
Scholars' Mine Scholars' Mine

Doctoral Dissertations Student Theses and Dissertations

Spring 2016

Clustering: Methodology, hybrid systems, visualization, validation Clustering: Methodology, hybrid systems, visualization, validation

and implementation and implementation

Dao Minh Lam

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

 Part of the Computer Engineering Commons

Department: Electrical and Computer Engineering Department: Electrical and Computer Engineering

Recommended Citation Recommended Citation
Lam, Dao Minh, "Clustering: Methodology, hybrid systems, visualization, validation and implementation"
(2016). Doctoral Dissertations. 2479.
https://scholarsmine.mst.edu/doctoral_dissertations/2479

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2479&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2479&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/2479?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2479&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

CLUSTERING: METHODOLOGY, HYBRID SYSTEMS, VISUALIZATION,

VALIDATION AND IMPLEMENTATION

by

DAO MINH LAM

A DISSERTATION

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

in Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

COMPUTER ENGINEERING

2016

Approved by

Dr. Donald Wunsch, Advisor
Dr. Randy H. Moss
Dr. R. Joe Stanley
Dr. Daryl Beetner

Dr. V.A. Samaranayake

c© 2016

DAO MINH LAM

All Rights Reserved

iii

PUBLICATION DISSERTATION OPTION

This dissertation has been prepared in publication option. It is formated according

to the style of the journals where the papers are published. Section 1 has been added to

supply background information for the whole dissertation. Section 2, 3 and 4 have been

added to summarize each paper.

Paper I is entitled ”Clustering Data of Mixed Categorical and Numerical Type with

Unsupervised Feature Learning”,and is prepared in the style used by the Institute of Elec-

trical and Electronics Engineers (IEEE) Access journal as submitted on July, 2015.

Paper II is entitled Hidden Markov Model with Information Criteria Clustering and

Extreme Learning Machine Regression for Wind Forecasting, and is prepared in the style

used by Journal of Computer Science and Cybernetics as published on 2015.

Paper III is entitled Unsupervised Feature Learning Classification with Radial Basis

Function Extreme Learning Machine using Graphic Processors, and is prepared in the style

used by IEEE Transactions on Cybernetics as submitted on March, 2015.

iv

ABSTRACT

Unsupervised learning is one of the most important steps of machine learning ap-

plications. Besides its ability to obtain the insight of the data distribution, unsupervised

learning is used as a preprocessing step for other machine learning algorithm. This disser-

tation investigates the application of unsupervised learning into various types of data for

many machine learning tasks such as clustering, regression and classification. The disser-

tation is therefore organized into three papers. In the first paper, unsupervised learning is

applied to mixed categorical and numerical feature data type to transform the data objects

from the mixed type feature domain into a new sparser numerical domain. By making use

of the data fusion capacity of adaptive resonance theory clustering, the approach is able to

reduce the distinction between the numerical and categorical features. The second paper

presents a novel method to improve the performance of wind forecast by clustering the time

series of the surrounding wind mills into the similar group by using hidden Markov model

clustering and using the clustering information to enhance the forecast. A fast forecast

method is also introduced by using extreme learning machine which can be trained by ana-

lytic form to choose the optimal value of past samples for prediction and appropriate size of

the neural network. In the third paper, unsupervised learning is used to automatically learn

the feature from the dataset itself without human design of sophisticated feature extractors.

The paper points out that by using unsupervised feature learning with multi-quadric radial

basis function extreme learning machine the performance of the classifier is better than sev-

eral other supervised learning methods. The paper further improves the speed of training

the neural network by presenting an algorithm that runs parallel on a graphics processing

unit (GPU).

v

ACKNOWLEDGMENTS

I don’t know where to start to acknowledge since there are many people that have

made my education and this dissertation possible. I am in great luck to have great teachers

and be cared by great friends.

The most important contribution for this dissertation are people in grad school. I

don’t know how to start with my advisor, Donald Wunsch. Dr. Wunsch has given me the

most professional guidance throughout choosing research topics, paper writing, technical

presentations, staying organized. He has invested a lot of his resources for my education

development.

I like to thank Dr. Wei Mingzhen for her financial support. I would to thank other

co-authors of my papers, Dr. Shuhui Li and Dr. Tayo, for their constructive discussions

about wind forecast and mixed type clustering.

I had a great time with other Ph.D. students in the applied artificial computational

intelligence lab. Thanks Sejun Kim, Bryce Schumacher and Islam Elnabarawy for their

discussion on topics of machine learning. I also thank Leonardo Silva, Seaar Al-Dabooni,

and Yongliang Yang for their fruitful discussion.

I would also like to thank my committee members, Drs. Daryl Beetner, Randy

Moss, R. Joe Stanley, V.A. Samaranayake for their precious time in examining this disser-

tation and their constructive suggestions to my research work.

Last but not least, I would like to thank to my family, my mom and sister. They are

the major support for my entire life. Though we live half of the earth apart, their support

and faith in me help me a lot when I was in difficulty. In addition to my family, I also thank

Tam Cao and her family, Hong Nguyen, Jenny Lam and Henry Nguyen, for their support

throughout the last four years of my study. My thanks also goes to Hong Wunsch for her

great care of my life in Rolla.

vi

TABLE OF CONTENTS

Page

PUBLICATION DISSERTATION OPTION . iii

ABSTRACT . iv

ACKNOWLEDGMENTS . v

LIST OF ILLUSTRATIONS. ix

LIST OF TABLES. x

SECTION

1. INTRODUCTION. 1

1.1. THE HETEROGENEITY OF DATA . 1

1.2. UNSUPERVISED LEARNING . 2

1.3. RESEARCH OBJECTIVES AND CONTRIBUTIONS . 3

2. UNSUPERVISED LEARNING WITH MIXED TYPE DATA . 7

PAPER

I. Clustering Data of Mixed Categorical and Numerical Type with Unsupervised Fea-
ture Learning. 8

Abstract . 8

I. INTRODUCTION . 9

II. UFLA . 11

A. Novelty and Motivation . 11

B. UFL . 12

C. Fuzzy ART . 13

III. UFLA CLUSTERING WITH MIXED, ERRONEOUS, MISSING FEA-
TURES DATA . 15

A. Categorical Features and Numerical Features preprocessing 16

B. UFL Fuzzy ART clustering Algorithm . 16

vii

C. Unsupervised feature construction . 17

D. Number of clusters . 17

E. Clustering Analysis and Evaluation . 18

IV. EXPERIMENT AND DISCUSSION . 19

A. Datasets . 19

1. Dataset with ground truth . 19

2. Dataset without ground truth . 20

B. Results and discussion of UCI datasets . 21

C. Results and discussion of petroleum dataset . 22

1. Clustering pre-processing . 22

2. Define the number of clusters . 23

3. Cluster Analysis . 23

V. CONCLUSION . 25

II. HIDDEN MARKOV MODEL WITH INFORMATION CRITERIA CLUSTER-
ING AND EXTREME LEARNING MACHINE REGRESSION FOR WIND FORE-
CASTING. 29

Abstract . 29

1 INTRODUCTION . 30

2 BACKGROUND AND RELATED WORK . 32

2.1 Model Selection . 32

2.2 Extreme learning machine (ELM) . 33

2.3 Related work . 34

3 WIND TIME SERIES FORECASTING USING HMM CLUSTERING AND
ELM PREDICTION . 35

3.1 HMM clustering using modified information criteria . 35

3.2 Prediction using ELM .. 37

4 EXPERIMENTAL DESIGN . 37

viii

5 FORECAST RESULTS AND DISCUSSION . 42

6 CONCLUSION . 46

III. Unsupervised Feature Learning Classification with Radial Basis Function Ex-
treme Learning Machine using Graphic Processors . 49

Abstract . 49

I. INTRODUCTION . 49

II. REVIEWS . 51

A. k-means UFL . 51

B. Radial Basis Function Extreme Learning Machine . 52

C. CUDA GPU Neural Network . 53

III. RBF ELM CUDA KERNEL ALGORITHM .. 53

A. RBF CUDA kernel Algorithm . 54

B. Analysis . 55

C. RBF ELM CUDA Algorithm . 57

IV. EXPERIMENT . 57

A. Dataset and feature learning CIFAR-10 . 57

B. RBF ELM Accuracy . 58

C. Single precision vs double precision CUDA . 58

D. New kernel performance with regard to BLOCKX and BLOCKY pa-
rameters . 59

E. Speed-up . 61

F. Experiment on MNIST . 61

V. CONCLUSION . 63

SECTION

3. UNSUPERVISED LEARNING WITH TIME SERIES DATA . 67

4. UNSUPERVISED FEATURE LEARNING WITH IMAGE CLASSIFICATION 69

VITA . 71

ix

LIST OF ILLUSTRATIONS

Figure Page

PAPER I

1. UFLA framework . 14

2. VAT image of UFL distance matrix of the petroleum dataset . 24

PAPER II

1: Flow chart of time series clustering using MIC HMM .. 35

2: ELM predictor . 38

3: a) Log likelihood and b) BIC of the time sequences with the best estimating
HMM plotted vs. the number of states in the HMM .. 41

4: Cluster validity using BIC . 42

5: Result of clustering wind location . 42

6: ELM forecasting configuration defined with various numbers of hidden nodes
and input nodes . 44

7: Comparison of forecasting and ground truth over 240-hour duration 46

PAPER III

1. RBF CUDA kernel implementation . 54

2. Effect of parameter BLOCKX and BLOCKY in RBF ELM CUDA kernel . 60

3. Speeding up RBF ELM using CUDA . 61

4. Comparing Multi-quadric RBF ELM with Sigmoid ELM in MNIST dataset . . . 62

x

LIST OF TABLES

Table Page

PAPER I

I ATTRIBUTES IN THE PETROLEUM DATASET . 20

II VIGILANCE PARAMETER AND NUMBER OF UFL FEATURES IN HEART
DISEASE, TEACHING ASSISTANT EVALUATION AND CREDIT AP-
PROVAL DATASETS . 21

III PERFORMANCE COMPARISON FOR MIXED TYPE DATA CLUSTER-
ING OF K-PROTOTYPE, K-MEDOIDS, FUZZY ART AND UFL FUZZY
ART . 21

IV COMPARISON BETWEEN UFLA WITH COBWEB/3, ECOBWEB AND
SBAC FOR HEART DATASET . 23

V DISTRIBUTION OF FORMATION TYPE FEATURE IN THE TWO CLUS-
TERS . 24

VI DISTRIBUTION OF NUMERICAL FEATURES IN THE TWO CLUSTERS 24

PAPER II

1: Forecast parameter settings in 4 experiments . 43

2: Performance comparisons among RBF, backpropagation, ANFIS, persistence
method, AR and ELM approach . 44

3: Forecast performance for various seasons and years . 45

PAPER III

I TEST ACCURACY OF UFL RBF ELM PERFORMANCE ON CIFAR-10
DATASET . 59

II ACCURACY OF RECOGNITION OF UFL RBF ELM AND OTHER METH-
ODS FOR MNIST DATASET . 63

1. INTRODUCTION

1.1. THE HETEROGENEITY OF DATA

The amount of data in our life has been exploding, and analyzing large datasets will be

a key component for innovation in several areas. The expansion of internet, social network,

internet of things, automobiles, and smart energy sensors will fuel the data growth for quite

a foreseeable future.

One of the most challenging problems in data analysis is the non-homogeneous prop-

erty, which is each kind of data has its own format, unique features. The three most popular

categories of data are: attribute data, time series data and multimedia data.

Attribute data is the data where each entity is described by a set of attributes often

named as features. Many machine learning approaches assume that features have numeric

values. However, in practice, mixed, erroneous, and missing data can result from i) errors or

mistakes caused by the equipment or humans, or ii) the data attributes, which can be either

numerical or categorical. Combinations of these issues can cause data to be mixed-type,

multivalued, or missing. Most data pre-processing successfully deals with the erroneous

and missing value in the data but hardly can deal with the mix categorical and numerical

features.

The second data this dissertation is trying to deal with is time series data. Time series

is a collection of observations that are evenly spaced in time and measured successively.

Time series collected in this manner often called discrete-time time series. Examples of

time series are stock price, wind speed and direction, and hourly readings of air tempera-

ture. Time series can be uni-variate and multivariate. In the case of multivariate, a mixed

type of both discrete and continuous variables causes a lot of problems for time series anal-

ysis since most time series models assume the data to be either discrete or continuous, not

2

a mixture of them. Another challenge for time series analysis is the size of dataset. As time

series data is accumulated over time, the size of the dataset will be ever increasing over the

time of data collection. This poses the problem of how to handle the large scale of data

efficiently.

The third type of data is multimedia data such as texts, sounds, images and videos,

which are exploding at an exponential speed. This exploding creates various challenges and

opportunities for machine learning applications, especially in the computer vision area. The

opportunity here is more and more data help propel a class of machine learning algorithms

that attempt to learn the feature automatically from unlabeled data that can be obtained

more and more easily. This is the first time a machine learning algorithm can learn the

features outside the context of the given dataset. This is also very different from the idea of

semi-supervised learning, where the unlabeled data could be labeled, but that label has not

been provided. Besides the opportunity, the challenge is also high. The ever-increasing size

and complexity of the image datasets creates potential tradeoffs of accuracy and speed in

learning algorithms. A good classifier requires progressively more data for training, which

also increases the time required for training.

1.2. UNSUPERVISED LEARNING

Unsupervised learning has several alternative names form one discipline to another.

In biology, unsupervised learning is known as numerical taxonomy. In graph theory, it is

known as partition. In computational intelligence, unsupervised learning is often referred

to as clustering. Those different name of the same learning methods reflect the fact that

unsupervised learning try to group data into a certain number of clusters but there is no

precise definition of the term cluster. However, data in the same cluster should be similar

to each other, while data from different clusters should be different from each other.

Unsupervised learning is usually the first learning step in the process of acquiring new

knowledge of the dataset. Since unsupervised learning works with unlabeled data, it is used

3

for obtaining insight into the data distribution. However, the most popular application of

unsupervised learning is it serves as a preprocessing step for other algorithms. Particularly

in this dissertation, unsupervised learning is used for data fusion to reduce the distinction of

numerical and categorical features of mixed type data. It is also used as a step of gathering

more information from surrounding wind time series in wind forecast. Finally, it is used as

a feature learning algorithm where the feature is learned from the dataset itself without a

human-designed feature extractor.

