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ABSTRACT 

In order for service users to get the best service that meets their requirements, 

they prefer to personalize their non-functional attributes, such as reliability and price. 

However, the personalization makes it challenging because service providers have to deal 

with conflicting non-functional attributes when selecting services for users. In addition, 

users may sometimes want to explicitly specify their trade-offs among non-functional 

attributes to make their preferences known to service providers. Typically, users’ service 

search requests with conflicting non-functional attributes may result in a ranked list of 

services that partially meet their needs. When this happens, it is natural for users to 

submit other similar requests, with varying preferences on non-functional attributes, in an 

attempt to find services that fully meet their needs. This situation produces a challenge 

for the users to choose an optimal service based on their preferences, from the multiple 

ranked lists that partially satisfy their request.  

Existing memory-based collaborative filtering (CF) service recommendation 

methods that employ this recommendation technique usually depend on non-functional 

attribute values obtained at service invocation to compute the similarity between users or 

items, and also to predict missing non-functional attributes. However, this approach is not 

sufficient because the non-functional attribute values of invoked services may not 

necessarily satisfy their personalized preferences.  

The main contributions of this work are threefold. First, a novel service selection 

method, which is based on fuzzy logic, that considers users’ personalized preferences and 

their trade-offs on non-functional attributes during service selection is presented. Second, 

a method that aggregates multiple ranked lists of services into a single aggregated ranked 

list, where top ranked services are selected for the user is also presented. Two algorithms 

were proposed: 1) Rank Aggregation for Complete Lists (RACoL), that aggregates 

complete ranked lists and 2) Rank Aggregation for Incomplete Lists (RAIL) to aggregate 

incomplete ranked lists. Finally, a CF-based service recommendation method that 

considers users’ personalized preference on non-functional attributes if proposed. 

Examples using real-world services are presented to evaluate the proposed methods and 

experiments are carried out to validate their performance.   
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1. INTRODUCTION 

Services technology is well recognized as an easy way to integrate applications 

without boundaries. Owing to this, most organizations tend to publish their services on 

the web for easy consumption by the public. This has exponentially increased the number 

of available services. Different service providers may offer services that are equivalent 

with respect to their functionality. Therefore, it becomes more challenging for users to 

select the services that best meet their requirements. Rather than selecting services based 

only on their functionality, users are increasingly paying more attention to non-functional 

attributes, such as reliability, availability, reputation, and price. This is because, non-

functional attributes provide a distinction among the competing services with similar 

functionality; allowing prospective users to choose the services which best suit their 

requirements. Using non-functional attributes during service selection however, presents 

service providers with certain challenges. Firstly, users’ service requirements are 

becoming personalized. Personalization here, describes how different users have different 

preferences (values) for the same non-functional attribute. It therefore becomes 

challenging to incorporate their personalized preferences on non-functional attributes. 

While most non-functional attributes may be necessary not all users prefer the same 

number of attributes for a particular service. Secondly, users’ requests sometimes contain 

conflicting non-functional attributes which makes it challenging to completely meet their 

preferences for such requests. Conflicting non-functional attributes are those attributes 

where an increase in the satisfaction of one often decreases the satisfaction of the other. 

As a result of this conflicting relationship that may exist between non-functional 

attributes, users may want to explicitly trade-off some non-functional attributes for 

others.  

Usually, a user’s personal preference for a service comprises of his/her preference 

for non-functional attribute(s) that describe the service. These non-functional attributes 

may be conflicting [1, 2], resulting in ranked list of services that partially meet the user’s 

preference. In an attempt to obtain services that completely meet his/her request, the user 

may submit similar multiple service requests. Here, similar requests are those requests with 

the same functionality and trade-offs on non-functional attributes, but with varying 
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preference on those non-functional attributes. These requests may also yield ranked lists 

that do not fully satisfy the user’s preference due to the same conflicting relationship that 

may exists among non-functional attributes. In such a situation, it becomes challenging for 

the user to compare the different ranked lists in order to choose the optimal service. This is 

because, each ranked list may contain huge number of services that makes it time 

consuming for users to compare them against services in other ranked lists. A naïve way 

for this comparison will be to merge the different sets of ranked lists into one list and rank 

the merged list with respect to the user’s search intent. However, this naïve way also has its 

own challenges: 1) the same service may rank differently in other ranked lists and therefore 

becomes hard to determine its overall rank; and 2) some of the ranked lists may contain 

services that do not appear in other ranked lists due to the varying requests, making it 

difficult to determine the overall rank of such services. In order for the user to obtain an 

optimal service, based on the ranked lists, there is the need for a method that will produce 

an aggregated ranked list that addresses the challenges mentioned above. 

The increase in the number of services over the internet has inundated service users 

with many choices. For instance, Netflix.com has over 17,000 movies in its selection, and 

Amazon.com has over 410,000 titles in its Kindle store alone [3]. In order to reduce the 

number of choices users can decide on, recommendation systems are necessary. 

Recommendation systems are attracting lots of attention because they provide users with 

prior knowledge of candidate choices to deal with information overload on the Web. They 

have been used to recommend books and CDs at Amazon.com, movies at Netflix.com, and 

news at VERSIFI Technologies [4].  

Collaborative filtering (CF) is one of the widely used service recommendation 

techniques that bases its recommendations on the ratings or behavior of other users in the 

system [3]. Intuitively, it assumes that, if users agree about the quality or relevance of some 

service items, then they will likely agree about other service items as well. Existing 

memory-based CF techniques accomplish this by computing the similarity between users 

or service items using non-functional attribute values obtained at service invocation. 

However using non-functional attribute values of invoked services alone gives inaccurate 

similarity measure. This is because, the invoked services are typically the final choice 

(including any trade-offs) of users and may not necessarily satisfy their personalized 
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preferences. They represent the “end” of users’ service selection process and therefore 

when the non-functional attribute values of the invoked services used for similarity 

computation, they do not reflect users’ personalized preferences on those non-functional 

attributes. Therefore, rather than focusing solely on the “end”, recommendation systems 

must include the “means to the end” (users personalized preference) during service 

recommendation. 

The non-functional attribute values observed by users during service invocation 

may not necessarily represent their satisfaction for that service. For this reason, 

disregarding the personalized preferences of users in similarity computation creates a gap 

between users’ non-functional attribute value and their satisfaction. Users’ personalized 

preferences ensures that the non-functional attribute closely aligns with their satisfaction, 

bridging that gap and resulting in similarity values that accurately depicts the similar 

relationship between two users. Intuitively, if a non-functional attribute value used in 

similarity computation fails to satisfy a user’s personalized preference it in turn produces 

similarity results that are inaccurate. Thus, to accurately recommend services, which are 

personalized to users, it is necessary for recommendation systems to incorporate users’ 

personalized preferences on non-functional attributes when recommending services to an 

active user. 

A great deal of work has been done to bring attention to service discovery and 

selection based on non-functional attributes. Much of this work has produced similar 

ideas [5, 6, 7, 8, 9]. For example, many researchers have proposed that a user always give 

precise, quantitative constraints and preferences on each non-functional attribute. Others 

rely on weighted summation functions to aggregate all non-functional attributes to rank 

services for selection. These studies have the following shortcomings: 1) They do not 

allow users to specify either personal preferences or associated weights, based on elastic 

non-functional attributes, using linguistic terms (i.e. English), which are more practical. 

2) They do not take into consideration the relationships among non-functional attributes 

which may lead to inappropriate trade-offs among non-functional attributes.  

In this dissertation, users’ personalized preferences on non-functional attributes 

and their trade-offs to select services that best satisfy their needs is considered. A method 

that takes users’ personalized trade-off preferences and linguistic weights on non-
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functional attributes as inputs for service search is developed. Top ranked services in the 

search results are then selected. Two algorithms to compute an aggregated ranked list from 

each ranked list of services is also proposed. The first algorithm, Rank Aggregation for 

Complete Lists (RACoL), aggregates complete ranked lists (ranked lists given by total 

orders). There are however instances where the ranked lists to be aggregated come with 

incomplete ranked lists (incomplete orderings); i.e. some ranked list(s) contain services that 

do not appear in other ranked list(s). The second algorithm, Rank Aggregation for 

Incomplete Lists (RAIL), is proposed to aggregate incomplete ranked lists.  

A method that considers users’ personalized preferences, in addition to the non-

functional attribute values of invoked services, to accurately recommend service(s) to an 

active user is also proposed. The proposed method, accurately compute the similarity 

between users or service items by incorporating users’ personalized preferences on non-

functional attributes in our similarity function. The enhanced similarity function firstly, 

identify whether the two service users or items share some past experiences. If they do, the 

widely used Pearson Correlation Coefficient [3, 4, 10, 11] is extended to include 

satisfaction of users’ personalized preferences on non-functional attributes. Otherwise, the 

similarity between the user’s preferences is computed. Based on the similarity values, the 

top-k algorithm is employed to find similar neighbors. Finally, to predict missing non-

functional attribute values, the weighted average with mean offset is extended to 

incorporate users’ satisfaction on non-functional attributes based on their personalized 

preferences. 

Examples using real-world services to evaluate the method are presented. It can 

be seen that rank aggregation results from the proposed method closely represent the sets 

of ranked lists than using alternative approaches. Experiments were also carried out to 

validate their performance. 
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2. PERSONALIZED PREFERENCE AND TRADE-OFF BASED SERVICE 

SELECTION (PPTSS) 

2.1. BACKGROUND AND RELATED WORK 

In this section, related work regarding service selection methods based on non-

functional attributes as well as fuzzy logic [12] are discussed. 

2.1.1. Service Selection Based on Non-Functional Attributes. Following Ran’s 

[13] work, the problem of both service discovery and service selection with respect to 

non-functional attributes has received lots of attention in the service computing 

community. Service selection is heavily based on ranking services according to their non-

functional attributes. Combining multiple non-functional attributes make service 

selection a difficult task as users struggle to find the right service with an optimal 

combination of non-functional attributes.  

Masri and Mahmoud [7] employed a variation of weighted summation of non-

functional attributes to rank services for selection. They first normalize values of 

different non-functional attributes into a range. Then compute the overall satisfaction of 

the services by summing the normalized values. Services are ranked based on overall 

quality. Similarly, Comuzzi and Pernici [14] used a price model to combine multiple non-

functional attributes. This price model converts each non-functional attribute of a service 

to a price and then adds all of the prices together. The services are then ranked according 

to their total prices. Benouaret et al. [15] proposed two concepts, σ- and α-dominant 

skylines, to improve the skyline, a concept for selecting web services based on non-

functional attributes. They identified two skyline requirements, size and quality, for 

which σ- and α-dominant skylines were their respective solutions. Benouaret et al. [16], 

in another work, proposed a majority-rule-based web service selection. Although their 

approach does not explicitly consider users’ non-functional attributes, it considers their 

overall preference on a service. They formulated the majority-rule-based service selection 

based on the dominance relationship and skyline and also proposed an algorithm that is 

both efficient and returns a more manageable set of services. Yau and Yin [17] proposed 

a service ranking and selection method which can support a more flexible non-functional 
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attribute specification. They modeled the relationship among services’ non-functional 

attributes and satisfaction scores. 

Sun et al. [18] proposed a personalized Web service recommendation method 

based on a novel collaborative filtering (CF) approach. The method takes advantage of 

the little non-functional attribute information available. They employ non-functional 

attribute information from similar users with similar experience on the same non-

functional attribute to automatically predict non-functional attribute values. Chen et al. 

[19] also proposed a region-based hybrid CF algorithm to predict non-functional attribute 

values of services for service recommendation. In their work, they discovered that a 

user’s location greatly influences the accuracy of their prediction. Sun et al. [20] again 

presented a new similarity measure for Web service similarity computation and propose a 

novel collaborative filtering approach, called normal recovery collaborative filtering, for 

personalized Web service recommendation. 

2.1.2. Fuzzy Logic Service Selection Methods. Traditional non-functional 

attribute-driven service selection methods require crisp and precise constraints and 

preferences on non-functional attributes from users. Examples are “the response time 

should be less than 1 second” and the preference degree for response time is 0.9”. Such 

specifications are not natural and practical to users in many cases. Instead, users may like 

to use fuzzy logic and linguistic terms [12, 21] to represent their non-functional 

attributes, such as “the response time should be Short”.  

Wei-Lin et al. [22] proposed a fuzzy consensus on non-functional attributes in 

web services discovery approach based on fuzzy sets [12]. Their objective was to build 

consensus on non-functional attributes between service providers and consumers. Their 

focus was on aggregating similarities between non-functional attributes from the 

provider’s and consumer’s perspectives.  

Wang [23] extends the Max-Min-Max composition of intuitionistic fuzzy sets 

(IFS) [21]. He categorized non-functional attributes properties of web services into 

functional and non-functional properties. His approach deals with the decision maker’s 

imprecise perceptions under incomplete information. It also objectively determines the 

weights of non-functional attributes. Determining of weights from users requirements 

may result in assigning weights on non-functional attributes inappropriately. This is 
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because user requirements are fuzzy and sometimes the users themselves do not know 

exactly what they want. Wang [24] also designed a service selection model that takes into 

account its non-functional attributes based on fuzzy linear programming (FLP) 

technologies. This was to identify service alternatives dissimilarities and assist service 

users in selecting most suitable services with consideration of their expectations and 

preferences. Xiuqin et al. [25] employed interval-valued intuitionistic fuzzy soft set 

theory for solving web service selection problems that take into account users’ non-

functional attributes. Almulla et al. [26] explored the dependencies between quality 

factors to improve the weights given by a user. However, this method is also based on the 

classical weighted summation (or average) function to rank services. This ranking 

method does not allow representation of personalized trade-offs among non-functional 

attributes in many cases. Li et al. [27] proposed a model for web service selection based 

on fuzzy quality of service (QoS) attributes. In their model, they classified QoS 

information into several multi-dimensional classes. Then based on these classes, a 

synthetic service selection method is used to rank is used to rank the services. 

A systematic approach for specifying non-functional requirements of contracts for 

quality management and evaluation has been proposed by Liu and Yen [28] and Liu et al. 

[29]. Their work considers both qualitative and quantitative specification techniques of 

non-functional requirements. Also, they introduce both the crisp and elastic non-

functional requirements specification. This paper adopts those concepts and is the first to 

apply them to service selection based on both personalized preferences and trade-offs. 

The works discussed in this section do not take either relationships or 

personalized trade-offs among non-functional attributes into consideration. Therefore, 

such works lack the ability to implicitly support personalized non-functional attribute 

tradeoffs. In addition, personalization is defined in terms of 1) linguistic terms, 2) 

membership functions, and 3) importance on non-functional attributes. This is to fully 

capture the personalized nature of a user’s request and subsequently select the right 

services to meet the user’s request. 
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2.2. THE SERVICE SELECTION METHOD 

The proposed service selection method is described in this section. Some basic 

notation, used in this paper, is also provided. Finally, the formalization of the proposed 

service selection method is given in this section. 

Figure 2.1 shows the framework of the proposed personalized preference and 

trade-off based service selection. The method assumes that all service users are rational. 

The service selection process begins by a user submitting a new service request. The 

service request includes both the functional requirements and the non-functional 

requirements. The input of the non-functional requirements is in two parts. First, the user 

selects his/her preferred non-functional attributes and then specifies their satisfaction for 

each attribute. Next, with these attributes, the user then specifies his/her trade-off strategy 

for selection. The trade-off strategy includes the user’s personalized elastic non-

functional attributes, weights and required aggregation operators, which will be discussed 

in detail in Section 2.4. All of these are captured by the input handler. 

 

 

 

Figure 2.1.  Framework of the personalized preference and trade-off based service 

selection 
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services satisfying user’s functional requirements. For this purpose, the algorithm by 

Sajjanhar et al. [30] was employed. The non-functional requirements, in the form of a 

trade-off strategy, are pushed over to the service ranking engine. The list of services 

matching user’s functionality is also sent to the service ranking engine for evaluation 

based on the trade-off strategy.  

The evaluation by the service ranking engine uses as inputs: the list, user 

specified non-functional requirements, linguistic fuzzified non-functional attribute 

constraints and non-functional attribute data. With these inputs, the service ranking 

engine computes the satisfaction degree for each service, by defuzzifying the linguistic 

satisfactions provided by the user using fuzzy propositions. 

The service ranking engine also defuzzifies the linguistic weights of each non-

functional attribute using the Centroid Method (CM) [31]. The CM defuzzifies the 

weights supplied by the user in linguistic terms. 

Finally, using fuzzy connectives like fuzzy conjunction, fuzzy disjunction and 

fuzzy compromise, the service ranking engine computes the overall satisfaction degree of 

aggregated non-functional requirements for all services. The services are then ranked 

according to the overall satisfaction degrees. Services with high overall satisfaction 

degrees (top-ranked) are presented to the user for selection. Figure 2.2 illustrates this 

detailed process by the service ranking engine to complete its task. 

 

 

 

Figure 2.2.  The service ranking engine process 
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Assume a list of services satisfying a user’s functional requirements 𝑆 = {𝑠1, 𝑠2,

𝑠3, … , 𝑠𝑛}, and a list of user’s preferred non-functional attributes 𝑁 =  {𝑛𝑓𝑎1, 𝑛𝑓𝑎2,

… , 𝑛𝑓𝑎𝑚}. Let 𝜎𝑆𝑖
𝑁𝑗

 denote the satisfaction of non-functional attribute, 𝑁𝑗 with respect to 

service 𝑆𝑖, where 𝜎 is the linguistic term that typifies the satisfaction of 𝑁𝑗. For instance, 

𝐻𝑖𝑔ℎ𝑆𝑖
𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦

, may be used by a user to describe their satisfaction on availability non-

functional attribute as being high. 

Next the satisfaction degree of the linguistic term by a membership function is 

specified. Some users may have some difficulty to specify their membership functions. 

Due to this, membership functions were categorized into two (2) main categories 

depending on the maximum satisfaction of the associated non-functional attribute value. 

One of the main categories supports non-functional attributes whose higher values 

produces higher satisfaction (e.g. reliability and availability non-functional attributes). 

The second main category of membership function supports non-functional attributes 

whose lower values produces higher satisfaction (e.g. response time and reputation non-

functional attributes). In this way, users need not to specify the entire membership 

function but the selection system will generate those functions for users based on the 

maximum and minimum values they provide. The categories are as follows:  

 

1. Category 1: higher non-functional attribute values preferred (the higher, the 

better), e.g. reliability, and availability non-functional attributes; and 

2. Category 2: lower non-functional attribute values preferred (the lower, the better), 

e.g. response time and price non-functional attributes. 

