
Scholars' Mine Scholars' Mine

Doctoral Dissertations Student Theses and Dissertations

2014

Proactive search: Using outcome-based dynamic nearest-Proactive search: Using outcome-based dynamic nearest-

neighbor recommendation algorithms to improve search engine neighbor recommendation algorithms to improve search engine

efficacy efficacy

Christopher Shaun Wagner

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

 Part of the Computer Sciences Commons, and the Geographic Information Sciences Commons

Department: Computer Science Department: Computer Science

Recommended Citation Recommended Citation
Wagner, Christopher Shaun, "Proactive search: Using outcome-based dynamic nearest-neighbor
recommendation algorithms to improve search engine efficacy" (2014). Doctoral Dissertations. 2499.
https://scholarsmine.mst.edu/doctoral_dissertations/2499

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2499&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2499&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/358?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2499&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/2499?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2499&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:scholarsmine@mst.edu

PROACTIVE SEARCH: USING OUTCOME-BASED DYNAMIC

NEAREST-NEIGHBOR RECOMMENDATION ALGORITHMS TO IMPROVE

SEARCH ENGINE EFFICACY

by

CHRISTOPHER SHAUN WAGNER

A DISSERTATION

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

2014

Approved by

Dr. Ali Hurson, Co-advisor

Dr. Sahra Sedigh, Co-advisor

Dr. Jennifer Leopold

Dr. Wei Jiang

Dr. Donald Wunsch

This work is licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike 4.0 International License. To view a copy of this license, visit http:

//creativecommons.org/licenses/by-nc-sa/4.0 or send a letter to Creative Com-

mons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

Published journal articles retain their original copyrights.

Copyright 2014

CHRISTOPHER SHAUN WAGNER

All Rights Reserved

http://creativecommons.org/licenses/by-nc-sa/4.0
http://creativecommons.org/licenses/by-nc-sa/4.0

iii

ABSTRACT

The explosion of readily available electronic information has changed the focus

of data processing from data generation to data discovery. The prevalent use of search

engines has generated extensive research into improving the speed and accuracy of

searches. The goal of this research is to predict user behavior as a means to proactively

improve speed and accuracy of search engines. The proactive approach eliminates

query entry time, improving speed. Assuming success, the user locates an electronic

resource of interest, improving accuracy.

Algorithms that have been shown to predict many different aspects of user

behavior exist in literature. Two common approaches are used in such prediction:

statistical techniques and collaborative actions. This research extends the scope of

proactive search by using search histories of users in building a predictive model.

The proposed approach was compared to statistical and collaborative behavior mod-

els. The test results verified that search engine prediction is a viable approach and

supports the intuitive notion that prediction is more successful when user behavior

exhibits less entropy.

The benefits of the proposed approach go beyond improvement in performance

and accuracy. As a result of working with search histories as sequences of resources,

it is possible to predict a series of resources that a user will likely select in the imme-

diate future. This makes it possible for search engines to return resource sequences

instead of simple resources. Working with sequences allows the search engine user

to more effectively locate information of interest. In the end, a proactive search en-

gine improves speed and accuracy through prediction and sequencing of electronic

resources.

iv

ACKNOWLEDGMENTS

The completion of my dissertation has been a long journey, far longer than

planned. I would not have completed this work without the tireless assistance and

faith of my advisors, Dr. Sahra Sedigh and Dr. Ali Hurson. Without Dr. Hurson’s

guidance, I would not have found my initial path into converting information resources

into sequences of information modules. Without Dr. Sedigh’s in-depth help, I would

not have followed the path from sequencing resources to prediction of user behavior.

I am grateful that the Computer Science department at Missouri University

of Science & Technology allowed me a position as a graduate instructor during my

time as a graduate student. It is well known that I am completing my PhD at this

time with the plan to become a professor. The experiences that I had during my two

years as an instructor will be invaluable towards my future.

I must acknowledge Dr. Brent Egan of the Care Coordination Institute. I

have worked for Dr. Egan for more than ten years. During that time, he has pushed

me to further my education and made great accommodations, including allowing me

to maintain full-time employment while working 1,000 miles away. Without his help,

it would not have been financially possible to complete this work while raising two

children.

Finally, I must also thank my wife for putting up with endless hours of ex-

plaining to our children that daddy is “busy”, taking them to the park, to a museum,

or off to grandma’s house for the weekend. She has been a great woman. It has been

said that behind every great man there is a great woman. I hope the converse holds

true.

v

TABLE OF CONTENTS

Page

ABSTRACT . iii

ACKNOWLEDGMENTS . iv

LIST OF ILLUSTRATIONS . viii

LIST OF TABLES . x

LIST OF ABBREVIATIONS. xi

GLOSSARY . xii

SECTION

1. INTRODUCTION . 1

1.1. MOTIVATION . 1

1.2. OBJECTIVES . 2

1.3. CONTRIBUTIONS . 4

1.4. ORGANIZATION . 6

2. BACKGROUND. 7

2.1. INTRODUCTION . 7

2.2. MODELING USER BEHAVIOR . 7

2.3. GROUPING USERS INTO NEIGHBORHOODS OF SIMILARITY . 10

2.4. SIMILARITY ALGORITHMS . 14

2.4.1. Singular Value Decomposition 14

2.4.2. Grouping with Singular Value Decomposition 18

vi

2.4.3. Vector-Based Similarity Metrics 19

2.4.4. Set-Based Similarity Metrics 21

2.4.5. String-Based Similarity Metrics 24

2.5. RECOMMENDATION ALGORITHMS 31

2.6. OUTCOME FEEDBACK . 34

2.7. SUMMARY . 35

3. PROACTIVE SEARCH ENGINE. 39

3.1. INTRODUCTION . 39

3.2. PREDICTION ALGORITHM . 40

3.3. SIMILARITY NEIGHBORHOODS 41

3.4. REDUCING COMPLEXITY . 44

3.5. MAKING A PREDICTION . 48

3.6. SUMMARY . 50

4. IMPLEMENTATION AND TESTING. 52

4.1. INTRODUCTION . 52

4.2. TESTING ALGORITHMS . 52

4.3. TESTING DATABASES . 56

4.4. RECOMMENDATION RESULTS . 62

4.5. NEIGHBORHOOD RESULTS . 64

4.6. OUTCOME-BASED NEIGHBORHOOD RESULTS 66

4.7. SUMMARY . 66

5. PREDICTIVE SEARCH ENGINE INTERFACE . 69

5.1. INTRODUCTION . 69

5.2. MODULAR RESOURCES . 69

5.3. INFORMATION SEQUENCES . 70

vii

5.4. SUMMARY . 71

6. CONCLUSION AND FUTURE RESEARCH DIRECTION 73

BIBLIOGRAPHY. 75

VITA . 79

viii

LIST OF ILLUSTRATIONS

Figure Page

2.1. A model of typical user behavior at a vending machine. 9

2.2. Effect of increasing the neighborhood radius (k) on the neighborhood
cardinality (n). 13

2.3. Producing the first SVD values for U , Σ, and V T 15

2.4. A new U ′, Σ′, and V T ′ produced from the difference between M and
M ′. 16

2.5. M ′′ produced from a more complete U , Σ, and V T 16

2.6. U , Σ, and V T are completed by repeating the decomposition method
on M −M ′′. 17

2.7. Using Σ to estimate d for a new user T 18

2.8. Producing groups of similarity for eight objects using SVD. 19

2.9. Two vectors, A and B, used to visually describe vector cosine and
Tanimoto distance. 20

2.10. Completed matrix for the Wagner-Fischer algorithm. 26

2.11. A completed Smith-Waterman matrix. 29

2.12. Example search engine user histories. 34

2.13. Comparison algorithms covered in Section 2. 37

2.14. Recommendation models covered in Section 2. 38

3.1. Aligning the target user’s recent history with other user’s complete
history. 41

3.2. An example of local alignment with an insert, a deletion, and a sub-
stitution. 47

3.3. Local alignment step one, identifying characters shared by both strings. 48

3.4. Local alignment step two, filling in the cells identified with +3. . . . 48

3.5. A neighbor object retains similarity, alignment, and recommendation. 49

ix

4.1. A graphical representation of the most popular resources in four test
sets. 68

5.1. Instead of pushing ads, user histories may be used to predict which
pages a user will visit next. 72

x

LIST OF TABLES

Table Page

4.1. The n, d, llo, lhi, and s for each tested recommendation algorithm. . 55

4.2. Data Set Size. 59

4.3. Resource Distribution. 60

4.4. Order and Convergence. 61

4.5. Comparison of recommendation algorithm test results 63

4.6. Neighborhood test results . 65

4.7. Runtime results for optimal vs. dynamic neighborhood construction. . 65

xi

LIST OF ABBREVIATIONS

O Asymptotic runtime complexity.

k-NN k nearest neighbors.

SVD singular value decomposition.

xii

GLOSSARY

n-gram An ordered sequence of n items.

polysemy The existence of more than one attributes or meanings for a single name

or label, e.g., “count” could refer to many attributes for a user.

prediction A specialized form of recommendation that is sensitive to time or order.

recommendation Proactively suggesting an electronic resource that a user is as-

sumed to find interesting.

search engine A system that allows users to locate an electronic resource by means

of entering a query..

state-space model A class of probabilistic graphical models that describe the prob-

abilistic dependence between latent state variables and observed measurements..

synonymy The existence of more than one name or label that refers to a single

attribute or meaning, e.g., both gender and sex usually refer to the existence of

a Y chromosome in a user.

1. INTRODUCTION

1.1. MOTIVATION

This research began with the motivation to treat school courses, normally one

semester long, as a sequence of modules. The modularity of the class information is

intended to make it easy to develop, share, and improve electronic resources. Many

modules would be shared between classes that otherwise seem dissimilar. Modular

topics supported by electronic resources would require development of electronic re-

sources. The key to modular classroom information is the ability to locate a specific

information resource at the exact instant that it is needed. A proactive tool that can

predict which information resource will be used before it is requested would satisfy

such a need.

The benefit of a proactive search engine is not limited to the classroom. The

information age has inundated the world with vast repositories of electronic resources.

While the extent of information available to users is unprecedented, identifying and

locating a specific resource becomes a gargantuan task for which search engines are

a necessary tool. As a result, we have become dependent on search engines [1].

Search engine research focuses on speed and accuracy [1, 2, 3]. Speed is an

objective measure of the time that elapses between a user accessing the search engine

and the user selecting a search result. Accuracy is a subjective measure of how well a

given search results matches the query supplied by the user. A proactive search engine

will improve both speed and accuracy. Because the search results are proactively

displayed to the user before the user enters a search query, the time spent entering

a query and waiting for search results is bypassed. The total time between accessing

the search engine and selecting a search result is reduced. Assuming success, the user

2

will have selected a search result proactively displayed. Doing so implies that the

search result would match the query that the user would have entered.

This research focuses on the use of recommendation (proactively displaying an

electronic resource to a user) as a means of implementing a proactive search engine.

Recommendation has proven successful in many application domains. Amazon uses

recommendation to direct users to products that they are anticipated to purchase.

Netflix uses recommendation to direct users to movies they are anticipated to find

of interest. Pandora attempts the same for music. However, recommendation is

of limited use in applications with time constraints as it generally ignores temporal

context and presents a user with a “wholesale” list of items of potential interest

[4, 5, 6].

Prediction is a specialized form of recommendation that recommends which

resource a user will want in a particular context [7]. Using the previous recommen-

dation examples, prediction would identify which item an Amazon user will want to

purchase next Tuesday, which movie a Netflix user will want to watch tonight, or

which song a Pandora user will want to listen to directly after the current song that

is playing.

A proactive search engine does not need to identify the exact time that a

resource will be requested. It is enough to identify the order in which resources will

be requested. Given a user’s search engine history, the resources that predictably

come next are recommended. Speed and accuracy are improved.

1.2. OBJECTIVES

The motivation of efficiently organizing and placing multimedia resources in a

classroom environment grew beyond simply modularizing information and indexing

resources by module. To make resources available when they are required, a proactive

3

search engine is necessary. The following areas of research were necessary to develop

a viable proactive search engine design:

1. Recommendation Systems

With the ability to examine a user’s profile, search engines have taken on the

role of proactive recommendation tools. As a foundation for studying predic-

tion algorithms, existing recommendation systems must be well understood. In

general, recommendation systems function by comparing users to one another

and/or items to one another. The heart of a recommendation algorithm is in

the comparison algorithm.

2. Comparison Algorithms

Recommendation is built on comparison algorithms. Just as there are many

types of items to compare, there are many types of comparison algorithms

available to use. A proactive search engine must be sensitive to the order in

which electronic resources are selected. A comparison algorithm that is sensitive

to order is necessary.

3. Grouping Algorithms

In recommendation, it is common to limit the collaborative process to a small

group of items with high similarity to a target item. Instead of comparing an

Amazon user to every Amazon user, a small neighborhood of highly similar users

are used. The k nearest neighbors (k-NN) algorithm is the basis for limiting

recommendation to a specialized neighborhood.

4. Prediction Algorithms

Algorithms to predict user behavior have been studied and proven [7, 8, 9].

A survey of existing algorithms is necessary to identify the tasks necessary to

leverage prediction for a proactive search engine.

4

5. Reducing Prediction Runtime

Existing prediction algorithms have a runtime complexity that is at least O(n2).

It is necessary to identify and test methods to reduce the runtime complexity

of prediction.

6. Implementation and Testing

With a proactive search engine algorithm firmly in place, the algorithm must be

tested. If possible, it must be tested using real-world data. The hypothesis that

prediction will be an improvement over general recommendation must be tested

through comparison of common recommendation algorithms to the proactive

search engine algorithm.

These objectives bring this research full circle. The original problem involved treating

class topics as modules of information that would be available in the classroom in the

order that the information is commonly taught. A general proactive search engine

treats electronic resources as ordered search results, predicting which result a user

will select immediately after the user’s most recently selected result. Therefore, a

proactive search engine will meet the requirements of the original research problem.

1.3. CONTRIBUTIONS

This research has contributed the following:

1. Analysis of recommendation algorithms, as advanced in the literature, reveals

several shortcomings for predicting search engine usage, which are detailed in

Section 2. This research proposes a general methodology for proactive search in

an attempt to overcome these shortcomings. In a nutshell, this research proposes

use of historical search result selection information, stored for each user, as an

ordered model of user behavior. A target user is compared to other users to

identify the resources that follows the target user’s recent search history. The

5

resources located in the previous step are suggested to the user in a proactive

manner.

2. In addition to the proposed proactive search engine algorithm, several optimiza-

tion techniques are described. With the implementation of the optimization

techniques, the runtime complexity of the proposed algorithm falls from O(n3)

to nearly O(n). Further, the proposed proactive search algorithm is redefined

as a background agent process that may be used when a user is not active. If

the user is not waiting for a result from the algorithm, runtime complexity does

not have as much of an impact on the user’s experience.

