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(\ Proceedings: Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, 
~ March 11-15, 1991, St. Louis, Missouri, Paper No. 5.39 

Dynamical Analysis of ~oil-Piles Interaction Systems Under 
Earthquake Type Loadings 
Kensuke Baba 
Architectural Engineering, Osaka University, Japan 

SYNOPSIS In order to investigate and discuss a theoretical prediction on the seismic response of 
pile groups in soil-structure interaction systems, the dynamic characteristics of piles surrounded 
by soil ground due to earthquake type disturbances in addition to those excited by the loadings at 
the head of piles. 
This paper is concerned with a theoretical analysis which is based on the three-dimensional wave 
propagation theory to find dynamic interaction characteristics of elastic pile groups embedded in 
the viscoelastic soil stratum on a rigid basis, under external forces concentrated at the head of 
piles and uniformly distributed bedrock motion. In dealing with this complicated boundary 
configuration and exciting condition, the technique of superposition principle associated with the 
auxiliary problems is effectively applied. And, the governing equations in the domain of frequency 
and wave numbers reduce to the Fredholm type integral equations. 

INTRODUCTION 

There has recently been a growing interest in 
the dynamic behavior of the interaction system 
composed of pile groups and soil ground during 
wind, ocean wave and earthquake excitations. 
The present study is concerned with a method of 
theoretical analysis of elastic pile groups and 
the surrounding viscoelastic soil stratum on a 
rigid basis due to the external loadings 
concentrated at the head of piles and uniformly 
distributed bedrock motion. 
General approaches to such dynamic interaction 
problems based on the three-dimensional wave 
propagation theory are to be related to solve 
a class of mixed boundary value problems with 
complex boundary configurations and exciting 
conditions. 
In de~ling with these complicated boundary value 
problems, the motion of piles is affiliated with 
one-dimensional fields along their symmetric 
axes, while the interaction field of the 
surrounding soil layer is separated into the 
incident motion associated with the bedrock 
excitations without piles and the interacted 
field due to the presence of pile groups. 
The latter is further separated into two 
sets of fields, corresponding to the following 
subproblems: 
(I) one related to the original soil stratum 
rested on a rigid bedrock and having the surfaces 
extended flat in lateral direction, and 
(II) the other corresponding to a viscoelastic 
soil layer having the circumferential boundaries 
around piles enlarged symmetrically in respect of 
the bottom of the layer for the fixed condition 
at the tips of piles, or anti-symmetrically for 
the pinned one. 
Then, the respective stress and displacement 
components of auxiliary problems are combined to 
satisfy the original boundary conditions. 
By applying the integral transforms in respect of 
time and spatial variables and performing the 
transformation in cylindrical polar coordinate 
systems, the Fredholm type integral equations are 
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derived in the domain of frequency and wave 
numbers. By making use of numerical method in 
solving the above equations, the solutions in 
frequency domain are expressed in terms of 
multiple summations and integrals. 

FORMULATION OF THE PROBLEM 

The displacement vector u of the soil stratum is 
required to satisfy the following mixed boundary 
value forms in frequency domain, 

GL(u) 0 X E G 

s0 (u) 0 X E ro 

SB (u) UG X 

(1) 
E rB 

u = u pj' S. (u) pLj (Upj) Gpj (u) = f. 
J J 

X E r. j=l,2,····J 
J 

in which x is the position vector in the layered 
soil medium G and 
(i) the three-dimensional wave equation of the 
soil medium given by the vector differential 
operator GL, 
(ii) the stress-condition associated with the 
operator s0 at the surface r , 
(iii) the displacement-condi~ion in welded 
contact with the rigid basis related to the 
o~erator SB at the interface rB, 
(lv) the welded contact condition between the 
displacement of piles u . and that of the soil 

t t h . h . PJ . . s ra urn, w lC lS accompanled wlth the condition 
of dynamic equilibrium of piles, the boundary 
conditions at the tips of piles and 
non-deformability in respect of the circular 
cross-sections of piles associated with the 
operator Sj at the interface rj, where the pile 
groups are counted to J. 
In addition, the radiation condition in the 
infinitely far field is required to be satisfied. 



