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ABSTRACT 

This research presents an innovative approach to solve the resource allocation 

problems using Multi-level Evolutionary Algorithms. Evolutionary Algorithms are used 

to solve resource allocation problems in different domains and their results are then 

incorporated into a higher level system solution using another Evolutionary Algorithm to 

solve base camp planning problems currently faced by the U.S. Department of Defense.  

Two models are introduced to solve two domain specific models: a logistics 

model and a power model. The logistic model evaluates routes for logistics vehicles on a 

daily basis with a goal of reducing fuel usage by delivery trucks. The evaluation includes 

distance traveled and other constraints such as available resource levels and priority of 

refilling. The Power model incorporates an open source electrical distribution simulator 

to evaluate the placement of structures and generators on a map to reduce fuel usage.  

These models are used as the fitness function for two separate Evolutionary 

Algorithms to find solutions that reduce fuel consumption within the individual domains. 

A multi-level Evolutionary Algorithm is then presented, where the two Evolutionary 

Algorithms share information with a higher level Evolutionary Algorithm that combines 

the results to account for problem complexity from the interfacing of these systems. The 

results of using these methods on 5 different base camp sizes show that the techniques 

provide a considerable reduction of fuel consumption. While the Evolutionary 

Algorithms show significant improvement over the current methods, the multi-level 

Evolutionary Algorithm shows better performance than using individual Evolutionary 

Algorithms, with the results showing a 19.25 % decrease in fuel consumption using the 

multi-level Evolutionary Algorithm.  



 

 

iv 

ACKNOWLEDGMENTS 

I would like to thank Dr. Corns for introducing me to the world of Systems 

Engineering. Thank you for the guidance through my graduate studies and opportunities 

to succeed in this field. I would like thank Dr. Long, Dr. Cudney, Dr. Smith and Dr. 

Crow for helping and allowing me to move on the next stage of my life.  

I would like to thank my mentors at CERL, Kurt Kinnevan and Dr. Ahmet 

Soylemezoglu, for giving me the opportunity with ORISE to expand my body of 

knowledge. Thank you for all of the interesting projects that would eventually come 

together into my final research project.   

Finally, I would like to thank my wife Divya for pushing me daily to finish my 

research and writing. Thanks for sticking through the process with me. Thank you to my 

family for all of the support through my college career. Without their support it would 

have been impossible to finish my studies. 



 

 

v 

TABLE OF CONTENTS 

Page 

ABSTRACT ....................................................................................................................... iii 

ACKNOWLEDGMENTS ................................................................................................. iv 

LIST OF ILLUSTRATIONS ............................................................................................ vii 

LIST OF TABLES ............................................................................................................. ix 

SECTION 

1. INTRODUCTION ...................................................................................................... 1 

1.1. EVOLUTIONARY ALGORITHMS ................................................................. 1 

1.2. FORWARD OPERATING BASES OVERVIEW............................................. 5 

1.3. LOGISTICS IMPORTANCE ............................................................................. 6 

1.4. POWER DISTRIBUTION IMPORTANCE ...................................................... 8 

1.5. PROBLEM DISCUSSION ................................................................................. 9 

1.6. OVERVIEW OF MODELS PRESENTED IN THIS RESEARCH ................ 10 

2. BACKGROUND AND PREVIOUS RESEARCH .................................................. 13 

2.1. TRADITIONAL MULTIOBJECTIVE OPTIMIZATION TECHNIQUES .... 13 

2.2. IMPORTANCE OF EVOLUTIONARY ALGORITHMS .............................. 15 

2.3. BUILDING AN EVOLUTIONARY ALGORITHM ...................................... 18 

2.4. DIVERSITY IN AN EVOLUTIONARY ALGORITHM ............................... 21 

2.5. MULTI-TRAVELING SALESMAN PROBLEM ........................................... 24 

2.6. FOBs BACKGROUND ................................................................................... 25 

2.7. NEED FOR OPTIMIZED TECHNIQUES ...................................................... 28 

2.8. INTERRELATIONSHIPS BETWEEN FACILITIES ..................................... 30 

2.9. NEED FOR ACCURATE ESTIMATION OF RESOURCES ........................ 32 

2.10. PREVIOUS WORK ........................................................................................ 33 

3. MATHEMATICAL MODEL FRAMEWORK ....................................................... 35 

3.1. METHODOLOGY ........................................................................................... 36 

3.2. ESTABLISHING THE MODEL ..................................................................... 38 

3.3. OUTPUTS OF MATHEMATICAL MODEL ................................................. 42 

3.4. EXISTING METHODOLOGIES COMPARISON ......................................... 44 



 

 

vi 

3.5. GOODNESS OF FIT TEST FOR LINEARITY .............................................. 47 

3.6. VALIDATION OF MATHEMATICAL MODEL .......................................... 48 

3.7. COMPARISON WITH METERED DATA .................................................... 50 

3.8. BENEFITS OF MATHEMATICAL MODEL ................................................. 51 

4. LOGISTICS MODEL............................................................................................... 53 

4.1. CURRENT BASE CAMP LOGISTIC DISTRIBUTION TECHNIQUES ..... 53 

4.2. GENERAL LOGISTIC MODEL ..................................................................... 54 

4.3. EA INITIAL SETTINGS ................................................................................. 55 

4.4. EA REPRESENTATION ................................................................................. 56 

4.5. ALGORITHM VARIATIONS ......................................................................... 58 

4.6. ALGORITHM OUTPUTS ............................................................................... 58 

4.7. SOLUTION EXAMPLES ................................................................................ 58 

4.8. COMPARISON OF TECHNIQUES ................................................................ 63 

5. POWER MODEL ..................................................................................................... 66 

5.1. OpenDSS .......................................................................................................... 66 

5.2. EXAMPLE LAYOUT DISCUSSION ............................................................. 69 

5.3. POWER EVOLUTIONARY ALGORITHM .................................................. 74 

6. MULTI-LEVEL EVOLUTIONARY ALGORITHM .............................................. 75 

6.1. GENERAL OVERVIEW ................................................................................. 75 

6.2. FITNESS FUNCTION AND SOLUTION REPRESENTATION .................. 76 

6.3. MULTI-LEVEL EA AND INDIVIDUAL EA’S ............................................. 78 

6.4. BASE CAMP EXAMPLES DISCUSSION ..................................................... 79 

6.5. MULTI-LEVEL EA RESULTS ....................................................................... 86 

6.6. SOLUTION PERFORMANCE ....................................................................... 98 

7. CONCLUSION ...................................................................................................... 100 

8. FUTURE WORK ................................................................................................... 103 

8.1. MULTI-LEVEL DIVERSITY CONTROL ................................................... 104 

8.2. AUTOMATED & INTEGRATED LAYOUT PLANNING TOOL .............. 105 

BIBLIOGRAPHY ........................................................................................................... 107 

VITA. .............................................................................................................................. 116 

 



 

 

vii 

LIST OF ILLUSTRATIONS 

               Page 

Figure 2.1. Example of Well-behaved Search Space. ....................................................... 18 

Figure 2.2. Example of an Ill-behaved Search Space. ...................................................... 19 

Figure 2.3. The Evolutionary Cycle. ................................................................................. 20 

Figure 2.4. FOB Feedback Loops. .................................................................................... 31 

Figure 2.5. FOB Facilities Interactions. ............................................................................ 32 

Figure 3.1. Resource Calculator Block Diagram. ............................................................. 39 

Figure 3.2. Dining Facilities Array Numbers in Equation Solver for a Battalion Size. ... 41 

Figure 3.3. Constants Used in Equation Solver for a Battalion Size. ............................... 42 

Figure 3.4. Total Consumption/Generation Numbers across all 40 facilities- Battalion 

Size …. ........................................................................................................... 43 

Figure 3.5. Total Consumption/Generation Numbers across all 9 Facilities- Force 

Provider Size  ................................................................................................. 44 

Figure 4.1. Simple Logistics Model. ................................................................................. 55 

Figure 4.2. Simple Routing Problem Representation. ...................................................... 57 

Figure 4.3. Average Water Delivered for 1 Day, 7 Days, 1 Month, 1 Year and 5 Years 

Using 5000Gallon Capacity Truck. ................................................................ 60 

Figure 4.4. Average Water Delivered for 1 Day, 7 Days, 1 Month, 1 Year and 5 Years 

Using 1000Gallon Capacity Truck. ................................................................ 60 

Figure 4.5. Average Travel Time for 1 Day, 7 Days, 1 Month, 1 Year and 5 Years     

Using 5000Gallon Capacity Truck. ................................................................ 61 

Figure 4.6. Average Travel Time for 1 Day, 7 Days, 1 Month, 1 Year and 5 Years    

Using 1000Gallon Capacity Truck. ................................................................ 61 

Figure 4.7. Average Source Refills for 1 Day, 7 Days, 1 Month, 1 Year and 5 Years 

Using 5000Gallon Capacity Truck. ................................................................ 62 

Figure 4.8. Average Source Refills for 1 Day, 7 Days, 1 Month, 1 Year and 5 Years 

Using 1000Gallon Capacity Truck. ................................................................ 62 

Figure 5.1. UI and OpenDSS Interactions. ....................................................................... 68 

Figure 5.2. Sample Database Specifications. .................................................................... 69 

Figure 5.3. Generators Information. ................................................................................. 70 



 

 

viii 

Figure 5.4. Lines Information. .......................................................................................... 71 

Figure 5.5. Load Information. ........................................................................................... 71 

Figure 5.6. Overall Losses Information. ........................................................................... 72 

Figure 5.7. Summary of the Design. ................................................................................. 73 

Figure 6.1. Psuedo EA Code for Base Camp. ................................................................... 76 

Figure 6.2. Overall Fuel Consumption vs Duration for Very Small Base Camp Size. .... 88 

Figure 6.3. Overall Fuel Consumption vs Duration for Small Base Camp Size. ............. 89 

Figure 6.4. Overall Fuel Consumption vs Duration for Medium Base Camp Size. ......... 89 

Figure 6.5. Overall Fuel Consumption vs Duration for Large Base Camp Size. ............. 90 

Figure 6.6. Overall Fuel Consumption vs Duration for Very Large Base Camp Size. .... 90 

Figure 6.7. Overall Fuel Consumption vs 5 Base Camp Sizes for 1 Day. ........................ 91 

Figure 6.8. Overall Fuel Consumption vs 5 Base Camp Sizes for 7 Days. ...................... 91 

Figure 6.9. Overall Fuel Consumption vs 5 Base Camp Sizes for 1 Month. .................... 92 

Figure 6.10. Overall Fuel Consumption vs 5 Base Camp Sizes for 1 Year. ..................... 92 

Figure 6.11. Overall Fuel Consumption vs 5 Base Camp Sizes for 5 Years. ................... 93 

Figure 6.12. Percentage Fuel Savings from Baseline Data for Individual and                                                                                                              

Multi-level EA for Very Small Size Base Camp. ......................................... 93 

Figure 6.13. Percentage Fuel Savings from Baseline Data for Individual and              

Multi-level EA for Small Size Base Camp. .................................................. 94 

Figure 6.14. Percentage Fuel Savings from Baseline Data for Individual and              

Multi-level EA for Medium Size Base Camp. ............................................. 94 

Figure 6.15. Percentage Fuel Savings from Baseline Data for Individual and              

Multi-level EA for Large Size Base Camp. .................................................. 95 

Figure 6.16. Percentage Fuel Savings from Baseline Data for Individual and              

Multi-level EA for Very Large Size Base Camp. ......................................... 95 

Figure 8.1. Integrated Planning Tool. ............................................................................. 106 

 

 

  



 

 

ix 

LIST OF TABLES 

               Page 

Table 2.1. FOB Types. ...................................................................................................... 26 

Table 2.2. Facilities Modeled for Battalion Size. ............................................................. 27 

Table 3.1. Facilities Modeled for Force Provider Size. .................................................... 40 

Table 3.2. General Utility Requirements Using Existing Methodologies ........................ 45 

Table 3.3. General Utility Requirements. ......................................................................... 45 

Table 3.4. General Utility Requirements Using Dynamic Mathematical Model. ............ 46 

Table 3.5. General Utility Requirements. ......................................................................... 47 

Table 3.6. Chi-square Test for Goodness of Fit ................................................................ 48 

Table 4.1. Comparison Between Existing Base Camp, Simulated Annealing and  EA                                                                                                                                                                                                                              

Techniques. ...................................................................................................... 64 

Table 6.1. Baseline Fuel Consumption for 5 Years. ......................................................... 78 

Table 6.2. Very Small Size Base Camp - Power Model Savings Using Individual EA. .. 81 

Table 6.3. Very Small Size Base Camp - Fuel Consumption Savings. ............................ 81 

Table 6.4. Small Size Base Camp- Power Model Savings Using Individual EA. ............ 82 

Table 6.5. Small Size Base Camp- Fuel Consumption Savings. ...................................... 82 

Table 6.6. Medium Size Base Camp- Power Model Savings Using Individual EA. ........ 83 

Table 6.7. Medium Size Base Camp- Fuel Consumption Savings. .................................. 83 

Table 6.8. Large Size Base Camp- Power Model Savings Using Individual EA. ............ 84 

Table 6.9. Large Size Base Camp- Fuel Consumption Savings. ...................................... 85 

Table 6.10. Very Large Size Base Camp- Power Model Savings Using Individual EA. . 86 

Table 6.11. Very Large Size Base Camp- Fuel Consumption Savings. ........................... 86 

Table 6.12. Multi-level EA Total Fuel Consumption. ...................................................... 87 

Table 6.13. Multi-level EA Percentage Fuel Decrease. .................................................... 87 

Table 6.14. Very Small Base Camp Size 95% Confidence Interval. ................................ 96 

Table 6.15. Small Base Camp Size 95% Confidence Interval. ......................................... 96 

Table 6.16. Medium Base Camp Size 95% Confidence Interval. .................................... 97 



 

 

x 

Table 6.17. Large Base Camp Size 95% Confidence Interval. ......................................... 97 

Table 6.18. Very Large Base Camp Size 95% Confidence Interval. ................................ 97 

Table 6.19. Correlation Coefficient. ................................................................................. 98 

Table 6.20. Impact of Initial Solution on Solution Time. ................................................. 99 

 

 

  

 



 

 

1. INTRODUCTION 

Systems engineering is flexible and general approach for designing and managing 

complex systems. These complex systems often consist of component systems that 

operate asynchronously. Large-scale complex systems typically consist of many 

simultaneously operating and interacting elements working together to produce a set of 

services. Difficulties arise when these elements and interfaces are not consistent and have 

conflicting objectives. This makes the task of designing feasible solutions for these 

systems challenging and improving the final product even more daunting. 

A crucial part of systems engineering has always been the improvement of 

engineered solutions. Once a solution is found, efforts are made to make it more efficient, 

less costly, or improve the design in some way. Because of the large number of interfaces 

and potential conflicts traditional optimization is normally not possible. To find solutions 

to these challenging problems, optimization techniques are needed that not only optimize 

the individual components, but can also manage the interfaces between the systems and 

find high performance assembly solutions that cannot be realized with simpler 

optimization techniques. 

 

1.1. EVOLUTIONARY ALGORITHMS 

Evolutionary Algorithms (EAs) are computational problem solving tools capable 

of finding high quality solutions to complex problems to find solutions with high utility. 

Evolutionary algorithms provide a way to approach optimization of complex systems 

inspired by biological evolution mechanisms, such as reproduction, mutation, 
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recombination, and selection. Even with these benefits, some systems are too complex for 

an EA to find a solution in a useful amount of time.  

Bi-level evolutionary algorithms are a new method recently introduced that can 

augment the ability of EAs to find solutions. These techniques can be used to choose 

candidate solutions that guarantee the meeting of deadlines and satisfy constraints 

regarding a complex problem in applied areas. Bi-level multiobjective optimization [Deb, 

and Sinha, 2011] problems differ from multi-level optimization in that it operates on two 

low level optimization problems that must be combined at the higher level. The upper 

level optimization is the main problem and lower level optimization is the secondary 

problem, which follows the main problem. There is no decision making involved at the 

lower level and all lower level solutions are passed to the upper level. Lower level 

problems are used to solve subsystems and the upper level is to solve integration 

problems. The decision maker like a planner acts at the lowest level possible and chooses 

a solution, which suits the best to the problem. This eventually becomes the only solution 

at the upper level. The lower level algorithm finds building blocks that are then 

assembled by the higher level integration algorithm. Approximate solution techniques are 

usually applied to handle bi-level problems with simplifying assumptions like 

smoothness, linearity or convexity. The primary limitation of these approaches is that the 

complexity of the explicit solution can grow rather quickly with problem size. For 

complex multi-level optimization problems, classical methods normally fail due to 

practical difficulties like non-differentiability, discreteness etc. 

