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ABSTRACT 

Electric vehicles (EVs) are a promising alternative energy mode of transportation 

for the future. However, due to the limited range and relatively long charging time, it is 

important to use the stored battery energy in the most optimal manner possible. Existing 

research has focused on improvements to the hardware or improvements to the energy 

management strategy (EMS). However, EV drivers may adopt a driving strategy that 

causes the EMS to operate the EV hardware in inefficient regimes just to fulfil the driver 

demand. The present study develops an optimal driving strategy to help an EV driver 

choose a driving strategy that uses the stored battery energy in the most optimal manner. 

First, a strategy to inform the driver about his/her current driving situation is developed. 

Then, two separate multi-objective strategies, one to choose an optimal trip speed and 

another to choose an optimal acceleration strategy, are presented. Finally, validation of 

the optimal driving strategy is presented for a fleet-style electric bus. The results 

indicated that adopting the proposed approach could reduce the electric bus’ energy 

consumption from about 1 kWh/mile to 0.6-0.7 kWh/mile. Optimization results for a 

fixed route around the Missouri S&T campus indicated that the energy consumption of 

the electric bus could be reduced by about 5.6% for a 13.9% increase in the trip time. The 

main advantage of the proposed strategy is that it reduces the energy consumption while 

minimally increasing the trip time. Other advantages are that it allows the driver 

flexibility in choosing trip parameters and it is fairly easy to implement without 

significant changes to existing EV designs. 



 

 

v 

ACKNOWLEDGMENTS 

It is only fitting that I start by thanking my advisor, Dr. Koylu, for helping me to 

become a better researcher and for his guidance and support. I wish to express my 

gratitude to Dr. Sheffield for his belief in my abilities and for sharing his enormous 

perspective and vision with me. I cannot omit acknowledging the contributions of Dr. 

Nandi as his singular ideas were instrumental in helping me cross the finish line. I also 

thank Dr. Landers for his guidance and expertise and Dr. Ferdowsi for his time and 

cooperation. Without my advisory committee, this work would not have been possible. 

Additionally, I also wish to thank Dr. S. N. Balakrishnan for helping me become a better 

instructor. 

I thank all my instructors not only in the department but also at Missouri S&T. 

Studying at this institution has been nothing short of a privilege. I cannot overstate the 

value of my friends in Rolla. My friend and roommate, Greg, must be specially 

mentioned for everything he did for me. I must also thank all the people at the Newman 

Center, especially Sr. Renita and George. I also thank my sister and my brother for 

putting up with me. Together, my family and friends made my time in Rolla and the 

United States a real blessing. 

Finally, and most importantly, I thank my parents. I am incalculably grateful to 

them for always believing in me, for setting my feet on the path of knowledge, and for 

always being there for me. I may never know the full extent of the sacrifices they made 

for my sake but I can honor their actions by dedicating this work to them. 



 

 

vi 

TABLE OF CONTENTS 

Page 

PUBLICATION DISSERTATION OPTION ................................................................... iii 

ABSTRACT ....................................................................................................................... iv 

ACKNOWLEDGMENTS .................................................................................................. v 

LIST OF ILLUSTRATIONS ............................................................................................. xi 

LIST OF TABLES ........................................................................................................... xiv 

SECTION 

1. INTRODUCTION ...................................................................................................... 1 

 

PAPER 

I. Neural Network Strategy for Driving Behavior and Driving Cycle Classification .... 4 

 

Abstract   .................................................................................................................... 4 

1 Introduction ............................................................................................................. 5 

2 Driving Cycle and Driving Behavior ...................................................................... 8 

 2.1 Driving Cycle ............................................................................................... 8 

 2.2 Driving Behavior .......................................................................................... 9 

 2.3 Neural Networks ......................................................................................... 10 

3 Model   .................................................................................................................. 11 

 3.1 Controller/Motor Model ............................................................................. 11 

  3.1.1 Driving Behavior Simulation ........................................................... 11 

  3.1.2 Driving Behavior Metrics ................................................................ 13 

 3.2 Vehicle Model ............................................................................................. 14 

 3. Battery Model ............................................................................................... 14 



 

 

vii 

4 Neural Network Approach  ................................................................................... 15 

5 Results and Discussion  ........................................................................................ 18 

 5.1 Driving Behavior ........................................................................................ 19 

 5.2 Driving Cycle ............................................................................................. 20 

 5.3 Testing ........................................................................................................ 22 

6 Summary, Conclusions, and Future Work ............................................................ 23 

References  ............................................................................................................... 26 

II. Electric Vehicle Range Prediction for Constant Speed Trip using Multi- 

 Objective Optimization .......................................................................................... 39 

 

Abstract   .................................................................................................................. 39 

List of Symbols ........................................................................................................ 40 

1. Introduction .......................................................................................................... 42 

2. Problem Definition............................................................................................... 46 

3. EV Model to Calculate Efficiency and Power ..................................................... 48 

 3.1 Electric Motor Model ................................................................................. 49 

 3.2 Battery Model ............................................................................................. 49 

 3.3 Vehicle Model ............................................................................................. 49 

4. Proposed Approaches for Range Prediction  ....................................................... 50 

 4.1 Approach 1: Constant Battery Voltage ...................................................... 52 

 4.2 Approach 2: Battery Voltage as a Function of SOC .................................. 53 

5. Multi-Objective Genetic Algorithm  .................................................................... 54 

6. Results and Discussion  ....................................................................................... 57 

 6.1 Approach 1: Constant Battery Voltage ...................................................... 58 

 6.2 Approach 2: Battery Voltage as a Function of SOC .................................. 63 



 

 

viii 

7. Summary and Conclusions .................................................................................. 66 

Acknowledgements  ................................................................................................. 67 

References  ............................................................................................................... 67 

III. A Multi-Objective Approach to Find Optimal Electric Vehicle Acceleration: 

Simultaneous Minimization of Acceleration Duration and Energy 

 Consumption .......................................................................................................... 83 

 

Abstract   .................................................................................................................. 83 

List of Symbols ........................................................................................................ 84 

I. INTRODUCTION ................................................................................................ 87 

II. PROBLEM DEFINITION .................................................................................. 91 

III. FORMULATION OF OBJECTIVES: DURATION AND ENERGY .............. 93 

 A) Electric Motor Model .................................................................................. 93 

 B) Battery Model .............................................................................................. 94 

 C) Vehicle Model .............................................................................................. 95 

IV. MULTI-OBJECTIVE OPTIMIZATION USING NSGA-II  ............................ 96 

V. PROPOSED APPROACHES TO FIND OPTIMAL ACCELERATION(S) 

USING MOGA  ................................................................................................... 98 

 A) Single Acceleration Approach ..................................................................... 99 

 B) Multiple Acceleration Approach ................................................................. 99 

 C) Performance Metrics used to Compare Pareto Fronts Obtained by 

 Approach 1 and Approach 2 .......................................................................... 101 

 

 D) Comparison of Approach 1 and Approach 2 ............................................ 102 

  1) Comparison of Proposed Approaches ................................................ 102 

  2) Statistical Analysis .............................................................................. 103 

  3) Wilcoxon Signed-Rank Test ................................................................ 104 



 

 

ix 

  4) Sensitivity Analysis ............................................................................. 105 

VI. EFFECTIVE OF THE PROPOSED APPROACHES ..................................... 107 

VII. IMPLEMENTATION OF OPTIMAL RESULTS ......................................... 108 

VIII. SUMMARY AND CONCLUSIONS ........................................................... 111 

ACKNOWLEDGMENTS  .................................................................................... 113 

REFERENCES  ..................................................................................................... 113 

IV. Finding an Optimal Driving Strategy for an Electirc Bus based on 

 Operational Data ................................................................................................... 125 

 

 Abstract   ............................................................................................................. 125 

 Introduction ......................................................................................................... 126 

 Optimal Driving Approach ................................................................................. 129 

 Data Acquisition System (DAQ) ........................................................................ 131 

 Electric Vehicle (EV) Model  ............................................................................. 132 

 Results and Discussion  ...................................................................................... 135 

 Summary and Conclusions ................................................................................. 144 

 Acknowledgements  ............................................................................................ 146 

 References  .......................................................................................................... 146 

SECTION 

 

2. MULTI-OBJECTIVE DRIVING STRATEGY FOR EBUS ................................. 150 

 

2.1. INTRODUCTION .......................................................................................... 150 

2.2. PROBLEM DEFINITION .............................................................................. 151 

2.3. RESULTS ....................................................................................................... 155 

2.4. SUMMARY AND CONCLUSIONS ............................................................. 159 

3. SUMMARY AND CONCLUSIONS ..................................................................... 160 



 

 

x 

APPENDICES 

A. CHOOSING THE NUMBER OF NEURONS...................................................... 163 

 

B. ELECTRIC MOTOR SENSITIVITY ANALYSIS............................................... 166 

 

C. ADDITIONAL FIGURES ..................................................................................... 169 

 

BIBLIOGRAPHY ........................................................................................................... 171 

RELATED PUBLICATIONS ........................................................................................ 172 

VITA  .............................................................................................................................. 173 

 

 

 

 

 

 

 

 

 

 

 



 

 

xi 

LIST OF ILLUSTRATIONS 

               Page 

PAPER I 

 

Figure 1  MATLAB/Simulink electric vehicle simulation block diagram ........................ 35 

 

Figure 2  Accelerator position, brake position, and real speed for 30-second example 

driving cycle (aggressive driving) ..................................................................... 36 

 

Figure 3  Accelerator position, brake position, and real speed for 30-second example 

driving cycle (defensive driving) ....................................................................... 36 

 

Figure 4  Maximum acceleration, maximum deceleration, standard deviation of 

acceleration, and average acceleration for 15 driving cycles ............................ 37 

 

Figure 5  First 120 s of four driving cycles used for testing the neural network driving 

cycle classification algorithm ............................................................................ 37 

 

Figure 6  Driving cycle classification for sections of MODEM HyZem Road Driving 

Cycle .................................................................................................................. 38 

 

PAPER II 

 

Fig. 1.  Efficiency and power as a function of EV speed. .............................................. 73 

 

Fig. 2.  Typical variation of EV speed as a function of time ......................................... 73 

 

Fig. 3.  Typical variation of EV speed as a function of time according to 

  Approach 1 ......................................................................................................... 74 

 

Fig. 4.  Plot of reference speed (vref), termination criterion (βvref), and steady state- 

  speed (v) for different reference speeds: 8 kmh
-1

, 56 kmh
-1

, and 112 kmh
-1

 ..... 75 

 

Fig. 5.  Schematic representation of binary-coded NSGA-II for a two-objective  

  problem having one decision variable ............................................................... 76 

 

Fig. 6.  Calculated range by simulation and steady-state methods ................................ 77 

 

Fig. 7.  Non-dominated solutions for exhaustive search and MOGA ............................ 77 

 

Fig. 8.  Pareto fronts for different initial SOC values for Approach 1 ........................... 78 

 

Fig. 9.  Range versus speed for different initial SOC values for Approach 1 ................ 79 



 

 

xii 

 

Fig. 10.  Trip time versus speed for different initial SOC values for Approach 1 ........... 79 

 

Fig. 11.  Top twenty knee solutions presented on the normalized Pareto front ............... 80 

 

Fig. 12.  Maximum range and trip time for knee solutions .............................................. 80 

 

Fig. 13.  Pareto fronts for different initial SOC values for Approach 2 ........................... 81 

 

Fig. 14.  Range versus speed for different initial SOC values for Approach 2 ................ 82 

 

Fig. 15.  Trip time versus speed for different initial SOC values for Approach 2 ........... 82 

 

PAPER III 

Fig. 1.  Electric motor characteristics: maximum current and torque for different  

  speeds ............................................................................................................... 121 

 

Fig. 2.  Schematic representation of the working of MOGA using NSGA-II .............. 121 

 

Fig. 3.  Comparison of Pareto-optimal fronts obtained in two approaches for 

  chosen speed of a) 40 km/h b) 72 km/h and c) 104 km/h ................................ 122 

 

Fig. 4.  Comparison of Approach 1 and Approach 2 using electric motor efficiency 

  as a function of rotational speed and torque .................................................... 123 

 

Fig. 5.  Level of discomfort for top five knee values for different speeds ................... 123 

 

Fig. 6.  Demonstration of a single solution selected from Fig. 5 ................................. 124 

 

PAPER IV 

 

Fig. 1:  Photograph of the Ebus .................................................................................... 129 

 

Fig. 2:  Data acquisition system of the Ebus ................................................................ 132 

 

Fig. 3:  Comparisons of measured and simulated data for: (a) vehicle speed 

  (b) battery current ............................................................................................ 136 

 

Fig. 4:  Measured and predicted power along with power at zero gradient for 

  different bus speeds; gradient values correspond to measured power 

  values ............................................................................................................... 137 

 

Fig. 5:  Electric motor efficiency versus Ebus speed ................................................... 138 

 



 

 

xiii 

Fig. 6:  Range and trip time for different speeds using measured and simulated 

  bus data ............................................................................................................ 139 

 

Fig. 7:  Optimal speeds in terms of range for different gradients ................................ 141 

 

Fig. 8:  Energy per mile and gradient from operational data for nine speeds zones .... 141 

 

Fig. 9:  Acceleration duration and energy for dominated and non-dominated 

  solutions with vref = 25 mph ............................................................................. 143 

 

Fig. 10:  Energy consumption for different speed changes for solutions with 

  comparable gradient ......................................................................................... 144 

 

SECTION 

 

Fig. 2.1:  MOGA results obtained for different settings ................................................. 157 

 

Fig. 2.2:  Adjusted MOGA results and measured bus data ............................................. 157 



 

 

xiv 

LIST OF TABLES 

               Page 

PAPER I 

 

Table 1   Electric motor parameters ............................................................................ 28 

 

Table 2   EV model parameters ................................................................................... 29 

 

Table 3   Lithium-ion battery parameters.................................................................... 29 

 

Table 4   Driving cycles used for training ................................................................... 30 

 

Table 5   Driving cycles used for testing .................................................................... 30 

 

Table 6   Statistical parameters used in neural network training ................................ 31 

 

Table 7   Driving behavior classification results using A and B values with 

   4 layers and 20 neurons per hidden layer..................................................... 33 

 

Table 8   Driving cycle classification results using A and B values with 4 layers 

  and 5 neurons per hidden layer (“1” in the first row represents highway, 

  “0” in the first row represents urban, “1” in the second row represents 

  urban, “0” in the first row represents highway) ........................................... 34 

 

Table 9   Driving behavior testing results (A and B values, neural network with 

   4 layers and 20 neurons per hidden layer) ................................................... 34 

 

Table 10  Driving cycle testing results using A and B values with 4 layers and 

   5 neurons per hidden layer ........................................................................... 35 

 

PAPER II 

 

Table 1   Electric motor parameters ............................................................................ 71 

 

Table 2   Lithium-ion battery parameters.................................................................... 71 

 

Table 3   Chen and Rincon-Mora Lithium-ion battery parameters ............................. 71 

 

Table 4   Vehicle model parameters............................................................................ 72 

 

Table 5   MOGA parameter values for simulations conducted in this paper .............. 72 

 

Table 6   Results of simulation and steady-state methods for vref  = 48 kmh
-1

 ........... 73 



 

 

xv 

 

PAPER III 

 

TABLE I  EV model parameters ................................................................................. 117 

 

TABLE II  GA parameters used for solving MOOP .................................................... 118 

 

TABLE III  Statistical information of the solutions obtained by 20 independent 

   runs with different random seeds for two approaches ............................... 118 

 

TABLE IV  Wilcoxon signed-rank test on the results obtained by both approaches 

   for 20 independent runs with different random seeds ................................ 119 

 

TABLE V  Statistical information of the solutions obtained by 20 independent 

   runs with different speeds for two approaches .......................................... 120 

 

TABLE VI  Distribution of optimal number of accelerations found by MOGA in 

Approach 2 in three speed zones ............................................................... 120 

 

PAPER IV 

 

Table 1:   Relevant bus model parameters ................................................................. 134 

 

SECTION 

 

Table 2.1:  Micro-trip characteristics for Ebus round trip ........................................... 152 

 

Table 2.2:  Ebus model parameters .............................................................................. 153 

 

Table 2.3:  EBus parameters from model optimization ............................................... 154 

 

Table 2.4:  Energy savings for two preferred solutions compared to measured bus 

objectives ................................................................................................... 158 

 



 

 

1 

1. INTRODUCTION 

Electric vehicles (EVs) first gained prominence towards the end of the 19
th

 century 

when they outsold vehicles with external combustion engines fueled by coal and internal 

combustion (IC) engines fueled by diesel or gasoline [1]. With improvements in IC 

engines, the expansion of roads, and the reduction of the price of gasoline, EVs were not 

able to keep up with IC engines. The main problems that caused their decline were the 

limited range afforded by a single charge and the considerable length of time to charge a 

battery. With the rising price of gasoline precipitating a demand for vehicles that are 

more efficient and more environmentally friendly than conventional IC engines, EVs are 

starting to make a comeback. Electric vehicles (EVs) are free of the widespread 

emissions suffered by IC engine vehicles, in addition to being more energy efficient [2]. 

They are especially effective in reducing urban pollution [3]. Government regulations 

like Corporate Average Fuel Economy (CAFE) standards and funding initiatives are also 

helping drive the EV market. EVs have seen tremendous improvements in range over the 

last two decades. Charging times have been reduced as well. Finally, the growth of 

charging infrastructure is slowly catching up to the growth in the number of EVs. Market 

data indicate that EV sales in the US increased from around 1000 in 2008 to 10,064 in 

2011 and 14251 in 2012 and are projected to reach over 400,000 in the US and 3.8 

million worldwide by 2020. While there were only a couple of EV models available 

before 2010, there were around fifteen available in 2012 [4, 5, 6]. With EV sales 

projected to grow, several challenges relating to different stages in the life cycle of EVs 

still need to be overcome. Of these, perhaps the most important one is the energy 

management and range extension. Despite the recent technology progress, the biggest 
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challenge unique to EVs is the limited range on a single battery charge. Even if charging 

stations were more plentiful than they are, it takes a lot longer (several hours) to charge 

an EV than it takes to refuel an IC engine vehicle (several minutes). Therefore, it is 

essential to use the stored battery energy in the most optimal manner possible by 

minimizing the wasted energy. Optimal use of the battery energy results in maximizing 

the range of the EV. 

Existing research efforts on EVs can broadly be divided into two categories. The 

first category is improvements to the hardware of the vehicle. The second category is 

improvements to the energy management strategy (EMS) of the vehicle. The need for an 

EMS came about when researchers realized that it was simply not enough to improve the 

hardware of the EV; it was also important to use the stored energy of the battery in the 

most optimal manner. The goal of the EMS is to properly manage the energy of the EV 

while fulfilling the driver’s demand. 

A driving strategy refers to the combination of acceleration and speed values 

chosen by the driver to traverse a given distance. Typically, a driver does not plan a trip 

based on acceleration and speed values but simply follows the flow of traffic, which 

means the chosen driving strategy may be suboptimal. This means that, no matter how 

much the hardware and the EMS are improved, the EV will not perform to the best extent 

possible because the driver’s demands cause the EMS to waste energy by operating the 

hardware in a suboptimal regime. Therefore, it is essential to adopt a driving strategy that 

optimally operates the EV hardware and allows the EMS to properly manage the stored 

energy. This is termed optimal driving or adopting an optimal driving strategy. In this 
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dissertation, a third category of EV research is proposed and developed: improvements to 

the driving strategy adopted by the driver.  

The layout of the dissertation is as follows. The first paper develops a strategy to 

inform an EV driver about the current driving situation by classifying the driving 

behavior as aggressive or defensive and the driving cycle as highway or urban. The 

second paper proposes a multi-objective strategy to choose a trip speed by maximizing 

the electric motor efficiency and minimizing the power consumption. The driver is 

presented with several options so that he/she can use the results to choose a speed based 

on a trade-off between maximum range and minimum trip time. The third paper proposes 

a multi-objective strategy to choose the appropriate acceleration strategy to attain the 

optimal trip speed. The fourth paper focuses on validating the proposed approach using 

the operational data of an electric bus. Finally, Section 2 combines the constant speed and 

the optimal acceleration strategies to optimize a demonstrative trip traveled by the bus. 

Section 3 summarizes the research and highlights the most important conclusions along 

with discussing some ideas for future work. 
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Abstract 

The driving behavior and the driving cycle type affect the range of an electric vehicle. 

Previous studies have devised methods to identify driving cycle type in order to formulate 

an energy management strategy. This approach does not take driving behavior into 

account and fails to account for differences in predefined driving cycles and real-time 

driving. A novel strategy that classifies driving behavior as aggressive or defensive and 

driving cycles as highway or urban using accelerator and brake positions is proposed. A 

method to simulate aggressive and defensive driving behavior was developed and 

implemented. An electric vehicle (EV) was simulated and made to follow 11 driving 

cycles aggressively and defensively and the accelerator and brake positions of the 

simulated EV were recorded. Five statistical parameters were computed for the recorded 

data: average, covariance, standard deviation, total, and variance. A neural network was 
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trained to identify patterns in the recorded data in order to classify the driving behavior as 

aggressive or defensive and the driving cycle as highway or urban. The neural network 

successfully differentiated between aggressive and defensive driving behavior and 

highway and urban driving cycles in all 11 training cases. Furthermore, the simulated EV 

followed four additional driving cycles not used to train the neural network. The neural 

network was able to properly classify the driving behavior and the driving cycle type for 

the four new driving cycles as well. The proposed method of classifying driving behavior 

and driving cycles overcomes the limitations posed by identifying driving cycles. It 

provides real-time information about the driving behavior and the driving cycle and is not 

limited to any particular driving cycle or group or driving cycles. 

 

Keywords: driving behavior classification, driving cycle classification, electric vehicle, 

neural network, pattern recognition, supervised training 

 

1 Introduction 

The range of an electric vehicle (EV) is influenced by both the driving behavior of the 

driver and the driving cycle. It is important to take both into account when designing an 

energy management strategy for an EV. Information about the driving behavior and the 

driving cycle could be used to remove differences in fuel efficiency due to differences in 

driving behavior and to make appropriate changes to the energy management strategy 

based on the driving cycle type resulting in greater EV range, more accurate range 

prediction, and reduced vehicle component wear. It could help a driver regulate driving 

habits and also be used by car insurance companies, some of which already offer 
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discounts to drivers who have completed a defensive driving course. The information 

obtained by the driving behavior classification algorithm proposed in this study could be 

used to aid in the decisions made by car insurance companies while setting insurance 

rates and offering discounts. 

 

In general, EVs have better efficiency in the city where the average speed is lower and 

the electric motor operates in a more efficient regime providing greater amounts of 

regenerative energy than on the highway where the average speed and the drag force to 

overcome are higher and the electric motor operates in a more inefficient regime with 

almost no regenerative energy. Existing methods (Constantinescu et al., 2010; He et al., 

2012; Jeon et al., 2002; Park et al., 2009; Ryu et al., 2010; Xu et al., 2012) involve 

identifying the driving cycle based on driving data and using a predefined control strategy 

or optimization scheme specific to the identified driving cycle to improve performance. 