It is convenient to write the interaction field 
in the absolute coordinate system, 

( 2) 

where ui is the incident-field motion of the 
soil stratum in the absence of pile groups and 
us is the interacted-field due to the presence 
of the pile foundations. The incident-field 
motion is required to satisfy the conditions: 

i 
GL(u ) 0 X E G 

80 (ui) 0 X E ro ( 3) 

i 
rB 8

8
(u ) UG X E 

In cylindrical polar coordinate system (r,8,z), 
the incident motion excited in the direction 8=0 
is obtained as: 

i _ cos(kz) [ c~sel 
u - uGcos(kH) -sl~S ( 4) 

h w/Cp, k = w/Cs 

where uG and w are the displacement amplitude 
and toe circular frequency of harmonic 
disturbances, cp, cs and H are the phase 
velocities of dllatational and distortional waves 
and the thickness of the viscoelastic soil 
stratum. Therefore the equations requested for 
the interacted-field us have the similar form as 
in the case of the absolute-field, namely Eq. (1) 
but the inhomogeneous term in the condition set 
up on the surface r

8 
is vanished. 

s 
GL(u ) 0 

s
0 

(us) o 
s 8

8 
(u ) 0 

i u .-u 
PJ 

X E G 

x E r 0 (5) 

X E fB 

= L·(U ·)- P.(us)= f. 
P J PJ G J 

:j=l,2,···J 

The interacted displacement field in cylindrical 
polar coordinates can be expressed in terms of 
potentials of dilatational and distortional 
components as follows: 

us= V~ + Vx(~e) + Vx{Vx(xe)} (6) 

where V and e denote the gradient operator and 
the unit base vector along the z-axis, ~. ~ and 
x are particular solutions of the associated 
scalar Helmholtz equations. This interacted 
field is separated into the two sets of 
displacement fields which correspond to the 
subproblems mentioned previously, and given in 
the following potential forms: 

"' ive"'J = ~e dqqJ (qr) 
v--"' o v 

X 

A1 shaz+A2chaz 

B1 sh8z+B 2ch8z 

c 1sh8z+c2ch8z v 
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Fig. l. 
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z 

System cofiguration and coordinate 
systems. 

sh(z)=sinh(z) ch(z)=cosh(z) 

(7) 

where the symmetrical axis of the pile named (j) 
coincides with the z-direction in cylindrical 
polar coordinates (r.,S.,z) :j=l,2,···J, Pn and 
q are the discrete a~d ~ontinuous parameters of 
wave number, and their associate parameters are: 

pn=nn/H, (2n+l)n/2H. 

a =lp 2 -h 2
, n n 

and Jv(x), Kv(x) are the Bessel and modified 
Bessel functions of integer order v, both of 
which are close to zero at infinity. In addition, 
the following cutoff operator is defined to 
avoid the region inside the pile with a radius 
of 'a'. 

w"' (r) 
a 

1 
0 

r>a 
a>r 

The components of these potential functions 
presented in the finite Fourier expansions along 
the z-direction are selected symmetrically in 
respect of the plane surface z=H for the fixed 
condition at the tips of piles, or on the 
contrary anti-symmetrically for the pinned one. 
In accordance with the expanded forms along the 
axes of piles, the external loadings are 
enlarged symmetrically or anti-symmetrically in 
respect of the surface z=H and expressed in the 
finite Fourier series as follows: 
i) in the case of the fixed condition at the 
tips of piles, 



ao oo a0 o(zl=2 H L Encos(p z) :pn=nrr/H n=O n 
Mo oo 

M0 [o(z-E)-o(z)]/E=--H L p sin(p z) :p =(2n+l)rr/2H n=O n n n 
H 2H uG[cos(kz)W0 (z)+cosk(2H-z)WH (z)]/cos(kH) 

UG 00 

=---H ktan(kH) L E cos(p H)cos(p z)/8 2 
n=O n n n n 

:2H>z>O (8-l) 

ii) in the case of the pinned condition at the 
tips of piles, 

ao oo 
Q0 o(z)=--H L cos(p z) :pn=(2n+l)rr/2H n=O n 

Mo "' M0 [o(z-E)-6(z)J/E=--H L p sin(p z) :pn=nrr/H n=O n n 
H 2H uG[cos(kz)W
0

(z)-cosk(2H-z)WH (z)]/cos(kH) 

2uG 
=---H ! p sin(p H)cos(p z)/8 2 :pn=(2n+l)rr/2H n=O n n n n 

:2H>z>O (8-2) 

where Q0 and M0 are the amplitudes of the 
concentrated lateral force and bending moment at 
the head of piles, o(z), En and E are the Dirac's 
delta function, the Neumann's factor and an 
insignificant length along the axes of piles. 

