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ABSTRACT

In this paper we propose a blind deconvolution method to enhance the resolution of images obtained by near-field
microwave nondestructive techniques using an open ended rectangular waveguide probe. In fact, we model such
images to be the result of a convolution of the real input images with a point spread function (PSF). This PSF
depends mainly on the dimensions of the waveguide, the operating frequency, the nature of the object under test and
standoff distance between the waveguide and the object. Unfortunately, it is very difficult to model this PSF from
the physical data. For this reason, we consider the problem as a blind deconvolution. The proposed method is based
on regularization, and the solution is obtained iteratively, by successive estimations of the input and the PSF. The
algorithm is initialized with a PSF obtained from a very simplified physical model. The performance of the proposed
method is evaluated on some real data. Several examples of real image enhancement will be presented.

Keywords: Microwave Nondestructive Testing, Near-field Imaging, Blind Image restoration

1. INTRODUCTION

In recent years, near-field microwave nondestructive testing techniques have shown great promise in many applications
including image production of interior defects in a variety of composite structures. When operating in the near-field
of a probe, the spatial resolution associated with such images is primarily a function of the probe dimensions. To
increase the resolution of such images obtained using a rectangular waveguide probe, we model an image to be the
result of a convolution of the real input image and a point spread function (PSF). This PSF depends mainly on
the dimensions of the waveguide, the operating frequency, the nature of the object under test and standoff distance
between the waveguide and the object. Unlike the plane-wave far-field approach, the PSF associated with these
probes strongly depends on the distance away from the probe, and it is not simple to model this PSF from the
physical data. For this reason, we consider the problem as a blind deconvolution.

The proposed method is based on regularization, and the solution is defined as the optimum of a criterion which
has three parts: a data fitting part and two regularization functions on the input and on the impulse response. The
solution is obtained iteratively, by successive estimations of the input and the PSF. We first consider a quadratic
criterion for these three parts. This results in linear operations for both steps of PSF and input estimations.
Unfortunately, this approach does not seem to give satisfactory results. This is due to the fact that, the resulting
criterion is not a convex function of both PSF and the input even if it is quadratic in each of them separately.
We then consider the case where we may have more than two sets of data on the same object (multi-channel blind
deconvolution approach). Again, we first consider a quadratic criterion which results to linear operations on the
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data for point spread functions of each channel and input estimation. But, here again, this approach does not give
satisfactory results.

As a consequence of these conclusions, we propose a method which seems to be adequate for the special cases
in which we are looking at binary or two levels images (homogeneous background surronding a homogeneous fault
region). This is, in fact, the actual situation in many non destructive testing applications. The proposed algorithm
is an iterative one in which, at each iteration, a linear filtering of the data followed by a nonlinear memoriless
operation gives an estimate of the input which is then used to obtain an estimate of the PSF by another linear
filtering operation. The non-linear operation is an evolutif sigmoid-like function whose hardness is increased during
the iterations.

This paper is organized as follows: In section 2 we present the linear blind deconvolution, first the case of single
channel and then the multi-channel one. In section 3 we present our non-linear algorithm for both cases. In section
4 we present some numerical results to show the performances of the proposed algorithms on simulated data, and
finally, in section 5 we present the results of the proposed algorithms on a few real data.

2. BLIND DECONVOLUTION

To introduce the proposed method, we first present a synthetique view of the linear techniques of blind deconvolution
which have been developped and used by many authors."® We consider first the case where we have only one set of
data (single channel blind deconvolution) and then the case where we may have two or more sets of data for a given
object (multi-channel blind deconvolution). Then, we analyze the limits of linear techniques and, finally, we propose
our nonlinear technique for both single and multi-channel case.

