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A Hybrid Modeling of Soil - Structure Interaction Problems

Celso Romanel

Assistant Professor, Catholic University of Rio de Janeiiro, Brazil

SYNOPSIS:

a portion of soil surrounding it,

Tribikram Kundu
Assistant Professor, University of Arizona, Tucson, AZ

A hybrid method is proposed in this research for dynamic soil-structure interaction analysis of em-
bedded structures within a multilayered elastic half -space. . ¢ : .
is modeled by finite elements while the far field formulation is obtained

A near field region, containing the structure and

through the classical wave propagation theory based on the assumption that the actual scattered wave fields can
be represented by a set of line sources located at a depth corresponding to the center of mass of the structure

ungder investigation.

Traction reciprocity between the two regions is satisfied exactly while displacement con-
tinuity across the common interface is enforced in a least-squares sense.

The two-dimensional system is ex-

cited by seismic body waves (P and SV) propagating with oblique incidence and harmonic time dependence.

INTRODUCTION

Two methods of analysis have been evolved for dy-
namic soil-structure interaction problems: the
continuum and the numerical approach. The con-
tinuum approach is generally based on the theory
of linear elasticity or v1scoelast1c1ty and
idealized models must be adopted in order to ob-
tain mathematical solutions.

The most popular methods in the numerical ap -
proach are the finite element method (FEM) and
the boundary element method (BEM). The main ad-
vantage of the finite element method is its ver-
satility in problems involving different
materials and complex geometries but FEM can not
simulate unbounded domains completely. Several
schemes have been proposed to overcome this
shortcoming, such as the use of imperfect trans-
mitting boundaries, perfect transmitting
boundaries, infinite elements, hybrid techniques,
the soil-island technique, etc., but most of them
have been developped on the assumption that the
soil mass can be represented as a homogeneous
body in spite of the fact that stratified soil
deposits are a common occurrence in nature.

The boundary element method appears to be well
suited to model a semi-infinite domain since it
is based on fundamentals solutions that extend to
infinity per se, automatically taking into ac-
count the radiation condition. Applications to
dynamic soil-structure interaction problems in-
volving a homogeneous half-space were given by
Karabalis and Beskos (1984), Abascal and
Dominguez (1985), etc. 1In the case of a layered
half-space the corresponding Green’s functions
must be determined numerically and some spec1f1c
algorithms have already been reported in the
literature {(e.g. Luco and Apsel(1983), Kundu
(1985)) . Based on such Green’s functions, an
indirect boundary integral equation method has
been used by Apsel and Luco (1987), Luco and Wong
(1986, 1987) to obtain the dynamlc response of
rigid cyl1ndr1cal/hemlspher1cal foundations em-
bedded in a layered viscoelastic half- space.
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This paper presents a hybrid method that combines
the continuum and the numerical approaches. The
far field problem (i.e. a layered elastic half-
space excited by seismic body waves) 1s solved
analytically while the near field (i.e. the
structure and surrounding soil) is modeled by fi-
nite elements. Special consideration of the
scattered field permits the discretized region to
be kept reasonably small. This paper is also an
extension of a previous research (Romanel and
Kundu, 1990) but now providing a better modeling
of embedded structures (including tunnels)
through a set of lines sources vibrating within
the half-space. Formerly, these sources have
been considered to be applied on the free sur-
face, thus restricting the analysis to soil-
structure interaction problems involving shallow

foundations. To avoid unnecessary duplication
the reader is referred to Romanel and Xundu
(1990) for details about the matrix expressions

mentioned herein.

BASIC SUPERPOSITIONS

The multilayered half-space is divided into two
regions, a near field and a far field (Fig. 1).
Stress and displacement fields at the common
interface must be computed first since they will
be used as forcing functions in the near field
finite element analysis. In this hybrid approach
the overall effects of the incident, reflected
and scattered wave fields are modeled through the
combined responses of the four simple problems
shown in Fig. 2. The soil mass in each case is
represented as a multilayered half-space without
any structure or irregularity in it.

Problem 1 considers the incident wave field.
Since elastic wave propagation in multilayered
media is a well known phenomenon (Ewing et alli,
1957; Kennett, 1983) the ground motion at any
point can be obtained without difficulty.
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\ /
\ near—field ]
N~

My.....

Fig. 1 -

Problem geometry.

In problems 2, 3 and 4, an oscillating normal
line force, a shear line force and a line moment
are acting within the stratified half-space at a
depth corresponding to the center of mass of the
buried part of the structure. These three types
of excitation are being considered here because
when a structure is subjected to seismic waves of
angular frequency w the three possible reactions
that it can exert on the soil mass are an
oscillating normal line force of amplitude P, a
shear line force of amplitude S and a line moment
of amplitude M, all vibrating at the same angular
frequency w. From our knowledge about the
response of a multilayered half-space to point or
line sources {(Kennett, 1983; Kundu, 1983) we can
compute displacements and stresses at any point
by a systematic matrix method. Thus problems 2,
3 and 4 are solvable too.