Pure evolutionary methods are not very practical because of their long 

computational time. Under this case, a hybrid solution could be a solution. Identifying the 



 

 

3 

limitations of both the approaches, the research presented here proposes a multi-level EA 

technique, which is the combination of architecture representation and evolutionary 

algorithms to develop real-time solutions. In this research, an evolutionary algorithm is 

developed to generate a range of options. A method has been proposed in this research, 

for using an evolutionary algorithm to find the high efficient solution taking into account 

multiple input parameters from a particular model point of view. In addition, the 

algorithm takes into account of the other models, which optimizes the overall needs of 

that problem. 

There are several applications areas that are multi-level by nature. This includes 

the areas of economics (decision making policy) [Sinha, Malo, and Deb, 2013], 

transportation (optimal network design) [Migdalas, 1995], and engineering design 

(optimal design solution) [Dempe, 2003]. There have been number of studies conducted 

on Bi-level Optimization [Dempe, Dutta and Lohse, 2006, Sinha, Malo, and Deb, 2013], 

including a Toll setting problem [Brotcorne, Labbe, Marcotte and Savard, 2001], 

Stackelberg games [Fudenberg, 1993; Stackelberg, 1952], Environmental economics 

[Sinha, Malo, Frantsev and Deb, 2013], Structural optimization [Bendsoe, 1995] and 

Defense applications [Brown, Carlyle, Harney, Skroch and Wood, 2009]. Complex real 

time practical problems are normally converted into an easier single level optimization 

problem, which are solved to arrive at satisfying and sufficient solution instead of an 

optimal solution. 

Base camp planning is a complex problem that involves multiple sub-systems that 

must be integrated to solve the overall objectives of the facility, implementing good 

decisions out of the best options available. Two major considerations when evaluating 
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base camp designs are the use of energy and the use of water. In this context, of logistics 

distribution and power distribution planning that these algorithms are being applied. Both 

algorithms carry and gather very useful information for delivery of logistics on camp and 

placement of structures on the map from power distribution point of view and perform 

other useful functions. The introduction of subsystems that support the decision making 

to suit changing conditions is an important step in providing systems with improved 

functionalities. Unfortunately, present planning techniques lack formal mechanisms to 

help decision-makers explore the solution space of the problem and thereby challenge the 

assumptions about the number and range of options available. 

Little research has been conducted in logistic delivery combined with utility usage 

in any application similar to the evaluation of base camps or small communities. In 

addition, considering single and/or multiple trips for logistics and the placement of 

structures and power consumption/losses has received little attention. The multi-level 

evolutionary algorithm proposed here provides a method to approach this complex 

optimization problem. The multi-level EA is composed of two linked optimization 

problems that share information with a higher level integrating EA. Internally, the first 

EA is the Power EA, which is considered as a combinatorial problem, and the second is 

the Logistics EA, which is a non-linear programming problem. The exact solution of the 

overall multi-level EA can be obtained by a complete enumeration of all feasible 

combination of all the components present in Power EA, which could be a massive 

number. Then, the Logistics model is solved for each feasible combination. Basically, the 

high dimension of the possible solution space is the real difficulty in solving the problem. 
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In addition to the above problem, arriving at that solution in reasonable good amount of 

time is also a challenge. 

Evolutionary algorithms have been applied to routing problems, a class of search 

problems where an optimal route from an origin to a destination must be found within a 

given time. In a practical system, when traffic congestion changes during driving, the 

route should be re-evaluated before the car reaches the next intersection. As with other 

algorithms like Dijkstra algorithm [Golden, 1976], it always determines the optimal 

route, but cannot guarantee that realistic deadlines will be met. In contrast, as 

evolutionary algorithms always have solutions in a population during a search, they can 

provide alternative routes using other solutions in the shortest time. Modern society 

increasingly is faced with complex computational problems for which EAs are 

appropriate solvers. The ability of evolutionary algorithms to search a solution space and 

selectively focusing on promising combinations makes them ideally suited to such 

complex decision making problems. 

 

1.2. FORWARD OPERATING BASES OVERVIEW 

Forward Operating Bases (FOBs), or base camps, are temporary military 

contingency bases established to support and facilitate tactical operations on foreign soil. 

The term loosely applies to all temporary U.S. Combatant Command (COCOM) facilities 

on foreign ground, including but not limited to tactical bases, logistical supply bases, fire 

bases, patrol bases, and combat outposts [Noblis, 2010]. FOBs are typically mission-

specific, and can vary widely in terms of function and necessary structures depending on 

the size of the population supported, mission type, mission duration, types of military 
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units supported, and the availability of local infrastructure. Population sizes of FOBs 

range from 50 to 20,000 depending on these operational parameters. 

In addition to having varied missions and functions, base camps also evolve over 

time. Typically this is due to the scope of the mission changing based on the duration of 

the mission. For example, a temporary base camp established quickly on a foreign soil to 

establish a presence and basic support might have to offer more complex services if the 

duration of mission changes. This includes both the facilities to be installed and the 

logistics that are needed to support the FOB. Construction planning processes, logistics 

considerations, utility needs, and the necessary structures and facilities define the 

sustainability of a Forward Operating Base to perform the necessary missions over the 

base camp life cycle. Two areas critical to base camp success that are affected by 

complexities from this dynamic system environment are the logistic network design and 

power distribution. The proper consideration of logistics and power distribution 

alternatives and how they interact within a FOB has a large impact on the effectiveness 

and sustainability of a FOB during the planning process. 

 

1.3. LOGISTICS IMPORTANCE 

Logistics have been an important factor in the success of missions throughout 

history for both civilian and military endeavors. The development of economic 

globalization has increased the importance of enterprise services supported by global 

supply chain and world-wide logistics to the business world. Because of this, managing 

efficient logistics systems has become a key issue for many businesses to control their 

costs. For these reasons complex logistic network design is gaining more attention from 
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business organizations around the world.  Similar to these organizations, the desire to 

reduce logistics supply cost is of utmost importance within Forward Operating Bases. 

Today, logistics involves half of all Department of Defense (DoD) personnel and 

consumes a third of DoD budget [Armory, 2010]. A proper understanding of tangibles 

like Potable Water, Fuel and Waste consumed and produced at FOBs is necessary to 

identify the appropriate planning processes. Previous attempts have been made to 

standardize planning techniques and policies to be used for the distribution of logistics 

within base camps. Manuals such as the ‘Redbook’ [Contingency Operations, 2001] and 

‘Sandbook’ [U.S. Central Command, 2009] provide some general guidelines for FOB 

planning; however, the techniques involved to distribute logistics inside a particular FOB 

are theatre specific and do not take into account the use of strategies such as the co-

location, usage, etc., of the facilities involved. The lack of a systems-based approach has 

resulted in poor designs and operations maintenance in terms of health and safety, loss of 

operational flexibility and excessive capital and operating costs (i.e. cost of utilities/unit 

and overall capital/soldier/year). 

Extended operations of troops in multiple theaters has highlighted a need for more 

advanced FOBs that are more sustainable, have reduced utility costs, are more efficient 

logistics support and have fewer casualties. A framework that enables the sustainment of 

military power is needed for improving the planning capabilities to increase effectiveness 

and eventually the efficiency of the base camp operations. The framework should 

synchronize all components of the logistics system to deliver the right equipment at the 

right time to the right place. Efficient prediction of the amount of utilities consumed in 

theatre will enable supporting more forces by fewer logistics assets. Accurate estimates 
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of the logistics needs will assist FOB planners to organize and execute the movement of 

forces and materiel for deployment. 

 

1.4. POWER DISTRIBUTION IMPORTANCE 

FOBs have commonly had problems with inefficient electrical systems designs 

[Defense Management, 2009]. Most FOB power distribution systems are designed in an 

ad-hoc way whereby facilities, such as power generation, are selected based on historical 

uses rather than from an analysis of the size and mission of the base under consideration. 

In addition, FOB power distribution systems are typically a collection of diverse units 

that are electrically connected without regard to their efficiency, safety, or reliability. 

There is a need of a technique which will help to identify the interfaces in the 

models and facilitate the exchange of data between them to optimize the main problem. 

For example, if bringing more generators into the power distribution system is needed, 

then this information should be shared with the logistics system so that appropriate 

amount of water can be brought in to cool the generators, which becomes a required 

interface with the logistics model. Traditional electrical system techniques are time-

consuming and difficult to implement for most base camp designers. By using an 

automated power distribution system, the base camp planner can quickly design different 

networks that are feasible in a reasonable amount of time. These automated techniques 

and tools will increase flexibility to the military as it plans the electrical system for 

deployed FOBs and make the use of evolutionary computation methods to create FOB 

designs possible. 
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1.5. PROBLEM DISCUSSION 

The U.S. Army is currently seeking methods to increase the efficiency of base 

camp operations, including logistics vehicle scheduling and energy distribution. To 

achieve these goals, techniques and models must take into account different constraints 

such as the individual facility needs and priorities. This requires multiple tradeoffs and 

compromises at the interfaces of the subsystems that must be taken into account when 

designing FOBs to reach an optimum and sustainable solution. To solve this problem, the 

multi-level EA method proposed in this research is applied to multiple base camp 

configuration problems similar to those currently faced by the U.S. Department of 

Defense. This method is applied to multiple example base camp layouts, and the 

results/advantages of this method are presented in this research. 

The utility model developed here for base camp modeling take a logistics based 

approach to handling these resources and waste streams. The model uses an EA to 

optimize the distance travelled by logistics vehicles during the day, depending upon 

constraints such as available resource levels, priority of refilling, etc. With the 

appropriate topographical data available in a digitized form, this proposed EA places 

water and waste facilities in locations to minimize fuel consumption by the logistics 

vehicles. Buildings are automatically spaced at specified distances, clustered and 

positioned relatively to one another as appropriate. 

The power EA is designed to evolve highly effective electrical grids quickly for 

base planners and field engineers using an open source power simulation engine. 

Distances between structures and power requirements (loads) are input as parameters, as 

well as the types of generators and transformers currently on hand. The EA makes use of 
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OpenDSS
TM

 solvers to determine the most efficient electrical grid design. Similar to the 

logistics model, buildings may be designed in clusters with individual generators, or the 

entire base integrated into a single grid based on the user’s specification. It is important to 

note that the EA will generate only a ‘naked’ grid design void of protection systems (for 

the sake of expediency in completing the project); therefore an engineer would be 

required to finalize the design prior to its implementation in the field. 

The two individual EAs for Optimized Logistics model and Automated Power 

Model are then combined into one multi-level EA with a primary purpose of satisfying 

the overall needs of the base camp. The solutions found using this method consider both 

individual placement of components and optimization of resource needs. This technique 

addresses the shortcomings that are currently present in the planning and design, 

construction and deconstruction, and operations and maintenance of base camps. 

The multi-level EA chooses the best solution that fits the needs of the overall base 

camp rather than choosing the best individual solutions that are possible. The two 

individual EAs communicate and pass different solutions to the higher level EA to arrive 

at a best solution for that particular base camp. This technique helps to identify the 

interfaces in the models where data can be exchanged so that it is possible to consider the 

interfaces between subsystems to provide high performance solutions to the main 

problem. 

 

1.6. OVERVIEW OF MODELS PRESENTED IN THIS RESEARCH 

The modeling methods introduced in this research increase the planning 

capabilities for base camps using a model-based systems engineering approach. The 
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models address issues faced by the Department of Defense related to unexpected second, 

third, and higher order effects observed on base camps, determined to be caused by the 

interactions between the base camp utility systems. The models introduced in this 

research allow the base camp planner to effectively transfer information between multiple 

analysis tools and integrate subsystem solutions into a larger analysis tool. 

Section 2 describes the background of evolutionary algorithms, the need for 

accurate estimation of resources, and previous work performed by other researchers. 

Section 2 also discusses the problems approached and goes into details of how a multi-

level evolutionary algorithm could be used to solve other complex problems using similar 

methodology. In section 3, a mathematical model (resource calculator) that focuses on 

estimation methods is introduced for improving the efficiency of FOBs by accurately 

estimating the quantities of resources required by a given FOB based on its operational 

parameters. The resource calculator introduced in this research is a dynamic model which 

takes into account all the important aspects of the base camp. The mathematical model is 

based on a coupled mathematical system of equations that captures the relationships 

between various base camp subsystems and their respective inputs and outputs. 

Subsystems are objectified and their various inputs and outputs (fuel, power, water, 

waste, maintenance, etc.) are parameterized to solve the system of equations 

simultaneously each time there is a change in base camp design. An example result for a 

600-soldier size FOB and a 100-soldier size FOB is provided. This model is able to 

predict the overall resource requirements of a given base camp based on its operational 

parameters and the predicted relationships between the subsystems of the FOB. 
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The logistic model introduced in section 4 allows planners to do an analysis of 

vehicle routing for a particular base camp size configuration. The models presented in 

section 4 take a logistics-based approach to handling these resources and waste streams. 

The logistics network model uses an evolutionary algorithm to optimize the route to be 

the travelled by the vehicles each day using either single or multiple trucks based on 

facility/facilities constraints such as resource usage, current capacity level, truck 

specifications, and priority of supply. 

The results of the mathematical model are also used as initial conditions for the 

power model described in section 5. The power model performs an in-depth power 

analysis and reports a wide variety of results to the designer. An evolutionary algorithm 

is presented that provides recommendations on the placement of structures and electric 

distribution resources on a map to reduce losses. The flexible model will assist the 

designer in a better selection and placement of facilities. 

The models developed in sections 4 and 5 provide an extensible framework that 

makes it possible to incorporate information from other models into the base camp design 

process. In section 6 the models in section 3, 4 and 5 are incorporated into a larger base 

camp planning evolutionary algorithm to evaluate a holistic base camp design. As a proof 

of concept, a base camp layout is considered, with the logistics and power distribution 

models exchanging information with a higher level model to determine placement of 

structures to improve overall performance. The effectiveness and efficiency of the 

proposed approaches are evaluated on overall fuel usage and compared to other 

techniques. 
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2. BACKGROUND AND PREVIOUS RESEARCH 

2.1. TRADITIONAL MULTIOBJECTIVE OPTIMIZATION TECHNIQUES 

Many problems in the real world involve multiple simultaneous optimizations of 

several objective functions. Normally, these functions are not consistent and/or have 

conflicting objectives. Multiobjective optimization with those conflicting objective 

functions tends to lead to a set of optimal solutions instead of one optimal solution. 

Optimality of many solutions is difficult due to the fact there is no guarantee that any one 

solution can be considered better than the others with respect to all objective functions. 

These multiple optimal solutions in different parameters are known as Pareto-optimal 

solutions. Generally, in multiobjective optimization problem, any two solutions can have 

one of the two possibilities: one solution dominates the other solution or none of the 

solutions dominates the other. Nondominated solutions present in the entire search space 

are denoted as Pareto-optimal set. 

The crucial aspect of the weighted sum method [Dhillon, Parti and Kothari, 1993; 

Xu, Chang and Wang, 1996] is that a set of non-inferior solutions can be obtained by 

changing the weights. Unfortunately, this requires multiple runs. In addition, this method 

cannot be applied to problems having a non-convex Pareto-optimal front to find Pareto-

optimal solutions. To overcome this problem, the e-constraint method for multiobjective 

optimization was presented in [Yokoyama, 1998] and [Abou and Abido, 1992]. In this e-

constraint method, optimization of the most preferred objective is done taking into 

account of other objectives as constraints bounded by some allowable levels “e”. The 

problems with this approach are that it is time-consuming and tends to find weakly non-

dominated solutions. The recent research direction is to consider both objectives 
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concurrently as competing objectives. A fuzzy multiobjective optimization technique for 

solving this type of problem was proposed in [Srinivasan, Chang and Liew, 2004]. 

However, the solutions obtained using these techniques are suboptimal and the algorithm 

does not provide a suitable framework for directing the search toward the Pareto-optimal 

front. A multiobjective stochastic search technique for a multiobjective problem was 

proposed in [Das and Patvardhan, 2008]. However, the technique is computationally 

sophisticated, time-consuming, and the genetic drift and the search bias are severe 

problems that results in premature convergence. Studies on evolutionary algorithms 

indicate that these methods can be efficiently used to overcome most of the above 

problems of classical methods [Fonseca and Fleming, 2005; Farina, Deb and Amato, 

2004]. Since evolutionary algorithms use a population of solutions in their search, 

multiple pareto-optimal solutions can be found in a single run. Based on these results, 

further attempts should be done to conserve the diversity of the nondominated solutions 

to explore the creation of more solutions. 

