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A Proceedings: Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, W March 11-15, 1991, St. Louis, Missouri, Paper No. 5.77 

A Hybrid Modeling of Soil Structure Interaction Problems 
Celso Romanel Tribikram Kundu 
Assistant Professor, Catholic University of Rio de Janeiiro, Brazil Assistant Professor, University of Arizona, Tucson, AZ 

SYNOPSIS: A hybrid method is proposed in this research for dynamic soil-structure interaction analysis of em­
bedded structures within a multilayered elastic half-space. A near field region, containing the structure and 
a portion of soil surrounding it, is modeled by finite elements while the far field formulation is obtained 
through the classical wave propagation theory based on the assumption that the actual scattered wave fields can 
be represented by a set of line sources located at a depth corresponding to the center of mass of the structure 
unper investigation. Traction reciprocity between the two regions is satisfied exactly while displacement con­
tinuity across the common interface is enforced in a least-squares sense. The two-dimensional system is ex­
cited by seismic body waves (P and SV) propagating with oblique incidence and harmonic time dependence. 

INTRODUCTION 

TWo methods of analysis have been evolved for dy­
namic soil-structure interaction problems: the 
continuum and the numerical approach. The con­
tinuum approach is generally based on the theory 
of linear elasticity or viscoelasticity and 
idealized models must be adopted in order to ob­
tain mathematical solutions. 

The most popular methods in the numerical ap­
proach are the finite element method (FEM) and 
the boundary element method (BEM) . The main ad­
vantage of the finite element method is its ver­
satility in problems involving different 
materials and complex geometries but FEM can not 
simulate unbounded domains completely. Several 
schemes have been proposed to overcome this 
shortcoming, such as the use of imperfect trans­
mitting boundaries, perfect transmitting 
boundaries, infinite elements, hybrid techniques, 
the soil-island technique, etc., but most of them 
have been developped on the assumption that the 
soil mass can be represented as a homogeneous 
body in spite of the fact that stratified soil 
deposits are a common occurrence in nature. 

The boundary element method appears to be well 
suited to model a semi-infinite domain since it 
is based on fundamentals solutions that extend to 
infinity per se, automatically taking into ac­
count the radiation condition. Applications to 
dynamic soil-structure interaction problems in­
volving a homogeneous half-space were given by 
Karabalis and Beskos (1984), Abascal and 
Dominguez (1985), etc. In the case of a layered 
half-space the corresponding Green's functions 
must be determined numerically and some specific 
algorithms have already been reported in the 
literature (e.g. Luco and Apsel(1983), Kundu 
(1985)). Based on such Green's functions, an 
indirect boundary integral equation method has 
been used by Apsel and Luco (1987), Luco and Wong 
(1986, 1987) to obtain the dynamic response of 
rigid cylindrical/hemispherical foundations em­
bedded in a layered viscoelastic half-space. 
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This paper presents a hybrid method that combines 
the continuum and the numerical approaches. The 
far field problem (i.e. a layered elastic half­
space excited by seismic body waves) is solved 
analytically while the near field (i.e. the 
structure and surrounding soil) is modeled by fi­
nite elements. Special consideration of the 
scattered field permits the discretized region to 
be kept reasonably small. This paper is also an 
extension of a previous research (Romanel and 
Kundu, 1990) but now providing a better modeling 
of embedded structures (including tunnels) 
through a set of lines sources vibrating within 
the half-space. Formerly, these sources have 
been considered to be applied on the free sur­
face, thus restricting the analysis to soil­
structure interaction problems involving shallow 
foundations. To avoid unnecessary duplication 
the reader is referred to Romanel and Kundu 
(1990) for details about the matrix expressions 
mentioned herein. 

BASIC SUPERPOSITIONS 

The multilayered half-space is divided into two 
regions, a near field and a far field (Fig. 1). 
Stress and displacement fields at the common 
interface must be computed first since they will 
be used as forcing functions in the near field 
finite element analysis. In this hybrid approach 
the overall effects of the incident, reflected 
and scattered wave fields are modeled through the 
combined responses of the four simple problems 
shown in Fig. 2. The soil mass in each case is 
represented as a multilayered half-space without 
any structure or irregularity in it. 