E 
n 

l 
2 

:n=O 
:n>'O, l >> E > 0 

In order to derive the boundary equations 
standing on the plane surfaces of the soil layer 
parallel to the lateral direction in the domain 
of wave numbers, it is necessary for all terms 
of the potentials to arrange their components 
along the radial and circumferential directions 
expanded in the same style, to which the 
following two steps of operation are applied, 
l) the Hankel transforms of modified Bessel 
functions in respect of the radial directions: 

2) the transformation of Bessel functions in a 
number of cylindrical polar coordinate systems 
by means of the Bessel's addition theorem as 
shown in Fig. 2, 

J ( ) im8. m qrj e J 

=(-l)m! J (qR..)J (qr)ei[v8-(v-m)yJ.] (lO) v=-oo v-m J v 

After the arrangements mentioned above, the 
resulting equations in the domain of wave 
numbers are concerned with the surface Rayleigh 
waves travelling along the horizontal axes. 
For the cylindrical boundary surfaces along the 
symmetrical axes of piles, the finite Fourier 
transform in respect of z is applied to the 
potentials of the subproblems and the 
inhomogenebus terms in consideration of the 
boundary condition at the tips of piles. And in 
succession, the transformation of the Bessel and 
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/----.......8) 
' 

1' --·- l 
Q , __ --~---- 0 J 

•"-··--~~ 

Fig. 2. Relation between cylindrical polar 
coordinate systems 

modofied Bessel functions in cylindrical polar 
coordinates is performed so as to have the same 
forms of any component of the subproblems 
expanded in the direction of r and 8 parameters. 

[: ~ X W 

u , r rr 
v 'tre 
w 

'trz vn 

(ll) 

in which the transformed displacement and stress 
components of the interacted-field are composed 
of the transformed potentials with the Lame's 
constants A, ~ of the soil layer. 

[

u+ivl s l'd/Or-v/r 
u-iv = 3/'dr+v/r 

w l vn 

-2ill_v+i8~ 

2illv -i8~ 
-ivpn/r 

~:n~-v ][~ 
-(2~ 2 ~k 2 )'d/()r X. n vn 

vn 
(12) 

Similarly, the displacements of the incident 
loadings and pile foundations are transformed to 
obtain the presentation accompanied by the 
potential form~ by making use of the Kronecker's 
symbol in the domain of circumferential wave 
number. 

(13-1) 



[l 
p 

(13-2) 

where uP, s are the displacement amplitude of 
piles agd its phase angle measured by the 
difference between the direction of excitations 
and that of responded motions. 

Around the circumferemtial boundaries of piles, 
the welded contact condition between the 
displacements of piles and its surrounding soil 
layer with the non-deformability in respect of 
the circular cross-sections and the dynamic 
equilibrium of piles are required in the domain 
of wave numbers, 

u+iv 
u-iv 

( 1' -il' )s =f 
rr r8 vn n 

: r=a ( 14) 

where Epip, Pp are the be~ding stiffness and 
the density of piles and fn is the inhomogeneous 
term in relation to the excitations transformed 
in the z-direction. 

By eliminating the displacement parameters uP 
and s of piles in the above equations, the n 
equations in respect of the unknown functions of 
the interacted potentials are given in the 
domain of wave numbers, the solutions of which 
are meaningful only on the parameters of wave 
number 'v=l, -1 and it is not prevented from 
analyzing this soil-piles system to take the 
other parameters out of consideration. 
In consequence, the mixed equations composed of 
the Fredholm type simultaneous integral equations 
determining the unknown coefficients of 
potentials are obtained in combination with the 
boundary equations on the lateral surfaces. 

Av(q)Xv(q) + i LBvj(q,p )Zvj(p) 0 
j=l n n n 

jdqC~(pn,q)Xv(q) 

:j=l,2, ••• J, 

Xv(q) = [Al A2 Bl B2 Cl 

Z~(pn)= [El E2 Fl F2 Gl 

v=l,-1. 

