of the NS-3 simulation. Figure 7.5 demonstrates the

observed relationship between the total background traffic and the maximum average

queue size for that level of traffic. Additionally, the DequeueRate was collected from a

run of the simulation without traffic, and was found to be 713.08 packets per second.

Therefore, from Equation 7.9, assuming initq = 0, resp = 225, initm = 225, and

∆t = 1, the maximum traffic rate with no omissions was 263.0 packets per second.

The number of packets for the resp and initm were selected from the worst case

of the modified election algorithm. Based on the traffic parameters in Table 7.1,

263.0 packets/second corresponded to 1.077Mbps of traffic generated at one switch

87

Table 7.1 Summary of RED parameters.

Parameter Value Parameter Value
RED Queueing Mode Packet RED Gentle Mode True
RED Qw 0.002 RED Wait Mode True
RED Min Threshold 90 RED Max Threshold 130
RED Link Speed 100Mbps RED Link Delay 0.5 ms

and 2.1545Mbps traffic overall. From the polynomial estimate in Figure 7.5, the

maximum average queue size for that level of traffic was 94.715, estimated as 90

for the RED Min Threshold in Table 7.1. RED Max Threshold is computed using a

similar technique, but using the message complexity for the load balancing algorithm,

since it maintained its complexity during Soft ECN mode.

−0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

Traffic (Mbps)

60

80

100

120

140

160

M
ax

im
um

A
ve

ra
ge

Q
ue

ue
Si

ze
(P

ac
ke

ts
)

Maximum Average Queue Size vs. Traffic Level

Observed Value
Polynomial Estimation
R2 = 0.969527925819

Figure 7.5 Plot of the maximum observed average queue size as a function of the
overall background traffic. The polynomial estimate is y = 22.70x2 − 44.74x+ 85.72.

88

To introduce traffic, processes attached to each of the switches attempted to

send a high volume of messages to each other across the router. The number of

packets sent per second was a function of the data rate and the size of the packets

sent. In each simulation, half of the traffic originated from each switch. Due to the

properties of the network links, the greatest queueing effect occurred at the switches.

7.6 RESULTS

Six test scenarios were created to evaluate the ECN technique. These scenarios

are summarized in Table 7.2. In each scenario, the distribution of supply and demand

processes is mixed: each switch has both supply and demand processes. The potential

of the system to complete migrations, as well as the potential for migrations to fail

were primary considerations for each scenario. Processes cannot initiate migrations if

they are not grouped with other processes. Similarly, if the process is attempting to

communicate over a congested link, it may not meet real-time deadlines or successfully

complete migrations. Figure 7.6 shows the distribution of group sizes observed by the

highest priority process in each scenario. The height of each colored segment indicates

the portion of the simulation where process 0 was in the given configuration.

Table 7.2 Summary of test configurations.

Test Traffic Notifications Attempted Migrations
A None N/A 1171
B 2Mbps N/A 1171
C 4Mbps None 1114
D 4Mbps Soft 888
E 6.4Mbps Soft 861
F 6.4Mbps All 888

89

A B C D E F
Test Configuration

0.0

0.2

0.4

0.6

0.8

1.0

St
at

e
D

is
tr

ib
ut

io
n

Group State Distribution For Each Scenario

Group size 30
Group size 28
Group size 22
Group size 21
Group size 20
Group size 18
Group size 17
Group size 16
Group size 15

Figure 7.6 Distribution of group sizes for process 0 in each scenario.

Figures 7.7 and 7.8 (Scenario A) show the normal operation of the system.

In this configuration, there is no congestion on the network. The DGI start, group

together and then begin migrating power between processes. Figure 7.7 plots the

queue size over time for a queue used to send packets from a switch to the router.

Figure 7.8 is a detailed view of a portion of Figure 7.7; it shows the queue size during

the normal operation of group management as well as the first three migrations of

a load balancing round. In the normal schedule, the DGI allocates approximately

1 second to each migration and performs 10 migrations each round. In the figure,

the dark gray section is the period where the group management module executes.