1.3. RESEARCH OBJECTIVES AND CONTRIBUTIONS

This dissertation deals with the use of unsupervised learning in various machine

learning tasks. In concrete, in the first part of the dissertation, when dealing with mixed-

features data, we propose an unsupervised feature learning approach to transform the ob-

jects from the mixed-type feature domain to a new numerical domain. By making use of

the template matching of adaptive resonance theory architecture (ART), we can rapidly

build the prototypes of the dataset. By measuring the distances between each of the ob-

jects to those prototypes, we can build new unsupervised learning features for the objects

that remove the distinction in treating numerical and categorical features, leading to a bet-

ter clustering result. The approach is also very scalable for a large scale dataset since the

fast learning property of ART. The approach was demonstrated with several real world

datasets including credit approval, heart disease and teaching assistant evaluation datasets

with ground truth and one noisy, mixed petroleum industry data, confirming the improve-

ment of the presenting method over several other methods. This paper was submitted to

IEEE Access in July, 2015. The contributions of this paper are:

• Unsupervised feature learning is applied to mixed type data to achieve sparse repre-

sentation, which makes it easier for a clustering algorithm to separate the data

• UFL is implemented by using Fuzzy ART

4

• Apply the methodology to several application fields

The second part of the dissertation deals with time series. The problem this part tries

to solve is improving forecast performance of wind speed in the windmills. There are

several other methods in the past but they often are either slow or not accurate enough. Our

approach to this problem is to make use of the available data of the surrounding wind mills

to help better prediction. First we presented a new time series clustering method that can

handle mixed type of data using a hidden Markov model HMM. The HMM model is size-

optimized by using our modified information criteria. The presented method can handle

large scale of data due to the optimized HMM language processing toolbox. Secondly,

to forecast the wind with the information from the clustering info, we use a fast extreme

learning machine to choose the optimal value of past samples for prediction and appropriate

size of the neural network. The result is that we can train the neural network in less than

a second for the dataset of 30 years of hourly wind data collection. The second part is

published in Journal of Computer Science and Cybernetics in 2014. The contributions of

this paper are:

• Propose a modified information criteria to choose the best HMM size and clustering

partition

• Develop a new wind time series clustering algorithm using Hidden Markov Models

that works with large scale data and mixed type data

• Create a novel fast wind speed forecast by including non-local data from clustering

using extreme learning machine and training the neural network in analytic form

The third type of data is multimedia data such as texts, sounds, images, and videos where

features are not ready. They are often transformed or processed by feature extractors, which

are mostly hand-crafted and often data-specified. So the motivation of the third part of the

dissertation is to design a mechanism that can learn the features from the data universally

5

and be performed automatically without any human intervention. It is done by a recent

trend of research called unsupervised feature learning, where we learn the feature encoder

by clustering the small patches from unlabeled data and then map any new image to fea-

ture representation through the learned encoder. Another motivation for this research is

the speed and performance of classification for those datasets. As more multimedia data

are generated, training a classifier takes more and more time, so there is a strong need to

speed up this process. Also deep learning is currently used to improve the accuracy but it

takes a lot of time to train the neural network. In this dissertation, we opt for using a ex-

treme learning machine (ELM) with a special kernel known as a multi-quadric radial basis

function (RBF) for classification. It is shown that this neural network is more accurate and

much faster than many state of the art classifiers. Furthermore, to improve the speed of

the classifier, we present a new massive parallel computing CUDA kernel by making use

of the device GPU architecture. We test our approach on 2 large datasets CIFAR-10 and

MNIST, showing that we achieve better result than many other approaches and have the

speed up of 20 times than the CPU program. This part was submitted to IEEE Transactions

on Cybernetics on 2015. The contribution of this papers are:

• Use the ELM RBF multi-quadric with unsupervised feature learning (UFL) to achieve

better performance

• Implement the ELM RBF kernel using a GPU, in which the hidden layer output is

implemented from scratch, using GPU native code.

The dissertation has a several broader impacts. Part I of the dissertation deals with mixed

feature data. This type of data happens a lot in practice. By successfully dealing with

the real data, the approach of clustering those kind of data presented in dissertation has a

lot of application in many areas of not only engineering but also economics and society

like: journalism, petroleum, health care, automation, robotics, where one has to deal with

both nominal and numerical features. Part II of the dissertation gives better performance

6

of wind forecast. With the increasing concern about environmental pollution, the danger of

radiation, and possible energy shortages have urged generating electricity from renewable

energy. The percentage of wind power making up the total electrical power supply has

increased quickly. The better performance of the prediction wind forecast obtained by the

presented method helps the operation of the windmill. The second part of this work with

time series prediction can also have a direct application into stock market, health care like

EEG, earthquake. Its fast and accurate performance of prediction can help a user have

the prompt and correct action to maximize the benefit or minimize the risk. Finally the

third part of dissertation, by using the unsupervised feature learning, saves a lot of effort

of the user to find out what feature is good. Furthermore the speed up by using GPU help

achieve the system work in real time, solving the ever increasing data volume problem. Its

application are many, such as image retrieval where query is an image of the similar object,

sorting where parcels are sorted by their sites in post office, counting where a biology

researcher wants to determine the number of occurrences of a specific subject.

7

2. UNSUPERVISED LEARNING WITH MIXED TYPE DATA

This chapter results from the collaboration with Professor Mingzhen Wei in the De-

partment of Geological Science & Engineering Missouri S&T. The purpose of this collab-

oration is to build a clustering methodology for petroleum engineering data. The dataset of

interest is a typical dataset of real data where data are corrupted by human and instrument

error. The most challenging problem of this dataset is that it contains both numerical and

categorical features whereas most of the clustering algorithms require the dataset features

be numerical.

This section presents an unsupervised feature learning approach to remove the dis-

tinctions between categorical and numerical features. It accomplishes the task by making

use of the ability of data fusion of Fuzzy ART clustering, an unsupervised learning algo-

rithm. This is the first time unsupervised feature learning is applied successfully to mixed

numerical and categorical data to represent the original data into a new sparse feature rep-

resentation, which is easier for clustering algorithms to separate the data.

The approach is not only tested on the petroleum engineering data but also several

other application fields such as heart disease dataset, teaching assistant evaluation dataset

and credit approval dataset.

The author would like to thank Dr. Rui Xu for his Fuzzy ART code. He also thanks

Dr. Wei for her constructive discussion of data preprocessing and knowledge in petroleum

engineering.

8

PAPER

I. Clustering Data of Mixed Categorical and Numerical Type with Unsupervised Feature
Learning

Dao Lam, Mingzhen Wei and Donald Wunsch

Abstract

Mixed type categorical and numerical data is a challenge in many applications. This general

area of mixed type data is among the frontier areas where computational intelligence approaches

are often brittle in comparison to the capabilities of living creatures. In this paper, unsupervised

feature learning (UFL) is applied to mixed type data to achieve a sparse representation, which

makes it easier for clustering algorithms to separate the data. Unlike other UFL methods that work

with homogeneous data such as image, and video data, the presented UFL works with mixed type

data by using Fuzzy Adaptive Resonance Theory (ART). UFL with Fuzzy ART (UFLA) obtains

a better clustering result by removing the differences in treating categorical and numeric features.

The advantages of doing this are demonstrated with several real world datasets with ground truth

including heart disease, teaching assistant evaluation and credit approval. The approach is also

demonstrated on noisy, mixed type petroleum industry data. UFLA is compared with several

alternative methods. To the best of the authors’ knowledge, this is the first time UFL has been

extended to accomplish fusion of mixed data types.

Index Terms

Clustering, unsupervised feature learning, mixed type data, Fuzzy ART.

This work was supported by the Missouri S&T Intelligent Systems Center, and the Mary Finley Missouri Endowment.
Dao Lam and Donald Wunsch are with the Applied Computational Intelligence Lab, Department of Electrical & Computer

Engineering, Missouri University of Science & Technology, Rolla, MO 65401 USA. E-mail: {dao.lam, dwunsch}@mst.edu.
Mingzhen Wei is with the Department of Geological Science & Engineering, Missouri University of Science & Technology,

Rolla, MO 65409 USA. E-mail: weim@mst.edu.

9

I. INTRODUCTION

Our work addresses the problem of mixed type categorical and numerical data in cluster-

ing. The goal is building a framework that automatically handles the differences in numerical and

categorical features in a dataset and groups them into similar clusters.

Clustering is the problem of grouping unlabeled data items into classes based on the

similarity of the items [1]. Many clustering algorithms, such as K-means and spectral clustering

[2], assume that features have numeric values. However, in practice, mixed, erroneous, and

missing data can result from i) errors or mistakes caused by the equipment or humans, or ii)

the data attributes, which can be either numerical or categorical. Combinations of these issues

can cause data to be mixed-type, multivalued, or missing. This paper presents a mechanism for

overcoming these problems.

Many other algorithms, such as those discussed in [3, 4], are designed only for cat-

egorical data. Methods for handling mixtures of attributes were researched and discussed in

[5, 6], but these approaches are just the beginning of what is needed. They typically group the

attributes as categorical or numerical and treat them separately until finally combining them using

a distance function. [5] demonstrated a similarity measure based on biometric classification, in

which greater weight is assigned to features that are uncommon in the population. Based on

that distance, they proposed the hierarchical agglomerative algorithm named Similarity-based

Agglomerative Clustering (SBAC). However their quadratic computational cost makes it hard to

extend for large datasets. Many researchers, such as [7, 8], have extended the K-means algorithm

to work with data containing both numerical and categorical features. In [9], numerical and cat-

egorical features were treated separately during the clustering process, and the results then were

combined to obtain a better partition using the ensemble learning approach. [10, 11] proposed

a variance and entropy clustering for mixed data but it requires domain expertise to build the

distance hierarchy for categorical attributes. In this paper, a new approach based on UFL allows

a seamless combination of both categorical and numerical features. To our knowledge, this the

first time that a method has been developed to extend UFL capabilities to mixed-type data. We

accomplish this by combining it with the data fusion capabilities of Fuzzy ART. This is also the

first time we are aware of ART being with the UFL technique.

10

In addition to being mixed, categorical data can have multiple values, and numerical data

can have a range of values. Very little research has been conducted regarding this problem. In [12],

the investigators addressed the problem of multi-value data in database clustering by building the

similarity as the combination of qualitative and quantitative features. Other researchers [13] have

used the Hausdorff distance to compute the distance between interval features, followed by a

dynamic clustering algorithm to cluster the dataset. Such approaches are limited to either discrete

or continuous features.

One of the main challenges of clustering is to determine the true number of clusters in a

dataset. Several algorithms, such as K-means and spectral clustering [2], assume that this number

must be known a priori. Other methods, such as fuzzy ART clustering[14], do not require this

information, but the ideal number of clusters often is determined during the cluster validation

process, and numerous studies have contributed to the solution [15, 1].

UFL has been widely used in computer vision [16, 17]. Besides the advantage of remov-

ing the labor of designing application specific features, results confirm that UFL shows higher

performance than traditional approaches such as discussed in [18, 19]. UFL uses one of the

unsupervised learning algorithms, such as K-means or auto encoding, to learn the features but

those clustering methods often require numerical data. To the best of our knowledge, there is no

previous research on applying UFL to mixed type feature data.

This paper uses ART as the unsupervised learning algorithm to learn the features from

the data itself. ART has many attractive characteristics. It scales very well for large scale datasets

because of its low computational requirement which is O(NlogN) or it can be further reduced to

O(N) [14] when in a one-pass learning mode. The other reason why ART is chosen as UFL for

mixed type data is its ability in data fusion [20, 21] by mapping features from multi-modal data

simultaneously. Moreover, ART can dynamically and adaptively generate a prototype, which is

used in feature encoding, without the requirement of specifying the number of clusters.

In this paper, a novel approach to handling mixed type data clustering is presented by

using UFL. The contributions of this paper are:

1. It presents a UFL approach using Fuzzy ART. Unlike other unsupervised learning

methods like K-means or auto encoder [22], where one needs large amounts of data, the approach

11

presented here works for both large and small volumes of data, which can be relevant when some

relevant subspaces of the data are large and others are small.

2. UFLA can solve the problem of mixed type data. By learning the higher and sparse

feature representation, the distinction between categorical and numerical in the original data

becomes less of an obstacle.

The approach is tested on several datasets with mixed features: heart disease, teaching

assistant evaluation and credit assignment on UCI repositories [23]. We also test one dataset with

no ground truth from the petroleum industry [24].

The rest of the paper is organized as follows: Sec. II includes a review of UFL and Fuzzy

ART, and Sec. III presents our novel approach to solving the problem of mixed, erroneous, and

missing features. Sec. IV describes our experiments with real data from the UCI machine learning

repository and the petroleum industry. Finally, conclusions and some future research directions

are discussed in Sec. V.

II. UFLA

A. Novelty and Motivation

Although UFL can be widely applied in many areas, its approach has never been investi-

gated as applicable to mixed type data representing real life datasets.

UFL is known to successfully represent the object in another sparse representation [25].

UFL can discover hidden features in data and represents them in sparse domains, which are more

suitable for machine learning tasks than the original data.

The innovation lies in applying the UFL to mixed type data to reduce the distinction

between the numerical and categorical. Most UFL has traditionally served as a preprocessing

method for supervised learning problems. The transformative possibility here is in its application

to a purely unsupervised problem. The primary value then is UFL’s contribution to the hard but

important problem of clustering when dealing with numeric and categorical data.

This leads to the question of how to apply UFL to this kind of dataset. The novelty of this

method is using Fuzzy ART, one method of unsupervised learning, as the method of building a

feature encoder.

12

The difference between categorical and numerical features makes several traditional clus-

tering methods fail since they often work with numbers only. Many approaches try to treat them

separately and then combine them in a later step [9] but they are still treated differently, and it is

unclear whether the end results are satisfactory. An ideal strategy would be to fuse the two before

actual clustering. UFL is very successful in sparse representation of the objects in a different

space. Unfortunately, that type of UFL requires a large amount of data to build the encoder. Those

large datasets are affordable when working with images, and video, since their natural features

are large dimension and require convolutional processing. For those real datasets as shown in

the UCI datasets used in this paper’s experiments, each sample is represented by less than a few

dozen features, and the convolutional operation is unworkable.

This leads to the introduction of Fuzzy ART into the process of UFL. This paper in-

vestigates a new method of UFL using Fuzzy ART. ART is known for its fast performance in

unsupervised learning. The other biggest advantage of Fuzzy ART is it does not need to specify

the number of clusters. The other evidence that ART can help reduce the distinction between the

numerical and categorical feature is its capability of data fusion as demonstrated in [21].

The next two sections reviewed the related background that is necessary for the new

approach.

B. UFL

Traditional classifiers require a human operator to high-level features, such as the scale-

invariant feature transform (SIFT) and histogram of oriented gradients (HOG) [26],[27]. Those

approaches are difficult or time consuming to apply to other kinds of data. To tackle the disad-

vantage of hand-crafted features, several methods of UFL have been researched, such as sparse

coding, deep belief nets, auto encoder, and independent subspace analysis [28, 29].

In machine learning, the amount of data is often more important than the choice of

algorithm. This is especially true in UFL where simple learning algorithms outperform several

handcrafted, carefully designed methods. Recently many researchers have started using UFL in

computer vision, e.g. [17] used sparse coding, and [22] used one-layer UFL for classification of

text and image.

13

In tasks such as image classification and object recognition, UFL can be a more attractive

approach than those relying on manually-designed features [30, 22]. UFL has also proven to be

helpful in greedy layer-wise pre-training of deep architectures [31, 32, 33].

However, a major drawback of many UFL systems is their complexity where parameters

like learning rate, momentum, and weight decay must be tuned and network architecture param-

eters must be cross-validated. This paper investigates a new method of UFL using a simple, fast

but effective training by using Fuzzy ART. While most other UFL algorithms focus on applying

to classification, this work serves to reduce the gap in numerical and categorical features and

work under the clustering domain, an unsupervised learning problem. ART has shown its ability

in data fusion by mapping multi-modal features in an incremental manner [20].

More over, UFL often leads to sparse feature representation, as demonstrated in [25].

Sparse representation often has several advantages such as robustness to noise. For clustering,

sparse representation is probably easier to separate in higher dimensional space.

An unsupervised learning task often consists of four broad steps: 1)feature extraction 2)

feature encoder building 3) feature mapping and 4) feature pooling. Our approach to feature

learning removes the feature extraction and feature pooling because they are not relevant to the

mixed type data. We only keep feature encoder building with Fuzzy ART clustering and feature

mapping with a soft threshold function where the weight below a certain threshold is set to 0

resulting in sparse representation features.

C. Fuzzy ART

ART has been applied successfully to many machine learning applications [34]. It has the

advantage of fast and stable learning. It is an online learning algorithm so it can be very scalable

for large scale datasets. ART also has noise immunity in document clustering [35].

The other advantage of Fuzzy ART is that ART can be used for data fusion by extending

ART from a single input field to multiple ones [20] as Fusion ART. Fusion ART provides a general

mechanism for multi-channel features mapping. [21] shows that Fusion ART works successfully

in integrating visual and textual features for image text co-clustering.

14

Fuzzy ART Feature
Encoder

Sparse
representation

Traditional
clustering

Mixed type
sample

mixed
type dataset

Fig. 1. UFLA framework. The whole dataset are first clustered by Fuzzy ART to produce the
prototypes of the dataset. Those prototypes were used as feature encoder to encode individual
mixed type data sample to sparse representation domain. After the mapping, the dataset can be
clustered by any traditional clustering algorithm.

Let X = {x1, ..xN} be a set of N samples in the given dataset, where xi = [x1,i, ..xd,i]
T is a

sample belonging to d-dimensional space Rd.

The basic module of this UFL for mixed type clustering is Fuzzy ART [14]. Fuzzy ART

consists of two layers of neurons: the input layer F1 and the clustering representation layer F2.

Unlike ART 1, where there are bottom up and top down weight vectors, Fuzzy ART has only

one weight vector wj for each category j, which is initialized to wj,1 = wj,2 = .. = 1 when the

category is uncommitted.