Ryu et al. (2010) developed an identification strategy (referred to as a “stochastic fuzzy 

controller”) in which the average power and the standard deviation of the power were 

used to differentiate between two particular cycles. These methods either assume the 

vehicle is driven according to a particular driving cycle or incorporate a way to identify 

what driving cycle the vehicle is following, or most closely following, before 

implementing the appropriate energy management strategy. However, it is virtually 

impossible to find a typical driver driving exactly according to a predefined driving cycle. 

Driving cycles fail to capture the influence of unique trip details such as road signs, 

traffic lights, or other vehicles. Driving characteristics such as acceleration, average 

speed, braking, maximum speed, etc. vary from one trip to another even if the same 
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driver drives the same route. Besides being cycle-dependent, existing methods often rely 

on precise measurements of a number of vehicle parameters in real time. To obtain the 

necessary data, a variety of measurement tools such as accelerometers, position sensors, 

temperature sensors, etc. is needed, adding complexity and cost to the identification 

method and increasing the possibility of errors due to faulty measurements and failed 

sensors. An efficient method to classify driving cycles in real time in order to account for 

changes in the driving cycle type based on real-world conditions is needed. This would 

overcome the limitations posed by assuming the vehicle is driven according to a 

particular driving cycle or by identifying a particular driving cycle from a limited number 

of preselected driving cycles. 

 

The aggressiveness of acceleration and braking, in general, has a greater impact on the 

fuel economy of vehicles with internal combustion (IC) engines than the average speed 

(Cheng et al., 2010; Fiat, 2010). Knowles et al. (2010) conducted a study on the effect of 

driving behavior on EV performance and concluded that the journey speed was a more 

important factor than the number of junctions (starts/stops). Furthermore, previous 

research indicates that modifications to driving behavior could increase fuel economy in 

IC engines (Fiat, 2010; Van Mierlo et al., 2004). However, it is unclear whether or not 

these conclusions can be extended to EVs. Bingham et al. (2012) conducted a study on 

EVs that concluded that more energy could be saved by decreasing the amount of 

acceleration and deceleration. Research on driving behavior classification is lacking. 

Constantinescu et al. (2010) applied data mining techniques to real-time vehicle tracking 

data in order to classify drivers based on aggressiveness. However, this classification was 
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not done in real time. Similar to the fact that the driving cycle may change due to real-

world conditions, the driving behavior of a particular driver may also change between 

trips or even during a trip due to unforeseen circumstances (e.g., weather-related 

emergencies). Therefore, a method to classify driving behavior as aggressive or defensive 

based on real-time driving data is needed. This study develops a novel, real-time method 

to classify driving behavior as aggressive or defensive and driving cycle type as highway 

or urban. There are only a few examples of previous studies with a similar goal. 

Kolmanovsky et al. (2002) used a dynamic programming approach to reduce the 

dependence of the control strategy on any driving cycle. However, this resulted in a 

control strategy developed to perform best in an average sense against a “drive cycle 

generator”. Langari and Won (2005) developed an intelligent energy management system 

that could identify the driving environment, the driving style, and the vehicle operating 

mode. The strategy developed centered on parallel hybrid vehicles. 

 

2 Driving Cycle and Driving Behavior 

2.1 Driving Cycle 

In this study, driving cycles have been broadly divided into two categories based on the 

speed: highway and urban. Highway cycles are characterized by high speeds (greater than 

60 kmh
-1

) and very little, if any, instances of stopping. Urban cycles are characterized by 

low speeds (less than 60 kmh
-1

) and significant instances of stopping. For example, the 

highway fuel economy test cycle has an average speed of 77.7 kmh
-1

 and 6 s of stopping 

time out of 765 s (at the beginning and end) whereas the urban dynamometer driving 

schedule has an average speed of 31.5 kmh
-1

 and 259 s of stopping time out of 1369 s. 
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Certain driving cycles have sections that have the characteristics of highway driving 

cycles and sections that have the characteristics of urban driving cycles. These are 

categorized as hybrid driving cycles. 

 

2.2 Driving Behavior 

There are different ways to classify driving behavior. Broadly speaking, drivers can be 

classified as aggressive or defensive. Classification can be more specific to account for 

certain tendencies by grouping drivers as aggressive, attentive, calm, defensive, passive, 

polite, reckless, etc. Aggressive drivers tend to engage in harsh or sudden acceleration 

and braking and generally drive over posted speed limits. They tend to change lanes 

frequently, follow vehicles closely, overtake vehicles, and bend or break traffic 

regulations. Defensive drivers tend to engage in gentle or smooth acceleration and 

braking, and generally drive at or below posted speed limits. They try to avoid using the 

brake as much as possible preferring to let the engine, the gradient, or coasting slow the 

vehicle down. They anticipate changes in speed, do not change lanes frequently, follow 

vehicles at a safe distance, yield to other vehicles whenever possible, and follow traffic 

regulations. There is not a universal definition or set of rules to classify drivers as 

aggressive or defensive because of the complexity involved. Different studies have 

generated their own ways of describing driving behavior. Constantinescu et al. (2010) 

generated several increasing levels of aggressive driving based on the acceleration, 

braking, and speed of various drivers. De Vlieger et al. (2000) had a similar approach to 

classifying drivers as aggressive, calm, or normal based on the average acceleration for 

different city driving cycles. The acceleration values for city driving are 0.45-0.65 ms
-2
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for calm driving, 0.65-0.80 ms
-2

 for normal driving, and 0.85 to 1.10 ms
-2

 for aggressive 

driving. The accelerations for highway driving range from 0.08 ms
-2

 to 0.20 ms
-2

. 

Ericsson (2001) described up to 62 parameters that may be extracted from a given driving 

cycle. These parameters (such as deceleration factor, speed oscillation factor, and stop 

factor) may be used to describe driving behavior. Berry (2010) proposed a way to 

evaluate the aggressiveness of a driver based on the energy consumed per unit distance. 

These “aggressiveness factors”, computed based on the work done by vehicles with IC 

engines, were extended to driving cycles such that aggressiveness factors for various 

driving cycles could be computed. However, it is unclear how this would relate to other 

powertrains. A set of metrics to distinguish between aggressive and defensive driving 

behavior are presented in Section 3. 

 

2.3 Neural Networks 

Neural networks have been successfully used in classification, identification, and pattern 

recognition in applications such as roadway type detection (Won and Langari, 2005) and 

traffic congestion prediction (Park et al., 2009). In this study, multi-layer feed-forward 

neural networks were used. The neural networks were trained using the Levenberg-

Marquardt (1944) backpropagation algorithm. The neural networks have multiple layers 

with non-linear transfer functions, except for the output layer, which has a linear transfer 

function allowing the neural networks to produce outputs within any range. 
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3 Model 

In this study, an EV was simulated in MATLAB/Simulink with a driving cycle as its 

primary input. The secondary input was the choice between an aggressive or defensive 

driving algorithm. The simulation was run with eleven different driving cycles as inputs. 

The simulation was programmed to stop at the end of a driving cycle or when the state of 

charge of the battery dropped below 10%. Figure 1 shows the MATLAB/Simulink 

program with the associated inputs and outputs. 

 

3.1 Controller/Motor Model 

The model’s inputs are the driving cycle and the real speed and the outputs are the battery 

current, the electric motor torque, and the brake force. Table 1 shows the electric motor 

parameters used in this study. 

 

3.1.1 Driving Behavior Simulation 

The speed error, which is the difference between the driving cycle and the real (vehicle) 

speed, was computed. It was used to obtain accelerator and brake positions to simulate 

the commands of a driver driving the EV. Using accelerator and brake positions allows 

unique trip details to be taken into account. It was assumed that the accelerator and brake 

could take on any value between 0 and 1, with 0 being fully released and 1 being fully 

pressed. In addition to the steering wheel, the main control inputs of an EV are the 

accelerator position and the brake position. For a single-speed transmission, no other 

input is necessary to drive an EV. For a multi-speed transmission, the gear number or the 
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gear ratio would be an additional input. These accelerator and brake positions were then 

used to recalculate the speed error to feed to the electric motor drive. 

 

The simulation was run in two modes: aggressive and defensive. The aggressive driving 

mode was programmed to maintain a steady-state speed error whose absolute value was 

less than 1.6 kmh
-1

. The accelerator was fully pressed when the speed error was greater 

than 8 kmh
-1

 to allow for maximum acceleration. The brake was used to ensure the EV 

remained as close to the speed error as possible rather than letting the EV coast to 

decrease speed. The defensive driving mode was programmed to follow the driving cycle 

without setting any speed error limits. The accelerator was pressed when a positive speed 

error was encountered and released when a negative speed error was encountered. The 

accelerator was programmed to be pressed and released gradually allowing gentler 

acceleration and deceleration than generated by the aggressive driving algorithm. The 

brake was only used when the EV was more than 11.2 kmh
-1

 faster than the driving cycle 

or when the EV needed to be brought to a stop. In all other instances, the EV was 

controlled with the accelerator allowing for coasting and cruising. Figure 2 shows a plot 

of a 30-second driving cycle (speed reference) with the simulation set to follow it in the 

aggressive mode. The EV follows the driving cycle closely, the maximum steady-state 

speed error being less than 1.6 kmh
-1

. The accelerator and brake positions are shown in 

the same plot. It should be noted that the accelerator and the brake are never depressed 

simultaneously. This plot clarifies the relationship between the acceleration, deceleration, 

real speed, and accelerator and brake positions. 

 



 

 

13 

A plot was generated with the simulation set to follow the same 30-second driving cycle 

in the defensive mode. The result is shown in Figure 3. The differences between 

aggressive and defensive driving behavior become clear when comparing Figures 2 and 

3: defensive driving features gradual pedal presses and therefore gentler acceleration and 

deceleration than aggressive driving; the aggressive driving simulation switches between 

the accelerator and the brake five times whereas the the defensive driving simulation does 

so only twice; the maximum speed error in aggressive driving is 12.6 kmh
-1

 whereas it is 

57.8 kmh
-1

 in defensive driving; there is very little coasting in aggressive driving whereas 

defensive driving has almost three seconds of coasting from 11 s to 13 s and from 16 s to 

almost 19 s. The brake is pressed nine times in the aggressive driving simulation versus 

only twice in the defensive driving simulation. However, the error computed by 

subtracting the real speed from the speed reference is larger for defensive driving. Figure 

3 also illustrates the differences between the accelerator and brake positions for highway 

and urban driving. The first 10-11 s of the driving cycle can be classified as highway 

driving with relatively high speed and no braking. The accelerator position is 0.55 during 

the flat portion of the speed reference and the brake position is 0. The remainder of the 

plot can be classified as urban driving with relatively low speed and some braking. The 

accelerator position is consequently lower (0.33) during the flat portion of the speed 

reference and the brake position changes between 0 and 0.2. 

 

3.1.2 Driving Behavior Metrics 

The EV accelerations and velocities while following the 11 driving cycles aggressively 

and defensively were recorded. The average acceleration, the maximum acceleration, the 
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maximum deceleration, and the standard deviation of the acceleration were calculated. 

Only the net positive acceleration was considered while calculating the average 

acceleration since the net positive acceleration is equal to the net negative acceleration. 

The results for the 15 driving cycles used in this study are shown in Figure 4. As 

expected, the aggressive driving mode has higher values for all calculated metrics than 

the defensive driving mode, especially the average acceleration and the maximum 

deceleration. These values do not always fall within the ranges prescribed in the literature 

but are sufficiently different so as to allow one to clearly distinguish one type of driving 

behavior from the other. This definition ignores some of the legal and safety aspects of 

driving behavior and focuses more on fuel efficiency. 

 

 

3.2 Vehicle Model 

The vehicle model used to simulate the vehicle dynamics was the one used by Gantt et al. 

(2011). The relevant vehicle parameters for this study are shown in Table 2. These 

parameters are typical values for EVs found in the literature (Gantt et al., 2011; Xu et al., 

2011). The model’s inputs are the electric motor torque and the brake force and the 

outputs are the real speed and the distance covered. 

 

3.3 Battery 

Chen and Rincon-Mora (2006) developed a lithium-ion battery model capable of 

capturing the battery’s essential current-voltage characteristics. This model was used to 

simulate the lithium-ion battery in the EV model used in the present study. Table 3 shows 
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the battery parameters. The model’s input is the battery current, IP, and the model’s 

outputs are the battery voltage, VP, and the state of charge, SOC. 

 

4 Neural Network Approach 

The accelerator and brake positions are related to the acceleration, deceleration, and 

speed of an EV. From Figures 2 and 3, it is evident that driving an EV according to a 

driving cycle either aggressively or defensively would produce a unique combination of 

accelerator and brake positions. This study develops a method to classify driving 

behavior as aggressive or defensive and the driving cycle type as highway or urban using 

neural networks. There are several studies involving EVs, fuel cell EVs, and hybrid EVs 

that aim to improve efficiency and/or performance by using neural networks for pattern 

recognition. He et al. (2012) used a learning vector quantization neural network to 

identify driving patterns with an aim to reduce the sampling time needed by driving 

pattern recognition algorithms. Certain representative features of driving cycles such as 

the averages and maximums of the acceleration, deceleration, and speed and the 

percentage of idle time were used in the neural network training. Park et al. (2009) used 

neural networks to predict the road type and traffic congestion. Fourteen features to 

predict road types were selected including the averages and maximums of the 

acceleration and deceleration and the standard deviation of the acceleration. Jeon et al. 

(2002) developed a control strategy for parallel hybrid electric vehicles centered around 

identifying which representative driving cycle is closest to the current vehicle trip. 

Twenty-four characteristic parameters of driving cycles were used including average 

speed and averages and standard deviations of acceleration and deceleration. 
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Table 4 shows a list of the driving cycles used for training the neural networks in this 

study. Four different driving cycles, as shown in Table 5, were also used for testing the 

neural networks. These driving cycles were chosen to form a diverse group of conditions. 

Some were highway driving cycles, some were urban driving cycles, and some had 

features of both highway and urban driving cycles. It should be emphasized that the 

method developed here does not depend on the driving cycles used for training or testing. 

 

Driving data were collected during uniformly sized sample windows. The sample 

window size during which accelerator and brake positions were recorded was 120 s. 

Previous methods (He et al., 2012; Jeon et al., 2002; Langari and Won, 2005; Won and 

Langari, 2005) used a sample window size of around 120-180 s. In all cases, the first 120 

s of data were processed and fed to the neural network. The purpose of the EV simulation 

was to obtain a series of accelerator and brake positions. For each simulation run, an 

accelerator matrix was constructed with time in the first column and accelerator position 

in the second column, and a brake matrix was constructed with time in the first column 

and brake position in the second column. Once the EV’s accelerator and the brake 

positions during a 120-s sample window were obtained, five statistical parameters were 

computed for the accelerator and the brake positions: average, covariance, standard 

deviation, total, and variance. A column vector containing ten elements (five statistical 

parameters for the accelerator position and five statistical parameters for the brake 

position) was created to correspond to each matrix of accelerator and brake positions. 

This 10-element column vector was used as an input to the neural network. This 
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procedure was repeated for all 11 driving cycles. For each driving cycle, two column 

vectors were generated: one for aggressive driving and the other for defensive driving. A 

total of 22 inputs were obtained to train the neural network. The statistical parameters 

computed for all 15 driving cycles used for training and testing are listed in Table 6. 

 

A feed-forward, backpropagation neural network was implemented in MATLAB. The 

number of layers and the number of neurons within the particular layers were varied as 

will be discussed in Section 5. It must be noted that the number of neurons in any 

particular layer that is not the output layer is selected by the user. The number of neurons 

in the output layer depends on the output vector. The performance function was the Mean 

Square Error (MSE) function, which is 
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N
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21
 (1) 

 

where A is a vector of neural network outputs, T is a vector of desired outputs, also called 

targets, and N is the total number of training cases. The driving behavior, whether 

aggressive or defensive, was selected before running the simulation. Supervised training 

was chosen to train the neural network since the desired output, which in this case was 

the classification of driving behavior as aggressive or defensive, for each set of input 

matrices was known. In other words, the neural network was fed training data in order to 

train it to map a set of inputs to particular outputs (or targets). Then, when presented with 

new data, it would classify the data using the rules developed during training. In other 

words, new data similar to the training data would generate the same outputs as the 
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training data. This principle was used to create one neural network to classify driving 

behavior as aggressive or defensive, regardless of the driving cycle, and a second neural 

network to classify driving cycles as highway or urban, regardless of the driving 

behavior, by simply changing the targets used for training. 

 

5 Results and Discussion 

The EV model was simulated, both aggressively and defensively, for the 11 driving 

cycles in Table 4. The accelerator positions (A) and the brake positions (B) were 

recorded and the five statistical parameters previously mentioned were computed. The 

input matrix used to train the neural network had 10 rows, which contained the five 

statistical parameters for the A values followed by the five statistical parameters for the B 

values. The input matrix had 22 columns with 11 aggressive driving cycles in the first 11 

columns followed by 11 defensive driving cycles in the next 11 columns. The desired 

output matrix, also called the target matrix, was a 2x22 matrix. The first row had a “1” 

for aggressive driving and a “0” for defensive driving. The second row had a “1” for 

defensive driving and a “0” for aggressive driving. Therefore, the first 11 entries in the 

first column were ones followed by 11 zeroes and the first 11 entries in the second 

column were zeroes followed by 11 ones. In some cases, the neural network did not 

produce exactly one or zero. Therefore, any number greater than 0.5 was taken as a “1” 

and any number less than 0.5 was taken as a “0”. In each case, after training the neural 

network with inputs and targets, the neural network was simulated with the same inputs 

to see if it would produce the targets. In Section 5.3, the results of testing with fresh data 

(i.e., data not used in training) will be discussed. 
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5.1 Driving Behavior 

The 10x22 input matrix with A and B values was used to train the neural network. The 

number of layers was varied from one to four and the number of neurons in the hidden 

layers was varied from five to twenty, which affected the number of classification errors. 

Table 7 shows the best case with no classification errors and the lowest MSE, which was 

when the neural network had 4 layers and 20 neurons in each hidden layer. When 

presented with the 10x22 input matrix, the aggressive and defensive driving data were 

correctly classified as aggressive and defensive respectively. For every driving cycle, 

aggressive driving had a higher average, standard deviation, total, and variance for the 

accelerator and brake positions. The absolute value of the covariance between the 

accelerator and brake positions was higher for aggressive driving. The MSE value was 

7.01×10
-2

. Additionally, a 5x22 input matrix with only B values was used to train the 

neural network. The number of layers was varied from one to four and the number of 

neurons in the hidden layers was varied from five to twenty. Even when presented with 

only brake data, the neural network correctly classified driving data as aggressive or 

defensive. The MSE value was 3.39×10
-5

 for a neural network with 4 layers and 11 

neurons in each hidden layer, which is lower than the MSE value of 7.01×10
-2

 when 

using both the accelerator and brake information in the neural network. The neural 

network performs the task of classification with less error using only brake positions 

rather than accelerator and brake positions implying that using only the brake positions 

may be sufficient to distinguish between aggressive and defensive driving. The 

accelerator and brake are used by both aggressive and defensive drivers, but aggressive 
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drivers use the brake more frequently than defensive drivers. Defensive drivers tend to 

use the brake only in unexpected situations or when coming to a complete stop while 

aggressive drivers use the brake whenever they need to slow down. 

 

5.2 Driving Cycle 

After the neural network was successfully used to classify driving behavior, the driving 

cycles were used to train a second neural network to distinguish between highway and 

urban driving cycles. The input matrix was modified to exclude the five driving cycles 

marked with an asterisk in Table 4. The resulting input was a 10x12 matrix containing six 

driving cycles driven both aggressively and defensively. The six driving cycles were 

chosen based on the fact that the first 120 s of these cycles can clearly be classified as 

highway or urban. It is important to select some driving cycles that are highway cycles 

and some that are urban cycles in order to properly train the neural network. Based on 

this prior knowledge of the classification of the six driving cycles, a target matrix was 

created. The first row had a “1” for highway driving cycles and a “0” for urban driving 

cycles. The second row had a “1” for urban driving cycles and a “0” for highway driving 

cycles. The number of layers was varied from one to four and the number of neurons in 

the hidden layers was varied from five to twenty. Table 8 shows the best case, which was 

when the neural network had 4 layers and 5 neurons in each hidden layer. When given 

the 10x12 input matrix, the highway and urban driving cycles were correctly classified. 

Highway driving cycles have higher speeds than urban driving cycles, so the average and 

the total are higher for the accelerator positions. For the brake positions, highway driving 

cycles driven aggressively have averages and totals that are higher than or almost equal to 



 

 

21 

urban driving cycles driven aggressively. With defensive driving, however, highway 

driving cycles have similar or lower values than urban driving cycles. The standard 

deviation and the variance follow similar trends. The covariance between the accelerator 

positions and the brake positions tends to be higher for the highway driving cycles than it 

is for the urban driving cycles. The neural network is able to classify the driving cycle 

training data according to the target matrix regardless of whether the data represents 

aggressive driving or defensive driving. The MSE value was 9.12×10
-5

. 

 

Additionally, a 5x12 input matrix with only A values was used to train the neural 

network. The number of layers was varied from one to four and the number of neurons in 

the hidden layers was varied from five to twenty. When presented with only accelerator 

data, the neural network correctly classified driving cycles as highway or urban 

regardless of the driving behavior. The MSE value was 7.64×10
-5

 for a neural network 

with 4 layers and 10 neurons in each hidden layer, which is slightly lower than the MSE 

value 9.12×10
-5

 when using both the accelerator and brake information in the neural 

network. As comparison, the MSE value obtained by Langari and Won (2005) when 

identifying driving cycle segments was 1.62×10
-2

. The neural network performs the task 

of classification with less error using only accelerator positions rather than accelerator 

and brake positions. For driving cycle type, the accelerator positions were a better 

indicator of whether a cycle was highway or urban than the brake positions. Highway 

driving cycles have higher speeds than urban driving cycles, so the accelerator positions 

have higher values during a fixed sample window. 

 



 

 

22 

5.3 Testing 

After training both neural networks, one to classify driving behavior and the other to 

classify driving cycle, they were fed with four new driving cycles that were not used for 

training. These driving cycles are listed in Table 5. Table 9 shows the response of the 

neural network with 4 layers and 20 neurons in each hidden layer using A and B values. 

The same results were obtained when using the neural network with 4 layers and 11 

neurons in each hidden layer using only B values. No misclassification was encountered. 

The MSE values were 7.91×10
-3

 and 3.53×0
-3

 respectively when using A and B values 

and when using B value. It may be noted that the performance of the neural network 

using only B values is, once again, better than the neural network when using A and B 

values as indicated by a lower MSE value. 

 

Along with testing the ability to distinguish driving behavior, the ability to distinguish 

driving cycle type was also tested. The first 120 s of the four driving cycles are shown in 

Figure 5. As seen in the figure, the first three driving cycles (MODEM HyZem Road, 

OSCAR F.V5-15D15-40, and OSCAR G1.V5-15D40-70) have low speeds (<60 kmh
-1

), 

typical for urban driving cycles. The last driving cycle (TRL Motorway) has high speeds, 

typical for highway driving cycles. Table 10 shows the response of the neural network 

with 4 layers and 5 neurons in each hidden layer using A and B values. The same results 

were obtained when using the neural network with 4 layers and 10 neurons in each 

hidden layer using only A values. Again, no misclassification was encountered. The 

neural network results matched the driving cycle type that was predicted by visual 

inspection of Figure 5. The MSE values were 1.02×10
-2

 and 7.72×10
-4

 respectively. It 
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may be noted that the performance of the neural network using only A values is, once 

again, better than the neural network using A and B values as indicated by a lower MSE 

value. 