Problem 1 considers the incident wave field. 
Since elastic wave propagation in multilayered 
media is a well known phenomenon (Ewing et alli, 
1957; Kennett, 1983) the ground motion at any 
point can be obtained without difficulty. 



atructure 

fer-field 

.... ;~;•n••• 
Fig. 1 - Problem geometry. 

In problems 2, 3 and 4, an oscillating normal 
line force, a shear line force and a line moment 
are acting within the stratified half-space at a 
depth corresponding to the center of mass of the 
buried part of the structure. These three types 
of excitation are being considered here because 
when a structure is subjected to seismic waves of 
angular frequency w the three possible reactions 
that it can exert on the soil mass are an 
oscillating normal line force of amplitude P, a 
shear line force of amplitude S and a line moment 
of amplitude M, all vibrating at the same angular 
frequency w. From our knowledge about the 
response of a multilayered half-space to point or 
line sources (Kennett, 1983; Kundu, 1983) we can 
compute displacements and stresses at any point 
by a systematic matrix method. Thus problems 2, 
3 and 4 are solvable too. 

The total stress and displacement fields at the 
near field boundary can be given by 

(l.al 

(l.b) 

(l.c) 

where cr stands for the stress component <crxx• 

Ozz• Oxzl, u stands for the horizontal 
displacement component and w represents the 
vertical displacement component. The subscripts 
1,2,3,4 indicate solutions to problems 1,2,3,4, 
respectively. 

Consistent load vectors acting at the near field 
boundary could now be obtained and used as forc­
ing functions for the near field finite element 
problem if the amplitudes P, S and M were known. 
How to determine them through a hybrid technique 
will be discussed in the next section. 

HYBRID TECHNIQUE 

The hybrid technique follows an adaptation of the 
global-local finite element method (GLFEM) 
suggested by Goetschel et alli (1982). 
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z 
problem 1- free field problem 2 - norrnel osci ll1t.ing force 

problem 3 - shear osci I hting force problem 4 - osci ll1ting moment 

Fig. 2 - The response on an embedded structure as 
the superposition of four basic problems. 

Let m be the number of nodal points on the near 
i 6 

field boundary. Let Ub and Ub denote two (2m X 1) 
arrays of the horizontal and vertical boundary 
nodal displacements due to the incident 
(superscript il and scattered (superscript s) 
fields, respectively. The method is based on two 

i 6 

possible ways of evaluating Ub and Ub. One way is 
to calculate them analytically in terms of the 
unknowns amplitudes P, S, M. 

U~a = GX where XT = (P S M) (2 .a) 

and G is a (2m x 3) matrix whose columns are the 
boundary nodal displacements found by considering 
line sources similar to those of problems 2, 3, 4 
but of unit amplitudes (Green's functions). 

ul 2 ul 
3 

ul 
4 

wl 
2 wl 

3 
wl 

4 

u2 2 u2 
3 

u2 
4 

G w2 
2 

w2 
3 

w2 
4 

(2.b) 

urn 2 urn 
3 

urn 
4 

~ ~ ~ 

In the matrix above, the superscript identifies 
the boundary node and the subscript is associated 
with the problem number indicated in Fig. 2. In 
equation (2.a) subscript a is also used to iden­
tify the method of constructing the displacement 

s 
matrix Ub analytically. The incident/reflected 
field is simply given by 



u~ ~} (3) 

The total boundary nodal displacements can be ob­
tained by combining equations (2.a) and (3) 

(4) 

The other way of evaluating the nodal 
displacements is to solve the near field problem 
numerically (FEM). The stresses computed at the 
common interface in problems 1,2,3,4 can be 
converted into consistent load vectors Fb which 
for the scattered field have the following form 

F~ = 

where 

F~z 
F;z 
F~z 

H F~z 

HX 

F~3 
F;3 

F~3 
F~3 

~3 
F';3 

F~4 
F;4 

F~4 
F~4 

and for the incident/reflected field 

( i)T _ ( 1 1 
Fb - Fx1 F z1 

(5.a) 

(5.b) 

(5.c) 

j j 
In expressions (5.b) and (5.c) Fxk and Fzk 
represent consistent loads acting at the jth 
boundary node along the x and z directions, 
respectively. The subscript k stands again for 
the problem number from which the consistent load 
vectors have been derived. 