Before the samples can be input to ART, it has to be normalized to [0, 1] and enhanced

with complement coding to avoid category proliferation problems. The clusters are formed in

layer F2. When an input x is presented to layer F1, the committed neurons and one uncommitted

neuron compete in a winner take all manner to select the one with maximum activation according

to the formula below:

Tj =
|x ∧wj|
α + |wj|

, (1)

where α is a small real number to break the tie and the fuzzy AND operator ∧ is defined by

15

(x ∧ y)i = min(xi, yi), (2)

and where the norm |.| is defined by

|x| = Σd
i=1|xi|. (3)

The winning neuron J, which is argmaxjTj becomes activated. If neuron J passes the

vigilance ρ criterion which is:

ρ <
|x ∧wJ |
|x| , (4)

then the weight adaption occurs:

wJ(new) = γ(x∧wJ(old) + (1− γ)wJ(old), (5)

where γ is the learning rate parameter.

On the other hand if the vigilance criterion is not met, the current winning neuron is

disabled, and the next winning neuron is chosen. If the uncommitted neuron is chosen, a new

uncommitted neuron is created for future learning.

The advantage of UFL using Fuzzy ART is the dynamics, which can create many proto-

types used for learning feature by just increasing the value of the vigilance threshold ρ.

III. UFLA CLUSTERING WITH MIXED, ERRONEOUS, MISSING FEATURES

DATA

Because xi has both categorical and numerical features, it can be represented as xi =

[xc1,i, xc2,i, ..xcr,i, xn1,i, xn2,i, .., xns,i], where the first part, [xc1,i, xc2,i, ..xcr,i], is categorical,

[xn1,i, xn2,i, .., xns,i] is numerical, r and s are the number of categorical and numerical features,

respectively, and r+s = d. In other words, the dataset X has fc1, fc2,..,fcr as categorical features

and fn1, fn2,..,fns as numerical features.

The proposed methodology consists of the five steps described in Algorithm 1.

16

Algorithm 1 UFLA clustering
1. Perform data preprocessing to clean up missing, interval, and multi-value data. Perform binary
feature mapping on categorical data and normalize numeric data to [0 1].
2. Perform fuzzy ART clustering to obtain a certain number of clusters. Consider the weights
from each cluster of the ART as centroids.
3. For each sample x compute f(z) = min(0,mean(z) − z) where z is the distance from x to
centroids.
4. Treating f(z) as an unsupervised learning feature, use VAT or clustering validation to determine
number of clusters k.
5. Cluster the new dataset into k clusters via K-means to obtain the final partition.

A. Categorical Features and Numerical Features preprocessing

Consider a categorical feature fcu (u = 1, ..r) that has a domain of l values {d1, d2, ..dl}.
In the binary vector [b1, b2, ..bl], each bv corresponds to each domain value dv. A binary feature

transform of categorical feature value dv is the assignment of the categorical value of each sample

to a binary vector of d elements [b1, b2, ..bl], where all of the entries are 0, except bv.

Binary feature transforms are used to handle multi-value categorical features by setting

the corresponding entries in the binary vector. Furthermore, missing values can be resolved by

setting all of the binary entries to 1.

One form of uncertainty in this feature occurs when data are specified by a range of values,

instead of one scalar. To correct this problem, if a numerical feature fnu has interval data [a, b],

it is represented by two numeric features, fnu,1 = a and fnu,2 = b.

Missing values of numeric features are replaced by the average of the observed value or

by the k-nearest neighbors.

B. UFL Fuzzy ART clustering Algorithm

For mixed type feature data, the main challenge is to deal with both discrete and con-

tinuous variables at the same time in computing the distance between two samples since all the

traditional clustering methods treat the features as numerical only. The UFL is used to remove

the gap between the discrete and continuous property.

To overcome this hurdle, ART clustering is used since ART can work for mixed type data

(after pre-processing), we leverage the advantage of ART clustering as the unsupervised learning

algorithm. Fig. 1 depicts this process of UFL.

17

Moreover, ART is template based learning. The architecture summarizes the data via the

examples it has seen, which makes the clusters formed represent the data structure at a specific

vigilance threshold.

The algorithm sets the vigilance of the ART module to a moderate high threshold so that

numerous representative clusters can be formed. N samples are then fed into the Fuzzy ART

module to learn the structure of ART.

After the Fuzzy ART learning, KF representative clusters are created and each weight wj

j = 1..KF connected from one cluster to the ART input is considered as the new representation

of the mixed type data. This new representation removes the gap between the numeric and

categorical features.

C. Unsupervised feature construction

To construct the unsupervised learning feature representation of a sample x, the distance

from x to wj j = 1..KF are used to generate the UFL feature. In particular, the following feature

computation is used in this paper

zj = ||x−wj||22 (6)

fj = min(0,mean(z1, z2, ..., zKF
)− zj) (7)

where f = [f1, f2, ..., fKF
] is the UFL feature representation of s and will be used for clustering.

D. Number of clusters

Before the K-means step in Algorithm 1 can be applied, the value of K has to be de-

termined. Estimating the true value of K is a challenge for clustering analysis. To estimate the

number of clusters we use a technique called visual assessment of tendency (VAT) [15, 36].

The VAT algorithm works by reordering the distance matrix. Each pixel intensity of the

gray scale VAT image represents the dissimilarity between two samples. A black pixel means two

samples are close and a white pixel means two samples are far from each other. Each object is

18

identical to itself so the dissimilarity is 0, which is represented by a black pixel along the diagonal

that has 0 intensity. The distance matrix is scaled so that the furthest distance corresponds to the

white pixel with an intensity of 1. VAT uses a minimum spanning tree algorithm to organize the

distance matrix so that the VAT image concentrates the dark block along the diagonal. Those

dark blocks represent clusters of objects that close to each other and the white part that are off

the diagonal represent the distances between samples in the same clusters to samples outside the

cluster. VAT, therefore, can show the number of clusters along the diagonal of the VAT image.

E. Clustering Analysis and Evaluation

A critical step after clustering is analysis. This integrated methodology includes important

perspectives from which to look at the clustering results.

From a statistical perspective, the number of each type of categorical feature in each

cluster are counted to see which features were dominant. For numerical features, the min, max,

average and standard deviation are computed. Good clustering will yield small standard devia-

tions for each cluster, as well as averages that vary greatly from one another.

Two criteria are used to evaluate the performance of clustering. From the classification

point of view, the accuracy of grouping the samples that belong to the ground truth class is

computed. The resulting clusters can be classified based on the dominant number of true labels

in each cluster. The average accuracy of clustering is then defined by:

accuracy =
Σi

corri
Ni

C
, (8)

where corri, Ni are the number of correct labels and the number of objects in cluster Ci, respec-

tively; C is the number of clusters in the dataset.

One of the most popular external clustering validation indices is the Rand index, which is

defined below.

Assuming that P is the ground truth partition of dataset X with N data objects, which is

also independent from a clustering structure C resulting from the use of the UFL Fuzzy ART

algorithm, for a pair of data objects xi and xj , we will have four different cases based on how xi

and xj are placed in C and P

19

Case 1: xi and xj belong to the same clusters of C and the same category of P.

Case 2: xi and xj belong to the same clusters of C but different categories of P.

Case 3: xi and xj belong to different clusters of C but the same category of P.

Case 4: xi and xj belong to different clusters of C and different categories of P.

Correspondingly, the number of pairs of samples for the four cases are denoted as a, b,

c, and d, respectively. Because the total number of pairs of samples is N(N–1)/2, denoted as L,

we have a + b + c + d = L. The Rand index can then be defined as follows, with larger values

indicating more similarity between C and P:

Rand =
a+ d

L
. (9)

IV. EXPERIMENT AND DISCUSSION

This section demonstrates that the methodology can perform well on several real datasets

to discover their structure. The approach is first verified with several datasets with known ground

truth: heart disease, teaching assistant, and credit assignment datasets from the UCI repository

[23]. The method is also applied to a dataset collected from the Enhanced Oil Recovery Project

Survey by Oil & Gas Journal [24] to group enhanced oil recovery projects. These clustering

results can help petroleum experts to better understand the data they have collected throughout

years of oil production.

A. Datasets

1) Dataset with ground truth: StatLog Heart disease dataset [23]: This UCI dataset from

Cleveland Clinic has both categorical and numeric features. It has six real value features, one

ordered feature (the slope of the peak exercise ST segment), and three binary features (gender,

fasting blood sugar > 120 mg/dl, exercise induced angina) which can all be considered as numeric

features. The rest are categorical features (resting electrocardiographic results, chest pain type,

thal). Totally, it has 303 records with no missing values.

Teaching assistant evaluation dataset [23]: The dataset consists of the evaluations of

teaching performance of three regular semesters and two summer semester with 151 teaching

assistants at the Statistics Department of the University of Wisconsin. The scores are grouped

20

TABLE I
ATTRIBUTES IN THE PETROLEUM DATASET

Attribute Properties
Formation Type categorical, multi-value, missing

Porosity (%) numerical, range value, missing
Permeability numerical, range value, missing, log scale

Depth (ft) numerical, range value, missing, log scale
Gravity (◦API) numerical, range value
Viscosity (cp) numerical, range value, log scale

Temperature (◦F) numerical, range value
Residual Oil numerical, range value

into three groups of low, medium and high. The attributes are i) whether the TA is a native

speaker ii) course instructor (25 categories) iii) course (26 categories) iv) summer or regular v)

class size. This dataset is challenging since there are a lot of values for two categorical features

course instructor and course.

Credit approval dataset [23]: The dataset contains 690 samples having six numeric and

nine categorical features. The samples are divided into two groups, 307 approved and 383 re-

jected. Thirty-seven samples have missing values on seven features. This dataset is well suited

for the study because it has both mixed data and missing values.

2) Dataset without ground truth: The petroleum data is collected from the the Oil & Gas

Journal [24], biannually published for worldwide enhanced oil recovery projects. The data in the

survey were entered manually following the designed data structure. Therefore, there are several

data quality problems, such as missing values, inconsistent data, erroneous data, and typos. The

survey data recorded the reservoir and petroleum fluid condition, and project start year and project

evaluation until the report year. Based on research on enhanced oil recovery (EOR) screening, the

domain expert selected a few significant attributes for analysis, which are listed in Table I. Among

the numeric attributes, permeability, depth and viscosity had such a large dynamic range that they

are represented in log scale. The main purpose of the clustering was to group data collected from

several enhanced oil recovery projects. The original dataset contained a total of 460 projects.

21

TABLE II
VIGILANCE PARAMETER AND NUMBER OF UFL FEATURES IN HEART DISEASE, TEACHING

ASSISTANT AND CREDIT APPROVAL DATASETS

Vigilance Number of UFL features
Heart disease .25 29

Teaching assistant .60 8
Credit assignment .60 73

TABLE III
PERFORMANCE COMPARISON FOR MIXED TYPE DATA CLUSTERING OF K-PROTOTYPE,

K-MEDOIDS, FUZZY ART AND UFL FUZZY ART

UFL Fuzzy ART K-prototype K-medoids Fuzzy ART
Acc Rand Acc Rand Acc Rand Acc Rand

Heart
disease

81.5 69.7 80.0 63.8 76.5 61.1 46.6 50.4

Teaching
assistant

52.2 59.1 40.2 55.3 46.1 53.1 44.2 50.9

Credit
assignment

86.0 75.0 79 67.1 75.0 62.5 70 50.0

B. Results and discussion of UCI datasets

In all experiments with UFL, the parameter α was fixed at 0.001 because α does not have

significant influence on generating clustering nodes in the F2 layer. The learning rate γ is set at

0.9 for moderately fast learning. If γ is set at 1 (fast learning), the number of clusters in Fuzzy

ART is often small and the unsupervised learning features are not meaningful. On the other hand

if γ is small (slow learning), the unsupervised features are stable but the performance is slow. The

main parameter to adjust in UFLA is the vigilance parameter ρ. Unlike the Fuzzy ART clustering

problem where the vigilance has to be fine tuned to get the number of clusters equal to the true

number of cluster in the dataset, in UFL, the vigilance adjusts roughly so that the number of

clusters generated approximates the desired number of features that should be enough for the

K-means steps. The vigilance values reported in Table II are representative only, other values of

vigilance might result in the same performance. The K-means clustering at step 5 in Algorithm 1

is repeated ten times and the one with the smallest objective function is used for final clustering.

For comparison, several algorithms that can handle mixed type features are applied to the above

22

datasets. These include K-prototypes [6], K-medoids [37]. Furthermore, since the proposed ap-

proach is based on Fuzzy ART, Fuzzy ART [14] clustering is also compared to demonstrate how

the performance is improved.

Table III shows clearly the superior performance of UFLA clustering compared to the

rest of algorithms. For the credit dataset, it has an accuracy of 86% well above the next highest

accuracy, which is 79%. The teaching assistant evaluation dataset is a challenging dataset since

there are many categorical values but the UFLA is still better than the other algorithms.

It is interesting to compare UFLA clustering with Fuzzy ART itself. All three datasets

clearly show the effectiveness of the approach since the unsupervised features have a better rep-

resentation of the mixed type data than the original data. The reason for this higher performance

is the UFL features have removed the gap between the categorical and numerical features leading

to a better clustering even when using with K-means in later stage. In the original form of data,

although after preprocessing the data is in numerical form, the transformation in many cases

make it hard to interpret the distance between the 2 samples [5].

The heart disease dataset has 303 samples and some missing values [23], which make it a

good fit for this approach. Before running Algorithm 1, nominal missing values are replaced by

the mode of the observed values and numerical missing values are replaced by the mean of the

observed values. The FuzzyART clustering is run with vigilance 0.3 to obtain 24 unsupervised

learning features.

The heart disease dataset has been used as benchmark in several mixed type data clus-

tering such as COBWEB/3 [38], ECOBWEB [39] and SBAC [5]. Table IV gives the clustering

partitions with confusion matrix and average accuracy of UFLA and COBWEB/3, ECOBWEB,

SBAC. The UFL approach has the best performance among the algorithms.

C. Results and discussion of petroleum dataset

1) Clustering pre-processing: For numerical features, missing values are populated by

the average of the non-missing values of the respective features. Features with interval values

were split into two features, one for the lower bound and one for the upper bound. To deal with

noisy data, we use whisker plots to define the noisy values and treat them as missing values.

23

TABLE IV
COMPARISON BETWEEN UFLA WITH COBWEB/3, ECOBWEB AND SBAC FOR HEART

DATASET

Algorithm COBWEB/3 ECOBWEB SBAC UFLA
Accuracy 80.7 75.4 75.1 81.5

Confusion
matrix

114 33
25 131

119 59
20 105

102 38
37 126

103 21
36 143

For categorical features, missing values are populated by the mode of the observed value

of the category.

Binary transform is then applied to formation type features. Permeability, depth and

viscosity features are transformed to log scale. All of features are then scaled into range [0,

1] for fuzzy ART clustering.

Then we applied Algorithm 1 to the pre-processed dataset. The vigilance value was set at

0.8. There are 29 clusters formed, corresponding to 29 unsupervised features learned.

2) Define the number of clusters: VAT can facilitate the estimation of how many clusters

exist by allowing the user to count the number of black squares along the diagonal. Fig. 2

shows the rearranged distance matrix resulting from the petroleum dataset according to the VAT

algorithm. It clearly indicates two blocks of dark squares along the diagonal of the dissimilarity

matrix. It is evident that the petroleum dataset has two clusters.

After the K-means step in Algorithm is performed with k = 2, the dataset is clustered two

groups, a group of 400 and a group of 60.

3) Cluster Analysis : To understand more about the partition structure, the distribution

of features in each cluster are computed. The statistics of two clusters in the final results are

computed and shown in Table V and VI for both categorical and numerical features.

Table V shows the distribution of the Formation Type attribute. Each of the two clusters

contained projects from a different formation type; the projects in Cluster 1 were all from sand-

stone formations, while those in Cluster 2 were from unconsolidated formations. So the formation

type feature has a significant discrimination information in the partition structure.

Table VI shows the statistics regarding the numerical attributes of the two clusters, reveal-

24

(a) (b)

Fig. 2. VAT image of UFL distance matrix of the petroleum dataset: a) before organizing and b)
after organizing. It shows that the data forms two clusters as obvious dark squares along the main
diagonal.