The alternating white and light gray sections are the execution periods for individual

migrations. The dotted line plots the EWMA of the size of the queue. An important

note for the plotted EWMA values: NS-3 only updates the average queue size during

simulation when a new packet is enqueued. As a consequence, the average queue size

is slightly misleading in scenarios where there is a significant amount of idle channel

90

time (such as Figures 7.7, 7.8, and 7.9). In scenarios A and B, the traffic is not

sufficient to disrupt the operation of the DGI. As a result, in Figure 7.6, process 0

has an uninterrupted observation of a group size of 30 throughout the two scenarios.

0 50 100 150 200 250 300

Time (seconds)

0

50

100

150

200

Q
ue

ue
Si

ze
(p

ac
ke

ts
)

Queue Size Over Time (No Traffic)

Queue Size

Figure 7.7 Test configuration A. Plot of the queue size for a queue from switch A to
the router when only the DGI generates traffic.

From scenario A and B we establish the minth value used as a RED queue

parameter. The traffic generated by each step of the group management algorithm

occurs in bursts. The tightness of the clock synchronization in the group affects the

size of the peak. Like [68], the level of power at a process is the net sum of its power

generation capability and load. As power is shared on the network, processes with

excess generation, converge toward zero net power. Demand processes also converge

toward zero net power.

91

group management

load balancing

Figure 7.8 Test configuration A (detailed view). Detailed view of Figure 7.7.

Figure 7.9 shows the queue size as the network traffic begins to increase. The

DGI in these experiments used a schedule that allowed for some congestion to occur

before processes are disrupted. The slack gave network devices the opportunity to

identify when the network congestion would go beyond the acceptable threshold.

Compared to Figure 7.8, the peaks in Figure 7.9 are taller and wider. As with Figure

7.8, this figure shows three migrations.

Figure 7.10 (Scenario C) shows an example of congestion affecting the physical

network without ECN. In this scenario, the queue does not empty completely before

the next burst of traffic. As a result of the congestion in Figure 7.10, processes leave

the main group, shown in 7.6. As a result, group management generates a large peak

as it tries to rejoin groups that have broken due to the message delays. The observed

configurations have greater than 15 processes because communication that does not

cross the switch-router-switch path is not congested. As a consequence, processes on

92

group management

load balancing

Figure 7.9 Test configuration B. Detailed view of the effect on queue size as other
network traffic is introduced.

the same switch as process 0 do not leave 0’s group. Load balancing has smaller and

less pronounced peaks because the groups are smaller. Power migrations are affected

by congestion: migrations fail, or the supply process is left uncertain of a migration’s

completion. Figure 7.11 plots the count of failed migrations over time. The number

of failed migrations relative to the number attempted is quite low, because processes

on the same switch as process 0 can still attempt migrations.

Figure 7.12 (Scenario D) shows an example of the ECN algorithm notifying

processes of the congestion. The group management module entered a maintenance

mode where it suspended discovering leaders of other groups. Compared to the sce-

nario in Figure 7.10 (Scenario C), the ECN algorithm successfully prevents the group

from dividing. The module’s message complexity decreased to O(N), resulting in the

lack of a noticeable peak compared to previous scenarios. Only two migrations are

pictured in the figure. As part of the compensation for the congestion, the number of

93

group management

load balancing

Figure 7.10 Test configuration C. Detailed view of the effect on queue size as
network traffic is introduced without notifications.

0 50 100 150 200 250 300

Time (seconds)

0

10

20

30

40

50

60

L
os

t
M

ig
ra

ti
on

s

Lost Migrations Over Time

2 Mbps traffic, no notifications
4 Mbps traffic, no notifications
4 Mbps traffic, only soft notifications
6.4 Mbps traffic, all notifications
6.4 Mbps traffic, only soft notifications
No traffic, no notifications

Figure 7.11 Count of lost migrations from all processes over time.