The total stress and displacement fields at the
near field boundary can be given by

0 =0, + PO, + SO3 + Moy (1l.a)

u = uq + Puy + Suz + Muy (1.b)

W = w; + Pwy + Swy + Mwy (1.c)

where 0 stands for the stress component (Oyy,

Ogz+ Oyxz), u stands for the horizontal

displacement component and w represents the
vertical displacement component. The subscripts
1,2,3,4 indicate solutions to problems 1,2,3,4,
respectively.

Consistent load vectors acting at the near field
boundary could now be obtained and used as forc-
ing functions for the near field finite element
problem if the amplitudes P, S and M were known.
How to determine them through a hybrid technique
will be discussed in the next section.

HYBRID TECHNIQUE

The hybrid technique follows an adaptation of the
global-local finite element method (GLFEM)
suggested by Goetschel et alli (1982).
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Fig. 2 - The response on an embedded structure as
the superposition of four basic problems.

Let m be the number of nodal points on the near

field boundary. Let Up and Ub denote two (2m x 1)
arrays of the horizontal and vertical boundary
nodal displacements due to the incident
(superscript i) and scattered (superscript s)
fields, respectively. The method is based on two

1 S
possible ways of evaluating Yb and Up. One way is
to calculate them analytically in terms of the
unknowns amplitudes P, S, M.

US, = GX where XT = (P S M) (2.a)

and G is a (2m x 3) matrix whose columns are the
boundary nodal displacements found by considering

line sources similar to those of problems 2, 3, 4
but of unit amplitudes (Green’s functions).
1 1 1
Uz U3z Yy
1 1 1
W2 W3 W
2 2 2
Uz Uz Uy
= 2 2 2
G ws Wi owi (2.b)
m m m
Uz Uz Uy
wp w3 W

In the matrix above, the superscript identifies
the boundary node and the subscript is associated
with the problem number indicated in Fig. 2. 1In
equation (2.a) subscript a is also used to iden-
tify the method of constructing the displacement

8
matrix Ub analytically.

The incident/reflected
field is simply given by



(UéJT = ( ui wi uf wf uT ) (3)

Wi

The total boundary nodal displacements can be ob-
tained by combining equations (2.a) and (3)

Upa = Upa + Upa = Upg + GX (4)

The other way of evaluating the nodal
displacements is to solve the near field problem
numerically (FEM). The stresses computed at the
common interface in problems 1,2,3,4 can be
converted into consistent load vectors Fp, which

for the scattered field have the following form

Fp = HX (5.a)
where
1 1 1
1:‘x2 Fx3 Fx4
1 1 1
1:122 FzB 1:‘z‘i
2 2 2
Fx2 Fy3 Fxq
H = Fa, Fay F2g (5.0)
Fxz2  Fyxs  Fxa
Fzz Fz3  Fzq
and for the incident/reflected field
T _ 1 1 2 2
(Fb) = ( Fx1 Fz1 Fua Faz1 Fe1 Fz1 ) (5.¢)
Fj Fj
In expressions (5.b) and (5.c¢) xkx and zk
represent consistent loads acting at the jth

boundary node along the x and 2z directions,
respectively. The subscript k stands again for
the problem number from which the consistent load
vectors have been derived.

The discretized governing equation for the near
field problem can now be written in the frequency
domain as

(k - w?M)u = F (6)

where the stiffness K, the consistent mass matrix
M and the consistent load vector F are obtained
using the Ritz finite element method.

Solution to equation (6) considering forcing
functions as given by equations (5.a) and (5.c)
yields all nodal displacements. Boundary nodal
displacements, thus obtained, may be written as

a8 1
Upf and Ubf where the subscript f indicates that
the solution has been computed through a finite
element analysis.
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(7)

where the columns of the (2m x 3) matrix W are
the boundary nodal displacements for the force
distributions given by the corresponding columns

1
of H {equation 5.b). 1In the same way, Ubf is the
numerical solution for the nodal force
distribution given by equation (5.c).

The total boundary displacements can now be
expressed as

Upt = Upr + Uge = Ugg + WK (8)

At this point, displacements at the near field
boundary are available from the finite element
analysis {(equation 8) and the far field analytic
approach (equation 4). In both, the vector X of
generalized coordinates is the unknown. Traction
reciprocity at the mesh boundary is fully
satisfied in virtue of the equivalence between
the far field problem and the consistent 1load
vectors used in the near field finite element
analysis. Only displacement continuity across
the interface remains to be satisfied.