3. A simulation has been developed and tested with real-world search engine data.

The simulation allowed the comparison of many common recommendation al-

gorithms to the proposed proactive search engine algorithm.

4. The simulation results validated the proposal that a proactive search engine

is capable of predicting which resource a user will select based solely on the

user’s history of selected resources. Further speculation into the impact of

a proactive search engine leads to both positive and negative results. The

sequencing of electronic resources will redefine how users view resources. The

web is currently viewed as a collection of web pages. When sequenced, the web

will be a collection of sequences of web pages. As sequences, it will not be

necessary for each independent page to be a complete consumable item. It will

be preferred for a page to be a modular part of a common sequence. Sequencing

is positive, but a proactive search engine will likely lead to issues of swarming.

Users will tend to select resources that are shown to them. Those resources will

then be more popular and displayed more often. Being displayed more often will

lead to users selecting them more often. The variety of immediately available

resources will shrink.

6

1.4. ORGANIZATION

This work is divided into five sections. Section 2 covers the background re-

search required to develop the proactive search algorithm: modeling user behavior

and comparison algorithms required for both k-NN and prediction algorithms. sin-

gular value decomposition (SVD) is briefly introduced. Vector, set, and string-based

comparison algorithms are compared. With behavior and similarity algorithms in

place, common methods of recommendation are described.

Section 3 details the proposed proactive search algorithm. It is derived from

the recommendation algorithms described in Section 2. Issues with complexity are

defined. Many methods are proposed to combat runtime complexity.

Section 4 covers a detailed testing method to compare the proposed proactive

search algorithm to common recommendation algorithms. The data sets used for

testing are examined. The test methods are described. The results of the testing are

analyzed.

Section 5 envisions a full implementation of a proactive search engine. The

interface is shown, demonstrating a negligible impact on current search engine inter-

faces. The effects of working with sequences are discussed.

The final section concludes this work. The major contributions of this research

are reiterated. Speculation about the impact of a proactive search engine is provided,

leading to further research.

7

2. BACKGROUND

2.1. INTRODUCTION

The proposed proactive search engine algorithm is built on user behavior mod-

eling, recommendation algorithms, string similarity and alignment algorithms, and

outcome feedback methods. This section provides a survey of each topic. Section 2.2

covers common methods used to model user behavior, which leads into a description

of similarity neighborhoods in Section 2.3 and a list and description of multiple rec-

ommendation algorithms in Section 2.5. Section 2.4 begins with a brief introduction

to singular value decomposition (SVD) and then walks through common similarity

algorithms from vector cosine to local string alignment. Section 2.6 describes how

outcome feedback may be used in the development of a neighborhood.

2.2. MODELING USER BEHAVIOR

Both modeling and prediction of human behavior are established fields that

gained popularity as psychology developed alongside early computers [10]. While the

possibilities of human behavior appear to be infinite, the actual behavior of humans

is limited by task goals and environment. Therefore, it is possible to describe human

behavior as a sequence of dynamic states, which can be captured by a state-space

model, such as a Markov chain, which represents user behavior with a set of inter-

connected nodes [11]. Each node is a time-ordered action or observation. The weight

of the directed link connecting two nodes represents the probability of transitioning

from the first to the second; i.e., that the action denoted by the destination node will

immediately follow that of the source node. What differentiates Markov models from

8

other state-space models are their memoryless feature - the next state only depends

on the current state; i.e., the current state subsumes the entire history of transitions.

Figure 2.1 is a model of user behavior at a vending machine. Many of the

actions and observations are omitted, leaving only the most common actions and ob-

servations. User actions are in circles. User observations are in squares. Weighted

arrows designate a transition from one state (be it an action or observation) to an-

other. The weights (percentages) are the important part of the behavior model, as

they determine the likelihood that the user will follow the transition. For example,

5% of the time, a person would press the coin return directly after inserting change.

After pressing a product button, the user will, 100% of the time, either observe that

an item is received or nothing happens. The percentage of time that each of these

observations occurs is the vending machine’s behavior and is omitted from the user

behavior model.

With this model, a computer can monitor user behavior and predict what the

user’s upcoming actions and observations will be. If a user inserts change, there is

a 95% chance that the user will press a button to select an item. More complex

predictions can be made, such as estimation of the probability that a user will press

the coin return. After inserting change, there is a 5% chance that a user will press

the coin return. If the user presses a button to select an item, there is still a chance

that the user will press the coin return, which is based on the chance that “nothing

happens” will be observed by the user. Because “nothing happens” is an observation

and not a decision for the user, the computer can monitor the vending machine to

accurately know the probability of nothing happening. Assume that it is 10%, and

that the vending machine behavior is independent of that of the user - a reasonable

assumption. Users who select an item will observe nothing happening 10% of the

time and 85% of those users will press the coin return. Therefore, 8.5% of users who

select an item will eventually press the coin return. The overall chance of the coin

9

return being pressed is 13.5%. Further, there is a possibility that those who press the

coin return will observe that nothing happens. Of those who press the coin return

and observe nothing happening, there is an 85% chance that they will press the coin

return a second time. This form of Markov modeling has been successfully tested

Figure 2.1: A model of typical user behavior at a vending machine.

for observation and prediction of complex human behavior. Toledo and Katz used

a similar model to represent lane change behavior by automobile drivers [8]. After

defining their model, lane change behavior was found to be accurately predictable.

While it is rare for drivers to change lanes in the exact same order or at the exact same

location, the overall behavior was predicted by observing a specific driver’s actions

and utilizing the Markov model that was developed by observing many other drivers.

Similarly, Pentland and Liu used Markov models to define general actions

performed by automobile drivers [9]. They increased the accuracy of predictions by

producing multiple Markov models. Drivers that exhibited similar behavior were clus-

tered into similarity groups or neighborhoods. (Common methods used to construct

10

similarity neighborhoods are described in Section 2.3.) A separate model was devel-

oped for each neighborhood. The models contained many common attributes, but

were different enough to clearly identify deviations in behavior between each similar-

ity neighborhood. New drivers were observed without prediction to produce a short

history of driving behavior. That history was used to place the driver in one of the

similarity neighborhoods. Then, the model for that neighborhood was used to predict

the driver’s behavior. The resulting predictions proved to be 95% accurate.

2.3. GROUPING USERS INTO NEIGHBORHOODS OF SIMILARITY

When discussing prediction of user behavior, a common example is Amazon’s

product recommendation algorithm. Customers recognize it as the “Customers Who

Bought This Item Also Bought” feature. It is a popular and somewhat effective

neighborhood model for collaborative filtering [4]. The goal is to identify objects by

specific attributes and then use those attributes to cluster or group those objects by

similarity. Each cluster is commonly referred to as a neighborhood. For Amazon, the

customer’s attributes are a set of products each customer purchased. Regardless of

the similarity of the products purchased by a particular customer, customers who have

purchased a large number of the same products are considered similar. For search

engines, metrics for search engine usage already exist. Google has patented many

of their measurements of search result relationships, such as keyword identification,

hand ranking, geospatial relationships, and number of inbound links [12]. Following

Amazon’s model, search engine users who have selected a large number of the same

search results are considered similar and should be grouped into neighborhoods of

similarity in developing a predictive search engine.

The k nearest neighbors (k-NN) algorithm is commonly used to group ob-

jects into neighborhoods of similarity [5, 13, 14]. Objects are characterized by a set

of predefined simple attributes - often a small fraction of the attributes that could

11

potentially characterize an object. The choice of attributes to include in this sub-

set greatly affects the usefulness of the resulting neighborhood model. Objects with

similar attributes are grouped together. Once grouped, it is assumed that objects

within the same neighborhood will share all attributes, including those not used in

developing the neighborhood model.

As an example, the Piggly Wiggly grocery store may create neighborhoods of

similarity based on the time of day a customer is most likely to make a purchase, the

average amount of each purchase, and the specific store at which the customer makes

a purchase. From there, a neighborhood of morning shoppers who make purchases

over $200 per trip to a beach-side store may be identified as a neighborhood. With

three simple attributes in common, Piggly Wiggly assumes that other attributes are

shared. If a portion of customers in that neighborhood suddenly purchase a specific

product, Piggly Wiggly can target marketing for the product to everyone in that

specific group instead of the general population. Obviously, Piggly Wiggly can use a

more complex algorithm for grouping customers into neighborhoods, but the concept

remains the same [15].

Regardless of application, the k-NN algorithm is generalized into three simple

steps, detailed in algorithm 2.1. In these steps, a concept of distance is often used

instead of similarity. Distance is a measure based on the attributes of two objects.

The distance between two identical objects is zero. The larger the distance between

two objects, the less similar the objects are. The term “distance” is derived from

vector distance. Assuming that the attributes for an object are treated as a vector,

the distance between the attribute vectors of two objects is the distance between the

objects themselves. Common methods for measuring distance are discussed in Sec-

tion 2.4. An “object” may be any entity that will be modeled. For the purpose of

collaborative filtering in a user-product environment, some models cluster the users

12

Algorithm 2.1 The k-NN algorithm.

k ← the number of objects in the neighborhood
U ← all objects
t← target object
N ← initially empty neighborhood
for all u ∈ U do
if u = t then

continue
end if
s← similarity between u and t
Add u to N with a score of s

end for
Sort N from greatest s to lowest s
Remove all but greatest k members of N

together, while others cluster the products. Amazon.com is an example of a suc-

cessful collaborative filtering environment in which the users are compared to one

another based on purchased trends, as in “Customers Who Bought This Item Also

Bought” feature [4]. Pandora.com is an example of a successful collaborative filtering

environment in which the products - songs in this case, are matched by similarity

across many metrics identified by the Music Genome Project [16]. Users who like one

song are offered songs within the same neighborhood of similarity. Each approach

(clustering users, vs. products) has its own merits [17]. Users with similar attributes

will likely behave in a similar manner. Products with similar attributes will likely

be purchased (or perused) in a similar manner. It is also possible to have a complex

cluster model that compares both users and products.

In implementation, many variations of k-NN exist [13, 14, 15, 18, 19, 20, 21].

By definition, k refers to the number of objects in the neighborhood, the k most similar

objects. The target of similarity may change from implementation to implementation.

It may be the k objects that are most similar to a target object. It may be the k objects

13

that are most similar to each other. In a rather radical change, some implementations

consider k to be a limit of difference. The neighborhood is a collection of objects that

are at least k similar to the target object. In these models, increasing k may or

may not alter the number of objects in the neighborhood as seen in Figure 2.2. While

Figure 2.2: Effect of increasing the neighborhood radius (k) on the neighborhood
cardinality (n).

these implementations of k-NN are very different from one another, they are all based

on the concept of similarity. However, similarity is not a well-defined term. Just as

there are many k-NN algorithms, there are many similarity algorithms. Section 2.4

introduces a variety of similarity algorithms.

14

2.4. SIMILARITY ALGORITHMS

This section is divided into two sets of subsections. The first two cover singu-

lar value decomposition (SVD) for use in identifying similarity and grouping similar

items. The remaining sections cover vector-based algorithms, set-based algorithms,

and string-based algorithms. Singular value decomposition (SVD) is unrelated to

the similarity metrics sections, but is included because it is commonly used in rec-

ommendation [22, 23]. The last three sections are a walk from vector cosine, the

most common similarity metric, to local alignment, the similarity metric used in the

proposed proactive search engine algorithm.

2.4.1. Singular Value Decomposition. It is often necessary to define a

relationship between two sets of objects, such as customers and products. One method

of doing so is to group the objects into respective neighborhoods of similarity and

then compare and contrast the various neighborhoods. The k-NN algorithm is used

to create a single neighborhood for a single object, not a set of neighborhoods for all

objects. Further, the k-NN algorithm is not capable of handling missing attributes -

a common problem in real-world data.

Grouping and comparing objects is subject to several challenges, beyond miss-

ing attributes. There are issues of synonymy and polysemy. Synonymy occurs when

two identical attributes have different names. Polysemy occurs when a single name

refers to multiple attributes. To correct for missing data (sparsity), synonymy, and

polysemy; Singular value decomposition (SVD) has been widely used as part of latent

semantic indexing [24]. Decreasing missing data, synonymy, and polysemy with SVD

in turn increases the accuracy of grouping by similarity [19].

The purpose of SVD is to decompose a matrix M into three matrices that

represent its rows, columns, and the relationship between the rows and columns,

respectively. Specifically, SVD will convert an m × n matrix M into a collection of

three matrices: an m×m unitary matrix U that describes the rows of M , an n× n

15

unitary matrix V that describes the columns of M , and an m× n diagonal matrix Σ

that describes the relationship between the rows and columns of M [25]. In practice,

a thin form of SVD is implemented, because it produces the same estimation with

fewer calculations and values to store [6]. A thin SVD calculates only n columns of

U and n rows of Σ. The following example computes a thin SVD. With V T denoting

the conjugate transpose of V , the SVD of matrix M is defined as in equation 2.1.

M ≈ UΣV T (2.1)

Relating this to users, assume each of three users (X, Y , and Z) is characterized

by four attributes (a, b, c, and d). Matrix M , in Figure 2.3, contains the attribute

values for each user. Eigenvalues for each attribute over all three users produces the

attribute column, U . The user row V T is produced by taking the eigenvalues of the

four attributes for each user. Before entering values into U and V T , the values are

normalized. The standard for doing so is to divide each value in a set by the square

root of the sum of the square of each value in the set. Σ is the scaling factor used for U

multiplied by the scaling factor for V T . Multiplying U×Σ×V T produces an estimate

M U Σ V T M ′

X Y Z Att.Avg User Avg X Y Z
a .41 .40 .32 -.21 Scale X Y Z a .30 -.09 .27
b 1 -1 1 ≈ -.81 × 1.98 × -.72 .22 -.66 = b 1.15 -.35 1.06
c .21 .24 .13 -.09 c .13 -.04 .12
d .95 .50 .75 -.54 d .77 -.24 .71

Figure 2.3: Producing the first SVD values for U , Σ, and V T .

matrix M ′. While the estimated matrix, M ′, in Figure 2.3 is not exactly the same as

the original matrix, M , the relationships between the objects are maintained. X and

16

Y are negatively related. X and Z are positively related. To correct for the error

in the estimated matrix, the residual difference between the original and estimated

matrices is used to calculate a new set of averages (U and V T) and another scaling

factor (Σ). The new matrices are shown in Figure 2.4. The original and new matrices

M −M ′ U ′ Σ′ V T ′

X Y Z Att.Avg User Avg
a .11 .49 .05 .43 Scale X Y Z
b -.15 -.65 -.06 ≈ -.58 × 1.17 × .23 .97 .07
c .08 .28 .01 .25
d .18 .74 .04 .65

Figure 2.4: A new U ′, Σ′, and V T ′ produced from the difference between M and M ′.

(from figures 2.3 and 2.4, respectively) are concatenated to produce two columns as

U and two rows as V T . The new scaling factor is placed diagonally in a new Σ.

