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Norfolk, Virginia 

lsao Ishibashi, Professor, Department of Civil Engineering, 
Old Dominion University, Norfolk, Virginia 23529 
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SYNOPSIS: The stiffness and damping coefficient of soil are critical parameters in the Winkler's model for the seismic analysis of buried pipelines. This paper presents an analytical study in calculating the lateral dynamic stiffness(elastic and inelastic) and damping coe~fici~nt ~f soils for the seismic analysis of buried pip~lines. The ~ffects of the depth .of t~e bur1ed p~pel1ne and t~e variation of Poisson's ratio of so1ls are cons1dered. In the analys1s, f1rst, by us1ng the elast1c half-space theory, the elastic stiffness a~d geometrical damp~ng coeff~cient of.s~ils are o~tained. From the numerical results, the elastic st1ffness and geometr1cal damp1ng coeff1c1ent by us1ng best fitted formulas are presented. Secondly, empirical inelastic characteristics o~ soils a~e cons~dered. The empirical data includes relationships amo~g dynami~ .shear modulus, mater1al damp~ng rat1o, ~nd dynamic shear strain amplitude. The total damp1ng coeff1c1ent of the system can be obta1ned by add1ng the material damping to the geometrical damping coefficient. 

INTRODUCTION 

Buried pipelines such as waterjsewer 
distribution systems and oil and gas pipelines 
have been heavily damaged during past 
earthquakes. Because of the importance of 
lifelines to the health and safety of the 
populace, many analytical studies on the 
response behavior of buried pipelines due to 
earthquakes have been carried out. Most of the 
studies are based on the Winkler's model. In the 
model, the effects of the soil surrounding the 
pipeline are substituted by a series of springs 
and dashpots which represent the dynamic 
stiffness and damping of the soil. Since the 
soil properties of the surrounding medium play 
an important role in response characteristics of 
pipeline systems, an adequate estimation of 
dynamic stiffness and damping coefficient of 
soils in the Winkler's model is very essential. 

For the seismic analysis of buried pipelines, 
very limited information on the dynamic 
stiffness and especially on the damping 
coefficient of soils is available. For the 
lateral stiffness of soil, k

5
l, 0 'Rour~e and 

Wang(l978) proposed k
5

l = 3G, where G 1s the 
dynamic shear modulus of soils. From experiments 
on pipeline systems, Singhal and Meng(l983) 
proposed k

5
l = 9.51 x 104 psi (6.5.6 x 105 kNjm2). 

These results are very approx1mate and the 
effects of the depth of the buried pipeline and 
Poisson's ratio were not considered. Trautmann 
and O'Rourke(l983) carried out model experiments 
on buried pipelines with different depth to 
diameter ratio H/D from 2 to 11.5. The 
experimental results showed that the lateral 
stiffness k

8 l of soil increased with the increase 
of the depth to diameter ratio H/D both in 
medium sand and in dense sand. They concluded 
that the effect of the depth on k

5
l can not be 

negalected. Parmelee and Ludtke(l975) presented 
a formula of calculating the stiffness of soil 
by integrating Mindlin's three dimensional 
solution. In the formula, the effect of the 
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depth of the buried pipeline was considered. 
However, only the case of Poisson's ratio v = 
0.5 was considered. 

All of the stiffness described above are from 
static calculations. Novak and Nogami(l978) 
presented formulas of calculating the dynamic 
stiffness and damping coefficient of soils by 
using the elastodynamic infinite-space theory. 
However, the effect of the buried depth of the 
pipeline was not considered. Up till now, 
formulas of calculating the dynamic stiffness 
and damping coefficient of soil to include the 
effects of both of the buried depth of the 
pipeline and the change of Poisson's ratio for 
the seismic analysis of buried pipelines are 
still not available. 