TABLE V
DISTRIBUTION OF FORMATION TYPE FEATURE IN THE TWO CLUSTERS

San Dol Unc Tri Lim Con Sha
C1 400 0 0 0 0 2 0
C2 0 3 50 1 2 3 1

ing that many of the attributes yielded compact clusters. For example, for porosity, the deviation

was only 3.8 and 8.5, while the values ranged from 18 to 40 and 7.6 to 65 for each of the two

clusters.

On the other hand, attributes that had a large dynamic range still yielded a large deviation.

For example, the deviation for viscosity in the two clusters was 5× 104 and 6× 105, respectively.

From a dimensionality reduction point of view, features with large variations tend to contribute

TABLE VI
DISTRIBUTION OF NUMERICAL FEATURES IN THE TWO CLUSTERS

C1 C2
min max ave std min max ave std

porosity 18 40 32 3.8 7.5 65 33 8.5
permeability 19 2e4 2260 1973 1 1.5e4 3839 4346

depth 100 9000 1491 829 175 5740 1594 1073
API 7 33 13 3.1 8 30 14.8 5.4

viscosity 10 8e5 1e4 5e+4 10 5e6 9e4 6e5
temperature 10 250 102 28 45 400 118 67

oil res. 29 100 67 15 32 100 231 15.2

25

less significant information to the clustering process [40].

A closer study of the two cluster statistics reveals that permeability and temperature are

strong indicators for clustering information since cluster 1 has a lower average and standard

deviation but higher number of samples than cluster 2.

V. CONCLUSION

A novel methodology was presented based on UFL that works with noisy, uncertain and

mixed data. For mixed-data applications, UFLA was presented. UFLA can learn its features even

when the amount of data is small in important subspaces of the dataset. The learned feature

representations can remove the distinction in treating categorical and numeric features, leading

to a better clustering result. Visual assessment tendency is used to determine the true number of

clusters in the dataset when the number of cluster is unknown. Results from the application of

this method to several real datasets demonstrate the effectiveness of the approach.

REFERENCES
[1] R. Xu and D. Wunsch, Clustering. Wiley-IEEE Press, 2009.

[2] U. Luxburg, “A tutorial on spectral clustering,” Statistics and Computing, vol. 17, pp. 395–
416, December 2007.

[3] V. Ganti, J. Gehrke, and R. Ramakrishnan, “Cactus clustering categorical data using sum-
maries,” in Proceedings of the fifth ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 1999, pp. 73–83.

[4] S. Guha, R. Rastogi, and K. Shim, “Rock: A robust clustering algorithm for categorical
attributes,” Information systems, vol. 25, no. 5, pp. 345–366, 2000.

[5] C. Li and G. Biswas, “Unsupervised learning with mixed numeric and nominal data,”
Knowledge and Data Engineering, IEEE Transactions on, vol. 14, no. 4, pp. 673–690, 2002.

[6] Z. Huang, “Clustering large data sets with mixed numeric and categorical values,” in
Proceedings of the 1st Pacific-Asia Conference on Knowledge Discovery and Data Min-
ing,(PAKDD). Singapore, 1997, pp. 21–34.

[7] Z. Huang, “Extensions to the k-means algorithm for clustering large data sets with
categorical values,” Data Min. Knowl. Discov., vol. 2, no. 3, pp. 283–304, Sep. 1998.

[8] J. Ji, W. Pang, C. Zhou, X. Han, and Z. Wang, “A fuzzy k-prototype clustering algorithm
for mixed numeric and categorical data,” Knowledge-Based Systems, vol. 30, pp. 129–135,
2012.

26

[9] Z. He, X. Xu, and S. Deng, “Clustering mixed numeric and categorical data: A cluster
ensemble approach,” arXiv preprint cs/0509011, 2005.

[10] C.-C. Hsu and S.-H. Wang, “An integrated framework for visualized and exploratory pattern
discovery in mixed data,” Knowledge and Data Engineering, IEEE Transactions on, vol. 18,
no. 2, pp. 161–173, 2006.

[11] C.-C. Hsu and Y.-C. Chen, “Mining of mixed data with application to catalog marketing,”
Expert Systems with Applications, vol. 32, no. 1, pp. 12–23, 2007.

[12] T.-W. Ryu and C. F. Eick, “Similarity measures for multi-valued attributes for database
clustering,” Proceedings of Smart Engineering System Design Neural Network, Fuzzy
Logic, Evolutionary Programming, Data Mining and Rough Sets (ANNIE 98), 1998.

[13] M. Chavent, F. d. A. de Carvalho, Y. Lechevallier, and R. Verde, “New clustering methods
for interval data,” Computational statistics, vol. 21, no. 2, pp. 211–229, 2006.

[14] G. A. Carpenter, S. Grossberg, and D. B. Rosen, “Fuzzy art: Fast stable learning and
categorization of analog patterns by an adaptive resonance system,” Neural networks, vol. 4,
no. 6, pp. 759–771, 1991.

[15] J. C. Bezdek, R. J. Hathaway, and J. M. Huband, “Visual assessment of clustering tendency
for rectangular dissimilarity matrices,” Fuzzy Systems, IEEE Transactions on, vol. 15, no. 5,
pp. 890–903, 2007.

[16] G. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief nets,”
Neural computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[17] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng, “Self-taught learning: transfer learning
from unlabeled data,” in Proceedings of the 24th international conference on Machine
learning. ACM, 2007, pp. 759–766.

[18] J. C. van Gemert, J.-M. Geusebroek, C. J. Veenman, and A. W. Smeulders, “Kernel
codebooks for scene categorization,” in Computer Vision–ECCV 2008. Springer, 2008,
pp. 696–709.

[19] L.-J. Li, H. Su, L. Fei-Fei, and E. P. Xing, “Object bank: A high-level image representation
for scene classification & semantic feature sparsification,” in Advances in neural informa-
tion processing systems, 2010, pp. 1378–1386.

[20] A.-H. Tan, G. A. Carpenter, and S. Grossberg, “Intelligence through interaction: Towards a
unified theory for learning,” in Advances in Neural Networks–ISNN 2007. Springer, 2007,
pp. 1094–1103.

[21] L. Meng, A.-H. Tan, and D. Xu, “Semi-supervised heterogeneous fusion for multimedia
data co-clustering,” Knowledge and Data Engineering, IEEE Transactions on, vol. 26, no. 9,
pp. 2293–2306, Sept 2014.

[22] A. Coates, A. Y. Ng, and H. Lee, “An analysis of single-layer networks in unsupervised
feature learning,” in International Conference on Artificial Intelligence and Statistics, 2011,
pp. 215–223.

27

[23] K. Bache and M. Lichman, “UCI machine learning repository,” 2013. [Online]. Available:
http://archive.ics.uci.edu/ml

[24] “Oil and gas journal.” [Online]. Available: http://www.ogj.com/index.html

[25] Y.-l. Boureau, Y. L. Cun et al., “Sparse feature learning for deep belief networks,” in
Advances in neural information processing systems, 2008, pp. 1185–1192.

[26] D. G. Lowe, “Object recognition from local scale-invariant features,” in Proc. Seventh IEEE
Int Computer Vision Conf. The, vol. 2, 1999, pp. 1150–1157.

[27] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in Proc.
IEEE Computer Society Conf. Computer Vision and Pattern Recognition CVPR 2005, vol. 1,
2005, pp. 886–893.

[28] Q. V. Le, W. Y. Zou, S. Y. Yeung, and A. Y. Ng, “Learning hierarchical invariant spatio-
temporal features for action recognition with independent subspace analysis,” in Proc. IEEE
Conf. Computer Vision and Pattern Recognition (CVPR), 2011, pp. 3361–3368.

[29] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief nets,”
Neural computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[30] M. Ranzato, F. J. Huang, Y.-L. Boureau, and Y. LeCun, “Unsupervised learning of invariant
feature hierarchies with applications to object recognition,” in Computer Vision and Pattern
Recognition, 2007. CVPR’07. IEEE Conference on. IEEE, 2007, pp. 1–8.

[31] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle et al., “Greedy layer-wise training of
deep networks,” Advances in neural information processing systems, vol. 19, p. 153, 2007.

[32] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Bengio, “Why does
unsupervised pre-training help deep learning?” The Journal of Machine Learning Research,
vol. 11, pp. 625–660, 2010.

[33] H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin, “Exploring strategies for training
deep neural networks,” The Journal of Machine Learning Research, vol. 10, pp. 1–40, 2009.

[34] D. S. Levine, Introduction to neural and cognitive modeling. Psychology Press, 2000.

[35] A.-H. Tan, H.-L. Ong, H. Pan, J. Ng, and Q.-X. Li, “Towards personalised web intelligence,”
Knowledge and Information Systems, vol. 6, no. 5, pp. 595–616, 2004.

[36] T. C. Havens and J. C. Bezdek, “An efficient formulation of the improved visual assessment
of cluster tendency (ivat) algorithm,” Knowledge and Data Engineering, IEEE Transactions
on, vol. 24, no. 5, pp. 813–822, 2012.

[37] H.-S. Park and C.-H. Jun, “A simple and fast algorithm for k-medoids clustering,” Expert
Systems with Applications, vol. 36, no. 2, pp. 3336–3341, 2009.

[38] K. McKusick and K. Thompson, “Cobweb/3: A portable implementation,” 1990.

28

[39] Y. Reich and S. J. Fenves, “The formation and use of abstract concepts in design,” in
Concept formation: knowledge and experience in unsupervised learning. Citeseer, 1991.

[40] A. Zimek and J. Vreeken, “The blind men and the elephant: on meeting the problem of
multiple truths in data from clustering and pattern mining perspectives,” Machine Learning,
pp. 1–35, 2013.

29

II. HIDDEN MARKOV MODEL WITH INFORMATION CRITERIA CLUSTERING
AND EXTREME LEARNING MACHINE REGRESSION FOR WIND FORECASTING

Dao Lam1, Shuhui Li2 and Donald Wunsch1

1Department of Electrical & Computer Engineering, Missouri University of
Science & Technology; dlmg4,dwunsch@mst.edu

2Department of Electrical & Computer Engineering, The University of Alabama;
sli@eng.ua.edu

Abstract

Mixed type categorical and numerical data is a challenge in many applications. This general

area of mixed type data is among the frontier areas where computational intelligence approaches

are often brittle in comparison to the capabilities of living creatures. In this paper, unsupervised

feature learning (UFL) is applied to mixed type data to achieve a sparse representation, which

makes it easier for clustering algorithms to separate the data. Unlike other UFL methods that work

with homogeneous data such as image, and video data, the presented UFL works with mixed type

data by using Fuzzy Adaptive Resonance Theory (ART). UFL with Fuzzy ART (UFLA) obtains

a better clustering result by removing the differences in treating categorical and numeric features.

The advantages of doing this are demonstrated with several real world datasets with ground truth

including heart disease, teaching assistant evaluation and credit approval. The approach is also

demonstrated on noisy, mixed type petroleum industry data. UFLA is compared with several

alternative methods. To the best of the authors’ knowledge, this is the first time UFL has been

extended to accomplish fusion of mixed data types.

Index Terms

Clustering, unsupervised feature learning, mixed type data, Fuzzy ART.

30

1 INTRODUCTION

The importance of time series data has established its analysis as a major research focus in many

areas where such data appear. These data continue to accumulate, causing the computational

requirement to increase continuously and rapidly. The percentage of wind power in the nation’s

total electrical power supply has increased quickly. Wind power is, however, known for its

variability [1]. Better forecasting of wind time series is helpful to operate windmills and to

integrate wind power into the grid [2, 3].

The simplest method of wind forecasting is the persistence method, where the wind speed

at time ’t+∆t’ is predicted to be the same speed at time ’t’. This method is often considered as a

classical benchmark. Such a prediction is of course both trivial and useless, but for some systems

with high variability it is challenging to provide a meaningful forecast that outperforms this

simple approach. Another more useful example of a classical approach is the Box-Cox transform

[4], which typically is used to approximate the wind time series to Gaussian marginal distribution

before using the auto-regressive-moving-average (ARMA) model to fit the transformed series.

However, ARMA models are often outperformed by neural network based methods [5], [6],

which represent the approach mentioned in this paper.

The forecasting of time series data using neural networks has been researched widely [7],

[8] due to the ability of neural networks to learn the relationship between inputs and outputs non-

statistically and their lack of a requirement for any predefined mathematical models. Many wind

forecasting methods have used this approach, including [9, 10]. However, training the network

takes a long time due to slow convergence. The most popular training method is backpropagation,

but it is known to be slow in training, additionally, its wind forecasting performance, in general,

has not been as successful as other applications of backpropagation [8]. Radial basis function

(RBF) trains faster but with high error and cannot handle a large amount of data due to the

memory requirement for each of the training samples. The adaptive neuro-fuzzy interface system

(ANFIS) predictor [11] is a fuzzy logic and neural network approach that improves on the

persistence method but is still limited in terms of speed when working with large data sets.

A more successful clustering approach is the hidden Markov switching model. In [12],

hidden Markov switching gamma models were used to model the wind in combination with

31

additional information. Such approaches, however, have not used clustering techniques to group

the data to the same model. Recently, [1] proposed a two-step solution for wind power generation.

First, mean square mapping optimization was used to predict wind power, and then adaptive critic

design was used to mitigate wind power fluctuations.

Wind speed trends change over time. Therefore, to understand the nature of wind currents,

a stochastic model must be built for wind time series. Several approaches have been used in

times series data analysis, the most popular of which is the hidden Markov model (HMM) [12].

However, HMM parameter estimation is known to be computationally expensive, and with such a

large sequence of National Oceanic & Atmospheric Administration (NOAA) data used to model

the wind, the current approaches remain unable to accomplish such estimation.

The goal of this paper is to present an effective solution for forecasting the wind time

series, which is achieved by first clustering the time series data using HMM, and then using the

clustering results in the extreme learning machine predictor. Therefore, this paper makes valuable

contributions. From the clustering perspective, a novel method of clustering time series data is

proposed that uses HMM with modified information criteria (MIC) to identify the wind time se-

ries clusters sharing the same dynamics. The paper offers the following new features to clustering

using HMM: first, it provides a mechanism for handling sequential data that are simultaneously

continuous and discrete; second, it proposes a method that probabilistically determines the HMM

size and partition to best support clustering; and third, it makes use of the power of the Hidden

Markov Model ToolKit (HTK) [13] engine, an open-source speech processing toolkit provided by

Cambridge University, to induce the HMM from the time series. One of the primary advantages

of the presented method compared to others is its ability to handle a large amount of time series

data by leveraging HTK for HMM clustering and the extreme learning machine (ELM) to obtain

the analytic solution when training the neural network. Moreover, to forecast wind, a new method

for wind time series data forecasting is developed herein based on ELM. The clustering results

improve the accuracy of the proposed wind forecasting method.

The paper is organized as follows. Sec. 2 provides a brief review of ELM, model selection

and related work. Then, the proposed framework for wind forecasting is presented in Sec. 3. Next,

in Sec. 4, the experiment is demonstrated on real data to confirm the success of the clustering

32

approach in clustering. Sec. 5 details the performance of the approach during different seasons

and forecast horizons. Finally, Sec. 6 concludes the paper with an idea for future work.

2 BACKGROUND AND RELATED WORK

2.1 Model Selection

From probabilistic mixture model-based selection, it is known that model selection involves find-

ing the optimum number of mixtures by optimizing some criterion. In model-based clustering,

mathematical models represent a cluster’s structure, and model parameters are chosen to best

fit the data to the models. Several criteria have been investigated in the literature, including the

Akaike information criterion (AIC) [14] and the Bayesian information criterion (BIC) [15]. In

general, no criterion is superior to any other, and criteria selection remains data-dependent.

In HMM clustering, BIC is often used for model selection, e.g., [15, 16, 17]. The basic

definition of a BIC measure given a model λ and data X is [15]:

BIC = −2log{P (X|λ, θ̂)}+ d · log(L) (1)

where d is the number of independent parameters to be estimated in the model. L is the number

of data objects, and θ̂ is the parameter estimation of the model λ.