Repeating the multiplication, a new matrix M ′′ is produced. Comparing Figure 2.5

to Figure 2.3 illustrates that M ′′ is a significantly better than M ′ as an estimate of

M . The difference between this estimated matrix M ′′ and the original matrix M is

U Σ V T M ′′

Att.Avg User Avg X Y Z
-.21 .43 Scale X Y Z a .42 .39 .31
-.81 -.58 × 1.98 0 × -.72 .22 -.66 = b 1.00 -1.01 1.01
-.09 .25 0 1.17 .23 .97 .07 c .20 .24 .14
-.54 .65 d .95 .50 .76

Figure 2.5: M ′′ produced from a more complete U , Σ, and V T .

17

used to create another matrix of residual values, which in turn are used to create

another column of attribute averages in U , another scaling factor in Σ, and another

row of user averages in V T . The result is shown in Figure 2.6. Figure 2.6 depicts

M −M ′′ U Σ V T

X Y Z Att.Avg User Avg
a -.01 .02 .01 -.21 .43 .69 Scale X Y Z
b 0 .01 -.01 ≈ -.81 -.58 .02 × 1.98 0 0 × -.72 .22 -.66
c .01 0 -.01 -.09 .25 -.70 0 1.17 0 .23 .97 .07
d 0 0 -.01 -.54 .65 -.17 0 0 .02 -.65 .10 .75

Figure 2.6: U , Σ, and V T are completed by repeating the decomposition method on
M −M ′′.

the SVD for the original matrix M . Attribute averages are represented by the U

matrix. User averages are represented by the V T matrix. Scale is represented by the

Σ matrix. Multiplied together, UΣV T = M . Further, the U and V T matrices are not

required to identify the relationships between the users and attributes. The Σ matrix

reflects composite information about the relationships between users and attributes.

The U and V T matrices contain information about specific attributes and users, not

about relationships across the two sets. Since SVD is intended to store relationship

information, only the diagonal values of the Σ matrix are required. For this example,

from Figure 2.6, the user-attribute relationship of M is represented by the vector

{1.98, 1.17, 0.02}.

Once the SVD for existing data is calculated, it is possible to predict missing

attributes for users. Assume a new user, T , is introduced. Only the first three at-

tributes, a, b, and c, are known for this user. Using these three attributes, the user

average column for T is calculated to be {0.27, 0.72, 0.19}. The value of the missing

attribute, d, for T is estimated in Figure 2.7. By estimating missing attributes for

18

Σ T
d 1.98 0 0 .27 T.d

-.54 .65 -.17 × 0 1.17 0 × .72 = .26
0 0 .02 .19

Figure 2.7: Using Σ to estimate d for a new user T .

users, it is possible to maintain accurate similarity measures among all users. Fur-

ther, SVD is not affected by synonymy or polysemy. The k-NN algorithm compares

each attribute separately. Synonymy and polysemy artificially alter the weight of

attributes. SVD produces a relationship value, Σ, from all attributes for all users at

the same time. Having a value repeated or two values combined in the attributes will

result in U , Σ, and V T matrices that produce the original matrix M with the same

repeated or combined attributes.

2.4.2. Grouping with Singular Value Decomposition. Singular value

decomposition (SVD) is commonly used for handling data synonymy, polysemy, and

sparsity. Less commonly used is another benefit of SVD, the ability to perform

efficient and reliable similarity clustering [17, 26]. If the original matrix, M , is a

mapping of customers and products, the matrices U and V T describe the customers

and products with normalized values. Consider the example customer matrix V

(transposed from V T) for eight customers depicted in Figure 2.8. First, each positive

value is replaced with a 1. Each negative value is replaced with a 0. To make the

result easier to read, the ones and zeros are read as binary numbers, each of which

is converted to a decimal number (110 becomes 6). Objects with the same decimal

number are in the same group. Customers A, D, and H are in the same neighborhood

of similarity. Customers C, F , and G are in another neighborhood. If desired, the U

matrix (produced from the original customer-product matrix M (see Figure 2.6) could

be used to easily group the products into neighborhoods of similarity. The benefit

19

S .52 .19 .78 S 1 1 1 S 7
T .14 .25 -.32 T 1 1 0 T 6
U .48 -.34 .19 U 1 0 1 U 5
V .49 .37 .88 → V 1 1 1 → V 7
W .95 .18 -.18 W 1 1 0 W 6
X .11 -.38 .48 X 1 0 1 X 5
Y .56 -.65 .84 Y 1 0 1 Y 5
Z .78 .74 .54 Z 1 1 1 Z 7

Figure 2.8: Producing groups of similarity for eight objects using SVD.

of having all objects grouped into neighborhoods of similarity with one function is

obvious, but it comes at a cost. SVD is a complex and time-consuming function.

It does not allow for limiting the size of neighborhoods. Within a neighborhood,

it does not indicate which objects are more or less similar to one another. When

speed, size limitation, the neighborhood of a single object, or comparative similarity

is important, using the k-NN algorithm is preferred. Further, the SVD does not define

what it means to be similar as it places customers into neighborhoods of similarity.

2.4.3. Vector-Based Similarity Metrics. The concept of “similarity” is

very vague and often subjective. A proper metric of similarity must produce a stable

and comparable result. Further, an algorithm that depends on similarity must define

what attributes are being compared. Then, it is possible to state that a set of at-

tributes for one user or resource have a specific measure of similarity to another set

of attributes for another user or resource.

Within the realm of search engines, the definition of a user may vary. Some

search engines store user information such as name, date of birth, and gender. To

be universal, the only attributes that every search engine must possess is the logs

of search engine usage per user. Therefore, each user is defined as an ordered set of

resource selections. A resource selection is a tuple containing user, time, resource.

20

For simplicity, assume that every resource may be represented as a single

letter. A user is represented as an ordered set of resources, such as K, L, A, T, U.

As an ordered string, the set is simply “KLATU.” The exact time of each selection

is ignored, but order is maintained. Having each user identified by an ordered string

requires a similarity metric that measures the similarity between two ordered strings.

The following survey of similarity algorithms purposely steps through many

different similarity algorithms. Vector cosine, the dominant similarity metric, is the

starting point. Each step is clearly identified as an improvement over the previous

method, with the purpose of measuring similarity between ordered strings. Given

A C

B

a

Θ

Figure 2.9: Two vectors, A and B, used to visually describe vector cosine and Tani-
moto distance.

two object attribute vectors, such as A and B in Figure 2.9; vector cosine defines

similarity as the cosine of the angle, Θ, between them. Equation 2.2 calculates vector

cosine using “dot product” and “magnitude” vector operations. The result will be -1

when the Θ is 180◦, 0 when Θ is 90◦, and 1 when Θ is 0◦. Therefore, it is possible to

infer that -1 means A is opposite of B while 1 means that A is the same as B.

S(A,B) = cos(θ) =
A ·B
‖A‖ ‖B‖

(2.2)

21

While vector cosine is easy to visually represent with two dimensions, it scales easily

to many dimensions. The complexity of the dot product and magnitude calculations

increases linearly as the number of dimensions increases. Further, the result is the

same regardless of the order of the arguments, as it is merely a measure of the angle

between the vectors.

While the magnitude of the vectors are used to normalize the result of vector

cosine between -1 and 1, the difference of the magnitudes of A and B are not consid-

ered as part of the similarity. In reference to Figure 2.9, the cosine of Θ will be the

same if the magnitude of A is halved or doubled. To improve on vector cosine, it is

possible to use the magnitude of vector C, a vector that connects vectors A and B,

in the equation.

||C||2 = ||A||2 + ||B||2 − 2||A||||B|| cos Θ (2.3)

Using the law of cosines, the magnitude of vector C is defined in Equation 2.3. To

simplify, A ·B = ||A||||B|| cos Θ. Therefore, ||C||2 = ||A||2 + ||B||2− 2A ·B. Dividing

A·B by ||C||2 instead of ||A||||B|| will result in a similarity value that mainly calculates

the cosine of Θ, but increases the value of the denominator as ||C||, the distance

between A and B, increases. If the 2 is omitted, the Tanimoto difference equation

[27] is formed, shown as Equation 2.4. When Θ is less than 90◦, Tanimoto provides a

measure of similarity that combines both the cosine of Θ and the relative magnitudes

of A and B.

T(A,B) =
A ·B

‖A‖2 + ‖B‖2 − A ·B
(2.4)

2.4.4. Set-Based Similarity Metrics. Many attributes - such as the man-

ufacturer of an automobile - are categorical. The manufacturer may have the value

“Ford,” “Toyota,” or “Audi.” These categorical values cannot be used in the calcu-

lation of either vector cosine or Tanimoto distance. A common solution is to assign

an arbitrary index values to each categorical value, e.g. 1=“Ford,” 2=“Toyota,” and

22

3=“Audi.” As such, the values of 1, 2, and 3 may be used to calculate similarity.

However, the use of index values implies a relationship between the categorical values.

In this case, it implies that a Ford is twice as similar to a Toyota as it is to an Audi

because the distance between 1 and 2 is half that of the distance between 1 and 3.

Further, it implies that, from the reference of a Toyota, a Ford is the opposite of an

Audi. These implications invalidate the similarity measures of categorical attributes.

A common solution is to use a separate binary attribute for each manufacturer.

An automobile will have attributes of “Ford,” “Toyota,” and “Audi.” A Mustang will

have Ford=1, Toyota=0, and Audi=0. A Corolla will set Toyota=1. By separating

each categorical attribute into a set of binary attributes, the implied similarity be-

tween the categories is removed. The result is more a comparison of sets of categorical

values rather than vectors. Therefore, a set-based similarity metric is better suited

to comparisons of categorical attributes.

Jaccard similarity is a common set-based similarity metric, defined in Equation

2.5 as the intersection of two sets divided by the union of the two sets [28]. This results

in a much faster operation than vector cosine or Tanimoto distance (equations 2.2

and 2.4). With n attributes, vector cosine will require about 3n multiplications and

additions, along with two square root calculations. The Jaccard similarity coefficient

is a counting function that can be performed with 3n additions.

J(A,B) =
|A ∩B|
|A ∪B|

(2.5)

Jaccard difference is the opposite of Jaccard similarity, such that the Jaccard distance

plus the Jaccard similarity of two sets equals 1. Of note, Jaccard difference produces

the same result as Tanimoto difference for binary sets [27]. This provides a clear

bridge between the use of vector-based metrics and set-based metrics.

23

Used for identification of flowers, the original Jaccard similarity algorithm was

based on three counts [28]:

M11 is the count of attributes in which both A and B have a 1.

M01 is the count of attributes in which A has a 0 and B has a 1.

M10 is the count of attributes in which A has a 1 and B has a 0.

Not used, M00 is the count of attributes in which both A and B have a 0.

Using these counts, Jaccard similarity may be calculated as M11/(M11 +M01 +M10).

Jaccard distance is then (M01 +M10)/(M11 +M01 +M10). Over time, use of Jaccard

similarity or difference has been generalized into many implementations that use M11

in the numerator, but other counts in the denominator, such as M01 + M10 or the

entire number of attributes.

The Sørensen-Dice coefficient [29] is an example of a set-based metric that

uses the complete count of attributes in the denominator. Equation 2.6 shows that

the numerator is multiplied by 2 and the complete count of attributes in sets A

and B are summed in the denominator. M11 is still the intersection measure in the

numerator. If the attributes represented in A and B are the same, |A| = |B|, then

the denominator is 2|A|. The 2 in the numerator cancels the 2 in the denominator,

making this Jaccard similarity with the inclusion of M00 in the denominator. Unlike

Jaccard similarity, the separation of |A| and |B| allows for comparison of two sets

with a different number of attributes.

D(A,B) =
2|A ∩B|
|A|+ |B|

(2.6)

While the Sørensen-Dice coefficient uses the complete count of attributes in the de-

nominator, Hamming distance omits the denominator completely [30]. Hamming

distance is simply M01 + M10, i.e. the numerator of Jaccard distance. As with Jac-

card similarity and distance, Hamming distance requires both sets to have the same

24

number of attributes. It does not lend itself to varying sets of data in the same way

that the Sørensen-Dice coefficient does.

2.4.5. String-Based Similarity Metrics. To summarize, vector-based sim-

ilarity metrics are very popular. Set-based similarity metrics handle categorical at-

tributes. However, Vector-based and set-based similarity metrics are not order sen-

sitive [31]. Order is important in many forms of recommendation. Consider the

following scenario.

The Harry Potter books are a series of seven books. After purchasing book

5 in the series, Amazon will suggest purchasing books 1, 2, 3 and 4. However, it is

highly unlikely that many people purchase book 5 in a series without having already

read the previous four books. If order was taken into account, Amazon would suggest

purchasing books 6 and 7 and ignore the previous books.

If events are time-ordered and can be represented symbolically, it is possible

to treat a sequence of events as an ordered set, or a string. There are many order-

preserving algorithms for comparing two strings [14, 31]. For the most part, these

algorithms are descendant from Hamming distance, which directly relates to Jaccard

distance, which in turn directly relates to Tanimoto distance, a derivative of vector

cosine.

Hamming distance is a measure of the number of positions in which two strings

have different symbols [30]. Two binary strings, 1011001 and 1001101, have a Ham-

ming distance of 2 because there are two positions (three and five) in which the

symbol in the first string is different than the symbol in the second string. This

type of measurement is nearly identical to the Jaccard coefficient (and the related

measurements).

Levenshtein distance is an extension of Hamming distance [32]. It removes

the limitation of a binary alphabet, allowing for an alphabet of any arbitrary size. It

25

also removes the limitation that the two strings must be of equal length. In doing so,

Levenshtein distance counts three types of edits between two strings being compared:

• Insertion: “cat” to “coat” is an insertion of “o”.

• Deletion: “link” to “ink” is a deletion of “l”.

• Substitution: “lunch” to “lurch” is a substitution of “r” for “n”.

Each edit is counted. The total number of edits is the Levenshtein distance between

two strings. For example, the Levenshtein distance between “Sunday” and “Saturday”

is 3: an insertion of “a”, an insertion of “t”, and a substitution of “r” for “n”. It is

common to state that Levenshtein distance is an edit count, the minimum number of

edits required to convert string A into string B.

As an optimization problem over two arbitrary length strings, calculating Lev-

enshtein distance is a common example used in dynamic programming [33, 34]. The

Wagner-Fischer algorithm is a dynamic programming choice for calculating Leven-

shtein distance. Given two strings of length m and n respectively, the run-time of

the Wagner-Fischer algorithm is O(mn)[35]. A typical recursive solution requires

O(mn2).

The Wagner-Fischer algorithm is a matrix solution for two strings A and B.

For A of length m and B of length n, an (m + 1) × (n + 1) matrix is created. The

top row of the matrix is filled with increasing integers 0, 1, 2, 3... from left to right.

Similarly, the left column is filled with increasing integers from top to bottom. If

comparing “SUNDAY” to “SATURDAY.” With the initial matrix set, each element

26

of the matrix is filled in from top to bottom, left to right according to equation 2.7.