The discretized governing equation for the near 
field problem can now be written in the frequency 
domain as 

F (6) 

where the stiffness K, the consistent mass matrix 
M and the consistent load vector F are obtained 
using the Ritz finite element method. 

Solution to equation (6} considering forcing 
functions as given by equations (5.a) and (5.c) 
yields all nodal displacements. Boundary nodal 
displacements, thus obtained, may be written as 

s i 
Ubf and Ubf where the subscript f indicates that 
the solution has been computed through a finite 
element analysis. 

971 

wx (7) 

where the columns of the (2m x 3) matrix W are 
the boundary nodal displacements for the force 
distributions given by the corresponding columns 

i 
of H (equation 5.b). In the same way, Ubf 
numerical solution for the nodal 
distribution given by equation (5.c). 

is the 
force 

The total boundary 
expressed as 

displacements can now be 

(8) 

At this point, displacements at the near field 
boundary are available from the finite element 
analysis (equation 8) and the far field analytic 
approach (equation 4). In both, the vector X of 
generalized coordinates is the unknown. Traction 
reciprocity at the mesh boundary is fully 
satisfied in virtue of the equivalence between 
the far field problem and the consistent load 
vectors used in the near field finite element 
analysis. Only displacement continuity across 
the interface remains to be satisfied. 

To enforce displacement continuity, equation (4) 
is set equal to equation (8) 

U~a + GX = U~f + WX (9 .a) 

(9 .b) 

AX B (9 .c) 

Solution to equation (9.c) may be obtained by 
least-squares error minimization without 
difficulty. Specific details about the required 
algorithm can be found elsewhere (e.g. Dahlquist 
and Bjorck, 1974). 

FAR FIELD ANALYSIS 

Problem 1 

Fig. 3 shows a multilayered soil profile that 
does not contain any soft layer and the layers 
are all assumed to be linear elastic, isotropic, 
homogeneous and perfectly bonded at the 
interfaces. 

Consider the mth layer bounded by the (m-1)th 
and mth interfaces. As a result of multiple 
reflections a system of upgoing and downgoing 
waves will exist. Let us represent the unknown 
wave amplitudes as the elements of 

~ = (am bm Cm dm) and let us define a 
displacement-stress vector as 

sJ. = ( Urn Wm Om Tm ) where CJm and Tm denote Ozz 
and Txz, respectively. 



Thomson-Haskell {1~50, 1~53) matrix tormulation 
is a forward marching algorithm that relates the 
response at the (n-l)th interface to the response 
at the free surface by a product of layer 
matrices Am (1 ~ m ~ n-1)-

(10 .a) 

or 

JS~ (10 .b) 

where the superscripts refer to the interfaces 
and the subscripts to the layers. 

layer 1 
2

1 

-----------------r----------------·2 

_:::~X:.._ __ P.::__::~:::._--s_:v:.._+-----~-·-'e_'_"' _____ ::}. 

n-1 
----~----~----+----------------· 

} ) layer n 

sv 

Fig. 3 - A multilayered elastic half-space 
excited by P and SV seismic waves. 

Considering the regularity conditions (incident 
wave amplitudes an and en are known) and the 
boundary conditions, it is possible to determine 

sf= (uf w~ 0 0 }Tin equation (10.b) _ 
Consequently, the displacement-stress vector 5m 
can be evaluated at any depth in the generic mth 
layer by 

(11) 

where z• = z - zm-1 is the depth measured from 
the top of the layer. 