Similarly, the AIC measure [14] is given as :

AIC = −2log{P (X|λ, θ̂)}+ 2d (2)

Choosing parameters that maximize the criteria allows the best-fitting model to be selected. In

both equations, log{P (X|λ, θ̂)}, which is the data likelihood, increases as the model becomes

bigger and more complicated, whereas the second term, which is the penalty term, favors simple,

small models. For extended series such as wind data, computing log{P (X|λ, θ̂)} often requires

a lot of time. This challenge is met by using the HTK Toolbox in this paper.

A comparison of (1) and (2) reveals a difference in the penalty term. Moreover various

forms of BIC measures have been applied successfully in many clustering applications [18].

33

In addition to the problem of defining the model, HMM clustering also faces the problem

of cluster validity, as do other clustering techniques [19]. In the model selection, some existing

criteria, techniques, and indices can facilitate the selection of the best number of clusters. This

paper follows Bayesian information criteria, which uses the best clustering mixture probability:

P (X|λ) =
L∏

i=1

K∑

k=1

Pk ∗ P (xi|λk) (3)

where X is the dataset, λk is the model of cluster k, xi is the ith data point in dataset X , Pk is the

likelihood of xi in cluster k, and L and K are the number of data points and clusters, respectively.

2.2 Extreme learning machine (ELM)

ELM is a feed forward single hidden layer neural network that can approximate any nonlinear

function and provide very accurate regression [20, 21]. The most advantageous feature of ELM,

however, is the way it is trained. Unlike other neural networks that take hours, or even days to

train because of their slow convergence, ELM input weights can be initialized randomly, and

ELM output weights can be determined analytically by a pseudo inverse matrix operation [21].

Let X ∈ Rn×N = [x1,x2,...,xN] be N data used to train the ELM. To take the bias value

of the neuron, X is transformed into X̂ by adding a row vector of all 1s, i.e. X̂ = [
X

1
].

Denote the expected output of the ELM T ∈ Rk×N = [t1, t2, ..., tN].

Denote Wi ∈ RNH×n and Wo ∈ Rk×NHas the input weight matrix and output weight

matrix of ELM where NH is the number of neurons in the hidden layer.

Doing so yields

H = g(Wi ∗ X̂) (4)

where H ∈ RNH×N is the hidden layer output matrix of ELM and g is the nonlinear activation

function of the neuron.

Once H is obtained, the output of the output layer can be calculated

O = g2(Wo ∗H) = Wo ∗H (5)

34

(5) occurs because the output node activation function is linear.

For training purposes O should be as close to T as possible, i.e. ||O− T || = 0.

ELM theory [21] states that to achieve ||O−T|| = 0, Wi can be initialized with random

value and Wo is computed as

Wo = pinv(H) ∗T (6)

where pinv(H) represents the generalized inverse of a matrix.

Once training completed, ELM can be used for the purpose of regression or classification.

2.3 Related work

The HMM was first developed for speech processing [22], resulting in the two most successful

HMM speech engines, HTK [13] and Sphinx [23]. Since then, HMMs have been applied ex-

tensively in numerous research studies and applications, including those involving handwriting,

DNA, gestures, and computer vision.

In the HMM clustering literature, sequences are considered to be generated from a mix-

ture of HMMs. The earliest work was presented in [24], in which a mixture of HMMs was

regarded as a composite HMM. A new metric distance was devised between sequences using

the log likelihood and clustered using hierarchical clustering.

Reference [25] extended this work to apply to electrocardiogram (ECG) data using a tech-

nique in which observations followed an auto-regressive model rather than a Gaussian mixture.

Similarly, in [26] the log likelihood between the sequence and the model was used as the feature

vector for the sequence.

To better choose the correct model and number of clusters for HMM clustering, [16] used

the BIC. Their approach was not tested on real data and would require some modifications for

practical application, as seen in Sec. 2.1. The method used in this paper, while similar to theirs,

has advantages. HTK is used to learn HMM parameters and handle time series with multiple

features.

To date, wind forecasting approaches have assumed continuous HMMs, but in practice,

a wind time series feature vector is simultaneously discrete (for wind direction) and continuous

35

(for wind speed). The method proposed in this paper is able to handle this problem successfully.

3 WIND TIME SERIES FORECASTING USING HMM CLUSTERING AND

ELM PREDICTION

This section presents a novel framework for wind time series forecasting. The basic idea is to

incorporate data available from different locations in order to achieve better prediction. The

framework first clusters the wind time series into groups of similar patterns and then uses data in

the same group to train an ELM to improve the prediction result.

3.1 HMM clustering using modified information criteria

Clustering, often known as unsupervised learning, allows objects possessing similar features to

be grouped together. This paper presents a new method for clustering wind time series data.

Each time series is modeled by an HMM, and clustering is based on the similarity between those

models. The algorithm is given in Fig. 1.

Fit each Ol to HMM with

different number of states

Choose the best HMM λl

by using (7)

Compute log likelihood

L(Ol |λj)

Build similarity matrix S

Cluster S into various K

groups using spectral

clustering

Fit each group to

component HMM λk

Compute partition modified

BIC by using (9)

Choose partition that

maximizes BIC

Input: L wind time series
Ol Output: cluster labels

Figure 1: Flow chart of time series clustering using MIC HMM. This process removes most of
the non-local data but keeps any non-local data that fall into the same cluster as the local data

36

In the first step, the algorithm searches for the best model for each sequence. Each se-

quence essentially consists of subsequences, each of which is regarded as a sample in HTK. The

HMM is learned using the HTK toolbox. HInit is randomly initialized and the model is later

refined by HRest.

The log likelihood of the sequence provided by each model is used to compute the BIC

measurement from (7). In this paper, BIC is modified to better work with data from a discrete

HMM with numerous observations:

MIC = log{P (X|λ, θ̂)} − αd (7)

where α is the adjusted coefficient, which will be defined in Sec. 4. The typical value of α for a

discrete HMM is 0.2.

The number of independent parameters in a discrete HMM is calculated using (8):

d = Q2 +QM −Q− 1 (8)

where Q represents the number of states and M represents the number of observations.

After the best model for each sequence is found, the log likelihood L(Oi|λj) is computed

as the distance from sequence i to sequence j. The drawback of this step is the cost, O(N2), but

for a small system, this is acceptable. This log likelihood then is used as a similarity between the

two sequences i and j. Unfortunately, this likelihood is not symmetric and therefore not applicable

for this clustering algorithm unless some transform is undergone. Reference [25] suggests several

transforms, but for the current approach, the sum of two likelihoods produces satisfactory results.

The next steps involves finding the best partition by scanning the number of partitions

from Kmin to Kmax. At each K, a spectral clustering algorithm [27] is used to achieve the

partition. Each cluster found using spectral clustering then is modeled by an HMM using the same

initialization as in step 1. Next, K component HMMs representing sub-systems are obtained.

Finally, (9) is used to compute the BIC criteria, which are used to measure the quality of the

configuration.

37

BIC =
L∑

i=1

log
K∑

k=1

Pk ∗ P (Oi|λk)− β(K +
K∑

k=1

dk) (9)

where Pk is the likelihood of data given cluster k. The membership is assumed crisp, so Pk = 1

if sequence Oi is in cluster k, and Pk = 0 otherwise.

Note that in (9), the first term generally increases as K increases because smaller clusters

generally result in better HMMs; therefore, the sum of the log likelihood will be higher. On the

other hand, the second term increases linearly with K. Therefore, BIC will reach the peak at some

Kbest and then decrease after that.

β is an important factor to be defined. In this experiment, β depends on both α and the

number S of sub-sequences in each sequence:

β =
α

1 + log(S)
(10)

3.2 Prediction using ELM

The prediction of wind speed a steps ahead is based on past samples from the target wind farms

and the changes in wind speed at nearby wind farms caused by meteorological events [28]. For

the purpose of wind speed prediction, a specific ELM design is used. The structure of this ELM is

described in Fig. 2 as follows: i) The number of ELM prediction inputs is based on the number n

of past samples of wind speed used. When predicting with clustering information,m past samples

from every other time series are appended to the n past samples of the considered time series. ii)

The number F of hidden nodes is defined. Researchers [21] have claimed that the performance

of ELM does not depend on the number of hidden nodes if it is large enough. Therefore, in Sec. 5

a small number of hidden nodes are defined but still retain good performance. And iii) Only one

output neuron is used for the forecast result.

4 EXPERIMENTAL DESIGN

To verify the proposed approach, the real wind time series is clustered to define its dynamic

properties. The work is completed in MATLAB and HTK. This combination is very efficient

because MATLAB provides fast programming and analysis of the result, while HTK provides

38

Figure 2: ELM predictor: Input layer serves as a tap delay line, hidden layer has nonlinear
activation and linear output layer neuron estimates the predicted value [21]. In this figure, X(t)
represents the local time series and Yi(t), i = 1..p are all the time series data from non-local sites
clustered together with local data via the process depicted in Fig. 1. Thus, i is the index of the ith

non-local site in the chosen cluster; and p is the number of sites that belong to the same cluster
as the local site; n is the number of past samples of local time series used as ELM inputs; m is
the number of past samples from every other time series in the same cluster; F is the number of
hidden nodes; and a is the number of steps ahead into the future to be predicted.

an engine with which to process the huge HMM computation. The experiment is conducted

on a high-performance workstation running Ubuntu with Intel Xeon 6 cores 2.4 GHz CPU, 16

GB RAM. To speed up HMM parameter learning, the MATLAB parallel processing toolbox is

utilized.

Before embarking upon a detailed description of the dataset, some important terms are

clarified as follows. A site is a geographical location where data are collected. An observation is a

measurement of a wind feature at a specific time and location. An observation has some features,

including speed and direction. A sequence or time series is the collection of observations at a

location over time. A subsequence is a sequence whose observation is limited to one year. In this

paper, each site had 35 subsequences corresponding to each year. A cluster is a group of sites that

share a similar HMM model.

The wind data set was obtained from the NOAA. The wind time series dataset used in this

paper was collected from 15 sites around Vichy, MO, such as St. Louis, MO, Chicago, IL and

39

Denver, CO. Their locations are mapped in Fig. 5.

Data were collected from 1973 to 2010, and measurements were supposed to have been

taken every hour. In total, the number of time samples for each sequence is a few hundred

thousand. These are not averaged together by site or time. The duration of data collection is

longer than that in many similar wind data studies, but it is appropriate because the clusters vary

slowly. Thus, such long period can also be used in the presented approach. There are 11 temporal

features for each observation, and wind speed and wind direction are the two most important.

While the distribution of wind direction is fairly regular from 10 to 360 degrees, the wind speed

distribution appears inconsistent, especially during gusts when the top speed is much higher than

the average.

With such a long sequence of hundreds of thousands of observations, calculating the

model for each sequence using an EM algorithm would be time consuming. This problem was

addressed by dividing the wind time series at each location into smaller sequences according

to each year. The sites with incomplete data for the entire period from 1973-2010 were not

considered. In all, there were 35 sub-sequences for each location. From a speech processing

perspective, each sub-sequence is regarded as a sample of a word or a sentence that can be used

to train an HMM corresponding to that word or sentence.

Over years of observation for data collection, many entries in the sequences, both for

wind speed and wind direction, were missed. In those instances, the missing entry was populated

with the nearest available observation. Moreover, the time series were resampled into paces of

one hour by averaging the observations that fell between the two consecutive hours.

The temporal features in the sequences also posed some problems. While in reality,

wind direction and speed values are continuous, in the data set, wind direction was recorded

as a discrete value in multiples of 10s. This has caused continuous Gaussian mixture HMM

approaches, such as in [24, 25],with failure to represent the sequence.

A discrete HMM is used by discretizing the wind speed using a histogram method. Wind

speed histogram bins with speeds less than 2m/s are combined with adjacent bins, and those with

speeds greater than 30m/s are stored in the same bin. Combining the two discrete wind speed and

direction bins yields the observation symbol, with each value corresponding to an observation in

40

the sequence. The dataset contains 2597 different observations.

Following the proposed framework, to find the best model for each sequence, the number

of states in the HMM varies between 1, 5, 10, 15, 20, 25, and 30 and the HInit from HTK is run

to compute the HMM and the log likelihood of each sequence for each model.

The result of the likelihood is depicted in Fig. 3(a). As illustrated, the log likelihood

increases with the size of the model. The BIC is computed using 7 for each model. The value of

α changes from .1 to 1 and the value that BIC shows a clear peak is chosen. The result is plotted

in Fig. 3b with α = .2.

As indicated in Fig. 3(b), when the number of states is small, the log likelihood is domi-

nant in the BIC, which explains the initial increase in the BIC. However, as the number of states

increases, the penalty for complex configuration becomes dominant in the BIC, resulting in BIC

reductions. For all of the time series, the BIC peaks after a certain number of states. Fig. 3(b)

shows that this peak occurrs at Q = 10 for all sequences except for sequence 11. Therefore, an

HMM with a size of 10 is used in later steps as the model for deciding the optimum number of

clusters.

The dataset itself is very large, but the number of sequences is fairly small (15). Therefore,

the number of clusters should be between Kmin = 2 and Kmax = 7. Fig. 4 depicts the result of the

BIC measurement for different partitions.

Fig. 4 indicates that the BIC is highest when K = 2 and decreases as K increases. There-

fore, the ideal number of clusters is 2. The clustering result appears in Fig. 5, where sites in the

same cluster have the same shape.

The HMM parameter learning complexity is O(Tx|Q|2), where T is length of the se-

quence and Q is number of states. With this large dataset, the average time required to learn the

best HMM for each site is 40 minutes, and the total time required to learn the best partition is 3

hours. This is still better than other methods, in which such learning is infeasible due to the large

memory footprint. Moreover, the learning only has to be run once.

The sites on the right of the map belong to the same group and share the same dynamic

wind properties. The site of particular interest in this work is Vichy, MO because the original goal

of obtaining this dataset is to use the data from surrounding locations to help predict the wind

41

0 10 20 30
−7

−6.5

−6

−5.5

−5

−4.5
x 10

4

Q

(a)

lo
gl

ike
lih

oo
d

0 10 20 30
−7.2

−7

−6.8

−6.6

−6.4

−6.2

−6

−5.8

−5.6

−5.4
x 10

4

Q

(b)

BI
C

Figure 3: a) Log likelihood and b) BIC of the time sequences with the best estimating HMM
plotted vs. the number of states in the HMM. Note that log likelihood increases with the number
of states but BIC peaks at an intermediate number of states. Each time series is represented by
different color (best viewed in color).

pattern nearby. This clustering result shows that data from other sites in this group can be used to

facilitate wind prediction in Vichy, MO as discussed in next section.

The clustering results can be leveraged for wind forecasting. This paper only forecasts the

wind speed, but the method can be extended easily to other wind features, such as wind direction.

Many of the available wind forecasting approaches only use data collected from a single location.

Making use of available data collected from sites belonging to the same clusters can enhance the

prediction results, as shown in this section.

A single step ahead scheme is used for prediction, which means the wind speed is pre-

dicted one hour ahead. Once the predicted value is actually observed, the observed value is used

as a feature in next prediction. The wind time series is arranged into the input matrix as discussed

42

2 3 4 5 6 7

−8.9

−8.8

−8.7

−8.6

−8.5

−8.4

x 10
5

Number of clusters

B
IC

Figure 4: Cluster validity using BIC. After clustering into k clusters using spectral clustering, the
partition BIC calculated using (9) is used as a cluster validity index. Higher index indicates better
partitioning.

Figure 5: Result of clustering wind location: sites in the pin-shape correspond to the first cluster;
sites in the balloon-shape correspond to the second cluster.

in section 3.2. Before proceeding with the prediction, the data is normalized to the range of [-1,1]

as required by ELM.

5 FORECAST RESULTS AND DISCUSSION

Four experiments demonstrate the superiority of wind forecasting with clustering over forecasting

without clustering and other forecasting methods. Among the 15 sites with available data, Vichy,

MO is chosen as the location of the experiment and considered to be local, while the other 8 sites

(data from Denver, CO excluded because it is too far from Vichy, MO) in the same cluster as

Vichy, MO are considered to be a group. All of the data are divided into seasons. 20% of the final

year (432 hours, with data taken equally from each season) is used for testing. The rest of the data

from all of previous years constituted the training set (see Table 1). Other parameter settings are

listed in Table 1. All ELMs have sigmoid activation function in the hidden layers. All reported

results are averaged after 10 runs of ELM regression to take into account the randomness of input

43

weight initialization.