2.1. Single-channel linear blind deconvolution

In linear deconvolution techniques, the relation between the input and the output images is modelled by a 2D
convolution equation :

9(@,y) = h(z,y) * f(z,y) + n(z,y) (1)

where h(z,y) is the PSF of the measurement system, and n(x,y) models all the errors including modeling and
measurement noise. n(x,y) is generally assumed to be a centered, white and Gaussian random function. The
solution of the problem is defined to be the optimum of the following regularization criterion :

J(f,h) = llg = hox FII* + Ap lldg * (f = fo)lI* + An |dn * (B — ho)|I* (2)
where d¢(z,y) and dj(z,y) are the PSFs of two derivating functions, Ay and A, are two regularization parameters,

fo(z,y) and ho(z,y) are the a priori solutions for f(z,y) and h(z,y) and ||f|*> = // |f(z,9)|* dz dy. Derivating this

criterion with respect to its unknowns separetely, we obtain :

{2—;{ = —2hx[g—hxfl+2Xpds*[ds * (f = fo)] "
99— 2 fx[g—hx f]+2Nndn*[dn * (h— ho)]

where h(z,y) = h(-z,—-y), f(z,y) = f(-=,~y), ds(2,y) = df(—2,~y) and dp(2,y) = dp(=2,—y). Thus, the
optimal solution satisfies the following equations:

[hxh+Apdpxdg]* f=hxg+ Apdsx[dys* fo]

_ i} _ _ (4)
[f*f+)\hdh*dh] xh=fxg+ Apdp *[dy * ho]
which, in the Fourier domain, become:
[[H (u,0)[> + As [ Dy (u,0)*] F(u,0) = H*(u,v)G(u,v) + As |Dy(u,0)[* Fy(u,v) -
5

[|F(u, 0)]* + An |Dp(u, 0)[?] H(u,v) = F*(u,v) G(u,v) + A | Da(u,v)[* Ho(u, v)



and so we obtain:

wo) — H*(u,v) G(u,v) + A |Dys(u,v)|?* Fo(u,v)
Fley) [H(u, o) + A7 Dy (u,)P ©
F*(U,U) G(U,U) + /\h |Dh(uav)|2H0(ua/U)

|F'(u, 0)[* + An | D (u, v)[?

H(u,v)

These two last equations are very familiar for the case where fo(z,y) =0 and ho(z,y) = 0.

When the parameters Ay and A\, and the functions ds(z,y), dn(2,y), fo(z,y) and ho(z,y) are fixed, one can

obtain a solution corresponding to a local optimum of (2) by an iterative algorithm such as :

0.
1.
2.

or

0.
1.
2.

Initialize h(z,y) to ho(z,y) and repeat until convergence:
Compute F'(u,v) from (6) and then f(z,y) by IDFT ;
Compute H(u,v) from (7) and then h(z,y) by IDFT ;

Initialize f(x,y) to fo(x,y) and repeat until convergence:
Compute H(u,v) from (7) and then h(z,y) by IDFT ;
Compute F(u,v) from (6) and then f(z,y) by IDFT .

But, unfortunately, in practical applications, two difficulties arise:

e Even when ¢, Ap, df(2,y), dn(z,y), fo(x,y) and ho(z,y) are fixed and even if the criterion (2) is quadratic

in both f and h separately, it is not a convex function of both of them and it can have many local optima.
Thus, to obtain a unique satisfactory solution, we need a stronger constraint on the solution. One way to do
this is to constrain the input f to be a piecewise constant function. Indead, in our application, this constraint
is in fact a wish: for example, when we are searching for a default region in a safe homogeneous region, we are
looking for an image f(z,y) which is a binary valued. In the next section we will see how we can impose these
kind of constraints to obtain satisfactory results.

Another main issue in this algorithm is the initialization. As we mentionned, this algorithm converges to a
local optimum of the criterion (2). Thus the initialization of the algorithm may have a great influence on the
solution. We propose to use the physical knowledge of the measurement system to obtain an initial estimate
for the impulse response. For example, if we assume that the standoff of the sensor waveguide is zero, then a
good approximation for the impulse response is given by

cos(mz/2a) =z €[—-a/2,a/2],y € [-b/2,b/2
W (@,y) = { 0 (ra/2a) else1[uhe{“e, 2 G (8)
Finally, in practical situations, we have to fix the parameters Ay and A, the functions d¢(z,y), dn(z,y) and
the a priori solutions fo(z,y) and ho(z,y). What we propose here is the following :
ds(z,y) and dy(x,y) are respectively chosen as separable first and second order derivative operators;
fo(z,y) = g(z,y) and ho(z,y) = h°(x,y) as in (8); and
the two regularization parameters are fixed experimentally to Ay = ﬁ(o) and A\ = Fol(O)'