In general, the limitations associated with classical optimization methods can be 

summarized as follows: 

 An algorithm has to be applied many times to find multiple pareto-optimal 

solutions.  

 Many algorithms require some knowledge about the problem being solved. 

 Some algorithms are sensitive to the shape of the pareto-optimal front.  

 The spread of pareto-optimal solutions depends on efficiency of the single 

objective optimizer.  
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2.2. IMPORTANCE OF EVOLUTIONARY ALGORITHMS 

Evolutionary Computation (EC) is the research field of nature and evolution 

inspired computational methods used to solve real-world problems, and their toy 

scientific models. We divide the history of the EC field into two parts: early approaches 

proposed before the first International Conference on Genetic Algorithms (ICGA) in 

1985, and modern approaches proposed after this conference. According to an analysis by 

[Alander, 1994] of 2500 papers published on Genetic Algorithms, Evolution Strategies, 

Evolutionary Programming, etc., only 215 papers were published between 1957 and 

1984, compared to 928 published between 1985 and 1990. Now the number of published 

papers per year is still growing, and while the exact number of papers is difficult to 

estimate, it might lie in order of tens of thousands, given that for one of the most cited 

researchers of the field of evolutionary multiobjective optimization. 

“The Genetical Theory of Natural Selection” by Ronald Fisher [Fisher, 1930] is 

probably the second most influenced book on evolutionary biology after Darwin’s book 

“On the Origin of Species” [Darwin, 1859]. Fisher claimed that natural selection is not 

evolution, as it was identified in biological sciences, but an independent principle worthy 

of scientific study. 

Another key sub-field of Evolutionary Computation is Evolutionary 

Programming, introduced by Lawrence J. Fogel also in the 1960s, leading to the book 

“Artificial Intelligence through Simulated Evolution” [Fogel , 1966]. Fogel proposed to 

evolve the population of Finite State Machines (FSMs) to solve problems of prediction 

and control in an environment, defined as a set of sequences from a finite alphabet. 

Evolution strategies (ESs) [Rechenburg, 1984; Schwefel, 1975] and evolutionary 
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programming [Fogel, Owens, and Walsh, 1966] are similar techniques but use different 

methods for evolving solutions. 

Evolution Strategies from the beginning have addressed continuous optimization 

problems. Several attempts have been made to extend ESs to mixed integer optimization 

[Bäck and Schütz, 1995, Li et al., 2006], but unfortunately have not attracted much 

attention in the field. The latest results show that mixed-integer optimization is 

challenging and the premature convergence is possible even for relatively simple 

problems [Hansen, 2011, Li et al., 2011]. 

The Economic Dispatch Problem (EDP) is the optimal allocation of the load 

demand among the running units while satisfying the power balance equations and the 

unit’s operating limits. The Unit Commitment Problem (UCP) is the problem of selecting 

what type of generating units to be in service during a scheduling period and for how 

long. In 1994, Dasgupta [Dasgupta and McGregor, 1993] presented a paper, which 

discusses the application of an EA to solve the short term Unit Commitment Problem 

(UCP). In this work, the problem is considered as a multi-period process and a simple EA 

is used for commitment scheduling. In 1995, [Yang, Yang and Huang, 1995] proposed an 

innovative EA approach to solve the thermal UCP in power generation industry through a 

constraint satisfaction technique. Due to a large variety of constraints to be satisfied, the 

solution space of the UCP is highly nonconvex, and therefore the UCP cannot be solved 

efficiently by the standard EA. In 1999, [Juste, Kita, Tanaka and Hasegawa, 1999] 

proposed algorithm to employ the evolutionary programming (EP) technique, in which 

populations of contending solutions are evolved through random changes, competition, 

and selection. In 2003, [Mashhadi, Shanechi and Lucas, 2003] proposed an improved EA 
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to solve the UCP. In order to improve the convergence of the EA, a new local optimizer 

for the UCP based on Lamarck theory [Ross, 1999] in the evolution, has been proposed. 

This local optimizer, which tries to improve the fitness of one chromosome in the 

population, effectively uses the information generated in calculating the fitness. 

The vehicle routing problem is known to be NP-hard (non-deterministic 

polynomial-time hard). To solve the vehicle routing problem, a number of approaches are 

proposed in the literature. To solve moderate-size problems, heuristics [Clarke and 

Wright, 1964] are proposed and utilized in practice. In the past three decades, several 

metaheuristics (e.g. Tabu search, evolutionary algorithms, simulated annealing, neural 

networks) have been proposed to solve the vehicle routing problems. Gendreau 

[Gendreau, Alain and Laporte, 1994] proposed a Tabu search heuristic to solve the 

vehicle routing problem with route length and capacity restrictions. Baker and Ayechew 

[Baker and Ayechew, 2003] developed a genetic algorithm for the basic vehicle routing 

problem with weight limit and travel distance limit on the vehicles. Breedam [Breedam, 

1995] proposed simulated-annealing based improvement heuristics for the vehicle routing 

problems.  

Overall, the main advantages of using EAs in solving power distribution and base 

camp logistics problem are: 

 Self-adaptively control the entire search process through random optimization 

technique. 

 Multiple Pareto-optimal solutions can be found in minimal number of runs. 

 Diversity control of the nondominated solutions. 
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2.3. BUILDING AN EVOLUTIONARY ALGORITHM 

An EA is a population-based optimization algorithm that uses artificial evolution 

to produce solutions to problems for varying difficulty, examples of which are provided 

in Figure 2.1 and Figure 2.2 [Nwamba, 2009]. It has three inputs: a fitness function, a 

representation, and a set of strategy parameters. The representation specifies the form of a 

candidate solution for the problem to be optimized. Commonly used examples of 

representations are bit strings, real valued vectors and trees. The fitness function maps 

each representation to a metric that determines how well that representation solves the 

problem. The final input, the set of parameters, controls how the EA will perform by 

managing how the various EA operators behave. These parameters include the population 

size, the offspring size and the mutation rate, among others.  

 

 

 

Figure 2.1. Example of Well-behaved Search Space [Nwamba, 2009]. 
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The internal processes of a typical EA are shown in Figure 2.3. The first step is 

the creation of an initial population comprised of individuals encoding candidate 

solutions. Initialization can be performed in a variety of ways, including randomly, with a 

user defined heuristic, with results seeded from a previous run, or any combination of 

these or other methods. Each of these individuals is then evaluated and assigned a fitness 

value, indicating the quality of its particular solution. At this point, the evolutionary cycle 

begins. The first step in the evolutionary cycle is to select parents that will produce 

offspring. These parents can be selected in many ways, either randomly or by introducing 

some form of bias towards picking fitter individuals.  

 

 

 

Figure 2.2. Example of an Ill-behaved Search Space [Nwamba, 2009]. 
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Figure 2.3. The Evolutionary Cycle [Nwamba, 2009]. 

 

 

After parents are selected, an offspring is created by using recombination. This 

results in an offspring that has some of the information contained in each parent 

participating in the offspring’s creation. After being generated, the offspring undergoes 

mutation, modifying its genes slightly, altering the solution that it represents. This 

modification can vary significantly in severity, and might not even happen at all for a 

given offspring. Mutation exists to introduce new genetic material and maintain some 

level of diversity in the population, as without it, genes needed to produce a particularly 

good solution might disappear from the population entirely, assuming they were ever 

present to begin with. The offspring are evaluated and assigned a fitness value, just as the 

initial population was. The final step in the evolutionary cycle is to select survivors. 

These survivors will continue to exist in the algorithm and possibly generate more 

offspring for at least another generation. 
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There are many different ways to select survivors, most of which are biased 

towards selecting stronger individuals to survive. The survivors that are selected repeat 

the evolutionary cycle, creating offspring and selecting survivors until some termination 

criteria are met. These criteria can be based on a variety of things such as the number of 

fitness evaluations used, the amount of time that has passed, or the quality of the best 

available solution. Once the stopping criteria is met, the individual with the highest 

fitness value ever found produces the EAs output in the form of its encoded solution, 

representing the best solution that was discovered. 

 

2.4. DIVERSITY IN AN EVOLUTIONARY ALGORITHM 

Evolutionary Algorithms have been used for optimization, automatic 

programming, data analysis and prediction, genomics, evolutionary neural networks, and 

so forth [Mitchell, 1998]. Reducing computation time needed to reach optimal solutions 

would be beneficial. It is expected that if the initial population is more diverse, then the 

performance of the algorithm may be improved [Burke, Gustafson and Kendall, 2004; 

Zitzler, Deb and Thiele, 2000]. Usually the initial population is generated randomly and 

sized empirically [Eiben, Hinterding and Michalewicz, 1999]. The use of diversity can 

help to address the population size, at least for problems where diversity can be 

determined [Diaz-Gomez and Hougen, 2007]. 

It is recognized that diversity is important in evolutionary computation [Leung, 

Gao and Xu, 1997] both to avoid premature convergence [Back, 1996] and as a stopping 

criterion. The literature regarding population size is rich [Pelikan, Goldberg and 

Bayesian, 2000] and important because the initial population provides diversity to the EA 
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[Mitchell, 1998]. If the population’s diversity is not high enough, then an optimum 

cannot be reached [Alander, 1992]. Further, if the population is quite large, then the 

algorithm could expend more computation time in finding solutions [Alander, 1992]. 

Additionally, the quality of the input is quite important. The initial population problem is 

to provide the building blocks necessary to solve the problem [Goldberg, Deb and Clark, 

1992]; if there are not enough building blocks, then it is almost impossible for the 

algorithm to reach the goal [Goldberg, Deb and Clark, 1992]. 

In most of the evolutionary algorithms the search for the local optima depends on 

two critical processes: exploration of the search space and exploitation of the knowledge 

base collected during the search process. The evolutionary algorithms is said to have a 

good behavior when equilibrium is obtained between the two processes. If the 

exploitation process is dominant with respect to the exploration process, the population 

loses its diversity and the evolutionary algorithm remains into a situation called 

premature convergence. Similarly, if the exploration process is dominant with respect to 

the exploitation process, the evolutionary algorithm wastes too much time on exploring 

unwanted and uninteresting places of the search space, leading to slow convergence. 

The question arises of how to control the relationship between exploration and 

exploitation processes, so that a good convergence can be obtained. Careful selection of 

evolutionary algorithm operators and their parameters can assure equilibrium between 

exploration and exploitation. Since exploration of the evolutionary algorithm depends 

directly on the population diversity, this can be considered as an importance subject 

which influence the exploration and exploitation processes. So, finding a suitable trade-
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off between exploration and exploitation processes can be done by controlling the 

population diversity.  

Different ways of affecting the population diversity in evolutionary algorithms are 

based on:  

 Introducing new and ideally useful information into the population space (by 

replacing some bad solutions with new solutions) when its diversity level is very 

low [Smuc, 2002]. 

 Use alternatively mutation or recombination with selection, based on the current 

population diversity [Ursem, 2002]. The reason behind this logic is that mutation 

normally increases the population diversity while recombination and selection 

decrease it. 

 Separating the population into sub-populations on which separate independent 

algorithms are executed, the information exchange between the sub-populations 

being guaranteed by a migration process. The migration can inject a “restoring” of 

a sub-population with low diversity [Cantu-Paz, 1999]. Since the parameters of 

the evolutionary algorithm greatly influence the evolution of the population 

diversity, the method proposed in this research combines the problem of 

controlling the population diversity and that of parameter adaptation are mixed 

with the final objective of injecting a good behavior of the algorithm.  

 

Building blocks are answers to sub-parts of a problem which can assist in the 

development of good solutions to the whole problem. Building blocks are normally 

identified as important elements in the successful implementation of evolutionary 
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algorithms. In this research different models are used as building blocks in understanding 

the structure of problem, fine tuning the EA, and eventually arriving at a good solution 

for the whole problem. 

 

2.5. MULTI-TRAVELING SALESMAN PROBLEM 

The idea of the Traveling Salesman Problem (TSP) is to find a tour of a given 

number of cities, visiting each city exactly once and returning to the starting city, where 

the length of this tour is minimized. The first instance of the traveling salesman problem 

was from Euler in 1759, whose problem was to move a knight to every position on a 

chess board exactly once. The standard or symmetric traveling salesman problem can be 

stated mathematically as follows: Given a weighted graph G = (V, E) where the weight cij 

on the edge between nodes i and j is a non-negative value, find the tour of all nodes that 

has the minimum total cost. 

The traveling salesman problem has many different real world applications, 

making it a very popular problem to solve. For example, some instances of the vehicle 

routing problem can be modelled as a traveling salesman problem. Here the problem is to 

find which customers should be served by which vehicles and the minimum number of 

vehicles needed to serve each customer. There are different variations of this problem 

including finding the minimum time to serve all customers. We can solve some of these 

problems as the TSP. 

In general, an algorithm that gives an optimal solution in a shorter amount of time 

is the best. Traveling salesman problem has been proven to be NP-hard [Bryant, 2000], 

so there is no known algorithm that will solve it in polynomial time. Sacrifices have to be 
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made in terms of optimality in order to get a good answer in a shorter time. Many 

algorithms have been tried for the traveling salesman problem. The scheduling of jobs on 

a single machine given the time it takes for each job and the time it takes to prepare the 

machine for each job is also TSP. Here the main aim is to minimize the total time to 

process each job. A robot must perform many different operations to complete a process. 

In this research, as opposed to the scheduling of jobs on a machine, there are precedence 

constraints. This is an example of a problem that cannot be modelled by a TSP, but 

methods used to solve the TSP may be adapted to solve this problem. 

To date, no efficient algorithm exists for the solution of a large scale multi-TSP, 

such as having multiple sources and facilities. Generally, facilities are clustered together 

and assigned to different trucks, thus converting the large scale multi-TSP problem into 

multiple small scale TSP problems. Unfortunately, a traditional greedy algorithm 

mechanism doesn’t help decision-makers explore the correct solution space. Also, exact 

solutions using greedy algorithms become infeasible as the problem size drastically 

increase due to large increase in computation time [Bektas, 2006]. So, in this research an 

evolutionary algorithm is developed to generate a range of solutions for a given search 

space. The ability of evolutionary algorithms to search a solution space and selectively 

focus on promising combinations of criteria makes them ideally suited to these type of 

complex decision problems. 

 

2.6. FOBs BACKGROUND 

FOBs provide critical support for soldiers during tactical operations on foreign 

soil. At the height of recent operations, the total number of U.S. and coalition FOBs were 
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approximately 400 in Afghanistan and 300 in Iraq [Defense Management, 2009]. 

Department of Defense expenditures on FOBs show how important FOBs are to U.S. 

peacekeeping efforts. The annual amount of money spent on construction of FOBs 

increased to $6.2b from $4.5b spent by the U.S. Army Corps of Engineers (USACE) 

between 2002 and 2008 [Defense Management, 2009]. Table 2.1 illustrates the types of 

FOBs which are built depending on duration, base type and population size. 

 

 

Table 2.1. FOB Types [Noblis, 2010]. 

By Duration 

 

US Army Corps                                                           Contingency                                                 Enduring           

 of Engineers                  Organic         Initial                  Temporary            Semi-permanent          Permanent 

 <90 days      <6 months          <24 months      

 

Army FM 3-34                                     Initial                Temporary             Semi-permanent 

                                                            <6 months          6-24 months            2-10 years      

USAREUR                                           Initial                Temporary            Semi-permanent 

“Red Book”                                        <6 months          6-24 months           2-25 years      

USCENTCOM                                                            Contingency                                               Permanent 

“Sand Book” Expeditionary       Initial        Temporary 

  

By Base Type                Forward Operating                 Main Operations                                          Enduring  

                                       Base                                        Base                                                              Base 

 

 

By Size Platoon-Company                  Battalion- Brigade                                        Division 

 

 

 

 

A typical FOB (Table 2.2) may contain some or all of the following facilities 

based on the mission supported: life support areas, toilet/shower facilities, logistical 

support facilities, dining facilities, postal facilities, laundry collection and distribution 

point, aviation facilities, communication and network center facilities, medical facilities, 
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motor pool facilities, fuel storage facilities, waste collection facilities, ammunition supply 

points, training facilities, morale‐welfare‐recreation (MWR) facilities, mortuary facilities, 

fire protection , force protection, barber facilities, tailoring facilities and detention centers 

[Department of the Army, 2008]. Other types of FOBs have variations of the above 

facilities in terms of equipment used and the number of people the facility can support. 