 

Definition (Satisfaction Function). Given S and N, the satisfaction of a non-

functional attribute, 𝑁𝑗, with respect to a service, 𝑆𝑖, is defined as 

 

𝜎𝑆𝑖
𝑁𝑗 = {

𝛼, 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 1
𝛽, 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 2

                                                        (1) 

 

where 𝛼 and 𝛽 are the membership functions for category 1 and category 2 respectively 

which are defined as 
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𝛼 =

{
 

 
0                     , 𝑖𝑓 𝑁𝑗 ≤ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚

1                     , 𝑖𝑓 𝑁𝑗 ≥ 𝑚𝑎𝑥𝑖𝑚𝑢𝑚

𝑁𝑗 −𝑚𝑖𝑛𝑖𝑚𝑢𝑚

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 −𝑚𝑖𝑛𝑖𝑚𝑢𝑚
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                (2) 

 

 

𝛽 =

{
 

 
0                     , 𝑖𝑓 𝑁𝑗 ≥ 𝑚𝑎𝑥𝑖𝑚𝑢𝑚

1                     , 𝑖𝑓 𝑁𝑗 ≤ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑁𝑗

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 −𝑚𝑖𝑛𝑖𝑚𝑢𝑚
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                              (3) 

 

where minimum and maximum are the highest and lowest satisfaction degrees of the non-

functional attribute, 𝑁𝑗, as specified by the user. 

Definition (Personalized Non-Functional Attribute). Let 𝑈 = {𝑢1, 𝑢2, … , 𝑢𝑚} be a 

set of service users, and 𝑊𝑈𝑖,𝑁𝑗
 be a weighting factor of user 𝑈𝑖′𝑠 linguistic importance 

on a non-functional attribute 𝑁𝑗. Some possible linguistic weights are extremely 

important, very important, important and somewhat important. Details of all the 

linguistic weights used in this work are discussed in Section 2.5. The personalized non-

functional attribute, 𝑃𝑈𝑖
𝑁𝑗

 , for a user 𝑈𝑖 on a non-functional attribute 𝑁𝑗 is a membership 

function MF with the weighting factor 𝑊𝑈𝑖,𝑁𝑗
 given as 

 

𝑃𝑈𝑖
𝑁𝑗 = 𝑀𝐹(𝑈𝑖, 𝑁𝑗) ×𝑊𝑈𝑖,𝑁𝑗

                                                       (4) 

 

Definition (Overall Trade-Off Strategy). The overall personalized trade-off 

strategy (requirement), 𝑅𝑈𝑖, for a user 𝑈𝑖, can be described using individual personalized 

non-functional attributes, 𝑃𝑈𝑖
𝑁𝑗

, and an aggregation operator (discussed in detail in Section 

2.4.2), ∐, as follows: 

 

𝑅𝑈𝑖 =∐𝑃𝑈𝑖
𝑁𝑗

𝑚

𝑗=1

                                                                 (5) 

where 
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∐ is either of the fuzzy connective operators  ∧, ∨, or ⊗ 

 

For instance, let 𝑁 =  {𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝑝𝑟𝑖𝑐𝑒, 𝑟𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛} and 𝑃𝑈𝑖
𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦

, 𝑃𝑈𝑖
𝑝𝑟𝑖𝑐𝑒

, 

and 𝑃𝑈𝑖
𝑟𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛

 be the preferences for reliability, price and reputation non-functional 

attributes respectively for user 𝑈𝑖, then R for the user can be 

 

𝑅 =  𝑃𝑈𝑖
𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦

∧ 𝑃𝑈𝑖
𝑝𝑟𝑖𝑐𝑒⊗𝑃𝑈𝑖

𝑟𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛
 

 

Definition (Service Selection). Given S, N, W and R, the service selection process 

can be modelled as a ranking in terms of the satisfaction of requirement R so that for any 

two services Si and Sj the following is true. 

 

𝑆𝑖 ≻ 𝑆𝑗 ⟺ 𝑆𝑎𝑡𝑅(𝑆𝑖) ≥ 𝑆𝑎𝑡𝑅(𝑆𝑗)                                              (6) 

 

where 𝑆𝑎𝑡𝑅(𝑆𝑖) represents the satisfaction of service Si with respect to some user 

requirement R. 

 

2.3. PERSONALIZED INDIVIDUAL NON-FUNCTIONAL ATTRIBUTE 

REQUIREMENT SPECIFICATION USING FUZZY PROPOSITIONS 
 

This section discusses how to specify individual non-functional requirements in 

terms of non-functional attributes. The specification is done using fuzzy proposition, a 

statement in fuzzy logic which is satisfied to a degree, and linguistic terms. Some 

linguistic terms used are ‘high’, ‘affordable’, ‘good’, ‘short’ and ‘few’. The membership 

function of these linguistic terms in fuzzy logic typifies satisfaction of some non-

functional attributes.  

The non-functional attributes considered in the illustrative example include 

reliability, availability, throughput, response time. A service user may specify their non-

functional requirements on, for instance, service response time (the lower the value, the 

better the non-functional attribute) as follows: The response time for a prospective 
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service must be ‘high’. Figure 2.3 shows the membership function of ‘high’ that satisfies 

the response time non-functional attribute.  

On the vertical axis in Figure 2.3, 0 and 1 represent the lowest and highest levels 

of service satisfaction, respectively, in terms of response time. If the service responds, on 

average, 3 secs or lower, the non-functional attribute is understood to be met. If the 

response time is increased from 3 secs to anything above 10 secs, the service satisfaction 

reduces accordingly. However, if the response time is greater than the threshold of 10 

secs, the satisfaction degree is 0 and the service is completely unacceptable. 

 

 

 

Figure 2.3.  Membership function for Response Time non-functional attribute 

 

 

The membership functions of the non-functional attributes that are considered in 

the airline application case study is presented in Section 2.7.2. They include price (airline 

price), reputation, duration, and number-of-stops. 

The reputation of an airline in this work is based on the Airline Quality Rating 

(AQR) [32]. The AQR is an objective method for assessing airline quality on combined 

multiple performance criteria [32]. The formula for calculating the AQR score is: 

 

AQR=
(+8.63 × 𝑂𝑇) + (−8.03 × 𝐷𝐵) + (−7.29 × 𝑀𝐵) + (−7.17 × 𝐶𝐶)

(8.63 + 8.03 + 7.29 + 7.17)
                (7) 

 

where OT (On-Time), DB (Denied Boarding), MB (Mishandled Baggage), and CC 

(Customer Complains) are variables considered. Data for all criteria is drawn from the  
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U.S. Department of Transportation's monthly Air Travel Consumer Report1 [32]. The 

AQR values used in this work are based on the April 2012 reported values. Higher AQR 

values indicate excellent reputation. AirTran Airways (FL) for example, had the best 

rating in 2011 with an AQR value of -0.48. Since most normal users are not aware of 

AQR, the ranking of an airline which is based on its AQR value was used to denote its 

reputation. For instance, in the 2012 AQR reported values, out of 14 airlines, AirTran 

Airways (FL) ranked first (1st) and American Eagle (MQ) ranked fourteenth (14th). Figure 

2.4 is the membership function of ‘medium’ that satisfies the reputation non-functional 

attribute. 

The number-of-stops of a flight indicates the number of different flights (which 

have different flight numbers) that makes up any flight between two cities by an airline. 

For instance, consider a flight from St. Louis to New York which goes through Memphis 

and Atlanta. Assume that flights from St. Louis to Memphis, Memphis to Atlanta and 

Atlanta to New York all have different flight numbers. Then the number-of-stops for this 

flight is 2 because it stops at Memphis and Atlanta. 

 

 

 

Figure 2.4.  Membership function for Reputation non-functional attribute 

 

 

                                                 

1 http://dot.gov/airconsumer/ 
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2.4. PERSONALIZED SERVICE TRADE-OFFS 

The relationships among a service’s non-functional attributes are extremely 

important when considering trade-offs. These relationships reveal the interaction among 

non-functional attributes. Additionally, selecting a suitable aggregation operator for the 

aggregation of non-functional attributes depends on these relationships. The relationships 

that exist among non-functional attributes are discussed and aggregation operators based 

on the relationships are presented. 

2.4.1. Relationships Among Non-Functional Attributes. For any two non-

functional attributes, there exist some relationship. The relationship between any two 

non-functional attributes are classified into three (3) different types: conflicting, 

cooperative, and mutually exclusive [28]. These relationships are based on the outcome or 

impact on the satisfaction degree of one non-functional attribute when the satisfaction 

degree of another non-functional attribute changes. In addition, the relationship between 

two non-functional attributes is based on the published services and their non-functional 

attributes value. 

Conflicting Non-Functional Attributes (⊖). Two non-functional attributes are 

said to be conflicting if an increase in the satisfaction degree of one often decreases the 

satisfaction degree of the other. If an increase in the satisfaction degree of one non-

functional attribute always decreases the satisfaction degree of the other, they are said to 

be completely conflicting [28].  

Cooperative Non-Functional Attributes (⊕). Contrary to conflicting non-

functional attributes, two non-functional attributes are referred to as cooperative if an 

increase in the satisfaction degree of one often increases the satisfaction degree of the 

other. If an increase in the satisfaction degree of one non-functional attribute always leads 

to an increase in the satisfaction degree of the other, they are said to be completely 

cooperative [28]. 

Mutually Exclusive Non-Functional Attributes (⨀). It is typical that two non-

functional attributes cannot be satisfied at all at the same time. That is, if the satisfaction 

degree of one non-functional attribute is satisfied to a certain degree, the other cannot be 

satisfied at all, and vice versa. When this occurs, they are considered to be mutually 

exclusive non-functional attributes.  
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To show an example of mutually exclusive non-functional attributes, consider a  

scenario where a user wants an airline service that costs not more than $200, gets to their 

destination in not more than 3 hours and has a reputation less than the 5th ranking airline. 

Assume that Table 2.1 is the list of services satisfying the user’s functional requirement. 

Services 2 and 3 satisfy this user’s cost non-functional attribute. However, it can be seen 

that neither the duration nor reputation non-functional attribute of either service 2 or 3 

can be satisfied at the same time. In such a situation, the non-functional attribute duration 

and reputation are mutually exclusive. 

 

 

Table 2.1.  List of Services Satisfying User’s Functionality  

Service Cost($) Duration (hrs) Reputation (ranking) 

1 215 2.70 1st 

2 195 2.80 7th 

3 187 3.50 3rd 

 

 

For a service request that includes multiple non-functional attributes, it may be 

challenging to satisfy all attributes to their highest degrees. This is due to the relationship 

that exists between any two non-functional attributes. Thus, trade-offs among them are 

desirable. Typically, it has been observed that each of the following pairs of non-

functional attributes; (reliability and availability) and (throughput and response time) are 

cooperative [McCall 2002]. Also, (reliability and throughput), (reliability and response 

time), (availability and throughput), and (availability and response time) are conflicting 

non-functional attributes [33] (see Figure 2.5). It must be noted that the relationships are 

application domain dependent and also depend on the published services and their non-

functional attributes value. Therefore a relationship that holds in an airline domain may 

not necessarily hold in healthcare domain. 

2.4.2. Aggregating Non-Functional Attributes Using Fuzzy Connectives. 

Multiple non-functional attributes must be aggregated based on the relationships that  

exist among them to obtain an overall non-functional attribute satisfaction value. This is  
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achieved by employing aggregation operators. Three of such operators, fuzzy 

compromise [28], fuzzy conjunction [12], and fuzzy disjunction [12], are discussed in 

this section. 

 

 

 

Figure 2.5.  Typical relationships among non-functional attributes  

 

 

Fuzzy Compromise Operator (⊗). Consider the following set of non-functional 

attributes: N1, N2, …,Nm. If the relationship among them is conflicting, then they should 

be combined with the fuzzy compromise operator. The resulting compromise is the 

minimal and maximal degree of the membership function. The operator AVERAGE, 

which is an example of a fuzzy compromise operator, is used in this work. Let S = {s1, s2, 

…,sn} be the set of services. If both N1 and N2 are two non-functional attributes of a 

service (Si), then the resulting trade-off value using the AVERAGE operator is 

 

N1(Si)⊗N2(Si)=
N1(Si)+ N2(Si)

2
                                                (8) 

 

Fuzzy Conjunction Operator (∧). Cooperative non-functional attributes can be 

satisfied at the same time and hence, fuzzy conjunction operator becomes a suitable 

operator to combine them. Consider the following set of non-functional attributes: N1, 

N2, …,Nm. If the relationship among them is cooperative, then they should be combined 

with the fuzzy conjunction operator. The operator MIN, which is an example of a fuzzy 

Reliability Availability Throughput Response 

Time 
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Conflicting Non-Functional 
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conjunction operator, is used in this work. Let S = {s1, s2, …,sn} be the set of services. If 

both N1 and N2 are two non-functional attributes of a service (Si), then the resulting trade 

-off value using the MIN operator is 

 

N1(Si) ∧ N2(Si)=MIN{N1(Si), N2(Si)}                                                     (9) 

 

Fuzzy Disjunction Operator (∨). The fuzzy disjunction operator serves as an 

efficient way to combine mutually exclusive non-functional attributes as they cannot all 

be satisfied at the same time. Consider the following set of non-functional attributes: N1, 

N2, …,Nm. If the relationship among them is mutually exclusive, then they should be 

combined with the fuzzy disjunctive operator. The operator MAX, which is an example 

of a fuzzy disjunction operator, is used in this work and is defined as follows. Let S = {s1, 

s2, …,sn} be the set of services. If both N1 and N2 are two non-functional attributes of a 

service (Si), then the resulting trade-off value using the MAX operator is 

 

N1(Si) ∨ N2(Si)=MAX{N1(Si), N2(Si)}                                              (10)  

 

2.5. DEFUZZIFICATION OF LINGUISTIC WEIGHTS 

The Centroid Method, also known as either the center of gravity (CoG) or center 

of area (CoA) method, is the most commonly used defuzzification technique. This 

technique which provides a crisp value based on the center of gravity of the fuzzy set 

[31]. It also determines the best point for dividing the fuzzy set into exactly two masses. 

Because weights of non-functional attributes, in this work, are specified using linguistic 

terms (which can be decomposed in a triangular shape), the centroid method becomes a 

very suitable approach for defuzzifying the linguistic weight terms. The centroid method 

is a weighted average method in which the membership function is used for weighting 

[31]. For a triangular fuzzy number F = (, , ), the weighted value () can be 

calculated as: 

 


()


                                                                      (11) 
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In this work, seven linguistic terms are decomposed into triangular fuzzy numbers 

using the triangular fuzzy set shown in Figure 2.6. These linguistic terms are tabulated in 

Table 2.2 and are provided for assigning the weights to each non-functional attribute. The 

weight value of each of the linguistic term is calculated using Equation (11). 

 

 

 

Figure 2.6.  Triangular membership functions for the seven linguistic terms 

 

 

Table 2.2.  The Seven Linguistic Terms, Their Fuzzy Numbers, and Corresponding 

Importance Value  
 

Linguistic Term Triangular Fuzzy Number Importance Value 

Extremely Important (EI) (0.9, 1.0, 1.0) 0.97 

Very Important (VI) (0.7, 0.9, 1.0) 0.87 

Important (I) (0.5, 0.7, 0.9) 0.70 

Somewhat Important (SI) (0.3, 0.5, 0.7) 0.50 

Not Important (NI) (0.1, 0.3, 0.5) 0.30 

Not Very Important (NVI) (0.0, 0.1, 0.3) 0.13 

Not Important At All (EL) (0.0, 0.0, 0.1) 0.03 

 

 

2.6. ILLUSTRATIVE EXAMPLE 

An example to illustrate the service selection method is presented. In this 

example, five (5) users want to use an accounting software service to manage their 

business finances. This is show detail process of how the proposed service selection 

method works. Our choice of accounting application is the fact that unlike the airline 
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application presented later in Section 2.7.2 (which considers domain-depended non-

functional attributes), the accounting application considers infrastructural non-functional 

attributes. This is to demonstrate that the proposed service selection method works for 

other domains with different non-functional attribute dimension. The accounting software 

should support automated banking, invoicing, and reporting. One area of concern is good 

pricing. Additional key quality factors should include reliability, availability, response 

time, and throughput. Each user submits their service request. The request includes both 

the functionality of the service and the personalized trade-off strategy, as tabulated in 

Table 2.3. Each non-functional attribute and its associated weight are specified using the 

following notation: NFAName
Weight. For instance, NFAPrice

EI indicates an extremely 

important weight, on a price non-functional attribute. The trade-off strategy is specified 

using logical AND (∧), logical OR (∨), or COMPROMISE (⊗) operators. After the 

functionality search in the data repository is completed, five (5) services satisfying the 

accounting functionality is obtained as shown in Table 2.4. 

 

 

Table 2.3.  List of Service Requests from 5 Different Users  

User Functionality Fuzzy logic-based personalized trade-off strategy 

1 Accounting (NFRprice
EI ∧ NFRreliability

I) ∨ (NFRprice
EI ∧ NFRresponse time

VI) 

2 Accounting 
(NFRprice

EI ∧ NFRreliability
I) ∨ ((NFRprice

EI  ∧ NFRthroughput
SI) ∨ 

(NFRprice
EI  ∧ NFRavailability

SI)) 

3 Accounting (NFRprice
VI ∧ NFRresponse time

VI) ∧ (NFRthroughput
I∧ NFRavailability

I) 

4 Accounting 
(NFRprice

EI ∨ NFRresponse time
EI) ∧ ((NFRprice

NI ⊗ NFRavailability
I) ∨ 

(NFRprice
NI ⊗ NFRthroughput

I)) 

5 Accounting 
((NFRprice

SI ⊗ NFRresponse time
EI) ∨ (NFRprice

SI  ⊗ NFRreliability
EI)) ∧ 

((NFRprice
NI ⊗ NFRavailability

I) ∨ (NFRprice
NI ⊗ NFRthroughput

I)) 

 

 

The satisfaction degree of each non-functional attribute for all the users can be 

computed using both the membership function descriptions in Section 2.3 and the non-

functional attribute values in Table 2.4. For instance, the satisfaction degree of 
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throughput non-functional attribute can be computed as 0.16. This is achieved using the 

throughput value of service 4 (8.29 MBps) according to Table 2.4 and based on the 

membership function of the throughput non-functional attribute illustrated in Figure. 2.7. 