2.2. Multi-channel linear blind deconvolution

In some experiments, we may have more than one set of data, each obtained with a different sensor:

where the problem here is to estimate simultaneously f(z,y) and all the PSF’s h;(z,y),i =1,---, M. We again can
define the solution as the optimizer of the following criterion

M M
T kg hag) = 3 Nlgi = ax FIP 4 Mg g % (F = F)l> + M 3 lldn % (hs — by (10)

i=1 i=1



The solution has to satisfy

07 M )
af = -2 Zhi*[gz’—hi*f]+2)\fdf*[df*(f_f0)]

i=1
% = —2fx[gi—hi* fl+2Andp*[dp % (hi —hiy)], i=1,---,M

which, in the Fourier domain, become

M M
S | Hi(w, o) + s |Df(u,v>|2] Fluw) = 3 H}(,0) Gi(u,0) + Ny Dy 0) P Fo(,0)
i=1 =1

[1F(u,v)[* + An | Dn(u,0)|*] Hi(u,v)
and so we obtain:

Sl Hi (u,v) Gi(u, v) + Ay |Dy(u,v)|? Fy(u, v)
Sy [ Hi(u,0)|? + g [ Dy (u, )2
F*(u,v) Gi(u,v) + Ap | Dp(u,v)|? Hi, (u,v)

,(u,v) |F(U,’U)|2 + Ap |Dh(u7v)|2 ! 7 7

F(u,v) =

We can again propose the following algorithm to obtain the solution:
0. Initialize h;(z,y) to h°(z,y) and repeat until convergence:

1. Compute F'(u,v) from (13) and then f(z,y) by IDFT ;

2. Compute H;(u,v) from (14) and then h;(z,y) by IDFT ;

We can also imagine to select one set of the data (say gf) and do the following:
0. Initialize hy(z,y) to hi,(x,y) and first compute F(u,v) from (6) and then repeat until convergence:
1. Compute F'(u,v) from (13) and then f(z,y) by IDFT ;
2. Compute H;(u,v) from (14) and then h;(z,y) by IDFT ;

3. PROPOSED METHOD

F*('IL,’U) G’i(u:v) + An |Dh(uav)|2Hi0 (u,v), i=1,---

(11)

Blind image restoration is an ill posed problem. It is easy to show that any linear method can not give satisfactory
results. Hence, we propose a non-linear method. The specificity of our approach is on the way we model the image
generation: we model the input image as the output of an autoregressive (AR) process followed by a memoriless

nonlinear operation ¢(.) as is illustrated in the following;:

n(z,y)

u(z,y)—> AR filter q(.) ~ f(z,y) —>  h(z,y) 9(z,y)

Figure 1. Proposed data generation model.

Then, again as in (2), we can define the solution of the problem as the optimum of the following regularization

criterion :

J(f,h) = llg = hx fII” + Ar llg (g  (f = fo)) II* + An lldn * (h — ho)|I”

(15)



and use a gradient based algorithm to obtain the solution. Noting that

g_;{ = —2hx[g—hxfl+2Xpdp x7(df = (f — fo)) (16)
% = —2fx[g—hxfl+2Xpdp*[dy * (h — ho)], (17)

where r(.) = ¢(.) ¢'(.), and that the second equation has an explicite solution given by (16), one possible algorithm
is the following:

0. Initialize h(z,y) to h°(z,y) and f(z,y) to f°(z,y); and repeat until convergence:
1. Compute g—f using (16);

2. Update f using f+1) = f0) 4 o0 22 (), p(8))
3. Update h using (7).

However, to obtain a fast algorithm for practical applications, we preferred to use the following scheme:

) (z,y) g(z,y)

FED (z,y) i R ()
9(@,y)— Wl (2,y) ¢() w (@,y) "

Figure 2. One iteration of the proposed blind restoration algorithm.

This algorithm is very interesting, because at each iteration, a linear transformation (chracterized by wy(z,y))
followed by a memoriless non-linear action ¢'(.) gives an update of f, and another linear transformation (chracterized
by wp(x,y)) gives an update of h:

The exact type of the non-linear function ¢(.) is not really very important. The only needed property is a
saturation like function at both sides such as a sigmoide function or a saturated linear function:

f(m) if f(@,y) >N = fmin + &(fmax — fmin)
Fay) =4 ZL(f(ay)—m) i n<flz,y) <q (18)
f() if f(@,y) <0 = fmin + (1 = @) (fmax — fmin)
where fipin and fpax are the minimum and maximum values of f(z,y) and « is either a constant (o = .5) or a

decreasing variable during the iterations (a has to start by 1 and to finish by 0.5 if we want to obtain a binary valued
solution).