Exp. F n m Train Test

Fig. 6

10
..

100,
1000

1..100 0 Vichy, MO data, autumn
1975..2008+ 80% of 2009 Vichy, MO,

autumn 20% of
2009

100 1..100 1..20 Group data, autumn 1975..2009 (
80% of 2009 for local data)

Table
2

100 50 0 Vichy, MO data, autumn
1975..2008+ 80% of 2009 Vichy, MO,

autumn 20% of
2009100 30 4 Group data, autumn 1975..2009 (

80% of 2009 for local data)

Table
3

100 50 0
Vichy, MO data;

4 seasons; 80% of 2009 or 3, 5, 10,
20, 35 previous years

Vichy, MO, 4
seasons, 20% of
2009

100 30 4

group data;
4 seasons; 1, 3, 5, 10, 20, 35

previous years (80% of 2009 for
local data)

Fig. 7 100 30 4 Group data, spring 1975..2009 (
80% of 2009 for local data) Vichy, MO,

spring 20% of
20091000 100 40 Group data, spring 1975..2009 (

80% of 2009 for local data)

Table 1: Forecast parameter settings in 4 experiments

The first experiment involves defining the best ELM configuration for prediction with and

without clustering information. The parameters to be determined are F , the number of hidden

nodes, and n, the number of past wind data samples from Vichy, MO used as ELM inputs. When

predicting with clustering information, one additional parameter, m, the number of past samples

from each of the locations in the same cluster as Vichy, MO, is used as extra ELM input and has

to be estimated.

Fig. 6(a) shows the error of the forecast of wind speed in autumn. For prediction with

only local data, F is given representative values 10, 25, 50, 100 and 1000 while n varies from

1 to 100. As Fig. 6(a) indicates, when the number of hidden neurons is small (i.e., about 10)

the ELM prediction is unstable. In fact, the root mean square error (RMSE) increases with the

number of samples used for prediction. However, as the number of hidden neurons increases, the

performance of the prediction becomes stable. At F= 100, the ELM predictor performes very

well across a wide range of hidden nodes and the smallest error is obtained when n = 30.

For prediction with clustering information, F is fixed at 100 while n and m varies from 1

44

to 20 and 1 to 100, respectively. Fig. 6(b) shows that the lowest error prediction is reached when

m = 4 and n = 30.

0 10 20 30 40 50 60 70 80 90 100
0.8

1

1.2

1.4

1.6

1.8

 Number of samples used in prediction

R
M

S
E

 10 nodes
25 nodes
50 nodes
100 nodes
1000 nodes

(a)

0
20

40
60

80
100

0

5

10

15

20
0.8

0.9

1

1.1

1.2

Number of local samples

Number of samples from each other sites

R
M

S
E

(b)

Figure 6: ELM forecasting configuration defined with various numbers of hidden nodes and input
nodes. a) Prediction without clustering information. ELM performance is stable as long as F is
larger than 100. b) Best number of past samples in the local site defined along with number of
past samples in each other site in the same cluster for shared-cluster prediction.

In the second experiment, the performance of the proposed approach is compared with

that of other feed forward neural networks such as Backpropagation, RBF, ANFIS, and the per-

sistence method. Backpropagation and RBF are implemented in the MATLAB Neural Network

Toolbox, and ANFIS is implemented in the MATLAB Fuzzy Logic Toolbox.

RMSE
(m/s)

MAE
(m/s) MAPE Training

time (s)
Persistence (autumn 2009 data) 1.00 .76 16.27 N/A

ANFIS
(2 inputs, autumn 2009 data) 1.05 .75 16.15 1.70

RBF
(5 inputs, spread factor =10 with

data from last 5 autumns)
.95 .72 15.94 165

Backpropagation
(30 inputs, 100 hidden nodes) 1.59 1.14 24.32 6300

ELM local
30 inputs, 100 hidden nodes) .95 .72 16.08 .24

ELM group (30 local inputs, 4
inputs from each of the sites in the
same cluster, 100 hidden nodes)

.90 .70 15.20 .27

Table 2: Performance comparisons among RBF, backpropagation, ANFIS, persistence method,
AR and ELM approach

45

As Table 2 indicates, the proposed approach performed best among the compared algo-

rithms across all of the error performance indices: root mean square error (RMSE), mean absolute

error (MAE), and mean absolute percentage error (MAPE). The time requirement is also small,

just .24s for local data and .27s for group data.

The performance of the ELM group approach is also tested in various seasons and years.

Table 3 shows the wind forecast in spring, summer, autumn and winter of 2009. The number of

years of data used to train the ELM is 1, 3, 5, 10, 20, and 35.

RMSE Years 1 3 5 10 20 35

Autumn
Vichy, MO

data .96 .95 .95 .94 .95 .95

Group
data .94 .90 .89 .89 .90 .90

Summer
Vichy, MO

data 1.08 1.06 1.06 1.06 1.06 1.06

Group
data 1.08 1.02 1.03 1.01 1.01 1.01

Spring
Vichy, MO

data .92 .92 .91 .90 .90 .90

Group
data .90 .86 .86 .86 .86 .86

Winter
Vichy, MO

data 1.40 1.37 1.37 1.36 1.36 1.36

Group
data 1.35 1.29 1.28 1.29 1.28 1.29

Table 3: Forecast performance for various seasons and years.

Different seasons affect the performance of ELM prediction differently. It performs best

in spring, for which the RMSE error is lowest at .86 with clustering information. The prediction

with clustering information performs better than without it, across all seasons.

Finally, the wind speed is forecast and compared with the true value. Forecasting is

performed for both a single step ahead and up to four steps ahead with clustering information.

Multiple step ahead prediction can be performed by either of two methods: In the direct method,

n past samples are used to directly predict the wind speed 4 hours ahead while in the indirect

method, n past samples are used to predict the wind speed one step ahead, and this prediction

is recursively used to predict the next step until prediction had been made up to 4 hours ahead.

Multiple simulations are performed using two methods; the direct method performed better and

therefore is used in this paper.

46

To increase the performance, F is set at 1000. Similarly to one step ahead prediction, ex-

periments are conducted with different numbers of past samples from the local site and clustering

sites to determine that the ELM with n = 100 and m = 40 is the optimal configuration. The wind

speed is forecast using this ELM configuration.

0 50 100 150 200 250
0.02

0.04

0.06

0.08

0.1

0.12

0.14

Time (hr)

W
in

d
sp

ee
d

(m
/s

)

True Value
1 step ahead
4 step ahead

Figure 7: Comparison of forecasting and ground truth over 240-hour duration.

Fig. 7 depicts the 1 hour and 4 hour ahead forecast values and compares with the true

value in a 240-hour observation.The RMSE of 4 step ahead prediction is 1.11 m/s while that of 1

step ahead is 0.86 m/s.

One potentially fruitful avenue for future investigation would be to extend the presented

technique to online learning. Clustering is widely and correctly considered as a tool for online

learning. However, in this application the relationships between clusters vary slowly over time.

Therefore, the ELM and its rapid adaptation capability make online learning an intriguing possi-

bility.

6 CONCLUSION

This paper presents a new method for forecasting wind time series data. By combining cluster-

ing techniques in HMM and the ELM regression, the proposed method successfully improves

47

forecasting accuracy. The method can handle a large amount of data by leveraging the power of

the HTK engine and the analytic solution for training the ELM. In the future, HMM processing

will be accelerated using GPU clusters to further reduce the amount of time required for learning

HMM parameters.

REFERENCES

[1] G. Venayagamoorthy, K. Rohrig, and I. Erlich, “One step ahead: short-term wind power
forecasting and intelligent predictive control based on data analytics,” Power and Energy
Magazine, IEEE, vol. 10, no. 5, pp. 70 –78, 2012.

[2] B. Brown, R. Katz, and A. Murphy, “Time series models to simulate and forecast windspeed
and wind power,” Journal of Climate and Applied Meteorology, vol. 23, pp. 1184–1195,
1984.

[3] S. Li, T. A. Haskew, K. A. Williams, and R. P. Swatloski, “Control of dfig wind turbine
with direct-current vector control configuration,” Sustainable Energy, IEEE Transactions
on, vol. 3, no. 1, pp. 1–11, 2012.

[4] G. Box and G. Jenkins, Time series analysis, forecasting and control, 1976.

[5] S. S. Soman, H. Zareipour, O. Malik, and P. Mandal, “A review of wind power and
wind speed forecasting methods with different time horizons,” in North American Power
Symposium (NAPS), 2010, pp. 1–8.

[6] P. Werbos, “Brain-like prediction: New statistical foundations for prediction in the face
of real world complexity,” IEEE Latin American Summer School on Computational
Intelligence lecture, 2009.

[7] E. Saad, D. Prokhorov, and I. Wunsch, D.C., “Comparative study of stock trend prediction
using time delay, recurrent and probabilistic neural networks,” Neural Networks, IEEE
Transactions on, vol. 9, no. 6, pp. 1456 –1470, 1998.

[8] A. Sfetsos, “A comparison of various forecasting techniques applied to mean hourly wind
speed time series,” Renewable Energy, vol. 21, no. 1, pp. 23–35, 2000.

[9] S. Li, D. C. Wunsch, E. A. O’Hair, and M. G. Giesselmann, “Using neural networks to
estimate wind turbine power generation,” Energy conversion, ieee transactions on, vol. 16,
no. 3, pp. 276–282, 2001.

[10] K. Rohrig and B. Lange, “Application of wind power prediction tools for power system
operations,” in Power Engineering Society General Meeting, IEEE, 2006.

[11] C. W. Potter and M. Negnevitsky, “Very short-term wind forecasting for Tasmanian power
generation,” Power Systems, IEEE Transactions on, vol. 21, no. 2, pp. 965–972, 2006.

48

[12] P. Ailliot and V. Monbet, “Markov-switching autoregressive models for wind time series,”
Environmental Modelling & Software, vol. 30, no. 0, pp. 92–101, Apr. 2012.

[13] “Htk speech recognition toolkit,” in http://htk.eng.cam.ac.uk/.

[14] H. Akaike, “A new look at the statistical model identification,” Automatic Control, IEEE
Transactions on, vol. 19, no. 6, pp. 716–723, 1974.

[15] G. E. Schwarz, “Estimating the dimension of a model,” Annals of Statistics, pp. 461–464,
1978.

[16] C. Li and B. Gautam, “A Bayesian approach to temporal data clustering using hidden
Markov models,” in International Conference on Machine Learning, 2000, pp. 543–550.

[17] A. Biem, J.-Y. Ha, and J. Subrahmonia, “A Bayesian model selection criterion for hmm
topology optimization,” in Acoustics, Speech, and Signal Processing (ICASSP), 2002 IEEE
International Conference on, vol. 1, May 2002, pp. 989–992.

[18] J. Hu and B. Ray, “In interleaved HMM/DTW approach to robust time series clustering,”
IBM, Tech. Rep., 2006.

[19] R. Xu and D. Wunsch, Clustering. Wiley-IEEE Press, 2009.

[20] G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learning machine for regression
and multiclass classification,” Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE
Transactions on, vol. 42, no. 2, pp. 513–529, 2012.

[21] G. B. Huang, Q. Y. Zhu, and C. K. Siew, “Extreme learning machine: theory and applica-
tions,” Neurocomputing, 2006.

[22] L. Rabiner, “A tutorial on hidden Markov models and selected applications in speech
recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286, 1989.

[23] CMU, “Sphinx.” [Online]. Available: http://cmusphinx.sourceforge.net/

[24] P. Smyth, “Clustering sequences with hidden Markov models,” in Advances in Neural
Information Processing Systems. MIT Press, 1997, pp. 648–654.

[25] A. Panuccio, M. Bicego, and V. Murino, “A hidden Markov model-based approach to
sequential data clustering.” Springer, 2002, pp. 734–742.

[26] M. Bicego, V. Murino, and M. A. Figueiredo, “Similarity-based classification of sequences
using hidden Markov models,” Pattern Recognition, vol. 37, no. 12, pp. 2281–2291, 2004.

[27] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: analysis and an algorithm,”
in NIPS, 2001, pp. 849–856.

[28] R. Schlueter, G. Sigari, and A. Costi, “Wind array power prediction for improved operating
economics and reliability,” Power Systems, IEEE Transactions on, vol. 1, no. 1, pp. 137–
142, 1986.

49

III. Unsupervised Feature Learning Classification with Radial Basis Function Extreme
Learning Machine using Graphic Processors

Dao Lam, Member, IEEE, and Donald Wunsch, Fellow, IEEE

Abstract

Ever-increasing size and complexity of datasets create challenges and potential tradeoffs of ac-

curacy and speed in learning algorithms. This paper offers progress on both fronts. It presents a

mechanism to train the unsupervised learning features learned from only one layer to improve

performance in both speed and accuracy. The features are learned by an unsupervised feature

learning (UFL) algorithm. Then, those features are trained by a fast Radial Basis Function (RBF)

Extreme Learning Machine (ELM). By exploiting the massive parallel computing attribute of a

modern Graphics Processing Unit (GPU), a customized Compute Unified Device Architecture

(CUDA) kernel is developed to further speed up the computing of the RBF kernel in the ELM.

Results tested on CIFAR and MNIST datasets confirm the UFL RBF ELM achieves high accu-

racy, and the CUDA implementation is up to twenty times faster than CPU and the naive parallel

approach.

Index Terms

CUDA, ELM, neural network, RBF, SVM.

I. INTRODUCTION

In machine learning, speed and accuracy are often the two main tradeoffs. Traditional

classifiers require a human operator to design features that represent high-level features of the

objects. These approaches are difficult or time consuming to be applied to other kinds of data.

Dao Lam and Donald Wunsch are with the Applied Computational Intelligence Lab, Department of Electrical & Computer
Engineering, Missouri University of Science & Technology, Rolla, MO 65409 USA. E-mail: dao.lam@mst.edu and wun-
sch@ieee.org.

50

A good classifier requires progressively more data for training, which also increases the time

required for training. In tasks such as image classification and object recognition, UFL have

shown to compete well or even outperform manually designed ones [1, 2]. UFL has also proven

to be helpful in greedy layer-wise pre-training of deep architectures [3, 4, 5].

However, a major drawback of many UFL systems is their complexity where parameters

like learning rate, momentum, and weight decay must be tuned and network architecture param-

eters must be cross-validated. Surprisingly, a simple feature learning algorithm using k-means

as in [2] can perform well. By pursuing larger representations, this algorithm achieves better

recognition accuracy for several datasets.

Deep learning is motivated by the need for more accuracy in supervised learning [3]. The

idea of deep learning with UFL is to use greedy layer-wise unsupervised pre-training. At each

layer UFL creates a set of higher level features. The new learned features are used to train the

next layer of the deep network. Finally the set of layers are combined to initialize a deep network

classifier such as a Support Vector Machine (SVM) [6] or logistic regression classifier.

However, producing the state of the art results becomes quite computationally intensive

[7], e.g., the system in [8] takes 16,000 CPU and runs for 3 days to finish training. Most of the

training time is devoted to learning high level features. Therefore, researchers typically reduce

the size of datasets and models to be able to train networks in a practical amount of time and

these reductions undermine the high level features. Most conventional training methods in deep

learning use gradient descent searching and, therefore, have several problems including slow

convergence, tuning parameters, local minima traps, or human intervention. ELM [9, 10] aims

to overcome these issues. In spite of single-layer learning, ELM can greatly generalize and

universally approximate any function [9, 11] and performs well in many aspects.

Several ELM techniques [12, 13, 14] exist to deal with accuracy, overfitting, unsupervised

learning, and reducing size but improving the speed of ELM is often neglected. As the data

increases, computing the output weights of ELM can sometimes take hours for a large dataset.

CUDA has been applied to certain problems in machine learning, including SVM [15], Convolu-

tional Neural Network (CNN) [16], and deep learning [17]. [18] previously attempted to improve

the performance of ELM but the accuracy was not so high.

51

UFL excels at evaluating the efficiency of feature encoders but neglects the merit of

the classifier. The approach presented in this paper learns the feature and classifier each in a

single layer and still achieves excellent deep learning algorithms. This paper investigates the

ELM known as multi-quadric RBF which presents an improvement of the UFL learning. With a

surprising simplicity, ELM coupled with UFL yields a significant improvement in accuracy and

does much better in training speed.