 

 

Table 2.4.  The List of Services and Their Non-Functional Attribute Values with 

Accounting Functionality 
 

Service 
Reliability 

(months) 

Availability 

(%) 

Throughput 

(mbps) 

Response time 

(seconds) 

Price 

(dollars) 

Service1 6 90 18.13 5 41 

Service2 10 97 28.25 7 21 

Service3 8 92 25.34 2 45 

Service4 6 98 8.29 1 27 

Service5 10 96 18.65 4 30 

 

 
Figure 2.7.  Fuzzified throughput value of service 4  

 

 

Once the satisfaction degrees of individual non-functional attributes are obtained, 

an overall satisfaction of the non-functional attribute for a service can be computed. This 

computation is done based on how individual non-functional attributes are aggregated 

based on the discussion in Section 2.4. For user 1, the overall satisfaction value of service 

1 can be computed as follows: 

 

(NFRprice
EI (s1)∧NFRreliability

I (s1)) ∨ (NFRprice
EI (s1)∧ NFRresponse time

VI (s1))  

= MAX {MIN (0.36 × 0.97, 1 × 0.7), MIN (0.36 × 0.97, 0.72 × 0.87)} 
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= MAX {MIN (0.35, 0.7), MIN (0.35, 0.63)} 

= MAX {0.35, 0.35} 

= 0.35 

 

Similarly, the values for services 2 to 5 can be computed for user 1. The services 

are ranked according to these overall satisfaction values. Table 2.5 shows the ranked 

services based on user 1’s preferences. 

For user 2, the overall satisfaction value of service 1 can be computed as follows: 

(NFRprice
EI (s1)∧ NFRreliability

I (s1)) ∨ ((NFRprice
EI (s1)∧ NFRthroughput

SI (s1)) ∨ (NFRprice
EI 

(s1)∧ NFRavailability
SI (s1)))  

= MAX {MIN (0.36 × 0.97, 1 × 0.7), MIN {MIN (0.36 × 0.97, 0.66 × 0.50), MIN (0.36 × 

0.97, 0 × 0.5)}} 

= MAX {MIN (0.35, 0.7), MIN {MIN (0.35, 0.33), MIN (0.35, 0)}} 

= MAX {MIN (0.35, 0.7), MIN (0.33, 0)} 

= MAX {0.35, 0} 

= 0.35 

Again, the overall satisfaction values of services 2 to 5 for user 2 can be computed 

and based on these values, the services ranked. Table 2.6 shows the ranked services based 

on user 2’s preferences. 

User 3’s overall satisfaction value of service 1 can be computed as follows: 

(NFRprice
VI (s1)∧ NFRresponse time

VI (s1)) ∧ (NFRthroughput
I (s1)∧ NFRavailability

I (s1))  

= MIN {MIN (0.36 × 0.87, 0.72 × 0.87), MIN (0.66 × 0.7, 0 × 0.7)} 

= MIN {MIN (0.31, 0.63), MIN (0.46, 0)} 

= MIN {0.31, 0} 

= 0 

For services 2 to 5, the overall satisfaction value can be computed in a similar 

manner and the services are ranked based on these values. The ranked services based on 

user 3’s preferences are shown in Table 2.7. 

For user 4, the overall satisfaction value of service 1 can be computed as follows: 

(NFRprice
EI (s1) ∨ NFRresponse time

EI (s1)) ∧ ((NFRprice
NI (s1) ⊗ NFRavailability

I (s1)) ∨ (NFRprice
NI 

(s1) ⊗ NFRthroughput
I (s1)))  

= MIN {MAX (0.36 × 0.97, 0.72 × 0.97), MAX (AVERAGE (0.36 × 0.3, 0 × 0.7), 
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AVERAGE (0.36 × 0.3, 0.66 × 0.7)} 

= MIN {MAX (0.35, 0.7), MAX (AVERAGE (0.11, 0), AVERAGE (0.11, 0.46)} 

= MIN {MAX (0.35, 0.7), MAX (0.06, 0.29)} 

= MIN {0.7, 0.29} 

= 0.29 

 

 

Table 2.5.  Ranked Services Based on User 1’s Trade-off Strategy  

Service 

(by rank) 

Reliability 

(months) 

Availability 

(%) 

Throughput 

(mbps) 

Response time 

(seconds) 

Price 

($/month) 
Score 

Service4 6 98 8.29 1 27 0.87 

Service5 10 96 18.65 4 30 0.74 

Service2 10 97 28.25 7 21 0.7 

Service1 6 90 18.12 5 41 0.35 

Service3 8 92 25.33 2 45 0.19 

 

 

Table 2.6.  Ranked Services Based on User 2’s Trade-Off Strategy  

Service 

(by rank) 

Reliability 

(months) 

Availability 

(%) 

Throughput 

(mbps) 

Response time 

(seconds) 

Price 

($/month) 
Score 

Service2 10 97 28.25 7 21 0.7 

Service5 10 96 18.65 4 30 0.7 

Service1 6 90 18.12 5 41 0.35 

Service4 6 98 8.29 1 27 0.33 

Service3 8 92 25.33 2 45 0.19 

 

 

Similarly, the values of services 2 to 5 can be computed. Based on this overall 

satisfaction values, the services are ranked. Table 2.8 shows the ranked services based on 

user 4’s preferences. 

User 5’s overall satisfaction value of service 1 can be computed as follows: 

((NFRprice
SI (s1) ⊗ NFRresponse time

EI (s1)) ∨ (NFRprice
SI (s1) ⊗ NFRreliability

EI (s1))) ∧ 
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((NFRprice
NI (s1)⊗ NFRavailability

I (s1)) ∨ (NFRprice
NI (s1) ⊗ NFRthroughput

I` (s1)))  

= MIN {MAX (AVERAGE (0.36 × 0.5, 0.72 × 0.97), AVERAGE (0.36 × 0.5, 1 × 0.97)), 

MAX (AVERAGE (0.36 × 0.30, 0 × 0.7), AVERAGE (0.36 × 0.3, 0.66 × 0.7))} 

= MIN {MAX (AVERAGE (0.18, 0.7), AVERAGE (0.18, 0.97)), MAX (AVERAGE 

(0.11, 0), AVERAGE (0.11, 0.46))} 

= MIN {MAX (0.44, 0.58), MAX (0.06, 0.29)} 

= MIN {0.58, 0.29} 

= 0.29 

In a similar manner, the overall satisfaction function values of services 2 to 5 can 

be computed and the services are ranked based on these values. Table 2.9 shows the 

services ranked according to user 5’s preferences. 

 

 

Table 2.7.  Ranked Services Based on User 3’s Trade-off Strategy  

Service 

(by rank) 

Reliability 

(months) 

Availability 

(%) 

Throughput 

(mbps) 

Response time 

(seconds) 

Price 

($/month) 
Score 

Service4 6 98 8.29 1 27 0.47 

Service2 10 97 28.25 7 21 0.31 

Service5 10 96 18.65 4 30 0.16 

Service3 8 92 25.33 2 45 0 

Service1 6 90 18.12 5 41 0 

 

 

Table 2.8.  Ranked Services Based on User 4’s Trade-off Strategy  

Service 

(by rank) 

Reliability 

(months) 

Availability 

(%) 

Throughput 

(mbps) 

Response time 

(seconds) 

Price 

($/month) 
Score 

Service2 10 97 28.25 7 21 0.5 

Service4 6 98 8.29 1 27 0.49 

Service3 8 92 25.33 2 45 0.38 

Service5 10 96 18.65 4 30 0.36 

Service1 6 90 18.12 5 41 0.29 
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The results displayed in Tables 2.5 through 2.9 indicate that the recommended 

services for selection depend on a user’s personal trade-off preferences. For instance, the 

top-3 recommended services for user 1 are service 4, service 5, and service 2. Those for 

user 3 are service 4, service 2, and service 5. The difference in the results is due to the 

different personal trade-off preferences of the two users (user 1 and user 3). 

 

 

Table 2.9.  Ranked Services Based on User 5’s Trade-off Strategy  

Service 

(by rank) 

Reliability 

(months) 

Availability 

(%) 

Throughput 

(mbps) 

Response time 

(seconds) 

Price 

($/month) 
Score 

Service2 10 97 28.25 7 21 0.5 

Service4 6 98 8.29 1 27 0.49 

Service3 8 92 25.33 2 45 0.38 

Service5 10 96 18.65 4 30 0.36 

Service1 6 90 18.12 5 41 0.29 

 

 

2.7. PROTOTYPE IMPLEMENTATION AND ITS EVALUATION 

2.7.1. Service Selection Prototype. This section describes the prototype for the 

framework. This prototype was implemented using both Microsoft Visual C# on .NET 

framework 3.5 and Microsoft Visual Studio 2008 Professional Edition under 64-bit 

Windows 7 Enterprise platform on AMD FX™-8350 8 core processor. The primary 

components of the prototype include: a services repository, a personalized trade-off 

strategy input parser, and the service ranking engine. With the exception of the services 

repository (which was implemented using SQL Server 2008), these components were 

implemented using both C# and regular expressions.  

2.7.1.1 The input handler. The usability of the input handler was the main 

consideration during its design. The component was developed such that users will have 

convenience to specify their service request with ease. The trade-off strategy was 

captured in a sentence-like fashion (see Figure 2.8). The notation used is NFA1.weight 

Operator NFA2.weight … An autocomplete feature to speed up the user-system 

interactions was also included with the trade-off strategy field. The data in the Attribute 



 

 

26 

combo box as well as the highest and lowest satisfactions are populated from a data 

source which makes this implementation very adaptable to different domains. As users 

select and add their preferred non-functional attributes, the system analyzes the 

relationship between pairs of non-functional attributes and recommends the appropriate 

operator for aggregation (see Figure 2.8). This is also provided in the Relationships box. 

 

 

 
Figure 2.8.  Screenshot of the personalized preference and trade-off based service 

selection prototype  

 

 

It must be noted that the trade-off strategy does not impact the relationships that 

exist between any two non-functional attributes. The relationships between any two non-

functional attributes reveal the interactions between those non-functional attributes. If the 

user’s choice of aggregation operators in the trade-off strategy is consistent with 

recommended aggregation operators, services with the best possible satisfaction of their 

non-functional attributes are returned back to the user. On the contrary, if the user’s 

choice of aggregation operators in the trade-off strategy is inconsistent with the 

recommended aggregation operators, services with a less satisfactory result as compared 

to the former results are returned. 
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To demonstrate this, a comparison of the results of two separate requests applied 

to the services in Table 2.4 was made. Request 1 has aggregation operators which are 

consistent with the recommended aggregation operators as follows:  

 

Request 1: (NFRprice
EI ∧ NFRreliability

I) ∨ (NFRprice
EI ∧ NFRresponse time

VI) 

 

Request 2, which is similar to request 1 with respect to the number and types of 

non-functional attributes, has different aggregation operators than those recommended. 

 

Request 2: (NFRprice
EI ⊗ NFRreliability

I) ∨ (NFRprice
EI ⊗ NFRresponse time

VI) 

 

Tables 2.5 and 2.10 show the results for request 1 and request 2 respectively. The 

results show that, the top-ranked services produced by request 1 have a higher 

satisfaction of the non-functional attributes than the top-ranked services produced by 

request 2. Therefore, it is highly recommend that the recommended aggregation operators 

should be used by users when submitting their service request. 

 

 

Table 2.10.  Ranked Services Based on Request 2 

Service 

(by rank) 

Reliability 

(months) 

Response time 

(seconds) 

Price 

($/month) 
Score 

Service1 6 5 41 0.97 

Service3 8 2 45 0.92 

Service4 6 1 27 0.88 

Service2 10 7 21 0.83 

Service5 10 4 30 0.76 

 

 

2.7.1.2 Functional matching engine. For this component, the algorithm proposed 

by Sajjanhar et al. [30] was adopted. The choice was mainly based on the fact that they 

employed the singular value decomposition in linear algebra which reveals relationship 
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among services. This ensures an efficient functional service match. Also since the 

functional match of services is just an intermediary step, a fast algorithm was necessary. 

The algorithm as presented by Sajjanhar et al. [30] for the functional matching engine 

was therefore implemented. 

2.7.1.3 Service ranking engine. The service ranking engine requires the 

functional matching of services, user trade-off strategy, fuzzified non-functional attribute 

constraints and the published non-functional attribute data. As already stated, the trade-

off strategy is provided in a sentence-like fashion. In its implementation, first of all, a 

regular expressions to validate the user trade-off strategy was employed. Next the binary 

operators used (AND, OR, COMPROMISE) as well as the operands they operate on were 

identified. Finally, the definitions of the respective operators as described in Section 2.4.2 

were then applied. 

2.7.1.4 Evaluation of the implementation. The entire implementation is very 

simple and straight forward. First there is a search for services satisfying functional 

requirements, which is upper bounded by the number of services. Then satisfaction 

degree of each non-functional attribute for each service is also computed. This is also 

upper bounded by the number of user preferred non-functional attributes being 

considered. Finally the individual satisfaction degrees of each service are aggregated 

which is also upper bounded by the number of services. Therefore the entire service 

selection system is linear with the bottlenecks being the number of available services and 

the number of non-functional attributes under consideration. 

2.7.1.5 Parallel implementation. For each application domain, the number of 

non-functional attributes is limited. For example, the accounting and airline applications 

discussed in this work used five (5) and four (4) non-functional attributes respectively. 

However, the number of available services is not limited and keeps growing. Due to this, 

the execution time of the service selection system is high. For instance, the service 

selection system takes 6.4 secs to respond when there are 100K services and 8 non-

functional attributes to consider.  

To overcome this bottleneck, a parallel implementation of the service selection 

system was performed since most of the processes as described in Section 2.7.1.4 are 

independent of each other. The parallel implementation is based on the divide, conquer 
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and combine approach as depicted in Figure 2.9. The divide step basically divides the 

dataset into sub datasets based on the number of available processors. 

 

 
Figure 2.9.  Parallel implementation of the service selection system  

 

 

Each processor then executes the non-parallel version of the selection system on 

each sub dataset. Each processor will return result which represents the ranked services in 

the sub dataset. This is the conquer step. Finally, the results obtained from each processor 

is combined to obtain the final result which represents the ranked services for the dataset. 

By doing so, the execution time of the selection system was reduced based on the number 

of multicore processors used. The results of the parallel implementation is discussed in 

Section 2.7.3. 

2.7.2. Application with Real Airline Services. In previous accounting example, 

a demonstration of how the service selection method works with infrastructural non-

functional attributes was given. In this section, a case study where the proposed method is 

applied to domain-specific non-functional attributes of services is presented. A service’s  

selection prototype that has been implemented to support the framework described in 

Section 2.2 was employed for the case study. This is to evaluate the application of the 

framework. The prototype was then applied to real-world airline services, the Openflights 
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Dataset [34]. Five (5) different normal-user requests were supplied as input to the 

prototype. As a reminder, each request includes both the functionality of the service and 

the personalized trade-off strategy. The results obtained from each input are discussed 

under Section 2.7.2.2. 

2.7.2.1 Dataset description. The Openflights Dataset [34], used in this 

implementation contains 61,199 routes between 3341 airports on 565 airlines spanning 

the globe. Each record in the dataset corresponds to an existing airline service as of 

February 2013. Each record contains the source and destination airports, airline, flight 

duration, flight distance and the number of stops. Since there was no price and reputation 

information for each airline service, two additional non-functional attributes, price and 

reputation, were added to the dataset. It was however challenging obtaining the reputation 

for all airlines. Due to that, the dataset was limited to only domestic (US) airlines. Their 

reputation values are readily available from the U.S. Department of Transportation. 

2.7.2.2 User inputs and satisfaction functions. Using the dataset described 

above in Section 2.7.2.1, the prototype was tested on different user requests (i.e. different 

functionalities and personalized trade-off strategy) as summarized in Table 2.11. The 

satisfaction and dissatisfaction values of each non-functional attributes used are also 

tabulated in Table 2.12. Tables 2.13 to 2.17 show the results. 

 

Table 2.11.  List of Service Request from 5 Users  

User 
Functionality Fuzzy logic-based personalized trade-off 

strategy From To 

1 
Denver Intl 

(DEN) 

Madison-Dane Co 

(MSN) 
(NFRprice

EI ∧ NFRreputation
I) ∨ (NFRprice

EI ⊗ 

NFRnumber of stops
VI) 

2 
Dallas Fort Worth 

Intl (DFW) 

St. Louis-Lambert 

(STL) 

(NFRprice
EI ∧ NFRreputation

I) ∨ ((NFRprice
EI 

∧NFRduration
SI) ∨ (NFRprice

EI ∧NFRnumber of 

stops
SI)) 

3 
Atlanta-Hartsfield 

Jackson (ATL) 

Detroit Metro 

Wayne (DTW) 

(NFRprice
VI∧NFRnumber of stops

VI) ∧ 

(NFRduration
I∧ NFRreputaiton

I) 

4 
Austin Bergstrom 

Intl (AUS) 

New York-John F 

Kennedy In. (JFK) 

(NFRprice
EI ∨NFRnumber of stops

EI) ∧ 

((NFRprice
NI ⊗ NFRreputation

I) ∨ (NFRprice
NI  

⊗ NFRduration
I)) 

5 
Charlotte Douglas 

Intl (CLT) 

Los Angeles Intl 

(LAX) 

((NFRprice
SI ⊗NFRnumber of stops

EI) ∨ 

(NFRprice
SI ⊗ NFRreputation

EI)) ∨ (NFRprice
NI 

⊗NFRduration
I) 
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Table 2.12.  Membership Function  

Non-functional attribute Linguistic term Satisfactory value Dissatisfactory value 

Reputation (AQR) Good > = 3rd < = 14th 

Duration (Hrs) Long < = 1.4 > = 5 

Price ($) Affordable < = 170 > = 1520 

Number of Stops Few < = 1 > = 4 

 

 

Table 2.13.  Top-5 out of 3498 Services Based on User 1’s Personalized Preference and 

Trade-off Strategy  
 

Service (by rank) Duration 

(hr:min) 

Price 

($) 

Reputation 

(ranking) 

Number 

Of stops 
Score 

Route Airline(s) 

DEN→MSN UA 2:08 165.71 10th 0 0.87 

DEN → MSN F9 2:08 322.75 4th 0 0.86 

DEN→ MSN US 2:08 476.46 9th 0 0.75 

DEN→CAK→ATL→MSN F9→FL→DL 6:23 634.37 3rd 2 0.63 

DEN → ATL → MSN FL → DL 4:47 666.2 3rd 1 0.61 

 

 

Table 2.14.  Top-5 out of 7468 Services Based on User 2’s Personalized Preference and 

Trade-off Strategy 
 

Service (by rank) Duration 

(hr:min) 

Price 

($) 

Reputation 

(ranking) 

Number 

Of stops 
Score 

Route Airline(s) 

DFW → ATL → STL DL → FL 3:24 428.84 3rd 1 0.64 

DFW→ATL→DEN→ 

STL DL→FL → F9 6:52 641.45 3rd 2 0.63 

DFW →CVG → 

ATL→STL DL→DL→ FL 4:48 638.33 3rd 2 0.62 

DFW → DEN → STL F9 → F9 3:48 628.72 4th 1 0.60 

DFW→DEN→ ATL 

→ STL US →F9→ FL 6:06 663.17 5th 2 0.59 



 