94

migrations attempted are reduced, as listed in Table 7.2. Load balancing has higher

peaks than in Figure 7.10 because processes have not left the group. However, the

reduced schedule is sufficient to prevent lost migrations. In [15], when the number of

migrations are reduced, the size of each migration is increased. Despite fewer migra-

tions being attempted, the same amount of power can be managed by the DGI, and

the number lost migrations is reduced by the changed schedule.

group management

load balancing

Figure 7.12 Test configuration D. Detailed view of the effect on queue size as
network traffic is introduced with soft ECN notifications.

Figures 7.13 (Scenario E) and 7.14 (Scenario F) show an example of a more

extreme congestion scenario. In Figure 7.13, group management enters a maintenance

mode when it receives the soft ECN notification, but it is not sufficient to maintain

95

groups; processes leave the group randomly. The system decreased the number of

migrations per round, as it had done in Figure 7.12. However, migrations were lost.

In Figure 7.14, the RED algorithm shares a Hard ECN notification. The noti-

fication causes the DGI to switch to a smaller fallback configuration, which decreases

the queue usage from Figure 7.13 to Figure 7.14. Without this fallback configuration

behavior, the system is greatly affected by the traffic. The group management module

produced more traffic than in Figure 7.13, but, no DGI left the fallback groups. The

smaller group size allowed the amount of traffic from the load balancing module to

be reduced and prevented lost migrations.

group management

load balancing

Figure 7.13 Test configuration E. Detailed view of the effect on queue size as a large
amount network traffic is introduced with only soft notifications enabled.

96

group management

load balancing

Figure 7.14 Test configuration F. Effect on queue size as a large amount of network
traffic is introduced with hard notifications enabled.

97

8 CONCLUSION

We presented a useful framework for reasoning about distributed systems that

tolerate omission faults. The models and structures presented in the framework allow

algorithms to be designed with behaviors that can be modeled with a Markov chain.

To create the framework, existing information flow analysis techniques were

applied to common distributed systems problems. We showed the information flow-

based analysis was consistent with previous work. The analysis was extended to rea-

son about a leader election algorithm. We described belief sets created by distributing

information to several other agents in the system and showed which portions were

MSDND secure.

Additionally, we defined how information being transferred between agents

and the actions they take based on that information could be modified to have the

memorylessness property of Markov chains. Using this concept we demonstrated how

a common leader election algorithm could be modified to use this memorylessness

property, allowing it to be modeled online during changing conditions.

Our work is particularly valuable for the analysis of critical infrastructure sys-

tems, where knowledge of their behavior during fault conditions is important. By

allowing the ability for algorithms to determine what issues are likely to arise while

they are operating, actions can be taken to protect the infrastructure from failure.

There are a wide range of possible applications, including actions either undertaken

by human operators on site, or autonomous actions taken by the algorithms to harden

themselves against failure. We presented a technique for hardening a real-time, dis-

tributed cyber-physical system against network congestion. The RED queueing algo-

rithm and an out-of-band version of explicit congestion notification (ECN) were used

to signal an application of congestion. Using this technique, the application changed

98

several of its characteristics to ready itself for the increased message delays caused by

the congestion.

Techniques were demonstrated on the DGI, a distributed control system for

the FREEDM smart-grid project. We showed the hardening techniques were effective

in keeping the DGI processes grouped together. Additionally, the changes applied to

the DGI through cyber-coordinated actions helped prevent potential destabilization

of the physical power network. Our techniques could be applied to any CPS that could

experience congestion on its network, as long as it has the flexibility to change its

operating mode. Potential applications can apply to both the cyber control network

and the physically controlled process.

99

APPENDIX

ALGORITHM

The modified leader election algorithm.