Based on Table 2.2, five different sizes of base camps are constructed, to test the 

efficiency of EAs developed in this research. The components involved with all the five 

base camp sizes are carefully chosen in such a way that the layouts represent a very 

small, small, medium, large and a very large size base camp.  

 

 

Table 2.2. Facilities Modeled for Battalion Size (600-1000 soldiers). 

Dining Facilities Parking Lot Direct 

Exchange 

Wastewater 

Treatment 

Training Area 

Laundry Motor Pool Barber Solidwaste 

Treatment 

Tailoring 

Kennel Ammunition 

Holding Area 

Religious 

Services 

Security 

Checkpoint1 

Mortuary 

Latrines Direct Support 

Maintenance 

Electrical 

Generators 

Security 

Checkpoint2 

Military Police 

Showers Fire Protection  Electrical 

Distribution 

Tactical 

Operations 

Center 

Bunkers 

Medical Supply 

Warehouse 

Water 

Purification 

Administrative 

Services 

Airfield 

Communication 

/Network Center 

Postal facility Water Storage Morale Welfare 

center 

Staging Areas 

Housing Roads Water 

Distribution 

Educational 

Services 

Detention 

Areas 
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The designs used in the planning of U.S. Army base camps, Life support areas, 

Advanced operations base, etc., have not changed considerably in the last 200 plus years 

[Department of Army, 2009]. The current capabilities of the U.S. Army do not address 

base camp problems from a holistic systems based approach. Lack of systems based 

approaches has resulted in poor designs and operations maintenance in-terms of health 

and safety, loss of operational flexibility and excessive capital and operating costs (i.e. 

cost of utilities/unit and overall capital/soldier/year). Inefficient design resulted in 

excessive consumable resource demands namely fuel, water, and food. 

 

2.7. NEED FOR OPTIMIZED TECHNIQUES 

The optimized techniques for logistics distribution inside the base camp 

considering priority based on-demand supply of resources at each facility will be able to 

increase the efficiency of the operation of the facilities and decrease the fuel consumed 

by the delivery trucks. The current scope of FOB discussed in this research includes base 

camps of different sizes ranging from 50 to 2,000 personnel. For base camps of these 

sizes Potable Water, Sanitary Waste (Grey and Black Water) and Solid Waste are 

handled by on camp logistics vehicles using trucks and tankers. 

Planning techniques and the policies [Trainor, Brazil & Lindberg, 2008] for 

building FOBs vary widely between different camps. Manuals such as ‘Redbook’ 

[Contingency Operations, 2001] and ‘Sandbook’ [United States Central Command, 2009] 

serve to create some guidelines for FOB planning; however, these resources are theatre 

specific, and do not contain adequate data regarding resource utilization, which is much-

needed information for logistical planning. Very little data seems to have been collected 
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regarding resource utilization for FOBs, leading to increased difficulty in base camp 

planning. These in turn create inefficiency, waste, and longer lead times in deployment of 

essential facilities and force protection, which may increase risk exposure to Soldiers. 

Poor planning of FOBs can result in logistical difficulties, which may increase 

transportation time and expense, and increase risk exposure to convoys and support 

personnel. 

When considered from the point of view of a city planner, power utilities and 

logistics require a long-term perspective and long-term infrastructure operation and 

maintenance commitments. From a financial perspective, investment decisions based on 

cost benefits will be realized only over a long period of time. In this case, all the utility 

infrastructure investments throughout all the utility sectors could best be forced through 

the planning that takes place in the development phase, before the infrastructure solutions 

are selected and designed [Planning for Sustainability, 2012]. The mission of the entire 

city planning from utilities perspective is to provide utilities which are in compliance 

with all applicable standards at an affordable price. Unlike cities, most base camp 

facilities share interdependencies with other facilities, requiring coordinated strategies to 

improve resource utilization. Because of this, base camp design requires a system-wide 

approach to planning, which can drive a strategic shift from a facility-by-facility focus to 

one of utilities as systems. 

With proper techniques, the models can be used to optimize the logistic needs 

inside the camp and eventually minimize fuel consumption and logistic delivery cost. 

Optimization and redesign of the utility input and output streams will be critical in 



 

 

30 

developing a more sustainable FOB; in terms of how much of these streams can be 

converted to Power, Fuel and Energy. 

A need exists for standardization and modularization in base camp planning in 

order to increase the efficiency and operational effectiveness of FOBs. Preliminary 

research efforts are being undertaken to develop methods of modeling and designing of 

FOBs using a general approach so that they may be applied to various mission types.  

 

2.8. INTERRELATIONSHIPS BETWEEN FACILITIES 

Figure 2.4 and Figure 2.5 show some of the feedback loops between the models 

and the data that need to be taken into consideration while planning. Different colors in 

Figure 2.4 and Figure 2.5 represent different modules and utilities. The complex 

interrelationships between the models and the data represent the dynamic operating 

systems of a FOB. The data and system analysis are unique to each model and the 

interaction with other models makes the FOB a complex system. Some other 

interrelationships that should be taken into account include, for example: the greater the 

number of generators in the design, the greater the fuel usage and so more personnel are 

needed to support the fuel delivery and maintenance. Or higher bottled water usage 

generates more solid waste and so more trucks are needed to pick up the solid waste. 

Proper understanding of the complex interactions between base camp subsystems makes 

it possible to develop models and algorithms required to find and eliminate sources of 

inefficiency currently found in FOBs. 
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Figure 2.4. FOB Feedback Loops. 
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Figure 2.5. FOB Facilities Interactions. 

 

 

2.9. NEED FOR ACCURATE ESTIMATION OF RESOURCES 

Accurate estimation of the resource requirements namely power, fuel, water and 

waste taking into consideration different operational parameters is critical to improve the 

efficiency and effectiveness of operations and life cycle impacts. The overall approach 

should integrate all the complex adaptive systems involved for use in a real time 

predicative and analytical manner. Inaccurate estimation of the resource demands 

resulted in shortage of resources, which affected the day to day operation of the base 
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camp. The fact that no life cycle approach has been taken into consideration while 

planning has resulted in U.S. Army competing with host nations for local resources, 

which had a detrimental impact on the overall mission. The better the estimation of the 

resources, the better is the overall efficiency of the FOB. 

To apply a systems engineering approach with regard to improving FOB design, it 

is necessary to understand how existing FOB subsystems interact and operate. A systems 

engineering methodology should be applied across all three functional components of 

base camp development: planning/design, construction/deconstruction, and 

operations/management [Department of the Army, 2009]. Advanced planning of resource 

utilization should not only result in reduced government expense but in lower risk 

exposure to personnel during logistical operations. 

 

2.10. PREVIOUS WORK 

There are only a few tools currently available in modeling of base camps, such as 

Theater Construction Management System (TCMS) and Geographical Base Engineer 

Support Tool (GeoBEST) [United States Army, 2011]. The tools provide a list of base 

camp and facility designs to help the base camp planner. But the present techniques used 

in modeling base camps in both the tools involve static models, where coupled effects of 

interdependencies are not taken into account, making the existing models less efficient in 

terms of resource estimation [Marlart, 2003]. Some of the other interrelationships that 

have to be taken into account are, for example: more the number of generators in the 

design more is the fuel usage and so more personnel are needed to support the fuel 

delivery and maintenance. Another example could be, more bottled water usage generates 
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more solid waste and so more trucks are needed to pick up the solid waste. Proper 

understanding of the complex interactions between base camp subsystems will make it 

possible to develop the models and algorithms required to find and eliminate sources of 

inefficiency currently found in FOBs. In this research, a resource calculator that focuses 

on methods is introduced for improving the efficiency of FOBs by accurately estimating 

the quantities of resources required by a given FOB based on its operational parameters. 

The resource calculator introduced is a dynamic model which takes into account all the 

important aspects of the base camp. 

The Detail Component Analysis Model (DCAM) and tool were developed using 

the research performed by Putnam [2012]. The main intent of the research was to make a 

realistic model of a 150-man Force Provider Kit. Other goals of his research were to 

reduce the number of components used by changing the layout of the design by 

increasing the efficiency of components. The kit is a collection of prior known 

components that are normally sent to the base camp location. Research performed by 

Gealy [2012] looked into general logistics modeling and project management practices 

for contingency basing. Research performed by Nottage [2014] looked into using 

adaptive agents and hybridization of those agents to improve resource allocation in 

dynamic systems and environments. The agents developed are applied to base camps 

using Model-based Systems Engineering (MBSE) processes to accomplish the goals. 

Although, all the researches were really efficient internal to a particular model, none of 

the improvements particular to a model could be transferred to other models/tools for a 

better overall base camp design.     
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3. MATHEMATICAL MODEL FRAMEWORK 

Operational and logistical inefficiencies, excessive resource demands, and 

increased costs are some of the issues caused by poor initial planning of contingency 

bases. Base camp planning requires broad support across a diverse set of personnel, 

which includes designers, planners, soldiers and maintenance personnel. After 

identification of a need for a FOB, designers and planners adopt different tools to model 

the facilities. The occupants, namely the supported units will add extra details to the 

design and the contractors and/or soldiers then start construction of the facilities. During 

the optimization of FOBs, concerns from all the parties must be taken into account. The 

whole planning process is the result of balancing various compromises between mission 

effectiveness and overall cost of construction, operation, and maintenance by 

continuously altering the design at each step. 

The U.S. military is currently seeking methods to increase the effectiveness and 

efficiency of base camps, driven largely by the amounts of money being spent on fuel and 

water logistics for FOBs. Finding ways to reduce costs while maintaining operational 

effectiveness and flexibility are key Department of Defense (DoD) priorities. One key 

area of emphasis is finding ways to minimize the logistical footprint of FOBs by 

developing more effective resource allocation schemes. Finding ways to increase 

efficiency without reducing effectiveness of base camp operations will lead to reduced 

requirements for contractor support systems and personnel. 

The mathematical model introduced in this section, helps the planner to accurately 

understand and modify the coupled effects of logistics, and also allows helps in 

identifying missing data for the design under consideration. The dynamic architecture 
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model provides designers with a flexible tool for base camp design and operational 

evaluation of facilities, and is extensible to allow for other dynamic design tools, such as 

automated generation of power distribution system design for the base. The output of the 

mathematical model allows the designer to make a better selection regarding the quantity 

and type of facilities required to increase the base camp’s operational effectiveness and 

logistical support system capabilities. Once a combination of facilities are selected by the 

designer, the logistic model in section 4 and power model in section 5 can be used for in-

depth analysis. 

 

3.1. METHODOLOGY 

Applying systems engineering approach to the design of base camps requires a 

thorough understanding of the sub-system interactions within a FOB. Mathematical 

modeling of FOBs [Poreddy & Daniels, 2012] begins with identifying the various 

functional blocks or structures acquired from structural diagramming of FOB subsystems. 

Forty facility types were identified and necessary mathematical relationships were 

developed. This model was developed using an abstract modeling technique to represent 

the resource requirements for bases of various sizes. For the purpose of developing the 

mathematical model we will use a hypothetical base camp involving 600 operational 

soldiers performing the mission, and the necessary support personnel to operate the base 

camp. 

Each facility within the base camp is treated as an ‘object,’ with its own input and 

output parameters. These parameters are the resource requirements of the object and 

resources created by the object. The primary resources are: 
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1. Electricity (Watts): The total electricity that will be consumed/generated 

2. Fuel (Gallons): The total fuel required 

3. Potable Water (Gallons): Total potable water consumed across all facilities 

4. Bottled Water (Gallons): Total bottled water consumed across all facilities 

5. Storage area (Sq. ft.): Storage space used across all facilities 

6. Personnel (Number): Number of support personnel required 

7. Gray Waste Water (Gallons): Waste water (Gray) generated from all the facilities 

8. Black Waste Water (Gallons): Waste water (Black) generated from all the 

facilities 

9. Solid Waste (lbs.): Total solid waste generated from all the facilities 

10. Food Service (lbs. of food/day): Food consumed per day 

11. Footprint (Sq. ft.): Total footprint area 

12. Maintenance (Hrs. per day): Total Maintenance hours for all the facilities 

 

Many of the base camp facilities will be mission specific and user defined. For 

example, the planner may decide that the base camp requires a kennel. A kennel is a 

mission-specific facility; however, it will generate demand for water, power, support 

staff, waste management, and other resources. This will have a discrete impact on the 

base camp, for example, more support personnel requires more habitation, which in 

return will result in more power and water demand, which in return will require more 

power and water personnel. The model should capture all the important interrelationships 

between the forty facilities and the important resources. The calculation of the overall 

resource requirements should take into account all the changes in the interrelationships 
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every time. Based on the relationship, a change in the resource requirement not only 

changes the requirement of that structure but may affect other structure resource 

requirement. 

 

3.2. ESTABLISHING THE MODEL 

Some of the individual consumption/generation numbers for the FOB facilities are 

taken from the field manuals, although a significant amount of data was generated during 

the project with the cooperation of Department of Defense personnel. This was necessary 

to compensate for a general lack of available data. This data was generated using a 

combination of observations from United States Army Corps of Engineers personnel and 

the results of engineering estimations to provide realistic representations of base camp 

components. The average distributions of the combination of observations are used as 

coefficients of linear equations. The set of linear equations are solved at the end of the 

simulation to calculate the resource needs of the base camp considered. 

Figure 3.1 represents the overall resource calculator block diagram. Number of 

soldiers, Mission type and Geographic location form the overall inputs of the resource 

calculator. All the consumption/generation numbers of the FOB facilities are used as 

coefficients of set of linear equations. A set of initial coefficients based on the past data 

are used to solve a list of equations, and the outputs represent the 12 requirement needs 

for that base camp size. The coefficients are further refined by taking into account a 

combination of subject matter experts’ advice plus linear distributions of the past data. 

Once the refined coefficients are available, the list of equations is solved again with the 
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updated coefficients to get the final 12 resource requirement needs for the base camp 

under consideration.  

 

 

 

Figure 3.1. Resource Calculator Block Diagram. 

 

 

 

The initial coefficients and the linear distributions used in the simulation vary a 

lot based on the number of soldiers selected, mission type and geographic location. From 

the data gathered and generated for the model, a system of approximately 500 linear 

equations was compiled to represent the resource inputs and outputs of all the facilities. 

With any incremental change in resource requirements, the system of linear equations is 

re-solved to compensate for the change. An advanced integrated linear algebra equation 

solver module was written in python programming language to solve the equations on the 

go and calculate the total estimated resource values for all facilities based on the 

interdependencies between facilities in the base camp. Table 2.2 and Table 3.1 show 



 

 

40 

some of the list of facilities that were taken into account while modeling a 600 soldier 

sized camp and 200 soldier sized camp. 

 

 

Table 3.1. Facilities Modeled for Force Provider Size (100-200 soldiers). 

 Dining 

Facilities 

Electrical 

Distribution 

Force 

Protection 

Housing Latrines 

Laundry Showers Tactical 

Operations 

center 

Water 

Distribution 

 

 

 

 

Equation (1) and Equation (2) are sums of the total electricity and diesel fuel 

consumed across all facilities inside the battalion sized FOB. Similar equations exist for 

potable water, bottled water, required storage area, support personnel, gray water and 

black water waste, solid waste, food service, total camp area, and maintenance hours 

required. The code snippet shown in Figure 3.2 shows how the array values are set up in 

solver for a Dining Facility. Figure 3.3 shows the constants used in the solver for 

calculating the total resource requirements for a 600 soldier sized camp. A similar 

procedure is used to set up the array values for each of the remaining 39 facilities listed in 

Table 2.2. No entry for a coefficient in the model is substituted by taking a linear average 

distribution of past data. 

 

ElectricityConsumedkW = ∑ 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡(𝑖)40
1 ∗  𝐹𝑎𝑐𝑖𝑙𝑖𝑡𝑦(𝑖) ------         (1) 

DieselFuel = ∑ 𝐷𝑖𝑒𝑠𝑒𝑙𝐹𝑢𝑒𝑙 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡(𝑖)40
1 ∗  𝐹𝑎𝑐𝑖𝑙𝑖𝑡𝑦(𝑖)   --------                           (2) 
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Resource calculator introduced in this section has significant advantages over the 

existing methods used for base camp planning such as: 

1. Present techniques used involve static models, whereas resource calculator introduced 

in this section is a dynamic model which takes into account different aspects of the 

base camp like mission, location and size of the camp. 

2. The dependencies between facilities for each base camp can be easily accessed and 

modified. 