The main contributions of this work focus on two results:

1. When using ELM with multi-quadric RBF kernel, classification with UFL features

gives better results than SVM and many deep learning approaches.

2. Exploiting the power of modern graphics processors GPUs enable a new CUDA kernel

using GPU native code that can handle the ELM feature mapping and significantly improves

learning speed compared to any other approaches of which the authors are aware.

The rest of the paper is presented as follows. In Sec. II CUDA, the UFL and ELM are

briefly discussed. RBF ELM CUDA implementation is presented in Sec. III. In Sec. IV the

proposed method is used on two benchmark datasets CIFAR-10 and MNIST.

II. REVIEWS

A. k-means UFL

In UFL, images are represented by features learned without class labels. UFL consists

of 2 steps: 1) build the encoder and 2) encode the image. Data used to build the encoder are the

dataset itself and computer-generated data or data collected from the internet. Building an encoder

includes the following steps [2]: 1) extracting a randomly large amount of patches from the data;

2) apply preprocessing to enhance the contrast of patches 3) applying k-means clustering to the

patches to obtain k centroids. Those centroids are considered as the filter banks used to encode

the images.

In encoding the images into high level features, the full size image is convolved with the

filter banks and passed through the triangle activation function f(z) = max(0,mean(|z|)− |z|),
where z is the distance from the image patch to each of the k learned centroids. These features

are followed by spatial average pooling to achieve invariance to image transformation and more

52

compact representation as well better robustness to noise and clutter. Those pooled features can

then be used for classification.

See [19] for a more general discussion of unsupervised learning methods.

B. Radial Basis Function Extreme Learning Machine

In this section we follow the mathematical conventions in [9]. Let W,V,F, H, and T be

the matrices of input weight, output weight, training features, hidden node output, and training

labels.

For multi-quadric function:

H = W � F (1)

where � mean RBF operator between matrices W, F where

Hi,j =
√
||Fi −Wj||2 + b2j (2)

where Hi,j: entry at ith row, jth column, Fi: feature of sample ith, Wj :weight connecting hidden

node jth to input layer ,bj bias weight of hidden node jth.

ELM theories [9, 10] show that hidden neural weights need not to be tuned and W can be

randomly initialized. H is actually an nH-dimension ELM feature mapped from an nF -dimension

input space.

ELM learning becomes a problem of minimizing:

minV||V||22 + c||HV −T||22 (3)

where c is the regularization factor between the error and the magnitude of output weight, which

can be solved in closed form:

V =

HT (I

c
+HHT)−1T if nS ≤ nH

(I
c
+HTH)−1HTT if nS > nH

(4)

where nS ,nH are number of samples and hidden neurons.

53

C. CUDA GPU Neural Network

An Nvidia GPU (e.g., M2075) has two mechanisms for parallel computing: Physically,

multiple processors and stream processors; and programming-wise, massively parallel threads

run in streams processors. Those threads are organized into blocks of threads. Each block is run

on one multiple processor and within that multiple processor, multiple threads are scheduled to

run a stream processor.

Besides the limit on the number of physical processors, a GPU also has a limit on memory.

Each thread has a limited number of fast registers to store local variables. Threads in the same

block have to share a small but extremely fast cache memory, and it must be synchronized

between threads to prevent a racing condition.

The largest memory that can be accessed by all threads is called global memory, how-

ever the access time is slow. To compensate for the slowness, global memory is optimized

for coalesced accesses. Coalesced access happens when consecutive threads in a block access

consecutive locations in the global memory. In a highly designed kernel, this must be taken care

of.

A good performance CUDA kernel must be designed to optimize the usage number of

threads in blocks, as well registers, shared memory and global memory.

III. RBF ELM CUDA KERNEL ALGORITHM

The RBF ELM above requires matrix and vector manipulations. While some of the cal-

culation such as (4) only require a basic GPU library like cuBLAS [20] and MAGMA [21],

the major bottleneck of the RBF ELM is the calculation of the RBF kernel in (1) when the

input feature matrix is large due to large amount of data or high dimension. In essence, the RBF

kernel needs to compute the distance between the ith sample to the weight vector Wj of the

jth hidden node. A naive implementation of CUDA kernel where each thread will compute each

distance between the ith sample and weight Wj will be very slow due to accessing global memory

repeatedly.

54

Weight W

nF

nH

shared
memory

BLOCKX

Hidden matrix H

nH

Kernel configuration

gridDim.x

blockDim.y

blockDim.x
blockId.x

gridDim.y

Feature matrix F

nS

nF

= BLOCKX

= BLOCKYnS

Fig. 1. RBF CUDA kernel implementation. The colored elements of the matrix each represent a
block of threads. Arrows mean a portion of row or column, which are used in computing portion
of distances. nF , nS , nH are number of features, number of samples, and number of hidden nodes.

A. RBF CUDA kernel Algorithm

One reason for the speed-up of the presented kernel lies in its ability to compute not one

distance but multiple distances between the multiple rows in feature matrix F and one column

in the weight matrix W as shown in Fig. 1 by making use of the shared memory in each thread

block. To obtain the maximum computing throughput in CUDA, the algorithm divides F into

row bands and W into column bands, where they cooperate to compute the results. Matrix F is

banded into bands of BLOCKX rows, matrix W is banded into bands of BLOCKX columns.

From the CPU host, CUDA kernel configurations are divided into blocks of threads shown

as BLOCKX x BLOCKY threads in Fig. 1. The choice of BLOCKX and BLOCKY affects

the performance of the CUDA kernel. In each thread, the distance between one column of W and

BLOCKX rows in F are calculated.

Threads in the same block will read elements in the same band in matrix F and matrixW

to perform necessary computation and write the result into respective block in matrix H as

illustrated in Fig. 1.

As we begin to discuss the needed algorithm, we need to establish some terminologies

before getting into the actual steps of the algorithm. Denote M(a,b) as the element of matrix M

55

at row a and column b; M(a:c, b) as a portion of column b from row a to row c and M(a, b:c) as

a portion of row a from column b to column c.

The following Algorithm 1 controls a thread running in the CUDA kernel. Denote this

thread as Th, which has threadIdx.x and threadIdx.y and belong to blockIdx.x and blockIdx.y.

Thread Th will start by reading the data at location F(blockIdx.y* BLOCKX+ threadIdx.y,

threadIdx.x) and write to S(threadIdx.x, threadIdx.y). It then jumps BLOCKY stride in the

same column to read in F and write to S. It continues to do this BLOCKX/BLOCKY times to

finish reading the column in the banded section of matrix F. It then has to wait for other threads

in the same thread block to finish copying data from F to S. After this, the first chunk in the

banded F is copied to the shared memory S.

Thread Th now computes the distances between a segment of the W(0: BLOCKX -1,

blockIdx.x* BLOCKX* BLOCKY + threadIdx.y* BLOCKX+ threadIdx.x) column in

W and all of the columns in shared memory S. It uses an array C of BLOCKX registers to

store the accumulated distances.

Now the thread Th has to wait for other threads in the same block to finish computing

their own portion distance. Once synchronization is achieved, the thread moves to the next portion

of the respective banded rows and columns.

After the whole row (or column) is processed, the accumulated distance C was added with

a constant bias from constant memory and then taken square root and written into the matrix H at

the location H (blockIdx.y* BLOCKX: blockIdx.y*BlockX+ BLOCKX − 1, blockIdx.x*

BLOCKX * BLOCKY + threadIdx.y* BLOCKX+ threadIdx.x).

The pseudo code is given in Algorithm 1..

B. Analysis

This section explains how we get the optimal performance for the new CUDA kernel

Algorithm 1. The performance of a CUDA kernel depends on:

a. Massive parallelism: Threads are grouped into block of BLOCKX x BLOCKY

threads. Threads in different blocks are totally independent so maximum concurrence can be

reached. Threads in the same block are cooperative in a optimal manner so the maximum kernel

occupation is reached.

56

Algorithm 1 RBF CUDA kernel
Input: Feature matrix F, weight matrixW, threadIdx, blockIdx

Allocate S[BLOCKX][BLOCKX] in shared memory
Initialize registers C[BLOCKX] = {0}
Repeat {

1. Copy memory from F to S
2. Wait for other threads to finish copying.
3. Compute the partial the distances C between BLOCKX elements of the column of W

and rows in S.
4. Wait for other threads to finish compute their own portion distances
5. Increase the portion of the column in W and the row in F

} until the end of column of W
C= sqrt(C);

Output: Write C to H

b. Shared memory: The kernel makes use of shared memory to reduce the number of times

needed to read global memory in matrix F. The share memory of BLOCKX x BLOCKX

reduces the number of accessing a row in F by BLOCKX times.

c. Coalescing: The kernel performs best when read and written to global memory in a

coalesced manner. This is achieved in the algorithm. In concrete, for matrix F, thread Th reads

data at F(blockIdx.y* BLOCKX+ threadIdx.y, threadIdx.x) , thread Th + 1 reads data

at F(blockIdx.y* BLOCKX+ threadIdx.y, threadIdx.x + 1), which are right next to each

other. For matrix W thread Th and Th + 1 also read data right next to each other at loca-

tion W(0: BLOCKX−1, blockIdx.x∗ BLOCKX* BLOCKY+threadIdx.y∗ BLOCKX

+threadIdx.x) and W(0 :BLOCKX−1,blockIdx.x∗BLOCKX* BLOCKY+threadIdx.y∗
BLOCKX + threadIdx.x + 1). For the matrix H, when writing, Th and Th + 1 write the

data next to each other at H(blockIdx.y* BLOCKX*blockIdx.y*BlockX+ BLOCKX-1,

blockIdx.x∗BLOCKX*BLOCKY +threadIdx.y∗BLOCKX+threadIdx.x) and H(blockIdx.y

*BLOCKX: blockIdx.y * BLOCKX + BLOCKX-1, blockIdx.x * BLOCKX * BLOCKY

+ threadIdx.y * BLOCKX +threadIdx.x+1). Therefore, all write and read operations to the

global memory are coalesced.

d. Register memory: When BLOCKX is small, all the local memory in thread Th is

stored in registers, which makes the memory access in the whole thread extremely fast.

57

C. RBF ELM CUDA Algorithm

Once the hidden output H in (1) is obtained, the output weight V can be computed using

standard GPU LAPACK routine cuBLAS and MAGMA as in Algorithm 2.

Algorithm 2 RBF ELM CUDA algorithm
Input: Feature matrix F, weight matrix W

1. Compute H using Algorithm 1
2. Initialize B = I/c, where I is the identity matrix
3. Compute B=(I/c+HHT) : cublasgemm(H, HT ,B), where Tmeans transpose
4. Inverse B: magma_getrf_gpu(B) and magma_getri_gpu(B)
5. Compute HTB: cublasgemm(HT , B, B1)
6. Compute V = cublasgemm(B1, T, V)

Output: output weight V

IV. EXPERIMENT

The UFL-RBF-ELM is implemented on a PC with Intel Xeon E5645 CPU 2.4GHz 12GB

RAM, running Ubuntu 12.04 LTS. The machine is equipped with a GPU Nvidia Tesla M2075

with 6GB RAM, 448 cores clocked at 1.5 GHz, 32 KB shared memory, 63 registers in each thread.

Those GPU specifications are important for selection of the best configuration of the kernel code.

The CUDA version in use is CUDA 5.5 Toolkit. The RBF-ELM-CPU is implemented using linear

algebra C++ Eigen library.

Since ELM is a randomization algorithm, the result discussed below is obtained after

averaging 10 runnings.

A. Dataset and feature learning CIFAR-10

The dataset used to test our approach is CIFAR-10 [22], which consists of 60,000 32x32

color images in 10 classes, with 10,000 images per class, that are mutually exclusive. 50,000

of these images were used for training, each class has 10,000. The remaining 10,000 are used

for testing, each class has exactly 1000 images. The dataset is organized into a 50,000 x 3072

(3072 = 32x32x3) matrix for training and 10,000 x 3072 for testing. The images have various

poses, appearances, and backgrounds. Some have severe distortion. This makes it popular in the

computer vision and machine learning community.

58

For learning the UFL feature, the implementation in [2] is used. A window with a size of

6x6 pixels is used to randomly sample the training dataset to collect 400,000 patches. Each patch

then is vectorized into a column. Then, those patches are normalized and whitened to increase the

contrast. We then apply k-means into the enhanced patch matrix to learn K 800/1600 centroids.

Those centroids are considered as the filter banks to encode the objects.

For learning the high feature representation for each image, the full size image is con-

volved with the filter banks and passed through the triangle activation function f(z) = max(0,

mean(|z|)− |z|). These features are followed by spatial average pooling 2x2 before feeding into

the ELM.

B. RBF ELM Accuracy

First the RBF ELM is compared with sigmoid ELM as well as several other state of the art

algorithms to confirm the superiority of RBF ELM. The sigmoid ELM is implemented as in [18].

There are several RBFs but according to several experiments, when the number of unsupervised

learning features is large, the multi-quadric function is more stable when computing the inverse

than the Gaussian function. The inverse multi-quadric has the same performance as the multi-

quadric but it involves an inversion which slows down the process of output weight computing in

the CUDA kernel. From now on, multi-quadric function is used as default RBF.

As we increase the number of hidden neurons, the performance of ELM becomes better.

At some value, the performance is not improved anymore no matter how many nodes are added to

ELM. At the highest accuracy, RBF beats both SVM with a slim margin and Sigmoid ELM with

a large margin as shown in the Table I. UFL RBF ELM with 6400 features achieves the highest

accuracy among many state of the art algorithms such as Mean-covariance Restricted Boltzmann

Machine and SVM. Some top deep learning methods such as [23, 16, 24] are more accurate than

this ELM approach. However, they come with the disadvantage of long training times, while the

merit of the presented approach is that it is extremely fast and the result is still comparable.

C. Single precision vs double precision CUDA

The sigmoid ELM has poorer performance than RBF ELM but its performance is stable

when implemented in CUDA using single precision as discussed in [18]. On the other hand,

59

TABLE I
TEST ACCURACY OF UFL RBF ELM PERFORMANCE ON CIFAR-10 DATASET

Algorithm Test Accuracy
Mean-covariance Restricted

Boltzmann Machine (3 layers) [25] 71.0

Improve local coordinate coding [26] 74.5
UFL SVM L2 6400 features [2] 77.9
UFL Sigmoid ELM with 3200

features 63.1

UFL RBF ELM with 3200 features
(no tune up) 77.2

UFL RBF ELM with 6400 features (c
=1) 78.1

Sum-Product Networks [23] 84.1
Deep Convolutional Neural

Networks [16] 87.0

Multi-Column Deep Neural
Networks [24] 88.8

the RBF ELM works well in MATLAB using double precision. However, when implementing in

CUDA using single precision to save memory used in GPU, the result is not stable. A cross check

with MATLAB implementation at each step in RBF as in (4) shows that the matrix inversion in (4)

is not stable with single precision. To confirm this hypothesis, two experiments were performed.

In one experiment, every calculation is single precision except the inversion in (4) , and the result

is stable. In the other experiment, every calculation is double precision except the inversion in

(4), and the result becomes unstable again. Therefore, double precision must be used in the RBF

ELM CUDA.

D. New kernel performance with regard to BLOCKX and BLOCKY parameters

As stated in the algorithm description section, the performance of the RBF kernel depends

upon the kernel configuration. This section investigates that dependency. For this purpose, the

ELM structure is fixed to 2048 hidden nodes. The BLOCKX and BLOCKY are varied (but

BLOCKX is still a multiple of BLOCKY).

For Nvidia Tesla M2075, the maximum number of threads per block is 1024. Therefore,

the maximum of BLOCKX is 32. Fig. 2 plots the training time of RBF ELM under different

values where BLOCKX = 32, 16 and 8.

60

When BLOCKX=32, we have more concurrent threads working at the same time; how-

ever, the training speed is slow. There are two main reasons explaining the setback. First, more

concurrent threads in a kernel means threads have to wait longer for other threads to achieve

synchronization in writing into shared memory and computing the portion distance. Second,

there is not enough register memory to store the temporary memory C as well other variables

in the kernel of a thread (requires at least 64 registers but M2075 has only 63). As a result of that,

thread has to use global memory to store C, which significantly reduces speed. Due to the two

above reasons, BLOCKX=32 results in the slowest kernel.