1: Counter ← A random initial identifier

2: AllPeers← {1, 2, ..., N}

3: Coordinators← ∅

4: Group←Me

5: GroupID ← (Me,Counter)

6: Coordinator ←Me

7: Expected← ∅

8: PendingID ← (Me,−1)

9: PendingLdr ←Me

10: Pending ← ∅

11: State← Normal

12:

13: function Check

14: Expected← ∅

15: Coordinators← ∅

16: PendingID ← (Me, 0)

17: PendingLdr ←Me

18: if Coordinator = Me then

19: for j ∈ (AllPeers− {Me}) do

20: AreY ouCoordinator(j)

21: Expected← Expected ∪ j

22: end for

23: else

24: for j ∈ (AllPeers− {Me}) do

100

25: if j < Me then

26: AreY ouCoordinator(j, j ∈ Group)

27: Expected← Expected ∪ j

28: end if

29: end for

30: Expected← Expected ∪ Coordinator

31: AreY ouThere(Coordinator)

32: end if

33: Peers which respond “Yes” to AreY ouCoordinator are put into the Coordinators

set.

34: Processes that respond are removed from Expected.

35: When an AreY ouThere response is “No” and this process is a coordinator, the

querying process is put in the Coordinators set.

36: end function

37:

38: function Merge

39: if Coordinator = Me and PendingLdr >= Me then

40: Group = Group− Expected

41: Group = Group− Coordinators

42: end if

43: if |Coordinators| >= 1 then

44: State← Election

45: Stop work

46: Counter ← Counter + 1

47: PendingID ← (Me,Counter)

48: PendingLdr ←Me

49: Pending ← Group

50: for j ∈ Coordinators do Invite(j,Coordinator,PendingID)

51: end for

101

52: Processes that Accept are added to Pending.

53: State← Reorganization

54: end if

55: Expected← ∅

56: end function

57:

58: function Ready

59: Expected← ∅

60: if Coordinator = Me and PendingLdr = Me then

61: OldGroup← Group

62: if Pending 6= ∅ then

63: Group← Pending

64: GroupID ← PendingID

65: else

66: Group← Pending

67: end if

68: Expected← Group

69: for j ∈ Group do ReadyMsg(j,GroupID,Group)

70: end for

71: Processes that acknowledge the Ready message are removed from Expected.

72: end if

73: State← Normal

74: end function

75:

76: function Cleanup

77: if Coordinator = Me then

78: Group← Group− Expected

79: end if

80: Expected← ∅

102

81: Coordinators← ∅

82: Pending ← ∅

83: PendingLdr ←Me

84: PendingId← (Me,−1)

85: if Coordinator 6= Me and Didn’t Receive Ready then Recovery

86: end if

87: end function

88:

89: function Recovery

90: Coordinator ←Me

91: Group← ∅

92: Counter ← Counter + 1

93: GroupID ← (Me,Counter)

94: Coordinators← ∅

95: Pending ← ∅

96: PendingId← (Me,−1)

97: PendingLdr ←Me

98: end function

99:

100: function ReceiveAreYouCoordinator(Sender)

101: if Coordinator = Me then

102: Respond Yes

103: else

104: Respond No

105: end if

106: end function

107:

108: function ReceiveAreYouThere(Sender)

109: if Coordinator = Me and Sender ∈ Group then

103

110: Respond Yes

111: else

112: Respond No

113: Coordinators← Coordinators ∪ Sender

114: end if

115: end function

116:

117: function ReceiveInvite(Sender,Identifier)

118: if Sender > Coordinator or Sender > PendingLdr or Sender 6∈ Coordinators

then return

119: end if

120: Stop Work

121: PendingID ← Identifier

122: PendingLdr ← Sender

123: State← Reorganization Accept(Sender,Identifier)

124: end function

125:

126: function ReceiveReady(Sender, Identifier, Peers)

127: if PendingID = Identifier or Coordinator = Sender then

128: Group← Peers

129: State← Normal

130: Coordinator ← Sender

131: GroupID ← Identifier ReadyAcknowledge(Leader,Identifier)

132: end if

133: end function

134:

135: function Recovery

136: State← Election

137: Stop Work

104

138: Counter ← Counter + 1

139: GroupID ← (Me,Counter)

140: Coordinator ←Me

141: UpPeers←Me

142: State← Reorganization

143: State← Normal

144: end function

105

BIBLIOGRAPHY

[1] Communication requirements of smart grid technologies. Technical report, U.S.
Department of Energy, Oct 2010.