 

32 

Table 2.15.  Top-5 out of 8409 Services Based on User 3’s Personalized Preference and 

Trade-off Strategy 
 

Service(by rank) Duration 

(hr:min) 

Price 

($) 

Reputation 

(ranking) 

Number 

of stops 
Score 

Route Airline(s) 

ATL → DTW FL 1:41 330.17 1st 0 0.64 

ATL → DTW DL 1:41 172.94 6th 0 0.59 

ATL → DAY → 

DTW FL → DL 2:10 368.15 3rd 1 0.55 

ATL → AVL → 

DTW DL → DL 2:15 435.4 6th 1 0.53 

ATL → CLE → 

DTW DL → DL 2:17 636.22 6th 1 0.53 

 

 

Table 2.16.  Top-5 out of 7927 Services Based on User 4’s Personalized Preference and 

Trade-off Strategy  
 

Service(by rank) Duration 

(hr:min) 

Price 

($) 

Reputation 

(ranking) 

Number 

of stops 
Score 

Route Airline(s) 

AUS → DEN → 

JFK F9 → DL 5:47 340.01 5th 1 0.43 

AUS → ATL 

→DAY →JFK DL→FL→DL 5:04 515.23 4th 2 0.42 

AUS → ATL 

→DEN →JFK 

DL→FL→ 

DL 8:44 545.6 4th 2 0.42 

AUS → JFK DL 3:32 406.54 6th 0 0.42 

AUS → BWI → 

JFK WN → DL 4:01 332.04 7th 1 0.42 
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Table 2.17.  Top-5 out of 15441 Services Based on User 5’s Personalized Preference and 

Trade-off Strategy 
 

Service (by rank) Duration 

(hr:min) 

Price 

($) 

Reputation 

(ranking) 

Number 

of stops 
Score 

Route Airline(s) 

CLT → LAX UA 4:44 493.48 11th 0 0.63 

CLT → BWI → 

BOS →LAX FL→FL→AS 8:09 734.93 2nd 2 0.61 

CLT → CVG → 

LAX DL → DL 5:27 468.36 6th 1 0.60 

CLT → BWI → 

ATL →LAX FL→DL→FL 7:14 753.39 2nd 2 0.60 

CLT → BNA → 

LAX US → AS 5:14 273.08 7th 1 0.60 

 

2.7.2.3 Evaluation. The service selection system proposed in this work was 

evaluated. The focus of this evaluation is to compare the results from both requests with 

preferences and requests without preferences. In the evaluation, a service search with an 

input similar to user 1’s input in Table 2.11 except that there is no personalization of the 

non-functional attributes was performed. (Input: airline service from Denver Intl (DEN) 

to Madison-Dane Co (MSN) with a trade-off strategy (NFRprice
SI ∧ NFRreputationSI) ∧ 

(NFRprice
SI ∧ NFRnumber of stops

SI)). The result is shown in Table 2.18. 

From Table 2.18, it can be seen that the overall satisfaction of all the top-5 

services is very low; 0.29 for the first service and 0.17 for the next four services. It shows 

that even the best services available in the repository have a low overall satisfaction with 

respect to the trade-off strategy. The low satisfactions arise from the aggregation 

operators used. For instance, based on the published data of the airline services, price and 

number of stops non-functional attributes have a conflicting relationship and therefore it 

will be appropriate to use the COMPROMISE operator instead of AND. 

Comparing Table 2.18 to the results in Table 1.13 (personalized preference 

results), none of the top-5 services in Table 2.13 appeared in Table 2.18. Actually, the 

top-5 services in Table 2.13, appeared as services 96, 632, 291, 647 and 656 respectively 

in the complete results of (Input: airline service from Denver Intl (DEN) to Madison-
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Dane Co (MSN) with a trade-off strategy (NFRprice
SI ∧ NFRreputation

SI) ∧ (NFRprice
SI ∧ 

NFRnumber of stops
SI)). 

 

 

Table 2.18.  Top-5 out of 3498 Services Based on the above Trade-off Strategy  

Service (by rank) Duration 

(hr:min) 

Price 

($) 

Reputation 

(ranking) 

Number 

Of stops 
Score 

Route Airline(s) 

DEN → DFW → MSN NK → AA 3:54 1127.19 14th 1 0.29 

DEN→BOS→DTW 

→MSN 

B6 → DL 

→ DL 6:51 1480.94 14th 2 0.17 

DEN 

→BOS→EWR→MSN 

B6 → B6 → 

UA 6:58 1744.42 14th 2 0.17 

DEN 

→BOS→EWR→MSN 

UA → B6 

→ UA 6:58 1247.79 14th 2 0.17 

DEN →BOS→DCA→ 

MSN 

US → B6 

→ F9 7:10 1106.75 14th 2 0.17 

 

 

2.7.3. Experimental Evaluation. The experimental evaluation was performed to 

see the scalability of the prototype with respect to the number of non-functional attributes 

and the number of available services. The prototype was executed with a varied number 

of non-functional attributes (2, 4, 6, 8, and 10) against different number of services (20K, 

40K, 60K, 80K, and 100K) as seen in Figure 2.10. Each number of non-functional 

attributes is run against all of the different number of services. For example, 2 non-

functional attributes, is run against 20K, 40K, 60K, 80K, and 100K number of services 

and the execution time at each run is recorded. Our expectations were that the system 

scales linearly with increasing number of services and non-functional attributes. Figure 

2.10 shows the execution time vs. the number of non-functional attributes with respect to 

the different number of services. 
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Figure 2.10.  Execution time of the services selection system  

 

 

Figure 2.10 shows that the implementation is expensive with respect to the time 

complexity. Therefore, a re-implemented the service selection system in a parallel 

fashion was performed. Once the parallel implementation was complete, a similar 

scalability experiment was conducted. Figure 2.11 shows the execution time of the 

parallel implementation. The number of cores used for the experiment was eight (8). 

 

 

 
Figure 2.11.  Execution time of the services selection system parallel implementation  
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2.7.4. Impact of Membership Functions and Weights on the Evaluation. An 

analysis is carried out to investigate the robustness of the services selection framework 

discussed in this work. This is performed to determine the impact on the actual results if 

the membership function or the weight is tweaked. In this section, four (4) scenarios are 

presented. Two (2) of such scenarios determine how changing (i.e. strengthening or 

relaxing) the membership function of individual non-functional attribute will impact the 

recommended services. The other two (2) scenarios focus on the impact of changing 

(increasing or decreasing) the weight of individual non-functional attributes will have on 

recommended services. 

2.7.4.1 Strengthening/relaxing membership function of individual non-

functional attributes. Membership functions can be strengthened or relaxed. 

Strengthening a non-functional attribute’s membership function means increasing its 

lowest level of service satisfaction. For instance, the reputation non-functional attribute in 

Figure 2.4 can be strengthened by increasing the lowest service satisfaction level from 

14th to 12th (see Figure 2.12).  

Similarly, relaxing a non-functional attribute’s membership function implies 

reducing its lowest level of service satisfaction. An example will be to reduce the lowest 

service satisfaction level of the response time non-functional attribute in Figure 2.3 from 

10 secs to 12 secs as depicted in Figure 2.13.  

The membership function in Table 2.12 was strengthened (see Table 2.19). Based 

on Table 2.19, user 2’s service request is executed by the prototype. The recommended 

services are shown in Table 2.20. 
 

 
Figure 2.12.  Strengthening the Reputation non-functional attribute 
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Figure 2.13.  Relaxing the Response Time non-functional attribute. 

 

 

Table 2.19.  Strengthened Membership Functions  

Non-functional attribute Linguistic term Satisfactory value Dissatisfactory value 

Reputation (AQR) Good > = 3rd < = 9th 

Duration (Hrs) Long < = 1.4 > = 4 

Price ($) Affordable < = 170 > = 950 

Number of Stops Few < = 1 > = 3 

 

 

Table 2.20.  Top-5 out of 7468 Services Based on User 2’s Personalized Preference and 

Trade-off Strategy with Strengthened Non-Functional Attribute 
 

Service (by rank) Duration 

(hr:min) 

Price 

($) 

Reputation 

(ranking) 

Number 

Of stops 
Score 

Route Airline(s) 

DFW → ATL → STL DL → FL 3:24 428.84 3rd 1 0.61 

DFW → ATL → STL DL → DL 3:24 315.83 6th 1 0.53 

DFW → CVG → ATL 

→ STL 

DL → DL→ 

DL 4:48 525.32 6th 2 0.52 

DFW → ELP → ATL 

→ STL 

AA → DL 

→FL 6:05 526.79 6th 2 0.51 

DFW → CVG → DCA 

→STL 

DL→ DL→ 

WN 5:21 480.56 6th 2 0.50 

3 10 
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2.7.4.2 Increasing/decreasing weights of individual non-functional attributes. 

In order to show the effect of weights users place on individual non-functional attributes 

of recommended services, the weight values are tweaked. The weights user 2 placed on 

his/her individual non-functional attributes were decreased to the following: the weights 

for price, reputation, duration and number of stops non-functional attributes were 

decreased to extremely low, fair, low and low respectively. The recommended services 

generated by the prototype are tabulated in Table 2.21. 

 

Table 2.21.  Top-5 out of 7468 Services Based on User 2’s Personalized Preference and 

Trade-off Strategy with Decreased Weights  
 

Service (by rank) Duration 

(hr:min) 

Price 

($) 

Reputation 

(ranking) 

Number 

Of stops 
Score 

Route Airline(s) 

DFW → ATL → STL DL → DL 3:24 315.83 6th 1 0.25 

DFW → ATL → STL DL → FL 3:24 428.84 3rd 1 0.24 

DFW → DEN → STL US → F9 3:48 412.49 7th 1 0.23 

DFW → ATL → STL AA → FL 3:24 477.43 6th 1 0.23 

DFW → CVG → DCA 

→STL 

DL→DL→ 

WN 5:21 480.56 6th 2 0.23 

 

 

From the results in Tables 2.20 and 2.21, it can be concluded that, tweaking the 

membership functions and the weights influences the selected services. For instance, the 

top service for user 2 after strengthening the non-functional attributes are flights operated 

by Delta (DL) and Airtran (FL) that routes from Dallas Fort Worth Intl Airport (DFW) 

through Atlanta-Hartsfield Jackson Airport (ATL), and finally to St Louis Lambert 

Airport (STL). 

 

2.8. CONCLUSION 

In service markets, reliability and other non-functional attributes generally play 

crucial roles in service selection. Due to the cooperative, conflicting, or exclusive 

relationships among non-functional attributes, users are likely to specify trade-offs when 

requesting services. This section presents a novel service selection method that allows 
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users to represent their elastic non-functional attributes using linguistic terms. At the 

same time, they are able to explicitly specify their personalized trade-offs among non-

functional attributes for service selection. Also, the method permits users to specify the 

weights, in linguistic terms, of each non-functional attribute. First the satisfaction degree 

of individual non-functional requirements is computed for each service satisfying user’s 

functionality. Then the overall satisfaction degree for that service, based on a user’s 

personalized trade-off strategy, is computed using fuzzy connective operators. Services 

are then ranked using the overall satisfaction degrees and top-ranked services are selected 

for the user accordingly. To illustrate how the proposed method works, an illustrative 

example was given. Results from the case study presented show the effectiveness of the 

method and that the system can select services to meet users’ individual service needs. In 

addition, an evaluation of the proposed method was performed and was concluded that 

the service selection method scales well with the number of non-functional attributes and 

the number of available services. Compared with existing service selection methods, the 

proposed method in this paper is more efficient in incorporating users’ personal 

preferences and trade-offs. 
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3. AGGREGATING RANKED SERVICES FOR SELECTION (ARSS) 

3.1. MOTIVATION 

As a motivating example, consider a user whose search intent is to find a cheap 

nonstop flight from New York to London that gets to London in the shortest possible time. 

Based on this user’s search intent, he/she concerned with three non-functional attributes, 

price, stops, and duration and is not willing to trade-off any of these non-functional 

attributes. The user’s request functionality and trade-off strategy are as follows: 

 

Functionality: Flight from New York to London 

Trade-off Strategy: Price AND Stops AND Duration [1] 

 

A “cheap” flight for this user is any flight under $1,150 and the phrase “shortest 

possible time” to describe the user’s preference on duration non-functional attribute refers 

to any flight that gets to London in under 7 hours. Preferences for each non-functional 

attribute for his/her initial request is shown in Table 3.1.  

The user submits his/her initial request that results in ranked list of flights shown in 

Table 3.2. From the table, although the user’s requirement for nonstop criteria is satisfied, 

his/her requirement for price and duration were not met. For this reason, the user relaxes 

his/her nonstop and duration criteria and then performs the search again using modified 

preferences on the non-functional attributes from the initial request (see Table 3.1). Again, 

the user’s stop criteria was met but neither the requirement for price nor duration was met 

(see Table 3.3). However, the flights from Table 3.3 have non-functional attribute values 

that are close to the user’s preferences for his/her modified request.  

At this point, none of the flights have fully satisfied the user’s preferences. 

Therefore, he/she decides to modify the preferences on the non-functional attributes and try 

the search one more time (see Table 3.1 for the modified request 2). The ranked list of 

flights generated from this request, as shown in Table 3.4, satisfies the price and stops non-

functional attributes but not duration. 
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Table 3.1.  Three Similar Requests Showing the Differences in Preferences on  

Non-Functional Attributes  
 

Request Price ($) Stops Duration 

Initial Request Under 1,150 Nonstop  Under 7h 

Modified Request1 Under 1,150 1 Stops Under 12h 

Modified Request2 Under 1,150 2 Stops Under 12h 

Note: The 3 requests in this table are similar because they all have  

the same functionality and trade-off strategy. 

 

 

Table 3.2.  Suggested Ranked List of 

Flights that Closely Match User’s Initial 

Request  
 

 Table 3.3.  Suggested Ranked List of 

Flights that Closely Match User’s 

First Modified Request  
 

 

Flight Price ($) Stops Duration  Flight Price ($) Stops Duration 

American 1, 731 Nonstop 6h 50m  
Virgin 

Atlantic 
1, 369 

1 

stop 
12h 50m 

British 

Airways 
1, 791 Nonstop 6h 55m  

British 

Airways 
1, 469 

1 

stop 
13h 30m 

Virgin 

Atlantic 
1, 851 Nonstop 6h 40m  Aeroflot 1, 651 

1 

stop 
15h 15m 

Aeroflot 2, 403 Nonstop 6h 50m      

 

 

After the third search, assume that the user realizes that his/her search intent cannot 

be completely satisfied. However, he/she needs to choose a flight based on the three ranked 

lists of flights obtained so far. It becomes necessary to find the optimal flight with respect 

to the user’s requests. This can be achieved by aggregating the three ranked lists of flights 

(Tables 3.2 to 3.4), to produce an aggregated ranked list (Table 3.5). The aggregated ranked 

list is a compromise between Tables 3.2 to 3.4 and closely represents the user’s search 

intent. 

 

3.2. BACKGROUND AND RELATED WORK 

Rank aggregation is the problem of combining several ranked lists of objects in a 

robust way to produce a single consensus ranking of the objects [35]. The rank 
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aggregation problem is not purely a new research area, as it derives from many previous 

works from many information retrieval subfields [36]. It involves finding a consensus 

ranking on a set of candidates, based on the preferences of individuals [36, 37, 38, 39, 

40]). In computer science, rank aggregation has proven to be a useful and powerful 

paradigm in several applications such as meta-searching and information retrieval, search 

engine spam fighting, e-commerce, learning from experts, analysis of population 

preference sampling, committee decision making and more [37]. However, it has not been 

employed much in the area of service computing for service selection. 

 

 

Table 3.4.  Suggested Ranked List of 

Flights that Closely Match User’s 

Second Modified Request  
 

 Table 3.5.  Aggregated Ranked List of 

Flights From Tables 3.2, 3.3, and 3.4  

Flight Price ($) Stops Duration  Flight Price ($) Stops Duration 

Virgin 

Atlantic 

967 2 Stops 16h 50m  Virgin 

Atlantic 

1, 369 1 stop 12h 50m 

Delta 1, 122 2 Stops 17h 30m  Virgin 

Atlantic 

967 2 Stops 16h 50m 

Virgin 

Atlantic 

1, 127 2 Stops 21h 15m  British 

Airways 

1, 469 1 stop 13h 30m 

British 

Airways 

1, 143 2 Stops 20h 50m  American 1, 731 Nonstop 6h 50m 

     British 

Airways 

1, 791 Nonstop 6h 55m 

     Virgin 

Atlantic 

1, 851 Nonstop 6h 40m 

     Virgin 

Atlantic 

1, 127 2 Stops 21h 15m 

     Aeroflot 2, 403 Nonstop 6h 50m 

     Delta 1, 122 2 Stops 17h 30m 

     Aeroflot 1, 651 1 stop 15h 15m 

     British 

Airways 

1, 143 2 Stops 20h 50m 
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In voting, the rank aggregation given a list of n candidates {𝑐1, 𝑐2, . . . , 𝑐𝑛} running 

for an election and a set of m voters, each voter issues an ordered list, ≺ , of full or subset 

of the n candidates. An ordered list from voter j can be seen as a permutation, ≺𝑗, where 

≺𝑗 (𝑖)indicates the position of candidate 𝑐𝑖 in the ordered list of voter j. A candidate 𝑐𝑖 is 

preferred by voter j if 𝑖 = 1. From these m ordered lists, rank aggregation is employed to 

form one list to select the best candidate that best suits all voters [41]. The Condorcet 

winner of an election is the candidate who, when compared to every other candidate, is 

preferred by more voters i.e. a candidate who would beat any opponent in a simple majority 

in a two-candidate election. The Condorcet voting paradox, however, indicates that such a 

winner may not always exist [42]. Borda count [43] is one selection algorithm that searches 

for the best trade-off for this criterion. The Borda count of a candidate ci is its mean 

position over all ordered lists. Candidates are subsequently sorted in increasing order of 

Borda count. 

𝐵𝑜𝑟𝑑𝑎𝐶𝑜𝑢𝑛𝑡(𝑐𝑖)  =
1

𝑚
∑ ≺𝑗 (𝑖)

𝑚

𝑗=1

 

 

Another selection algorithm, Reciprocal Rank, finds the geometric mean of a 

candidate ci’s positions within all ordered lists. Candidates are then sorted in increasing 

order of reciprocal rank. 