The objective of this paper is to present a 
rational method for evaluating the dynamic 
coefficients which characterize interacting 
forces at the interface between a buried 
pipeline and the surrounding medium. Based on 
the assumptions of the plane-strain conditions 
for the elastic medium surrounding the pipeline, 
the elastic stiffness and geometrical damping 
coefficient of soils are first obtained by using 
the elastodynamic half-space theory. 
Substituting the inelastic characteristics of 
soils obtained in laboratory dynamic experiments 
into the elastic stiffness and geometrical 
damping coefficient formulas and adding the 
material damping to the geometrical damping, the 
dynamic stiffness and damping coefficient are 
obtained which can be used to analyze the non­
elastic seismic responses of buried pipelines. 

ELASTIC STIFFNESS AND GEOMETRICAL DAMPING 
COEFFICIENT 

Basic Considerations 

When the buried pipeline in the soil is 
subjected to vibrations, the pipeline is 
resisted by the surrounding soil medium. The 



resistance includes two parts: spring resistance 
and damping resistance. The former is a reaction 
force supplied by the surrounding soil medium 
which is proportinal to the displacement of the 
pipeline and can be expressed as~ = k·u, where 
u is the dynamic displacement of the pipeline, k 
is the spring constant of the soil in Winkler's 
model. The latter can be divided into two kinds 
of damping resistance: The geometrical damping 
resistance and material damping resistance. 
Geometrical damping resistance is due to the 
energy dissipation in the half-space, and the 
material damping resistance is due to inelastic 
properties of the soil medium surrounding the 
pipeline. In this section, an elastic soil 
medium with shear modulus G, Poisson's ratio v 
and mass density p is assumed, and hence there 
only exists the elastic spring resistance and 
geometrical damping resistance in the system at 
this stage. 

An assumption of the plane-strain is made to 
simplify the problem. Since it is difficult to 
consider accurately the interaction between the 
pipeline and the surrounding soil due to random 
earthqua~e vibration signals, a harmonic line 
load P

0
e-'"t acting horizontally at the center of 

the pipe is used to simulate the interaction 
problem as shown in Fig. 1. Under the action of 
the dynamic loading, the horizontal displacement 
response u at point B is obtained and is taken 
as the average displacement response at the 
circumference of the pipe as done by Parmelee 
and Ludtke(l975). With the applied load p e·iwt 
and the displacement response u, the lat~ral 
complex stiffness Kstc of the soil is obtained as 
follows: 

(1) 

where Kstr is the real part of K 1 , which is the 
spring constant of the soil in ~fnkler's model, 
and K.sti is the imaginary part of K 1 , which is 
attricuted to the energy dissipa~fon in the 
half-space. From the energy dissipation, the 
geometrical damping coefficient can be obtained 
from K81 ;. 

Dynamic Responses of the Half-Space with a 
Buried Line Load Source 

First, the buried horizontal harmonic line load 
source P

0
e·iwt is considered. For any elastic 

system, when it is subjected to a harmonic 
source, the responses of the system also will be 
harmonic. Therefore, the displacement responses 
at any point in the half-space due to P

0
e-'"t can 

be expressed as follows: 

u - u• e-iO>t 

v - v• e-iwt } ( 2) 

where u, v are the horizontal and vertical 
displacement res~onses at point (x,z), 
respectively, and u , v* are the amplitudes of u, 
v1 respectively. To obtain the solutions of u*, 
v of the half-space due to a buried load, Image 
Method is used. As seen in Fig. 2, the solutions 
u;, v,* at point. (x, z) in the infinite-space due 
to the load P

0
e·'"t which acts at point ( 0, h) are 

obtained first. Next, an imaginary load -P e·i•t 
is applied at point (0,-h) and the solutions

0
u;, 

v 2* at point (x,z) in the infinite-space due to 

780 

the imaginary load are obtained. Lastly, -a. and 
-1 xz are applied at z = 0 plane, where a. and 1 xz 

are the normal stress and the shear stress on 
t-he z = 0 plane induced by loads P

0
e·iwt and -P e· 

'"t acting at points (O,h) and (0,-h) respective'l.y 
in the infinite-space. The solutions at point 
(x, z) in the half-space due to -a. and -r xz are 
obtained as u

3
*, v3

*. The response amplitudes u*, 
v* at point (x,z) in the half-space due to the 
buried load Pqe-'"t are the sums of the above 
terms, respect1vely, as follows: 

} ( 3) 

The method described above is called Image 
Method, which satisfies the boundary conditions 
(free ground surface) of the half-space problem 
along z = 0, that is, a.= 0, Txz = 0. 