[2] IEEE standard for electric power systems communications-distributed network
protocol (DNP3). IEEE Std 1815-2012 (Revision of IEEE Std 1815-2010), pages
1–821, Oct 2012.

[3] R. Akella, Fanjun Meng, D. Ditch, B. McMillin, and M. Crow. Distributed
power balancing for the FREEDM system. In Smart Grid Communications
(SmartGridComm), 2010 First IEEE International Conference on, pages 7 –12,
October 2010.

[4] Y. Amir, C. Danilov, M. Miskin-Amir, J. Schultz, and J. Stanton. The spread
toolkit: Architecture and performance. Technical report, Johns Hopkins Univer-
sity, 2004.

[5] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Transis: a communication subsys-
tem for high availability. In Fault-Tolerant Computing, 1992. FTCS-22. Digest
of Papers., Twenty-Second International Symposium on, pages 76–84, 1992.

[6] Chongyang Bai and Xuejun Zhang. Aircraft landing scheduling in the small
aircraft transportation system. In Computational and Information Sciences (IC-
CIS), 2011 International Conference on, pages 1019–1022, Oct 2011.

[7] Zubair A. Baig and Abdul-Raoof Amoudi. An analysis of smart grid attacks and
countermeasures. Journal of Communications, 8(8):473–479, Aug 2013.

[8] J. Baillieul and P. J. Antsaklis. Control and communication challenges in net-
worked real-time systems. Proceedings of the IEEE, 95(1):9–28, Jan 2007.

[9] F. Baker. Requirements for IP version 4 routers, 6 1995. RFC 1812.

[10] U. Narayan Bhat. Elements of applied stochastic processes, 2nd Edition. John
Wiley & Sons, 1984.

[11] K. Birman and Renesse R. Reliable Distributed Computing with the Isis Toolkit.
IEEE Computer Society Press, Los Alamitos, CA 90720-1264, 1994.

[12] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for
solving consensus. In Proceedings of the Eleventh Annual ACM Symposium on
Principles of Distributed Computing, PODC ’92, pages 147–158, New York, NY,
USA, 1992. ACM.

106

[13] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. J. ACM, 43(2):225–267, March 1996.

[14] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure
detector for solving consensus. J. ACM, 43(4):685–722, July 1996.

[15] A. Choudhari, H. Ramaprasad, S. Chellappan, B. McMillin, J. Kimball, and
M. Zawodniok. Adaptive scheduling with explicit congestion notification in a
cyber-physical smart grid system. In 2014 40th EUROMICRO Conference on
Software Engineering and Advanced Applications, pages 309–317, Aug 2014.

[16] A. Choudhari, H. Ramaprasad, T. Paul, J.W. Kimball, M. Zawodniok,
B. McMillin, and S. Chellappan. Stability of a cyber-physical smart grid system
using cooperating invariants. In Computer Software and Applications Conference
(COMPSAC), 2013 IEEE 37th Annual, pages 760–769, July 2013.

[17] OMNeT++ Community. Omnet++, May 2012.
http://http://www.omnetpp.org/.

[18] NS-3 Consortium. Network simulator 3.23. http://www.nsnam.org/.

[19] Flaviu Cristian. Understanding fault-tolerant distributed systems. COMMUNI-
CATIONS OF THE ACM, 34:56–78, 1993.

[20] Christopher Dabrowski and Fern Hunt. Using markov chain analysis to study
dynamic behaviour in large-scale grid systems. In Proceedings of the Seventh Aus-
tralasian Symposium on Grid Computing and e-Research - Volume 99, AusGrid
’09, pages 29–40, Darlinghurst, Australia, Australia, 2009. Australian Computer
Society, Inc.

[21] Carole Delporte-Gallet, Hugues Fauconnier, and Hung Tran-The. Distributed
Computing and Networking: 14th International Conference, ICDCN 2013, Mum-
bai, India, January 3-6, 2013. Proceedings, chapter Uniform Consensus with
Homonyms and Omission Failures, pages 161–175. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2013.