 

𝑅𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑎𝑙 𝑅𝑎𝑛𝑘(𝑐𝑖)  =
1

∑
1

≺𝑗 (𝑖)
𝑚
𝑗=1

 

 

The Reciprocal Rank Fusion [44], is a simple method for rank aggregation typical 

in the information retrieval (IR) domain. It simply sorts documents form multiple IR 

systems according to a naïve scoring formula [44]. Given a set D of documents to be 

ranked and a set of rankings R, each a permutation on 1..|D|, the reciprocal rank fusion 

score can be computed as 
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𝑅𝑅𝐹𝑆𝑐𝑜𝑟𝑒(𝑑 ∈ 𝐷) =∑
1

𝑘 + 𝑟(𝑑)
𝑟∈𝑅

 

 

Cormack et al. [44] found that reciprocal rank fusion, when used to combine the 

results of IR methods, almost invariably improved on the best of the combined results. 

They also showed that the reciprocal rank fusion equaled or outperformed some established 

meta ranking standards. 

In their survey, Kopliku et al. [36], proposed a simple analysis framework for rank 

aggregation as employed in web search. They focused on more recent trends, namely cross 

vertical aggregated search and relational aggregated search, which are already present in 

current Web search and an overview of existing work. Hofreiter and Marchand-Maillet [41] 

modeled the web service selection problem using rank aggregation strategies (full voting 

strategy). In their model, each web service is seen as a candidate in the selection process 

and a QoS factor is an abstract voter that will sort the web services according to their 

values. The web services were then ranked according to their QoS factors independently, 

leading to a number of ordered lists. Finally, the ordered lists were aggregated into a final 

ordered list, from which users can select the best web service. 

Baltrunas et al. [45] proposed an idea that applied rank aggregation and 

collaborative filtering to group recommendation. Their premise was that there is sometimes 

the need to recommend services to satisfy all members of a group. Their method took into 

consideration the individual preferences of the group’s members in order to generate 

effective group recommendations. The result of their group recommendation process is an 

ordered list of items. They employed existing rank aggregation methods, taking a set of 

predicted ranked lists, one for each group member, and producing one combined and 

ordered recommendations’ list. 

Qin et al. [46], proposed a distance-based rank aggregation model called the coset-

permutation distance based stagewise (CPS) model. The model is stagewise based on 

probabilistic model on permutations. The model first of all decomposes the generative 

process of a permutation 𝜋 into sequential stages and then at the Kth stage, an object is 

selected and assigned to position k with a certain probability [46]. The CPS model then 

defines the selection probability based on the distance between a location permutation 𝜎 

and the right coset of 𝜋 (referred to as coset-permutation distance) at each stage. 
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Most rank aggregation problems often assume that users’ preferences are given by 

total orders. However, the rankings encountered in many natural situations, as in our case, 

often come with incomplete orderings of a set of candidates. To aggregate several 

incomplete rankings into one consensus ranking has additional challenges, since all the 

distance measures known so far are based on complete orderings of the candidates. Fagin et 

al. [35] provided a comprehensive view of comparing partial rankings, and proposed 

several metrics to compare partial rankings. They considered variations of the Kendall  

distance where they varied a certain parameter. The first set of metrics was based on profile 

vectors and the second set of metrics were based on the Hausdorff distance.  

Brandenburg et al. [40] considered the generalization of total and bucket orders to 

partial orders and compare them by the nearest neighbor and the Hausdorff Kendall’s  

distances. Pihur et al. [47] presented two distinct algorithms for rank aggregation: the 

Cross-Entropy Monte Carlo algorithm and the Genetic algorithm, and discussed rank 

aggregation as an optimization problem.  

Although all the works discussed in this section are able to aggregate several ranked 

lists, the aggregated ranked list they produce do not best fit with respect to the set of their 

input ranked lists. In other words, the aggregated ranked list produced by our algorithms 

closely represent the sets of ranked lists than existing methods. This is shown later in 

section 3.6. Also, the proposed algorithm in this work to deal with incomplete rank lists, 

RAIL, recursively extends the partial orderings to complete orderings rather than just 

assigning arbitrary ranks to missing elements in the input rank lists. 

 

3.3. OVERVIEW OF THE METHOD 

This section gives an overview of the method for aggregating ranked services for 

selection (rank aggregation) in general and also describes the components that make up 

its framework proposed in this work. 

3.3.1. Framework Description. Figure 3.1 shows the framework of the service 

aggregation method. The main components of the framework are the service ranking 

engine [1, 2] and the service aggregation engine. The service ranking engine searches for  

services and rank the results based on user’s personal preference(s). It has been discussed 

in detail in section 2. The ranked lists of services produced by the service ranking engine 
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are subsequently aggregated by the service aggregation engine. Aggregating ranked 

services is considered as an optimization problem in this work. The problem is to find a 

new ranked list (solution), where the total distance from the solution to the other set of 

ranked lists of services is minimum. The aggregated ranked list, which reflects the overall 

rankings together, are subsequently selected for the user. 

The aggregation engine consists of four different components as shown in Figure 

3.1. First there is the make complete list component. This component changes all 

incomplete ranked lists of services to the aggregation engine to complete ranked lists. This 

is necessary because as stated in section 1, there are instances where the set of ranked lists 

of services to be aggregated come with incomplete orderings. As such it becomes 

challenging to determine the overall rank of those services. For instance, considering 

Tables 3.2-3.4 in section 1, it is hard to correctly determine the overall rank of American 

airlines since it only ranks 1st in one list and does not appear in the other two ranked lists, 

i.e. its rank in the other ranked lists is unknown. In this example, the make complete list 

component will be used to determine the rank of American airlines in the other two ranked 

lists. 

The next component in the services aggregation engine, define optimization 

problem, defines the optimization problem, given the set of complete ranked lists of 

services from the make complete list component. The compute minimum cost component, 

thereafter solves the optimization problem defined by the define problem component. The 

results from the compute minimum cost component is then decoded by the decode results 

component to obtain the aggregated ranked list. In section 3.4, a detailed discussion of how 

all of these components work together to select the top-k aggregated ranked services for the 

user is given. 

 

3.4. SERVICE AGGREGATION ENGINE 

Given m lists of top-k ranked services from the service ranking engine, it is 

necessary to determine a consensus of the top-k ranked lists that reflects all rankings 

together. Rank aggregation is considered as an optimization problem, which is formally 

defined as follows. 
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Figure 3.1.  Framework of the proposed services aggregation method  

 

 

Definition (Rank Aggregation Optimization Problem). Given m ordered lists, 

≺1, ≺2, … , ≺𝑚, a distance measure D, find a new ordered list 𝜌∗ such that the total 

distance from 𝜌∗ to all the input lists is the minimum, i.e., 

 

𝜌∗ = arg min
𝜌

(∑𝐷(𝜌,≺𝑖)

𝑚

𝑖=1

)                                                         (12) 

 

There are many choices for distance measure D. In this paper the Spearman’s 

Footrule distance [47] and Kendall’s  distance [47], are considered which will be 

discussed in detail next. 

3.4.1. Distance Measures. Both the Spearman’s Footrule distance and the 

Kendall’s  distance are used to measure the difference or disagreement, between two input 

lists. Each ordered list is a full permutation of a set. 

The Spearman’s Footrule considers the position difference of an element in two 

orderings, and the summation of the absolute values of the differences is called Spearman’s 

Footrule distance. 
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Definition (Spearman’s Footrule Distance). Let ≺1, ≺2 be two complete orderings. Let 

≺1
𝑎 be the position of element a in ordering ≺1, and ≺2

𝑎 be the position of element a in 

ordering ≺2, then the Spearman’s Footrule distance is defined as: 

 

𝐹(≺1, ≺2) =  ∑|≺1
𝑎− ≺2

𝑎|

𝑎

                                                    (13) 

 

Unlike the Spearman’s Footrule distance, the Kendall's  distance uses a different 

approach in measuring the “closeness” between two ordered lists. It counts the number of 

pairwise inversions/disagreements between the two input lists. 

 

Definition (Kendall’s  Distance). Let ≺1, ≺2 be two complete orderings. Let ≺1
𝑎 be the 

position of element a in ordering ≺1 and ≺1
𝑏 be the position of element b in ordering ≺1. 

Then the pairwise inversion 𝜓𝑎,𝑏(≺1, ≺2) is defined as: 

𝜓𝑎,𝑏(≺1, ≺2) = {
1, 𝑖𝑓 ≺1

𝑎 > ≺1
𝑏  𝑎𝑛𝑑 ≺2

𝑏 > ≺2
𝑎

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                     (14) 

The Kendall’s  distance is subsequently defined as the summation of all pairwise 

inversions: 

𝜏(≺1, ≺2) =  ∑𝜓𝑎,𝑏(≺1, ≺2)

𝑎,𝑏

                                                        (15) 

 

The Kemeny measure [48], shows how fit the new ordered list, 𝜌∗, is with respect 

to the set of m ordered lists. A Kemeny meaure of 0 indicates a good fit, 1 indicates a revert 

fit and 0.5 is the random level fit [48]. 

Definition (Kemeny measure). Let 𝜌∗ be a new ordered list with respect to a set of 

ordered lists, 𝜂 = {≺1, ≺2, … , ≺𝑚}, then the Kemeny measure K, is given as: 

 

𝐾(𝜌∗, 𝜂) =
1

𝑚
∑𝜏(𝜌∗, 𝜂𝑗)

𝑚

𝑗=1

                                                          (16) 
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For example, given two complete ranked lists ≺1= {𝑠1, 𝑠3, 𝑠5, 𝑠4, 𝑠2} and ≺2=

{𝑠3, 𝑠1, 𝑠2, 𝑠4, 𝑠5}. The Spearman’s Footrule distance can be computed as follows: 

𝐹(≺1, ≺2) =  |≺1
𝑠1−≺2

𝑠1| + |≺1
𝑠2−≺2

𝑠2| + |≺1
𝑠3−≺2

𝑠3| + |≺1
𝑠4−≺2

𝑠4| + |≺1
𝑠5−≺2

𝑠5|  

                                    =  |1 − 2| + |5 − 3| + |2 − 1| + |4 − 4| + |3 − 5| 

                                    =  6 

Whereas, the Kendall’s  distance can be computed as:  

𝜏(≺1, ≺2) =  𝜓𝑠1,𝑠2 + 𝜓𝑠1,𝑠3 + 𝜓𝑠1,𝑠4+ 𝜓𝑠1,𝑠5 + 𝜓𝑠2,𝑠3 + 𝜓𝑠2,𝑠4 + 𝜓𝑠2,𝑠5 +𝜓𝑠3,𝑠4 +

𝜓𝑠3,𝑠5 + 𝜓𝑠4,𝑠5. 

                      =  0 + 1 + 0 + 0 + 0 + 1 + 1 + 0 + 0 + 1 = 4  

Although given the two ordered lists, both metrics can be computed in polynomial 

time, to compute the rank aggregation based on the two metrics impose different degrees 

of challenges: while to solve the rank aggregation problem defined in equation (12) using 

the Spearman’s Footrule distance is solvable in polynomial time, the same problem 

becomes NP-hard to solve when Kendall’s  distance is used [35]. For this reason, 

Spearman’s Footrule distance was adopted to compute rank aggregation in the proposed 

algorithm. For cross-validation, Kemeny measure was used to show how fit the solution 

is with respect to the input lists. 

3.4.2. Rank Aggregation for Complete Lists (RACoL) Algorithm. First, a 

demonstration of how the Spearman’s Footrule distance can be used as the distance 

measure to compute rank aggregation when the input rank lists are all complete lists, i.e., 

each input list is a full permutation of a set of n items is given. Second, how to deal with 

incomplete input lists will be discussed later in section 3.4.3. 

When using the Spearman’s Footrule distance, the rank aggregation problem 

defined in equation (12) becomes: to compute a permutation of n items 𝜌∗ such that the 

Footrule distance from 𝜌∗ to all input lists is minimized, 

 

𝜌∗ = arg min
𝜌

(∑𝐹(𝜌,≺𝑖)

𝑚

𝑖=1

)                                                         (17) 
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To solve problem (17), the Rank Aggregation for Complete Lists (RACoL) 

algorithm (see algorithm 1) is proposed. The idea behind the algorithm is to consider a 

ranked list as a matching between n elements, e1, e2, …, en, and n positions, 1,2,…,n. The 

algorithm takes as input the m complete ranked lists, C. The output is the aggregated 

ranked list, called SuperList. The three (3) main steps in the algorithm are discussed. 

 

ALGORITHM 1. RANK AGGREGATION FOR COMPLETE LISTS (RACOL) 

Input: m complete list (C).  

Output: The aggregated ranked list (SL)  

form a complete bipartite graph, 𝐺 = (𝑉, 𝐸), where 𝑉 = 𝐿 ∪ 𝑅; 

compute the edge cost c(i, j) as weight ∀(𝑖, 𝑗) ∈ 𝐸;  

SL ← Min_Cost_Perfect_Matching (G, n); 
 

 

Step 1. Construct a complete, bipartite graph 𝐺 = (𝑉, 𝐸). The left vertex set L represent 

the n elements, and the right vertex set R represent the n positions, as shown in Figure 

3.2. Since it is a complete graph, the edge set E includes edges going from each vertex in 

L to each vertex in R, i.e., 𝐸 = {(𝑢, 𝑣), ∀ 𝑢 ∈ 𝐿, ∀ 𝑣 ∈ 𝑅}. 

 

 

Figure 3.2.  A complete bipartite graph with edge cost. 

 

 

Step 2. Add cost for each edge in the complete bipartite graph. The cost of edge (i, j) is 

defined as the total penalty for placing an item i in position j, given by 

e1 
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𝑐𝑜𝑠𝑡(𝑖, 𝑗) =∑𝑑(𝑗, ≺𝑙
𝑖)

𝑚

𝑙=1

                                                               (18) 

where ≺𝑙
𝑖 is the position of item i in ordering l , and 𝑑(𝑗, ≺𝑙

𝑖) is the distance between j and 

≺𝑙
𝑖, 𝑑(𝑗, ≺𝑙

𝑖) = |𝑗 −≺𝑙
𝑖 |. So d(j, ≺𝑙

𝑖), intuitively, is the cost incurred in list l for 

positioning item i at position j; summation from all input lists is the total cost for having 

item i at position j. 

 

Step 3. Finally, a minimum-cost perfect-matching [49] problem on G is solved. A perfect 

matching M in a bipartite graph G, is a subset of edges such that each node in G is met by 

exactly one edge in the subset. On a weighted, complete bipartite graph, the minimum-

cost perfect-matching problem is to find an optimal matching, i.e., a perfect matching M 

which minimizes the total cost ∑ w(e)e∈M . 

To compute the minimum-cost perfect-matching, first create antiparallel edges of 

the original edge set E, which is to add an edge (j,i) for each edge (i,j) ∈ E, i ∈ L and j ∈ 

R, and then extend the cost function to antiparallel edges:  

∀ (𝑖, 𝑗) ∈ 𝐸, 𝑖 ∈ 𝐿, 𝑗 ∈ 𝑅, define  

{
𝑤(𝑖, 𝑗) = 𝑐𝑜𝑠𝑡(𝑖, 𝑗), and 

𝑤(𝑗, 𝑖) = −𝑐𝑜𝑠𝑡(𝑖, 𝑗)      
                                                       (19) 

The minimum-cost perfect-matching algorithm to solve the minimum-cost 

perfect-matching problem [49] is presented in algorithm 2. 

In solving the minimum-cost perfect-matching problem, construct a flow network, 

G’ as follows (See Figure 3.3):  

(1) Add source s and sink t.  

(2) Add edges from s to each vertex in L, and from each vertex in R to t.  

(3) The new edges all have weight 0. This will ensure that the additional edges do not 

contribute to the total weight on any path from s to t. 

(4) Assign capacity 1 to all edges.  
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ALGORITHM 2. MINIMUM-COST PERFECT-MATCHING 

Input: Complete undirected bipartite graph (G).  

Output: Matching (M).  

initialize 𝑀 = ∅;  

build a flow network 𝐺′ = (𝑉′, 𝐸′); 

initialize flow 𝑓(𝑢, 𝑣) = 0 ∀(𝑢, 𝑣) ∈ 𝐸′; 

initialize residual network, 𝐺′𝑓  ← 𝐺′; 

repeat  

        P ← compute shortest path from s to t on 𝐺′;  

        𝑓 ← 𝑓 + 𝑓𝑝;  

        Compute the residual network 𝐺′𝑓;  

until |𝒇| = 𝒏; 

𝑴 = {(𝒖, 𝒗): 𝒖 ∈ 𝑳, 𝒗 ∈ 𝑹, 𝒇(𝒖, 𝒗) > 𝟎}; 
return M;   

 

 

 

Figure 3.3.  A flow network with antiparallel edges  

 

To compute the minimum-cost perfect-matching is equivalent to computing the 

minimum weight flow with |f|=n, which is an iterative process as follows: 

(1) compute the shortest path from s to t with respect to the weight function w(i,j) 

as defined in (19), then push 1 unit of flow from s to t along this path. The 

path is called an augmenting path in flow network G’. 

(2) compute the residual network after flow augmentation.  

(3) repeat step 1 and step 2 until the value of the flow |f|=n. Upon completing, the 
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edges with f(u,v)=1 are included in M, ∀ 𝑢 ∈ 𝐿, ∀ 𝑣 ∈ 𝑅. Figure 3.4 shows an 

example of the process. 

The edges in M indicate the solution of the minimum-cost perfect-matching 

problem. To retrieve the solution for rank aggregation, if edge (i,j) ∈ M, then item i 

should be positioned at position j, and so on. Since M is a perfect matching, it produces a 

full permutation 𝜌∗ with minimum distance to the input orderings. The optimality of the 

ordering is guaranteed from the optimality of the minimum-cost perfect-matching 

solution. 

 

 

Figure 3.4.  Using algorithm 2 to find the minimum-cost perfect matching  

 

 

3.4.3. Rank Aggregation for Incomplete Lists (RAIL) Algorithm. The 

Spearman’s Footrule distance assumes that the orderings are actually complete. This 

assumption cannot be made in this work since top-k lists are compared. The top-k lists 

are incomplete, i.e. all lists do not contain all of the elements. Therefore, there is the need 

to extend all lists such that all the elements appear in all the lists. The extended lists are 

termed complete lists.  

Fagin et al. [39] suggest several techniques for creating complete list by 

appending the missing elements at the end of each list since they were clearly not 

considered to be in the top-k by that list.  
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Definition (Missing Elements). Let 𝑃 = {𝜎1, 𝜎2, . . . , 𝜎𝑚} be a set of incomplete 

rankings and 𝛽 = ⋃ 𝜎𝑖
𝑚
𝑖=1 , be the union set of P. The set of missing elements 𝜎𝑖

′, for an 

incomplete ranking, 𝜎𝑖, is given as: 

𝜎𝑖
′ = 𝛽\𝜎𝑖                                                                       (20) 

Figure 3.5(a) shows and example of four incomplete lists and their missing 

elements. When appending the missing elements to the end of each list, the order in 

which the extra elements should be appended to the list is the challenge. Three solutions 

have been proposed:  

1) Append the missing elements at location l=k+1, if element is not within the 

top-k [38].  