As shown in Fig. 2, when a harmonic load P
0
e·iot 

acts at point (O,h) in the infinite-space, the 
responses at point (x, z) were given by 
Achenbach(l982) as follows: 

·p I u"- ~{_.!... (-H 111 (K r) +Hill (K r) ]" + H 111 (K r)} 
1 4 G ~ o L o r xx o r 

(4) 
• iPo 1 [ H(l) (K ) H(l) (K >L" 

V1 - '""""i""G" • ~ - o LI + o ri 

in which, H <1> (x) is the first kind of Hankel 
function and zero order, and ~, K,- are defined 
as follows: 

Kt- ....,...-.~:P_...., 
I.+ 2 G 

..£. • w• 
G I (5) 

Due to the imaginary load -P e·iot acting at point 
( 0, -h) , the responses at point ( x, z) can be 
obtained similarly as: 

u"-- iPo {_.!..[-H
111 

(K r') +H
111 

(K r') L" + H
111 

(K r')} I (G) 3 4G ~ o L o T o T 

v•-- iPo .__!_[-Hill (K r') +H 111 (K r') ]" 
a 4 G ~ o L o T x• 

(0,-h) 

0 0 
X X 

r' 

h 

p -n.t: oe 

45° 
B 

z z 

Fig. 1 Fig. 2 



where r, r• are the distances from points (O,h), 
(0,-h) to point (x,z), respectively, shown in 
Fig. 2. 

With the solutions u,·, v,·, U 2 and V 2., the 
stresses a and r at the z = 0 plane can be 
obtained. ofhe respx6nses u,· at point (x, z) in the 
half-space due to -a , -r can be obtained by 
using the elastodyhamic'" half-space theory 
(Achenbach, 1973; Bath, 1968; Eringen and 
Suhubi, 1975; Ewing and Jardetzky, 1957). 
Accordingly, the horizontal response u· at point 
(x,z) in the half-space due to the buried 
horizontal harmonic line load P

0
e·•w• acting at 

point (O,h) is obtained as follows: 

u•-~ J- ___!_ 1£ ( e-•1•-•1- e-•<""')- J! · 
2 "G __ K; 2oc 2 

(e-~1•-•1-e-~<• .. >) +-1- [2~2 13 (-2~ 2 e-••• 
F(0 

(2~2 -~) e-~h) . .,-.. _1! (2~ 2 -~) • 

(-2~ 2 e-•"• (2~ 2 -K;) e-~•) ·e-~•] }· 
e-l!x d~ 

(7) 

in which, F(~) is called Reyleigh Equation and 
is defined as: 

a and ~ are defined as: 

a - ~~ 2 
- Kf 

~ - ~~2 - K~ l 
(8) 

(9) 

As shown above, Eq. 7 is an integral solution of 
u, and is not easily solved espcially for the 
field near the source. To evaluate the 
integration, Cagniard's method is used. 
Cagniard' s method is a very useful method for 
the transient response analysis of the half­
space due to a buried source (Achenbach, 1973, 
1982; Bath, 1968; Eringen and Suhubi, 1975; 
Ewing and Jardetzky, 1957; Garvin, 1956; 
Lapwood, 1950; Pilant, 1979). 

Before using Cagniard's method, it is necessary 
to change Eq. 7 to the Laplace transform of u. 
Eq. 7 is actually the Fourier transform of u 
over time t, and by substituting the frequency ~ 
in Eq. 7 with -ip, and by changing the integral 
range (-oo, oo) to (0, oo), the Laplace transform 
of u can be obtained. Then, by using Cagniard's 
method, the complex integral variable ~ in the 
Laplace transform is mapped onto a complex 
variable plane t, and the 6 pulse responses of u 
are obtained. Fig. 3 shows a diagram of wave 
paths when the source and the receiving points 
are in the half-space. 