To enforce displacement continuity, equation (4)
is set equal to equation (8)

Ui, + 6x = Ui + wx (9.a)

(6 - wx= uls - ul, (9.b)

AX = B (9.c)

Solution to equation (9.c¢) may be obtained by

least-squares error minimization without
difficulty. Specific details about the required
algorithm can be found elsewhere (e.g. Dahlquist
and Bjdérck, 1974).

FAR FIELD ANALYSIS

Problem 1

Fig. 3 shows a multilayered soil profile that
does not contain any soft layer and the layers
are all assumed to be linear elastic, isotropic,

homogeneous and perfectly bonded at the
interfaces.
Consider the mth layer bounded by the (m-1)th

and mth interfaces. As a result of multiple
reflections a system of upgoing and downgoing
waves will exist. Let us represent the unknown
wave amplitudes as the elements of

T
Dp = (am bm  ©m dm) and
displacement-stress

T _
= (um Om Tn ) where Om and Tm denote Ozz

Sa
and Txz, respectively.

let us define
vector

a
a s
Wm



Thomson-Haskell (1950, 1953) matrix tormulation
is a forward marching algorithm that relates the

response at the (n-1)th interface to the response

at the free surface by a product of layer
matrices A, (1 <m < n-1).
sl = ERIp, = Ay 1Bq-2 - -AS) (10.a)
or
S}t
Dp = (B Y *An.1---a18° = s (10.b)

where the superscripts refer to the interfaces
and the subscripts to the layers.

x
layer 1

1
z

2
z

l"m LS
. P ¢ Sv layer m n tm

/!

Fig. 3 - A multilayered elastic half-space
excited by P and SV seismic waves.

layer n

Considering the regularity conditions

wave amplitudes a, and c, are known)

boundary conditions,
0 _

sf = {(u? w? o

Consequently,

(incident
and the

it is possible to determine

T
0 ) in eguation (10.b) .
the displacement-stress vector S

can be evaluated at any depth in the generic mth
layer by

"

S EZ Dy = E,#'(Eﬁ'lTIAm-l-~-Alsf 1in

where z* = z - z™m1l is the depth measured from
the top of the layer.

Problem 2

For problems 2, 3, 4 we have to consider the
elastodynamics equations in a more complex form
as wave diverging from a line source within the
multilayered half-space. This can be done by
integration of plane waves through a Fourier
transform with respect to the spatial coordinate
x, thus bringing our problem from the w-plane to
the k-plane.

After solving the problem in the k-plane by the
Thomson-Haskell method Jjust described, the
response in the freguency domain may be evaluated
by means of a Fourier synthesis given by
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(12)

= 1| Tk, z,w) et=dk
27 -~

where the tilde symbol indicates response in the
k-plane.

A major and long standing problem associated with
the Thomson-Haskell matrix method in its original
form is the presence of growing terms in the
layer matrix Ap. This creates numerical
difficulties involving overflow, underflow and
loss of precision as the wave number k varies
over the entire real axis in eqguation (12).
Several schemes have been proposed to overcome
this problem and in this research we have adopted

the delta matrix method (Thrower, 1965; Dunkin,
1965) which is based on a (6x6) matrix, referred
as the delta matrix, constructed from the

subdeterminants of the (4x4) layer matrix.

The application of the Thomson-Haskell matrix
method in association with the delta matrix
technigque makes possible to obtain, after some
algebraic manipulation, the corresponding
expressions for D, and S, which, through a
relationship similar to (11), will permit the
evaluation of the stress and displacement fields

at any selected point of the multilayered half-
space.

Problem 3

The Green’s functions
excitation are derived
procedure as for problem 2.

for the horizontal
following the same

Problem 4

The Green’s functions for the rocking excitation
can be derived as a combination of line forces
with line moments (Fig. 4), the moments being
about the same axis and of the same sign and the
forces acting perpendicularly to each other. The
line forces are separated by a small distance h
and have amplitude 0.5/h.

As h — 0 the Green’s functions for the unit
rocking source can be obtained as follows

dix,z,0) = Lin(l (f‘x‘h/2f2:w> - f(X+h/2,z,w)I)
h—0 12 h 1
+ l_(g(x,z+h/2,w) - g(x,z—h/z,w)) (13.2)
2 h
dgix,z,w) 0f(x,z,w
bix,z,0) = l(g - ) (13.b)
2 dz ox

where ¢(x,z,w) represents the general form in the
frequency domain of the Green’s functions for the
rocking source, g(x,z,w) the corresponding
Green’s functions for the horizontal source and
f(x,z,w) the Green’s functions for the vertical
source .






guencies and over a tairly large range. Yet, it
is important to note that for each frequency the
expensive evaluation of the scattered fields is
carried out just once for each frequency.
Further analyses involving incident wave fields
propagating along different directions just add a
small fraction (free field motion + finite ele-
ment analysis) to the total cost.
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