Mij =



ifAi = Bj, M(i−1)(j−1)

ifAi 6= Bj, min


M(i−1)(j−1)

M(i−1)j

Mi(j−1)

 + 1
(2.7)

For example, as “S” equals “S” in the first element to fill in, M1,1 is set to zero.

“S” in “SUNDAY” does not match “A” in “SATURDAY” hence, M1,2 gets the value

min(1,2,0)+1, which is 1. After completing all elements, the matrix will contain

the values shown in Figure 2.10. When completed, the value in the bottom-right

S A T U R D A Y
0 1 2 3 4 5 6 7 8

S 1 0 1 2 3 4 5 6 7
U 2 1 1 2 2 3 4 5 6
N 3 2 2 2 3 3 4 5 6
D 4 3 3 3 3 4 3 4 5
A 5 4 3 4 4 4 4 3 4
Y 6 5 4 4 5 5 5 4 3

Figure 2.10: Completed matrix for the Wagner-Fischer algorithm.

element is the Levenshtein distance between the two strings. For “SUNDAY” and

“SATURDAY”, the distance of 3. Because the maximum Levenshtein distance is the

length of the longest string (8 in this example), the similarity would be (8 − 3)/8,

or 62.5%. Compared to set-based measures of similarity, there are five letters in

common out of eight letters used. Jaccard coefficient = 5/8 = 62.5%. Sørensen-

Dice’s coefficient = 2 × 5/(6 + 8) = 71.4%. Compared to vector-based measures of

similarity, Tanimoto difference will be Jaccard difference = 3/8 = 37.5%. Vector

27

cosine over the binary attributes A, D, N, R, S, T, U, Y will be 77.2%. The measure

of similarity is comparable to the aforementioned measures of similarity.

String-based similarity metrics do not necessarily have a more accurate mea-

sure of similarity. String-based similarity metrics are order-sensitive. Consider chang-

ing the order of the characters in the strings. Doing so does not change the result

of set or vector-based measures. Each character is an attribute without order. From

a string-based comparison, “DAYSUN” and “SATURDAY” have a difference of 7,

which is a similarity of (8 − 7)/8 = 12.5%, distinctly different than the “SUNDAY”

and “SATURDAY” comparison.

For comparison of search engine usage, Levenshtein distance accurately indi-

cates the ordered difference between users because the order that the search results

are selected is maintained. A user with a history of {A, B, C, D} will be considered

very different from a user with a history of {D, C, B, A} with a string-based compar-

ison while a set or vector-based comparison will show that the two users selected the

same results.

Converting difference to similarity can produce undesirable results due to the

varying length of strings being compared. Levenshtein distance is unreliable at com-

paring short strings to extremely long strings. What if one user has a history of

{A, B, C} and another user with a search history containing over 100 items also has

visited A, B, and C in the same order? Further, what if many users have visited

{A, B, D, C} in that specific order? Identifying this common behavior is important

to predicting overall search engine use. In order to handle real-world search engine

user data, a method of aligning a short string (the recent history of one user) with a

substring of a longer string (the entire history of another user) is necessary.

Given two strings, A and B, a common task that is related to testing for

similarity is the task of alignment. Assuming that A is shorter in length than B, the

28

goal is to alter A in order to maximize similarity (minimize difference) of A compared

to B. There are two forms of string alignment: global and local.

Global alignment will add gaps (a special null symbol) to A, increasing the

length of A to the same length as B. While doing so, the difference between A and

B is minimized [36]. That is not useful for comparing search engine histories. It will

expand a short history into a long history with a lot of gaps.

Local alignment not only alters A, it also identifies a substring of B for which

the substring and the altered A have the minimum distance. This is technically a

global alignment between A and a substring of B [37]. With search histories, local

alignment will align a short history with a substring of a long history, identifying

where the two histories are the same and what follows in the longer history.

The Smith-Waterman algorithm is an adaptation of the Wagner-Fischer matrix

solution used for Levenshtein discussed earlier [37]. With strings A and B of lengths

m and n respectively, a matrix M of size (m + 1) × (n + 1) is created. All cells

in the top row and left column of M are initialized to zero. Instead of adding 1

for a mismatch, a similarity function is used to fine-tune how to treat matches and

mismatches as the matrix is filled. In Figure 2.11, the similarity function is equation

2.8.

Sim(a, b) =

 if a = b, 2

if a 6= b,−1
(2.8)

The Smith-Waterman algorithm has a deletion (pd) and insertion (pi) penalty. If

pd = pi, it is essentially equivalent to a single gap penalty, as commonly used in

Needleman-Wunsch implementations [36]. Separating the gap penalty into two penal-

ties allows the implementation to add extra weight to either deletions or insertions.

For simplicity, the following example will use -1 for both pd and pi.

After the top and left cells are initialized to zero, the rest of the matrix is filled

in. Similar to the Wagner-Fischer algorithm, the cells are filled in from the top left

29

to the bottom right using equation 2.9.

Mij = max



0

M(i−1)(j−1) + Sim(a, b)

M(i−1)j + pd

Mi(j−1) + pi


(2.9)

It is important to note that the zero in the max function of equation 2.9 eliminates

the possibility of a negative value in any cell of the matrix. Therefore, the cells

that contain non-zero values will be those cells in which a match has generated an

increase in value from the neighboring cells. An example that compares “BELL” to

“UMBRELLA” is shown in Figure 2.11. To locate the local alignment of a completed

U M B R E L L A
0 0 0 0 0 0 0 0 0

B 0 0 0 2 1 0 0 0 0
E 0 0 0 1 1 3 2 1 0
L 0 0 0 0 0 2 5 4 3
L 0 0 0 0 0 1 4 7 6

Figure 2.11: A completed Smith-Waterman matrix.

Smith-Waterman matrix, the cell with the greatest value is located (the cell with a

value of 7 in Figure 2.11). From the current cell, the neighboring cell (up, up/left, or

left) that contains the greatest value is located. This continues until all neighboring

cells contain a zero. In this example, the best alignment begins at the cell containing

a 7, continues up/left to a 5, up/left to a 3, then either left or up/left to a 1, and

finally to the cell containing a 2. When the symbols in both strings match, write

30

the symbol. A gap symbol is used otherwise. The local alignment of “BELL” to

“UMBRELLA” is “B-ELL.”

Local alignment is a useful tool for identifying which part of a long sequence

is a good match for a short sequence. For example, assume that a customer’s last

four purchases are known, each item identified by a letter to be “BELL.” To locate

trends, the complete purchase history of other customers will be searched for the

same sequence of items. Instead of limiting the search specifically to “BELL,” local

alignment allows for a search of subsequences that are very similar, such as “BRELL.”

As such, the number of matching search histories will likely be larger than the number

that contain “BELL” without alteration.

The primary reason that the Wagner-Fischer and related algorithms are not

commonly used is the high complexity. For strings of length m and n, the complexity

is bounded by O(mn). There are many common methods of attacking the complexity

problem:

• By maintaining the values of only two rows at a time, the space required in

memory is reduced from mn to 2m. This decreases memory requirement. In

the case of large values of m and n, reducing memory requirement may reduce

memory swapping, which then may reduce total runtime.

• If the only interest is in detecting a difference that exceeds a threshold k, then it

is only necessary to calculate a diagonal stripe of width 2k+ 1. The complexity

becomes O(kn), which is faster with the assumption that k < m [31, 38].

• Using lazy evaluation on the diagonals instead of rows, the complexity becomes

O(m(1+d)) where d is the calculated Levenshtein distance. When the distance

is small, this is a significant improvement [39].

Given two search engine users, local alignment is clearly an accurate method for

finding an approximate match between a target user’s recent history and another

31

user’s complete history. Then, a neighborhood of users who are similar to the target

user may be formed.

2.5. RECOMMENDATION ALGORITHMS

Recommendation algorithms are primarily used to limit the scope of items

being presented to a user, focusing the user on items that are likely of most interest

to the user. While there are many specific implementations of recommendation, most

are based on a few simple strategies, such as recommending items based on frequency

or sequential order. The following describes popular forms of recommendation. For

consistency, the recommendation algorithms are framed in the environment of a search

engine. There is a target user for whom the algorithm is providing a recommendation.

The items being recommended are electronic resources, indexed by the search engine

and selected by users.

The simplest form of recommendation is the rank or popularity model. Re-

sources are ranked by the frequency of which they are selected. The resources selected

most often have the highest rank. The most popular resources are suggested to the

user. Due to Zipf’s law, suggesting the most popular resources will be somewhat

effective as the most popular item will be selected twice as often as the second most

popular resource and three times as often as the third most popular resource [40].

A refinement of the rank model has become popularly known as the “people

who bought X also bought Y ” algorithm from Amazon [4]. Instead of identifying the

most popular resources from all users, this “also” model limits the users. In a sense,

it is creating a neighborhood of slightly similar users. The most popular resources

from this neighborhood are suggested. Because completely dissimilar aforementioned

users are omitted, results should be more accurate than the rank model. However, this

model requires more computation. Instead of a single list of most popular resources,

there is a list for every possible resource that may be selected. In practice, the lists

32

will not be calculated until required, but processing the most popular resources on

demand may be very time consuming, causing a long delay for the user.

Neither models just described take time or order into account. To do so, the

resources that may be suggested must come after the resources previously selected

by the target user. Instead of suggesting “people who bought X also bought Y ,” a

better suggestion would be “people who bought X then bought Y .” Using time as

context, suggesting the resource that comes later is better defined as prediction [7].

This sort of “then” algorithm should not be more complex than the “also” algorithm.

It calculates the most popular resources for every resource and likely will calculate

many of the lists on demand. Even if the context of order is tightened to include

only resources that immediately follow the last resource selected by the target user,

a “next” algorithm should not be more complex than the “also” algorithm. Both the

“then” and “next” algorithms use the same neighborhood as the “also” algorithm,

but refine the universe of possible resources to suggest by using order, loose ordering

in the “then” algorithm and tight ordering in the “next” algorithm.

It may be possible to improve the results further by considering more than

one resource that the target user and the population share. In many Asian language

input editors, there is a language prediction model that use more than one previously

entered character to accurately predict which characters most likely come next [41].

Similarly, the last n resources selected by the target user may be defined as an n-

gram [7]. Then, any user who has that n-gram in his or her search history is used for

recommendation. The most popular resources that follow the n-gram are suggested

to the target user. Order is used, which should increase accuracy. Complexity in this

case is increased as there will be a list of popular resources for every permutation

of n resources. It is more likely that this “n-gram” model will calculate the lists on

demand as it is not likely that users select n resources from a search engine in the

same order very often.

33

These five algorithms, the “rank,” “also,” “then,” “next,” and “n-gram” mod-

els, cover nearly all of the existing recommendation algorithms. The specifics deal

with how similarity is defined and how neighborhoods of similar users are formed. Us-

ing Figure 2.12 as a set of example users, it becomes very clear how the neighborhood

is refined.

The “rank” model will simply suggest the most popular resource selected by

all users, which is X in this example, visited by all but two users. Without a neigh-

borhood or order context, the recommendation will rarely change as the most popular

resource will likely remain the most popular resource for a long time [40].

The “also” model limits the neighborhood to users who also selected the target

user’s last resource, F in this example. Users 2 though 7 have selected F. Examining

the histories of those users, the most popular resource (ignoring F) is E, the only

other resource that appears in all histories. This clearly exposes the problem with

using a recommendation algorithm for prediction. If the recommendation algorithm

is not order sensitive, it will recommend a resource previously selected by the target

user.

The “then” and “next” models use the same neighborhood as the “also” model,

every user who has F in his or her history. Instead of suggesting the most popular

of all resources in each user’s history, the “then” model suggests the most popular

resources that come after F in the collection of histories, I in this example. The

“next” model suggests the most popular resources that immediately follow F in the

collection of histories. Resource G is selected twice after F while E, H, and X are

only selected once. G will be recommended.

Consider the “n-gram” model with n = 5. The 5-gram for user 1 is BCDEF.

Only user 2 has that 5-gram. Users 3 and 4 are close, but not a perfect match. There-

fore, user 2 would be the only user in the neighborhood, recommending resource H. It

is important to note that a smaller n-gram will increase the size of the neighborhood.

34

If n = 3, then users 2 and 4 will be included in the neighborhood. If n = 1, this

becomes the “next” model.

1 ABCDEF (target)
2 MXTBCDEFHIJ
3 PNYBCEFGHJK
4 RBCLDEFGIX
5 HGFED
6 XDPMEF
7 FXORELIWZAN
8 LXMBCDEGHI
9 ACXGIKM

Figure 2.12: Example search engine user histories. Users are identified by numbers.
Resources are letters, shown in the order in which they were selected.

2.6. OUTCOME FEEDBACK

Outcome feedback is common in biostatistics and latent semantic indexing

[24, 31, 42]. Given a process that produces a result, the output of the process may

be used to refine the process itself. In the case of search engine use recommendation,

the process involves building a neighborhood of similar users, producing a set of

recommendations from the neighborhood, and waiting for the target user to select a

resource. If the resource that the target user selects is from the recommended list,

that information may be used to help refine the neighborhood.

As a simple example of an outcome feedback loop, consider a population of

stock investors. In the manner that many computer algorithms are implemented, a

group of people will be examined. The best stock investors, based on a test of each

person, are selected. If the pre-test performs well, the investors will turn a profit.

35

Then, for the next investment period, everyone in the population is tested again to

identify the best investors.

As an alternative, the outcome of each person’s investment practices may

be used. At the end of a preset time period, the profit margin of each investor is

calculated. Those who turn a profit above a certain margin remain in the population

of investors. All others are removed and possibly replaced with other stock investors,

based on the outcome of the pre-test.

The use of outcome feedback, when effective, will reduce pre-testing of the

population. Then, the likelihood that a positive outcome will lead to another positive

outcome is exploited. Investors who perform well will likely continue to perform well.

When applied to search engine users, the population is the neighborhood of

similar users used to make recommendations. The outcome occurs when the target

user makes a resource selection. If a member of the neighborhood contributed to the

suggestion of the resource that was selected, that member will be maintained in the

neighborhood. All other users are candidates for replacement with more similar users.

When successful, this will reduce calculations required to identify similar users while

improving overall recommendation accuracy.

2.7. SUMMARY

There are many options available for comparing search engine users to one

another and identifying behavior trends. This section covered the basic concepts of

using state-space models to identify trends and dividing populations of users into

smaller neighborhoods to refine the state-space models. Modeling and neighborhood

algorithms are dependent on a means of identifying similarity.

Three basic models of similarity were discussed in this section: vector, set,

and string-based algorithms (see Figure 2.13). Vector-based algorithms are popu-

lar, but lack any sense of an order of attributes. Set-based algorithms are simplified

36

vector-based algorithms that allow for categorical attributes instead of strictly nu-

meric attributes. String-based algorithms also allow for categorical attributes, but

maintain an order of attributes. Because they maintain order, string-based algorithms

are far more complex than vector or set-based algorithms. Because search engine us-

age is ordered, string-based algorithms are preferred to vector-based algorithms when

comparing the search engine usage of one user to another user.