[22] Qi Dong and Donggang Liu. Resilient cluster leader election for wireless sensor
networks. In Sensor, Mesh and Ad Hoc Communications and Networks, 2009.
SECON ’09. 6th Annual IEEE Communications Society Conference on, pages
1–9, June 2009.

[23] A. Dracinschi and S. Fdida. Congestion avoidance for unicast and multicast
traffic. In Universal Multiservice Networks, 2000. ECUMN 2000. 1st European
Conference on, pages 360–368, 2000.

[24] Przemyslaw Dymarski. Hidden Markov Models, Theory and Applications. In-
Tech, 2011.

107

[25] Z. M. Fadlullah, M. M. Fouda, N. Kato, A. Takeuchi, N. Iwasaki, and Y. Nozaki.
Toward intelligent machine-to-machine communications in smart grid. IEEE
Communications Magazine, 49(4):60–65, April 2011.

[26] N. Falliere, L. O. Murchu, and E. Chien. W32.Stuxnet Dossier. http://goo.

gl/dC8VT, 2010. [Online; accessed December 2011].

[27] Michael Mackay Faycal Bouhafs and Madjid Merabti. Links to the future, Jan
2012.

[28] Timothy French. Bisimulation Quantifiers for Modal Logics. PhD thesis, Uni-
versity of Western Australia, 2006.

[29] S. Galli, A. Scaglione, and Z. Wang. For the grid and through the grid: The
role of power line communications in the smart grid. Proceedings of the IEEE,
99(6):998–1027, June 2011.

[30] H. Garcia-Molina. Elections in a distributed computing system. Computers,
IEEE Transactions on, C-31(1):48 –59, January 1982.

[31] S. Ghosh. Distributed Systems: An Algorithmic Approach. Chapman & Hall,
2007.

[32] Aniruddha Gokhale, Mark P McDonald, Steven Drager, and William McKeever.
A cyber physical systems perspective on the real-time and reliable dissemination
of information in intelligent transportation systems. Technical report, DTIC
Document, 2010.

[33] C. Gomez-Calzado, M. Larrea, I. Soraluze, A. Lafuente, and R. Cortinas. An
evaluation of efficient leader election algorithms for crash-recovery systems. In
Parallel, Distributed and Network-Based Processing (PDP), 2013 21st Euromicro
International Conference on, pages 180–188, 2013.

[34] F. Gmez-Cuba, F. J. Gonzlez-Castao, and C. P. Prez-Garrido. Practical smart
grid traffic management in leased internet access networks. In Energy Conference
(ENERGYCON), 2014 IEEE International, pages 852–858, May 2014.

[35] Joseph Y. Halpern and Yoram Moses. Knowledge and common knowledge in a
distributed environment. J. ACM, 37(3):549–587, July 1990.

[36] N. Higgins, V. Vyatkin, N. K. C. Nair, and K. Schwarz. Distributed power system
automation with iec 61850, iec 61499, and intelligent control. IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 41(1):81–
92, Jan 2011.

[37] Gerry Howser and Bruce McMillin. Modeling and reasoning about the security
of drive-by-wire automobile systems. International Journal of Critical Infras-
tructure Protection, pages 127 – 134, 2012.

108

[38] Gerry Howser and Bruce McMillin. A Multiple Security Domain Model of
a Drive-by-Wire System. In Computer Software and Applications Conference
(COMPSAC), 2013 IEEE 37th Annual, pages 369–374. Computer Software and
Applications Conference, 2013.

[39] M. Iosifescu. Finite Markov processes and their applications. Wiley series in
probability and mathematical statistics. Applied probability and statistics. J.
Wiley, 1980.

[40] S. Jackson and B. M. McMillin. The effects of network link unreliability for leader
election algorithm in a smart grid system. In Critical Information Infrastructures
Security, pages 59–70. Springer, Berlin, Heidelberg, 2013.