3. The resource calculator takes minimalistic run-time in executing the code for a 

proposed base camp design. 

4. The resource calculator could be used to drive other detailed engineering analysis 

tools such as serving as input to power distribution analysis tool. 

5. The resource calculator could be easily tied to external problem solvers such as 

Evolutionary algorithms to add intelligence to the overall design and to study the 

overall mission dynamics. 

 

 

 

Figure 3.2. Dining Facilities Array Numbers in Equation Solver for a Battalion Size. 
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Figure 3.3. Constants Used in Equation Solver for a Battalion Size. 

 

 

 

3.3. OUTPUTS OF MATHEMATICAL MODEL 

Figure 3.4 shows the output of the solver code which is the cumulative total 

consumption/generation across all 40 facilities modeled for a 600 soldier sized base 

camp. Figure 3.5 shows the output of the solver code which is the cumulative total 

consumption/generation across all 9 facilities modeled for a 200 soldier sized base camp.  

 

 

 

 

 

 



 

 

43 

 

 

Figure 3.4. Total Consumption/Generation Numbers across all 40 facilities- Battalion 

Size (600 soldiers). 
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Figure 3.5. Total Consumption/Generation Numbers across all 9 Facilities- Force 

Provider Size (200 soldiers). 

 

 

3.4. EXISTING METHODOLOGIES COMPARISON 

Table 3.2 is the current utility requirement estimation methodology used by 

planners which only takes into account of the number of soldiers on base [Noblis, 2010]. 

The utility requirements per person per day are constant for base camp size ranging from 

500 to 10,000 (Table 3.3). Using this general estimation methodology for all the base 

camp sizes ranging from 500 to 10,000 resulted in over-estimation of resources for small 

base camps and under-estimation of resources for large base camps. The over and under 



 

 

45 

estimation of resources for different base camp sizes is a result of the general estimation 

methodology not giving high importance to the number and types of facilities for 

different base camp sizes. 

 

 

Table 3.2. General Utility Requirements Using Existing Methodologies [Noblis, 2010]. 

Base camp size Potable Water 

(Gallons Per Day) 

Sewage 

(Gallons Per Day) 

Electricity 

(KW) 

100 (Very Small) 2,500 1,750 36.4 

300 (Small) 7,500 5,250 109.2 

500 (Medium) 12,500 8,750 182 

1,500 (Large) 37,500 26,250 486 

3,000 (Very Large) 75,000 52,500 988 

10,000 (Super FOB) 250,000 175,000 3,293 

 

 

Table 3.3. General Utility Requirements (Per Person Per Day) [Noblis, 2010]. 

Base camp size Potable Water 

(Gallons Per 

Day/Person) 

Sewage (Gallons 

Per Day/Person) 

Electricity(KW/day/

Person) 

100 (Very Small) 25 17.5 0.364 

300 (Small) 25 17.5 0.364 

500 (Medium) 25 17.5 0.364 

1,500 (Large) 25 17.5 0.364 

3,000 (Very Large) 25 17.5 0.3293 

10,000 (Super FOB) 25 17.5 0.3293 
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Table 3.4 reports the results of the dynamic mathematical model introduced in 

this section for different base camp sizes. The model considered number of factors such 

as the number of soldiers on base camp, mission provided, number of facilities, type of 

facilities and location information before estimating the utility requirements for different 

base camp sizes. Table 3.5 tabulates the results from the mathematical model for different 

base camp sizes. When compared with existing methodologies the results from the model 

introduced indicate a more accurate representation with less usage of utility requirements 

(per person per day) for smaller base camps and high usage of utility requirements (per 

person per day) for larger base camps. 

 

 

Table 3.4. General Utility Requirements Using Dynamic Mathematical Model. 

Base camp size Potable Water 

(Gallons Per 

Day) 

Sewage 

(Gallons Per Day) 

Electricity 

(KW) 

100 (Very Small) 4,300 4,300 243 

300 (Small) 15,550 15,529 939 

500 (Medium) 38,236 34,589 2,928 

1,500 (Large) 114,708 103,769 8,784 

3,000 (Very Large) 124,200 123,900 10,500 

10,000 (Super FOB) 413,000 410,000 35,000 
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Table 3.5. General Utility Requirements (Per Person Per Day). 

Base camp size Potable Water 

(Gallons Per 

Day/Person) 

Sewage  

(Gallons Per 

Day/Person) 

Electricity 

(KW/day/Person) 

100 (Very Small) 37.4 37.3 2.1 

300 (Small) 37.4 37.3 2.3 

500 (Medium) 37.4 37.3 3.0 

1,500 (Large) 37.4 37.3 3.0 

3,000 (Very Large) 41.4 41.3 3.5 

10,000 (Super FOB) 41.4 41.3 3.5 

 

 

 

3.5. GOODNESS OF FIT TEST FOR LINEARITY 

Although, the model only solves linear equations, the model takes into account lot 

of non-linearities. The non-linearities are handled by the model through facility 

interrelationships. If the shower facility has an increase in potable water usage, then this 

would extend to the overall water distribution system as it requires more transportation of 

water. More transportation increases the fuel requirements. Since the model is an iterative 

process, the non-linearities are continuously taken into account through the change in 

coefficients in the next iteration and solved again. Effectively the coefficients in the 

model in one iteration become cross-correlation coefficients in the next iteration. It 

should be noted that the coefficients for these facilities are not linearly scalable. 

Larger size camps coefficients and values will not always work for smaller 

camps. Each coefficient has an associated soldier population range it is accurate for. 

Some coefficients, especially for smaller base camp’s facilities have constants instead of 
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percentages. For example, a medical facility requires 2 personnel, regardless if there are 

50 soldiers or 100 soldiers. 

With a significance level (alpha = 0.05) and degrees of freedom (=3), the test 

statistic (X
2
 = ∑ ((Oi -  Ei )

2 
/ Ei)) becomes 0.3 (Table 3.6). Since the calculated value 

does not lie in the critical region for this observation. There is no evidence, at the 5% 

significance level, to suggest that the model is not fair in terms of linearity. 

 

 

Table 3.6. Chi-square Test for Goodness of Fit (For 300 Soldier Size Base camp Power 

Model Samples). 

Score Oi Ei (Oi -  Ei )
2 

/ Ei 

1 2.8 3.0 0.013 

2 3.2 3.0 0.013 

3 3.8 3.0 0.213 

4 3.0 3.0 0 

 

 

 

3.6. VALIDATION OF MATHEMATICAL MODEL 

Validation of mathematical model was done in multiple stages where a subject 

matter expert (Department of Defense (DOD) personnel) was in the loop of this model to 

validate the coefficients used to solve a particular base camp size, and the overall results. 

Some of the data was generated using a combination of observations from United States 

Army Corps of Engineers personnel and the engineering estimation results to provide 
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realistic representations of base camp components. The average distributions of the 

combination of observations are used as coefficients of linear equations. With any type of 

change in resource requirements, the systems of linear equations are re-solved to 

compensate for the change. No entry for a coefficient in the model is substituted by 

taking a linear average distribution of past data. If past data is missing, data is collected 

from multiple subject matter experts who worked on similar locations, and using the 

above procedure, it is refined further to suit that particular type of base camp size. In 

addition to the soldiers on the base camp, the model considers the contractors associated 

with the base camp and their dependencies and coupled effects of facilities on other 

facilities. 

After running the model for numerous combinations involving number of 

soldiers, mission type and geographic locations with selected facilities, the results and 

other facility data were distributed to numerous DoD personnel who designed and 

worked on similar environments to test the validity of the data. Positive feedback was 

given by the most of the personnel who verified the validity of the data, although the 

given military nature, the true values of an exact base camp type and facility 

combinations cannot be given in this work. Part of the feedback was suggestions on how 

the model can be further improved by adding/modifying existing facility components to 

make it even more accurate.  When compared with existing policies [Noblis, 2010] where 

there is no holistic systems approach, the mathematical model started with treating each 

facility/component as an object having variety of properties which can be passed on to 

other objects. All the interactions in the mathematical model considered were different, 

based on the type of camp and also tailored to fit wide variety of conditions. In 



 

 

50 

comparison, the existing policies are very generic in nature, where similar principles are 

used in estimating the resources needed for all the types of base camps. 

 

3.7. COMPARISON WITH METERED DATA 

In order to do a direct comparison between the mathematical model and existing 

model (Noblis, 2010); to the best of the knowledge the camp site and other parameters 

information are simulated in the mathematical model. The data from the mathematical 

model is then directly compared with the existing data (Noblis, 2010) related to a 

particular site. The U.S. Army Logistics Innovation Agency (LIA) is currently metering 

energy consumption on three contingency bases as part of its Contingency Base Demand 

Data Collection project. Given the military nature, the values of all the utilities and camp 

site information cannot be given in this work. Only few metered utility consumption 

values recorded will be used from the report [Contingency Base Demand Data, 2015] to 

compare data from the mathematical model to the [Noblis, 2010]. Three different types of 

base camp metered energy values for six types of facilities provided in the report 

[Contingency Base Demand Data, 2015] were used for comparison purposes.  An 

example comparison is discussed below. 

 Metered shower facility peak power [kW] from [11] = 33 kW 

 Estimated shower facility value (from mathematical model) = 30.47 kW ( -8% 

deviation from metered value) 

 Estimated shower facility value (from [Noblis, 2010] report) = 22 kW( -33% 

deviation from metered value) 

When compared with existing methodologies (maximum of 42% deviation from 

the metered value for six types of facilities), the results from the mathematical model 
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introduced in this research indicate a more accurate representation (maximum of 16% 

deviation from the metered value for six types of facilities) of the base camps with less 

usage of utility requirements (per person per day) for smaller base camps and high usage 

of utility requirements (per person per day) for larger base camps. The results of this 

model using this mathematical representation provided a better representation of the 

actual needs on a base camp when compared to previous methods [Noblis, 2010].  

 

3.8. BENEFITS OF MATHEMATICAL MODEL 

The model introduced in this section is used to estimate the resources required for 

each subsystem and for the overall base camp. The results of this model using this 

mathematical representation provided a higher level of accuracy when compared to 

previous methods [Noblis, 2010], although the given the military nature of the true values 

a comparison cannot be given in this work. The model framework is being applied to a 

forward operating base to synchronize all of the components of utility and logistic 

systems to deliver the right materiel at the right time to the right place. The information 

from the model can be used immediately by planners to improve FOB designs as well as 

logistical support systems [Bastian, 2011]. 

The dynamic mathematical model in combination with external algorithms add 

intelligence to the overall base camp design and allows the manager/decision maker to 

study overall mission dynamics. In addition to the soldiers on the base camp, the model 

considers the contractors associated with the base camp and their dependencies and 

coupled effects on other components. 
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Since model takes into account the first, second and third order effects of all 

components involved, the elements of the model can be modified and used for other 

complex system problems where there is a need to predict the resource utilization and 

associated interactions of each component present in the design. The framework easily 

allows the planner to do sensitivity analysis of required utilities for different base camp 

designs. The analysis could be used to check where the design might potentially break 

and subsequently giving the design planner a chance to improve the overall design. 

The framework could be further extended to provide the link between the energy 

system modeling software to the base camp system level model and the other lower level 

system needs. The models could be used to educate/train new personnel involved with the 

base camp. The mathematical model could also be used to drive in-depth analysis models 

which would assist the designer by calculating the exact needs of each component. For 

example the energy system model may be composed of individual electrical component 

models, which populate the electrical distribution system models, which are tightly 

coupled to the logistics, fuel, and manpower models, invoking behaviors which are 

translated to the appropriate component models. 

The information available with this model can also be used within an advanced 

design tool discussed in section 8, which has been proposed for automating and 

optimizing the design process of FOBs. Such a tool would be very useful for base camp 

planners in visualizing an FOB before it is created, or to visualize proposed changes to an 

existing FOB. These tools would lead to an increase in efficiency of resource utilization 

for FOBs, with the goal of reducing government expenditures and decreasing risk 

exposure to convoys and logistical support personnel. 
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4. LOGISTICS MODEL 

4.1. CURRENT BASE CAMP LOGISTIC DISTRIBUTION TECHNIQUES 

For most base camps, tactical assets are used for logistics delivery, when the 

delivery is done by the Army. When the contractors do come into delivery process for 

logistics delivery, they follow their own policies for delivery. If in case, a logistic 

delivery such as potable water is delivered using a tanker, remaining water after initial 

delivery is dumped just as a safety precaution. When it comes to bulk fuel delivery, 

estimated fuel (which is normally little less than the maximum storage capacity) is 

delivered by trucks and the remaining fuel if any is completely emptied into the storage 

system. Wastage pickup follows a similar logic like potable water: wastage from each 

facility is dumped at a collection point individually by the tactical assets. Multiple round 

trips by the tactical assets consume extra fuel creating a big inefficiency in the delivery 

scheme. So, there is a big need for accurate estimation of the logistics needs and efficient 

logistic delivery schemes to be followed inside a base camp to reduce the wastage of 

logistics. 

Base camp logistic delivery planning can be considered as a type of multi-TSP, 

but not a straight forward TSP. Base camp logistic delivery planning involves delivery of 

logistics using multiple delivery trucks to multiple facilities present on camp every day. 

Thus, each facility in the camp must be visited exactly once by any of the trucks. The key 

characteristics of the multi-TSP problem under consideration are to determine the source 

(single source, or multiple sources) and destination (fixed destination, or non-fixed 

destination for the overall multi-level EA). In the logistic planning case, all trucks depart 

from a single source. Additionally, every truck must return to the starting source thus has 
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a fixed destination. In addition to the above conditions, there are other conditions that 

have to be considered are listed in section 4.2., which makes it a multi-objective 

optimization, where finding a good solution in terms of optimal distance and processing 

speed have to be taken into account by all the algorithms, which could solve this 

problem. 

 

4.2. GENERAL LOGISTIC MODEL 

Figure 4.1 depicts a simple model [Gealy, 2012] of how logistics is handled inside 

the base camp. Each of the facilities (up to 200 facilities) inside the base camp is assumed 

to be connected to a local bladder of known capacity that is periodically filled by the 

logistic vehicle, which is either a truck or a tanker. Vehicles of known capacity are 

assumed to deliver logistic supplies inside the base camp based on the usage rate of each 

facility. Some of the facilities are assigned higher priority than other facilities, and those 

local bladders will be filled more regularly. The goal of this model is to optimize the 

route to be travelled by the logistics vehicles with set of constraints, using single/multiple 

trucks based on the resource needs of different facilities. 

The main goal in this model is to optimize the route travelled by one 

truck/multiple trucks at the start of the day, based on distance and priority of the facilities 

with following constraints taking into account. 

1. The route should start from the source bladder, and if you run out of a logistic in the 

truck for example: water, the truck can only return to the source for refilling of water. 

2. Each truck has its own capacity (e.g. 5,000 gallons) and vehicle specifications (e.g. 

fuel consumption, connect/disconnect times). 
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3. Each facility has its own consumption (e.g. 10,000 gallons/day) and Capacity (e.g.  

20,000 gallons local bladder). 

4. Each facility has its own minimum and maximum capacity level of the local bladder 

that it prefers to be maintained at. 

5. At the start of the simulation, the initial water level for each local bladder is known.  

 

  

 

Figure 4.1. Simple Logistics Model. 

 

 

 

4.3. EA INITIAL SETTINGS 

Before running the simulation it is assumed that the minimum and maximum 

water levels maintained at all the facilities are known. All the initial values, truck 

specifications, initial water levels, and the usage rates are stored in a data base. The 

algorithm iterates through a preset number of days, to determine the routes that will be 
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followed to maintain the water levels within these bounds. At the start of each day, the 

algorithm will check each facility to determine, whether the water level has gone below 

the minimum required level. If the water level of any facility goes down below the 

minimum required water level, that facility is added to a list that must be serviced that 

day. The algorithm optimizes the distance to be travelled by the truck with the priorities 

of the facility/facilities taken into account. The optimized schedule for the truck 

recommended by the algorithm is based on the above considerations ensuring that a 

sufficient amount of water is delivered by the truck on that day, and that the delivery 

eventually increases the water level of the facility/facilities served to the maximum water 

level. At the start of the day, if the water level of any of the facility/facilities is above the 

minimum water level, the algorithm simply ignores that facility for the truck to visit that 

particular day. The main logic behind ignoring the facility/facilities that are above the 

minimum level on that particular day is that the facilities are going to be taken care off 

the next day when the water level falls below the minimum level. At the end of the day, it 

is assumed that the water level decreases by the usage rate of that facility. Multiple 

refilling strategies are studied in this section to analyze the effect of particular refilling 

strategy for a given period of time. 