2) Append the missing elements at location l=(3k-z+1)/2, which corresponds 

intuitively to placing the missing elements at an average location of the 

appended part. z is number of items in the intersection of two sets. 3k-z+1 is 

the average of k+1 (beginning position) and 2k-z (ending position). 2k-z is also 

the size of the union of the two sets. In both cases, l>k, is a location parameter 

[38].   

3) Append the elements in a random order, and define the distance as the average 

[38].  

While the aforementioned solutions give a complete list, they do not necessarily 

agree with the rankings given by other lists, and therefore they do not produce a 

consistent ranking after aggregation. Considering σ3 in Figure 3.5(a) with missing 

elements {𝑆1, 𝑆3, 𝑆7}. These missing elements will have the same rank, i.e. 5, when 

solution 1 is employed. However, 𝑆1 has a rank of 1 in the other three lists and should 

therefore have a higher rank than 𝑆3. 

Due to this issue, a new recursive algorithm, Rank Aggregation for Incomplete 

Lists (RAIL), is proposed. It takes into account the relative position of missing elements 

in other top-k lists. In this algorithm, if two elements are missing in one ordering, but are 

ranked in other orderings, then the available rank from other lists will be used to 

determine their relative order in the ordering where they are missing. For this purpose, 
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σi,j
′  is used to denote the ranking of the missing elements in σi

′ whose order is consistent 

with input list σj
 . 

 

Figure 3.5.  (a) Incomplete rankings and their missing elements.   (b) Computing the 

ranks of missing elements of 𝜎1 from other lists  

 

Figure 3.5(b), demonstrates how the RAIL algorithm is used to rank the missing 

elements in 𝜎′1. The missing elements in 𝜎′1 are identified to be {𝑆6, 𝑆5, 𝑆7}, their relative 

positions in other orderings are put in lists 𝜎1,2
′ , 𝜎1,3

′ , and 𝜎1,4
′ . In the figure, 𝑆5, 𝑆7, are 

already ranked in 𝜎4, so 𝑆6 is appended after 𝑆5 and 𝑆7. Similarly, 𝑆5, 𝑆6 are already 

ranked in 𝜎3, so 𝑆7 is subsequently appended. Now, the aggregate ranking of 𝜎′1,3 and 

𝜎′1,4 are used to rank the list 𝜎1,2
′ . Finally, the aggregate ranking of 𝜎1,2

′ , 𝜎1,3
′  and 𝜎1,4

′  are 

used to rank the missing elements in 𝜎1
′.   

Once complete lists are obtained, the RACoL algorithm is used to compute its 

aggregate rank. Algorithm 3, is developed for this purpose. 

 

3.5. EVALUATION 

In this section, the two algorithms, RACoL and RAIL proposed in this work are 

evaluated. This is done by applying each algorithm to ranked lists of real-world airline 

services, the Openflights Dataset [34]. The ranked lists of real-world airline services, 

obtained from the service ranking engine, are based on multiple similar user requests. 

These ranked lists of airline services are aggregated using both RACoL and RAIL, and 

then discuss the results from each algorithm. 

The Openflights Dataset [34] contains 61,199 routes between 3341 airports on 

565 airlines spanning the globe. Each record in the dataset corresponds to an existing 
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airline service as of February 2013. Each record contains the source and destination 

airports, airline, flight duration, flight distance and the number of stops. 

 

ALGORITHM 3. RANK AGGREGATION FOR INCOMPLETE LISTS (RAIL) 

Input: Incomplete ranked lists, 𝑃 =  {𝜎1, 𝜎2… 𝜎𝑚 }, 𝐾 =  {𝑠𝑖𝑧𝑒(𝜎1),

𝑠𝑖𝑧𝑒(𝜎2)…  𝑠𝑖𝑧𝑒(𝜎𝑚)} 

Output: The super list, SL.  

initialize complete list, C ← P;  

get the union list, 𝛽 = {𝜎1 ∪ 𝜎2 ∪ … ∪ 𝜎𝑚} and assign 𝑛 ← |𝛽|; 

for i from 1 to m do 

        if n-Ki == 0 then continue;  

        initialize missing elements list, 𝑀 = ∅;  

        compute the complement of 𝜎𝑖 :  𝜎𝑖
′ = 𝛽\𝜎𝑖; 

        if n-Ki == 1 then  

                append 𝜎𝑖,0
′  at the end of Ci;  

                return; 

        else if n-Ki > 1 then 

                for j from 1 to m do  

                         if j ≠ i  then  

                                 get the intersection set 𝐼𝑗 = 𝜎𝑖
′ ∩ 𝜎𝑗   while keeping the order in 𝜎𝑗; 

                                 𝑆𝑗 ← |𝐼𝑗|; 

                         end 

                end  

        end  

        𝑅 = ⋃ 𝐼𝑗
𝑚
𝑗=1
𝑗≠𝑖

, and S= ⋃ 𝑠𝑗
𝑚
𝑗=1
𝑗≠𝑖

 

        T ← RAIL(R, S) 

        append T at the end of C;  

end  

SL ← RACoL(C); 

output SL;   

 

3.5.1. RACoL Evaluation. RACoL algorithm is used to aggregate the four  

(4) ranked lists of services shown in Tables 3.6 to 3.9. These ranked lists were obtained 

from the service ranking engine based on four (4) similar requests that were submitted. 

The similar requests, each with different preferences on the non-functional attributes, 

were based on the following: 



 

 

57 

Functionality: Airline service from Atlanta Intl (ATL) to Detroit (DTW).  

Trade-off Strategy: (Price OR Stops) AND (Duration OR Reputation) [1].  

 

Table 3.6.  Ranked Services Based on 

Request 1  
 

 
Table 3.7.  Ranked Services Based on 

Request 2 
 

Service Route Airline(s)  Service Route Airline(s) 

S8 ATL→DTW FL  S10 ATL→DAY→DTW FL→DL 

S10 ATL→DAY→DTW FL→DL  S2 ATL→DTW DL 

S7 ATL→FNT→DTW FL→DL  S8 ATL→DTW FL 

S2 ATL→DTW DL  S9 ATL→AVL→DTW DL→DL 

S9 ATL→AVL→DTW DL→DL  S7 ATL→FNT→DTW FL→DL 

S6 ATL→CAK→DTW DL→DL  S6 ATL→CAK→DTW DL→DL 

S3 ATL→CLE→DTW DL→DL  S1 ATL→BNA→DTW DL→DL 

S1 ATL→BNA→DTW DL→DL  S3 ATL→CLE→DTW DL→DL 

S4 ATL→BNA→DTW DL→WN  S5 ATL→CLT→DTW DL→US 

S5 ATL→CLT→DTW DL→US  S4 ATL→BNA→DTW DL→WN 

  

 

Table 3.8.  Ranked Services Based on 

Request 3.  
 

 
Table 3.9.  Ranked Services Based on 

Request 4  
 

Service Route Airline(s)  Service Route Airline(s) 

S8 ATL→DTW FL  S9 ATL→AVL→DTW DL→DL 

S10 ATL→DAY→DTW FL→DL  S10 ATL→DAY→DTW FL→DL 

S2 ATL→DTW DL  S6 ATL→CAK→DTW DL→DL 

S9 ATL→AVL→DTW DL→DL  S8 ATL→DTW FL 

S7 ATL→FNT→DTW FL→DL  S7 ATL→FNT→DTW FL→DL 

S6 ATL→CAK→DTW DL→DL  S3 ATL→CLE→DTW DL→DL 

S3 ATL→CLE→DTW DL→DL  S2 ATL→DTW DL 

S1 ATL→BNA→DTW DL→DL  S4 ATL→BNA→DTW DL→WN 

S4 ATL→BNA→DTW DL→WN  S5 ATL→CLT→DTW DL→US 

S5 ATL→CLT→DTW DL→US  S1 ATL→BNA→DTW DL→DL 
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This evaluation shows the results of each step for the RACoL algorithm as 

described in section 3.4.2. 

 

Step 1: Generate a complete bipartite graph with the services in one vertex set and 

positions in the other vertex set as shown in Figure 3.6. 

 

 

 
Figure 3.6.  A complete bipartite graph  

 

 

Step 2: Compute edge cost for each edge in Figure 3.6. Table 3.10 shows the edge 

costs for each edge in Figure 3.6. 

 

 

Table 3.10.  Edge Costs for all Edges in Figure 3.6  

Edge Cost Edge Cost Edge Cost Edge Cost Edge Cost 

S1→1 29 S3→1 24 S5→1 34 S7→1 14 S9→1 10 

S1→2 25 S3→2 20 S5→2 30 S7→2 10 S9→2 8 

S1→3 21 S3→3 16 S5→3 26 S7→3 6 S9→3 6 

S1→4 17 S3→4 12 S5→4 22 S7→4 4 S9→4 4 

S1→5 13 S3→5 8 S5→5 18 S7→5 2 S9→5 6 

S1→6 9 S3→6 4 S5→6 14 S7→6 6 S9→6 10 

S1→7 5 S3→7 2 S5→7 10 S7→7 10 S9→7 14 

S1→8 3 S3→8 4 S5→8 6 S7→8 14 S9→8 18 

S1→9 5 S3→9 8 S5→9 2 S7→9 18 S9→9 22 
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Table 3.10.  Edge Costs for all Edges in Figure 3.6 (cont.)  

Edge Cost Edge Cost Edge Cost Edge Cost Edge Cost 

S1→10 7 S3→10 12 S5→10 2 S7→10 22 S9→10 26 

S2→1 12 S4→1 32 S6→5 17 S8→1 5 S10→1 3 

S2→2 8 S4→2 28 S6→6 13 S8→2 5 S10→2 1 

S2→3 6 S4→3 24 S6→7 9 S8→3 5 S10→3 5 

S2→4 6 S4→4 20 S6→8 7 S8→4 7 S10→4 9 

S2→5 8 S4→5 16 S6→1 5 S8→5 11 S10→5 13 

S2→6 10 S4→6 12 S6→2 3 S8→6 15 S10→6 17 

S2→7 12 S4→7 8 S6→3 7 S8→7 19 S10→7 21 

S2→8 16 S4→8 4 S6→4 11 S8→8 23 S10→8 25 

S2→9 20 S4→9 2 S6→5 15 S8→9 27 S10→9 29 

S2→10 24 S4→10 4 S6→6 19 S8→10 31 S10→10 33 

 

 

Step 3: Compute the minimum cost perfect matching algorithm on the bipartite 

graph. The solution of the minimum-cost perfect-matching is shown in Figure 3.7. This 

solution is then decoded and the ranked aggregated result is shown in Table 3.11. 

 

 
Figure 3.7.  Solution of the minimum perfect matching algorithm  
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Table 3.11.  Aggregated Results  

Service Route Airline(s) 

S8 ATL → DTW FL 

S10 ATL → DAY → DTW FL → DL 

S2 ATL → DTW DL 

S9 ATL → AVL → DTW DL → DL 

S7 ATL → FNT → DTW FL → DL 

S6 ATL → CAK → DTW DL → DL 

S3 ATL → CLE → DTW DL → DL 

S1 ATL → BNA → DTW DL → DL 

S4 ATL → BNA → DTW DL → WN 

S5 ATL → CLT → DTW DL → US 

 

 

3.5.2. RAIL Evaluation. Similar to RACoL evaluation, RAIL algorithm was also 

evaluated using the four (4) ranked lists of services in Tables 3.12 to 3.15 obtained from 

the service ranking engine. The ranked lists were each from similar requests, with 

different preferences on the non-functional attributes. It can be observed that the results 

obtained are incomplete ranked services. These similar requests were based on the 

following: 

Functionality: Airline service from Denver Intl (DEN) to Madison-Dane(MSN).  

Trade-off Strategy: (Price AND Stops) OR (Duration AND Reputation) [1].  

 

 

Table 3.12.  Top-5 out of 3498 Services Based on 

Request 1 
 

 Table 3.13.  Top-5 out of 3498 

Services Based on Request 2  
 

Service Route Airline(s)  Service Route Airline(s) 

S1 DEN→MSN UA  S1 DEN→MSN UA 

S5 DEN→MSN F9  S5 DEN→MSN F9 

S6 DEN→ATL→MSN DL→DL  S11 DEN→EWR→MSN UA→UA 

S7 DEN→DFW→ATL→MSN F9→DL→DL  S6 DEN→ATL→MSN DL→DL 

S10 DEN→DCA→ATL→MSN US→DL→DL  S12 DEN→DTW→MSN UA→DL 
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Table 3.14.  Top-5 out of 3498 Services 

Based on Request 3  
 

 
Table 3.15.  Top-5 out of 3498 Services 

Based on Request 4  
 

Service Route Airline(s)  Service Route Airline(s) 

S1 DEN→MSN UA  S1 DEN→MSN UA 

S5 DEN→MSN F9  S5 DEN→MSN F9 

S13 
DEN→DFW→ 

EWR →MSN 

F9→AA→ 

UA 
 S11 

DEN→EWR→ 

MSN 
UA→UA 

S6 DEN→ATL→MSN DL→DL  S13 
DEN→DFW→EWR 

→MSN 
F9→AA→UA 

S12 
DEN→DTW→ 

MSN 
UA→DL  S6 DEN→ATL→MSN DL→DL 

 

This evaluation shows the results of each step for the RAIL algorithm as 

described in section 3.4.3. 

 

Step 1: Generate the complete bipartite graph with the services in one vertex set 

and positions in the other vertex set as shown in Figure 3.8. The services’ vertex set 

consists of the unique services found in Tables 3.12 to 3.15. 

 

 

 

Figure 3.8.  A complete bipartite graph  

 

 

Step 2: Compute edge cost for each edge in Figure 3.8 using the four (4) different 

methods (including RAIL algorithm) discussed earlier in section 3.4.3. Each of these 
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methods used the same initial complete bipartite graph shown in Figure 3.8. However, 

they produce different edge costs for the complete bipartite graph. The edge costs for the 

respective methods are tabulated in Tables 3.16 to 3.19. 

 

 

Table 3.16.  Edge Costs Using the 

l=k+1 Method  
 

 Table 3.17.  Edge Costs Using the 

l=(3k-2z+1)/2 Method  
 

Edge Cost Edge Cost Edge Cost  Edge Cost Edge Cost Edge Cost 

S1→1 0 S6→7 12 S11→5 6  S1→1 0 S6→7 12 S11→5 5 

S1→2 4 S6→8 16 S11→6 6  S1→2 4 S6→8 16 S11→6 7 

S1→3 8 S7→1 18 S11→7 10  S1→3 8 S7→1 15 S11→7 11 

S1→4 12 S7→2 14 S11→8 14  S1→4 12 S7→2 11 S11→8 15 

S1→5 16 S7→3 10 S12→1 18  S1→5 16 S7→3 7 S12→1 17 

S1→6 20 S7→4 6 S12→2 14  S1→6 20 S7→4 3 S12→2 13 

S1→7 24 S7→5 4 S12→3 10  S1→7 24 S7→5 1 S12→3 9 

S1→8 28 S7→6 2 S12→4 6  S1→8 28 S7→6 5 S12→4 5 

S5→1 4 S7→7 6 S12→5 2  S5→1 4 S7→7 9 S12→5 1 

S5→2 0 S7→8 10 S12→6 2  S5→2 0 S7→8 13 S12→6 3 

S5→3 4 S10→1 19 S12→7 6  S5→3 4 S10→1 16 S12→7 7 

S5→4 8 S10→2 15 S12→8 10  S5→4 8 S10→2 12 S12→8 11 

S5→5 12 S10→3 11 S13→1 15  S5→5 12 S10→3 8 S13→1 14 

S5→6 16 S10→4 7 S13→2 11  S5→6 16 S10→4 4 S13→2 10 

S5→7 20 S10→5 3 S13→3 7  S5→7 20 S10→5 0 S13→3 6 

S5→8 24 S10→6 1 S13→4 5  S5→8 24 S10→6 4 S13→4 4 

S6→1 12 S10→7 5 S13→5 5  S6→1 12 S10→7 8 S13→5 4 

S6→2 8 S10→8 9 S13→6 5  S6→2 8 S10→8 12 S13→6 6 

S6→3 4 S11→1 14 S13→7 9  S6→3 4 S11→1 13 S13→7 10 

S6→4 2 S11→2 10 S13→8 13  S6→4 2 S11→2 9 S13→8 14 

S6→5 4 S11→3 6    S6→5 4 S11→3 5   

S6→6 8 S11→4 6    S6→6 8 S11→4 5   
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Table 3.18.  Edge Costs Using the 

Random Position Method 
 

 Table 3.19.  Edge Costs Using RAIL 

Algorithm 
 

Edge Cost Edge Cost Edge Cost  Edge Cost Edge Cost Edge Cost 

S1→1 0 S6→7 12 S11→5 8  S1→1 0 S6→7 12 S11→5 6 

S1→2 4 S6→8 16 S11→6 8  S1→2 4 S6→8 16 S11→6 6 

S1→3 8 S7→1 18 S11→7 10  S1→3 8 S7→1 21 S11→7 10 

S1→4 12 S7→2 14 S11→8 12  S1→4 12 S7→2 17 S11→8 14 

S1→5 16 S7→3 10 S12→1 21  S1→5 16 S7→3 13 S12→1 16 

S1→6 20 S7→4 6 S12→2 17  S1→6 20 S7→4 9 S12→2 12 

S1→7 24 S7→5 4 S12→3 13  S1→7 24 S7→5 7 S12→3 8 

S1→8 28 S7→6 2 S12→4 9  S1→8 28 S7→6 5 S12→4 6 

S5→1 4 S7→7 6 S12→5 5  S5→1 4 S7→7 3 S12→5 6 

S5→2 0 S7→8 10 S12→6 5  S5→2 0 S7→8 7 S12→6 6 

S5→3 4 S10→1 22 S12→7 5  S5→3 4 S10→1 25 S12→7 8 

S5→4 8 S10→2 18 S12→8 7  S5→4 8 S10→2 21 S12→8 12 

S5→5 12 S10→3 14 S13→1 17  S5→5 12 S10→3 17 S13→1 20 

S5→6 16 S10→4 10 S13→2 13  S5→6 16 S10→4 13 S13→2 16 

S5→7 20 S10→5 6 S13→3 9  S5→7 20 S10→5 9 S13→3 12 

S5→8 24 S10→6 4 S13→4 7  S5→8 24 S10→6 7 S13→4 8 

S6→1 12 S10→7 2 S13→5 7  S6→1 12 S10→7 5 S13→5 4 

S6→2 8 S10→8 6 S13→6 7  S6→2 8 S10→8 3 S13→6 4 

S6→3 4 S11→1 16 S13→7 9  S6→3 4 S11→1 14 S13→7 6 

S6→4 2 S11→2 12 S13→8 11  S6→4 2 S11→2 10 S13→8 8 

S6→5 4 S11→3 8    S6→5 4 S11→3 6   

S6→6 8 S11→4 8    S6→6 8 S11→4 6   

 

Step 3: Finally the minimum-cost perfect-matching problem is solved using the 

edge costs computed. Solutions to the minimum-cost perfect-matching problems are 

shown in Figures 3.9 to 3.12. The figures show the complete bipartite graphs together 

with the edges that constitute the solution of the perfect matching. It is obvious from the 

table that the different methods produced different superlist. (see Table 3.20). 
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Figure 3.9.  Solution to the minimum-cost perfect matching problem using l=k+1 method 

to calculate the edge costs  

 

 

 

Figure 3.10.  Solution to the minimum-cost perfect matching problem using l=(3k-

2z+1)/2 method to calculate the edge costs  

 

 

 

Figure 3.11.  Solution to the minimum-cost-perfect matching problem using the random 

position method to calculate the edge costs  
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Figure 3.12.  Solution to the minimum-cost-perfect matching problem using RAIL 

algorithm to calculate the edge costs  

 

 

Table 3.20.  Super Lists 

Rank 
l=k+1 

Method 

l=(3k-2z+1)/2 

Method 

Random 

Method 

RAIL 

Algorithm 

1 S1 S1 S1 S1 

2 S5 S5 S5 S5 

3 S11 S11 S11 S11 

4 S6 S6 S6 S6 

5 S12 S10 S13 S12 

6 S10 S12 S7 S13 

7 S7 S7 S10 S7 

8 S13 S13 S12 S10 

 

 

3.6. VALIDATION 

In this section, experiments are performed to validate the results from RACoL and 

RAIL. For each proposed algorithm, and evaluation is performed using five (5) different 

sets of ranked lists (RL). Then a comparison of the results from each algorithm is made 

with existing methods. The results show that the proposed algorithms in this work 

perform better than those existing methods. 