Problem 2 

For problems 2, 3, 4 we have to consider the 
elastodynamics equations in a more complex form 
as wave diverging from a line source within the 
multilayered half-space. This can be done by 
integration of plane waves through a Fourier 
transform with respect to the spatial coordinate 
x, thus bringing our problem from the w-plane to 
the k-plane. 

After solving the problem in the k-plane by the 
Thomson-Haskell method just described, the 
response in the frequency domain may be evaluated 
by means of a Fourier synthesis given by 

u(x,z,w) = _l_f- u(k,z,w)eikxdk (12) 
2rr -

where the tilde symbol indicates response in the 
k-plane. 

A major and long standing problem associated with 
the Thomson-Haskell matrix method in its original 
form is the presence of growing terms in the 
layer matrix Am. This creates numerical 
difficulties involving overflow, underflow and 
loss of precision as the wave number k varies 
over the entire real axis in equation (12). 
Several schemes have been proposed to overcome 
this problem and in this research we have adopted 
the delta matrix method (Thrower, 1965; Dunkin, 
1965) which is based on a (6x6) matrix, referred 
as the delta matrix, constructed from the 
subdeterminants of the (4x4) layer matrix. 

The application of the Thomson-Haskell matrix 
method in association with the delta matrix 
technique makes possible to obtain, after some 
algebraic manipulation, the corresponding 
expressions for Dm and Sm which, through a 
relationship similar to (11), will permit the 
evaluation of the stress and displacement fields 
at any selected point of the multilayered half­
space. 
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Problem 3 

The Green's functions 
excitation are derived 
procedure as for problem 2-

for the horizontal 
following the same 

Problem 4 

The Green's functions for the rocking excitation 
can be derived as a combination of line forces 
with line moments (Fig. 4), the moments being 
about the same axis and of the same sign and the 
forces acting perpendicularly to each other. The 
line forces are separated by a small distance h 
and have amplitude 0.5/h. 

Ash-+ 0 the Green's functions for the unit 
rocking source can be obtained as follows 

cjJ(x,z,w) = limll (f(x-h/2,z,w) - f(x+h/2,z,w)!) 
h-0 '2 h 

+ _
2
1 (g(x,z+h/2,w) h- g(x,z-h/2,W)) 

(13 .a) 

cjJ(x,z,w) = .1_ (og(x,z,w) _of(x,z,w)) (lJ.b) 
2 az ax 

where ~(x,z,w) represents the general form in the 
frequency domain of the Green's functions for the 
rocking source, g(x,z,w) the corresponding 
Green's functions for the horizontal source and 
f(x,z,w) the Green's functions for the vertical 
source . 



kept smaller than l/10 ot the shea~ wave length 
corresponding to the highest frequency of 
interest. A perfect bond has been assumed 

r---------r---------r-~ between the rigid footing and the elastic medium 

Fig. 4 · Two representations for the unit rocking 
source in the ~ plane. 

NUMERICAL INTEGRATION 

In problems 2, 3 and 4 numerical evaluation of 
the stress and displacements fields in the 
frequency domain ~equires quadrature of improper 
integrals, as indicated by equation (12) . Let us 
represent the Fourier synthesis symbolically by 

A direct integration of (14) is not possible due 
to the presence of poles on the path of 
integration. Such singularities are the_ simple, 
real roots of the Rayleigh denominator R(k,z.wl 
and their number, not known a priori. is a 
function of layer thickness, soil properties. 
wave frequency, etc. A pole separation procedure 
which splits the integral into singular pieces 
that respond to the classical methods of analysis 
and nonsingular pieces to which approximate 
quadrature formulae may be applied has been 
adopted in this research. Details about the 
algorithm can be found in Kundu (1983, 1985) . 

EXAMPLE 

The numerical example analyzes the ldnema t~c 
interaction of a rigid, massless strip footing of 
width 2b = 24m located on the surface (d=O)as 
well as embedded (d=l2m and d=24ml with in a 
chree·layered half-space characterized by: 

Layer Thickness E v y 
(m) <MNLm2l lkNLm3l 

1 12 725 0.25 20 
2 24 1500 0 . 25 20 
3 3500 0.30 24 

E = Young·s modulus v = Poisson's retio y - unit weight 

Table 1 · Geometrica l and mechanical properties 
of a three-layered elastic half-space . 