 

4.4. EA REPRESENTATION 

An evolutionary algorithm is used to determine the best refilling strategy. Figure 

4.2 shows how a simple problem is represented and solved based on the truck capacity. 

Facility ‘0’ represents the water source where the truck starts the day and ends the day. 

Facilities ‘1-5’ represent the components that are connected to source ‘0’. The main job 
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of the truck is to deliver sufficient water to the components that are connected to the 

source. Based on the shortest distance between facilities, the left side of the Figure 4.2 

represents the route to be followed by the truck assuming infinite truck capacity. The 

problem is represented and solved in an EA using a chromosome of length 6 bits (6 

components for this example) and the end solution is represented using a chromosome of 

7 bits long (solution size), which represents the route to be followed by the truck. The 

complexity increases as we add extra constraints, such as fixed truck capacity and usages 

of the facilities. The end solution, which is the route to be followed drastically changes, 

when the number of bits is increased from 7 bits to 25 bits for this simple case as shown 

on the right side of the Figure 4.2. Two-point crossover at a rate of 0.9 and random single 

bit mutation at a rate of 0.01 is used for running all the simulations in this section. Source 

and component facility connections with the location(x, y, z) co-ordinates are read from 

VFOBLITE
TM

 layout tool which internally uses ArcGIS [ArcGIS, 2013] for the exact 

geo-rectified values. Values of the truck specifications, local bladder capacities and usage 

values of each facility are read from army asset list database [TCMS, 2004].  

 

 

 

Figure 4.2. Simple Routing Problem Representation. 
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4.5. ALGORITHM VARIATIONS 

A different minimum and maximum level is added to the model for each facility 

to study the effects of different ways of filling the local bladders on the overall 

sustainability of the base camp. In this research, three different variations of the facility 

refill techniques are studied and the algorithm developed is applied to each case. The 

three refill techniques  are referred to as ‘fill regardless of level’, ‘fill only if below 

minimum level and completely fill’ and ‘fill only if below minimum level and fill only to 

a maximum level’ are studied over a term of 1 day, 7 days, 1 month, 1 year and 5 years. 

The variations will help the base camp planner to have more information to decide which 

algorithm variation is best applicable for the base camp under design.  

 

4.6. ALGORITHM OUTPUTS 

The algorithm outputs are the route for the truck/trucks to be followed each day, 

travel times, distances covered, water delivered at each facility, total fuel consumed by 

the truck and breaks in the route (based on the truck maximum run-time), so that it can be 

covered by other trucks. Other logistics supply models follow the same procedure as 

potable water while the logistics pickup such as waste follows an exact opposite logic of 

potable water. Rather than delivering water, the truck picks up waste from the local waste 

collection centers and dumps at the source, but the algorithm is the same. 

 

4.7. SOLUTION EXAMPLES 

For the purpose of experimental analysis, an example case is considered and the 

three scenarios described in the Algorithm Variations section are applied to study the 
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long term effects of the algorithm variations. The case considered consists of 1 source 

connected to 11 different facilities with each having different daily water usages, initial 

water levels and location information (x, y, z coordinates). The minimum and maximum 

level of the facilities to fill, for two of the algorithm variations are kept constant at 25% 

and 75% of the local bladder capacity respectively. Two trucks with different truck 

specifications and capacities of 5000 gallons and 1000 gallons are used to solve the 

problem using the three different algorithms discussed earlier. 

For a total of 50 runs, Figure 4.3, Figure 4.5 and Figure 4.7 summarizes the 

Average Water Delivered, Average Travel times and Average Source Refill Plots for 1 

Day, 7 Days, 1 Month, 1 Year and 5 Years using 5000 gallons capacity truck respectively 

using both evolutionary algorithm and simulated annealing techniques for the three 

algorithm variations namely ‘fill regardless of level’, ‘fill only if below minimum level 

and completely fill’ and ‘fill only if below minimum level and fill only to a maximum 

level’. Figure 4.4, Figure 4.6 and Figure 4.8 summarizes the Average Water Delivered, 

Average Travel times and Average Source Refill summary for 1 Day, 7 Days, 1 Month, 1 

Year and 5 Years using 1000 gallons capacity truck respectively using both evolutionary 

algorithm and simulated annealing techniques for the three algorithm variations. Of the 

three variations, ‘fill only if below minimum level and fill only to a maximum level’ 

performs better than the other two variations in terms of fewer gallons of water delivered, 

less travel time by the truck and fewer number of source refill rates.  
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Figure 4.3. Average Water Delivered for 1 Day, 7 Days, 1 Month, 1 Year and 5 Years 

Using 5000Gallon Capacity Truck. 

 

 

 

 

Figure 4.4. Average Water Delivered for 1 Day, 7 Days, 1 Month, 1 Year and 5 Years 

Using 1000Gallon Capacity Truck. 
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Figure 4.5. Average Travel Time for 1 Day, 7 Days, 1 Month, 1 Year and 5 Years Using 

5000Gallon Capacity Truck. 

 

 

 

 

Figure 4.6. Average Travel Time for 1 Day, 7 Days, 1 Month, 1 Year and 5 Years Using 

1000Gallon Capacity Truck. 
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Figure 4.7. Average Source Refills for 1 Day, 7 Days, 1 Month, 1 Year and 5 Years 

Using 5000Gallon Capacity Truck. 

 

 

 

 

Figure 4.8. Average Source Refills for 1 Day, 7 Days, 1 Month, 1 Year and 5 Years 

Using 1000Gallon Capacity Truck. 
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4.8. COMPARISON OF TECHNIQUES 

In this section, logistic base camp planning problem is solved using simulated 

annealing technique and compared with evolutionary algorithm performance. The 

comparison between both techniques are performed to understand to what level the 

evolutionary algorithm can contribute in terms of  fuel consumption savings by the 

delivery truck.  Simulated annealing is a technique of locating a good approximation to 

the global optimum of a given function in a large search space. This technique is similar 

to annealing in metallurgy, which involves heating and controlled cooling of a material to 

increase the size of its crystal and reduce their defects. This notion of slow cooling is 

implemented in simulated annealing algorithm as a slow decrease in the probability of 

accepting worse solutions as it explores the solution space. Accepting worse solutions is a 

fundamental property of metaheuristics because it allows for a more extensive search for 

the optimal solution. 

In comparing the evolutionary algorithm and existing base camp techniques 

solutions (Table 4.1), the evolutionary algorithm often provided the best solution to the 

base camp logistic planning problem with shorter tour distances and less fuel usage. In 

comparing the EA and simulated annealing methods, the evolutionary algorithm often 

provided a better solution to the base camp logistic planning problem with shorter tour 

distances. Table 4.1 summarizes the distances for both the methods and the increase in 

processing time incurred through using the evolutionary algorithm. Simulated annealing 

makes greedy choices by choosing to iteratively visit the closest unvisited facility. The 

algorithm sorts the facilities based on ascending distance and choses to visit the closest 

unvisited facility. Although this algorithm produces good solution matches, it does not 
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guarantee that the total distance will be minimized. For some specific cases, this 

technique has been shown to produce the worst possible solution.  

 However, processing time also increased with an average increase of 49.7 

seconds. Although, the processing time may change depending on the complexity and 

size of the problem, the results summarized in Table 4.1 indicates that evolutionary 

algorithms provide a competitive alternative to simulated annealing technique and 

existing base camp techniques in solving the logistic problem.  

 

 

Table 4.1. Comparison Between Existing Base Camp, Simulated Annealing and EA 

Techniques. 

No of 

Facilities 

Distance 

(Existing 

Techniques)- 

miles 

Distance 

(Simulated 

Annealing)-  

miles 

Distance  

(EA) –  

miles 

% Fuel 

Consumption 

Increase between 

Existing and EA 

technique 

(Gal) 

Processing time 

increase between 

Simulated 

annealing and EA 

technique 

(seconds) 

11 2.4 1.39 1.31 45.1 3.1 

23 3.62 2.27 1.97 46.4 7.8 

37 4.1 2.9 2.41 29.2 19.2 

51 6.8 4.8 4.26 37.3 38.9 

127 15.9 11.1 9.3 41.5 179.5 

 

 

 

When using evolutionary algorithms to solve this type of problem, the following 

considerations should be made:  



 

 

65 

 The selected evolutionary algorithm options (initial size of the population, rate 

of mutation and crossover, selection type, and termination criterion) may 

affect the ability to converge to an optimal solution. These values should be 

selected with care using a trial-and-error approach to ensure that the 

evolutionary algorithm does not converge to a sub-optimal solution. 

 Evolutionary algorithms are not guaranteed to find the global optimum. 

Various factors including the selected options and deceptive individual 

strength can cause premature convergence. If a certain individual emerges 

early in the search as being a strong competitor, it may bias the search to 

converge on a local optimum that represents the competitor rather than a 

global optimum.  

 

Based on the above comparisons and discussions, it can be concluded that 

evolutionary algorithm is better than other techniques for the base camp logistic planning 

optimization problem since true pareto-optimal solutions with satisfactory diversity 

characteristics have been produced in this simulation. In comparing evolutionary 

algorithm and other solutions, the evolutionary algorithm often provided the best solution 

to the base camp logistic planning problem with shorter tour distances and more fuel 

savings. In the next section, an EA for power model is developed to understand, whether 

further fuel consumption savings can be achieved by using an EA. 
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5. POWER MODEL 

A stand-alone power model is discussed in this section, does in-depth power 

analysis in conjunction with an open source distribution simulator, and reports a wide 

variety of results to the designer. Also in this section, an evolutionary algorithm is 

developed to assist the base camp designer to help determine the placement of structures 

on a map. The flexible model will assist the designer in a better selection and placement 

of facilities. 

 

5.1. OpenDSS 

The Distribution System Simulator (DSS) is an open-source tool with its own 

language ‘OpenDSS’ which may be used to design and model electrical distribution 

systems. OpenDSS does not automatically create an electrical distribution system, but 

facilitates the design process by providing a framework for modeling the distribution 

system and a solver for calculating losses and other relevant information. 

In this research, OpenDSS is extended in a way to take information about 

electrical loads of base camp facilities (from the mathematical model) and distances 

between facilities (from GeoBEST) to create an electrical distribution system design for 

the base camp. OpenDSS is used here in this research to manually create and test an 

electrical grid design, and also incorporated into an automated electrical distribution 

system design package as proposed here. The mathematical model drives the OpenDSS 

engine and assists the designer of the base camp by calculating the exact needs of each 

facility. 
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The proof of concept for this part of this research is provided here by providing 

the link between the energy system modeling software (OpenDSS) to the base camp 

system level model and the other lower level system needs. The main idea behind this 

analysis is, if the framework processes necessary for the system design are captured and 

analyzed at the architecture design phase, an optimum framework of the proposed system 

can be obtained and visualized before committing to the detailed system and thus cost 

and time can be saved. 

Figure 5.1 represent the interactions between the front end user layout interface 

(VFOBLite
TM

) and OpenDSS. The base camp planner using VFOBLite as the front end 

interface selects and connects facilities and creates a layout of a base camp using a wide 

variety of components like cables, junction boxes and loads present in the VFOB 

database. The VFOB database contains the specifications of all the components selected 

in the design. The specifications are used by the wrapper code (Figure 5.1) written in 

python to create a script representing the design at the end to do a detailed analysis of the 

layout. The XML File described in Figure 5.1 represents the connection information of 

all the components in one file. It has all the information such as inputs/outputs, load 

values and component name of all the components present in the design. 

The wrapper code extracts all the connection and configuration information from 

the XML file, and creates a ‘.dss’ file representing the front end layout. The wrapper code 

before creating the file also extracts appropriate data (specifications of components) 

needed from the database and creates object libraries. Once the individual libraries are 

created, the final ‘.dss’ file having the configuration information is presented to 

OpenDSS simulator to do a detailed analysis of the design. For each run, the wrapper  
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Figure 5.1. UI and OpenDSS Interactions. 
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code extracts all the results from the OpenDSS simulator and displays the overall results 

with all the problems encountered if any. At the front end interface, a wide variety of in-

depth results are presented to the base camp planner so that appropriate action can be 

taken to rectify problems encountered in the design if there are any. 

 

5.2. EXAMPLE LAYOUT DISCUSSION  

This section discusses an Example layout from the power model point of view. A 

sample xml file represents the example layout. Overall this file has connection 

information of 3 generators connected to 11 loads and 61 cable lines. For each 

component the specification is read from the database. A sample database specification of 

a component is shown in Figure 5.2. 

 

 

 

Figure 5.2. Sample Database Specifications. 
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Figure 5.3, Figure 5.4 and Figure 5.5 represent a snippet of generator, line and 

load information extracted by the wrapper code. Line information displays the current 

flowing through each cable with appropriate normal values. Load information displays 

the load required by each load and whether the load is served approximately or not by the 

design.  

 

 

 

Figure 5.3. Generators Information. 
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Figure 5.4. Lines Information. 

 

 

 

Figure 5.5. Load Information. 

 

 

Figure 5.6 shows overall losses information and overall load power involved with 

the design under consideration. Figure 5.7 shows the overall summary of the design. This 

tab has all the information of each and every component present in the design. If there are 
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any problems in the design, the reason code indicate the problem associated with each 

component. Using this information, the base camp planner will able to visualize if all the 

loads are served or not. This automated way gives the planner a flexible way to edit the 

design and overcome the problems.  

 

 

 

Figure 5.6. Overall Losses Information. 

 

 

The automated power model has the following advantages: 

1. Models generators, loads (including seasonal demand changes), line cables, 

transformers, loads, protection, and switches. 

2. Shows design flaws and failure points. 

3. Failure points can be addressed on the fly. 

4. Detailed reporting of the power characteristics. 

5. Design variations can quickly be built and analyzed using the libraries. 
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Figure 5.7. Summary of the Design. 
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5.3. POWER EVOLUTIONARY ALGORITHM 

An independent evolutionary algorithm for power model is developed to decrease 

the amount of cable losses, if possible for the design under consideration. In the 

automated process, once the layout is read by the wrapper code, the information is used 

by power model evolutionary algorithm to optimize the placement of the structures 

present in the layout from the power model point of view. Power Model EA has a 

constraint of distance between the facilities to be more than 100ft. This flexible way will 

allow the base camp planner to add more constraints to the design making it more 

practical, rather than randomly dropping facilities at arbitrary locations. The results of the 

power EA, for the example discussed in section 5.2 are tabulated in section 6.3. The 

results indicate the power EA was able to decrease the total amount of losses from 

0.36kw to 0.34kw. 

The research presented in the next section proposes a multi-level EA technique, 

which is the combination of logistic model EA and power model EA to develop real-time 

solutions. In this multi-level EA, an evolutionary algorithm is developed to generate a 

range of options. A method has been proposed in section 6, for using an evolutionary 

algorithm to find the high efficient solution taking into account of both the models and 

optimize the fuel savings of the delivery truck. 
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6. MULTI-LEVEL EVOLUTIONARY ALGORITHM 

6.1. GENERAL OVERVIEW 

A general multi-level evolutionary algorithm architecture overview is given 

below. Use of the planning algorithm will occur in several primary stages: 

1. Power Model EA solves and selects structures which satisfy resource 

requirements and generates the power distribution system 

2. Logistic Model EA solves and generates a routing scheme 

3. Power Model EA and Logistic Model EA exchange relevant data to the higher 

level EA  

4. Multi-level EA generates a viable solution considering the goal of the overall base 

camp using Power model EA solution space and Logistic Model EA solution 

space 

 

This technique will help to identify the interfaces in the models and facilitate the 

exchange of data between them to optimize the main problem. For example, if bringing 

more generators into the power model is a need, then it is useful if this information is 

shared with the logistics model so that appropriate amount of water can be brought in to 

cool the generators which can be eventually used in the logistics model. At a later stage 

minor additions include adding a penalty function to individual components of the model 

to increase the efficiency of the overall design. 
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6.2. FITNESS FUNCTION AND SOLUTION REPRESENTATION 

Figure 6.1 is the pseudo code for the evolutionary algorithm used for the base 

camp. The function Population (M) generates M random solutions. For the base camp 

planning purpose, if there exists a design which represent a solution, then that solution 

would be the starting point. The solution is represented as a chromosome which 

represents the design under consideration. If no design exists, random solutions could be 

used as the starting point. All the simulations are run for 100 generations having 100 

solutions. 