 

There were 15 driving cycles used in this study. Six of those driving cycles were used to 

train a neural network to classify driving cycles as highway or urban. Of the remaining 

nine driving cycles, the driving cycle type was not clear in every case. Some parts of 

these remaining driving cycles had features of highway driving cycles and other parts had 

features of urban driving cycles. It must be remembered that only the first 120 s of the 

driving cycles were used for this classification. Figure 6 shows an example of how the 

proposed strategy would classify a full driving cycle. The driving cycle was divided into 

seven 120-s sample windows. The first and the last sample windows are clearly urban 

driving and therefore classified as such. The second, third, and fifth windows have 

features of highway driving and were classified as such. The fourth and sixth windows 

could be classified as either, and the neural network interprets these windows as highway 

driving. A reason for the classification being highway rather than urban is that the fourth 

and sixth windows have speeds reaching over 60 kmh
-1

, which would result in higher 

accelerator positions leading to a classification as highway rather than urban. The driving 

behavior did not affect the classification of the driving cycle type. 

 

6 Summary, Conclusions, and Future Work 

A neural network-based strategy to classify driving behavior and driving cycle for EVs 

was developed. This strategy is an improvement and generalization over previous 
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methods that identify specific driving cycles rather than classifying driving behavior and 

driving cycle type. A method to simulate aggressive and defensive driving behavior for a 

wide variety of driving cycles was developed and implemented in MATLAB/Simulink. 

The accelerator and brake positions of a simulated EV following a given driving cycle 

aggressively or defensively during a 120-s sample window were obtained. Five statistical 

parameters (average, covariance, standard deviation, total, and variance) were calculated 

for the accelerator and brake positions. These calculated parameters contained 

information about the trip and were used as inputs to train a neural network with 11 

driving cycles driven both aggressively and defensively. The neural network with 4 

layers and 20 neurons in each hidden layer was found to accurately distinguish between 

aggressive and defensive driving when using the accelerator and brake positions. The 

same results were obtained when only the brake positions were used to train a neural 

network with 4 layers and 11 neurons in each hidden layer. Furthermore, when presented 

with fresh data comprising four driving cycles not used in training, the neural network 

was also able to correctly classify the driving data as aggressive or defensive. The effect 

of using two neural networks for classification, one that accepts accelerator and brake 

positions and one that accepts only brake positions, needs to be explored. 

 

Six of the 11 driving cycles were then selected based on the fact that they could be 

clearly classified as highway or urban, and the corresponding statistical parameters for 

both aggressive and defensive driving were used to train another neural network. The 

neural network with 4 layers and 5 neurons in each hidden layer was found to accurately 

classify driving cycles as highway or urban, regardless of driving behavior. The same 
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results were obtained when only the accelerator positions were used to train a neural 

network with 4 layers and 10 neurons in each hidden layer. When presented with fresh 

data comprising nine driving cycles not used in training, the neural network was able to 

correctly classify the driving cycles as highway or urban. When classifying an entire 843-

second driving cycle by breaking it up into 120-s sample windows, the neural network 

correctly classified the sections of the driving cycle. It was found that the classification 

did not depend on whether the driving cycle was driven aggressively or defensively. The 

effect of using two neural networks for classification, one that accepts accelerator and 

brake positions and one that accepts only accelerator positions, also needs to be explored. 

 

It must be emphasized that the strategy developed in this study differs from previous 

studies because it is independent of any particular driving cycle and provides real-time 

information about the driving behavior and the driving cycle. Future work includes 

experimental verification of the strategy. The classification needs to be more granular. 

Future studies need to take into consideration other inputs such as gear number for multi-

speed transmissions and the steering wheel position to more accurately classify driving 

behavior. The effect of the interaction of statistical parameters with each other has to be 

studied. The effect of the sample window size on the classification and its location 

relative to driving data also needs to be considered. For example, this study has not 

explored whether or not the classification shown in Figure 6 would change if the sample 

window size was decreased or increased or if the beginning of the sample window did not 

coincide exactly with the beginning of the driving cycle but was offset by some time. 
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List of Tables 

 

Table 1 Electric Motor Parameters. 

Peak Current (A) 256 

Peak Rotational Speed, ωmax (rpm) 9300 

Power, PM (kW) 80 

Torque (Nm) 280 

Type AC induction 

Voltage, VM (V) 375 

 

Table 2 EV Model Parameters. 

Air Density, ρair (kgm
-3

) 1.225 

Asphalt Friction Coefficient, μa 0.9 

Battery Capacity (kWh) 30 

Drag Coefficient, CD 0.35 

Frontal Area, Af (m
2
) 2.5 

Grade, θ (°) 0 

Inertial Correction Factor, δ 1.04 

Mass, m (kg) 1350 

Overall Gear Ratio, r 7.9:1 

Range (km) 100-192 

Rolling Friction Coefficient, μ 0.014 

Tire Radius, R (m) 0.3429 

Transmission Single-speed 

 

Table 3 Lithium-Ion Battery Parameters. 

Capacity (A·h) 80 

Number of cells in parallel, NP 1 

Number of cells in series, NS 96 

Type Lithium-Ion 

Voltage, VP (V) ~375 
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Table 4 Driving Cycles Used for Training (Andre, 2004; United States Environmental 

Protection Agency, 2013). 

Driving Cycle 

Number 

Name Duration (s) Length (km) Type 

1 ARTEMIS Highway Cycle* 1068 29.5 Highway 

2 ARTEMIS Urban Cycle 993 4.9 Urban 

3 Elementary Urban Cycle 195 1.0 Urban 

4 Extra-Urban Driving Cycle 400 7.0 Highway 

5 Highway Fuel Economy Driving Schedule 765 16.5 Highway 

6 LA92 Dynamometer Driving Schedule* 1435 15.8 Hybrid 

7 New European Driving Cycle* 1220 11.0 Hybrid 

8 New York City Cycle 598 1.9 Urban 

9 SC03 Supplemental FTP Driving 
Schedule* 

600 
5.8 Urban 

10 Urban Dynamometer Driving Schedule* 1369 12.0 Urban 

11 US06 Supplemental FTP Driving 

Schedule 
600 

12.9 Highway 

 

Table 5 Driving Cycles Used for Testing (Andre, 2004; Barlow et al., 2009; French 

National Institute for Transport and Safety Research (INRETS), 2013). 

Driving Cycle 

Number 

Name Duration (s) Length (km) Type 

12 MODEM HyZem Road Driving Cycle 843 7.0 Hybrid 

13 OSCAR F.V5-15D15-40 Driving Cycle 423 1.0 Urban 

14 OSCAR G1.V5-15D40-70 Driving Cycle 455 1.0 Urban 

15 TRL Motorway Driving Cycle 643 10.9 Highway 
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Table 7 Driving Behavior Classification Results using A and B Values with 4 Layers and 

20 Neurons per Hidden Layer. 

Aggressive Driving Defensive Driving 

Driving 
Cycle 

Target Classification Neural Network 
Classification 

Driving 
Cycle 

Target Classification Neural Network 
Classification 

First 

Row 

Second 

Row 

First 

Row 

Second 

Row 

First 

Row 

Second 

Row 

First 

Row 

Second 

Row 

1 1 0 1.004 0.001 1 0 1 0.008 0.994 

2 1 0 1.004 0.054 2 0 1 0.014 0.979 

3 1 0 1.004 0.005 3 0 1 0.019 0.983 

4 1 0 0.984 -0.002 4 0 1 -0.012 1.125 

5 1 0 1.002 -0.001 5 0 1 0.007 0.995 

6 1 0 0.994 0.009 6 0 1 0.002 1.015 

7 1 0 1.005 0.005 7 0 1 0.018 0.988 

8 1 0 0.987 0.014 8 0 1 -0.029 1.020 

9 1 0 1.002 0.005 9 0 1 0.014 0.989 

10 1 0 0.839 -0.002 10 0 1 0.009 0.997 

11 1 0 1.004 0.002 11 0 1 -0.098 0.932 
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Table 8 Driving Cycle Classification Results using A and B Values with 4 Layers and 5 

Neurons per Hidden Layer (“1” in the first row represents highway, “0” in the first row 

represents urban, “1” in the second row represents urban, “0” in the first row represents 

highway). 

Aggressive Driving Defensive Driving 

Driving 

Cycle 

Target Classification Neural Network 

Classification 

Driving 

Cycle 

Target Classification Neural Network 

Classification 

First 

Row 

Second 

Row 

First Row Second 

Row 

First 

Row 

Second 

Row 

First 

Row 

Second 

Row 

2 0 1 0.002 1.002 2 0 1 0.004 1.005 

3 0 1 0.012 0.998 3 0 1 0.005 1.006 

4 1 0 0.996 0.005 4 1 0 0.999 0.001 

5 1 0 0.996 0.005 5 1 0 1.180 -0.185 

8 0 1 0.005 1.005 8 0 0 0.062 0.959 

11 1 0 0.999 0.001 11 1 1 1.039 -0.034 

 

Table 9 Driving Behavior Testing Results (A and B values, Neural Network with 4 

Layers and 20 Neurons per Hidden Layer). 

Aggressive Driving Defensive Driving 

Driving 

Cycle 

Expected 

Classification 

Neural Network 

Classification 

Driving 

Cycle 

Expected 

Classification 

Neural Network 

Classification 

First 

Row 

Second 

Row 

First 

Row 

Second 

Row 

First 

Row 

Second 

Row 

First 

Row 

Second 

Row 

12 1 0 0.976 -0.031 12 0 1 0.010 1.006 

13 1 0 1.067 -0.027 13 0 1 0.370 0.714 

14 1 0 1.077 -0.065 14 0 1 0.129 0.870 

15 1 0 0.782 0.432 15 0 1 0.479 0.923 
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Table 10 Driving Cycle Testing Results using A and B Values with 4 Layers and 5 

Neurons per Hidden Layer. 

Driving Cycle Aggressive Driving Defensive Driving 

Neural Network 
Classification 

Classification 
Result 

Neural Network 
Classification 

Classification 
Result 

First Row Second Row First Row Second 

Row 

12 0.086 0.908 Urban 0.039 0.964 Urban 

13 
0.001 1.007 Urban -0.007 1.017 Urban 

14 0.007 1.000 Urban 0.023 0.991 Urban 

15 0.768 0.256 Highway 0.747 0.202 Highway 

 

List of Figures 

Figure 1 MATLAB/Simulink Electric Vehicle Simulation Block Diagram. 
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Figure 2 Accelerator Position, Brake Position, and Real Speed for 30-second Example 

Driving Cycle (Aggressive Driving). 

 

Figure 3 Accelerator Position, Brake Position, and Real Speed for 30-second Example 

Driving Cycle (Defensive Driving). 
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Figure 4 Maximum Acceleration, Maximum Deceleration, Standard Deviation of 

Acceleration, and Average Acceleration for 15 Driving Cycles. 

 

Figure 5 First 120 s of Four Driving Cycles Used for Testing the Neural Network 

Driving Cycle Classification Algorithm. 
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Figure 6 Driving Cycle Classification for Sections of MODEM HyZem Road Driving 

Cycle. 
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ABSTRACT 

Due to the limited range and long charging time for electric vehicles, proper utilization of 

the stored battery energy is crucial. Current methods for electric vehicle range estimation 

do not help the driver to formulate a driving strategy based on trip parameters (e.g., trip 

speed) related to power savings. This can be done by predicting the driving range based 

on optimal trip parameters prior to the trip enabling the driver to formulate a suitable 

driving strategy. This study proposes a novel strategy that presents a number of optimal 

trip speeds to the driver, along with the total trip time corresponding to a predicted range. 

The optimal speeds were obtained by solving a multi-objective optimization problem that 

maximized electric motor efficiency and minimized power consumption. Two approaches 

to calculate the objective functions were considered: using constant battery voltage and 

using battery voltage as a function of the state-of-charge. Pareto-optimal fronts were 

obtained and a plot of the predicted range and trip times for optimal speeds was created. 
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It was found that the shape of the fronts was not affected by the approach; however, the 

range was overestimated when a constant battery voltage was used. 

Keywords: Electric vehicle, driving strategy, range prediction, multi-objective 

optimization, genetic algorithm 

List of Symbols 

a     Acceleration (ms
-2

) 

Af     Frontal area (m
2
) 

β     Fraction of vref used as a stopping criterion 

Cap     Battery capacity (A·h) 

CD     Drag coefficient 

CTransient_L    Battery long transient capacitance (MF) 

CTransient_S    Battery short transient capacitance (MF) 

e     Speed error (kmh
-1

) 

FD     Aerodynamic drag force (N) 

Fr     Friction force (N) 

Ft     Traction force (N) 

g     Gravitational acceleration (ms
-2

) 

G     Overall gear ratio 

H     Electric motor efficiency 

Ia     Armature current (A) 

Icell Current flowing through an individual battery cell 

(A) 

If     Field current (A) 
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IP     Battery pack current (A) 

K     Geometric constant (VA
-1

·(rads
-1

)
-1

) 

KP     Proportional gain 

κ     Knee value 

La     Armature inductance (H) 

m     Vehicle mass (kg) 

NP     Number cells in parallel 

NS     Number cells in series 

P     Power consumption (W) 

R     Tire radius (m) 

Rg     Range (km) 

RTransient_L    Battery long transient resistance (mΩ) 

RTransient_S    Battery short transient resistance (mΩ) 

RSeries     Battery series resistance (mΩ) 

Ra     Armature resistance (Ω) 

SF     Switching function 

SOC       State-of-charge 

SOCinit       Initial state-of-charge 

t        Time (s) 

T* Time period during which vref can be maintain by 

the battery (min) 

v     Real vehicle speed (kmh
-1

) 

VC_L     Battery long transient capacitor voltage (V) 



 

 

42 

VC_S     Battery short transient capacitor voltage (V) 

Vcell     Voltage of an individual battery cell (V) 

vmax     Maximum speed (kmh
-1

) 

vmin     Minimum speed (kmh
-1

) 

VOC     Open-circuit battery voltage (V) 

VP     Battery pack voltage (V) 

vref     Reference speed (kmh
-1

) 

VT     Terminal voltage (V) 

x     Distance (m) 

μ     Rolling friction coefficient 

ρair     Air density (kgm
-3

) 

τ     Electric motor torque (Nm) 

ω     Rotational speed (rads
-1

) 

Θ     Time at which objective functions are calculated (s) 

 

1. Introduction 

Electric vehicles (EVs), like most vehicles, have a limited range. However, it 

takes much longer to recharge an EV than to refuel a conventional diesel or gasoline 

vehicle. Additionally, charging stations for EVs are not as plentiful as fueling stations for 

Internal Combustion (IC) engines. Therefore, efficient use of the stored energy in the EV 

is critical. It is very important to formulate a driving strategy (characterized by the 

specific values of acceleration, speed, etc.) that uses the stored energy in the most 

efficient way to obtain a desired range and trip time. It is also beneficial to predict the 
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driving range based on optimal parameters (acceleration, speed, etc.) that characterize a 

driving strategy prior to the trip. 

 Battery SOC methods generally focus on accurately determining the battery SOC 

(analogous to the fuel gage on a conventional vehicle) in order to obtain an estimate of 

how much usable energy is left. Since the distance that was covered while depleting the 

battery from 100% to the current SOC is known, the range available from the residual 

SOC can be approximately estimated. There are several studies on range estimation using 

battery SOC methods (Ceraolo and Pede, 2001; Hansen and Wang, 2005; Shen et al., 

2005; Szumanowski and Chang, 2008; Smith et al., 2010; Sun et al., 2011; Alvarez 

Anton et al., 2013; Baronti et al., 2013; Du et al., 2013). This information, while 

important, is insufficient by itself because the battery's residual energy can be used in 

many different ways depending on how the driver executes the rest of the trip. It should 

be used optimally to fulfill the driver's objective; however, the driver does not have any 

driving strategies presented to properly utilize the residual energy of the battery. 

Additionally, road conditions may change during the trip as well, and the existing 

methods mostly fail to capture such variable effects as they are inherently averaging 

methods. 

 Energy-based methods of range estimation involve using current or recent trip and 

vehicle data to calculate the energy or power consumption. This data is then used to 

predict the vehicle range based on the remaining battery capacity or fuel. Chen et al. 

(2012) used an Artificial Neural Network (ANN) to predict the residual driving range and 

driving period for an IC engine vehicle. The input parameters were the fuel capacity 

(remaining fuel), engine speed, vehicle speed and weight, and road slope. The ANN was 
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able to predict the residual driving range with a maximum error of 2.2-4.0 km out of a 

total range of about 12-85 km and the residual driving period with a maximum error of 

14-25 s from the actual period of 40 minutes. This approach provides useful information 

to the driver during the duration of the trip based on instantaneous driving parameters. 

However, the driver does not know the expected range before starting the trip. 

Additionally, no optimization of trip parameters was performed. A method for estimating 

the energy consumption of EVs and plug-in hybrid EVs under real-world driving 

conditions was presented by Shankar and Marco (2013). This method used an ANN 

trained using trip and vehicle parameters such as average speed, average acceleration, 

total distance travelled, total duration, etc. to predict the road category and traffic 

congestion and, based on this classification, the EV energy consumption per unit distance 

was predicted. Prediction results of this method varied in accuracy from 20-30% to 70-

80% of the measured energy consumption. The authors suggested that their proposed 

method would enable users to better predict the range of EVs since the energy 

consumption per unit distance and total available energy would be known. Once again, 

the driver has no knowledge of the expected range given the conditions mentioned in this 

paper to formulate a driving strategy. A similar study was also reported by Sadrpour et al. 

(2013). Another strategy was proposed by Kim et al. (2013) to predict the immediate 

future power requirement of an EV based on power consumption history, acceleration 

and speed, and the road information from a pre-downloaded map. A drawback of this 

reported strategy is that it is a passive method that only predicts the power requirement 

based on the driver’s actions. It does not tell the driver how to formulate a driving 
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strategy. In this study, the goal was to protect the battery; however, such information 

could also be used in range estimation. 

Generally, the three parameters associated with a trip are the distance (range), the 

speed, and the trip time. Therefore, knowing the range is not always sufficient for a driver 

because the trip time is also important. Lipp and Boyd (2014) listed several applications 

where trip time minimization was either the primary goal or highly desirable. Zhang and 

Rice (2003) developed a method to predict the short-term travel time of freeway drivers 

using sensor data from the road. Moreover, the driving situation, i.e., acceleration, speed, 

etc., which depend on road conditions, is important as well. There are several studies 

(Cheng et al., 2010; Fiat Eco: Drive, 2010; Knowles et al., 2012; Van Mierlo et al., 2004; 

Bingham et al., 2012) to support the notion that driving parameters, such as the harshness 

of acceleration or braking, the average trip speed, the number of starts or stops, all 

influence the vehicle energy consumption and, consequently, the range. Moreover, in 

order to properly utilize the EV battery's stored energy, it is important to formulate a 

driving strategy that negotiates the predicted range in an optimal manner. To accomplish 

this, one must operate the EV in the most efficient regimes of its various components 

(battery, motor, etc.). 

 In this paper, a strategy is presented where a number of optimal speeds are 

presented to the driver along with the range and total trip time corresponding to those 

optimal speeds. Then the driver chooses a speed based on one or more higher-level 

decision-making criteria such as distance to destination, total trip time, etc. Knowing the 

range and total trip time for multiple optimal speeds prior to a trip gives the driver 

flexibility in choosing a speed that would give a better range while properly utilizing the 
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stored energy of the EV. This is especially useful in a situation where the driver wants to 

get to a charging station with a low battery charge. Thus, the primary motivation of this 

paper is to predict the range of an EV for optimal speeds based on solving the associated 

optimization problem. 

 

2. Problem Definition 

The range (distance) that can be traveled by an electric vehicle travelling at a 

constant speed is 

  *TvR refg   (1) 

where vref is the constant vehicle speed and T* is the time during which vref can be 

feasibly maintained by the battery. However, in practice, there is a small difference 

between the real vehicle speed and vref. Thus, vref can be treated as the commanded or 

desired speed. The instantaneous speed error is 

  vve ref   (2) 

 In steady state, vref and v are very close. In order to maximize the range, the time, 

T*, should be maximized. This time, T*, depends on the energy stored in the battery and 

the power consumption. Since the battery energy is a constant, the lower the power 

consumption, the longer the time period (T*) during which vref can be feasibly maintained 

by the battery. Consequently, to have a maximum value of T*, the vehicle power 

consumption should be minimized. On the other hand, the electric motor, which produces 

the desired torque for the EV, has an efficiency that also depends on the speed, vref, and 

should be maximized. Therefore, it is important to find the optimal value of vref that 

minimizes power consumption as well as maximizes electric motor efficiency. The 
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dependence of power consumption and efficiency on vref is shown in Fig. 1. This figure 

was developed using models described by Larminie and Lowry (2012). From Fig. 1, it is 

seen that the objectives are conflicting in nature. 

 Therefore, range prediction of an EV based on a constant optimal speed is a 

Multi-Objective Optimization Problem (MOOP) with conflicting objectives and may be 

formulated as follows. 

  
  

  

min |

max |

P t

H t

P f v t

H f v t








 (3) 

subject to 

  

10

0

maxmin







H

P

vvv ref

 (4) 

The power consumption to be minimized and the efficiency to be maximized were 

measured at t = Θ. The calculation of Θ will be discussed in Section 4. The real vehicle 

speed (v) was the decision variable of the present optimization problem since it is one of 

the prime controllable variables that affect both power consumption and efficiency. The 

search range for the vehicle speed was taken to be from vmin (8 kmh
-1

) to vmax (112 kmh
-1

). 

Drivers do not typically drive slower than 8 kmh
-1

 (very close to walking speed) and 112 

kmh
-1

 is close to the top speed of EVs and the typical speed limit on US highways. There 

are other reasons for using the vehicle speed as the decision variable: familiarity of 

drivers with speed, rather than other parameters like electric motor rotational speed, 

torque, etc., road signs generally use speed-related guides for drivers (e.g., speed limits), 

and driving cycles, which are generated for simulation and testing purposes, are simply 

speed traces. In addition, using speed instead of parameters like motor current or torque 



 

 

48 

as the decision variable allows easy interpretation of the optimization results. Finally, it 

allows easy decision-making for related trip objectives such as trip time. 

 Evolutionary Algorithms (EAs) were successfully applied to solve various single-

objective optimization problems and MOOPs (Jain et al., 2009; Ribau et al., 2013; Desai 

et al., 2010; Dandurand et al., 2013; Shahi et al. 2011). Sometimes, EA-based hybrid 

methods are also used to solve vehicle problems (Baby Anitha and Duraiswamy, 2012; 

Niu et al., 2013). Meng et al. (2013) used extreme learning machines to obtain real-time 

Pareto-optimal solutions for an extended range EV based on objectives of IC engine 

efficiency, speed, and torque. In this paper, vehicle range estimation is solved using a 

Multi-Objective Genetic Algorithm (MOGA). In order to solve the MOOP, appropriate 

models of each objective were formulated according to the concepts used in both 

approaches. Then, based on these models, a set of Pareto-optimal solutions was 

generated. Finally, a set of preferred optimal (alternative) solutions of EV speed, v, was 

selected from the Pareto-optimal front based on Multi-Criteria Decision-Making 

(MCDM) techniques and using higher-level information of the decision maker (i.e., the 

driver). 