A specific type of string-based comparison algorithm is required to compare a

short string to a long string, aligning the short string to a substring of the long string.

Local alignment algorithms identify the best alignment of a short string within a long

string. The Smith-Waterman version described in this section also provides a mea-

sure of how similar the short string is to the substring with which it is aligned. As

such, the Smith-Waterman algorithm will be useful when comparing historical search

engine usage between users. With the concept of state-based modeling and compari-

son algorithms in place, five types of recommendation were defined: “rank,” “also,”

“then,” “next,” and “n-gram”. Each algorithm is designed to increase accuracy while

also increasing complexity, as shown in Figure 2.14. Prediction is a special type of

recommendation with the context of time or order. Instead of recommending an item

that may be of interest to the user, a prediction algorithm recommends an item that

will be of interest at a specific time or in a specific sequence.

The “rank” and “also” algorithms are simple and popular. For prediction,

“rank” and “also” cannot be used. Prediction requires a concept of what comes next.

Neither “rank” nor “also” take time or order into account.

The “then” and “next” algorithms may be referred to as a prediction algo-

rithms. Both omit recommendations that only occur in the past, providing recom-

mendations that usually occur in the future. The “n-gram” refines the prediction not

by better identifying the resources being recommended, but by further refining the

neighborhood of similar users.

37

Figure 2.13: Comparison algorithms covered in Section 2.

For search engine prediction, the “n-gram” model appears to be the best.

However, it makes the assumption that there will be users who select n resources in

the exact same order. When that does not happen, the neighborhood of similar users

shrinks to zero and no recommendation is possible.

38

Rank Model

Refine to similar users

Also Model

Recommendation: Most popular resources.

Neighborhood: Entire population.

Recommendation: Most popular resources.

Neighborhood: Users who also selected the
last resource selected by the target user.

Next Model Recommendation: Most popular resources
that immediately follow the last resource
selected by the target user.

Neighborhood: Users who also selected the
last resource selected by the target user.

n-Gram Model Recommendation: Most popular resources
that follow the last n resources selected by
the target user.

Neighborhood: Users who also selected the
last n resources selected by the target
user in the same order.

Add order to the recommendation

Refine the neighborhood further

Then Model Recommendation: Most popular resources
that come after the last resource selected
by the target user.

Neighborhood: Users who also selected the
last resource selected by the target user.

Confine order to what comes next

Figure 2.14: Recommendation models covered in Section 2.

39

3. PROACTIVE SEARCH ENGINE

3.1. INTRODUCTION

With computer microminiaturaztion advances, adoption of the Internet, and

proliferation of mobile networked devices, the last twenty years have witnessed an

explosion of electronic information. As a result, focus has been placed on data dis-

covery [2]. To meet this challenge, a tool is required that allows anytime, anywhere,

transparent, timely, relevant, reliable and cost-effective access to the information, re-

gardless of heterogeneity of access devices, communication medium, and autonomous

nature of information sources. An intelligent search engine is required [1, 5, 43, 44].

To function, a search engine must know what information the user requires.

A query is made. In Google, the user types a description of a desired web page. In

Netflix, the user types the name of a movie or actor. In Tineye, the user supplies an

electronic image. The search engine accepts the query from the user and uses it to

locate electronic resources. A list of resources is provided to the user. If successful, the

user selects the resource that contains the information required. This query-response

model has become a standard for search engines [2].

As a proactive measure to augment the reactive design of search engines, a

separate application has been developed that recommends resources of information to

the user. Recommender systems first became apparent in large web-based shopping

sites, such as Amazon’s “People who bought this also bought” application. Described

in Section 2.5, there are many types of recommender systems. Some recommender

systems are simply statistical. Others improve recommendation based on measures

of similarity between objects such as users or movies.

To refine recommendation, users are grouped into neighborhoods based on

similarity. Section 2.4 covers many forms of similarity algorithms. Overall, five forms

40

of recommendation were introduced: “rank,” “also,” “then,” “next,” and “n-gram.”

The n-gram model should perform best because the neighborhood of users is limited

to only those users who behaved exactly as the target user over the last n observations

[7]. However, the neighborhood size shrinks, often to zero, as n in increased.

This section proposes a proactive search engine model that is as accurate as

the n-gram recommendation algorithm while not prone to failure caused by small

neighborhoods of similar users. Section 3.2 defines how each prediction is performed.

Section 3.3 defines how the neighborhood of similar users is produced. Section 3.4

suggests multiple methods to reduce complexity.

3.2. PREDICTION ALGORITHM

The proposed proactive search engine may be described as an approximate

n-gram recommendation algorithm. As with the n-gram algorithm, the resources

that immediately follow an n-gram match of the target user’s recent history are

suggested. The difference between the n-gram algorithm and the proposed proactive

algorithm is how the n-gram match is performed. The proposed algorithm implements

an approximate match, not an exact match.

Local alignment, defined in Section 2.4, aligns a short string with a substring

of a longer string. Figure 3.1 shows how the string KLATU aligns with three other

longer strings. KLATU is not a perfect n-gram match to any of the longer strings,

but an approximate match is evident. Once an alignment is made, the items that

immediately follow the alignment are used for recommendation. In Figure 3.1, the

recommendations are N, S, and O. If KLATU were compared to a large population,

certain recommendations should be more common than others. The most popular

recommendations are shown to the target user.

At this point, it is necessary to discuss what should be recommended to the

user. It is common for search engines, such as Google and Bing, to suggest search

41

Target ...KLATU
User 1 BARADAKLAATUNIKTO
User 2 STKLAUSE
User 3 HUTTSKLATOOINE

Figure 3.1: Aligning the target user’s recent history with other user’s complete his-
tory.

queries [1, 45]. If you type a word or two, common queries are displayed. If you enter

a query, similar queries are suggested. However, users are not searching for queries.

Users are searching for electronic resources. Further, the relationship between queries

and electronic resources is not one-to-one. A query for “hedgehog” could refer to

a small spiny mammal, an anti-submarine weapon, or a popular chocolate treat.

Predicting that the user would enter “hedgehog” does not identify the resource the

user desires. The proactive search engine must predict resources to the user, not

queries.

It must be noted that a single prediction is not necessary. Search engines nat-

urally display multiple results to the user. A proactive search engine can, and should,

display multiple recommendations to the user. If the user does not see a recommen-

dation that he or she wants, the query interface will still be present. Currently, search

engines display the query interface while displaying search results. Therefore, display-

ing recommendations will not impact the interface, but will likely improve average

search time and accuracy.

3.3. SIMILARITY NEIGHBORHOODS

Section 2.3 describes multiple implementations of the k nearest neighbors (k-

NN) algorithm. A neighborhood of k nearest neighbors to a target user will require

comparing the target user to every other user. Consider Google. With millions

42

of users, the time required to identify the k most similar users to a single target

user will exceed any reasonably acceptable timeframe. Worse, attempting to identify

the k most similar users to each separate user, in order to define each user’s own

neighborhood, will require comparing every user to every other user. An optimal

k-NN algorithm will simply not work.

An alternative to identifying the k most similar users is to identify users who

are at least k similar to a target user. If k is large enough, it should not be necessary

to compare a target user to the entire population. Further, as users are identified as

being at least k similar to the target user, the value of k may be refined to hunt down

the most similar users as time permits.

Considering the method of beginning with a large value of k and reducing it

as the neighborhood of similar users grows, it is not necessary to set a value for k.

Assume that a neighborhood of at least twenty users is desired. If k begins with

an extremely large value, every user will be at least k similar to the target user.

Every user will be included in the neighborhood. When the neighborhood exceeds

twenty users, k is changed to a value just shy of the similarity between the target user

and least similar user in the neighborhood, ejecting the least similar user from the

neighborhood. This refinement continues. With every user that is included, the size

of the neighborhood exceeds twenty users and the least similar user is ejected from

the neighborhood. Over time, the neighborhood will improve as more similar users

are identified.

In this proposal, k is not a set value. It is merely the similarity between the

target user and the least similar user in the neighborhood. Initially, the neighborhood

is filled with twenty random users. The least similar user is identified. Then, a user

is selected at random to be included in the neighborhood. If that user is more similar

to the target user than the current least similar user, the two are swapped and the

43

least similar user in the neighborhood is recalculated. The more time that is allowed

for this process, the more similar the users in the neighborhood will become.

This dynamic neighborhood process does not define similarity. Search engine

users are defined as ordered sequences of search results. Comparing one ordered

set to another ordered set is a string-based comparison, as defined in Section 2.4.

Levenshtein distance is the standard form of string-based comparison algorithms.

Using Levenshtein distance creates a problem, how to handle comparison between

users with extremely short usage histories to users with extremely long usage histories.

Consider a user who has selected three resources, a history of ABC. If compared

to a user with the history of DEF, the Levenshtein distance will be 3. If compared

to a user with the history of ABCDEFG, the Levenshtein distance will be 4 even

though ABC is a perfect substring of the longer history. One method is to divide the

distance by the maximum possible distance, which is the length of the longest string.

The comparison to DEF will be 3/3 = 100%. The comparison to ABCDEFG will be

4/7 = 57%.

Local alignment is used to identify the resources for recommendation. Local

alignment is based on the Wagner-Fischer algorithm [37]. Levenshtein distance is

calculated using the Wagner-Fischer algorithm [35]. Therefore, it should be possible

to calculate similarity between users while identifying the local alignment. A method

for doing so is defined in Section 3.4.

For the proposed proactive search engine, a neighborhood of similar users

is dynamically constructed over time by randomly identifying users who are more

similar than the least similar user currently in the neighborhood. Similarity is defined

using local alignment, which is a required calculation during the recommendation

process. With this design, the longer the algorithm has to process, the better the

recommendation should become.

44

3.4. REDUCING COMPLEXITY

Local alignment was described in detail in Section 2.4. The Smith-Waterman

algorithm, implemented using the Wagner-Fischer method, provides a means of cal-

culating the best local alignment of an n-gram on a longer string. However, the

Wagner-Fisher method is rarely used for large populations because the complexity of

a single comparison has a runtime complexity of O(mn) for two strings of lengths m

and n.

For the proposed algorithm, it is not necessary to consider the target user’s

entire history. Assume that a user has been using the search engine for multiple

years, with thousands of resource selections. The most recent resource selections are

more important in defining current behavior than distant history. The same does

not apply to the comparison users. It may be found that the target user’s recent

n-gram of resource selections is found in another user’s history from many months

ago. Therefore, n in the measure of runtime complexity is limited by the length of

the n-gram and hence it is a constant. The length of the longer string, m, is the

driving factor for complexity. There are multiple methods for limiting the complexity

introduced by m:

• Only use the recent history of users with extremely long histories. For example,

if a user has many years worth of selection histories, only the most recent year

may be of interest. This is justified by understanding that the overall nature of

human behavior changes over time [10]. Ancient history may not be as effective

in predicting current behavior.

• Identify how many of the n items are actually selected by the comparison user.

Assume that n is five and three of the five resources are required to even consider

the comparison user for the target user’s neighborhood. When calculating the

first row of the Wagner-Fischer matrix, every resource in the target user’s history

45

will be calculated. If the minimum of 3 resources are not identified in that first

pass, the remaining four passes to compare all five of the target user’s n-gram

are not necessary. Doing so will only perform 1/n of the calculations required

for a complete local alignment when a comparison user is certainly not going to

be used.

• As described in Section 2.6, assume that users who correctly contributed to the

target user’s prediction are similar to the target user and do not compare them

to the target user again.

While the Smith-Waterman algorithm is commonly used for local alignment, it is not

commonly used as a comparison of similarity. There are two expected models for

prediction:

• User Levenshtein distance to identify a neighborhood of k similar users. Then,

use the Smith-Waterman algorithm to identify a local alignment within each

member of the neighborhood.

• Use the Smith-Waterman algorithm to identify a local alignment with each

member in the population. Then, use Levenshtein distance to identify the most

similar alignments, including those in the neighborhood.

Both methods perform a complex matrix calculation twice per user. Because both

Levenshtein distance and the Smith-Waterman algorithm are calculated with a form

of the Wagner-Fischer algorithm, it is possible to construct Levenshtein distance from

the local alignment itself. The matrix calculation will only be performed once.

A local alignment has gaps when a character in the substring of the longer

string does not occur in the comparison n-gram. Each gap is an insert as used in

the definition of Levenshtein distance. Therefore, counting the gaps used in the local

alignment is part of the calculation of Levenshtein distance.

46

If a character of the n-gram is missing from the local alignment, it is a deletion

as used in the definition of Levenshtein distance. Therefore, the n minus the number

of non-gap characters in the local alignment is the number of deletions in the local

alignment. The number of gaps and number of deletions is nearly a full calculation

of Levenshtein distance and all that is usually necessary. If it is necessary to identify

substitutions, a substitution is any instance in which a deletion and insertion (a gap

and a missing character) occur in the same location.

All three values, inserts, deletions, and substitutions, may be calculated with

counters while back-tracking through the matrix in the final step of the Smith-

Waterman algorithm. Using Figure 3.2 as an example, the local alignment ends

at the value of 6. The row and column are both labeled with E, so the local align-

ment is initially E. Backtracking goes to the greatest value, which may be either 3

neighboring the 6. Moving to either 3 will move up one row and, because the G does

not match either the D or the E, a gap is inserted. Moving a row and inserting a

gap at the same time is a substitution and the current local alignment is -E. From

either 3, the next move will be to the 4. The local alignment will be D-E. From

the 4, there are two possibilities for moving to 1. In this example, a left move will

be made, but the resulting local alignment and distance value would be the same if

the move was up and to the left. Moving left will add a gap to the local alignment,

resulting in -D-E. From the 1, the next move is to the 2. Again, this moves up a row

while inserting a gap, so there are now two substitutions and the local alignment is

–D-E. Finally, the local alignment ends at the 3 as H–D-E. In the end, there are three

gap characters, indicating three inserts. The number of deletions is the length of the

original string minus the number of non-gap characters in the resulting alignment,

which is 5− 3 = 2. Two substitutions were recorded when performing the alignment.

The distance is the number of inserts plus the number of deletions minus the number

of substitutions, or 3 + 2 − 2 = 3. With the understanding that local alignment is

47

C H O R D E D
0 0 0 0 0 0 0 0

H 0 0 3 2 1 0 0 0
E 0 0 2 2 1 0 3 2
D 0 0 1 1 1 4 3 2
G 0 0 0 0 0 3 3 2
E 0 0 0 0 0 2 6 5

Figure 3.2: An example of local alignment with an insert, a deletion, and a substitu-
tion.

used to identify local alignment, similarity, and the suggested resource which follows

the local alignment, a large part of reducing runtime complexity involves reducing the

time required to perform a local alignment. Many suggestions appear in literature,

such as performing a lazy evaluation or prematurely ending a calculation once it is

identified as being poor [20, 39]. The following implementation is customized to the

requirements of the proposed proactive search engine, but may be applied to other

uses of local alignment.