 

 

Steady-state() 

Population(M) while the stopping criterion is not satisfied do 

P1, P2 ← ParentsSelection (Population) 

O1 ← Crossover (P1,P1) 

O2 ← Mutation (O1) 

R ← SolutionOutSelection (Population) 

Replace (O2,R) 

end while 

Figure 6.1. Psuedo EA Code for Base Camp. 

 

 

Based on either a provided design or a random layout, the initial chromosome size 

having variable number of bits represents all the components present in the design. For a 

design under consideration from the power model point of view, this chromosome 

contains information about the generators, cables, junction boxes and load information. 

The specifications for each of the components are read from the database to calculate the 
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overall power losses. The bits are arranged sequentially from the generator to the load 

with 3 bits used to represent each component. The components are rearranged to find a 

better solution with good characteristics. Fitness function of power model is minimizing 

the overall losses present in the system. After each generation, the solutions are examined 

and the best 5 solutions having least power losses are retained. 

From the logistics model point of view, this chromosome contains information 

about the type of facility like the location information, and other setting information like 

the present water level. The specifications for each of the components present in water 

model are read from a database. Numerical number is assigned to each facility present in 

the system. The components are rearranged to find a better parent with good 

characteristics. Fitness function of logistic model is minimizing the travel distance by the 

trucks. So, after each generation, the solutions are examined and the best 5 solutions 

having least distances are retained. 

New population selection is done by selecting the best 5 ranked solutions out of 

100 (size) and doing double crossover (randomly selected left and right position for 

crossover) with a crossover rate of 0.80, and doing a single bit mutation (randomly 

selected bit) with a mutation rate of 0.01 for over 100 generations. Minimum power 

losses is the ranking criteria from the power model point of view. Least power loss 

combination of components has the highest rank. Minimum distance is the ranking 

criteria from the logistic model point of view. Least distance combination of components 

has the highest rank. Double crossover (randomly selected left and right position for 

crossover) is the crossover used and single bit mutation (randomly selected bits to 

mutate). 
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6.3. MULTI-LEVEL EA AND INDIVIDUAL EA’S 

Steps 1 to 4 discussed in section 6.1 are explained in-depth in this section using 5 

examples. In all five examples, an xml file is used to read the configuration of the layout. 

Once the layout is read by the wrapper code, the information is used by power model 

evolutionary algorithm to optimize the placement of the structures present in the layout 

from the power model point of view. The logistics model evolutionary algorithm 

optimizes the routes (Fuel consumption) to be travelled by the trucks. Table 6.1 

represents the base line fuel consumption data that the individual and multi-level EA will 

be compared to. 

 

 

Table 6.1. Baseline Fuel Consumption for 5 Years [Noblis, 2010]. 

Fuel 

Consumption 

Overall 

Consumption 

(Gal) 

Power Model 

Fuel 

Consumption 

(50%) 

(Gal) 

Logistic Truck 

Fuel 

Consumption  

(Gal) 

Power and 

Logistics Model 

Combined Fuel 

Consumption  

(Gal) 

Fuel 

Consumed 

/day 

804 402 80.4 482.4 

Fuel 

Consumed 

/7days 

5,628 2,814 562.8 3,376.8 

Fuel 

Consumed 

/30days 

24,120 12,060 2,412 14,472 

Fuel 

Consumed 

/1year 

289,440 144,720 28,944 173,664 

Fuel 

Consumed 

/5years 

1,467,300 733,650 146,730 880,380 
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In the multi-level EA, the Power Model EA solution is combined with the 

Logistic Model EA to determine the placement of structures and a new solution is 

obtained by the multi-level EA. The individual EAs and the multi-level EA are compared 

to the baseline fuel consumption values. The comparison is done to check if the 

individual EAs perform as well as or better than the baseline techniques, and to check if 

the multi-level EA performs as well as or better than the individual EAs fuel 

consumption.  

 

6.4. BASE CAMP EXAMPLES DISCUSSION 

Five different sizes of base camps are used to test the efficiency of the individual 

EAs and the multi-level EA. Each load in all the base camps represents a physical 

facility. Example1 can be considered as a very small size base camp, has 3 generators 

connected to 11 loads using 61 cable lines and 1 water source. Example 2 can be 

considered as a small size base camp, has 6 generators connected to 23 loads using 135 

cable lines and 1 water source. Example 3 can be considered as a medium size base 

camp, has 11 generators connected to 37 loads using 151 cable lines and 1 water source. 

Example 4 can be considered as a large size base camp, has 16 generators connected to 

51 loads using 169 cable lines and 2 water sources. Example 5 can be considered as a 

very large size base camp, has 24 generators connected to 127 loads using 223 cable lines 

and 6 water sources. 

The components involved with all the examples are carefully chosen in such a 

way that the examples represents a very small (100 soldiers), small (300 soldiers), 

medium (500 soldiers), larger (1,500 soldiers) and a very large size base camps (3,000 
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soldiers). These examples are used here to check if the developed multi-level EA can be 

actually scalable and whether it can be used for all types of base camp sizes. 

In all five sizes, Power Model EA has a constraint of distance between the 

facilities to be more than 100ft. This will allow the base camp planner to add more 

constraints to the design rather than randomly dropping facilities at arbitrary locations. 

Two-point crossover at a rate of 0.88 and random single bit mutation at a rate of 0.01 is 

used for running all the simulations of Power Model EA. Two-point crossover at a rate of 

0.9 and random single bit mutation at a rate of 0.015 is used for running all the 

simulations of Logistic Model EA. Two-point crossover at a rate of 0.9 and random 

single bit mutation at a rate of 0.01 is used for running all the simulations of multi-level 

EA. All five sizes are run for a duration of 1day, 7days, 1month, 1year and 5years to 

check if the multi-level EA performs better over time in terms of fuel consumption. 

Calculations in all the tables in section 6 are done based on a 4 mpg logistic truck 

considering all the idle times and with an average speed of 20 miles/hr (5 gallons per 

hour). 

For very small size base camp, the power losses of the overall layout without and 

with using an individual power model EA are shown in Table 6.2. Fuel consumption 

without and with using an individual logistic model EA are shown in Table 6.3, for over a 

period of 5 years. Individual power model EA fuel consumption and overall fuel 

consumption using individual EAs for very small size base camp are also tabulated in 

Table 6.3. Also tabulated is the fuel percentage decrease from the baseline data, which 

was obtained using individual EAs for over a period of 5 years.  
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Table 6.2. Very Small Size Base Camp - Power Model Savings Using Individual EA. 

Power Model Without Power model EA 

(kw) 

With Power model EA 

(kw) 

Total Power 107.53 106.28 

Total Losses 0.36 0.34 

Percentage of    

Losses 

0.334 0.319 

 

 

Table 6.3. Very Small Size Base Camp - Fuel Consumption Savings. 

Fuel 

Consumption 

Very Small 

Size Base 

camp 

Logistic 

Model Fuel 

Consumption

- without EA 

(Gal) 

Logistic 

Model Fuel 

Consumption 

–with EA 

(Gal) 

Power Model 

Fuel 

Consumption 

–with EA 

(Gal) 

Power and 

Logistics 

Model Fuel 

Consumption 

– with EA 

(Gal) 

% Fuel 

decrease 

Fuel 

Consumed 

/day 

55 32 397.32 429.32 11.003 

Fuel 

Consumed 

/7days 

94 66.5 2,781.2 2,847.7 15.66 

Fuel 

Consumed 

/1month 

388 275 11,899.2 12,174.2 15.87 

Fuel 

Consumed 

/1year 

3,255 3,200.5 142,710.2 145,910.7 16 

Fuel 

Consumed 

/5years 

11,910.5 10,402 725,121.56 735,523.56 16.45 

 

 

For small size base camp, the power losses of the overall layout without and with 

using an individual power model EA are shown in Table 6.4. Fuel consumption without 

and with using an individual logistic model EA are shown in Table 6.5, for over a period 

of 5 years. Individual power model EA fuel consumption and overall fuel consumption 

using individual EAs for small size base camp are also tabulated in Table 6.5. Also 
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tabulated is the fuel percentage decrease from the baseline data, which was obtained 

using individual EAs for over a period of 5 years. 

 

 

Table 6.4. Small Size Base Camp- Power Model Savings Using Individual EA. 

Power Model Without Power model EA 

(kw) 

With Power model EA 

(kw) 

Total Power 273.93 267.69 

Total Losses 1.61 1.57 

Percentage of Losses 0.587 0.586 

 

 

Table 6.5. Small Size Base Camp- Fuel Consumption Savings. 

Fuel 

Consumption 

– Small Size 

Base camp 

Logistic 

Model Fuel 

Consumption

- without EA 

(Gal) 

Logistic 

Model Fuel 

Consumption 

–with EA 

(Gal) 

Power Model 

Fuel 

Consumption 

–with EA 

(Gal) 

Power and 

Logistics 

Model Fuel 

Consumption 

– with EA 

(Gal) 

% Fuel 

decrease 

Fuel 

Consumed 

/day 

59 34.5 392.84 427.34 11.41 

Fuel 

Consumed 

/7days 

96 73 2,749.9 2,822.9 16.4 

Fuel 

Consumed 

/1month 

396 300.5 11,759 12,059.7 16.68 

Fuel 

Consumed 

/1year 

4,752.5 3,200.5 140,405.2 143,605.7 17.28 

Fuel 

Consumed 

/5years 

12,308.5 10,604.5 716,937.7 727,542.2 

 

17.36 

 

 

For medium size base camp, the power losses of the overall layout without and 

with using an individual power model EA are shown in Table 6.6. Fuel consumption 
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without and with using an individual logistic model EA are shown in Table 6.7, for over a 

period of 5 years. Individual power model EA fuel consumption and overall fuel 

consumption using individual EAs for medium size base camp are also tabulated in Table  

 

 

Table 6.6. Medium Size Base Camp- Power Model Savings Using Individual EA. 

Power Model Without Power model EA 

(kw) 

With Power model EA 

(kw) 

Total Power 310.63 297.23 

Total Losses 1.92 1.68 

Percentage of 

Losses 

0.61 0.56 

 

 

 

Table 6.7. Medium Size Base Camp- Fuel Consumption Savings. 

Fuel 

Consumption 

– Medium 

Size Base 

camp 

Logistic 

Model Fuel 

Consumption

- without EA 

(Gal) 

Logistic 

Model Fuel 

Consumption 

–with EA 

(Gal) 

Power 

Model Fuel 

Consumption 

–with EA 

(Gal) 

Power and 

Logistics 

Model Fuel 

Consumption 

– with EA 

(Gal) 

% Fuel 

decrease 

Fuel 

Consumed 

/day 

62 36.9 384.65 421.5 12.6 

Fuel 

Consumed 

/7days 

99 78 2,692.6 2,770 17.9 

Fuel 

Consumed 

/1month 

431.2 320.8 11,539.8 11,860.5 18.04 

Fuel 

Consumed 

/1year 

5,102.5 3,340 138,477 141,817 18.3 

Fuel 

Consumed 

/5years 

12,891.2 10,691.8 702,001.7 712,693.5 19.04 
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6.7. Also tabulated is the percentage decrease from the baseline data, which was obtained 

using individual EAs for over a period of 5 years.  

For large size base camp, the power losses of the overall layout without and with 

using an individual power model EA are shown in Table 6.8. Fuel consumption without 

and with using an individual logistic model EA are shown in Table 6.9, for over a period 

of 5 years. Individual power model EA fuel consumption and overall fuel consumption 

using individual EAs for large size base camp are also tabulated in Table 6.9. Also 

tabulated is the fuel percentage decrease from the baseline data, which was obtained 

using individual EAs for over a period of 5 years.  

 

 

Table 6.8. Large Size Base Camp- Power Model Savings Using Individual EA. 

Power Model Without Power model EA 

(kw) 

With Power model EA 

(kw) 

Total Power 368.58 351.36 

Total Losses 2.68 2.38 

Percentage of 

Losses 

0.72 0.67 
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Table 6.9. Large Size Base Camp- Fuel Consumption Savings. 

Fuel 

Consumption 

– Large Size 

Base camp 

Logistic 

Model Fuel 

Consumption

- without EA 

(Gal) 

Logistic 

Model Fuel 

Consumption 

–with EA 

(Gal) 

Power 

Model Fuel 

Consumption 

–with EA 

(Gal) 

Power and 

Logistics 

Model Fuel 

Consumption 

– with EA 

(Gal) 

% Fuel 

decrease 

Fuel 

Consumed 

/day 

63.9 41.9 383.2 425.1 11.8 

Fuel 

Consumed 

/7days 

102.8 86.2 2,682.5 2,768.7 18 

Fuel 

Consumed 

/1month 

440.2 349 11,496.5 11,845.5 18.14 

Fuel 

Consumed 

/1year 

5,328 4,101.9 137,958.7 142,060 18.19 

Fuel 

Consumed 

/5years 

13,509 11,957.8 699,374 712,331.8 19 

 

 

For very large size base camp, the power losses of the overall layout without and 

with using an individual power model EA are shown in Table 6.10. Fuel consumption 

without and with using an individual logistic model EA are shown in Table 6.11, for over 

a period of 5 years. Individual power model EA fuel consumption and overall fuel 

consumption using individual EAs for very large size base camp are also tabulated in 

Table 6.11. Also tabulated is the fuel percentage decrease from the baseline data, which 

was obtained using individual EAs for over a period of 5 years.  
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Table 6.10. Very Large Size Base Camp- Power Model Savings Using Individual EA. 

Power Model Without Power model EA 

(kw) 

With Power model EA 

(kw) 

Total Power 450.88 431.3 

Total Losses 3.34 3.04 

Percentage of Losses 0.740 0.704 

 

 

 

Table 6.11. Very Large Size Base Camp- Fuel Consumption Savings. 

Fuel 

Consumption 

– Very Large 

Size Base 

camp 

Logistic 

Model Fuel 

Consumption

- without EA 

(Gal) 

Logistic 

Model Fuel 

Consumption 

with EA 

(Gal) 

Power Model 

Fuel 

Consumption 

with EA 

(Gal) 

Power and 

Logistics 

Model Fuel 

Consumption  

with EA 

(Gal) 

% Fuel 

decrease 

Fuel 

Consumed 

/day 

65.5 45.5 384.54 430.04 10.85 

Fuel 

Consumed 

/7days 

111.5 91.5 2,691.7 2,783.2 17.4 

Fuel 

Consumed 

/1month 

446 367 11,500.7 11,867.7 17.99 

Fuel 

Consumed 

/1year 

5,595.5 4,600.75 137,704.2 142,304.95 18.05 

Fuel 

Consumed 

/5years 

14,707 12,646.5 701,790.3 714,436.8 18.84 

 

 

 

6.5. MULTI-LEVEL EA RESULTS 

For all base camp sizes discussed in section 6.4, fuel consumption using a multi-

level EA are shown in Table 6.12, for over a period of 5 years. Tabulated in Table 6.13 is 

the fuel percentage decrease from the baseline data, which was obtained using multi-level 

EA for over a period of 5 years.  
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Table 6.12. Multi-level EA Total Fuel Consumption. 

Multi-level 

EA 

Very Small 

Size Base 

camp 

(Gal) 

Small Size 

Base camp 

(Gal) 

Medium 

Size Base 

camp 

(Gal) 

Large Size 

Base camp 

(Gal) 

Very Large 

Size Base 

camp 

(Gal) 

Fuel 

Consumed 

/day 

429.32 427.34 421.5 423.6 426.04 

Fuel 

Consumed 

/7days 

2,847.7 2,811.7 2,759.2 2,761.7 2,747.8 

Fuel 

Consumed 

/1month 

12,152.5 12,019.1 11,797 11,803.5 11,745.2 

Fuel 

Consumed 

/1year 

145,695 143,529.2 141,008.2 141,460.2 140,887.2 

Fuel 

Consumed 

/5years 

734,938.2 727,101.2 711,200.2 710,839.8 712,606.5 

 

 

 

Table 6.13. Multi-level EA Percentage Fuel Decrease. 