 

3. EV Model to Calculate Efficiency and Power 

In the present study, the following models of different EV components were used 

to calculate EV efficiency and power. The models used for the EV simulations, including 

most of the relevant parameters, are well described in the literature (Larminie and Lowry, 

2012; Gantt et al., 2011; Xu et al., 2011). 
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3.1 Electric Motor Model 

The relevant electric motor parameters are shown in Table 1. The model’s inputs 

are VP, vref, v, ω, and the model’s outputs are IP and τ. The speed error was given in 

Equation 2. A proportional controller was used for speed control. The switching function 

( 11  SF ) of the electric motor is 

  eKSF P  (5) 

where KP = 1 for this study. The parameters VT, Ia, IP, and τ are, respectively, 

  SFVV PT   (6) 

   dtRIKIV
L

I
t

aafT

a

a  
0

1
  (7) 

  SFII aP   (8) 

  fa IKI  (9) 

3.2 Battery Model 

 The battery model’s input is IP and the model’s outputs are VP and SOC. By 

assuming VP to be a constant, the battery model is simplified to exclude SOC and voltage 

effects. The relevant battery parameters are shown in Table 2. The parameters Icell and 

SOC are 

  
P

P
cell

N

I
I   (10) 

  dt
Cap

I
SOCSOC cell

init   (11) 

3.3 Vehicle Model 

The EV model’s input is τ and the model’s outputs are v, x, and ω. The parameters 

FD, Fr, and Ft are, respectively, 
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  2

2

1
vCAF DfairD   (12) 

  mgFr   (13) 

  
R

G
Ft


  (14) 

 Assuming the road has no gradient, neglecting the force due to the inertia of 

the rotating wheels, and having all the braking force come from the electric motor, the 

acceleration is 

  

21

2
air f D

D

G
A C v mg

FF Ft r Ra
m m


  

 
   (15) 

 The parameters v, x, and ω are, respectively, 

  



0

adtv  (17) 

  



0

vdtx  (16) 

  
R

vG
  (18) 

The objective function for efficiency, H, is 

    H

P P

f v t
I V

 



 (19) 

The objective function for power, P, is 

    P P Pf v t I V   (20) 

 

4. Proposed Approaches for Range Prediction 

Two approaches are proposed here to predict EV range along with optimal speed and 

trip time based on two different scenarios. Approach 1 is based on using constant battery 
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voltage. It allows one to study the relationship between the objectives and how they are 

affected by the decision variable without extraneous effects such as varying battery 

voltage. However, Approach 1 is an ideal case, which is not applicable in a real driving 

situation because the battery voltage decreases as SOC decreases. The more realistic EV 

driving scenario, i.e., battery voltage as a function of the state-of-charge, is adopted in 

Approach 2. 

Fig. 2 represents a typical EV simulation as a function of time, assuming a zero road 

gradient and no stop signs, traffic congestion, etc. Drivers typically choose a vehicle 

speed by setting an accelerator pedal position or a cruise control setting. In Fig. 2, vref 

represents the commanded constant speed. The vehicle is initially at rest at time t = 0 

with a fully charged battery (SOC = 1). Due to its acceleration and the controller type 

(proportional) used, initially speed transients are observed. After some time v reaches a 

steady-state value close to vref. The steady-state vehicle speed is always lower than vref 

because the speed error is used to drive the motor if a proportional controller is used. For 

the proportional controller used, the value of v is always within 98.3% of vref. The 

acceleration period is excluded from the calculation of T*. The time, t1, at which the 

vehicle speed reaches within 98.3% of vref is the starting time to measure T*. As the 

simulation continues, SOC decreases with time, t. As a result, VP starts to drop, resulting 

in a reduction of v. 

 At time t2, the battery’s voltage has decreased to a point that it can no longer 

maintain a constant speed. At time t3, the battery has almost run out of energy (SOC is 

around 0.1, depending on the value of vref) and the speed decreases substantially such that 

v is no longer close to vref. The speed becomes too slow for accurate range prediction. At 
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this speed (called the termination criterion, βvref, which is some fraction of vref) the 

vehicle speed simulation is stopped. It must be noted that fulfilment of the termination 

criterion was only considered as valid after the steady-state speed was achieved (a = 0). 

The value of T* in Equation 1 can be calculated as the time interval between t1 and the 

termination criterion. Depending on the termination criteria, if t3 is the time at which the 

vehicle simulation is stopped, T* becomes t3 - t1 and the value of Θ mentioned in Section 

2 is the same as t3. The values of v, P, and H are recorded at time t3. Since vref and v are 

very close (v is within 98.3% of vref), to predict the range vref is used. 

 Depending on the selection of the termination criterion, the value of T* varies. 

Furthermore, T* also depends on various considerations of the EV model. The two 

approaches described above to measure T* (based on various considerations of the EV 

model and the termination criterion) are described as follows. 

 

4.1 Approach 1: Constant Battery Voltage 

By considering a constant battery voltage throughout the entire vehicle 

simulation, v reaches a constant value after the initial acceleration period. That means, by 

assuming that VP is constant, it is possible to have a constant speed until the battery 

completely runs out of energy. For this scenario, Fig. 2 is modified as shown in Fig. 3. 

Therefore, a single termination criterion is chosen: when SOC reaches a specified limit. 

Normally, SOC is not allowed to reach zero to protect the battery. Therefore, the 

termination criterion was taken to be SOC = 0.01. This occurs at t4 in Fig. 3. The value of 

T* = t4 - t1 and t4 = Θ. It may be noted that the actual value of t4 varies with vref. 
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4.2 Approach 2: Battery Voltage as a Function of SOC 

In Approach 2, VP is a function of SOC. As SOC decreases, so does VP and the 

battery is not able to maintain v close to vref after a certain SOC value as shown in Fig. 2. 

This SOC value is different for different batteries and speeds. The battery model 

presented in Section 3.2 was modified to include the battery’s dependency on SOC. The 

lithium-ion battery model presented by Chen and Rincon-Mora (2006) was used. The 

model is briefly described as follows (in addition to Equations 10 and 11) 
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 The model constants are in Table 3. The first part of the trip (starting from rest to 

a steady-state speed) is similar to the trip shown in Fig. 2. However, as the SOC 

decreases, so do v and VP. The motor drive draws a higher current from the battery to 

maintain a constant speed for as long as possible. Between times t2 and t3, v is close to vref 

but cannot be maintained at a constant value due to the deteriorating SOC. As t 

approaches t3, the SOC and VP decrease to the point where v can no longer be maintained 

close to vref. The vehicle speed drops until it is below some fraction, β, of vref at t3. The 

value of T* is now (t3 - t1) and t3 = Θ. The value of T* is different for different values of 

β. Additionally, during the MOOP, the instantaneous efficiency and power at the end of 
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the simulation are considered. Therefore, the termination criterion is critical. If it is too 

lax, the vehicle speed will differ significantly from the commanded speed, but would be 

preferentially chosen by MOGA since the power would be lowered as the vehicle loses 

speed. Thus, unlike in Approach 1, the simulation process in Approach 2 was stopped 

based on either one of the following two termination criteria, SOC < 0.01 or v < βvref, 

whichever was satisfied first. 

For the EV model used in this study, it was observed that steady-state speed (v) was 

always within 98.3% of vref. This value was a result of the proportional speed controller 

and gain value used. Fig. 4 shows the steady-state speed (v) for three different reference 

speeds (vref). It can be seen that v is always within 98.3% of vref. The upper limit for β was 

found to be 98.4%. Beyond this, v is not guaranteed to reach a steady-state value within 

βvref for all values of vref. Keeping in mind the scenario described above for Approach 2, 

the termination criterion, β, was taken to be 98.3%. It is clear that it is important to pick 

the value of β carefully. If it is too low (significantly below 98.3%), the range will be 

overestimated since the simulation will continue for a longer time period at a speed that is 

not close to the reference speed. On the other hand, if it is too high (above 98.4%), the 

range will be underestimated since the simulation will be terminated prematurely 

whenever the vehicle speed first begins to drops as a result of decreasing battery voltage. 

 

5. Multi-Objective Genetic Algorithm 

Multi-Objective Genetic Algorithms are a class of tools based on Genetic 

Algorithms (GAs) to solve multi-objective optimization problems having conflicting 

objectives. A GA is an optimization technique that mimics the principle of natural 
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selection and natural genetics (Goldberg, 1989) to find the best solution, with respect to 

an objective function for an engineering problem. Genetic algorithms operate on a 

population of feasible solutions by applying the principle of “survival of the fittest” to 

successively produce better approximations in each generation (i.e., iteration of the 

algorithm). During each generation, a new set of solutions is created by the process of 

selecting individuals according to their level of fitness (i.e., value of their fitness 

functions) and breeding them together using operators (such as crossover and mutation) 

borrowed from natural genetics. This process leads to the evolution of populations of 

individuals that are better suited to their environment (i.e., they have better objective 

functions) than the individuals that they were created from, just as in natural adaptation. 

The working principle of a binary-coded GA is lucidly described by Nandi (2012). 

 Unlike a single-objective optimization problem where the objective is to find a 

single solution, the task of an optimizer in a MOOP is to obtain a set of solutions based 

on the concept of domination by comparing two solutions on the basis of whether or not 

one dominates the other solution or not. The plot of the objective functions for the non-

dominated solutions is called a non-dominated front. If the non-dominated solutions are 

optimal in terms of the objectives, then the non-dominated front is called the Pareto-

optimal front and the solutions lying on the Pareto-optimal front are called Pareto-optimal 

solutions. Thus, the primary goal in a multi-objective optimization problem is to obtain a 

set of solutions as close as possible to the true Pareto-optimal front in addition to being 

spread out as diversely as possible throughout the Pareto front. Optimization techniques 

based on GAs were found to be most suitable to solve such kind of multi-objective 

optimization problems because a GA is itself a population-based algorithm. In the present 
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work, one of the most popular non-dominated sorting GA, NSGA-II (Deb et. al., 2002) 

was adopted. 

Fig. 5 describes the working procedure of a six bit binary-coded NSGA-II in order to 

solve the problem of predicting EV range based on optimal speeds obtained by the 

minimization of P and the maximization of H using vref as the decision variable. For a 

given set of GA parameters, such as population size = 6 (in order to obtain a maximum of 

6 solutions), maximum number of generations = 10 (set as the termination criterion of the 

MOGA), chromosome length = 6 (6 bits are considered to encode the value of the 

decision variable, vref), tournament size = 2, mutation probability = 0.01, and crossover 

probability = 0.98, a maximum of six non-dominated solutions can be obtained after a 

complete run of the MOGA. For each speed, the EV simulation was run for a certain time 

period as determined by the termination criteria stated in Approaches 1 and 2 (described 

in Sections 4.1 and 4.2, respectively). The EV power and efficiency were recorded at the 

end of each time period. By plotting the values of power and efficiency corresponding to 

each speed, a non-dominated front (i.e., Pareto front) was obtained. 

 In order to verify the results, exhaustive searches of the objective functions were 

conducted. The vehicle speed was varied from 8-112 kmh
-1

 in increments of 1.6 kmh
-1

 

and the corresponding H and P values were calculated and plotted, along with the GA 

results for comparison. 

 Although there are advantages to knowing the range of each objective for Pareto 

optimality and the shape of the Pareto-optimal front itself in a problem for adequate 

decision-making, the task of choosing a single preferred Pareto-optimal solution is 

important because the user finally adopts the preferred single solution for 
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implementation. Various MCDM techniques are available and may be adopted either 

before the optimization (a priori approach), after the optimization (a posteriori approach), 

or during the optimization process (progressive approach). In the present work, an “a 

posteriori” approach was adopted where the selection of a set of preferred solutions was 

made by analyzing the knee value (Branke et al., 2004) of each solution on the Pareto 

front. Sometimes, the shape of the Pareto-optimal front is such that there may be 

solutions where a small improvement in one objective will lead to a large deterioration in 

other objectives, which makes moving in either direction unattractive. For a MOOP that 

seeks to maximize f1 and minimize f2, a knee value of the i
th

 solution is 
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A solution point having a higher knee value than that of others is said to be a 

stronger knee point. Without any knowledge about the user’s preferences, it may be 

argued that the stronger knee point is the most likely to be interesting for the decision 

maker, in this case, the driver. 

 

6. Results and Discussion 

Determining EV range is a multi-objective optimization problem (as described in 

Section 2). In order to solve this problem, a MOGA (presented in Section 5) is adopted 

here considering two different approaches (Approaches 1 and 2, presented in Section 4) 

based on a typical EV model (discussed in Section 3). The results of solving the MOOP 

for the two approaches are presented in this section. 
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 The vehicle parameters adopted for the present study are shown in Table 4, and 

the relevant GA parameters used to solve the present problem are shown in Table 5. After 

running the MOGA, a non-dominated front with a maximum of 50 non-dominated 

solutions was obtained. An MCDM strategy was applied based on the knee concept 

(Branke et al., 2004) to identify the 20 best Pareto-optimal solutions out of the 50 non-

dominated solutions. Corresponding to these 20 Pareto-optimal solutions, the range and 

trip time are presented to the driver for trip planning. 

6.1 Approach 1: Constant Battery Voltage 

In Approach 1, a constant battery voltage is assumed. While carrying out the 

multi-objective optimization, the calculation of power and efficiency are made at SOC = 

0.01. According to Approach 1, this task may be performed by two ways: based on the 

steady-state forms of the EV model equations or using an EV model simulation that 

accounts for vehicle acceleration. The steady-state equations of the EV model are 
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Table 6 presents calculated values of EV efficiency and power, as well as the 

corresponding time, using the simulation and steady-state methods (for vref = 48 kmh
-1

). 

From Table 6, the efficiency and power resulting from both methods are the same. To 

compare the computational time, both methods were coded in MATLAB R2013a and run 
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on an Intel® Core
TM

 i5-2400 computer (@ 3.1 GHz with 4 CPUs). The steady-state 

method took 0.0071 s on average and the simulation method took 0.051 s on average. 

However, it was found that the calculated values of T* using the steady-state method 

were 3.6 min higher than those obtained through the simulation method. As a result, the 

steady-state method predicts a higher range than the range predicted by running the 

simulation since the calculation of range is made based on Equation 1. This is due to the 

fact that the steady-state method assumes the vehicle is moving at vref throughout the trip 

without accounting for the initial acceleration period during which the vehicle speed is 

less than vref. The simulation method, on the other hand, completely neglects the distance 

covered by the vehicle during acceleration because Equation 1 is not applicable here to 

calculate the range. A different technique to deal with the acceleration period is needed. 

The authors are working on methods to incorporate the acceleration period into the 

proposed strategy. This would also enable the driver to effectively address changing road 

conditions, which were not considered in this study, that require a reduction of speed or a 

complete stop. 

 Furthermore, it was found that the disparity between the two methods in 

calculating the range increased as vref increases, as observed in Fig. 6. The disparity 

between the two methods is because the steady-state range is predicted using the steady-

state current, which is much lower than the current during acceleration. Since the battery 

capacity is fixed, for higher vref values, the effect of assuming the EV speed is vref during 

the acceleration period is amplified. Another drawback of the steady-state approach is 

that the equations become more complicated and difficult to solve when the battery 

voltage is no longer assumed to be constant. Additionally, even though this study does 
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not consider them, acceleration and changing road conditions become harder to 

implement using this method. For these reasons, for the rest of the study, all calculations 

related to EV were carried out by running the EV simulation for different vref values. 

Fig. 7 shows the results of the optimal solutions obtained using MOGA plotted along 

with those obtained by an exhaustive search method of all possible solutions from 8-112 

kmh
-1

. Both the exhaustive search and the MOGA are expected to give the same front 

because the problem deals with only one decision variable, the vehicle speed. Still, there 

are two differences observed in the fronts. As seen in the figure, MOGA does not pick 

solutions past a certain point in the search space, which is when H decreases while P 

increases, whereas the exhaustive search uniformly gives solutions throughout the search 

space, even if they are sub-optimal. The reason is that MOGA selects the optimal 

solutions based on the concept of non-domination suggesting that MOGAs have better 

optimization capability than the exhaustive search method. Additionally, the distribution 

of exhaustive search solutions is based on the granularity of the search whereas the 

distribution of the MOGA solutions is based on the concept of non-domination. The non-

dominated GA solutions are distributed from efficiencies in the range 0.66-0.89 and 

powers in the range 600-7500 W. 

Fig. 8 describes the Pareto fronts obtained using MOGA for different initial SOC 

values based on Approach 1. The shape of all of the Pareto fronts irrespective of the 

initial SOC is the same since there is only one decision variable. However, it can be seen 

that the set of solutions comprising each front is different for different fronts. Moreover, 

the distribution of solutions of the fronts where initial SOC > 0.1 was found to be the 

same as Fig. 7. However, when initial SOC = 0.1, solutions above 6200 W were not 
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picked. This is because as the initial SOC decreases and the commanded speed increases, 

by the time the vehicle is able to accelerate to the commanded speed, the battery is no 

longer able to maintain the speed. This is why the highest power picked was around 6200 

W, corresponding to efficiency of 0.89. Fig. 9 shows the range for each point in Fig. 8. 

Fig. 10 shows the associated trip time. As expected, the range for a particular speed 

decreased as the initial SOC decreased. The trip time followed a similar trend as well. For 

a given initial SOC, as the speed increases, the corresponding trip time decreases. The 

range, however, first increases, and then decreases. This is the effect of the conflicting 

objectives. The initial increase in range for increasing constant speeds is due to the sharp 

increase in efficiency (Fig. 1). The subsequent decrease is due to the effect of power 

increasing as a function of v
2
. 

After analyzing the fronts (i.e., the plot of the non-dominated GA solutions), a knee 

zone is clearly visible in the middle of the front. Fig. 11 shows the Pareto front 

corresponding to the set of optimal speeds obtained using Approach 1 by maximizing 

motor efficiency and minimizing EV power using MOGA. In Fig. 11, normalized values 

of H and P were plotted. After running the MOGA with 50 initial solutions (population 

size) for 50 generations, 50 non-dominated solutions were found in the final population. 

This is expected: in Fig. 1, H and P are both monotonically increasing functions (up to a 

certain speed) with only one decision variable. Therefore, when any two random 

solutions in this speed zone are compared, they will be non-dominated with respect to 

each other. Out of the 50 non-dominated solutions, the top 20 solutions based upon the 

strength of their knee value as calculated in Equation 26 were selected and plotted along 

with the non-dominated solutions as shown in Fig. 11. They represent the best trade-off 



 

 

62 

between the two conflicting objectives: minimum loss in one objective per unit gain in 

the other. 

 Fig. 12 presents the ranges and trip times for different optimal speeds along with 

the knee values. In this case, the maximum range occurs at a vehicle speed of 19.2 kmh
-1

, 

which is between the maximum efficiency (around 67.5 kmh
-1

) and the minimum power 

(0 kmh
-1

). It must be noted that the numbers presented were due to the EV model used in 

this study. It is expected that the maximum range would shift to a different speed if a 

different model is used, or if the EV model parameters are varied. Fig. 12 shows the knee 

solutions plotted along with the corresponding ranges and trip times for the respective 

speeds. This plot would be presented to the driver prior to the trip to help in decision-

making to select a trip speed. 

 In the two-step optimization process, the driver selects an optimal solution from 

Fig. 11 and uses the corresponding vref to determine the associated range and time from 

Fig. 12. For example, the best knee solution in Fig. 11 corresponds to a speed of 32.5 

kmh
-1

. This corresponds to a range of 41.2 km and a trip time of 79.5 min as seen in Fig. 

12. The selection of an optimal solution can be done from two perspectives. If a certain 

minimum range is desired, the driver can choose the optimal speed(s) that would 

guarantee this range. Based on the optimal speed, the driver can determine the associated 

trip time. On the other hand, if time is a constraint, then the driver would choose the 

optimal speed(s) that maximizes the range. For example, from Fig. 12, if the driver wants 

to travel at least 32 km, vehicle speeds between 15.2 and 50.9 kmh
-1

 are viable options. 

The trip times associated with these speeds are 176.7 and 38.0 min, respectively. The 

driver would choose the higher speed to reach the destination faster and the lower speed 
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to travel more efficiently (in the event of unforeseen circumstances). On the other hand, if 

the driver has at most 50 min for the trip, the driver can choose a vehicle speed between 

43.9 kmh
-1

 and 70.0 kmh
-1

. The ranges associated with these trip times are 35.7 and 24.8 

km, respectively. The driver would choose the optimal speed based on the distance to the 

destination. 

 Approach 1 provides an idea of how to predict the EV range by selecting an 

optimal speed based on maximizing efficiency and minimizing power. However, as 

stated previously, Approach 1 is not applicable in a real driving situation because the 

battery voltage decreases as SOC decreases. With a decreasing battery voltage, v also 

gradually decreases regardless of vref. This means that the EV simulation termination 

criterion (as explained in Section 4) to calculate T* cannot be based only on SOC. The 

effect of the gradually decreasing v should also be included in the termination criterion to 

obtain a realistic range. 

6.2 Approach 2: Battery Voltage as a Function of SOC 

Unlike Approach 1, the scenario considered in Approach 2 is more realistic. The 

modified battery model presented in Section 4.2 is used in Approach 2; however, the 

same vehicle parameters (presented in Table 4) and motor model are used in Approach 2. 

The termination criteria for the EV simulations are SOC < 0.01 or v < βvref. 

 Fig. 13 describes the Pareto fronts obtained using MOGA for different initial SOC 

values based on Approach 2 when β = 98.3%. The shape of all of the Pareto fronts 

irrespective of the initial SOC obtained in Approach 2 is the same as Approach 1. 

Similarly, it can be seen that the set of solutions comprising each front is different for 

different fronts. Moreover, the distribution of solutions of the fronts where initial SOC > 
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0.1 was found to be the same as in Approach 1 (from efficiencies in the range of 0.66-

0.89 and power in the range of 600-7500 W). Finally, when initial SOC = 0.1, the spread 

of solutions was significantly reduced (from efficiencies in the range of 0.70-0.86 and 

power in the range of 700-1950 W). This trend was also observed in Fig. 8c in Approach 

1. 

 Figs. 14 and 15 show the range and the trip time, respectively, for different initial 

SOC values when β = 98.3%. As expected, the range for a particular speed decreased as 

the initial SOC decreased. The trip time followed a similar trend as well. As mentioned in 

Section 6.1, Approach 1 is an ideal case: no other approach can have a higher range for a 

particular speed than Approach 1 (for initial SOC = 1.0). This postulate was verified by 

comparing Fig. 9 with Fig. 14. This is because in Approach 2 the battery voltage 

decreases as the SOC decreases, implying the total available battery energy is lower than 

assumed in Approach 1 with a constant battery voltage. One significant difference of 

Approach 2 relative to Approach 1 in the range and trip time trends was that for very low 

speeds, the range dropped sharply as did the trip time. This can be explained as follows. 