As shown in Fig. 3, there generally exist six 
kinds of waves travelling from a buried source 
to a buried receiving point in the half-space. 
Those are the direct longitudinal wave, P, 
direct shear wave, S, reflected longitudinal 
wave of the longitudinal wave, PP, reflected 
longitudinal wave of the shear wave, SP, 
reflected shear wave of the longitudinal wave, 
PS, and reflected shear wave of the shear wave, 
ss. In the situation studied in this paper, as 
the receiving point is very close to the source, 
the reflecting coefficient of waves SP, PS are 
also very small. Therefore, waves SP and PS have 
no significant effect on the 6 pulse responses u

6 
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RECEIVING POINT 

z 

Fig. 3 Wave Paths in the Half-Space 

(t) at the receiving point. Furthermore, u6 (t) at 
the receiving point has four singular points 
which correspond to the arriving times t,(= 
rjVp), t 5 (= r/Vs), t,.(= r'/Vp) and t 55 (= r'/Vs) of 
waves P, s, PP and ss. 

With the 6 pulse response u6 (t) , the Laplace 
transform U 0 of u can be obtained by using the 
following numerical integration equation: 

uo (p) -poL u~ ( t;l • e-ii·t, • 6. t (10) 
i-0 

in which, 
and time, 
follows: 

p and t are dimensionless frequency 
respectively, and are defined as 

l (11) 

In the above numerical integration computation, 
a special care should _be paid to select the 
integration time step ~t. As pointed out above, 
6 pulse response u~(t) has four singular points, 
at which u6 (t) will become_infinite, so that it 
is necessary to select ~t carefully to avoid 
these singular points. In this compu~ation, the 
dimensionless integration time step ~t = 0.03 is 
selected. 

According to the definition of the stiffness, 
the lateral elastic stiffness of the soil 
surrounding the pipeline is obtained from the 
Laplace transform U0 (p) as follows: 

(12) 

From the computations, it was found that the 
elastic stiffness K, (p) increased almost 1 inearly 
with the increase of the dimensionless frequency 
p when p < 1.0. For usual earthquake vibration 
analysis, p 1. 0, which corresponds to 
frequency f = 50 Hz when Vs = 150 mjs, r = 0.5 
m, is high enough. Therefore, in this 
computation, a linear relation is established in 
the range of p $ 0.6 as: 

K
8 

( p) - K + p · C1 - 2 1t G ( k + p · c) ( 13 ) 

where k and-c-are dimensionless factors. 



As described before, a change in Eq. 13 from the 

Laplace transform to the Fourier transform can 

be made by taking p = i~, and by doing so, a 

complex elastic stiffness is obtained as 

follows: 

K
8 

( w ) - 2 1t G ( k + i W · c) (14) 

where t.1 is a dimensionless frequency and is 

defined as: 

(I) -
(15) 

The real part of K. is the elastic stiffness of 

the soil surrounding the pipeline, and the 

imaginary part of K is attributed to the 

geometrical damping e due to the energy 

dissipation in the half-space. When the pipeline 

moves with distance X laterally, the reaction of 

the soil to the pipeline will be R: 

R- K ·X 
- 2 ~ G ( k + i W C) • X 

- 21t G ( k ·X+ i w X • __!_ • c) 
vs (16) 

-21tG(k·X+X· r ·c) 
vs 

-K·X+C·X 

in which, K is the lateral elastic stiffness of 

the soil surrounding the pipeline, and C is the 

geometrical damping coefficient. As can be seen 

in Eq. 16, the reaction of soil to a pipeline 

includes two parts: spring force K•X, and 

viscous damping force C•X. 