Multi-level 

EA 

Very 

Small Size 

Base 

camp 

(%) 

Small 

Size Base 

camp (%) 

Medium 

Size Base 

camp 

(%) 

Large 

Size Base 

camp 

(%) 

Very Large 

Size Base 

camp 

(%) 

Fuel 

Consumed 

/day 

11.003 11.41 12.6 12.2 11.6 

Fuel 

Consumed 

/7days 

15.66 16.73 18.2 18.2 18.6 

Fuel 

Consumed 

/1month 

16.02 16.94 18.4 18.4 18.84 

Fuel 

Consumed 

/1year 

16.1 17.35 18.8 18.54 18.9 

Fuel 

Consumed 

/5years 

16.52 17.41 19.21 19.25 19.05 
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Figure 6.2, Figure 6.3, Figure 6.4, Figure 6.5, and Figure 6.6 represent overall fuel 

consumption versus duration plots for Very Small, Small, Medium, Large and Very 

Large base camp sizes for over a period of 1 day, 7 days, 1 month, 1 year and 5 years for 

baseline data, individual EA and multi-level EA respectively. Figure 6.7, Figure 6.8, 

Figure 6.9, Figure 6.10, and Figure 6.11 represent overall fuel consumption versus all 

five base camp sizes plots for 1 day, 7 days, 1 month, 1 year and 5 years for baseline 

data, individual EA and multi-level EA respectively.  

Figure 6.12, Figure 6.13, Figure 6.14, Figure 6.15, and Figure 6.16 represent 

percentage fuel consumption decrease from baseline data plots for individual EA and 

multi-level EA for Very Small, Small, Medium, Large and Very Large base camp sizes 

for over a period of 1 day, 7 days, 1 month, 1 year and 5 years respectively. 

 

 

 

Figure 6.2. Overall Fuel Consumption vs Duration for Very Small Base Camp Size. 
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Figure 6.3. Overall Fuel Consumption vs Duration for Small Base Camp Size. 

 

 

 

 

Figure 6.4. Overall Fuel Consumption vs Duration for Medium Base Camp Size. 
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Figure 6.5. Overall Fuel Consumption vs Duration for Large Base Camp Size. 

 

 

 

 

Figure 6.6. Overall Fuel Consumption vs Duration for Very Large Base Camp Size. 
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Figure 6.7. Overall Fuel Consumption vs 5 Base Camp Sizes for 1 Day. 

 

 

 

 

Figure 6.8. Overall Fuel Consumption vs 5 Base Camp Sizes for 7 Days. 
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Figure 6.9. Overall Fuel Consumption vs 5 Base Camp Sizes for 1 Month. 

 

 

 

 

Figure 6.10. Overall Fuel Consumption vs 5 Base Camp Sizes for 1 Year. 
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Figure 6.11. Overall Fuel Consumption vs 5 Base Camp Sizes for 5 Years. 

 

 

 

 

Figure 6.12. Percentage Fuel Savings from Baseline Data for Individual and Multi-level 

EA for Very Small Size Base Camp. 
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Figure 6.13. Percentage Fuel Savings from Baseline Data for Individual and Multi-level 

EA for Small Size Base Camp. 

 

 

 

 

Figure 6.14. Percentage Fuel Savings from Baseline Data for Individual and Multi-level 

EA for Medium Size Base Camp. 
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Figure 6.15. Percentage Fuel Savings from Baseline Data for Individual and Multi-level 

EA for Large Size Base Camp. 

 

 

 

 

Figure 6.16. Percentage Fuel Savings from Baseline Data for Individual and Multi-level 

EA for Very Large Size Base Camp. 
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Table 6.14, Table 6.15, Table 6.16, Table 6.17 and  Table 6.18 lists the 95% 

confidence interval and ‘p’ values of overall fuel consumption for 50 runs for very small, 

small, medium, large and very large base camp size respectively using individual EAs 

and multilevel EA. Since the ‘p’ values for all the observations  are greater than the 

threshold (0.05), it provides evidence to support the null hypothesis (value obtained is 

well within the expected value). Table 6.19 lists the correlation coefficients between 

individual EAs and multi-level EAs for all base camp sizes.  

 

 

Table 6.14. Very Small Base Camp Size 95% Confidence Interval. 

 Individual EA Multi-level EA  

Mean Standard 

Deviation 

Confidence 

interval 

(± %) 

Mean Standard 

Deviation 

Confidence 

interval 

(± %) 

P 

1 Day 429.32 0.56 0.5 429.32 0.56 0.5 1.0 

7 Days 2,847.7 7.07 0.7 2,847.7 7.07 0.7 1.0 

1Month 12,174.2 7.07 0.1 12,152.5 2.82 0.06 0.9 

1 Year 145,910.7 7.07 0.02 145,695 5.65 0.01 0.79 

5 Years 735,523.56 4.24 0.002 734,938.2 4.24 0.001 0.9 

 

 

Table 6.15. Small Base Camp Size 95% Confidence Interval. 

 Individual EA Multi-level EA  
Mean Standard 

Deviation 

Confidence 

interval 

(± %) 

Mean Standard 

Deviation 

Confidence 

interval 

(± %) 

P 

1 Day 427.34 0.14 0.01 427.34 0.14 0.01 1.0 

7 Days 2,822.9 1.41 0.1 2,811.7 4.24 0.04 0.89 

1Month 12,059.7 2.82 0.01 12,019.1 1.41 0.003 0.92 

1 Year 143,605.7 1.41 0.007 144,029.2 1.41 0.004 0.73 

5 Years 727,542.2 5.65 0.003 727,101.2 2.82 0.001 0.8 
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Table 6.16. Medium Base Camp Size 95% Confidence Interval. 

 Individual EA Multi-level EA  
Mean Standard 

Deviation 

Confidence 

interval 

(± %) 

Mean Standard 

Deviation 

Confidence 

interval 

(± %) 

P 

1 Day 421.5 0.56 0.04 421.5 0.56 0.04 1.0 

7 Days 2,770 0.14 0.03 2,759.2 2.82 0.02 0.81 

1Month 11,860.5 2.82 0.006 11,797 2.82 0.006 0.9 

1 Year 141,817 2.82 0.005 141,008.2 5.65 0.002 0.71 

5 Years 712,693.5 4.24 0.003 711,200.2 4.24 0.002 0.8 

 

 

Table 6.17. Large Base Camp Size 95% Confidence Interval. 

 Individual EA Multi-level EA  
Mean Standard 

Deviation 

Confidence 

interval 

(± %) 

Mean Standard 

Deviation 

Confidence 

interval 

(± %) 

P 

1 Day 425.1 0.14 0.2 423.6 0.14 0.2 1.0 

7 Days 2,768.7 2.82 0.2 2,761.7 2.82 0.2 0.93 

1Month 11,845.5 2.82 0.06 11,803.5 1.41 0.04 0.91 

1 Year 142,060 4.24 0.008 141,460.2 4.24 0.007 0.87 

5 Years 712,331.8 5.65 0.003 710,839.8 2.82 0.001 0.88 

 

 

Table 6.18. Very Large Base Camp Size 95% Confidence Interval. 

 Individual EA Multi-level EA  
Mean Standard 

Deviation 

Confidence 

interval 

(± %) 

Mean Standard 

Deviation 

Confidence 

interval 

(± %) 

P 

1 Day 430.04 0.56 0.03 426.04 0.40 0.02 0.95 

7 Days 2,783.2 4.24 0.04 2,747.8 2.82 0.03 0.91 

1Month 11,867.7 4.24 0.01 11,745.2 2.82 0.006 0.89 

1 Year 142,304.95 7.07 0.002 140,887.2 5.65 0.001 0.78 

5 Years 714,436.8 7.07 0.0004 712,606.5 7.07 0.0003 0.88 
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Table 6.19. Correlation Coefficient (Individual EA and Multi-level EA). 

 Very Small 

Size Base 

camp 

 

Small Size 

Base 

camp  

Medium 

Size Base 

camp 

 

Large Size 

Base 

camp 

 

Very Large 

Size Base 

camp 

 

Corelation Coefficient 0.99 0.99 0.99 0.99 0.99 

 

 

6.6. SOLUTION PERFORMANCE 

One of the objectives of this research was to determine the potential impact of 

using randomly generated or a knowledge based solution as a starting point on solution 

time. Each of the 5 examples discussed in section 6.5. are designed based on existing 

knowledge. A total of 50 test runs were completed and time to obtain the solution were 

saved. When a random starting solution was used for the 5 examples, and 50 test runs 

were completed and time to obtain the solution were saved. The time to solution for both 

cases are compared to study the effect of initial solution on solution time. 

 The major impact can be summarized by saying that choice of initial 

solution substantially affects solution time, but does not affect the solution quality. Table 

6.20 summarizes the solution time for all the cases. A good initial solution based on prior 

knowledge, considerably decreases the solution time. 
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Table 6.20. Impact of Initial Solution on Solution Time. 

 Randomly Generated Knowledge based Initial 

Solution 

Base camp Size Minimum 

(sec) 

Maximum 

(sec) 

Minimum 

(sec) 

Maximum 

(sec) 

Very Small Size 242.6 259.8 209.5 215.8 

Small Size 320.5 389.6 221.6 229.1 

Medium 489.9 654.2 301.2 328.2 

Large 6,028.9 9,842.1 3,219.1 6,124.2 

Very Large 38,205.8 56,207.4 14,850.2 22,557.1 
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7. CONCLUSION 

The goal of this research is to develop a multi-level system of evolutionary 

computational techniques to design solutions to complex problems while improving their 

effectiveness and efficiency. The ability of evolutionary algorithms to search a solution 

space and selectively focusing on promising combinations makes them ideally suited to 

such complex decision making problems. The algorithm presented here can take into 

account the needs of individual models to optimize the overall needs of a complex 

problem. The general scope of this research centers upon combining different individual 

evolutionary algorithms representing subsystems into a multi-level EA, to choose 

candidate solutions that guarantee the meeting of deadlines and satisfy constraints 

regarding a complex problem. The experimental results of the base camp design 

scenarios examined in this research showed that the multi-level evolutionary algorithm 

has excellent performance in solving a system design problem composed of several sub-

systems. The technique developed with the combination of architecture representation 

and evolutionary algorithms can be useful in developing real-time solutions for multiple 

base camp configuration problems currently faced by the U.S. Department of Defense. 

Base camp planning decisions are often evaluated on the basis of quality of 

processes. Multiple individual models and algorithms carry useful information to perform 

wide variety of functions. It is necessary for the individual models to be user friendly and 

aid in decision making for base camp planners. The mathematical model introduced in 

this research can be used to estimate the resources required for each subsystem and for 

the overall base camp. When compared with the existing methodologies, the 

mathematical model takes into consideration a variety of factors that directly affect a 
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particular base camp size. Results of the mathematical model indicate that the model 

provided a greater level of accuracy with respect to metered data, when compared to 

previous methods [Noblis, 2010]. The mathematical model provides a more realistic 

estimation of base camp resources, with lower utility requirements for smaller base 

camps and higher requirements for larger base camps. The mathematical model 

framework is currently being applied to a forward operating base to synchronize all of the 

components of utility and logistic systems to deliver the right materiel at the right time to 

the right place. In addition to the soldiers on the base camp, the model considers the 

contractors associated with the base camp and their dependencies and coupled effects on 

other components. Since model takes into account the first, second and third order effects 

of all components involved, the elements of the model can be modified and used for other 

complex system problems where there is a need to predict the resource utilization and 

associated interactions of each component present in the design. 

The evolutionary algorithm framework developed in this research is extended to 

provide the link between the energy system modeling to the base camp system level 

model and the other lower level system needs. The models introduced could also be used 

to drive in-depth analysis models, which would assist the designer by calculating the 

exact needs of each component. For example, the OpenDSS model composed of 

individual electrical component models, populates the electrical distribution system 

models, coupled to the logistics, fuel, and manpower models, and invokes behaviors, 

which are translated to the appropriate component models. 

The multi-level EA based technique provides a realistic approach to solve 

problems encountered by base camp planners. The fuel percentage decrease in Tables 
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6.3, 6.5, 6.7, 6.9 and 6.11 indicate that the individual EAs perform better over time. 

Communication of information between the EAs in the multi-level EA decrease the fuel 

consumed by the delivery truck. The higher fuel percentage decrease in Table 6.13 

compared to the individual EAs indicates that the multi-level EA perform better than the 

individual EAs. For all five base camp sizes, the multi-level EA performs very well in 

terms of less fuel consumption when compared to the individual EAs and baseline data. 

In addition, it can be inferred from the plots that the amount of fuel savings increases as 

the time duration increases. When the multi-level EA technique was applied to different 

base camp sizes, experimental results showed an improvement of up to 19.25% over 

current methods of calculating resource usages. The multi-level EA builds upon the 

information exchange between different utility models and improves the overall 

efficiency of the base camp. A simple information exchange between the power model 

and logistic model resulted in significant fuel consumption savings compared to existing 

methodology for a particular base camp. 

The proposed multi-level EA framework provides a method to represent the 

system of systems interactions adding to the complexity that must be managed in a 

system.  The elements of the multi-level EA framework can be modified and used for 

other complex system problems where there is a need to solve resource allocation and 

associated interactions of each component present in the design.  
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8. FUTURE WORK 

A great amount of new applied problems in the area of energy networks has 

recently arisen that can be efficiently solved only as mixed-integer bi-level programs 

[Kalashnikov, Dempe, Pérez-Valdés, Kalashnykova, and Camacho-Vallejo, 2015]. 

Among them are the natural gas cash-out problem, the deregulated electricity market 

equilibrium problem, biofuel problem, a problem of designing coupled energy carrier 

networks, and so forth, if we mention only part of such applications [Kalashnikov, 

Dempe, Pérez-Valdés, Kalashnykova, and Camacho-Vallejo, 2015]. Multi level models 

to describe migration processes are also in the list of the most popular new themes of bi-

level programming. There are many areas that can be improved and where capabilities 

can be added to the existing models presented in this research to suit a particular problem. 

This research will be resourceful, and capable of automating majority of the design 

process using developed optimization techniques. 

The multi-level EA framework easily allows the planner to do sensitivity analysis 

of required utilities for different base camp designs. The analysis could be used to check 

where the design might potentially break and subsequently give the design planner a 

chance to improve the overall design. The information from the model can be used 

immediately by planners to improve FOB designs as well as logistical support systems. 

The dynamic models introduced in this research in combination with external algorithms 

add intelligence to the overall base camp design and allows the planner to study overall 

mission dynamics. The information available with the models introduced in this research 

can also be used within an advanced design tool, which has been proposed for automating 

and optimizing the design process of FOBs. Such a tool would be very useful for base 
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camp planners in visualizing an FOB before it is created, or to visualize proposed 

changes to an existing FOB. These tools would lead to an increase in efficiency of 

resource utilization for FOBs, with the goal of reducing government expenditures and 

decreasing risk exposure to convoys and logistical support personnel. 

This research will make contributions to the systems engineering field through the 

use of an integrated system architecture development environment and open source 

system tools development. In future work, a system of computational methods and 

solvers can be merged into a single cutting-edge tool for solving wide variety of 

problems. The adaptable behavior of the components can be easily incorporated and 

solved by the EA resulting in a flexible technique which can be applied to similar 

planning problems. 

 

8.1. MULTI-LEVEL DIVERSITY CONTROL 

In this research, the diversity is controlled in the solution population. The idea is 

to control the diversity through the two common genetic operators (crossover and 

mutation). Few sets of experiment were conducted to demonstrate the independent effect 

of crossover and mutation on diversity. Each set of parameters were tested 4 times to 

study the convergence effects on diversity. When crossover rate was increased in steps of 

0.1 and mutation rate in steps of 0.05 the following observations were made. 

 Both operators promote diversity by all measures. 

 By increasing crossover rate, the decrease of gradient convergence descent 

does not change much. 

 Increasing mutation rate puts greater force of diversification right from the 

start. 
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Diversity control methods for future include: 

 Apply order-based crossover operators such as matched crossover, order 

crossover and cycle crossover. 

 Use of adaptive function on the rates of crossover and mutation to 

maintain diversity at a target level. 

 Develop diversity measure such as standard deviation of fitness value in a 

population. 

 

8.2. AUTOMATED & INTEGRATED LAYOUT PLANNING TOOL 

A general architecture overview of the envisioned automated and integrated 

layout planning tool is given below in Figure 8.1. Use of the planning algorithm will 

occur in several primary stages. Once the user made sufficient number of changes, the 

end result would be the efficient solution considering all the different point of view. 

1. User inputs mission-specific facilities, number of soldiers and likely base service 

duration (primary goal of the EA) 

2. Mathematical model generates a list of required resources 

3. Power Model EA solves and selects structures which satisfy resource 

requirements and generates the power distribution system 

4. Logistic Model EA solves and generates a routing scheme 

5. Power Model EA and Logistic Model EA exchange relevant data  

6. Multi-level EA generates a viable solution considering the goal of the overall base 

camp using Power model EA solution space and Logistic Model EA solution 

space 

7. User is prompted to make changes if necessary 
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Figure 8.1. Integrated Planning Tool. 
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