The steady-state speed error is a function of vref. For very low speeds, the steady-state 

speed error is very close to βvref as seen in Fig. 4. Due to this, even a slight decrease in 

steady-state v due to decreasing VP results in one of the termination criteria being 

satisfied (v < βvref) and the simulation ending. Therefore, even though the SOC was 

significantly greater than 0.01, the simulation was terminated and the value of T* was 

found to be lower than expected. This results in the range and trip time being 

significantly lower than expected. This does not happen in Approach 1 since VP is 

constant throughout the simulation. Figs. 14 and 15 map the range and trip time, 
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respectively, to the initial battery SOC. Such a map can be used by the driver during the 

course of a trip when the initial SOC is not 1. 

 Approaches 1 and 2 are proposed in the present study to predict EV ranges made 

based on a constant trip speed. Constant speed-based results of range are characteristic of 

highway driving. For example, consider a driver who needs to travel from one city to 

another. The driver is presented with multiple ranges and selects the speed that 

guarantees completion of the trip before completely depleting the battery. Another 

consideration in choosing the speed may be trip time: the driver may be willing to 

sacrifice range in order to reach his/her destination within a certain time period. The 

driver would be able to make this decision with full knowledge about the penalty of the 

choice (in terms of loss of range or trip time). This information would assist the driver in 

trip planning. A demonstration of the impact of prior information was conducted by Jou 

(2001). It was concluded that having pre-trip information makes commuters more likely 

to change their original choice of departure time and route when they were presented with 

pre-trip information than when they were not. 

The proposed strategy can immediately benefit the driver since adopting it does 

not require any changes to existing EVs. However, there are certain shortcomings to the 

proposed approaches. The commanded reference speed was used here to compute the 

range. In reality, the vehicle is moving at v, not vref. Therefore, the predicted range has an 

inherent error of about 1.7%. On the other hand, while the energy to accelerate the 

vehicle to vref was included in the range prediction, the distance covered during the initial 

acceleration period was not. The distance covered during acceleration is small, which 
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means the range predicted is slightly lower than the actual range. As mentioned 

previously, the acceleration period will be considered separately. 

 

7. Summary and Conclusions 

Range prediction for EVs was cast as a multi-objective problem with conflicting 

objectives. Two approaches were considered: one assuming constant battery voltage and 

the other allowing battery voltage to be a function of SOC. Approach 1 provided a basis 

for more realistic approaches by showing the shape of the Pareto fronts and by capping 

the expected range for any given speed. Approach 2 showed Pareto fronts whose shapes 

were the same as those obtained in Approach 1. The predicted range was lower since the 

battery voltage was no longer assumed to be constant. A map of the EV range and trip 

time for different initial SOC values was created, which would be useful to the driver in 

two different cases: when starting a trip with a battery that is not fully charged and when 

choosing a new speed once a trip has already started and the battery is partially depleted. 

However, it did not affect which solutions were picked by the GA from the search range. 

 The strategy presented in this paper is aimed at assisting the driver in formulating 

a driving strategy and for trip planning based on optimization of trip parameters. The 

results obtained by solving the MOOP presented in this paper are subject to the model 

parameters and assumptions stated in the previous sections. They provide insight into 

vehicle design and optimization. Furthermore, trip planning is of general interest to the 

transportation industry. Knowing the range and trip time for multiple optimal speeds 

prior to a trip gives the driver flexibility in choosing a speed that would give a better 

range while properly utilizing the stored EV energy. The final selection of the trip speed, 
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however, is decided by the driver. This type of trip planning could be used with existing 

methods to incorporate GPS and traffic data in order to properly utilize the EV and to 

improve the driving experience. 
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List of Tables 

Table 1 Electric motor parameters. 

Armature inductance, La (H) 0.1 

Armature resistance, Ra (Ω) 0.5 

Field current, If (A) 1.0 

Geometric constant, K (VA
-1

·(rads
-1

)
-1

) 1.5 

Type DC brushed 

 

Table 2 Lithium-ion battery parameters. 

Capacity, Cap (A·h) 8.0 

Initial state-of-charge, SOCinit 1.0 

Number of cells in parallel, NP 1 

Type Lithium-Ion 

Voltage, VP (V) 394 

 

Table 3 Chen and Rincon-Mora Lithium-ion battery parameters. 

CTransient_L (MF) 0.22375 

RTransient_L (mΩ) 0.9968 

CTransient_S (MF) 0.03518 

RTransient_S (mΩ) 0.9338 

RSeries (mΩ) 1.4932 
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Table 4 Vehicle model parameters. 

Air density, ρair (kgm
-3

) 1.225 

Drag coefficient, CD 0.35 

Frontal area, Af (m
2
) 2.5 

Gravitational acceleration, g (ms
-2

) 9.81 

Mass, m (kg) 1350 

Overall gear ratio, G 2.1 

Rolling friction coefficient, μ 0.014 

Tire radius, R (m) 0.3429 

Transmission Single-speed 

 

Table 5 MOGA parameter values for simulations conducted in this paper. 

Parameter Value 

Initial Population Size 50 

Chromosome Length (Number of Bits) 20 

Crossover Probability 0.98 

Mutation Probability 0.01 

Number of Generations 50 
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Table 6 Results of simulation and steady-state methods for vref  = 48 kmh
-1

. 

Method H P T* (min) 

Simulation 0.89 4169 41.7 

Steady-state method 0.89 4169 45.3 

 

List of Figures 

 

Fig. 1 Efficiency and power as a function of EV speed. 

 

Fig. 2 Typical variation of EV speed as a function of time. 
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Fig. 3 Typical variation of EV speed as a function of time according to Approach 1. 
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(a) 

 

(b) 

 

(c) 

Fig. 4 Plot of reference speed (vref), termination criterion (βvref), and steady state-speed 

(v) for different reference speeds: 8 kmh
-1

, 56 kmh
-1

, and 112 kmh
-1
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Fig. 5 Schematic representation of binary-coded NSGA-II for a two-objective problem 

having one decision variable. 

 

Fig. 6 Calculated range by simulation and steady-state methods. 
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Fig. 7 Non-dominated solutions for exhaustive search and MOGA. 
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(a) 

 

(b) 

 

(c) 

Fig. 8 Pareto fronts for different initial SOC values for Approach 1. 
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Fig. 9 Range versus speed for different initial SOC values for Approach 1. 

 

Fig. 10 Trip time versus speed for different initial SOC values for Approach 1. 
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Fig. 11 Top twenty knee solutions presented on the normalized Pareto front. 

 

Fig. 12 Maximum range and trip time for knee solutions. 
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(a) 

 

(b) 

 

(c) 

Fig. 13 Pareto fronts for different initial SOC values for Approach 2. 



 

 

82 

 

Fig. 14 Range versus speed for different initial SOC values for Approach 2. 

 

Fig. 15 Trip time versus speed for different initial SOC values for Approach 2. 
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Abstract –The high-energy consumption associated with acceleration requires electric 

vehicles (EVs) to accelerate to a chosen speed optimally, especially in urban driving 

cycles. Existing methods deal with the minimization of acceleration energy without 

considering the acceleration duration. This study focuses on solving a multi-objective 

optimization problem with two conflicting objectives: minimization of acceleration 

duration and minimization of energy consumption. Two approaches were used to reach a 

desired speed: using a single acceleration value and using multiple acceleration values. 

For each approach, demonstrative speed changes were chosen and the problem was 

solved using multi-objective genetic algorithms (MOGAs). The results (Pareto-optimal 

fronts) obtained by these two approaches were compared using suitable performance 

metrics. To validate the reliability of MOGA results, statistical analysis was carried out. 

Furthermore, a non-parametric study, the Wilcoxon signed-rank test, was conducted to 

compare the effectiveness of both approaches. It was found that the multiple 

accelerations were more effective in minimizing the duration and energy consumption 

than a single acceleration. For the same duration, multiple accelerations reduced the 
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energy consumption by up to 2%. Sensitivity analysis for both approaches with the 

electric motor model parameters was conducted. The simulation results of EV 

acceleration using the preferred optimal solution based on driving comfort and the Pareto 

front’s knee suggested a strong implication towards driving assistance. 

Highlights: 

 A multi-objective approach was formulated to find optimal electric vehicle 

acceleration. 

 Entire speed range of the electric vehicle was mapped. 

 To accelerate to a selected speed, using multiple acceleration values was found to 

minimize the duration and energy consumption by up to 2% compared to a single 

acceleration value. 

 Proposed method can be easily adopted and requires no modifications to the 

existing design. 

Keywords: driving strategy, electric vehicle, optimal acceleration, acceleration duration, 

acceleration energy, multi-objective optimization, genetic algorithm, driving comfort 

List of Symbols 

a     Acceleration (ms
-2

) 

aref     Reference acceleration (ms
-2

) 

Af     Frontal area (m
2
) 

B     Battery energy consumption (J) 

C     Coverage of two fronts 

Cap     Battery capacity (A·h) 

cdi     Crowding distance of the i
th 

solution 
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CD     Drag coefficient 

CTransient_L    Battery long transient capacitance (MF) 

CTransient_S    Battery short transient capacitance (MF) 

D     Acceleration duration (s) 

e     Acceleration error (ms
-1

) 

f     Function 

F     Non-dominated front 

FD     Aerodynamic drag force (N) 

Fr     Friction force (N) 

Ft     Traction force (N) 

g     Gravitational acceleration (ms
-2

) 

G     Overall gear ratio 

H0     Null hypothesis 

i     Counter variable 

I     Pareto-optimal front 

Ia     Armature current (A) 

Icell Current flowing through an individual battery cell 

(A) 

If     Field current (A) 

IP     Battery pack current (A) 

Is     Solution on the Pareto-optimal front, I 

J     Pareto-optimal front 

Js     Solution on the Pareto-optimal front, J 
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k     Optimal number of acceleration values out of 10 

K     Geometric constant (VA
-1

(rads
-1

)
-1

) 

KI     Integral grain 

KP     Proportional gain 

La     Armature inductance (H) 

m     Mass of the electric vehicle (kg) 

min     Minimization 

n     Number (e.g. number of iterations) 

N     Number of Pareto-optimal solutions 

NP     Number cells in parallel 

NS     Number cells in series 

Pt     Parent population 

Qt     Offspring population 

R     Tire radius (m) 

Ra     Armature resistance (Ω) 

Rt     Combined population 

RTransient_L    Battery long transient resistance (mΩ) 

RTransient_S    Battery short transient resistance (mΩ) 

RSeries     Battery series resistance (mΩ) 

Sd     Size of the dominated space 

SF     Switching function 

SOC       State-of-charge 

SOCinit       Initial state-of-charge 
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t        Time (s) 

T        Critical value 

v     Real vehicle speed (km/h) 

VC_L     Battery long transient capacitor voltage (V) 

VC_S     Battery short transient capacitor voltage (V) 

Vcell     Voltage of an individual battery cell (V) 

VOC     Open-circuit battery voltage (V) 

VP     Battery pack voltage (V) 

vref     Reference speed (km/h) 

VT     Terminal voltage (V) 

δt     Time step (s) 

μ     Rolling friction coefficient 

ρair     Air density (kgm
-3

) 

τ     Electric motor torque (Nm) 

ω     Rotational speed (rads
-1

) 

 

I. INTRODUCTION 

Electric vehicles (EVs) are free of the widespread emissions suffered by internal 

combustion (IC) engine vehicles, in addition to being more energy efficient [1]. They are 

especially effective in reducing urban pollution [2]. Due to improvements in battery and 

charging technology bolstered by government fiscal incentives, Evs are penetrating the 

automotive market more than ever before. In order to improve various aspects (such as 

performance, driving assistance, etc.) of Evs, several optimization studies on areas such 
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as wireless power transmission [3], real-time control for energy management [4], 

switched reluctance motor drives [5], and in-wheel motors [6] have been conducted. 

These improvements vary in complexity and some require significant changes to the EV 

in order to implement. As a result, these technologies have not yet permeated the market. 

 However, formulation of an assisted driving strategy is one of the essential 

improvements that immediately benefit the driver. It was found by [7] that driving 

parameters, such as harshness of acceleration, have an impact on the fuel economy. This 

was also confirmed by [8] for conventional vehicles and [9] for electric vehicles. 

Furthermore, changes to the driving behavior can significantly influence the vehicle 

energy consumption [10]. However, there is limited work on quantifying these effects, 

especially for Evs. Acceleration and deceleration comprise a small portion of a highway 

trip, but a much larger portion of urban trips. Due to their limited range, Evs have yet to 

see extended highway deployment. Additionally, the power associated with accelerating 

an EV to a constant speed is generally much higher than the power associated with 

maintaining that constant speed [11]. Consequently, it is crucial to quantify acceleration 

effects on current Evs, especially under urban driving conditions. 

 There are only a few studies that have considered acceleration effects on EV fuel 

economy and range. Once the driver choses a trip speed, s/he accelerates the vehicle from 

rest to the desired speed. Typically, the driver does not choose a particular value of 

acceleration. Additionally, the exact value of acceleration is not constant during a speed 

change [12]. The reason is that, for a constant acceleration, the applied torque is constant 

but as the vehicle speed increases, so does the air resistance, which causes the 

acceleration to reduce. The exact value of acceleration also depends on how aggressive 
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the driver is. EV data presented by [13] confirms the notion that acceleration value 

greatly influences energy consumption of EV. They reported a strong correlation 

coefficient (0.746) between acceleration and energy consumption. Therefore, a logical 

method to select an acceleration value for a given speed change is to adopt an 

optimization scheme that minimizes the amount of energy consumption. 

Donoghue and Burghart [12] considered EV acceleration by maintaining a constant 

power. Using a parameter optimization method, they calculated the time to switch from 

the initial maximum acceleration to a constant power acceleration value along with 

finding the constant power to use. This method was found to mainly reduce the energy 

consumption. Imanishi et al. [14] developed another acceleration control technique for 

Evs based on the objective of reducing the energy consumption while maintaining 

drivability for a given load. Using this control methodology, the energy consumption was 

reduced by 1.9%. Lu and Ouyang [15] presented another study of acceleration control 

with minimum energy consumption for Evs, adopting analytical and dynamic 

programming methods to minimize energy while considering time as a constraint. The 

same control technique was previously presented for IC engines in [16]. Yao et al. [13] 

showed that, for a given speed change, the energy consumption was dependent on the 

chosen acceleration value. Thus, it is clear that acceleration of an EV consumes 

substantial battery energy and studies so far have focused on accelerating the EV with 

minimum energy consumption without necessarily focusing on the actual value of 

optimal acceleration. 

By carefully analyzing the above studies, it was observed that the actual acceleration 

experienced by the vehicle was not a constant in any of these methods. Instead, the 
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acceleration to a chosen speed was executed via multiple acceleration values. The results 

of [14] and [15] implied the same phenomenon that one constant acceleration value might 

not guarantee minimum energy consumption for a chosen speed. 

While the minimization of energy consumption is desirable, once a vehicle speed is 

chosen, the driver would like to accelerate to that speed in a reasonable amount of time. 

For example, the optimal acceleration method reported in [15] took 19.3 seconds to 

achieve a speed of 48 km/h from rest that might be too long for some drivers. 

Minimization of overall trip time is very important in several applications, including 

vehicle travel [17]. Consumer data clearly suggest that new vehicles sold in the United 

States have increasingly better acceleration times [18]. This is further illustrated by the 

fact that drivers drive at or around the speed limit and not significantly below it. The 

same can be said for acceleration: the driver would like to minimize the amount of time 

spent in accelerating to the desired speed. Therefore, time has not been considered as a 

constraint but as an objective to be minimized. 

From previous studies in the literature, it has been observed that both the acceleration 

duration and the acceleration energy have not been considered simultaneously to find 

optimal (EV) acceleration(s). The main goal of this study was therefore to investigate the 

differences in finding optimal results by varying the number of accelerations to achieve a 

chosen speed for an EV by minimizing both these objectives. Two approaches were 

proposed here to find the optimal acceleration(s) for a speed change. Approach 1 

considers a single acceleration, whereas Approach 2 uses multiple acceleration values. It 

must be noted that, in this study, each speed change was always from rest to a certain 

(chosen) speed. Optimality of acceleration was considered in the context of two 
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objectives: minimization of acceleration duration and minimization battery energy 

consumption. The two objectives are conflicting in nature: an improvement in one leads 

to deterioration in the other. Consequently, the problem of finding optimal acceleration 

values for chosen speeds becomes a multi-objective optimization problem (MOOP) with 

conflicting objectives and acceleration is the common decision variable in this 

optimization problem. The solution to this kind of problem results in a Pareto-optimal 

front consisting of many optimal solutions. The driver can choose a solution according to 

his/her preference based on trade-offs between the two objectives. 

II. PROBLEM DEFINITION 

Once a speed is chosen, the driver would like to accelerate the EV to this speed in the 

shortest duration while expending the least amount of stored battery energy possible. 

Therefore, the minimization of acceleration duration is one objective and the 

minimization of battery energy consumption is the other. These objectives are conflicting 

in nature, i.e. as one picks acceleration value(s) to minimize the duration, the energy 

consumption increases and vice versa. Because the acceleration value ultimately dictates 

the acceleration duration and the energy consumption, it was used as the common 

decision variable in the present study. Accordingly, the objectives were formulated as 

follows. 

   afD D ofmin  (1) 

   afB D ofmin  (2) 

subject to 

  0.31.0  a  (3) 
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where B is the battery energy consumption, D is the acceleration duration, and a is the 

acceleration value (decision variable). The objective of this study was to find acceleration 

values for different chosen speeds such that the EV accelerated to the chosen speed with 

minimum duration and energy. The range of acceleration considered in this study was 

presented by constraint Equation 3. The calculation of the two objectives is explained 

below in the next section. The genetic algorithm (GA) and its variants have recently 

become popular mainly because of its intuitiveness, ease of implementation, and the 

ability to effectively solve highly nonlinear, mixed integer optimization problems that are 

typical for complex systems. Moreover, compared to other evolutionary algorithms, 

although a GA is more computationally intensive, its performance exhibits superiority 

particularly when the problem deals with constrained nonlinear types with continuous or 

discrete decision variables [19]. Recently, GAs have been successfully applied to solve 

various single-objective and multi-objective optimization problems (MOOPs) for 

vehicles, such as powertrain component sizing and control strategy design for a fuel cell 

hybrid electric bus [20], plug-in hybrid vehicle powertrain design [21], optimal drivetrain 

component sizing for a plug-in hybrid electric transit bus [22], design of a hybrid electric 

vehicle battery [23] and hybridization of a plug-in hybrid electric vehicle [24]. Since, the 

present MOOP deals with constrained nonlinear types with continuous decision variables, 

it is expected that a multi-objective genetic algorithm (MOGA) is the most suitable 

approach. The MOGA using an elitist non-dominated sorting genetic algorithm (NSGA-

II) [25] was adopted to solve the present problem. 
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III. FORMULATION OF OBJECTIVES: DURATION AND ENERGY 

The EV model is described in this section, following the topology in [26]. The 

components modeled included the battery, the electric motor, and the vehicle dynamics. 

The electric motor was controlled using a proportional-integral (PI) controller. The model 

was programmed in C++ with the reference acceleration, aref, and the chosen speed, vref, 

as the inputs. The simulation was terminated when the vehicle speed, v, reached within 

1% of vref, corresponding to n loop iterations. It should be noted that the acceleration and 

speed mentioned in Section 2 are actually the reference acceleration, aref, and the chosen 

speed, vref. The vehicle model (described in Section 3.3) and parameters (shown in Table 

I) were similar to [27] and [28]. For the sake of reducing complexity, a simplified model 

was used, by ignoring certain minor effects, such as mechanical and power converter 

losses. The entire EV model is summarized below for completeness. 

A) Electric Motor Model 

With the relevant electric motor parameters given in Table I, the model’s inputs are the 

battery voltage, VP, the reference acceleration, aref, the vehicle acceleration, a, and the 

rotational speed, ω, and the model’s outputs are the battery current, IP, and the electric 

motor torque, τ. The motor was controlled using speed control. The inner current control 

loop, which is a consideration in practical applications for protection of the motor from 

overcurrent damage, was not included. The acceleration error is 

  )()( iaaie ref   (4) 

A PI controller was used for acceleration control. The switching function of the electric 

motor is 

    11,)()1()()(  SFtieieKieKiSF IP   (5) 
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where KP was taken to be 0.1 and KI was taken to be 1. The terminal voltage applied to 

the electric motor is 

  )()()( iSFiViV PT   (6) 

The armature current is [29] 

    tRiIiKIiV
L

iIiI aafT

a

aa  )()()(
1

)1()(   (7) 

The battery current is 

  )()()( iSFiIiI aP   (8) 

The torque generated is 

  fa IiKIi )()(   (9) 

Fig. 1 shows the maximum motor current and torque as a function of the motor speed. 

B) Battery Model 

The lithium-ion battery model used was similar to the one proposed in [30] with the 

relevant battery parameters shown in Table I. The model’s input is the battery current, IP, 

and the model’s outputs are the battery voltage, VP, and the state-of-charge, SOC. The 

model is briefly described as follows. 
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  SeriescellLCSCOCcell RiIiViViViV )()()()()( __   (16) 

Note SOCinit is the same as SOC(0) that in Equation 11. 

C) Vehicle Model 

The relevant vehicle parameters are given in Table I. The model’s inputs are the electric 

motor torque, τ, and the model’s outputs are the vehicle acceleration, a, the vehicle speed, 

v, the distance traveled, x, and the rotational speed, ω. The aerodynamic drag force acting 

on the EV is 

  2)(
2

1
)( ivCAiF DfairD   (17) 

The force due to friction between the road and wheel is 

  mgiFrr )(  (18) 

The traction force provided by the electric motor is 

  
R

Gi
iFt
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)(


  (19) 

Assuming the road has no gradient, neglecting the force due to the inertia of rotating 

wheels, and having all the braking force come from the electric motor, the acceleration is 
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mgivCA
R

Gi

ia
Dfair 






2)(
2

1)(

)(  (20) 

The EV speed can be calculated using 

  tiaiviv )()1()(   (21) 



 

 

96 

The rotational speed is given by 

  
R

Giv
i

)(
)(   (22) 

The objective functions, acceleration duration and battery energy, are defined as follows: 

  tnafD )(  (23) 

  tiViIaf P
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PB )()()(
1




  (24) 

IV. MULTI-OBJECTIVE OPTIMIZATION USING NSGA-II 

Evolutionary algorithms (EAs) such as genetic algorithms (GAs) are search and 

optimization strategies that mimic the working principles of natural evolution and 

genetics [31]. Multi-objective genetic algorithms (MOGAs) are a class of tools based on 

GAs to solve multi-objective optimization problems (MOOPs) having conflicting 

objectives. Unlike a single-objective problem, to find a unique solution, the task of an 

optimizer in a MOOP is to obtain a set of solutions based on the concept of domination 

by comparing two solutions on the basis of whether one dominates the other solution or 

not. The plot of the objective functions using these non-dominated solutions is called a 

non-dominated front and the corresponding solutions are non-dominated solutions. If the 

non-dominated solutions are optimal, then the non-dominated front is called the Pareto-

optimal front and the solutions lying on the Pareto-optimal front are called Pareto-optimal 

solutions. Thus, the primary goal in a MOOP is to obtain a set of solutions as close as 

possible to the Pareto-optimal front in addition to being spread out as diversely as 

possible throughout the Pareto front. The advantage of MOGAs over other optimization 

methods like dynamic programming or optimal control is the availability of multiple 

solutions after a single run of MOGA, offering flexibility. In the present work, a non-
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dominated sorting GA, NSGA-II [25] was adopted because it is one of the most popular 

and widely used MOGA for such kinds of problems. The basic working of MOGA using 

NSGA-II is described lucidly in [32] and can be summarized in the flow diagram 

illustrated in Fig. 2. 