4 6 8 10 12 14 16
8

9

10

11

12

13

14

 BlockY

 tr
ai

ni
ng

 ti
m

e
(s

)

BlockX=32

BlockX=16

BlockX=8

Fig. 2. Effect of parameter BLOCKX and BLOCKY in RBF ELM CUDA kernel. As
BLOCKY increases toward BLOCKX the training time reduces. CUDA kernel with
BLOCKX= BLOCKY =16 achieves the best performance.

When BLOCKX=8, all the memory is in register but we have a smaller number of

concurrent threads running at the same time. This reduces the speed of the kernel.

When BLOCKX=16, we get the balance of number for concurrent threads and regis-

ter memory in capacity. In this case different BLOCKY values do not have much effect on

the speed. However, when BLOCKY =16, the kernel achieves the best performance. Hence

BLOCKX=16 and BLOCKY =16 are chosen as the optimal configuration for the new kernel

and used in later experiments.

Fig. 2 also shows that with the same size of BLOCKX , the kernel performs faster when

BLOCKY increases. Since an increase in BLOCKY not only means an increase in the number

of threads in block but also an increased synchronization waiting time, it means the number of

61

concurrent threads outweighs the fact of thread synchronization in the presented kernel.

E. Speed-up

The presented kernel is compared with a GPU implementation proposed in [27], where

two shared memories are used to store a portion of rows and columns to reduce the accessing

of global memory. It turns out this method suffers from spending more time waiting for threads

to complete copying from the global memory to two shared memories, instead of just one in the

presented kernel. The presented kernel is also compared with the CPU version implemented by

using highly optimized linear algebra package C++ Eigen.

1000 2000 3000 4000 5000 6000 7000
10

0

10
1

10
2

10
3

 Number of hidden nodes

tim
e(

s)

CPU

2 shared mem

our kernel

Fig. 3. Speeding up RBF ELM using CUDA. The GPU algorithm is about 4x faster than [27],
and 20x faster than CPU.

As can be seen from Fig. 3, with a wide range number of hidden neural nodes in ELM ,

the presented GPU implementation of RBF ELM maintains a great speed-up. For example, when

number of hidden of neurons is 6000, the GPU is 4x faster than [27], and about 20x faster than

CPU version.

F. Experiment on MNIST

MNIST [28] was created by Yann LeCun while working on hand writing recognition

using neural network. It is a historical dataset for benchmarking handwritten digit recognition.

MNIST is constructed out of the original MNIST that has 60,000 training images and 10,000 test

images of ten digits from 0 to 9. All the black and white digits are size normalized and centered

62

lying at the center of the image with 28x28 pixels. Comparing to CIFAR-10, MNIST is a more

standardized dataset and is better suited for testing the new algorithms. The result reported in this

paper doesn’t use any preprocessing for distortion like deskewing, blurring, etc.

The UFL feature learning is 6 local receptive patch, 1 pixel stride, 3200 and 6400 features.

Fig. 4 shows the performance of of ELM with different kernels when UFL has 3200

features. In particular, multi-quadric RBF is compared with sigmoid kernel. As the nH increased,

the performance of ELM also increased. In contrast with concern that the ELM may suffer from

an ill-conditioned matrix when computing pseudo inverse, several runnings of multi-quadric RBF

ELM with both MNIST and CIFAR show that the performance of ELM to be very stable. It is

interesting to see that multi-quadric RBF had the best performance without the need to tune the

regularization parameter in this case.

Sigmoid ELM performs worse than multi-quadric RBF by about 1%. For multi-quadric

RBF, as nH increases, its performance improves even over state of the art algorithms.

0 2000 4000 6000 8000 10000 12000
0.96

0.97

0.98

0.99

1

Number of hidden Nodes

A
cc

ur
ac

y

Multiquadric RBF

Sigmoid

Fig. 4. Comparing Multi-quadric RBF ELM with Sigmoid ELM in MNIST dataset

Table II shows the UFL RBF ELM with 10,000 hidden nodes and compares performance

with other state of the art algorithms on the MNIST. As shown, UFL-RBF-ELM outperforms

CNN, Deep Belief Network (DBN), Convolutional DBN and Multi-layer ELM. Those are the

multi-layer deep and large neural networks and require a long time to learn, while RBF ELM

is just a single hidden layer. Although its size is large (nearly a million weights), due to ELM

pseudo inversion property, it can be learned faster than any other methods in comparison. For

63

MNIST, the ELM algorithm does not even need to be tuned with any parameters or with any

cross validation.

TABLE II
ACCURACY OF RECOGNITION OF UFL RBF ELM AND OTHER METHODS FOR MNIST

DATASET

Algorithm Test Accuracy
CNN LeNet-5 [28] 99.05

Convolutional DBN[29] 99.18
DBN [30] 99.05

Multi-layer ELM [31] 99.03
UFL Invariant [1] 99.36

ConvNet L-BFGS [32] 99.31
UFL 6400 features SVM L2 [2] 98.91

Raw pixel RBF ELM 3200 features 98.01
UFL RBF ELM with 3200 features 99.29
UFL RBF ELM with 6400 features 99.39

It can be observed from the Table II that representing images by UFL features improved

the classification (from 98.01 to 99.39), and UFL training with SVM has a higher classification

error than training by RBF ELM.

V. CONCLUSION

This paper presents an improvement of classification in speed and accuracy. The per-

formance of the approach is comparable with other top-performing algorithms in accuracy but

with improved speed. To achieve those advantages and to make learning the features easier, the

approach makes use of the features learned from UFL k-means for universal feature learning. For

faster training of the classifier, the approach uses ELM with a CUDA kernel. The test on MNIST

shows that the approach beat several state of the art algorithms even when using the deep learning

method. Tests on CIFAR-10 shows the approach not far from many others in accuracy, but speed

is greatly improved up to twenty times faster than the CPU version using an optimized linear

algebra package or four times faster than other CUDA codes.

ACKNOWLEDGMENTS

We would like to thank Adam Coates for his public codes. We also gratefully acknowledge

partial support from the National Science Foundation, the Missouri S&T Intelligent Systems

64

Center, and the Mary K. Finley Missouri Endowment.

REFERENCES
[1] M. Ranzato, F. J. Huang, Y.-L. Boureau, and Y. LeCun, “Unsupervised learning of invariant

feature hierarchies with applications to object recognition,” in Computer Vision and Pattern
Recognition, 2007. CVPR’07. IEEE Conference on. IEEE, 2007, pp. 1–8.

[2] A. Coates, A. Y. Ng, and H. Lee, “An analysis of single-layer networks in unsupervised
feature learning,” in International Conference on Artificial Intelligence and Statistics, 2011,
pp. 215–223.

[3] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle et al., “Greedy layer-wise training of
deep networks,” Advances in neural information processing systems, vol. 19, p. 153, 2007.

[4] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Bengio, “Why does
unsupervised pre-training help deep learning?” The Journal of Machine Learning Research,
vol. 11, pp. 625–660, 2010.

[5] H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin, “Exploring strategies for training
deep neural networks,” The Journal of Machine Learning Research, vol. 10, pp. 1–40, 2009.

[6] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20, no. 3, pp.
273–297, 1995.

[7] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization of machine
learning algorithms,” in Advances in Neural Information Processing Systems, 2012, pp.
2951–2959.

[8] Q. V. Le, “Building high-level features using large scale unsupervised learning,” in Acous-
tics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on.
IEEE, 2013, pp. 8595–8598.

[9] G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learning machine for regression
and multiclass classification,” Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE
Transactions on, vol. 42, no. 2, pp. 513–529, 2012.

[10] G.-B. Huang, L. Chen, and C.-K. Siew, “Universal approximation using incremental
constructive feedforward networks with random hidden nodes,” Neural Networks, IEEE
Transactions on, vol. 17, no. 4, pp. 879–892, 2006.

[11] Y. Bengio, Y. LeCun et al., “Scaling learning algorithms towards ai,” Large-scale kernel
machines, vol. 34, no. 5, 2007.

[12] Z. Bai, G.-B. Huang, D. Wang, H. Wang, and M. Westover, “Sparse extreme learning
machine for classification,” Cybernetics, IEEE Transactions on, vol. 44, no. 10, pp. 1858–
1870, Oct 2014.

65

[13] Z. Sun, K.-F. Au, and T.-M. Choi, “A neuro-fuzzy inference system through integration
of fuzzy logic and extreme learning machines,” Systems, Man, and Cybernetics, Part B:
Cybernetics, IEEE Transactions on, vol. 37, no. 5, pp. 1321–1331, 2007.

[14] G. Huang, S. Song, J. Gupta, and C. Wu, “Semi-supervised and unsupervised extreme
learning machines,” Cybernetics, IEEE Transactions on, vol. 44, no. 12, pp. 2405–2417,
Dec 2014.

[15] B. Catanzaro, N. Sundaram, and K. Keutzer, “Fast support vector machine training and
classification on graphics processors,” in Proceedings of the 25th international conference
on Machine learning. ACM, 2008, pp. 104–111.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolu-
tional neural networks,” in Advances in neural information processing systems, 2012, pp.
1097–1105.

[17] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and N. Andrew, “Deep learning
with cots hpc systems,” in Proceedings of The 30th International Conference on Machine
Learning, 2013, pp. 1337–1345.

[18] D. Lam and D. Wunsch, “Unsupervised feature learning classification using an extreme
learning machine,” in Neural Networks (IJCNN), The 2013 International Joint Conference
on. IEEE, 2013, pp. 1–5.

[19] R. Xu and D. Wunsch, Clustering. Wiley-IEEE Press, 2009.

[20] NVIDIA, “Cuda basic linear algebra subroutines (cublas).” [Online]. Available:
https://developer.nvidia.com/cuBLAS

[21] K. Innovative Computing Laboratory, University Tennessee, “Magma: Matrix algebra on
gpu and multicore architectures.” [Online]. Available: http://icl.cs.utk.edu/magma/

[22] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny images,”
Computer Science Department, University of Toronto, Tech. Rep, vol. 1, no. 4, p. 7, 2009.

[23] R. Gens and P. Domingos, “Discriminative learning of sum-product networks,” in Advances
in Neural Information Processing Systems, 2012, pp. 3248–3256.

[24] D. Ciresan, U. Meier, and J. Schmidhuber, “Multi-column deep neural networks for
image classification,” in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE
Conference on. IEEE, 2012, pp. 3642–3649.

[25] M. Ranzato and G. E. Hinton, “Modeling pixel means and covariances using factorized
third-order boltzmann machines,” in Computer Vision and Pattern Recognition (CVPR),
2010 IEEE Conference on. IEEE, 2010, pp. 2551–2558.

[26] K. Yu and T. Zhang, “Improved local coordinate coding using local tangents,” in Proceed-
ings of the 27th International Conference on Machine Learning (ICML-10), 2010, pp. 1215–
1222.

66

[27] D.-J. Chang, M. M. Kantardzic, and M. Ouyang, “Hierarchical clustering with cuda/gpu.”
in ISCA PDCCS, 2009, pp. 7–12.

[28] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[29] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional deep belief networks for
scalable unsupervised learning of hierarchical representations,” in Proceedings of the 26th
Annual International Conference on Machine Learning. ACM, 2009, pp. 609–616.

[30] R. Salakhutdinov and G. E. Hinton, “Deep boltzmann machines,” in International Confer-
ence on Artificial Intelligence and Statistics, 2009, pp. 448–455.

[31] E. Cambria, G.-B. Huang, L. L. C. Kasun, H. Zhou, C.-M. Vong, J. Lin, J. Yin, Z. Cai,
Q. Liu, K. Li et al., “Extreme learning machines.” IEEE Intelligent Systems, vol. 28, no. 6,
pp. 30–59, 2013.

[32] J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, Q. V. Le, and A. Y. Ng, “On optimization
methods for deep learning,” in Proceedings of the 28th International Conference on
Machine Learning (ICML-11), 2011, pp. 265–272.

67

SECTION

3. UNSUPERVISED LEARNING WITH TIME SERIES DATA

Time series is a popular type of data. It differs from other kinds of data that the number

of objects is often small but the number of observations can become really large as its

observations are accumulated over time. The wind time series dataset investigated in this

section is obtain from NOAA. It was collected from 1973 to 2010 from 15 sites around

Vichy, MO. Each of the time series contained a few hundred thousands of observations,

making it a large dataset. The dataset also suffered from the mixed feature problem as

described in the first paper, where each observation has both numerical and categorical

features.

The purpose of this work is to improve the forecast performance of wind speed in

the windmill at Vichy, MO. There are several other methods in the past but they are often

either slow or not accurate enough. Our approach to this problem is to gather more infor-

mation into the forecast by applying unsupervised learning to group those wind time series

similar to each other into the same group. This work chooses HMM to build the clustering

algorithm. To be able to select the optimal model, the paper introduces the modified in-

formation criteria for both individual time series and group time series as in Equations (7)

and (9). While building the HMMs, we leverage the power of the HTK toolkit to process a

large amount of data of the wind time series.

The clustering information can be used for improving wind forecast. We propose

a new forecast based on an extreme learning machine where the input is not only local

data but also non-local data from the time series in the same cluster. The extreme learning

machine provides an analytic form of training a neural network in a few seconds whereas

the iterative training methods often take hours to finish.

Experiments are set up to select the best number of inputs and the appropriate size

of the neural network. The performance of the forecast is tested on various seasons, years

68

with one step or multiple steps ahead.

The author wants to thank the people at the Machine Intelligence Laboratory of the

Cambridge University Engineering Department for providing the HTK toolkit. The author

also want to thank Dr. Shuhui Li for his helpful discussion about wind energy and paper

organization.

69

4. UNSUPERVISED FEATURE LEARNING WITH IMAGE

CLASSIFICATION

Images as well as texts and videos are exploding with exponential speed. They differ from

the two previous kinds of data type in which the features representing the images are not

available. The images are often transformed into higher representation for the machine

learning tasks by feature extractors, which are hand-crafted and data-specified. The expo-

nential exploding of this kind of data also creates the challenges of tradeoff between speed

and accuracy in image classifying.

The motivation of this section is to build universal feature learning without human

design feature extractor. This feature learning also has a better performance than traditional

feature extractor. The more important motivation is creating a faster image classifier to

handle a large number of images in the training process.

The first motivation is achieved by using unsupervised feature learning technique,

where the feature encoder is learned by clustering the small patches for unlabeled data. The

feature encoders are used as filter banks to represent the image in a higher representation

where the features are also sparse, which helps the image classifiers easier to recognize the

objects.

The improvement of the training speed is obtained using an extreme learning machine

where the neural network is trained using an analytic form, which results in a much faster

training compared to backpropagation of gradient descent. The contribution of this work

is two-fold. First, the paper points out that by combining unsupervised learning with an

extreme learning machine of multi-quadric radial basis function, the classifying result is

more accurate than most of state of the art algorithms. Second, although the use of an

extreme learning machine makes the training fast, it can be even faster when implemented

in a GPU. This work describes in details how to organize the number of threads, shared

memory, register memory and coalescing memory access to obtain the maximal speed.

70

We test our approach on two large datasets CIFAR-10 and MNIST, showing that

we achieve a better result than many other approaches and have a speed-up of 20 times

compared to the CPU program.

The author would like to thank Adam Coates for his unsupervised feature learning

codes.

71

VITA

Dao Lam received the B.S. degree from Post and Telecommunications Institute

of Technology, Ho Chi Minh, Vietnam in 2003. He got his M.S. from Waseda University,

Japan in 2008 under Japanese government scholarship. He is a member of Applied Compu-

tational Intelligence Lab. His research topics are computer vision, machine learning using

computational intelligence. During his PhD, he completed several projects: image classi-

fication using CUDA, wind forecast, petroleum project categorization, video compressive

sensing. He got an internship at Intelligrated Inc. as a software developer, developing

robotics vision and path planning packages. He graduated with Ph.D. degree of Computer

Engineering in May 2016.

	Clustering: Methodology, hybrid systems, visualization, validation and implementation
	Recommended Citation

	tmp.1468939704.pdf.G9EAA