Problem geometry and the finite element mesh (160 
bilinear elements) is shown in Fig. 5. In order 
to avoid the phenomenon of filtering at high 
frequencies, the finite element size has been 
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(welded contact) . 

All numerical results have been normalized with 
res pee t to the f c ee field motion lw~ and lu~ 
observed at points on the soil surface (z : 0) 
when the multilayered medium is excited by 
vertically propagating body (P or SVJ waves. 

Fig . 5 - Problem geometry and PEM discretization 
considering normalized depth of embedment d/b=2. 

Figs.6 and 7 show the variation of the foundation 
motion with angle of incidence foe both P and SV 
waves. Amplitudes of the rocking motion have 
been expressed in terms of the parameter ~. indi­
cating the angle of rotation about the y ·axis. 
In this particular example it is clearly seen 
that the influence of the depth of embedment 
increases as the angle of incidence approaches 
o•. The rocking motion caused by seismic P waves 
tends to reach a maximum in the vicinity of 45°, 
and it is practically nonexistent for P waves 
propagating with either vertical (0~} or grazing 
(approximately 90") incidence. In the case of SV 
waves it is important to point out that 
vertically propagating waves can produce rocking 
motion of embedded foundations. 

CONCLUSIONS 

In this research a hybrid method that combines 
the finite element method (near field) with an 
analytical development (far field) has been pro· 
posed for the study of daeply embedded structures 
(including tunnels) in a multilayered half space. 
It is based on the hypothes~s that the actual 
scattered field may be represented by wave fields 
generated by a set of line sources vibrating 
within the half·space. 

The numerical results obtained so far support 
this assumption with respect to parameters such 
as frequency and d irection of the incident field, 
depth of embedment, layec thicknesses, etc .. 
although further studies is necessary to check in 
greater detail the eventual effects of impedance 
contrasts . 

The major disadvantage of the method seems to be 
the required amount of CPU time. The computa · 
tional cost of numerical integrations may become 
prohibitive for those engineering earthquake 
problems where the response of a system is needed 
at many discrete values of closely spaced fre 



quencies and over a tairly large range. Yet, it 
is important to note that for each frequency the 
expensive evaluation of the scattered fields is 
carried out just once for each frequency. 
Further analyses involving incident wave fields 
propagating along different directions just add a 
small fraction {free field motion + finite ele­
ment analysis) to the total cost. 

REFERENCES 

Abascal, R. and Dominguez, J., "Dynamic response 
of embedded strip foundations subjected to 
obliquely incident waves", Proc. 7th 
International Conference on Boundary Elements, 
Lake Como, Italy, 1g95, Section 6, 63-6g. 

Apse!, R.J. and Luco, J.E., "Impedance functions 
for foundations embedded in a layered medium: 
an integral equation approach", Earthquake 
Engng. Struct. Dynamics, 1g97, vol. 15, 213-
231. 

Dahlquist, G. and Bjorck, A., Numerical Methods, 
Prentice-Hall, Englewood Cliffs, N.J., 1g74. 

Dunkin, J. N., "Computational of modal solutions 
in layered, elastic media at high frequencies", 
Bull. Seismol. Soc. Am., 1g55, vol. 55, 335-
358. 

Ewing, W. M; Jardetzky, W.S. and Press, F., 
Elastic waves in layered media, McGraw-Hill 
Book Co, New York, 1g57. 

Goetschel, D.B; Dong, s.B. and Muki, R., 11 A 
global-local finite element analysis of 
axisymmetric scattering of elastic waves", J. 
Appl. Mech. ASME, 1g82, vol. 4g, 816-820. 

Haskell, N.A., "The dynamic dispersion of surface 
waves on multilayered media", Bull. Seismol. 
Soc . Am. , 1 g 53 , vo 1 . 4 3 , 17 - 3 4 . 