3.6.1. Validating Results from RACoL Algorithm. To validate results from the 

RACoL algorithm, its aggregated ranked list is compared with the aggregated ranked lists  

from two other methods, Borda Count and Reciprocal Rank, based on the Kemeny 
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measure [48]. Figure 3.13 shows a graph of the comparison. The Kemeny measure shows 

how fit the aggregated ranked list is with respect to the set of its input ranked lists. A 

Kemeny meaure of 0 indicates a good fit, 1 indicates a revert fit and 0.5 is the random 

level fit [48]. From the graph, it can be seen that RACoL algorithm gives the best 

(smallest) Kemeny measure compared to the other methods. 

 

 

Figure 3.13.  A graph showing a comparison of RACoL with Borda Count and 

Reciprocal Rank based on the Kemeny Measure of each solution to their original 5 input 

ranked lists  

 

 

3.6.2. Validating Results from RAIL Algorithm. Results from the RAIL 

algorithm were validated in two ways. First, results from the RAIL algorithm were 

compared to the three (3) other methods based on the total minimum cost that produced the 

aggregated ranked list. Figure 3.14 shows a graph of this comparison. The minimum cost 

values in the graph have been normalized to the maximum possible cost a matching can  

have with respect to the number of lists and its elements. It is clear that when RAIL 

algorithm is used to compute the rank of missing elements, the total minimum cost is the 

lowest. One the other hand, when the l = (3k-2z+1)/2 method is used, the total minimum 
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cost is the highest. Generally, input ranked list 4 has the lowest minimum costs compared 

to the other input ranked lists. This implies that most of services in input ranked list 4 

have similar ranks. 

RAIL was also validated by comparing its aggregated ranked list with the 

aggregated ranked lists from the other method based on the Kemeny measure [48]. Figure 

3.15 shows a graph of the comparison. Here also, RAIL algorithm gives the best (smallest) 

Kemeny measure compared to the other methods considered in this work. 

 

 

 
Figure 3.14.  A graph showing the total minimum cost, normalized to maximum possible 

total cost, for each of the solution on the 5 ranked lists. A lower score indicates better 

selection. The total minimum cost is the total penalty for placing an item in a position as 

defined in (19) 

 

 

3.7. CONCLUSIONS 

In everyday life, service users are usually faced with the task of choosing a 

service from several sets of service search results (ranked services). This is typical in 

situations where several search results do not completely meet the user’s preferences. It is 

impractical for users to choose an optimal service, based on their preference, from the 

multiple ranked lists just by inspection. This is because, each ranked list may contain huge 
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number of services that makes it time consuming for users to compare them against 

services in other ranked lists. In order for users to choose a an optimal service from a set  

 
Figure 3.15.  A graph showing the Kemeny Measure of each solution to their original 

input lists on the 5 input ranked lists  

 

 

of ranked lists, a method that aggregates multiple ranked lists of services into a single 

aggregated ranked list is presented in this work. Top ranked services are subsequently 

selected for the user to choose from. The top ranked services represent the optimal 

services among the available ranked lists. two algorithms; 1) Rank Aggregation for 

Complete Lists (RACoL), that aggregates complete ranked lists and 2) Rank Aggregation 

for Incomplete Lists (RAIL) to aggregate incomplete ranked lists were also presented in 

detail. Both algorithms were evaluated by presenting examples using real-world flight 

services, open flights dataset. Finally, results from each algorithm were validated against 

other methods and have concluded that rank aggregation results from both algorithms 

closely represent the sets of ranked lists than using existing alternative approaches. 
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4. A METHOD FOR PERSONALIZED PREFERENCE-BASED SERVICE 

RECOMMENDATION VIA COLLABORATIVE FILTERING 

4.1. MOTIVATION AND SUMMARY OF CONTRIBUTIONS 

In this section, a motivating example to show the research problem this section 

aims to address is presented. In this example, five service items (shown in Table 4.1) and 

five service users (shown in Table 4.2) were considered. Table 4.1 shows the five 

services together with the non-functional attribute values that describe them and Table 

4.2 shows the five users and their respective overall personalized preferences. For the 

sake of simplicity, assume that all users have the same lowest and highest satisfaction 

values for each non-functional attribute, which indicates their individual personalized 

preference on those attributes. For instance, in this motivating example, the lowest and 

highest satisfaction for each user on the response time non-functional attribute is 10 and 3 

secs respectively. This signifies that if a service responds is on average 3 secs or lower, 

the non-functional attribute is understood to be met. If the response time is increased 

from 3 secs to anything below 10 secs, the service satisfaction reduces accordingly. 

However, if the response time is greater than the threshold of 10 secs, the satisfaction 

degree is 0 and the service is completely unacceptable [1, 2]. In addition, the service 

invocation history of all users showing their satisfaction for each service is shown in 

Table 4.3. 

 

Table 4.1.  The List of Services and Their Non-Functional Attribute Values with 

Accounting Functionality 
 

SERVICE 
RELIABILITY 

(MONTHS) 

AVAILABILITY 

(%) 

THROUGHPUT 

(MBPS) 

RESPONSE 

TIME 

(SECONDS) 

PRICE 

($) 

Service1 6 90 18.13 5 41 

Service2 10 97 28.25 7 21 

Service3 8 92 25.34 2 45 

Service4 6 98 8.29 1 27 

Service5 10 96 18.65 4 30 
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Table 4.2.  List of Service Requests from 5 Different Users 

USER PERSONALIZED PREFERENCE 

1 (NFRprice
EI ∧ NFRreliability

I) ∨ (NFRprice
EI ∧ NFRresponse time

VI) 

2 
(NFRprice

EI ∧ NFRreliability
I) ∨ ((NFRprice

EI  ∧ NFRthroughput
SI) ∨ 

(NFRprice
EI  ∧ NFRavailability

SI)) 

3 (NFRprice
VI ∧ NFRresponse time

VI) ∧ (NFRthroughput
I∧ NFRavailability

I) 

4 (NFRprice
I ∧ NFRreliability

I) ∨ (NFRprice
EI ∧ NFRresponse time

I) 

5 (NFRprice
EI ∧ NFRreliability

I) ⊗ ((NFRprice
EI  ∧ NFRthroughput

SI) 

 

Table 4.3.  User-Service Matrix Indicating Invoked Services and Their Satisfaction 

 Service1 Service2 Service3 Service4 Service5 

User1 35% 70% 19% ?  

User2  70% 19%  70% 

User3 0%     

User4   ? 87%  

User5  50%   36% 

 

Let’s assume user 1 to be the active user. Let’s also assume the task is to 

determine whether or not service 4 should be recommend to this active user. To do this, 

current recommendation systems employ weighted average with mean offset [3, 4, 11] or 

its extension to compute the missing values of an active user. It is typically done by 

computing the weighted average of the neighboring users’ non-functional attribute values 

using similarity as the weights. This makes the choice of similarity function a critical 

decision in recommendation systems. The Pearson correlation coefficient (PCC) [3, 4, 10, 

11] or its extension are the widely used similarity functions to compute the similarity 

between any two users in memory-based CF. The similarity function finds the similar 

neighbors of user 1 based. These will be users who have reported satisfaction value for 

service 4 and share some commonly invoked services with user 1. In this scenario, using 

PCC as similarity function, user 1 will have no neighbors since the only user that has 
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invoked service 4, i.e. user 4 share no commonly invoked services with user 1. Therefore, 

using classical collaborative filtering methods will not recommend service 4 to user 1.  

However, although user 4 share no common invoked service(s) with user 1, it can 

be argued that user 4 must be a neighbor of user 1. This is because, users 4 and 1 have the 

same preferences and must be considered as similar users. In fact, it can be inferred that 

due to the highly positive similarity in their preferences, service 4 should be 

recommended to user 1. Therefore, a similarity function that considers the preferences of 

users provides accurate similarity values. 

This scenario shows that having an inaccurate similarity values will adversely 

impact the prediction accuracy of missing non-functional attribute values and hence the 

recommended services. It is therefore necessary to incorporate user’s personalized 

preference on non-functional attribute when computing similarity between users or 

service items for personalized service recommendation. 

The main contributions of this work are summarized as follows: 

(1) To accurately compute the similarity between users or service items, users’ 

personalized preferences on non-functional attributes must be incorporated in the 

proposed similarity function. This is done as follows: 

(a) For users who do not share any past experience on service item(s), instead of 

assuming that such users are not similar, their personalized preferences on 

non-functional attributes are used to find the similarity between them. 

(b) For users who share some past experience on service item(s), their similarity is 

obtained by including the satisfaction of their personalized preferences on 

non-functional attributes by extending the Pearson Correlation Coefficient. 

(2) For the proposed prediction function, the weighted average with mean offset is 

extended to also include the satisfaction of users’ non-functional attribute based on 

their personalized preferences. This will predict the satisfaction of the active user’s 

non-functional attribute.  

(3) Finally, comprehensive experiments were conducted to evaluate the proposed method 

by employing real-world web service non-functional attribute data set [11]. The 

method is validated by comparing it to well-known service recommendation systems, 

WSRec [11] and PHCF [4]. 
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4.2. BACKGROUND AND RELATED WORK 

In this section, related work regarding collaborative filtering (CF) 

recommendation method is discussed in general, specifically, memory based CF. Related 

work focusing on personalized service recommendation methods is also presented. 

4.2.1. Service Recommendation Based on Collaborative Filtering. 

Collaborative filtering (CF) is a popular and solid recommendation algorithm that bases 

its predictions and recommendations on the ratings or behavior of other users in the 

system [3]. It assumes that, if users agree about the quality or relevance of some items, 

then they are likely to agree about other items as well. There are two main categories of 

CF – memory-based and model-based CF methods [10]. The most analyzed examples of 

memory-based CF methods include user-based approaches and item-based approaches 

[10]. The proposed method in this work employs the memory-based CF method. 

The user-based CF, also known as the k-NN CF, aims at finding other users 

whose past rating behavior is similar to that of the current user. It then uses their ratings 

on other items to predict what the current user will like. It achieves this by using some 

similarity function to compute the similarity between users. The user similarity value is in 

the interval of [-1, 1], with a larger value indicating that the two users are more similar 

[3]. Using the identified similar users, a rating value is usually predicted for all missing 

items in the target user’s profile. Item-based CF methods use a similar idea to user-based 

CF methods except that they compute similarity between items as opposed to users as is 

the case of user-based CF. A rating value is also predicted for all missing items in the 

target user’s profile using the similar items identified. 

There are limited research works that have employed memory-based CF methods 

to service recommendation. While some of these works used either user-based CF or 

item-based CF, others focus on hybrid memory based CF methods (a combination of the 

user-based and item-based CF). Shao et al. [51] proposed a user-based CF algorithm to 

predict QoS values. Zheng et al. [11] used a hybrid CF algorithm to recommend web 

services. Sreenath and Singh [52] and Rong et al. [53] applied the idea of CF in their 

systems, and used MovieLens data [54] for experimental analysis. The above mentioned 

research works neither considered users’ personalized preferences on QoS and therefore 

the prediction accuracy of these methods was unsatisfactory. 
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4.2.2. Personalized Service Recommendation. Personalized service 

recommendation has been studied in recommendation systems. Jiang et al. [4] proposed a 

hybrid personalized CF-based recommendation method that considers the contribution of 

an object (service item) to the similarity degree between users. Their method was based 

on the notion that, if two users invoked the same service item in the past, it does not 

guarantee that those users are similar. In their work, they determined the contribution of a 

service item by computing the standard deviation of the QoS metrics for the service item. 

Shao et al. [51] also proposed an approach for personalized QoS prediction for web 

services via CF that considers the different experiences of users on the quality of the 

same web service. Their approach predicts QoS for web services, taking the similarity 

among consumers’ experiences into consideration. Their assumption was that consumers, 

who have similar historical experiences on some services, would have similar 

experiences on other services. Chen et al. [10] proposed a personalized QoS-aware 

recommendation method that considers the QoS variance according to users’ locations to 

recommend services. The basic idea of their method was that users closely located with 

each other are more likely to have similar service experience than those who live far 

away from each other.  

Although the methods discussed above aim at personalizing service 

recommendation either through location or user experiences, none of these methods 

consider users personalized preferences on non-functional attributes to recommend 

services. Due to this, these existing recommendation methods suffer from low prediction 

accuracy. An effective CF algorithm for service recommendation that considers users’ 

personalized preferences on non-functional attributes is proposed. Comprehensive 

experiments conducted with real-world data show that the proposed method outperforms 

others. 

 

4.3. PERSONALIZED PREFERENCE COLLABORATIVE FILTERING 

METHOD 

Figure 4.1 shows the framework of the proposed personalized preference CF 

method for service recommendation. Prior to recommending services, it is necessary to 

know the history of an active user with respect to his/her non-functional attribute. This is 
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important because non-functional attribute information plays part in making accurate 

service recommendations. Due to this, our method collects historical non-functional 

attribute record of active users and stores this information in the non-functional attribute 

values history repository. Besides the non-functional attribute values history, it is also 

necessary to obtain the active user’s personalized preference in order to personalize the 

services recommended to him/her. The personalized preference component is used to 

collect this information. The active user can specify his/her personalized preferences 

using the specification described in section 1. 

Using both the non-functional attribute historical data and the personalized 

preference of the active user, the satisfaction of this user can be computed for each 

service in the service repository. Based on the satisfaction of the services, the similarity 

between users can then be computed and subsequently similar users (in case of user-

based personalized preference recommendation) or similar items (in case of the item-

based personalized preference recommendation) can be identified. Once the similar users 

and/or similar items are obtained, the respective missing values of the active user are 

predicted. Finally, the recommender weighs the two predicted values to recommend 

optimal services to the active user. 

 

 
Figure 4.1.  Framework of the personalized preference collaborative filtering method for 

service recommendation  
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4.3.1. Problem Formulation. Formally, a service recommendation system 

consists of m  service users, 1 2{ , ,..., }mU u u u , and n  service items, 1 2{ , ,..., }nS s s s . The 

relationship between service users and service items can be denoted by a user-item 

matrix, U S . Each entry in this matrix, 
,m nr  , represents a vector, of non-functional 

attribute values, which is obtained by the service user m on the service item n . If user m

did not invoke service item n , then 
, 0m nr  . 

 

4.4. PERSONALIZED PREFERENCE RECOMMENDATION ALGORITHM 

As indicated in Section 4.3, the proposed personalized preference 

recommendation algorithm is formulated by using the memory-based CF method. This 

sections discusses the different aspects of the algorithm. 

4.4.1. Similarity Computation. Finding the best choice of similarity function in 

CF-based service recommendation is a critical decision because the accuracy of the 

overall service recommendation depends on the accuracy of the similarity function [11]. 

Several different similarity functions have been proposed and evaluated in literature [3]. 

These include the Pearson correlation coefficient, constrained Pearson correlation 

coefficient, spearman rank coefficient, and cosine similarity. In general, Pearson 

correlation coefficient has been found to provide the best results [3], although results 

from other research works suggest that the constrained Pearson correlation coefficient 

may provide some improvement when items are rated on an absolute scale [3]. Due to 

this the Pearson correlation coefficient is adopted and extended for the proposed 

personalized preference similarity computation in this work. 

Pearson Correlation Coefficient (PCC) [3, 4, 11] has been employed in a number 

of recommender systems for similarity computation. It computes the statistical 

correlation between two non-functional attribute values to determine their similarity. In 

user-based CF, PCC is used to compute the similarity between two service users based on 

their co-invoked services. PCC lies in the interval [-1, 1]. For any two users, the more 

positive the PCC, the more similar the two users are. 

Formally, let a and u  be two service users. The degree of similarity between 

these two users, ( , )PCCSim a u , using PCC, is computed as: 
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, ,
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

 
   (21) 

where, a uI I I   is the set of co-invoked service items by both users a and u , ,a ir  and ,u ir  

be the respective non-functional attribute values that were observed by users a and u , 

when they both invoked service item i , and ar  and ur  represent the mean non-functional 

attribute value of users a and u respectively. 

Similarly, for item-based CF, PCC is used to compute the similarity between two 

service items based on the common users that invoked the services. For any two service 

items, the more positive the PCC, the more similar the two service items are. 

Formally, let i and j  be two service items. The degree of similarity between these 

two service items, ( , )PCCSim i j , using PCC, is computed as: 

 

, ,

22
, ,

( )( )

( , )

( ) ( )

u i i u j j

u U
PCC

u i i u j j

u U u U

r r r r

Sim i j

r r r r



 

 



 



 
   (22) 

where, i jU U U  is the set of users that invoked both service items i and j , ,u ir  and ,u jr  

be the respective non-functional attribute values that were observed by user u , when 

he/she invoked service items i and j , and ir  and jr  represent the mean non-functional 

attribute value of service items i and j respectively. 