Numerical Analysis of Stiffness 
Geometrical Damping coefficient c 

1t and 

Actually, the stiffness K and the geometrical 

damping coefficient C are related with several 

parameters of soil and pipeline, such as the 

shear modulus G, Poisson's ratio v of soils, the 

depth to diameter ratio hjr, etc. From Eq. 16, K 

and C can be obtained as: 

.,lj 0.5 POISSON'S RATIO 

"' "' v=0.4 
w 0.4 
i:i: v=0.3 

~ v=O.Z 
H v--ll. 1 
E-< 0.3 
"' 
"' "' I 
~ 0.2 

I 
0 

/'CALCULATED WITH Eq. 18 (v=0.3) H 

"' 0.1 

~ 
I 

I 
H 

0.0 ~ 

0 10 20 30 40 

DEPTH RATIO h/r 

Fig. 4 k versus h/r with various v 

50 
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K-21tG·k 

C-21tr·.;GP·c } (17) 

where k and c are the dimensionless stiffness 

and the damping coefficient of soils which are 

only related to the depth to diameter ratio hjr 

and Poisson's ratio v. k and C values for a 

range of h/r = 6 - 40 and v = 0.1 - 0.4 were 

calculated and the results are shown in Figs. 4 

and 5. 

From Figs. 4 and 5, the following observations 

can be made. With the increase of the depth to 

diameter ratio h/r, stiffness k increases. For 

small h/r, the increase of k is more rapid, 

while for h/r>20, the increase of k is slow and 

reaches to a nearly constant value. On the other 

hand, geometrical damping coefficient c does not 

change very much with the depth to diameter 

ratio h/r. The higher the Poisson's ratio v is, 

the larger k, and the larger c are obtained. 

In the computations, the results of k and c for 

h/r<6.0 and Poisson's ratio v close to 0.5 were 

omitted because of some calculation errors. When 

h/r<6.0, the complex equations in the 6 pulse 

response equation are not in good balance, which 

led to calculation errors. And when Poisson • s 

ratio v is close to 0. 5, the ratio of Vp/Vs 

becomes infinite, which also gave calculation 
errors. 

With the numerical computation results by using 

curve fitting method, formulas of calculating k 

and c with any depth to diameter ratio h/r and 

Poisson's ratio v are obtained as follows: 

k 
0 • 0 2 52 3. 146 ( 1 - ..! ) 

- . e h 
1. 714- v 

0. 0562 

c - 2. 049 · e O:SS:V I (18) 

Then, by substituting k and c into Eq. 17 the 

elastic lateral stiffness K and geomet~ical 
damping coefficient C can be obtained: 

K-
0.0252 3.146(1-..!) 

·e n ·21tG 
1. 714- v I (19) 

0. 056 2 

C - 2. 049 · e O:SS:V • 2 1t r · .;cp 

u 

(i 
4.0 

H 

~ POISSON'S RATIO 

~ 3.0 ---"' "' ~ 
~ 2.0 
H 

"' 0 10 20 30 

~ DEPTH RATIO h/r 
H 

40 50 

~ 

Fig. 5 c versus h/r with vario~s v 



INELASTIC CHARACTERISTICS OF SOILS 

Due to a strong nonlinearity of soils, the 
dynamic shear modulus G of soils decreases with 
the increase of the dynamic shear strain 
amplitude y. And when soils are subjected to 
cyclic shear loadings, their stress-strain 
relationships are normally in the forms of 
hyteresis loops, which are attributed to the 
material damping D of soils. 

Shear modulus G and the material damping D are 
the most important dynamic parameters of soils, 
which are affected by many factors such as 
cyclic shear strain amplitude y, effective 
normal stress a , void ratio e, plasticity index 
Ip, etc. With ~any experiments data for sands, 
Ishibashi(l981) and Khouri(l984) proposed 
formulas of calculating the average shear 
modulus G and material damping ratio D for sands 
as follows: 

D - 0 . 19 5 ( G:J 2 

- 0 . 515 ( G:) + 0 . 3 3 3 
in which, 

K(y) - o.sll +tanh [ln -·-Y- l ( 
0 0102 )0.492 } l 

( 
0 0556 )'·

4 l m ( y) - m
0 

- 0. 27 2 { 1 - tanh [ 1 n -· -y- ] 

l (20) 

(21) 

a is the mean effective normal stress (kN/m'), a0 
=

0 
(aQ1 + a02 + a 03 )/3, and y is the cyclic shear 

straln amplitude in percent. 