For a given set of GA parameters, such as population size (six in Fig. 2), a maximum 

number of generations (set as the termination criterion of the MOGA), a reproduction 

scheme (crowded tournament selection with a chosen tournament size), a mutation 

scheme (with a mutation probability), and a crossover scheme (with a crossover 

probability), a maximum of six non-dominated solutions can be obtained after a complete 

MOGA generation. In the crowded tournament selection procedure, the solution having a 

lower rank value than other solutions is allowed to win a tournament. If more than one 

solution in a tournament has the same rank, then the solution that had a larger crowding 

distance value is permitted to win. After each generation, both the parent (Pt) and 

offspring (Qt) populations are mixed up to form a combined population, Rt. Then, non-

dominated sorting is carried out on the combined population in order to classify the 

solutions based on their rank. The solutions in a class having the same rank create a front. 

Fig. 2 shows that there are three fronts (F1, F2, and F3) obtained after the non-dominated 

sorting of Rt corresponding to rank values. Since the population size of the GA is 

constant throughout the generations, solution(s) of different non-dominated fronts, one at 

a time, are used to fill the new population (Pt+1). The filling starts with the best non-

dominated front having a lower rank value and so on. Since the overall population size of 

Rt is double the size of population (twelve in Fig. 2), not all fronts may be accommodated 

in N slots available in the new population, Pt+1. All fronts, which could not be 
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accommodated, are simply deleted. When the last allowed front is considered, there 

might be more solutions in the last front than the remaining slots in the new population. 

In Fig. 1, such a situation happens with F2. Instead of arbitrarily discarding some 

members from the last front, it is better to use a niche-preserving strategy to choose the 

members of the last front, which is decided by the least crowded region in that front. That 

means that the solution having higher crowding distance (cdi) will be preferred compared 

to others. A random selection is taken among the solutions having same crowding 

distance value. Based on this new population, Pt+1 (now considered as the parent 

population, Pt) another offspring population Qt is created using genetic operators like 

crowded tournament selection, crossover, and mutation in the next generation. This cycle 

is continued until a specified number of generations have been reached or other specified 

termination criteria have been fulfilled. 

V. PROPOSED APPROACHES TO FIND OPTIMAL ACCELERATION(S) 

USING MOGA 

The main purpose of this study is to investigate the efficacy of using Approach 1 and 

Approach 2 described in the Section 1 for different speeds. For demonstrative purposes, 

the entire speed range of a typical EV (8-112 km/h) was divided into three zones, as 

proposed in [33]: neighborhood (<40 km/h), urban (40-72 km/h), and highway (>72 

km/h). One speed from each of these zones (say, 40 km/h, 72 km/h, and 104 km/h) was 

selected to compare the effectiveness of two approaches. This section presents the 

methodology using MOGA (summarized in Section 4) to solve the present multi-

objective problem (stated in Section 2) and the corresponding optimization results. 
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A) Single Acceleration Approach 

In this approach, the number of decision variables associated with the objective functions 

(Equations 1 and 2) is one (acceleration, a) subject to the constraint equation (Equation 

3). The GA selected a value of acceleration from this search space and calculated the 

duration and energy based on Equations 1 and 2. The NSGA-II algorithm was run to 

solve the MOOP based on the EV simulation parameters given in Table II for computing 

the objective functions. 

B) Multiple Acceleration Approach 

This approach uses multiple accelerations to reach the chosen speed. Keeping in mind 

practical driving situations and for the sake of reducing the computational complexity, 

the maximum number of accelerations (that can be adopted by the driver to reach the 

chosen speed) was limited to 10. The role of MOGA is not only finding the Pareto-

optimal front but also determining the optimal number of acceleration(s) out of 10 

(denoted as k) along with optimal values of those accelerations and their duration(s). The 

sum of these durations is equal to the total acceleration duration (Equation 27). Thus, the 

objective functions given in Equations 1 and 2 comprised 10 different acceleration values 

instead of a single acceleration value. The associated time duration of the i
th

 acceleration 

is ti. Since Equation 27 is an equality constraint, the number of time (decision) variables 

associated with k accelerations becomes k-1. Thus, in Approach 2, each of the objective 

functions consisted of 19 decision variables (ten accelerations and nine durations). The 

modified equations of the objectives may be rewritten as follows. 

   111 ,...,,,..., ofmin  kkD ttaafD  (25) 

   111 ,...,,,..., ofmin  kkB ttaafB  (26) 
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 The maximum and minimum limits of each acceleration value (Equation 3) were 

the same as in Approach 1. However, it was important to carefully constrain the selection 

of time decision variables in order to have realistic and appropriate search spaces for each 

time (decision) variable. A large, unconstrained search space resulted in a longer time for 

the GA to converge. On the other hand, an arbitrarily created short search space does 

guarantee a global minimum to be reached by GA. Therefore, appropriate values for the 

maximum and minimum limits of each time duration (decision) variable corresponding to 

each accelerations value were set carefully as follows. 

To achieve a particular speed when multiple accelerations are used, there is a 

possibility that the first few accelerations may have a positive time duration whereas the 

rest may have a zero time duration. Based on this consideration, the lower limit of each 

time duration decision variable was kept as zero. On the other hand, if one can use a 

single acceleration, a, to achieve a chosen speed, v, it will take a theoretical value of 
a

v
 

seconds. It is easy to see that the time duration (decision) variable cannot be significantly 

more than this value (allowing some time for the controller build up to a). Thus, the 

maximum value of i
th

 time duration (decision) variable corresponding to i
th

 acceleration 

(ai) was set to 
a

v

i

. 
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C) Performance metrics Used to Compare Pareto Fronts Obtained by Approach 1 and 

Approach 2 

In order to compare the results of the two approaches to find optimal accelerations to 

reach a chosen speed, MOEA outputs (Pareto fronts) were measured with the help of 

three performance metrics [34]: 

1. Number of non-dominated solutions in the Pareto front, N 

2. Size of the dominated space, Sd(I) 

3. Coverage of two Pareto fronts, C(I, J) 

Using the same population size, one approach is said to be better than another if it 

contains a higher number of non-dominated solutions. The size of the dominated space, 

Sd(I), of a Pareto front, I, indicates a measure of how much of the objective space is 

weakly dominated by the Pareto front, I. A higher value of Sd(I) indicates better 

performance. The size of the dominated space, Sd(I), is measured by normalizing the 

objectives taking maximum and minimum values of duration and energy obtained in the 

corresponding Pareto-front. Coverage of two Pareto fronts, I and J, (C(I, J)), provides the 

fraction of J weakly dominated by I and is calculated as follows. 

  
 

J
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
  (28) 

where J  is the cardinality of the Pareto optimal set J and ss JI   means that solution Is 

dominates the solution Js. If, C(I, J) > C(J, I), it means that the Pareto front, I, has better 

solutions than the Pareto front, J. The measurements, size of the dominated space and 

coverage of two Pareto fronts suggest the degree of convergence of a Pareto front. The 
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following results demonstrate the superiority between the two approaches from different 

perspectives. 

D) Comparison of Approach 1 and Approach 2 

The elapsed time at the termination of the EV simulation was recorded as the acceleration 

duration. The total energy consumption of the EV until the termination of the simulation 

was considered as the acceleration energy. For Approach 2, the simulation was followed 

according to the GA-selected values of accelerations (and corresponding duration) one by 

one until its termination. After the simulation termination, the rest of the acceleration 

values (out of ten) were assigned a zero duration. 

1) Comparison of Proposed Approaches 

Fig. 3 shows the Pareto fronts obtained for the demonstrative speeds considered. Each 

plot has two fronts that are typical for conflicting objectives: one obtained by Approach 1 

(single acceleration value) and one obtained by Approach 2 (multiple acceleration 

values). From Fig. 3, it could be seen that the fronts differed more and more as the speed 

increased, the greatest difference appearing when the desired speed was 104 km/h. 

Additionally, it appeared that the front with multiple acceleration values consistently 

dominated the front with single acceleration values. 

 These observations point to the idea that multiple acceleration values to reach a 

chosen speed can optimize the two conflicting objectives in a better way than a single 

acceleration value, similar to the observations in [14] and [15]. An explanation for this 

has been proposed in the follwing. 

Fig. 4 shows a map of the electric motor efficiency as a function of the rotational 

speed and the torque. One solution for each approach (reference speed = 104 km/h) has 
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been plotted in Fig. 4. Both solutions had the same duration of 37.6 s. However, 

Approach 1 solution’s energy was 1.200E6 J and Approach 2 solution’s energy was 

1.177E6 J; a 2% reduction. The reason for the lower energy consumption in Approach 2 

is that Approach 2 follows a higher efficiency path in Fig. 4 than Approach 1. However, 

when the rotational speed reached 97 rads
-1

, Approach 2 moved to a lower efficiency but 

with a higher torque. This is necessary to ensure the duration does not suffer. However, 

the net result was lower energy consumption than Approach 1, which followed an 

efficiency path that was in between. The 2% reduction is significant for EVs because the 

driver is able to reach the desired speed with lower energy without the duration suffering. 

When one considers that acceleration can constitute up to 50% of the total non-idle time 

for urban driving cycles [35], a reduction of 2% without sacrificing drivability is 

noteworthy. 

2) Statistical Analysis 

The results of a GA are stochastic in nature because it depends on the chosen initial 

solutions as well as randomness. Accordingly, there is a need to compare the results of 

both approaches statistically for confidence of acceptance. Therefore, a detailed statistical 

study was conducted independently for each of the three speeds to confirm the results 

obtained by both the approaches were statistically reliable. Twenty independent MOGA 

runs were performed with 20 different values of random seed (in the range of 0.1 to 1.0). 

The mean and standard deviation (SD) of N, Sd, and C obtained in Approach 1 and 

Approach 2 in twenty different runs are listed in Table III. The significance of these 

metrics is that a Pareto front having higher values of N, Sd, and C is better than the other. 

It was observed that N obtained in each case was 100. However, a higher mean value for 
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the size of the dominated space in Approach 2 was found, suggesting that Approach 2 

was superior to Approach 1 regardless of the stochastic nature of GA. This phenomenon 

was more pronounced with increasing speed. Moreover, a very low value of standard 

deviation of Sd was observed, which indicated that the results were statistically fairly 

stable. The same result of superiority of Approach 2 was observed in case of coverage of 

two Pareto fronts. For the coverage metric, the mean values differed slightly more when 

twenty runs were compared to one run. That was the reason a relatively high standard 

deviation value was calculated for this metric. Thus, it seems that while the Approach 2 

fronts may be superior to the Approach 1 fronts in general, the exact difference between 

the two approaches varies somewhat. Certain Approach 1 fronts (resulting from particular 

random seeds) may be better than certain other Approach 2 fronts. 

3) Wilcoxon signed-rank test 

Considering the stochastic nature of GAs, a further investigation was carried out using a 

statistical test, namely the Wilcoxon signed-rank test (a non-parametric statistical test for 

testing hypothesis on median [36]) in order to determine whether the optimization results 

of Approach 1 and Approach 2 were equivalent or not. The Wilcoxon signed-rank test 

was performed on the values of two metrics, Sd and C (as defined in Section 5.3) that 

were calculated based on the results obtained by Approach 1 and Approach 2 for 20 

random seed values. The outcome of the test is illustrated in Table IV. 

 From Table IV, it was obvious that Approach 2 was superior over Approach 1 in 

the case of coverage of two Pareto fronts for all the three speeds. In the case of size of the 

dominated space, Approach 2 was found to be better than Approach 1 for all the three 
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speeds with the exception of a significance level lower than 0.1 where both the 

approaches were found to be equivalent according to Wilcoxon signed-rank test. 

4) Sensitivity Analysis 

The most important component of the EV model that dictates the nature of the results in 

Sections 5.4.2 and 5.4.3 is the electric motor. In order to investigate the dependence of 

the number of acceleration values picked by MOGA on the electric motor model, 

sensitivity analysis was performed. The parameters used to define the model were varied 

to assess whether or not the observation from optimization results, i.e., multiple 

accelerations performing better than a single acceleration in terms of minimizing duration 

and energy, would still hold. For this investigation, two speeds were chosen, 40 km/h and 

72 km/h. Using different electric motor model parameters, three metrics were formulated 

as follows: gear ratio (G), ratio of motor geometric constant to field current (K/If), and 

ratio of armature resistance to armature inductance (Ra/La). The reason for creating these 

metrics is that certain motor parameters are interdependent: changing one typically 

causes the other to also change. Ranges for parameter variation were selected according 

to typical motor parameter values found in the literature [37] while ensuring that the EV 

would still achieve the selected speed. It was found that in 75% of the cases, Pareto fronts 

produced by Approach 2 were better than those produced by Approach 1 (in terms of 

Pareto-optimality). 

 In Section 3, it was mentioned that minor losses were ignored. The most 

important loss is in the electric motor and that was considered for both approaches. 

However, to examine the effects that the losses have on both approaches, the mechanical 

efficiency (taken to be 0.95 [28]) was added to Equation 19 while the power converter 
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efficiency (taken to be 0.96 [28]) was added to Equation 8. Equation 29a shows the 

battery current calculation in the case of motoring and Equation 29b shows the battery 

current calculation in the case of regeneration. Similarly, Equation 30a shows the traction 

force calculation in the case of motoring and Equation 30b shows the traction force 

calculation in the case of regeneration. 
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After repeating the optimization process, it was found that the multiple acceleration front 

continued to dominate the single acceleration front. The energy savings without losses 

were reported as being up to 2% in Section 5.4.1. After including losses, the energy 

savings were found to be up to 1.84%. This corresponds to a difference of 8% with losses 

compared to without losses. It must be noted that the solutions with the same duration 

were used when comparing energy savings. This difference is quite low because adding 

losses to the EV model affects both approaches as the same EV model is used for both 

approaches. 

From the above discussion in Section 5.4, Approach 2 is clearly the better approach 

for the majority of the conditions considered here and was used to further study each of 

the three speed zones in greater detail. 



 

 

107 

VI. EFFECTIVENESS OF THE APPROACHES FOR DIFFERENT SPEED 

ZONES 

In this section, a statistical investigation was reported to determine the effectiveness of 

both approaches within three separate speed zones (neighborhood, urban, and highway), 

as suggested by [33]. To do so, 20 speeds from each zone (uniformly distributed 

throughout the speed zone) were considered. Based on these speeds, the MOGA was 

independently run for a random seed value of 0.4, keeping the other parameters the same 

as in Table II. Additionally, the Wilcoxon signed-rank test was also applied to the results. 

 Table V shows the statistical results of number of solutions, dominated size, and 

coverage of Pareto fronts obtained by both approaches for each speed zone. According to 

Table V, the results were as seen previously: even for different speed zones, multiple 

acceleration values gave better results compared to a single acceleration value. The only 

exception was for Sd metric in the neighborhood speed zone as the mean value of Sd was 

slightly greater for Approach 1 than it was for Approach 2. However, Approach 2 fronts 

dominated more solutions (mean difference value = 24.9) of Approach 1 fronts. Also, a 

low value of standard deviation (SD) for Sd was observed, suggesting the statistical 

reliability of MOGA results. For the same reason as mentioned in Section 5.4.2, a high 

value of SD for C in Table V was found. 

 The statistical results of the distribution of optimal number of accelerations (out 

of 100 solutions) found by MOGA in Approach 2 for three speed zones are presented in 

Table VI. The mean value of the distribution of the number of acceleration was averaged 

for 20 random speeds in each zone. Once again, only one acceleration value was never 

picked by MOGA at all in any speed zone. Two acceleration values were picked 90.2% 
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of the time followed by three (8.8%), four, and five acceleration values. Also, the chances 

of fewer accelerations being picked were higher as the speed increased. Solutions with 

six acceleration values or higher were never picked in any of the runs. Therefore, limiting 

the number of acceleration decision variables to 10 did not affect the results in any way. 

Finally, the high standard deviations relative to the mean values for three, four, and five 

acceleration values indicated that, within a particular speed zone, certain speeds could be 

optimally reached with a greater number of different acceleration values whereas certain 

other speeds could be optimally reached with a fewer number of different acceleration 

values. If there are two similar speeds (e.g. 72 km/h and 75 km/h), a driver may choose 

one with fewer acceleration values because it may be easier to drive or more comfortable. 

Such considerations are discussed in the next section. It is interestingly noticed that 

solutions with only one acceleration were never chosen by MOGA for any of the three 

speeds indicating the suboptimality of these solutions. 

 The Wilcoxon signed-rank test was repeated for investigating the equivalence of 

Approach 1 and Approach 2 in three speed zones. By analyzing the results of Sd, both 

approaches were found to be equivalent in the neighborhood and urban speed zones for a 

high significance value (0.1). But, for the highway speed zone, Approach 2 prominently 

showed better results than Approach 1 even for a low significance level (0.01). On the 

other hand, a comparison of test results of C indicated that Approach 2 maintained its 

superiority of obtaining better solutions than Approach 1 for any speed zone. 

VII. IMPLEMENTATION OF OPTIMAL RESULTS 

There are several different ways to consider implementation of the results obtained. One 

way to pick a solution for a chosen speed out of a set of Pareto-optimal solutions is to use 
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the concept of knee [38]. Sometimes, the shape of Pareto-optimal front is such that there 

may be solutions where a small improvement in one objective would lead to a large 

deterioration in any of the other objectives, which makes moving in either direction 

unattractive. A solution point having such characteristics is called a knee point. For a 

problem of minimization of f1(i) and minimization of f2(i), a knee-value of a solution 

point (i) is defined by Equation 31. 
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It must be noted that the objective function values in Equation 31 are normalized 

(between 0 and 1). 

A solution point having a higher knee value is said to be a stronger knee point compared 

to the others. Without any knowledge about the user’s preferences, it may be argued that 

the region comprising the knee points is most likely to be interesting for the decision 

maker. 

 Another way to pick a solution is on the basis of driving comfort. The metric used 

to define comfort (modified for use in this study) was presented in [39] as follows. 

    ad  (32) 

where d is the level of discomfort associated with a particular solution and Δa is the 

difference between consecutive acceleration values (e.g. a1-a2, a2-a3, so on, where a1, a2, 

a3, etc. are the consecutive acceleration values). The driver would like to pick a solution 

with minimal discomfort, i.e., a solution that not only as fewer different acceleration 

values but acceleration values that are quite similar to each other in magnitude. 
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 Based on the above decision-making criteria, the method of selecting an optimal 

solution for real implementation is presented here. Fig. 5 shows the level of discomfort 

for the top five knee values (calculated using Equation 31), considering the optimization 

results obtained using Approach 2 for different speeds. The top five knee values 

represented the best trade-off between duration and energy. The trade-off was defined 

above as the loss in either the duration or energy per unit gain in either the energy or 

duration, respectively. However, as seen in the figure, the best knee value did not always 

correspond to the most comfortable acceleration situation. The figure also showed that 

the discomfort generally increased with the chosen speed. This is because for higher 

speeds, a solution comprising multiple acceleration values is more likely to have 

acceleration values that are significantly different in order to optimize both the 

objectives. 

The significance of the discomfort decision-making criterion is that even though all 

the Pareto solutions having multiple accelerations are optimal, it is necessary to include 

discomfort to choose one solution before implementation. An example of this is as 

follows.  Fig. 6 demonstrates the simulation of EV after implementing an optimal 

solution obtained by Approach 2 for a chosen speed of 48 km/h. The driver selects the 

first knee solution (marked by a circle in Fig. 5) consisting of two accelerations that also 

happens to have the lowest jerk value. As seen in the Fig. 6, the EV experienced a smooth 

transition from rest to the desired speed. The acceleration durations are definitely long 

enough for the driver to be able to change from the first acceleration value to the second. 

The overall acceleration duration of 16.9 s was shorter than the 19.3 s duration reported 

in [15] to achieve for the same chosen speed (48 km/h). Based on these observations, 
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such kinds of solutions are intuitively preferred for real implementation. The EV model 

used in [15] was of a significantly smaller EV than the one used in the present study, so 

the energy consumption for both methods was expected to be different and could be 

compared. 

The driver has several optimal solutions from which to choose. For example, for 48 

km/h, MOGA picked two solutions whose duration was similar to the duration reported 

in [15]. The energy consumption was lower but the discomfort was higher. The driver 

could choose whether s/he preferred a faster, more comfortable acceleration experience 

as shown in Fig. 6 or one that consumed less energy. 

 The other advantage of the proposed method is that it can immediately benefit 

drivers without any modifications to the EV design. It is a marked improvement over 

previous methods because acceleration duration is considered here as an objective of the 

optimization problem along with energy consumption, leading to multiple solutions being 

presented to the driver. 

VIII. SUMMARY AND CONCLUSIONS 

The aim of this study was to investigate the optimum utilization of the stored battery 

energy in EVs by considering the efficacy of using multiple acceleration values instead of 

a single acceleration value to get to a chosen speed using an EV vehicle. To minimize 

acceleration duration and energy consumption, two approaches were used: achieving a 

chosen speed using a single acceleration value (Approach 1) and using multiple 

acceleration values (Approach 2). The problem was solved using a MOGA to find the 

optimal acceleration values. In addition, particularly in multiple acceleration approach, 
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the algorithm decided what the optimal number of accelerations was and for how long 

they would be maintained. 

For each approach, initially, three speeds were chosen and a separate Pareto front 

was obtained in each case. It was observed that difference between the two approaches 

increased as the reference speed increased. To test the reliability of optimization results, 

MOGA was independently run 20 times with different random seeds for the three 

selected speeds. The resulting Pareto fronts were compared using metrics such as number 

of Pareto-optimal solutions, size of the dominated spaces, and coverage of the two fronts. 

The mean and standard deviation values of the runs were used. It was found that multiple 

accelerations gave better optimization results than a single acceleration. For the same 

acceleration duration, up to 2% reduction in energy consumption was observed. 

Furthermore, a non-parametric statistical study was conducted to compare the 

performances of the two approaches. It was confirmed that multiple accelerations were 

better than a single acceleration with a significance level of 0.1. Finally, sensitivity 

analysis on the electric motor model showed that, in 75% of the cases considered, the 

multiple acceleration approach was superior over the single acceleration approach. 

 In order to examine the effect of Approach 2 for different speed values, the entire 

speed range of the EV was divided into three zones. In each zone, the two approaches 

were applied to 20 randomly chosen speeds. The Pareto fronts obtained were compared 

using the same metrics mentioned above. It was found that multiple accelerations gave 

better results in all metrics except for size of the dominated space in the neighborhood 

zone by 0.1%. These results led to the conclusion that multiple accelerations to reach a 

chosen speed were indeed better than a single acceleration value. This was confirmed 
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again by the Wilcoxon signed-rank test. It was found that solutions with two 

accelerations (out of a possible 10 accelerations) were chosen 90.2% of the time and that 

with three accelerations were chosen about 8.8% of the time. Finally, a method using the 

knee concept and driving comfort was presented to choose a preferred solution from 

Pareto optimal front for implementation. EV simulation results using the optimum 

solution demonstrated that the multiple acceleration approach definitely provided better 

assistance to the EV driver that could be easily implemented without any extra cost. 
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List of Tables 

TABLE I EV model parameters. 