Using PCC to compute similarity between service users or items has some 

limitations. Firstly, as shown in equations (5) and (6), PCC considers the non-functional 

attribute values itself in its similarity computation without any regard to the personalized 

preferences of users. For this reason, PCC often overestimates the similarities of service 

users and/or service items, especially, those with few co-invoked services or common 

users [11]. One way to address this problem as proposed by Zheng et al. [11], is to 

employ a similarity weight to reduce the influence of a small number of similar co-

invoked items. However, their method does not incorporate users’ personalized 
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preference thereby creating a gap between users’ non-functional attribute values and their 

satisfaction on the services. The non-functional attribute values supplied by users may 

not necessarily represent their satisfaction based on users’ personalized preference on that 

non-functional attribute. Therefore, in order to bridge the gap between users’ non-

functional attribute values and their satisfaction, their personalized preference should be 

considered in similarity computation. Intuitively, if a non-functional attribute value does 

not satisfy a user’s personalized preference it should not be included in the similarity 

computation that involves that user.  

Secondly, PCC strongly relies on the co-invoked services between users for its 

similarity computation. For this reason, it assumes that if two users or two service items 

have no co-invoked services (i.e. I   or U  ), then those two users or service items 

are not similar at all (i.e. ( , ) ( , ) 0PCC PCCSim a u Sim i j  ). While this might be true for some 

users, it is not always accurate, especially for users with no service invocation history. 

For instance, consider the list of users, their respective invoked services and personalized 

preferences as shown in Table 4.4. PCC will estimate the similarity between users 1 and 

3 to be 0 ( 1 3( , ) 0PCCSim user user  ), because there are no co-invoked services between users 

1 and 3. However, users 1 and 3 share some similarity based on their personalized 

preferences. In fact, it can be argued that, based on the personalized preferences of users 

1 and 3, they are as similar as users 2 and 3 even though users 1 and 3 have no co-

invoked services.  

 

Table 4.4.  List of Users, Their Invoked Services and Personalized Preferences 

Users 
Response Time Values of Services (secs) 

Personalized 

Preference 

Service1 Service2 Service3 Service4 Lowest Highest 

User1 - - - - 0.62 0.11 

User2 0.33 0.25 0.12 0.08 0.62 0.11 

User3 0.33 0.25 0.12 0.08 0.62 0.11 

 

Due to the above reasons, in order to accurately compute similarity between any 

two service users or service items, it is necessary to incorporate users personalized 
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preference on the non-functional attribute in question. For this purpose, a similarity 

function based on the satisfaction of a user’s personalized preference is defined. 

Definition 5.1 (Similarity Function Based on Personalized Preferences). Let a  

and u  be two service users and a uI I I  be the set of co-invoked service items by both 

users a  and u . The degree of similarity between these two users based on their 

personalized preference ( , )PPBasedSim a u is defined as: 

 

( , ) ( , ) (1 ) ( , )PPBased PPre PSatSim a u Sim a u Sim a u         (23) 

where ( , )PPreSim a u  is the degree of similarity between the personalized preferences of 

users a  and u  if there are no co-invoked services between them, ( , )PSatSim a u  is the degree 

of similarity of users a  and u based on the satisfaction of their personalized preferences, 

if they have co-invoked service items, and   is a tunable parameter which determines 

which method to use. 

Similarly, if i  and j  are two service items, and i jU U U   is the set of users with 

invoked service items i  and j , then the degree of similarity between these two service 

items based on the personalized preference of user u that invoked the service items 

( , )PPBasedSim i j is defined as: 

 

( , ) ( , ) (1 ) ( , )PPBased PPre PSatSim i j Sim i j Sim i j         (24) 

where ( , )PPreSim i j  is the similarity between the personalized preferences of user u  when 

he/she invoked service items i  and j , ( , )PSatSim i j  is the degree of similarity between 

service items if i  and j  are based on the satisfaction of the personalized preference of 

user u , and   is a tunable parameter which determines which method to use. 

5.1.1. Degree of Similarity between Personalized Preferences. Finding similarity 

between users personalized preference on non-functional attributes is very necessary in 

situations where the users do not share any past experience (see equation 7 and 8). As 

discussed in section 4.3, user’s personalized preference on non-functional attribute is 

captured using a method based on fuzzy logic. Therefore, finding the degree of similarity 
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between personalized preferences, is basically to find the similarity between membership 

functions (fuzzy sets). The most obvious way of computing similarity of fuzzy sets is 

based on their distance. This involves two steps: first, the distance between the two fuzzy 

sets is obtained by a distance measure and second, one of the relationships between 

similarity and distance comes into play to reach at the degree of similarity. 

Definition 5.2 (Similarity between User Preferences). Given two service users a  

and u , their personalized preferences i
aP  and i

uP  on some non-functional attribute i , and a 

distance measure D , the degree of similarity between the overall preference (taking into 

consideration all the non-functional attributes that describe the service) of users a  and u , 

( , )PPreSim a u , using distance based assessment proposed by Koczy [55] is given by: 

 

1

1 1
( , )

1 ( , )

m

PPre i i
i a u

Sim a u
m D P P

 
    

     (25) 

There are many choices for D . In this work, the normalized Hamming distance 

[55] is considered. It is one of the most commonly employed distance measures and is 

constructed for a finite universe [Beg and Ashraf 2009], given as: 

 

1

1
( , ) ( , ) ( , )

j j

n
i i

nH a u x x

j

D P P MF a i MF u i
n 

      (26) 

where ( , )
jxMF a i  and ( , )

jxMF u i  are the membership functions that defines the personalized 

preference of users a  and u  respectively on the non-functional attribute i  at point jx  and 

n  is the number of points in the universe X . 

As an example, let us consider the personalized preference of users a  and u  on 

response time (rt) non-functional attribute as follows: 



 

 

80 

0          ,     0.5

( , ) 1          ,     0.3

0.5
,  

0.2

rt
a

if rt

P MF a rt if rt

rt
otherwise


 


  
 



                  

0          ,     0.7

( , ) 1          ,     0.1

0.7
,  

0.6

rt
u

if rt

P MF u rt if rt

rt
otherwise


 


  
 



 

If  0,  0.2,  0.4,  0.6,  0.8X  , then the normalized hamming distance can be computed as: 

| | | | |1 1 1 0.83 0.5 0.5 | | |
( , )

5

0.0

0 0.166

672

rt rt
nH a uD P P

 



 


  

 

And the degree of similarity between users a  and u  based on their personalized 

preference rt
aP  and rt

uP  is: 

1
( , )

1 0.0672

0.937

PPreSim a u 




 

5.1.2. Degree of Similarity based on Satisfaction of Personalized Preferences. For 

users who have had some past experiences on some service item(s), the similarity is 

computed by extending the Pearson Correlation Coefficient to include user’s satisfaction 

of their personalized preferences on non-functional attributes.  

Definition 5.3 (Similarity between Satisfaction of Users Personalized 

Preferences). Let a  and u be two service users and aP  and uP  be the personalized 

preference of users a  and u respectively. The degree of similarity between these two 

users, based on the satisfaction of their personalized preferences, ( , )PSatSim a u is computed 

as: 
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2 2

( ( ) )( ( ) )

( , )
( ( ) ) ( ( ) )

a a u

a a u

P i P P i Pu

i I
PSat

P i P P i Pu

i I i I

Sat S Sat Sat S Sat

Sim a u
Sat S Sat Sat S Sat



 

 


 



 
  (27) 

 

where, a uI I I  is the set of co-invoked service items by both users a and u , ( )
aP iSat S  and 

( )
uP iSat S  are the respective satisfaction degrees of service item iS  based on the 

personalized preference of users a and u , and i
aP

Sat and
uPSat  represent the mean 

satisfaction degrees based on the personalized preference of users a and u respectively. 

Similarly, let i  and j be two service items and uP  be the personalized preference 

of a user u . The degree of similarity between these two service items based on the 

satisfaction of the personalized preference of user u , ( , )PSatSim i j  is computed as: 

 

* *

* *

2 2

( ( ) ( ))( ( ) ( ))

( , )

( ( ) ( )) ( ( ) ( ))

u u

u u

P i P i P j P j

u U
PSat

P i P i P j P j

u U u U

Sat S Sat S Sat S Sat S

Sim i j

Sat S Sat S Sat S Sat S



 

 



 



 
 (28) 

where, i jU U U  is the set of users with invoked service items i and j , ( )
uP iSat S  and 

( )
uP jSat S  be the respective satisfaction degrees of service items iS and jS based on the 

personalized preference uP , of user u , and
*
( )P iSat S and

*
( )P jSat S represent the mean 

satisfaction degrees of service items iS and jS  based on the personalized preference *P , of 

all users that have invoked service items iS and jS  respectively. 

4.4.2. Similar Neighbor Determination. After calculating the similarities 

between different users, a set of similar neighbors, N , can be identified based on the 

similarity values. The selection of similar neighbors is a very important step for making  

accurate recommendation, since dissimilar neighbors will lead to inaccurate missing 

value prediction for an active user [11]. The traditional Top-K algorithm is employed to 

find the similar neighbors, N , for an active user. 

4.4.3. Missing Satisfaction Value Prediction. With similar neighbors, N , of the  

active user identified, predictions for an active user’s non-functional attribute value can 
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be generated for a service item iS . This is done by combining the satisfaction values of 

users in N . This is typically done by computing the weighted average with mean offset [3 

, 4, 11] of the neighboring users. This function is extended to compute the weighted mean 

offset of the satisfaction values of users in N using the computed similarity values as 

weights. Thus for an active user a , the predicted satisfaction value for a service item iS , 

( )
aP iSat S , using the degree of similarity between users, based on the satisfaction of their 

personalized preferences, ( , )PSatSim a u  can be computed as follows: 

 

( , )( ( ) )

( )
( , )

u u

a a

PPBased P i P

u N
P i P

PPBased

u N

Sim a u Sat S Sat

Sat S Sat
Sim a u







 




   (29) 

where
aPSat is the vector of average satisfaction value of different services based on the 

personalized preference of the active user aP , and 
uPSat  is the vector of average 

satisfaction value of different services based on the personalized preference of the similar 

service user uP . 

Similarly, the satisfaction value for a service item iS , ( )
aP iSat S , of an active user a , 

can be predicted using the degree of similarity between service items, based on the 

satisfaction of their personalized preferences, ( , )PSatSim i j as follows: 

 

( , )( ( ) )

( )
( , )

u u

a a

PPBased P i P

u N
P i P

PPBased

u N

Sim i j Sat S Sat

Sat S Sat
Sim i j







 




   (30) 

where 
aPSat is the vector of average satisfaction value of different services based on the 

personalized preference of the active user aP , and 
uPSat  is the vector of average 

satisfaction value of different services based on the personalized preference of the similar 

service user uP . 
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4.4.4. Service Recommendation. To recommend service(s) to the active user, the 

two predicted satisfaction values (satisfaction values from user-based and item-based) 

must be combined in a certain fashion. Since these two predicted values may have 

different prediction performance, the tunable parameter method [4, 11] was adopted to 

combine the two values using the equation below:  

 

(1 )overall user based item basedSat Sat Sat          (31) 

 

where   is the tunable parameter which determines which method to use (either the user-

based, the item-based or both).  

Once the overall predicted satisfaction value is obtained, services are 

recommended to the active user based on this value. 

 

4.5. EXPERIMENTS 

Experiments were conducted to evaluate and validate the proposed personalized 

preference service recommendation method (PPSR). The experiments were performed on 

QWS dataset, a real-world web service QoS performance dataset.  

4.5.1. Dataset Description and Experimental Setup. The QWS Dataset [7], 

contains 2,507K records. The majority of services were obtained from public sources on 

the Web including Universal Description, Discovery, and Integration (UDDI) registries, 

search engines, and service portals [7]. Each record in the dataset corresponds to an 

existing service on the web as of September 2008. For each service, eleven (11) different  

parameters representing non-functional attributes exist. Six (6) of these non-functional 

attributes are selected for this work. Their values represent averages of the measurements 

collected during a six-day period [7]. The selected non-functional attributes, their 

descriptions and their units are shown in Table 4.5. Since the preference of users were not 

available, preferences were randomly generated for 64 users in the dataset. Below are a 

few of them. 

 

User 6: (Reliability ⊗ ResponseTime) ∧ (Availability ⊗ Throughput) 

User 37: (Reliability ⊗ ResponseTime) ∨ (ResponseTime ∧ Throughput) 
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User 61: (Reliability ∧ Availability) ⊗ (ResponseTime ∧ Throughput) 

 

To make the simulations more realistic, 90% and 70% of response time and 

throughput values were randomly removed from the data and generate four sparse 

matrices with density 10% and 30%, respectively for the training data set. The focus is to 

have a very sparse dataset matrices in order to see how the proposed personalized 

preference recommendation system works on users with no or few co-invoked services. 

Typically, active users have only a small number of invoked services [3, 11]. Due to this, 

some records of some users were also removed and these users were randomly selected as 

active users. For each non-functional attribute, the number of values made available to 

active users were varied from 10, 20, and 30, and name them Given 10, Given 20, and 

Given 30, respectively. The proposed method in this section was then used to predict the 

missing satisfaction values of active users and subsequently recommend services to them. 

 

Table 4.5.  Non-functional Attributes, Their Descriptions, and Units 

Non-functional 

Attribute 
Description Unit 

Response Time 
Time taken to send a request and receive a 

response 
Milli second (ms) 

Availability 
Number of successful invocations/ total 

invocations 
Percent (%) 

Throughput Amount of downloads for a given time period Downloads/second 

Reliability Mean time to failure Months 

Successability 
Number of responses / number of request 

messages 
Percent (%) 

Latency 
Time taken for the server to process a given 

request 
Milli second (ms) 

 

4.5.2. Performance Comparison. To validate the prediction performance of the 

proposed PPSR, results obtained from the proposed method were compared with two 

other well-known hybrid recommendation methods, WSRec [11] and PHCF [4]. For this  

performance comparison, a single non-functional attribute was considered because the 

hybrid recommendation methods selected are limited to recommending services using a 

single non-functional attribute. In addition, to make the comparison unbiased, the 
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satisfaction values of all the predicted non-functional attribute values from WSRec and 

PHCF were computed before the comparison. This is necessary because the focus of the 

proposed work is to show the importance of the satisfaction of user personalized 

preferences on service recommendation. 

The Normalized Mean Absolute Error (NMAE), a well-known statistical accuracy 

metric, was used to measure the prediction accuracy. NMAE is the normalized average 

absolute deviation of predictions to the ground truth data. It is defined as: 

 

, ,

,

1

( )
u i u i

high low u i

NMAE p r
n r r

 


     (32) 

 

where highr  and lowr are the maximum and minimum satisfaction values  in the system, 

respectively, ,u ir and ,u ip are the expected and predicted satisfaction values respectively. 

Smaller NMAE value indicates higher prediction quality.  

Table 4.6 shows the comparison of PPSR to WSRec and PHCF on the response 

time non-functional attribute. The table shows that the method produces a smaller NMAE 

compared to the other methods for both 10% and 30% densities. Table 4.7 also shows the 

comparison of PPSR to WSRec and PHCF on the throughput non-functional attribute. 

The experimental results of Tables 4.6 and 4.7 show that using a   value of 0.7: 

 PPSR method obtains smaller NMAE values consistently, which indicates 

better prediction accuracy. 

 The NMAE values of PPSR are independent from the given number unlike 

WSRec and PHCF. This shows that the proposed method doesn’t suffer from 

PCC’s inherent problem of its dependence on co-invoked services.  

 With the increase of the training matrix density from 10 to 30 percent, the 

prediction accuracy also achieve some enhancement, since denser training 

matrix provides more information for the prediction. 

4.5.3. Impact of  Value. Parameter delta ( ) makes the proposed method more 

feasible and adaptable to different datasets, especially those datasets where the active  

user has little or no previous experience with the services. It also allows the proposed CF-

based personalized preference recommendation system to employ the advantages of the 
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PCC extension of similarity computation as well as preference based similarity 

computation. For instance, in a situation where there is no or little co-invoked services,   

is set to 1 to alleviate the issues inherent to PCC based similarity functions. 

To study the impact of the parameter   to the proposed personalized preference 

collaborative filtering method, the Top-K value was set to 10 and vary the value of   

from 0 to 1 with a step value of 0.1. Figure 4.2 shows the results of given number = 10, 

20, and 30 with 30% data matrix density. 

 

 

Table 4.6.  Comparison of PPSR to WSRec and PHCF on the Response Time Non-

Functional Attribute 
 

Density 10% 30% 

Given number 10 20 30 10 20 30 

WSRec 0.5880 0.5512 0.5232 0.4585 0.4394 0.4001 

PHCF 0.4814 0.4675 0.4478 0.3828 0.3642 0.3434 

PPSR 0.2962 0.2893 0.2911 0.2165 0.2117 0.2141 

 

 

Table 4.7.  Comparison of PPSR to WSRec and PHCF on the Throughput Non-

Functional Attribute 
 

Density 10% 30% 

Given number 10 20 30 10 20 30 

WSRec 0.8378 0.8071 0.7705 0.7281 0.7033 0.6620 

PHCF 0.7444 0.7079 0.6874 0.6247 0.5882 0.5700 

PPSR 0.4806 0.4882 0.4827 0.4018 0.4025 0.4023 

 

 

Observing from Figure 4.2, it can be concluded that the value of   impacts the 

recommendation results significantly, and a suitable   value will provide better 

prediction accuracy. Another interesting observation is that, in Figure 4.2, with the given 

number increasing from 10 to 30, the optimal value of   which obtains the minimal 

NMAE values of the curves in the figure, changes significantly. This indicates that the 



 

 

87 

optimal   value is influenced by the given number. For the current dataset, it was 

identified that the optimal value of   is 0.7. 

 

 

 

Figure 4.2.  Impact of delta ( ) 

 

 

4.6. CONCLUSIONS 

In this section, an innovative method for service recommendation where the 

personalized preference of users are taken into consideration was presented. To 

accurately compute the similarity between users or service items, the proposed method 

extends the widely used Pearson Correlation Coefficient to include satisfaction of users’ 

personalized preferences on non-functional attributes. Based on the similarity values, the 

top-k algorithm was employed to find similar neighbors. Finally, to predict missing non-

functional attribute values, an extension of the weighted average with mean offset was 

employed to incorporate users’ satisfaction on non-functional attributes based on their 

personalized preferences. Experimental results show that the approach significantly 

improves the prediction accuracy than the existing methods regardless of the sparseness 

of the dataset. 
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