When comparing a target user’s most recent n-gram to another user’s history,

first identify which characters exist in both histories with a +3 (using a match value

of 3 in this example). As shown in Figure 3.3, a +3 is in each cell where the character

on the left matches a character on the top. Of note, it is not in any way possible for

the local alignment to carry over into the first or last columns. These are ignored from

any further comparison. After each element of each string is compared, prefilling the

matrix with values, the actual values are filled in. Figure 3.4 shows the matrix filled in.

Only cells with a +3 have values. The columns that cannot be part of the alignment

are ignored. The cells to the right and lower right of the +3 are automatically filled

in during this process. In Figure 3.2, every cell was calculated by doing a character-

to-character comparison and three cell-to-cell comparisons. A total of 4×5×7 = 140

48

C H O R D E D
0 0 0 0 0 0 0 0

H 0 +3
E 0 +3
D 0 +3
G 0
E 0 +3

Figure 3.3: Local alignment step one, identifying characters shared by both strings.

comparisons were performed. In Figure 3.4, every character-to-character comparison

was still performed, but only 9 cell-to-cell comparisons were made (3 per each cell

marked +3 where the neighboring cells are not ignored). A total of 29 comparisons

are performed and the same result is achieved.

C H O R D E D
0 0 0 0 0 0 0 0

H 0 3 2 1
E 0 2 1 3
D 0 4 3
G 0 3
E 0 6

Figure 3.4: Local alignment step two, filling in the cells identified with +3.

3.5. MAKING A PREDICTION

Sections 3.3 and 3.4 provide the basis for forming a neighborhood of similar

users and then locating the best alignment of the target user’s recent history with the

histories in the target user’s neighborhood. A prediction is then made by ranking the

49

resources that immediately follow each neighborhood member’s alignment from most

popular to least popular. Figure 3.1 is a brief example of aligning the target user’s

recent history with a neighborhood and identifying the resource that immediately

follows the alignment per user.

This process runs in an eternal loop. When the user is not using the search

engine, the neighborhood process runs. A random user is selected and compared to

the target user’s recent history. If the random user is more similar than the least

similar member of the target user’s neighborhood, the random user is admitted to

the neighborhood and the least similar member of the neighborhood is ejected. This

is clearly best implemented as an agent process, with a neighborhood building agent

assigned to each user. The user objects need not be complex. As shown in Figure

3.5, the user object only needs to store similarity, the index of the alignment of the

target user’s recent history to the neighborhood user’s history, and the recommended

resource that follows the alignment. When the user accesses the search engine, a

User ID Ex1234
Similarity 0.42
Alignment 37
Recommend 9669

Figure 3.5: A neighbor object retains similarity, alignment, and recommendation.

quick survey of the neighborhood is made. Each member of the neighborhood will

recommend the resource that immediately follows the user’s alignment to the target

user. The most common resources are recommended to the target user as part of

the initial search engine interface. The user has the option to select one of the

recommended resources or enter a search query.

50

If the user selects a resource from the recommended list, it is obvious that

many of the members of the neighborhood suggested that resource. As a runtime

improvement and an attempt to improve accuracy, members who suggested the se-

lected resource are automatically given a special status. Instead of recalculating the

alignment between these users, the previous alignment is shifted one position, as-

suming that the resource that follows the one previously suggested will be the just

as accurate as the current success. Further, these members should not be replaced.

Each is artificially given a perfect similarity to the target user. Using the outcome

of the user’s selection to improve the neighborhood is a form of outcome feedback

defined in Section 2.6.

3.6. SUMMARY

The proposed proactive search engine algorithm follows in the development

of popular recommendation algorithms. There are two parts to the proposed algo-

rithm: First, a neighborhood of similar users is developed. Then, each member of

the neighborhood suggests a resource to the target user. The suggestions are ranked

from most popular to least popular and shown to the target user.

Local alignment is used to identify which resource follows the target user’s most

recent n-gram in the comparison user’s history. At the same time, the local alignment

identifies the similarity between the two users. Therefore, local alignment provides

three values: the similarity between the two users, the position in the comparison

user’s history of the optimal local alignment, and the resource that follows the local

alignment.

To avoid comparing the target user to every user in the population, a dynamic

neighborhood algorithm is used. The neighborhood is filled with random users. Each

of those users is compared, using local alignment, to identify the user’s similarity to

the target user (as well as the suggested resource). Then, a random user is chosen

51

and compared using local alignment. If the new user is more similar to the target

user than the least similar user in the neighborhood, the new user is added to the

neighborhood and the least similar user is ejected. As long as time permits, random

users are continually compared and, when necessary, swapped in.

After the target user makes a selection, the target user’s recent n-gram will

change. All previous measures of similarity will be obsolete. The process of using

local alignment on every member of the neighborhood begins again. To avoid much

of this process, outcome feedback is used.

After the target user makes a selection, each member of the neighborhood who

suggested the resource that the target user selected is automatically maintained in the

neighborhood. The similarity of the user is artificially marked as “perfectly similar.”

The local alignment marker in the neighborhood user’s history is incremented by one,

identifying the next resource as the new suggestion. If 10% of the neighborhood is

correct in the recommendation, 10% of the local alignments required to make the

next recommendation will not be necessary.

52

4. IMPLEMENTATION AND TESTING

4.1. INTRODUCTION

The proposed proactive search engine is intended to extend the scope of user

behavior prediction by replacing existing n-gram match approaches with an approx-

imate match. The approximate match is implemented as a local alignment of the

target user’s most recent search history against similar user’s search histories. To

avoid redundancy, the local alignment used for approximate matching is also used for

calculating similarity while building a neighborhood of similar users.

To further reduce processing time, outcomes are used to maintain the neigh-

borhood of similar users. Users who supply the correct prediction are automatically

kept in the neighborhood without further calculation. Only those who fail at predic-

tion are replaced.

This proposed approach is unique as an approximate matching approach with

outcome feedback. The proposed scheme should offer a higher performance in accu-

racy with limited increase in processing time. To test this hypothesis, the proposed

proactive search engine algorithm has been implemented and tested with real-world

search engine databases. To measure the value of the proactive search engine, it is

compared to many other existing recommendation algorithms.

4.2. TESTING ALGORITHMS

Due to the complexity of the proactive search engine, the proposed scheme

must be thoroughly verified to justify the viability of each step, as well as the whole.

The following tasks were verified, respectively:

• Approximate alignment between users

53

• Accuracy of dynamically-constructed neighborhoods

• Effectiveness of outcome feedback in reducing complexity, while maintaining

accuracy

To demonstrate that approximate alignment is effective, many methods of recommen-

dation are compared to one another across all data sets. For each algorithm tested,

the records of the data set are parsed one at a time using algorithm 4.2, each record

containing a user, a time, and a resource selected. Within the algorithm, t and u

are users, defined as an ordered string of resources. The functions “position()” and

“distance()” are nearly identical across all recommendation algorithms.

The position function aligns a short resource string on a longer resource string,

returning the position of the best alignment. If no alignment is possible, a null is

returned. If the short resource string is null, every position in the longer resource

string is a perfect alignment. The last position will be returned.

The distance function measures the lack of similarity (edit distance) between

a short resource string and a position in a longer resource string. If the short resource

string is a perfect substring match at the given position of the longer resource string,

a zero is returned. When the length of the short resource string is one resource, this

is just a check to identify if the resource at the given position of the longer string is

actually the lone resource in the shorter resource string.

Subtraction between resources returns the difference between the position of

the two resources. If the first resource immediately follows the second resource,

the difference is 1. The difference is negative when the first resource occurs before

the second resource. The algorithms tested are based on popular recommendation

algorithms, described in Section 2.5. Each algorithm is intended to be an improvement

on the algorithm before it. The values of n, d, llo, lhi, and s for each algorithm

are shown in Table 4.1. The following is a description of how the recommendation

algorithm is intended to function:

54

Algorithm 4.2 Recommendation testing algorithm.

{n, d, llo, lhi, and s are set by each recommendation algorithm}
t← the target user
U ← all users except the target user
h← last n resources in t
R← initially empty list of resource suggestions
for all u ∈ U do
a← position(h,u)
if a is null then

continue
end if
if distance(h,a)> d then

continue
end if
for all r ∈ u do
if llo ≤ (r − a) ≤ lhi then

Add r to R
end if

end for
end for
Suggest s most common r in R

1. Rank: The twenty resources selected by the most users are recommended.

2. Also: This is the “rank” algorithm with the population of users limited to users

who also selected the last resource selected by the target user.

3. Then: This is the “also” algorithm with the resources limited to resources

selected any time after the last resource selected by the target user.

4. Next: This is the “then” algorithm with the resources confined to the resources

selected immediately after the last resource selected by the target user.

5. n-Gram: This is the “next” algorithm with the population limited to users who

selected the exact same last five resources as the target user, in the exact same

order. Only resources selected immediately after the 5-gram are considered.

55

6. Approximate: This is the “n-gram” algorithm with an approximate alignment

used instead of an exact 5-gram match.

Table 4.1: The n, d, llo, lhi, and s for each tested recommendation algorithm.

Algorithm n d llo lhi s
Rank 0 0 −∞ ∞ 20
Also 1 0 −∞ ∞ 20
Then 1 0 1 ∞ 20
Next 1 0 1 1 20
n-Gram 5 0 1 1 20
Approximate 5 3 1 1 20

In the initial tests, the entire population was used for each algorithm. Separately,

a neighborhood of the twenty most similar users was used for each algorithm. The

optimal neighborhood that formed should perform better than using the entire popu-

lation. Therefore, the optimal neighborhood test was compared directly to a dynamic

neighborhood test.

The dynamic neighborhood test follows the algorithm defined in Section 3.3.

The neighborhood is initially filled with twenty random users. Then, a total of twenty

random users who are not in the neighborhood are tested for similarity. If the new

user is more similar to the target user than the least similar user in the neighborhood,

the new user is added to the neighborhood and the least similar user is ejected.

Dynamic neighborhoods require time to become viable. Therefore, the neigh-

borhood tests are only performed on users with at least one hundred resource selec-

tions. All other users are used for recommendation, but are never considered a target

user. (Because set Y does not have any users with at least one hundred resource

selections, it is omitted from neighborhood testing.) To further demonstrate the

56

improvement over time, the dynamic neighborhood results of the first fifty resource

selections per user were tested separate from the rest of the resource selections.

The purpose of the neighborhood tests is to demonstrate that a dynamic neigh-

borhood algorithm will, over time, perform nearly as well as an optimal neighborhood.

The tradeoff in accuracy is worth the extreme reduction in runtime complexity. The

final proposal to further reduce runtime complexity is not a tradeoff with accuracy.

It is intended to increase accuracy.

The final test compares the outcome-based neighborhood to the optimal and

dynamic neighborhood algorithms. The outcome-based neighborhood is an addition

to the dynamic neighborhood algorithm. After the target user makes a resource

selection, the outcome may be compared to the recommendations from each user in

the target user’s neighborhood. Any user who made a correct recommendation should

be kept in the neighborhood, regardless of how similar that user may be to the target

user. Further, it is not necessary to perform an alignment to identify which resource

comes next. For each user who made a correct recommendation, it is only necessary

to identify which resource follows the resource the user recommended. It is merely

incrementing a pointer to a position in the user’s history. Because these users will

not be replaced, it is not necessary to find a random user to replace them. For a

neighborhood of twenty users, if five make a correct prediction, only fifteen random

users are located and tested to see if they are more similar than the least similar users

in the neighborhood.

4.3. TESTING DATABASES

Optimally, a proactive search engine should be tested in real time using a

real search engine. Without a large population of users, each with a long history

of resource selections, there is no data available for the proactive search engine to

predict which resource a target user will select. Only large commercial search engines

57

have the users and history to perform a reasonable test. Therefore, a live test is not

possible.

As an alternative, search log extracts from many types of search engines have

been used for testing. Each data set is a set of the basic tuple user, time, resource,

indicating that the user selected a specific resource at a specific time. Locating and

collecting data sets is a difficult task, as most search logs are publicly unavailable. As

a rule, search engine companies do not make their search logs public. The data sets

used in our experiments came from the following sources. Table 4.2 summarizes the

size information of these sets.

1. Set A comes from AOL. In 2006, AOL Research released a data set of three

months of Internet searches with deidentified user and identified resource infor-

mation.

2. Set E comes from Every Busy Woman, an online catalog of women-friendly

businesses. The owner of the website authorized one year of deidentified search

logs to be used for this research.

3. Set L comes from MovieLens. As a recommender system, MovieLens is not

truly a search engine. The data includes user, time, movie, and rating, with the

assumption that users enter ratings in the order that they watch the movies.

By removing ratings, this is an approximation of user, time, and movie for a

movie search engine.

4. Set M comes from the Medical University of South Carolina employee training

system. This is a small data set used primarily as a quick sanity test during

development before testing the larger data sets.

5. Set N comes from Netflix. There are many Netflix data sets released during

the Netflix Prize competitions. This data set is nearly identical to set L. It is

58

also an approximation of a movie search engine. As the largest data set, the

primary purpose of set N is for complexity and runtime testing.

6. Set V comes from AltaVista. AltaVista released a day of search logs for Septem-

ber 8, 2002 to provide researchers with a library of real-world search queries.

The data set contains a deidentified user, time, and query. When a link is

selected, the URL is provided.

7. Set W comes from AllTheWeb. In 2001, AllTheWeb released snapshots of their

search logs, containing IP address, time, query, and resource selected. The

purpose of the snapshots was to aid research in query processing. The data set

contains all search queries performed over a single day.

8. Set X comes from Excite. To support research, Excite used to produce deiden-

tified search logs, one day per release. The September 16, 1997 data set is used

because it contains the time of the search, unlike other Excite releases.

9. Set Y comes from Yandex. Unlike American search engines, Yandex regularly

releases short snapshots of their search logs. This data set contains one week of

search engine usage.

An overwhelming problem with these data sets is that they are short in time, often

a single day, and they are likely edited to remove assumed anomalies. The following

describes the details of each data set in order to make a hypothesis about the outcome

of proactively guessing the resource for each record in the data set.

The sheer size of each data set varies from very small to very large. Of specific

interest is the ratio between users and resources. A data set with far more resources

than users will likely have less overlap of resource selection between users as it is

possible for each user to select a resource without any two users selecting the same

resource. Set W has a high resource to user ratio, indicating that many resources

59

will not be selected by multiple users. Conversely, having a large user to resource

ratio indicates that resources must be selected by multiple users. Sets L and N

have very high user to resource ratios. The data sets were normalized such that each

Table 4.2: Data Set Size.