Electric Motor 

Armature inductance, La (H) 0.1 

Armature resistance, Ra (Ω) 0.5 

Field current, If (A) 1.0 

Geometric constant, K (VA
-1

(rads
-1

)
-1

) 1.5 

Maximum efficiency 88% 

Maximum Power (kW) 56 

Type DC brushed 

Battery 

Capacity, Cap (A·h) 80 

Initial state-of-charge, SOCinit 1.0 

Number of cells in parallel, NP 1 

Number of cells in series, NS 96 

Type Lithium-Ion 

Voltage, VP (V) 394 

CTransient_L (MF) 0.22375 

RTransient_L (mΩ) 0.9968 

CTransient_S (MF) 0.03518 

RTransient_S (mΩ) 0.9338 

RSeries (mΩ) 1.4932 

Vehicle 

Air density, ρair (kgm-3) 1.225 

Drag coefficient, CD 0.35 

Frontal area, Af (m2) 2.5 

Gravitational acceleration, g (ms-2) 9.81 

Mass, m (kg) 1350 

Overall gear ratio, G 2.1:1 

Rolling friction coefficient, μ 0.014 

Tire radius, R (m) 0.3429 

Transmission Single speed 
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TABLE II GA parameters used for solving MOOP. 

Type of GA Binary-coded GA 

Population size 100 

Recombination type Standard tournament selection (size=2) 

Crossover probability 0.985 

Mutation probability 0.01 

Random seed 0.4 

Number of generations 100 

Time step, δt (s) 0.001 

TABLE III Statistical information of the solutions obtained by 20 independent runs with 

different random seeds for two approaches. 

Speed 
(km/h) 

Approach 

Number of Pareto-

optimal solutions 

obtained 

Size of the dominated space, Sd Coverage of two Pareto fronts, C 

Mean SD Mean SD 
Absolute 

Mean 

difference 

Mean SD 
Absolute 

Mean 

difference 

40 

Single 
acceleration 

100 0 0.850 0.0012 

0.004 

10.9 2.58 

18.0 
Multiple 

accelerations 
100 0 0.854 0.0046 28.9 3.91 

72 

Single 
acceleration 

100 0 0.812 0.0013 

0.013 

8.7 3.22 

22.5 
Multiple 

accelerations 
100 0 0.825 0.0095 31.2 2.54 

104 

Single 
acceleration 

100 0 0.794 0.0020 

0.034 

22.7 19.43 

33.8 
Multiple 

accelerations 100 0 
0.828 0.0069 56.5 18.29 
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TABLE IV Wilcoxon signed-rank test on the results obtained by both approaches for 20 

independent runs with different random seeds. 

Speed 

(km/h) 

Perfor-

mance 

metric 

Number of 

non-zero 

difference 

of paired 

data 

(AApproach 1 -

AApproach 2) 

Sum of 

the 

positive 

ranks 

(SPR) 

Sum of 

the 

negative 

ranks 

(SNR) 

Value of 

Test 

statistics, 

T 

(minimu

m of SPR 

and SNR) 

Critical value of 

Wilcoxon Test 

for a two tailed 

significance level 

(SL) 

Remark (based on two 

tailed significance 

level) 

40 

Sd 20 5 205 5 37 for SL=0.01 

T<37, reject H0 (i.e., 

Approach 2 is better 

than Approach 1) 

C 20 0 210 0 37 for SL=0.01 

T<37, Reject H0 (i.e., 

Approach 2 is better 

than Approach 1) 

72 

Sd 20 56 154 56 

60 for SL=0.1; 

52 for SL=0.05 

T>37 for SL of 0.05, 

cant reject H0; But for 

0.1 SL, reject H0 

C 20 0 210 0 37 for SL=0.01 

T<37, reject H0 (i.e., 

Approach 2 is better 

than Approach 1) 

104 

Sd 20 0 210 0 37 for SL=0.01 

T<37, reject H0 (i.e., 

Approach 2 is better 

than Approach 1) 

C 20 0 210 0 37 for SL=0.01 

T<37, reject H0 (i.e., 

Approach 2 is better 

than Approach 1) 
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TABLE V Statistical information of the solutions obtained by 20 independent runs with 

different speeds for two approaches. 

Speed Zone Approach 

Number of 

Pareto-

optimal 

solutions 

obtained 

Size of the dominated space Coverage of two Pareto-fronts 

Mean SD Mean SD 

Absolute 

Mean 

difference 

Mean SD 

Absolute 

Mean 

difference 

Neighborhood 

Single 

acceleration 
100 0 0.869 0.0124 

0.001 

9.6 1.93036 

24.9 

Multiple 

accelerations 

100 0 0.868 0.0126 34.5 8.28124 

Urban 

Single 

acceleration 

100 0 0.829 0.0113 

0.004 

10.75 3.53739 

18.05 

Multiple 

accelerations 

100 0 0.833 0.0200 28.8 3.9416 

Highway 

Single 

acceleration 

100 0 0.803 0.0060 

0.022 

27.4 11.8650 

33.4 

Multiple 

accelerations 
100 0 0.825 0.0101 60.8 18.1415 

TABLE VI Distribution of optimal number of accelerations found by MOGA in 

Approach 2 in three speed zones. 

Speed Zone 
One Acceleration Two Accelerations 

Three 

Accelerations 

Four 

Accelerations 

Five 

Accelerations 

Mean Mean SD Mean SD Mean SD Mean SD 

Neighborhood 0 85.8 
8.599

7 
11.7 

8.152
0 

1.9 
1.85
29 

0.6 
1.2
649 

Urban 0 92.2 
4.289

5 
7.4 

4.247

8 
0.4 

0.69

92 
0 0 

Highway 0 92.6 
7.471

4 
7.4 

7.471

4 
0 0 0 0 
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List of Figures 

 

Fig. 1: Electric motor characteristics: maximum current and torque for different speeds. 

 

Fig. 2: Schematic representation of the working of MOGA using NSGA-II. 
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(a) 

 

(b) 

 

(c) 

Fig. 3: Comparison of Pareto-optimal fronts obtained in two approaches for chosen speed 

of a) 40 km/h b) 72 km/h and c) 104 km/h. 
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Fig. 4: Comparison of Approach 1 and Approach 2 using electric motor efficiency as a 

function of rotational speed and torque. 

 

Fig. 5: Level of discomfort for top five knee values for different speeds. 
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Fig. 6: Demonstration of a single solution selected from Fig. 5. 
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ABSTRACT 

 

One of the clean energy initiatives at Missouri S&T is an electric shuttle bus 

service, the Ebus. It provides valuable operational data for a fleet-type electric vehicle 

(EV) operating over a fixed route. The primary aim of this study is to use the daily 

operational data obtained from the Ebus in order to formulate an optimal driving strategy. 

Existing research efforts to improve EVs focus on improvements to the architecture and 

the energy management strategy. However, they fail to provide the driver with an optimal 

driving strategy leading to suboptimal use of the stored battery energy. This shortcoming 

was addressed here by implementing a multi-objective approach to find an optimal 

driving strategy for an electric bus. The driving strategy was taken to comprise two parts: 

a constant trip speed and an acceleration value to achieve that speed. From the 

operational data, the efficiency and power consumption of the electric motor were 
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computed for different speeds. By assuming the entire trip was executed at a constant 

speed, the range for each speed was calculated. The speeds were ranked based on their 

corresponding ranges. Then, to achieve the optimal speed, the acceleration duration and 

energy consumption for different acceleration values were computed. The values were 

ranked based on the trade-off between duration and energy. The choice of driving 

strategy (exact speed and acceleration values) is left to the driver since different strategies 

would be needed for different road conditions. This multi-objective approach gives 

flexibility to the driver and promotes optimal use of the stored battery energy, thereby 

enhancing the energy efficiency and range of the Ebus. It can be easily implemented in 

other electric vehicles as well. 

INTRODUCTION 

Electric vehicles (EVs) have recently received a lot of attention due to being 

classified as zero emissions vehicles and being more energy efficient. Electric buses are 

of great interest for urban mobility applications since the route is generally fixed and they 

can be deployed as a fleet. Reference [1] details the many advantages, including being 

locally emission-free, suffering no energy losses during idle operation, more energy 

efficient than conventional buses, quiet, able to recover braking energy, etc. Electric 

buses provide additional advantages such as being able to have a low floor to comply 

with regulations [2]. Lajunen’s study [3] on city buses concluded that electric buses have 

tremendous potential to improve energy efficiency when replacing conventional buses as 

well as to reduce emissions and life-cycle costs. However, operation route planning and 

scheduling were found to be important in managing the life cycle costs. 
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Existing research efforts on EVs can broadly be divided into two categories. The 

first category is improvements to the hardware of the vehicle, such as the energy storage 

(namely, the battery) [4], the charging device [5], electric motor improvements [6], etc. 

The second category is improvements to the energy management strategy (EMS) of the 

vehicle, examples of which can be found in [7-9]. In this study, a third category is 

proposed: improvements to the driving strategy adopted by the driver. A driving strategy 

refers to the combination of acceleration and speed values chosen by the driver to 

traverse a given distance. The importance of this category of research is as follows. The 

need for an EMS came about when researchers realized that it was simply not enough to 

improve the hardware of the EV; it was also important to use the stored energy of the 

battery in the most optimal manner. The goal of the EMS is to properly manage the 

energy of the EV while fulfilling the driver’s demand. However, the driver does not 

typically plan a trip based on acceleration and speed values. The driver typically follows 

the flow of traffic, which means the chosen driving strategy may be suboptimal. This 

means that, no matter how much the hardware and the EMS are improved, the EV will 

not perform to the best extent possible because the driver’s demands cause the EMS to 

waste energy by operating the hardware in a suboptimal regime. Therefore, it is essential 

to adopt a driving strategy that optimally operates the EV hardware and allows the EMS 

to properly manage the stored energy. This is termed optimal driving or adopting an 

optimal driving strategy. 

Optimal driving is a new concept and there are few existing studies that can be 

stated as belonging to this category. There are several studies [10-14] to support the 

notion that driving parameters, such as the harshness of acceleration or braking, the 
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average trip speed, the number of starts or stops, all influence the vehicle energy 

consumption and, consequently, the range. Reference [15] is a study specifically for 

electric buses, which concluded that the main reason for differences in the energy 

consumption of electric buses operating on the same bus line was the difference in the 

way the acceleration pedal was used. Yao et al. [16] showed that the energy consumption 

was dependent on the chosen acceleration value for a given speed change. Vaz et al. [17] 

showed that a certain zone of speeds in the speed range of an EV could optimize the 

objectives of range and trip time. 

The Missouri University of Science and Technology (Missouri S&T) has 

developed and promoted energy sustainability initiatives on its campus through various 

projects, such as the Solar Village, the E
3
 Commons, and the renewable energy 

microgrids. One of the latest clean energy initiatives at Missouri S&T is the Ebus, which 

is the first fully electric shuttle in Rolla, MO. In addition to providing free public 

transportation to the university students and raising awareness about electric vehicle (EV) 

technology, the Ebus also provides valuable operational data for a fleet-type EV 

operating over a fixed route. 

The Ebus, which is an electric bus servicing the Missouri S&T campus is depicted 

in Fig. 1. It can accommodate 20 seated passengers and 10 standing passengers. Its range 

is between 120-150 miles. This study finds an optimal driving strategy for the Ebus by 

analyzing the operational data. The study by Ye et al. [18] is a typical example of the 

design of a hybrid electric bus based on modeling. He et al. [19] used parameter matching 

to design and simulate the performance of an electric city bus. Chymera et al. [20] 

proposed an alternative modeling approach by using the movement data of a tram system 
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to calculate the energy required. This study uses a similar approach. Operational data of 

the Ebus was analyzed to find the optimal zone for trip speed selection. Additionally, it 

was used to find a suitable acceleration strategy to achieve the optimal speeds. A bus 

simulation was developed using the parameters provided by the manufacturer and the 

findings were compared with the simulation predictions. 

 

 

Fig. 1: Photograph of the Ebus [21]. 

OPTIMAL DRIVING APPROACH 

A driver typically drives the bus based on experience and based on real-time 

traffic conditions. This results in a random, suboptimal driving strategy, meaning the 

accelerations and speeds chosen by the driver to negotiate a particular distance may not 

guarantee optimal use of the battery energy. However, since the strategy is random, the 

optimal accelerations and speeds may be adopted by the driver some of the time, without 
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the driver realizing that these are optimal values. Therefore, it is necessary to find and 

extract the optimal driving strategy from all the operational data. 

The aim of this study is to find an optimal driving strategy for the Ebus. A multi-

objective approach was used to find optimal speeds, as proposed by Vaz et al. [17], who 

showed that it was possible to find a trip speed that gave the maximum range by 

maximizing the electric motor efficiency and minimizing the power consumption. In 

other words, the energy per unit distance (taken as miles) would be the lowest at this 

optimal speed. The first aim of this study is to identify the optimal speed or optimal speed 

zone specifically for the Ebus. It is important to present the driver with a range of 

solutions since the optimal speed may be too slow or unfeasible for various reasons. 

Once the optimal speed is chosen, the driver would like to accelerate the bus to that speed 

in the shortest time duration while using the least energy possible. These objectives are 

conflicting, meaning if the driver chooses acceleration values that minimize the 

acceleration duration, the energy expended will increase. From a driving standpoint, the 

driver does not typically choose a particular acceleration value. Rather, the driver 

maintains a pedal position. 

Based on these observations and the literature review, the second aim is to 

identify an acceleration strategy that will result in non-dominated objective function 

values with the objectives being the energy consumption and time duration. Two 

solutions, A and B, each corresponding to the same two objective functions, f1 and f2, 

which have to be minimized, are said to be non-dominated with respect to one another if 

either f1(A) < f1(B) and f2(B) < f2(A) or f1(B) < f1(A) and f2(A) < f2(B). A is said to dominate 

B if f1(A) < f1(B) and f2(A) < f2(B). Correspondingly, A is said to be dominated by B. Non-
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dominated solutions represent a trade-off between the different objectives that are being 

optimized. In the absence of any higher-level information, any non-dominated solution 

may be suitable for implementation. 

In general, acceleration consumes more power than constant speed operation. 

However, it usually comprises a much shorter portion of the trip. For a campus electric 

bus with stop-and-go driving, it is important to focus on both aspects. Due to the 

complexities involved with daily driving, including auxiliary effects from the different 

onboard systems, gradient effects, etc., and due to the randomness associated with daily 

driving, it may be difficult to extract a comprehensive driving strategy from the 

operational data. Therefore, a bus simulation was developed using the parameters 

provided by the manufacturer. Since it was convenient to control the conditions of 

simulations, it was relatively straightforward to extract the optimal driving strategy and to 

compare it with the strategy that was extracted from the operational data of the Ebus. 

DATA ACQUISITION SYSTEM (DAQ) 

The DAQ onboard the Ebus comprised several instruments and sensors to 

measure various operational parameters, data processing (filtering and signal conversion) 

circuits, and a vehicle computer that recorded all the data. The measured data were 

filtered and output to an Excel file. Eight samples were averaged each second and 

recorded in the vehicle computer.  

For this study, only seven different data elements from the DAQ were used: 

battery current, battery voltage, battery state of charge (SOC), time, road gradient, vehicle 

speed, and the distance traveled. Fig. 2 shows a schematic of the data acquisition system. 
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As seen in the figure, the current and voltage were directly measured from the bus 

circuitry and fed to the contactor board. The current was integrated each second and this 

integrated value was treated as a fraction of the total capacity to obtain the SOC. A 

magnetic pick-up on the chain drive was used to read pulses to obtain the speed. The 

vehicle speed pulses were integrated in order to determine the distance traveled. The 

gradient data was measured using an accelerator on board the bus. The time was obtained 

directly from the vehicle computer recordings.

 

Fig. 2: Data acquisition system of the Ebus. 

ELECTRIC VEHICLE (EV) MODEL 

To confirm the trends found from the experimental data, a MATLAB model of 

the Ebus was created using the parameters provided by the manufacturer. Only the 

critical components were modeled. The models required for the battery, the electric 

motor, and the vehicle dynamics can be found in [22-25]. The relevant bus model 
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parameters are listed in Table 1. Certain parameters, such as the air density and the 

gravitational acceleration were typical local values. The most important equations are 

summarized below. For a given reference speed, v, the tractive power needed is 

    (1) 

Where a is the acceleration and θ is the gradient. The electric motor efficiency is 

  (2) 

Where τ and ω are the electric motor torque and rotational speed, respectively. If 

the tractive power is positive, the battery current is 

    (3) 

Finally, the state-of-charge of the battery is 

   (4) 

The model was validated by benchmarking with the operational data. Fig. 3 shows the 

measured and simulated vehicle speed and battery current for a short trip (108 s). The 

simulated speed closely matched the measured speed. The resulting battery current was a 

little more complex. It could be seen that the simulated current generally followed the 

measured battery current, especially during acceleration and deceleration. The deviations 

were to be expected because the operational data contained real world conditions that 

were not simulated, such as auxiliary systems. On the other hand, the large variations in 

the simulation current were due to the fact the simulation followed the measured data, 

implying that the controller had to compensate for the sudden, unexpected changes in the 
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speed. Even though the two current plots looked vastly dissimilar, when considering the 

total energy consumed during the trip, the difference was only 3%. Constant-speed 

operation is expected to be a lot closer. For example, at 30 mph, the power consumption 

at zero gradient was measured to be 13 kW, whereas was the simulation produced a 

power of 13.5 kW, that is, a difference of about 4%. All this confirmed that the 

simulation was able to capture the operational characteristics of the Ebus. 

Table 1: Relevant bus model parameters. 

Air density, ρair (kg m
-3

) 1.17 

Drag coefficient, CD 0.6 

Frontal area, Af (m
2
) 6.11 

Gravitational acceleration, g (ms
-2

) 9.81 

Inertia coefficient 1.05 

Mass, m (kg) 6740 

Maximum speed (mph) 45 

Overall gear ratio, G 10.07:1 

Rolling friction coefficient, μ 0.0082 

Tire radius, R (m) 0.39 

Battery 

Auxiliary power (W) 25 

Capacity, Cap (A·h) 400 

Initial state-of-charge, SOCinit 1.0 

Number of cells in parallel, NP 1 

Number of cells in series, NS 96 

Type Lithium-Ion 

Motor 

Critical rotational speed (rads
-1

) 250 

Maximum rotational speed (rads
-1

) 513 

Maximum torque (Nm) 406 

Power (kW)  75.4 

Losses 

Battery efficiency, Beff 0.99 

Converter efficiency, Ceff 0.96 

Transmission efficiency, Geff 0.99 

Electronic losses, C (W) 100 

Copper losses, kc 0.3 

Iron losses, ki 0.01 

Windage losses, kw 0.000005 
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The model was validated by benchmarking with the operational data. Fig. 3 shows 

the measured and simulated vehicle speed and battery current for a short trip (108 s). The 

simulated speed closely matched the measured speed. It can be seen that the simulated 

current generally followed the measured battery current, especially during acceleration 

and deceleration. The deviations were to be expected because the operational data 

contained real world conditions that were not simulated, such as auxiliary systems. Even 

though the two current plots look dissimilar, when considering the total energy consumed 

during the trip, the difference was only 3%. Constant-speed operation is expected to be a 

lot closer. For example, at 30 mph, the power consumption at zero gradient was measured 

to be 13 kW, whereas was the simulation produced a power of 13.5 kW, that is, a 

difference of about 4%. All this confirmed that the simulation was able to capture the 

operational characteristics of the Ebus. 

RESULTS AND DISCUSSION 

Optimal Speed Zone: The first aim of this research was to identify the optimal 

speed zone. The bus operational data was obtained in an Excel spreadsheet for several 

days. The different columns contained different data elements (e.g., speed, current). The 

different rows contained different time steps, starting from the beginning of a day and 

stopping at the end. The time step was 1 s when the Ebus was moving and 30 s when 

parked. Therefore, there were about 24,000 rows in a spreadsheet for any given day with 

about 6 hours of moving data. 
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(a) 

 

(b) 

Fig. 3: Comparisons of measured and simulated data for: (a) vehicle speed (b) battery 

current. 

A MATLAB script file was written to extract the six data elements required from 

a typical day’s operational data. This script file only extracted the battery current and 

voltage (to calculate the power consumption) when the bus’ speed was constant. Fig. 4 

shows the measured power for different speeds, v, as well as the gradient at the time step 

that the power was extracted. Only positive gradients were considered. In general, the 



 

 

137 

power consumption increases with the speed and the gradient. However, the power at 40 

mph in Fig. 4 was lower than the power at 3 mph because the gradient was significantly 

lower: 1.5º instead of almost 4º.  This implies that gradient effects contribute significantly 

to power consumption. The predicted power in Fig. 4 was calculated by running the Ebus 

simulation with the same operational data (gradient and speed) as the measured power. It 

could be seen that the predicted power matched the measured power quite well with the 

average deviation being only 10.2%. It was observed that the operational data lacked any 

instances of zero gradient operation which was to be expected for the topography of 

Rolla. As such, the simulation was used to calculate the power consumption of the bus at 

zero gradients. This was displayed in Fig. 3, for which the power curve followed a 

quadratic rise in accordance with the v
2
 nature of the drag force. This agrees with the 

quadratic trend found in [17] using a different model for a passenger EV. 

 

Fig. 4: Measured and predicted power along with power at zero gradient for different 

bus speeds; gradient values correspond to measured power values. 
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The simulation was used to obtain the electric motor torque for each of the speeds 

in Fig. 3. The rotational speed was calculated using the bus’ linear speed, and using this 

and the electric motor torque, the output power of the electric motor was calculated. The 

efficiency of the electric motor at each speed was calculated by dividing the output power 

by the measured power consumption values in Fig. 4. Fig. 5 shows the efficiency as a 

function of speed, v. It was seen that the efficiency curve followed the expected trend, 

barring experimental outliers, of increasing as the speed increased, reaching a maximum 

value before finally starting to decline. 

 

Fig. 5: Electric motor efficiency versus Ebus speed. 

From an optimality standpoint, it is desirable to operate the bus with maximum 

efficiency and minimum power consumption, thereby getting maximum range. From 

Figs. 4 and 5, it is clear that these are conflicting objectives: no unique speed optimizes 

both objectives. Using data from Figs. 4 and 5, the range of the bus was calculated along 

with the total trip time for the associated speeds. The initial SOC was 1.0 and the final 
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SOC was 0.5. The results are illustrated in Fig. 6. The trip time followed a 1/v trend, as 

expected, implying that, the trip time will decrease as the driver chooses a higher speed. 

The range, however, has a more complex relationship with the speed. For both the 

experimental and simulation data, the range increased as the speed increased, up to about 

8 mph, after which it decreased. The initial increase was due to the increase in efficiency 

and the subsequent decrease was due to the increase in power consumption. Therefore, 

for zero gradient, the trip speed that gave the maximum range was 8 mph. However, if 

the driver desires a shorter trip time, a higher speed can be chosen from Fig. 6. For 

example, at 20 mph, the range decreased by only about 16% but the trip time decreased 

by about 69%. 

 

Fig. 6: Range and trip time for different speeds using measured and simulated bus data. 