Karabalis, D.L. and Beskos, D.E., "Dynamic 
response of 3-D rigid surfaces foundations by 
time domain boundary element method", 
Earthquake Engng. Struct. Dynamics, 1g94, vol. 
12, 73-g4. 

Kennett, B.L.N., Seismic wave orooaaation in 
stratified media, Cambridge University Press, 
1g83. 

Kundu, T., "Computation of surface motion in a 
stratified half-space", Ph.D. Dissertation, 
School of Engineering and Applied Sciences, 
UCLA, Los Angeles, Calif., 1g83. 

Kundu, T. and Mahl, A.K., "Elastic waves in a 
multilayered solid due to a dislocation 
source", Wave Motion, 1g95, vol. 7, 45g-471. 

Luco, J .E. and Apse!, R.J., "On the Green's 
functions for a layered half- space", Bull. 
Seismol. Soc. Am., 1g93, vol. 73, gog-g2g {Part 
I), g31-g51 {Part II). 

Luco, J.E. and Wong, H.L., "Dynamic response of a 
hemispherical foundation embedded ~n a 
viscoelastic half-space", J. Engng. Mech. Div. 
ASCE, 1g86, vol. 112, 1363-1374. 

Luco, J.E. and Wong, H.L., "Seismic response of 
foundations embedded in a layered half-space", 
Earthquake Engng. Struct. Dynamics, 1g97, vol. 
15,233-247. 

Romanel, C. and Kundu, T., "Soil -structure 
interaction in a layered medium", Int. J. 
Engng. Sci., 1ggo, vol. 28, 1g1-213. 

Thomson, W. T., "Transmission of elastic waves 
through a stratified solid medium", J. Appl. 
Phys., 1g50, vol. 21, 9g.g3_ 

Thrower, E.N., "The computation of the dispersion 
of elastic waves in layered media", J. Sound 
Vibr., 1g55, vol. 2, 210-226. 

974 

. 
c 
N 

c 

-0 

-
-

15 

....... 
0 

O•d/b * 0 
O=d/b,. I 
0 "'d/b. z 

JO 

--... 
..... 0... 

""'' ,::-., 
~ 

~ 
...... 

•5 80 75 90 

6 - degrees 
!: 

·- 0 ~ 
1:; 

"' c 

c 
c 
co 15 JO •5 60 75 90 

6 -degrees 
c 
N 

S.:!! 
~ 0 

~ 

-;-c. 
"' 

. 
c +--t-t--t-+-t--; 

~ g:t:~:? 
~ ~.:.-c.-£>-o-c.~ 

c 
c :.. =d. b = 2 

15 30 
0 0 15 30 

6 - degrees 6 - degrees 

Fig. 6 - Variation of the foundation motion with 
angle of incidence o• ~ e < go• {P waves) and o• 
~ b ~ 30• {SV waves) at frequency f = 3 Hz. 

--;--
""' ~ 0 

{-
~ 

"' c . 
c 
N 

c 

!: 
c 

~ 

"' c 

0 
0 

~ 

f-,- j-o-; -a. 
...... -.., 

·o.,,,.~ :-..,. 
r------ O=d.'b=O r -.._";..:--.:.. l'o.. Q: d,'b :z 1 
t-- 6 = d/b .. 2 - " ~ 

15 30 45 60 90 

6 - degrees 

--// 
00 15 JO 4~ 60 75 90 

~-
"' 2 0 

I~ 30 

6 - degrees 

6 - degrees 
c 
N 

"' 0 

c 
0 

:::::t=F 
-;: ..... -~ 

~ 

C!--i-

~ 

0 
0 15 JO 

6 - degrees 

Fig. 7 - variation of the foundation motion with 
angle of incidence o• ~ e < go• {P waves) and o• 
~ ~ ~ 30° {SV waves) at frequency f = 5 Hz. 


	A Hybrid Modeling of Soil Structure Interaction Problems
	Recommended Citation

	tmp.1453409596.pdf.AVHO1