Set Records Users Resources
A 114,494 18,526 57,018
E 168,387 12,857 10,458
L 1,000,209 68,404 3,708
M 3,168 45 255
N 23,168,232 463,616 17,755
V 7,669 1,071 4,631
W 447,435 45,617 381,521
X 97,211 17,498 74,964
Y 30,655 3,121 27,910

resource selection is an integer tuple user, time, resource. Then, the data was pruned,

removing data that would not contribute to this research. Users who do not make at

least three resource selections were deleted from the data set. Without a history for

the user, it is not possible to make a recommendation. Repeated resource selections

were combined into a single resource selection. The selection sequence 5, 6, 6, 7

became 5, 6, 7. However, repetition separated by other resources was maintained.

The selection sequence 5, 6, 7, 6 was not altered.

Understanding that the data sets are limited and likely manipulated by the

data source administrators, effort was placed in identifying useful attributes of the

data sets. Some attributes are used to identify manipulations. Other attributes are

used to identify which data sets will likely perform well in testing.

For proactive recommendation to be successful, it is necessary to have multiple

users select the same resource. If each user selects a unique set of resources, with no

60

overlap between users, recommendation is not possible. There are two measures of

how well resources are distributed among the users. A direct measure is a count of

how many resources are selected by more than one user. A similar measure is the

average number of users who selected each resource. However, manipulation may

force the data to have multiple users per resource.

Based on the Zipf-Mandlebrot law, the frequency distribution of resources

should be logarithmic if it is natural, i.e. not manipulated. Table 4.3 lists the rank

distributions of each data set along with the previously mentioned metrics: percent of

resources that are shared by at least two users and the average number of resources per

user. A value of 0.00 indicates a flat distribution in which each resource was selected

by the exact same number of users. A value of 1.00 indicates a logarithmic, also

referred to as a 1/r, distribution. Any value below 0.5 is more flat than logarithmic,

indicating the likelihood that the data set was manipulated before it was released for

testing. Most of the data sets reflect more of a flat distribution than a logarithmic

Table 4.3: Resource Distribution.

Set % Shared Avg U/R Rank Dist
A 25.8% 1.7 0.46
E 62.3% 10.5 0.08
L 96.9% 269.9 0.29
M 33.3% 4.4 0.66
N 93.2% 25.3 0.15
V 13.8% 1.3 0.26
W 8.3% 1.1 0.43
X 47.6% 1.2 0.40
Y 5.1% 1.1 0.26

distribution. This observation became a question about order. Do the data sets

exhibit a natural order? In this case, order represents a natural progression from one

61

set of search results to another set of search results. Further, do the users tend to

move from a widely varied set of search results to a small set of popular results? If so,

it is possible to state that users tend to converge on a small set of popular resources.

Measuring this sense of order and convergence is a problem in itself.

Based on information theory, specifically the work of Minkowski, order and

convergence were measured using comparable estimates. Order was measured as a

count of distinct 5-grams divided by the total number of records. If order is high, the

number of distinct 5-grams will be low, resulting in a lower result. For clarity, the

result is subtracted from 1 so that a higher value indicates a higher level of order.

Convergence was measured by plotting the number of unique resources selected in

the first 10% of each user’s history, then the next 10%, continuing to the final 10% of

each user’s history. If the data set converges, the number of resources selected should

reduce over time. A linear trendline across the plot should have a negative slope.

Table 4.4 lists the order and convergence for each data set. Figure 4.1 provides a

graphical representation of four of the data sets, making the order and convergence

easier to visualize. Based on an analysis of each data set, it is clear that any form

Table 4.4: Order and Convergence.

Set Order Convergence
A 0.50 -0.01
E 0.62 -0.36
L 0.24 0.28
M 0.70 -0.42
N 0.18 -0.01
V 0.26 -0.03
W 0.17 -0.04
X 0.14 -0.05
Y 0.29 -0.05

62

of recommendation or prediction will be difficult. In sets A, V , W and X, most of

the resources are not shared by at least two users. Any record which selects one of

the unshared resources is guaranteed to be unpredictable. Sets L and W lack order.

There is little sense that a specific resource will follow another resource. It appears

that set L diverges, but closer analysis of the data shows that it has a convergence

of 1.78 over the first half of the data and a convergence of -1.58 over the second half

of the data for an overall convergence of 0.28. With the exceptions of sets E and M ,

the data sets do not significantly converge.

4.4. RECOMMENDATION RESULTS

The results of testing generally support the assumptions made about order

and convergence in the previous section. Data sets with higher order and higher

convergence lend to higher rates of success. However, the point of these tests are

not to identify which data sets are more predictable. These tests are a comparison

of various algorithms from simple rank recommendation to the proposed proactive

search engine described in Section 3.

Table 4.5 contains the results of testing each recommendation algorithm with-

out a neighborhood. The first percent is the absolute success rate: number of times

for which the user selected a resource that was recommended divided by the number

of attempts to make a recommendation. When the user’s selected resource was not

selected by any other user, no attempt to make a recommendation was made. The

percent in parenthesis is a weighted success rate. The absolute success rate counts a

value of one for each success. The weighted success rate counts a value of 1/r where

r is the rank of the recommendation in the recommendation list. If the resource

the user selected is third in the recommendation list, the numerator of the weighted

success rate is only incremented by 1/3.

63

In most recommendation testing, a more complex weighted measure is used

that involves the interest level of the resource. Such a complication is unnecessary here

as the resource selected has a perfect 100% interest and all other resources have an

absolute 0% interest. Therefore, multiplying by interest would give full weight to the

resource that was selected and negate all other recommendations. The recommenda-

Table 4.5: Comparison of recommendation algorithm test results. Absolute Percent
Success (Weighted Percent Success).

Set Rank Also Then Next n-Gram Approx
A 8% (4%) 8% (4%) 6% (4%) 6% (3%) 0% (0%) 7% (3%)
E 25% (5%) 52% (16%) 58% (22%) 74% (48%) 46% (43%) 75% (54%)
L 5% (1%) 7% (2%) 12% (5%) 32% (12%) 0% (0%) 33% (20%)
M 85% (26%) 82% (27%) 82% (41%) 83% (68%) 43% (39%) 86% (68%)
N 0% (0%) 6% (1%) 6% (1%) 11% (1%) 0% (0%) 16% (2%)
V 25% (6%) 12% (7%) 14% (7%) 18% (7%) 0% (0%) 21% (11%)
W 7% (2%) 8% (3%) 8% (5%) 8% (6%) 0% (0%) 9% (8%)
X 7% (2%) 7% (2%) 7% (3%) 7% (4%) 0% (0%) 7% (5%)
Y 4% (2%) 20% (7%) 22% (8%) 22% (8%) 0% (0%) 21% (17%)

tion algorithm test results support the claims made in forming the proposed proactive

search engine. Order is important. In general, the “then” algorithm performs better

than the “also” algorithm. It is also apparent that when order exists, tightening the

distance between the alignment and the recommended resources improves success as

“next” generally performs better than “then.” The “n-gram” algorithm was expected

to fail due to the lack of multiple users selecting the exact same five resources in the

exact same order. The “approximate” algorithm covered that problem by allowing for

variance in the alignment and, therefore, refining the group of users that provided a

recommendation. As a result, the “approximate” algorithm generally performs better

than all other algorithms.

64

Further, it is apparent that the data set attributes of order and convergence

are highly correlated to the success rate of prediction. Using the weighted approx-

imate value as a comparison, the correlation to order is 0.83 and the correlation to

convergence is -0.76. Further, the two data sets that were the least manipulated and

contained the longest span of data were clearly more predictable than the heavily

manipulated data sets that covered merely one day of activity.

4.5. NEIGHBORHOOD RESULTS

In large populations, the processing required to compare every user to every

other user is insurmountable. A proposed method of reducing the processing re-

quirements is to create a neighborhood, initially of a random set of users, and then

attempt to improve the neighborhood over time. Table 4.6 compares the results of

using a dynamic neighborhood to an optimal neighborhood. No neighborhood (tech-

nically, the entire population is a neighborhood) is shown because these tests were

only performed on users with at least one hundred resource selections, making a di-

rect comparison to Table 4.5 unreliable. To further demonstrate the improvement of

the neighborhood over time, the results of the first fifty resource selections, per user,

are shown separately. The first fifty are poor, indicating that later recommendations

must be far more accurate.

Because the dynamic neighborhood method is dependent on the results of a

pseudo-random number generator, four tests were performed for each data set. The

result shown in Table 4.6 is the average of the three tests with the least difference

between them, ignoring the fourth result as an outlier. It is apparent that the pro-

posed dynamic method of building a neighborhood of similar users quickly reaches

(and sometimes exceeds) the accuracy of the most optimal neighborhood. Accuracy

is not the goal of the dynamic method. Runtime reduction is the goal. Table 4.7 lists

the average milliseconds per user-to-user comparison per data set. Then, the time

65

Table 4.6: Neighborhood test results. Absolute Percent Success (Weighted Percent
Success).

Set None Optimal Dynamic First 50 Outcome-Based
A 1% (0%) 2% (1%) 2% (1%) 1% (0%) 4% (2%)
E 68% (36%) 94% (40%) 86% (23%) 67% (11%) 95% (44%)
L 31% (11%) 33% (19%) 31% (17%) 25% (12%) 33% (19%)
M 78% (32%) 90% (76%) 90% (72%) 63% (61%) 93% (79%)
N 9% (1%) 9% (5%) 9% (5%) 6% (2%) 9% (5%)
V 0% (0%) 6% (3%) 0% (0%) 0% (0%) 12% (5%)
W 6% (0%) 6% (1%) 5% (1%) 0% (0%) 7% (1%)
X 0% (0%) 15% (8%) 9% (6%) 0% (0%) 15% (7%)

to compare to all users, the optimal neighborhood solution, is listed alongside the

time to compare forty users, the twenty used in the neighborhood for the dynamic

tests plus the twenty random users checked to improve the neighborhood. Having a

linear runtime complexity, the dynamic neighborhood model completes in a fraction

of the time required for the optimal neighborhood calculation. Therefore, any loss in

accuracy is countered by an extreme savings in time.

Table 4.7: Runtime results for optimal vs. dynamic neighborhood construction.

Set Compare Time Optimal Dynamic
A 22ms 408s 0.88s
E 30ms 386s 1.20s
L 178ms 12176s 7.12s
M 1ms 0s 0.04s
N 81ms 37553s 3.24s
V 1ms 1s 0.04s
W 82ms 3741s 3.28s

66

4.6. OUTCOME-BASED NEIGHBORHOOD RESULTS

Constructing a neighborhood of similar users in a dynamic, yet random, method

has been shown to decrease runtime to a far greater degree than it decreases accuracy.

To further reduce runtime while purposely increasing accuracy, the outcomes of each

round of recommendation is used. Neighborhood users who make a correct suggestion

are maintained in the neighborhood, regardless of similarity. The next suggestion for

each of these users is the next resource selected by the user.

Table 4.6 compares the optimal neighborhood method to the outcome-based

neighborhood method. It is clear that the inclusion of outcome-feedback improves

accuracy. By avoiding similarity and alignment calculations, runtime is improved.

4.7. SUMMARY

This section covered the testing methods and results used to compare the

proposed proactive search engine to many existing recommendation algorithms. The

tests were divided into multiple steps to test each part of the proposed method. The

approximate alignment algorithm performed better than other common recommenda-

tion algorithms. The dynamic neighborhood model ran much faster than calculating

an optimal neighborhood, but did not significantly decrease accuracy of recommen-

dations. Adding outcome feedback to the dynamic neighborhood model made up for

the loss of accuracy while further reducing overall computation.

The test results in this section clearly support the claim that the proactive

search engine described in Section 3 will be capable of providing a viable list of

resources to a search engine user before the user enters a query, assuming that the

user has a history of previously selected resources.

67

While performing relatively well, compared to other algorithms, the absolute

performance was poor. In these tests, the source data contained very little longitudi-

nal information per user and was clearly manipulated by whomever created the data

set. Without longitudinal data, it is not reasonable to expect any recommendation

algorithm to perform well. Depending on how the data was manipulated, the ability

to perform recommendation may have been affected. With these factors in mind, the

proactive search engine algorithm should have a better performance if given access to

all of the data, unfiltered, for a real-world search engine.

68

Set A
Order: 0.50
Conv: -0.01

Set E
Order: 0.62
Conv: -0.36

Set L
Order: 0.24
Conv: 0.28

Set M:
Order: 0.70
Conv: -0.42

Figure 4.1: A graphical representation of the most popular resources in four test sets.

69

5. PREDICTIVE SEARCH ENGINE INTERFACE

5.1. INTRODUCTION

Currently, search interfaces require the user to enter some form of a query.

Once a query has been entered, a set of search results are shown. There is a push to

decrease the amount of time between entering a query and receiving results. Google

Instant, for example, starts showing results after each word of a query is entered [45].

User histories are not ignored by search engines. Currently, user histories are

used to locate and push advertisements to users, not only in the search engine, but

across many affiliated websites. As shown in Figure 5.1, user histories may be used to

identify what a user wants to search for before a query is entered. This reduces search

time in two ways. First, the user is not required to enter a query, assuming prediction

succeeds. Second, the user may be looking for a resource that normally is not found

until later in the search process. Seeing a sequence of upcoming predictions, the user

can skip ahead to the resource of interest.

5.2. MODULAR RESOURCES

Information resources are currently treated as complete packages. Web pages,

for example, are self-contained sources of complete information. The completeness

of web pages works well with modern search engines. The search engines prefer each

resource to be a complete source of information. The web pages get a higher listing

with more content per page.

A transition to sequences of web pages will break the cycle of padding indepen-

dent pages with more and more information. Instead of being independent sources of

70

complete information, web pages will be modular segments of a sequence of informa-

tion sources. Search engines will prefer modular sources that fit well into sequences.

Web pages will be refined to get higher ranking in search engines.

5.3. INFORMATION SEQUENCES

Outside of web search engines, the modularity of information may be applied

without a complete overhaul of how information is currently developed and stored.

School courses are currently semester-long. The information for a course is developed

and treated as a semester’s worth of information. Many of the topics are covered in

multiple courses. As an example, truth tables show up in computer programming,

digital logic, and critical thinking.

By treating courses as a semester-long sequence of modular information re-

sources, truth tables could be a single module that appears in three different se-

quences. Instead of having three separate instructors develop slides, notes, and tests

on truth tables, only one good truth table module is necessary and everyone can share

and improve the resource.

With course modules in mind, the development of courses also benefits from a

predictive search engine. The search engine identifies common sequences between two

modules. By giving the search engine a few specific modules that must be covered

through the semester, the search engine can fill in the gaps between those modules

with the most common sequences of other modules. In an instant, a popular sequence

of modules is developed, complete with accompanying media.

71

5.4. SUMMARY

The proactive search engine is designed to decrease the user’s time spent using

a search engine while increasing the probability that a user will quickly find an elec-

tronic resource of interest. If implemented, the nature of the search engine interface

will not be heavily impacted. However, the nature of the resources will change from

self-contained resources to modular resources. As modules, the resources will be used

as elements of ordered sequences.