[41] Stephen Jackson and Bruce McMillin. Markov models of leader elections in a
smart grid system (under review). Journal of Parallel and Distributed Comput-
ing, 2015.

[42] M. C. Janssen, P. A. Crossley, and L. Yang. Bringing iec 61850 and smart grid
together. In Innovative Smart Grid Technologies (ISGT Europe), 2011 2nd IEEE
PES International Conference and Exhibition on, pages 1–5, Dec 2011.

[43] Dong Jin, D. M. Nicol, and Guanhua Yan. An event buffer flooding attack in
dnp3 controlled scada systems. In Proceedings of the 2011 Winter Simulation
Conference (WSC), pages 2614–2626, Dec 2011.

[44] Joost-Pieter Katoen. Model checking meets probability: a gentle introduction.
In Engineering dependable software systems, volume 34 of NATO Science for
Peace and Security Series - D: Information and Communication Security, pages
177–205. IOS Press, Amsterdam, 2013.

[45] K. V. Katsaros, W. K. Chai, N. Wang, G. Pavlou, H. Bontius, and M. Paolone.
Information-centric networking for machine-to-machine data delivery: a case
study in smart grid applications. IEEE Network, 28(3):58–64, May 2014.

[46] K. S. Kishor. Sharpe, March 2014. http://sharpe.pratt.duke.edu/.

[47] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy,
B. Kantor, D. Anderson, H. Shacham, and S. Savage. Experimental security
analysis of a modern automobile. In Security and Privacy (SP), 2010 IEEE
Symposium on, pages 447–462, May 2010.

[48] James F. Kurose and 1956 Ross, Keith W. Computer networking: a top-down
approach. Pearson, Boston, 6th edition, 2013.

[49] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals
problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, July 1982.

109

[50] S. Liu, X. P. Liu, and A. E. Saddik. Denial-of-service (dos) attacks on load
frequency control in smart grids. In Innovative Smart Grid Technologies (ISGT),
2013 IEEE PES, pages 1–6, Feb 2013.

[51] R. E. Mackiewicz. Overview of iec 61850 and benefits. In 2006 IEEE Power
Engineering Society General Meeting, pages 8 pp.–, 2006.

[52] Mai Gehrke and Hideo Nagahashi and Yde Venema. A Sahlqvist theorem for
distributive modal logic. Annals of Pure and Applied Logic , 131(13):65 – 102,
2005.

[53] S. Meiling, T. C. Schmidt, and T. Steinbach. On performance and robustness
of internet-based smart grid communication: A case study for Germany. In
2015 IEEE International Conference on Smart Grid Communications (Smart-
GridComm), pages 295–300, Nov 2015.

[54] N. Mohammed, H. Otrok, Lingyu Wang, M. Debbabi, and P. Bhattacharya.
Mechanism design-based secure leader election model for intrusion detection in
MANET. Dependable and Secure Computing, IEEE Transactions on, 8(1):89–
103, Jan 2011.

[55] L.E. Moser, P.M. Melliar-Smith, D. A. Agarwal, R. K. Budhia, and C. A. Lingley-
papadopoulos. Totem: A fault-tolerant multicast group communication system.
Communications of the ACM, 39:54–63, 1996.

[56] NSF FREEDM Systems Center. FREEDM, The Future Renew-
able Electric Energy Delivery and Management Systems Center.
http://www.freedm.ncsu.edu/.

[57] P. Olofsson. Probability, Statistics, and Stochastic Processes, 2nd Edition. John
Wiley & Sons, 2012.

[58] N. Privault. Understanding Markov Chains. Springer Singapore, 2013.

[59] K. Ramakrishnan, S. Floyd, and D. Black. The addition of explicit congestion
notification (ECN) to IP, 9 2001. RFC 3168.

[60] D.B. Rawat, C. Bajracharya, and Gongjun Yan. Towards intelligent transporta-
tion cyber-physical systems: Real-time computing and communications perspec-
tives. In SoutheastCon 2015, pages 1–6, April 2015.