In the numerical analysis of the above series 
integral equations, any frequency response of 
this interaction system is expressed in terms 
multiple summations and integrals as follows: 

of 
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u (x) = u
0 

(x) + LjdqUv(q,x)Xv(q) 
v 

( 16) 

where x is the position vector of observation 
stations. 
In this study, the following systems are able to 
be analyzed under consideration of the tip 
conditions of piles: 
(1) one due to the shearing force o0 along a 
horizontal axis or the bending moment M0 about a 
lateral axis concentrated at the head of piles, 
(2) the other subjected to the lateral motion uG 
uniformly distributed on the bedrock. 
In order to constract the model of soil-piles­
structure systems and to obtain the dynamic 
responses of the piles and their surrounding 
soil ground, the degrees of freedom at the head 
of each pile are to be at least two in 
translational and rotational directions. 
For instance, in the case of the systems 
composed of pile groups and the surrounding soil 
medium due to both external loadings 
concentrated at the head of piles and uniformly 
distributed bedrock motions, the displacement 
responses of the horizontal and ratational 
motions, u

0 
and e

0 
at the head of piles are 

expressed through the multiple compliance 
matrices associated with the lateral and 
rotational forces, and the displacement transfer 
vector under the bedrock motion as follows: 

( 17) 

CLASSIFICATION OF SOIL-PILES SYSTEMS 

As mentioned previously in the formulation, 
it is easy to analyze the dynamic responses of 
pile groups and their surrounding soil layer in 
the classification of the exciting condition and 
the boundary one at the ends of piles. 
For the interaction systems with multiple 
excitations, the total field of the system is 
constracted on the multiple superposition of the 
auxiliary fields which are subjected to a part 
of excitations individually. And, by accompanyin< 
the type of the boundary condition at the ends 0 
piles, the components of the potentials presente; 
in the expansion along the z-direction have 
different style of wave numbers p . 

. n 
In order to exam~ne the fundamental constitution 
of the soil-piles syste~s, one of the auxiliary 
problems ~s ~ntroduced ~n detail, which is 
composed of a soil stratum around only two piles 
with the fixed condition at their tips and 
subjected to the shearing fo~ces concentrated at 
the heads of piles or uniformly distributed 
bedrock motions along the lateral direction. 
The present system is naturally enlarged 
symmetric in respect of the plane surface z=H 
and by associating with the presentation of the 
external loadings expanded in the z-direction 
with the discrete wave number pn=nn/H, the forms 
of the interacted potentials are restricted as 
follows: 

X 



where in concerning with piles having the pinned 
condition at their tips and being subjected to 
lateral excitations at the heads of piles, the 
system is extended anti-symmetric about the 
bottom of the soil layer and the discrete wave 
number pn=(2n+l)n/2H is applied to the 
components of potentials. When subjected to the 
bending moment co~centrated at the heads of 
piles, the potentials expanded in the 
z-direction adopt the counter form of the 
trigonometric functions to those due to the 
lateral excitation, to which the wave number 
along the axis of piles is applied in reverse to 
the procedure used in the case under the 
shearing forces, as shown in Table 1. 
In consequence, the boundary condition standing 
on the horizontal surfaxes are divided into the 
following equations associated with the 
potentials expanded parallel to the lateral 
direction. 

1fl =0 
v :z=H 

2 3 
2 

I 3 z 
2 
+ k 

2 
] [ <P] 

23/3z(3 2 /3z 2 +k 2) X =O, 
v 

3/3z'flv=O :z=O 

[
.., 

i v 8 00 

[e 
1 f dqqJ (qr

1
) 1f! 

v 0 v 

X v 

( 19) 

The resulting equations in the domain of wave 
numbers are formed homogeneous in respect of 
the unknown coefficients of potentials and 
attended with the Rayleigh function which is 
related to the surface waves travelling along 
the horizontal direction. 