The same scheme can be applied to the multi-channel case. Its exapansion is omitted here, but we have implented
it for the numerical simulations and real data processing.



o — Z/“A
£
Jmin n U] fmax f

Figure 3. Memoriless non-linear operation. During the iterations 77 and 5 change: at the first iteration 7 = fuin
and 1) = fmax and at the last iteration 7 =1 = 3 (fmax — fmin)-

4. SIMULATION RESULTS

The main objective of these numerical experimentations is to show that the proposed algorithm works well. The two
following figures show two typical results for the case of single channel and two channels blind reconstruction.

hlxy glxy hlxye flsxye

u g+

Figure 4. Single channel blind reconstruction:
a) original image, b) PSF, c¢) degraded image, d) PSF estimate, ) reconstruction

5. APPLICATION ON REAL DATA

The method outlined above was then applied on real data, in the form of 2-dimensional near-field microwave images.
Near-field microwave imaging is based on transmitting a wave into a structure, which is located in the near-field of a
sensor, and using a signal proportional to the magnitude and/or phase of the transmitted or reflected wave to create
a two dimensional intensity image of the structure under investigation. The features and properties of microwave
near-field images are influenced by several factors such as the dielectric and physical properties of the structure
under investigation, the frequency of operation, the standoff distance and the dimensions of the waveguide. Also,
the non-uniformity associated with the electric field distribution at the waveguide aperture influences the resulting
near-field image. Due to all of these factors it is not possible to come up with a PSF that can be used to reconstruct
the real input image and that is when the outlined blind deconvolution method becomes handy to obtain the real
input image.

Near-field images of a patch of rust under paint on a steel specimen were used to demonstrate the capabilities of
the blind deconvolution method. The specimen was produced by acquiring a relatively flat piece of steel on which a
thin layer of rust had already been produced (naturally). Then, a 40 mm by 40 mm area was masked out by a piece
of tape and the remaining surface was sand blasted. The average thickness of the rust layer was measured (using
a micrometer) to be approximately 0.08 mm. Subsequently, this specimen was painted with 0.60 mm of common
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Figure 5. Two channels blind reconstruction:
a) original image, b) PSFs of the two channels, c¢) degraded images, d) PSFs estimates, e) reconstruction

spray paint, as uniformly as possible. 0.60 mm represents ten painting cycles. Consequently, microwave images of
the rust specimen were produced using raster scans (every 2 mm by 2 mm) of the specimen at 33.5 GHz. For the
raw data image shown, the measured voltage is normalized with respect to its maximum value and then different
colors are assigned to different normalized voltages to produce an image. Therefore, from one image to another the
color associated with the rusted area may differ.”®

The following figures show some examples.

R335s40b R300s40b R335svaa
ER335s40b ER300s40b ER335svaa

8

n
4
1
2|
1|
1
I
s 0o 05 x5 @ B

Figure 6. Single channel reconstructions: First raw the data, Second raw the reconstructions.



R335s40b R335s40b

EER335s40b

EEQ335svaa .
R335svaa J ' R300s40b

Figure 7. Multi channel reconstructions:
The image in column b is obtained using the two data sets in column a (R335s40b and R335svaa).
The image in column d is obtained using the two data sets in column ¢ (R335s40b and R300s40b).

6. CONCLUSIONS

We proposed a non-linear blind deconvolution method to enhance the resolution of images obtained by near-field
microwave nondestructive techniques. We first considered linear techniques, both single and muli-channel, but
unfortunately, these techniques, even based on regularized criterion, did not give satisfactory results. Based on this
conclusion, we proposed an iterative algorithm where at each iteration, a linear filtering followed by a memoriless
non-linear transformation gives an update of the input, and another linear filtering gives an update of PSF. The
algorithm is initialized with a PSF obtained from a very simplified physical model. The performances of the proposed
method were evaluated on some real data.
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