While users are trained to use search engines to locate a single resource, work-

ing with sequences does provide multiple benefits. A user could search for the common

modules that fill in a sequence between a starting and ending resource. This could

be used to fill in the topics for a presentation that normally occur between two major

points. A user could identify a starting point and view the common sequences that

follow. A user may be trying to find the solution to a printer problem. Seeing the

point where other users tend to end will allow the user to quickly fast-forward to

the solution. In time, the use of sequences will displace the concept of independent

resources.

72

Figure 5.1: Instead of pushing ads, user histories may be used to predict which pages
a user will visit next.

73

6. CONCLUSION AND FUTURE RESEARCH DIRECTION

Search engines are necessary tools to navigate modern electronic repositories.

A common research goal is to improve runtime and accuracy of search engines. This

research demonstrates that it is possible to proactively predict which resource a spe-

cific user will select based on a collaborative comparison between that user’s recent

search history and the histories of all other users.

A recommendation method based on approximate alignment and similarity

with respect to order has been demonstrated, using real-world search engine data, to

provide a more accurate recommendation than common recommendation algorithms.

Performing the proposed collaborative recommendation is not viable for large popu-

lations of users due runtime complexity. Two methods have been proposed to attack

the runtime complexity problem.

Building a neighborhood in a dynamic fashion reduces the overall runtime per

recommendation by a factor of about 1,000. As expected, early recommendations

are poor. Quickly, recommendations improve and, within one hundred recommenda-

tions, the dynamic method is comparable to using an optimal neighborhood for each

recommendation.

To further reduce overall runtime while improving accuracy, outcome-feedback

has been proposed. With outcome-feedback included, the dynamic neighborhood

method meets and often exceeds the use of an optimal neighborhood.

This research has demonstrated that it is often possible to accurately predict

which resource a search engine user will select before the user enters a search query.

A search engine may proactively display a set of recommended resources to the user,

without requiring a search query. If the user select a resource from the recommended

list, overall search time is reduced as the query-response tasks are bypassed.

74

Continued work in this area of research will be heavily limited by the absence

of real-world search engine user data. Moreover, to fully demonstrate the effectiveness

of the proposed proactive search technique, it must be implemented on a real-world

search engine.

Implementation should not be an intrusive task as it may be used for a small

set of test users. Each test user will have a neighborhood building agent that scans

the population of all users as a low priority process. When a test user accesses

the search engine, the neighborhood may be scanned quickly to provide a list of

recommendations. Then, assuming that the real-world test is successful, more users

may be included in the test.

75

BIBLIOGRAPHY

[1] Arvind Rangaswamy, C. Lee Giles, and Silvija Seres. A strategic perspective on
search engines: Thought candies for practitioners and researchers. Journal of
Interactive Marketing, 23(1):49–60, February 2009.

[2] Mark Levene. An Introduction to Search Engines and Web Navigation. John
Wiley & Sons, 2 edition, 2010.

[3] David Hawking, Nick Craswell, Peter Brailey, and Kathleen Griffihs. Measuring
search engine quality. Information Retrieval, 4(1):33–59, April 2001.

[4] Greg Linden, Brent Smith, and Jeremy York. Amazon.com recommendations:
Item-to-item collaborative filtering. IEEE Internet Computing, 7(1):76–80, Jan-
uary 2003.

[5] Sergio Cleger-Tamayo, Juan M. Fernández-Luna, Juan F. Huete, Ramiro Pérez-
Vázquez, and Julio C. Rodŕıguez Cano. A proposal for news recommenda-
tion based on clustering techniques. In Trends in Applied Intelligent Systems,
volume 6098 of Lecture Notes in Computer Science, pages 478–487. Springer
Berlin/Heidelberg, 2010.

[6] Matthew Brand. Fast online svd revisions for lightweight recommender systems.
In Proceedings of the Third SIAM International Conference on Data Mining,
pages 37–46, 2003.

[7] Zhong Su, Qiang Yang, Ye Lu, and Hongjiang Zhang. Whatnext: a prediction
system for web requests using n-gram sequence models. In Proceedings of the
First International Conference on Web Information Systems Engineering, 2000,
volume 1, pages 214–221, June 2000.

[8] Tomer Toledo and Romina Katz. State dependence in lane-changing models.
Transportation Research Record: Journal of the Transportation Research Board,
2124:81–88, 2009.

[9] Alex Pentland and Andrew Liu. Modeling and prediction of human behavior.
Neural Computation, 11(1):229–242, January 1999.

[10] B. F. Skinner. The Behavior of Organisms. Copley Publishing Group, 1938.

[11] Dirk Lewandowski. Search engine user behaviour: How can users be guided to
quality content? Information Services and Use, 28(3-4):261–268, August 2008.

[12] Michael T. Jones, Brian McClendon, Amin P. Charaniya, and Michael Ashbridge.
Entity display priority in a distributed geographic information system. http:

//www.google.com/patents/US20070143345, June 2007.

http://www.google.com/patents/US20070143345
http://www.google.com/patents/US20070143345

76

[13] T. M. Cover and P. E. Hart. Nearest neighbor pattern classification. IEEE
Transactions on Information Theory, 13(1):21–27, January 1967.

[14] Rui Xu and Donald C. Wunsch II. Survey of clustering algorithms. IEEE Trans-
actions on Neural Networks, 16(3):645–678, May 2005.

[15] Michael Mukiibi and James O. Bukenya. Segmentation analysis of grocery shop-
pers in alabama. In The Southern Agricultural Economics Association Annual
Meeting, February 2008.

[16] Joyce John. Pandora and the music genome project. Scientific Computing,
23(10):40–41, September 2006.

[17] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques
for recommender systems. Computer, 42:30–37, August 2009.

[18] Yury Malkov, Alexander Ponomarenko, Andrey Logvinov, and Vladimir Krylov.
Scalable distributed algorithm for approximate nearest neighbor search problem
in high dimensional general metric spaces. In Proceedings of the 5th International
Conference on Similarity Search and Applications, pages 132–147, Heidelberg,
2012. Springer.

[19] Daniel Billsus and Michael J. Pazzani. Learning collaborative information filters.
In Proceedings of the Fifteenth International Conference on Machine Learning,
ICML ’98, pages 46–54, 1998.

[20] Lei Xiong, Yang Xiang, Qi Zhang, and Lili Lin. A novel nearest neighborhood
algorithm for recommender systems. In Intelligent Systems (GCIS), 2012 Third
Global Congress on, pages 156–159, November 2012.

[21] David Bremner, Erik Demaine, Jeff Erickson, John Iacono, Stefan Langeman,
Pat Morin, and Godfried Toussaint. Output-sensitive algorithms for computing
nearest-neighbour decision boundaries. Journal of Discrete & Computational
Geometry, 33(4):593–604, April 2005.

[22] Robert M. Bell and Yehuda Koren. Lessons from the netflix prize challenge.
ACM SIGKDD Exlorations Newsletter, 9:75–79, December 2007.

[23] Pan-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data Min-
ing. Pearson Addison-Wesley, 1 edition, 2005.

[24] Scott Deerwester, Susan T. Dumais, George W. Fumas, Thomas K. Landauer,
and Richard Harshman. Indexing by latent semantic analysis. Journal of the
American Society for Information Science, 41(6):391–407, 1990.

[25] Gene H. Golub and William Kahan. Calculating the singular values and pseudo-
inverse of a matrix. Journal of the Society for Industrial and Applied Mathemat-
ics, 2(2):205–224, 1965.

77

[26] Manolis Vozalis and Konstantinos G. Margaritis. Using svd and demographic
data for the enhancement of generalized collaborative filtering. Journal of Infor-
mation Sciences: An International Journal, 177(15):3017–3037, August 2007.

[27] Taffee T. Tanimoto. An Elementary Mathematical Theory of Classification and
Prediction. IBM Internal Report, 1957.

[28] Paul Jaccard. Étude comparative de la distribution florale dans une portion
des alpes et des jura. Bulletin del la Société Vaudoise des Sciences Naturelles,
37:547–579, 1901.

[29] Thorvald Sørensen. A method of establishing groups of equal amplitude in plant
sociology based on similarity of species content and its application to analysis of
the vegetation on danish commons. Biologiske Skrifter, 5:1–34, 1948.

[30] Richard W. Hamming. Error detecting and error correcting codes. Bell System
Technical Journal, 29(2):147–160, 1950.

[31] Dan Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science
and Computational Biology. Cambridge University Press, 1 edition, 1999.

[32] Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions,
and reversals. Soviet Physics Doklady, 10:707–710, 1966.

[33] Thomas H. Cormen, Charleston E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. The MIT Press, 3 edition, 2009.

[34] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. Athena
Scientific, 3 edition, 2007.

[35] Robert A. Wagner and Michael J. Fischer. The string-to-string correction prob-
lem. Journal of the ACM, 21(1):168–173, January 1974.

[36] Saul B. Needleman and Christian D. Wunsch. A general method applicable to
the search for similarities in the amino acid sequence of two proteins. Journal of
Molecular Biology, 48(3):443–453, March 1970.

[37] Waterman MS Smith TF. Identification of common molecular subsequences.
Journal of Molecular Biology, 147:195–197, 1981.

[38] David J. Lipman and William R. Pearson. Rapid and sensitive protein similarity
searches. Science, 227(4693):1435–1441, March 1985.

[39] Lloyd Allison. Lazy dynamic-programming can be eager. Information Processing
Letters, 43(4):207–212, September 1992.

[40] George K. Zipf. The psycho-biology of language. Language, 12:196–210, July
1936.

78

[41] Jianfeng Gao, Joshua T. Goodman, and Jiangbo Miao. The use of clustering tech-
niques for language modeling – application to asian languages. Computational
Linguistics and Chinese Language Processing, 6(1):27 – 60, February 2001.

[42] Duygu Tumer, Mohammad Ahmed Shah, and Yiltan Bitirim. An empirical
evaluation on semantic search performance of keyword-based and semantic search
engines: Google, yahoo, msn and hakia. In Proceedings of the 2009 Fourth
International Conference on Internet Monitoring and Protection, pages 51–55.
IEEE Computer Society, 2009.

[43] Javed Mostafa. Seeking better web searches. Scientific American, 292(2):66–73,
February 2005.

[44] Aaron M. Cohen, Clive E. Adams, John M. Davis, Clement Yu, Philip S.
Yu, Weiyi Meng, Loma Duggan, Marian McDonagh, and Neil R. Smalheiser.
Evidence-based medicine, the essential role of systematic reviews, and the need
for automated text mining tools. In Proceedings of the 1st ACM International
Health Informatics Symposium, IHI ’10, pages 376–380. ACM, November 2010.

[45] About google instant. http://www.google.com/instant/, November 2010.

[46] C. Shaun Wagner, Sahra Sedigh, Ali R. Hurson, and Behrooz Shirazi. A survey of
techniques for improving search engine scalability through profi ling, prediction,
and prefetching of query results. In Samee U. Khan, Albert Y. Zomaya, and Lizhe
Wang, editors, Scalable Computing and Communications: Theory and Practice,
chapter 23, pages 467–506. Wiley-IEEE Computer Society Press, New Jersey,
January 2013.

[47] C. Shaun Wagner, Sahra Sedigh, and Ali R. Hurson. Accurate and efficient search
prediction using fuzzy matching and outcome feedback. In Nieves Brisaboa,
Oscar Pedreira, and Pavel Zezula, editors, Similarity Search and Applications,
volume 8199 of Lecture Notes in Computer Science, pages 219–232. Springer
Berlin Heidelberg, 2013.

[48] C. Shaun Wagner, Sahra Sedigh, and Ali R. Hurson. Outcome-based dynamic
k-nearest neighbors models for search engine prediction. Journal of Information
Processing (to appear), 2014.

[49] C. Shaun Wagner, Sahra Sedigh, and Ali R. Hurson. Proactive search: Using
outcome-based dynamic nearest-neighbor recomendation algorithms to increase
search engine efficacy. ACM Transactions on Information Systems (submitted),
2014.

http://www.google.com/instant/

79

VITA

C. Shaun Wagner was born in St. Louis, Missouri and raised in north Kansas

City, Missouri. After graduating from Platte City High School, he served five years

in the United States Marine Corps as a radar controller engineer, maintaining digital

circuits and interface programs. As a top graduate of his electronics school, he was

selected as an instructor for the following term.

After his military service, Shaun began taking classes at a local university, the

College of Charleston (CofC). He helped publish a paper on classification of music.

He taught K-5 classes at a local elementary school. He received his B.S., with honors,

in Computer Science from the CofC in 1993.

After receiving his B.S., he began a career in health informatics research for the

Hypertension Initiative at the Medical University of South Carolina (MUSC), where

he helped author many publications. The Hypertension Initiative outgrew MUSC and

became the Care Coordination Institute (CCI). Shaun is the senior data architect at

CCI, responsible for identifying, organizing, and analyzing health information for

many forms of research.

While working for the Hypertension Initiative (and later the CCI), Shaun

entered the graduate program at the Missouri University of Science & Technology.

Before identifying a specific area of research, he taught classes at the university for

three semesters. In his research, he published a background survey as a book chapter

[46], proposed and published his concept for a proactive search engine at a conference

[47], authored an invited paper detailing the initial results of his research [48], and

submitted the final results of his work for publication [49].

	Proactive search: Using outcome-based dynamic nearest-neighbor recommendation algorithms to improve search engine efficacy
	Recommended Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF ILLUSTRATIONS
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	GLOSSARY
	Introduction
	MOTIVATION
	OBJECTIVES
	CONTRIBUTIONS
	ORGANIZATION

	Background
	INTRODUCTION
	MODELING USER BEHAVIOR
	GROUPING USERS INTO NEIGHBORHOODS OF SIMILARITY
	SIMILARITY ALGORITHMS
	Singular Value Decomposition
	Grouping with Singular Value Decomposition
	Vector-Based Similarity Metrics
	Set-Based Similarity Metrics
	String-Based Similarity Metrics

	RECOMMENDATION ALGORITHMS
	OUTCOME FEEDBACK
	SUMMARY

	Proactive Search Engine
	INTRODUCTION
	PREDICTION ALGORITHM
	SIMILARITY NEIGHBORHOODS
	REDUCING COMPLEXITY
	MAKING A PREDICTION
	SUMMARY

	Implementation and Testing
	INTRODUCTION
	TESTING ALGORITHMS
	TESTING DATABASES
	RECOMMENDATION RESULTS
	NEIGHBORHOOD RESULTS
	OUTCOME-BASED NEIGHBORHOOD RESULTS
	SUMMARY

	Predictive Search Engine Interface
	INTRODUCTION
	MODULAR RESOURCES
	INFORMATION SEQUENCES
	SUMMARY

	Conclusion and Future Research Direction
	BIBLIOGRAPHY
	VITA