For clays, G/Gmu increases with the increase of 
the plasticity index Ip, while the damping ratio 
D decreases(Dobry and Vucetic, 1987). No general 
formulations on G/G and D for clays are 
available at the pr:~'knt time due to lack of 
data. 

INELASTIC STIFFNESS AND DAMPING COEFFICIENT OF 
SOILS 

During earthquakes, the shear strain y of soils 
is normally high. As the shear modulus G of 
soils changes with the shear strain y of soils, 
the stiffness K of soils will also change. By 
substituting the above non-elastic relationship 
G/Gm~- y into the equations ~f.the stiffness K 
and geometrical damplng coefflClent C (Eq. 19), 
and adding the material damping ratio D to the 
geometrical damping coefficien.t C, the. l~teral 
inelastic stiffness K., and damplng coefflclent C,, 
(the total damping coefficient) can be obtained. 

Dynamic shear strain amplitude of soil at the 
depth of pipeline during earthquake, y can be 
calculated according to the following equations 
(Toki et al., 1983): 

_l_ · T · S · K · Sin ( 1t h) y- 1t·H v oh 2H 
(22) 

where 
thickness of surface layer (m) ; 
velocity response spectrum per unit 
seismic intensity, which is determined 
from: 
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T 

Sv (m I sec) -2.50 · T for 0.1 sec .s. T < 0. 6 sec } 

- 1. 5 fox 0. 6 sec .s. T 
(23) 

v -s 

v -s 

horizontal seismic intensity at base 
rock; 

(24) 

horizontal seismic intensity at ground 
surface (g) . 
natural period of surface layer (sec), 

(25) 

average shear wave velocity of surface 
layer (mjsec) . 

When shear wave velocity was measured 
from elastic wave survey, the measured 
velocities shall be multiplied with 
0.6 for sand, and 0.85 for clay. 

When it is estimated from the standard 
penetration value N, 

62 Na.o21 for sands } (26) 
122 Na.o7e for clays 

for multi-surface-layer with V; as 
shear wave velocity for indivldual 
layer H;: 

(27) 

CONCLUSIONS 

The seismic soil-structure interaction of buried 
pipeline has been examined with a simplified 
model of the system. In this analysis, it was 
assumed that the action of pipeline in the soil 
during earthquakes can be considered as a 
horizontal line load which is normal to, and 
uniformally distributed along the longitudinal 
axis of the pipe. 

In this analysis, first, by using the 
elastodynamics theory of the half-space, lateral 
elastic stiffness K and geometrical damping 
coefficient c of the soil for seismic analyses 
of buried pipeline were obtained. It was found 
that: (1) K and C do not change significantly 
with the change of frequency for a low frequency 
range (O - 50 Hz) which covers the range for 
seismic analyses, (2) K increases with the 
increase of the depth to diameter ratio h/r of 
pipeline, and when h/r> 2 0, K reaches to the 
maximum value and remains with the value 
thereafter, (3) the change of C with h/r is very 
small, and (4) both of K and C are very 
significantly affected by Poisson's ratio v of 
the soil; the larger v is, the bigger K and c 
were obtained. 

Considering the inelastic characteristics of 
soils, non-elastic relationship formulas of G/G,... 

y and the material damping ratio D were 
substituted into the elastic equations of K and 
c, and the lateral inelastic stiffness K and 
damping coefficient c were obtained. With the 



increase of the shear strain y of soil, K will 
decrease, so will the geometrical damping 
coefficient, while the material damping ratio D 
will increase. With the given lateral inelastic 
stiffness K and the damping coefficient C of the 
soil, the lateral non-elastic seismic response 
analysis of buried pipelines can be more 
accurately performed. 
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