[ chaH 13chi3HJ fA 2 J fshaH 13sh13Hl [All 
2q 2 -k 2 2Sq 2 c + o o j c 

1 v 2 v 

q 
2 

shi3Hl [A 2 J + rachaH 
o c1 v 2a 

q
2

chBH-~ [A1 J _ 
2q2-k2 c -0 (20-2) 

2 v 

B 2 chi3H+ [(-l)n[K (13 )F 
v n=O v n 1 

+[(-l)mJ (q£)e-i(v-m)yK (13 )F l=O 
m v-m m n 2v 

B =0 lv 

( 20-3) 

( 20-4) 
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Table 1. 
Classification of the soil-piles systems 
by the exciting condition at the heads of 
piles and the boundary condition at their 
tips, in which the discrete wave number Pn 
along the z-axis is used variously. 

at the tips at the heads 

shearing force bending moment 

fixed 

pinned 

p =nn/H 
n 

Rayleigh function: 

R(q)=4aBq 2 (2q 2-k 2 ) 

-aS[ (2q2-k2) z+4q4 

pn=(2n+l)n/2H 

pn=nn/H 

( 21) 

] ch (aH) ch ( SH) 

On the other hand, for the boundary condition 
around the circumferential surfaces of piles 
the interacted potentials are arranged in the 
expanded form around the surface of each pile, 
in which the following finite Fourier transform 
of the hyperbolic functions along the z-axis is 
used. 

-c lf2H -ip z H 2H 
Sn(a)=2 H 

0 
dze n [sh(az)w0 (z)+sha(2H-z)WH (z)] 

lfH =-H dzcos(p z)sh(az) 
0 n 

-s lf2H -ip z H 2H 
Sn(al= 2 H 

0 
dze n [sh(az)W 0 (z)-sha(2H-z)WH (z)] 

lfH . =-H dzsln(p z)sh(az) 
0 n 

( 22) 

And, in the case of the expansion parallel with 
the cylindrical polar coordinates (r

1
, 8

1
, z) 

they are presented as follows: 

cp 

tjJ 

X 
[

cos(p z) l <l> l(l) . 8 n n 
[[elV 1 cos (p z) 1fl 
vn n n 

sin (pnz) Xn v 

( 2 3) 

Through the analysis in the contact condition 
between piles and their surrounding soil stratum 
and the moving condition of piles presented in 
Eq. (14), the inhomogeneous equations in respect 



of the coefficients of potentials are derived 
in the domain of wave numbers so as to include 
the integral operator accompanied by the Hankel 
transform along the r-axis. 
When the dominant equations are constracted on 
the coefficients Xv(q) of potentials expanded 
along the horizontal surface by eliminating the 
other ones among Eq. (15), the integral equations 
of the Fredholm type are obtained in which the 
number of the unknown functions is not increased 
whether the pile groups are crowded. 

A ( q) X ( q) + !"" dq I B ( q' q I ) X ( q I ) = f ( q) 
0 

(24) 

X (q) [Xl (q) X_l (q)] T 

CONCLUDING REMARKS 

In the present method concerning with the dynamic 
characteristics of soil-piles systems, the 
following remarks can be made: 
(1) By carrying out the theoretical analysis on 
the interaction systems composed of pile groups 
and their surrounding soil layer on a rigid 
basis due to the excitations at the heads of 
piles and uniformly distributed bedrock motions, 
it is based only on the three-dimensional and 
ljnear wave propagation theory in the domain of 
frequency and any other assumption or 
approximation is not necessary. 
2) In the integral equations dominating the 
unknown coefficients in the laterally expanded 
parts of the potentials, the number of the 
functions to be obtained is constant regardless 
of the number of piles. And, the equations have 
singular properties such as the integration 
along the infinite axis, the Rayleigh pole 
associated with the surface waves in the kernel 
components and the branch points accompanied by 
the phase velocities of dilatational and 
distortional waves. 
In spite of the singular properties presented 
in the integral equations, there are not the 
poles and branch points on the real axis set in 
the complex plane because of the viscosity in 
in the soil medium. So that, the integrand 
evaluated along the real axes of wave numbers 
does not encounter the violent discontinuity. 
3) About the support condition at the tips of 
piles, it may be possible to introduce in the 
case of the fixed or the pinned condition by 
arranging the type of the finite Fourier 
expansion of the interacted components along the 
z-direction and applying the technique of 
symmetric or anti-symmetric extension in respect 
of the plane bottom of a soil layer to the 
region of the soil-piles layered medium. 
4) As to the multiple condition around the 
multiple circumferential surfaces of pile groups, 
it is followed by the superposition of the 
auxiliary problems which correspond individually 
to a sigle pile embedded in the surrounding soil 
ground and the multiple transformation of Bessel 
and modified Bessel functions in the cylindrical 
polar coordinate systems along the axes of piles 
by the Bessel's addition theorem. 
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