[61] Robbert Van Renesse, Takako M. Hickey, and Kenneth P. Birman. Design and
performance of Horus: A lightweight group communications system. Technical
report, Cornell, 1994.

[62] Thomas Roth and Bruce McMillin. Breaking Nondeducible Attacks on the Smart
Grid. In Seventh CRITIS Conference on Critical Information Infrastructures
Security. Seventh CRITIS Conference on Critical Information Infrastructures
Security, 2012. (to appear).

110

[63] R.A. Sahner and K.S. Trivedi. Sharpe: a modeler’s toolkit. In Computer Perfor-
mance and Dependability Symposium, 1996., Proceedings of IEEE International,
page 58, Sep 1996.

[64] K. Sampigethaya and R. Poovendran. Cyber-physical system framework for
future aircraft and air traffic control. In Aerospace Conference, 2012 IEEE,
pages 1–9, March 2012.

[65] Matthias Schmalz, Daniele Varacca, and Hagen Völzer. CONCUR 2009 -
Concurrency Theory: 20th International Conference, CONCUR 2009, Bologna,
Italy, September 1-4, 2009. Proceedings, chapter Counterexamples in Probabilis-
tic LTL Model Checking for Markov Chains, pages 587–602. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2009.

[66] M.M. Shirmohammadi, K. Faez, and M. Chhardoli. Lele: Leader election with
load balancing energy in wireless sensor network. In Communications and Mobile
Computing, 2009. CMC ’09. WRI International Conference on, volume 2, pages
106–110, Jan 2009.

[67] C. Singh and A. Sprintson. Reliability assurance of cyber-physical power systems.
In Power and Energy Society General Meeting, 2010 IEEE, pages 1 –6, July 2010.

[68] M.J. Stanovich, I. Leonard, K. Sanjeev, M. Steurer, T.P. Roth, S. Jackson, and
M. Bruce. Development of a smart-grid cyber-physical systems testbed. In
Innovative Smart Grid Technologies (ISGT), 2013 IEEE PES, pages 1–6, Feb
2013.

[69] S. Vasudevan, B. DeCleene, N. Immerman, J. Kurose, and D. Towsley. Leader
election algorithms for wireless ad hoc networks. In DARPA Information Surviv-
ability Conference and Exposition, 2003. Proceedings, volume 1, pages 261–272
vol.1, April 2003.

[70] Wenye Wang and Zhuo Lu. Survey cyber security in the smart grid: Survey and
challenges. Comput. Netw., 57(5):1344–1371, April 2013.

[71] Y. Yan, Y. Qian, H. Sharif, and D. Tipper. A survey on smart grid communica-
tion infrastructures: Motivations, requirements and challenges. Communications
Surveys Tutorials, IEEE, PP(99):1 –16, 2012.

[72] Yichi Zhang, Weiqing Sun, Lingfeng Wang, Hong Wang, R. C. Green, and
M. Alam. A multi-level communication architecture of smart grid based on
congestion aware wireless mesh network. In North American Power Symposium
(NAPS), 2011, pages 1–6, Aug 2011.

[73] Ziang Zhang and Mo-Yuen Chow. Incremental cost consensus algorithm in a
smart grid environment. In Power and Energy Society General Meeting, 2011
IEEE, pages 1 –6, July 2011.

111

VITA

Stephen Curtis Jackson was born in Kansas City, Missouri. He received his

Bachelor’s degrees in Computer Engineering and Computer Science from Missouri

University of Science and Technology in December 2010. Afterward, he joined the

Computer Science Ph.D. Program in January 2011 under the Information Assurance

GAANN fellowship with Dr. Bruce McMillin as his research advisor. His research

interests were in Markov models, cyber-physical systems, and distributed systems. He

was awarded his Ph.D. in Computer Science from the Missouri University of Science

and Technology in July 2016.

	Models of leader elections and their applications
	Recommended Citation

	tmp.1473697454.pdf.cX0qY