From Fig. 4, it is clear that the gradient significantly changes the power 

consumption. Therefore, the Ebus simulation was run at the same trip speeds as Fig. 6 but 
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with gradient values between 0º and 5º. The resulting Fig. 7 shows the optimal speed also 

increases as the gradient increases. 

Instead of only looking at how many miles can be traveled with a certain number 

of kilowatt-hours, as in Fig. 5, it may be instructive to also consider the energy per mile. 

A second MATLAB script file was written to process several days’ operational data so as 

to group the data into nine speed zones, 0-4.99 mph, 5-9.99 mph, and so on up to 45 mph. 

For each speed zone, the energy per mile was calculated whenever the bus speed was 

constant, taken to be within 2.5 mph of the preceeding speed and the following speed. 

The gradient was also recorded. Finally, the energy and gradient values were averaged so 

that each speed zone had a representative energy per mile and gradient. The results can be 

seen in Fig. 8. The general trend was that the energy per mile decreased as the speed 

increased up to a certain value and then increased with the speed. As expected, this was 

the opposite of Fig. 6 and confirmed the idea that a medium speed would give the 

maximum range. The gradients for all these zones were not zero but fairly low. Due to 

this gradient effect, the optimal speed zone was not 5-9.99 mph, as would be expected 

from Fig. 6, but 15-19.99 mph. Considering the speed limits within the city of Rolla, MO, 

this is definitely feasible. 
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Fig. 7: Optimal speeds in terms of range for different gradients. 

Based on prior experience, the Ebus was billed as having an energy consumption 

around 1 kWh/mi. This, of course, includes acceleration and deceleration periods as well 

so the constant speed energy consumption is expected to be much lower. 

 

Fig. 8: Energy per mile and gradient from operational data for nine speeds zones. 
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As seen in Fig. 8, the energy consumption was between 0.6-0.7 kWh/mi for most 

speed zones. Finally, the energy consumption for the lowest speed zone was quite high, 

about 3.1 kWh/mi, even though the gradient was fairly low. This was due to the fact that 

the bus was usually accelerating in this speed zone so that even the constant speed data 

were not really constant. Upon adjusting the tolerance of the script file to 0.1 mph, the 

energy consumption was found to be about 2.4 kWh/mi. 

Acceleration Strategy: The second aim was to identify an acceleration strategy that 

would result in non-dominated objective function values. A third MATLAB script file 

was written to compute the acceleration for different time steps for the operational data of 

several days. It was observed that the acceleration values drastically varied when 

accelerating from rest to a chosen speed, implying that it would be impossible to select an 

optimal acceleration value from the operational data. Therefore, the MATLAB script file 

was modified to identify all the speed changes from 0 mph up until the bus speed reached 

a constant value. Then, the acceleration values during each speed change were computed, 

and the maximum, mean, and standard deviation of each speed change were calculated. 

After analyzing these statistical parameters for different speed changes, a trend was 

noticed that the mean acceleration value was primarily responsible for dictating the 

acceleration duration, as expected. If a low duration is desired, a high mean acceleration 

value can be adopted but at the cost of consuming more energy. If energy savings is the 

prime concern, a low mean acceleration can be adopted at the cost of having a longer 

duration. However, the maximum and standard deviation were responsible for deciding 

non-domination of solutions. Fig. 9 shows the acceleration duration and energy for 

dominated and non-dominated solutions with a reference speed of vref = 25 mph. It could 
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be seen that the solutions with a low standard deviation (0.8-1.2 ms
-2

) dominated the 

solutions with a high standard deviation (1.3-1.5 ms
-2

). This trend was also noticed for 

other reference speeds and confirmed by the simulation. The solutions with a high 

standard deviation also had a higher maximum acceleration value (3.5-4.6 ms
-2

) than 

those with a low standard deviation (2.7-3.5 ms
-2

). 

 

 

Fig. 9: Acceleration duration and energy for dominated and non-dominated solutions 

with vref = 25 mph. 

Finally, it is important to consider the effect of the gradient on the acceleration 

strategy. After carefully analyzing the acceleration values, a trend was found that, for a 

certain speed change with comparable gradient values, the solution with a higher mean 

acceleration had a lower energy consumption than a solution with a lower mean 

acceleration. This can be seen in Fig. 10 for different speed changes. In each case, 

gradient values are comparable. However, it was also noticed that it was necessary to 
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keep the maximum and standard deviation of the acceleration as low as possible, even on 

graded roaded. Once again, these findings were confirmed with the present Ebus 

simulations. 

 

Fig. 10: Energy consumption for different speed changes for solutions with comparable 

gradient. 

SUMMARY AND CONCLUSIONS 

The main aim of this study was to find an optimal driving strategy for the Ebus servicing 

the Missouri S&T campus. The operational data was used to find an optimal speed. A 

simulation of the bus was created in order to confirm the experimental findings. By 

considering maximization of electric motor efficiency and minimization of power 

consumption, the optimal trip speed was found to be 8 mph. When adding gradient 

effects, it was found that the optimal speed increased as the gradient value increased and 

leveled off at 15 mph. These findings were further validated by measuring the energy per 

mile during the daily bus operation. It was found that the 15-19.99 mph speed zone had 

the least constant speed energy consumption out of the entire bus speed range (0-45 
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mph). The recommendation to the driver would be to maintain the Ebus speed as close to 

15 mph as possible, especially on graded roads. 

The operational data was further analyzed to find an appropriate acceleration strategy. It 

was found that the mean acceleration dictated the acceleration duration, but the maximum 

and standard deviation decided non-domination. High maximum and standard deviation 

values produced solutions that were dominated by those with low maximum and standard 

deviation values. Additionally, it was found that a higher mean acceleration value 

resulted in lower energy consumption for graded roads. The recommendation to the 

driver would be to vary the mean acceleration based on whether duration or energy 

consumption is of prime concern. In general, a higher mean acceleration value should be 

adopted on graded roads. However, in all cases, the maximum and standard deviation 

values should be as low as possible, implying a constant pedal position for the speed 

change. 

With the efficiency of diesel buses being 6-10 kWh per mile, the Ebus is already an 

improvement in terms of energy efficiency and sustainability. The Ebus consumes 40-60 

kWh and covers 40-60 miles per day. Optimal driving would significantly lower this, 

although more work is needed to quantify how much of a reduction is possible under 

daily driving conditions. The gradient’s effect on the energy consumption is unavoidable, 

but the driver has control over the acceleration and speed. By careful route planning, 

unnecessary stops could be avoided in the future thereby allowing more constant-speed 

operation. While most of the passengers who use the bus would otherwise walk, the Ebus 

is seeing additional deployment to transport people into downtown Rolla and also to the 

Hy Point campus located about 5 miles away from the main campus. Future work on 
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usage will need to estimate not only the energy reduction but also the emissions 

reduction. It is necessary to take into account the emissions generated from producing the 

electricity used to charge the battery. The present optimal driving strategy could also be 

adopted for other electric vehicles. 
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SECTION 

2. MULTI-OBJECTIVE DRIVING STRATEGY FOR EBUS 

2.1. INTRODUCTION 

 

A driver typically drives based on experience and traffic conditions. In the 

absence of a scientific driving strategy, the chosen accelerations and speeds tend to have 

randomness associated with them, which a vehicle driven by the same driver over the 

same route would experience varying energy consumption and trip duration values from 

trip to trip. The purpose of the research presented in this dissertation is to formulate an 

optimal driving strategy that will help the driver to drive more efficiently and more 

consistently. This chapter focuses on demonstrating the methods for optimal driving 

developed so far. 

 

During any given trip, the vehicle has different modes: acceleration, constant 

speed, and deceleration. The previous papers presented constant speed and optimal 

acceleration approaches aimed at optimizing certain trip objectives. The objective here is 

to combine the constant speed approach with the optimal acceleration approach in order 

to account for all vehicle modes during a trip. It may be noted that the deceleration 

portion of the trip was not optimized. Instead, a constant deceleration value was used. 

The optimization objectives are energy consumption and trip time, both of which are to 

be minimized. These objectives are conflicting, meaning an improvement in one leads to 

deterioration in the other. Therefore, the problem becomes a multi-objective optimization 
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problem, which can be solved using multi-objective genetic algorithms (MOGAs). The 

goal of MOGA is to search for acceleration values, acceleration duration values, and 

constant trip speed values that, when adopted by the driver, will optimize both the 

objectives in question, thereby leading to efficient and consistent driving. 

 

2.2. PROBLEM DEFINITION 

 

The electric vehicle (EV) studied is the Ebus. The trip for which the optimal 

driving strategy was created was from the Havener Center located on the main Missouri 

S&T campus to the Hy Point Industrial Park located on the auxiliary Missouri S&T 

campus about 7 km away and back to the Emerson Electric Company Hall, located on the 

main Missouri S&T campus. The entire trip was divided into smaller micro-trips. A 

micro-trip may be defined as an excursion between two locations at which the vehicle is 

at rest [7]. While traveling between two locations, a vehicle may need to stop for many 

reasons: the preceding vehicle has stopped, the vehicle is at a stop sign or traffic light, 

etc. Therefore, most real-world trips comprise several smaller micro-trips. The recorded 

bus data for the trip studied in this chapter (referred to henceforth as the trip) was 

analyzed. The trip comprised 13 micro-trips of varying size. Table 1 shows the micro-trip 

characteristics. 
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Table 2.1: Micro-trip characteristics for Ebus round trip. 

Micro-

Trip 

Speed 

Limit(s) 

(mph) 

Start (GPS) End (GPS) Cause Time 

(s) 

Distance 

(m) 

1 15 37.9546034 -

91.7754615 

37.9533365 -

91.7768928 

Stop sign 69 227.1406 

2 35 37.9533381 -

91.776912 

37.9550085 -

91.7769718 

Traffic light 37 192.8527 

3 35 37.9550028 -

91.776985 

37.9592967 -

91.7709043 

Traffic light 77 778.0178 

4 35 37.9592937 -

91.7708945 

37.9622737 -

91.7655583 

Traffic light 69 649.861 

5 45 37.9622757 -

91.7655532 

37.9780511 -

91.7252101 

Turn 348 4869.017 

6 35 37.978248 -

91.7251765 

37.9826565 -

91.7246826 

Turn 47 559.8273 

7 25 37.9826652 -

91.7246232 

37.9815497 -

91.7222004 

Destination 45 298.5575 

8 15 37.9815547 -

91.7221994 

37.9815489 -

91.7221508 

Turn 53 156.5979 

9 25 37.981561 -

91.7221527 

37.9820979 -

91.7221348 

Turn 18 62.9878 

10 25 37.9821134 -

91.7221386 

37.9826996 -

91.7245381 

Turn 33 233.8909 

11 35 37.9827073 -

91.7245451 

37.9777485 -

91.725295 

Turn 56 568.6339 

12 45 37.9777394 -

91.7252969 

37.9709235 -

91.7606587 

Stop sign 269 3782.22 

13 45/35/25 37.9709948 -

91.7610715 

37.9564367 -

91.7726944 

Destination 205 2262.242 

    Total 1326 14641.85 

 

A model of the bus was created in MATLAB. The battery model used is 

described in [8]. The energy consumption and vehicles dynamics were modeled using the 

model proposed in [9]. Some of the bus parameters were obtained from the manufacturer, 

Ebus, Inc. (Downey, CA). The unknown parameters were estimated by using model 

optimization. The battery model was fine-tuned by using regression analysis. The input 

was the measured battery current and the output was the simulated battery voltage. A 

regression coefficient (R
2
) between the measured battery voltage and the simulated 

battery voltage was computed, and the battery parameters were optimized such that R
2
 

was maximized. Using this approach, the best R
2
 value was found to be 0.95. A similar 
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approach was used for the energy consumption and vehicle dynamics model. The 

unknown parameters were optimized by minimizing the difference between the measured 

and the simulated battery currents. Table 2 shows the known bus parameters listed by 

component. Table 3 shows the unknown parameters that were determined via the model 

optimization. 

Table 2.2: Ebus model parameters. 

Vehicle 

Air density, ρair (kg m
-3

) 1.1 

Drag coefficient, CD 0.6 

Frontal area, Af (m
2
) 6.11 

Gravitational acceleration, g (ms
-2

) 9.81 

Inertia coefficient 1.05 

Mass, m (kg) 6740 

Maximum speed (km/h) 72 

Overall gear ratio, G 10.07:1 

Rolling resistance coefficient, crr 0.0082 

Tire radius, R (m) 0.39 

Battery 

Capacity, Cap (A·h) 400 

Number of cells in parallel, NP 1 

Number of cells in series, NS 96 

Type Lithium-Ion 

Voltage (V) 300 

Motor 

Maximum torque (Nm) 406 

Power (kW)  75.6 
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Table 2.3: EBus parameters from model optimization. 

Vehicle 

Auxiliary power (W) 249.9 

Converter electronic losses (W) 499.9 

Transmission efficiency, Geff 0.99 

Battery 

CTransient_L (MF) 0.22375 

RTransient_L (mΩ) 0.9968 

CTransient_S (MF) 0.03518 

RTransient_S (mΩ) 0.9338 

RSeries (mΩ) 1.4932 

Open-circuit voltage coefficients 

Exponential multiplier -0.8669 

Exponential power -13.7926 

Constant coefficient 4.23 

Linear coefficient 0.1265 

Quadratic coefficient 0.1453 

Cubic coefficient 0.1014 

Motor 

Regenerative fraction 0.4 

Copper losses, kc 0.1 

Iron losses, ki 0.01 

Windage losses, kw 0.00005 

 

In order to minimize the trip energy and time, suitable decision variables must be 

selected by the MOGA. Each micro-trip requires four decision variables: two acceleration 

values, the duration for the first acceleration value, and the constant speed. This is 

because the number of optimal accelerations was fixed at two based on previous studies. 

Also, the deceleration mode for each micro-trip was executed at a constant deceleration 

value of 1 m/s
2
. Since 13 micro-trips comprised the trip being optimized, a total of 52 

decision variables comprised each solution. The goal of MOGA is to find different sets of 

solutions that will minimize the trip energy and time. After that, using higher-level 
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information, one solution will be presented to the driver as the optimal driving strategy 

for implementation. 

 

2.3. RESULTS 

 

After obtaining the bus model, it was made to follow the same speed profile as the 

one followed by the Ebus during the trip. The time durations for both expectedly matched 

100%. The measured energy consumption of the Ebus was about 94% the energy 

consumption of the simulation. It must be noted that the Ebus makes the trip several 

times a day during weekdays. However, one particular dataset pertaining to a trip on 

10/14/2014 was used for model optimization and comparison. The MOGA was run with 

different settings in terms of number of generations, number of solutions, crossover 

fraction, mutation probability, etc. There are certain important considerations that guide 

the choice of parameters. It is important to search the solution space exhaustively, but in 

a reasonable amount of time. It is necessary to allow sufficient diversity within the 

population, but also necessary to allow the solutions to converge. The upper and lower 

limits of the decision variables were determined based on the performance capability of 

the bus. For the speeds, however, the lower limits were taken to be 5 km/h, thereby 

guaranteeing that the trip would definitely be completed. The upper limits were based on 

the speed limits of the individual micro-trips. 

 

Based on the above considerations, several MOGA runs were conducted to search 

for optimum driving strategies. Figure 1 shows the results of some of the MOGA runs. 
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Two things are obvious. An increase in the number of generations tends to produce better 

solutions in terms of the objectives. The second and third Pareto fronts were obtained by 

using different MOGA parameter settings. The mutation probability was 0.3 instead of 

0.2 and the crossover fraction was 0.8 instead of 1.0. A crossover fraction of 1.0 means 

all the offspring other than elite ones are as a result of crossover. A crossover fraction of 

0.8 means 80% of the offspring other than elite ones are from crossover and the rest are 

purely from mutation. A higher mutation probability gives better diversity within the 

population, but if it is too high, the search becomes a random search. 

 

Figure 1 showed that MOGA’s results were satisfactory: there were plenty of 

solutions from which to choose and these solutions spanned a broad range for both 

objectives. However, it is necessary to compare the performance of the proposed 

approach with the measured objective values. Figure 2 shows the energy consumption 

and trip time for different trips of the Ebus along the same route. These are plotted along 

with the best results from Figure 1. It must be noted that the energy consumption values 

have been reduced by about 6% to account for the discrepancy between the actual bus 

and the bus model. It can be seen that the random driving produces some non-dominated 

solutions and some dominated solutions. Additionally, some of the bus solutions are 

dominated by other bus solutions, implying the random driving of the bus is not 

necessarily optimal in any sense. 
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Fig. 2.1: MOGA results obtained for different settings. 

 

 

Fig. 2.2: Adjusted MOGA results and measured bus data. 

 

To make a recommendation about the optimal driving strategy to the driver, it is 

necessary to choose one solution for implementation. Usually, the choice is left up to the 

driver who can decide which of the two objectives is more important. Indeed, this may 
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change from day to day or even from trip to trip. For the sake of demonstration, two 

different decision-making techniques have been shown in Figure 2. The first preferred 

solution is based on the reference point technique. In this method, the solution that is 

close to the ideal point (the origin in this case) is selected. The second preferred solution 

is based on choosing a solution with a very similar trip time as a bus solution, but with a 

lower energy. Table 4 summarizes the energy savings that can be obtained by adopting 

either of the preferred solutions. 

 

Table 2.4: Energy savings for two preferred solutions compared to measured bus 

objectives. 

Solution Energy Savings (%) Trip Time Increase (%) 

Preferred Solution 1 1.0 0.9 

Preferred Solution 2 5.9 13.9 

 

Of course, the energy savings will be more if one of the solutions with lower 

energy consumption is chosen. The trip time, however, will definitely be higher. It must 

be noted that these values are based on the model that was used by the MOGA. Besides 

the overestimation of energy consumption, the model is dependent on the bus data, which 

is noisy and prone to measurement errors. There may also be a delay between actual 

parameter readings and the values that are recorded. Additionally, unforeseen driving 

circumstances, such as a green light instead of a red light, may cause the number of 

micro-trips to increase or decrease. As such, it is necessary to properly test these 

solutions in order to see how much energy can actually be saved. 
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2.4. SUMMARY AND CONCLUSIONS 

 

The constant speed approach was combined with the optimal acceleration approach 

into one simulation in order to obtain an optimal driving strategy that accounts for all 

phases of a trip. A demonstrative trip of the Ebus was selected for optimization. The trip 

was divided into smaller micro-trips. The objectives to be minimized were the trip energy 

and time, which depended on 52 decision variables. A model of the bus was created in 

MATLAB, and a MOGA was used to obtain Pareto fronts. 

 

The trip was successfully optimized using the proposed approach. Several non-

dominated solutions that spanned a broad range of both the objectives were obtained. It 

was found that some of the measured objective values were dominated by the 

optimization fronts whereas others were non-dominated. Two preferred solutions for 

implementation were selected. It was found that energy savings of up to 5.6% could be 

obtained for an increase of about 13.9% in the trip time. Proper testing of these solutions 

would enable one to determine how much energy can actually be saved under real-world 

driving conditions.
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3. SUMMARY AND CONCLUSIONS 

  In the present study, an optimal driving strategy was developed using a multi-

objective approach. In the first part, a neural network strategy to classify the driving 

situation was developed. Two neural networks were successfully trained to classify the 

driving behavior as aggressive or defensive and the driving cycle as highway or urban 

using the acceleration and brake pedal positions. This helps the driver to know whether or 

not he/she is driving aggressively or defensively. The driver can then modify the driving 

behavior accordingly. It also gives the drive an idea about what the approximate average 

trip speed should be: high for highway driving and low for urban driving. 

The next part helped the driver to choose an exact optimal trip speed based on trade-offs 

between maximum range and minimum trip time. By maximizing the electric motor 

efficiency and minimizing the power consumption, a Pareto-optimal front of optimal trip 

speeds was obtained. It helps the driver to avoid driving at suboptimal speeds, which 

results in wasting the stored battery energy. Additionally, the multi-objective approach 

allows the driver to choose how much range would be sacrificed for a reduction in the 

overall trip time and vice versa. 

The third part helped the driver to choose an appropriate acceleration strategy. 

The conflicting objectives of minimization acceleration duration and minimization of 

acceleration energy were considered. To optimize the two objectives, two approaches 

were considered: using a single acceleration and using multiple accelerations to achieve a 

reference speed. It was found that using multiple acceleration values optimized the 

objectives more effectively than using a single acceleration value throughout the speed 

range of the EV. For the same duration and reference speed, up to 2% energy savings 
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were observed when using multiple acceleration values. Multi-criterion decision-making 

techniques such as comfort and “knee” were used to demonstrate the implementation of a 

single solution for a practical driving situation. 

The proposed approach was investigated for the Ebus, an electric bus that 

operates on the campus of the Missouri University of Science and Technology. By 

analyzing the operational data, it was found that the bus consumed the least energy per 

mile when operating between 15-19.99 mph. Due to the complexity involved with the 

acceleration data, it was not possible to find constant acceleration values. Instead, the 

maximum, mean, and standard deviation were used to develop an appropriate 

acceleration strategy. It was found that the mean acceleration dictated the acceleration 

duration, but the maximum and standard deviation decided non-domination. High 

maximum and standard deviation values produced solutions that were dominated by 

those with low maximum and standard deviation values. Additionally, it was found that a 

higher mean acceleration value resulted in lower energy consumption for graded roads. 

Finally, the constant speed approach was combined with the optimal acceleration 

approach into one simulation. A demonstrative trip of the Ebus, from the Havener Center 

to the Hy Point Industrial Park and back to the Emerson Electric Company Hall, was 

selected. The trip was divided into 13 micro-trips that needed four decision variables each 

to fully describe the optimal driving strategy. After optimization, the Pareto fronts that 

were obtained for different search parameter settings were compared. Two preferred 

solutions for implementation were selected. It was found that energy savings of up to 

5.6% could be obtained for an increase of about 13.9% in the trip time. 
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The proposed strategy has the following benefits. The multi-objective approach 

results in several non-dominated solutions being available. The driver ultimately can 

choose which solution to implement based on trade-offs between the objectives so there 

is inherent flexibility. Besides using the stored battery energy in an optimal manner, the 

proposed strategy assists the driver in trip planning. The strategy is easy to implement 

with minimal changes to existing EV designs. In fact, as pointed out in the second part, 

the optimal driving strategy gives EV designers some insight into how EV designs can be 

improved so that optimal operating points are closer to normal driving conditions. 

In the future, the scenarios and simulations used in the study can be improved 

with more conditions and constraints, thereby giving high-fidelity results. This is 

essential before the strategy can be implemented in a practical driving situation. Adopting 

the constant speed and optimal acceleration strategies in everyday driving may be 

especially beneficial to existing advanced driver assistance or automated driving systems. 

The implementation of the optimal driving strategy in real traffic situations involving 

multiple vehicles needs to be carried out. Additionally, this study also needs to be carried 

out for IC engine vehicles as well as hybrid vehicles. Finally, a trip planning system can 

be developed, one that imbibes the basic tenets of the proposed strategy and incorporates 

GPS and other satellite data regarding the route and traffic characteristics. 

Widespread adoption of the optimal driving approach could have major impacts. 

Besides patently improving the energy efficiency and range of EVs, a reduction in the 

associated greenhouse gas emissions would also occur. A detailed study on this is 

needed, especially for a larger scale. Revisiting the design of existing EVs and EV 

transmissions and also the design of roads and speed limits are also possible outcomes. 
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APPENDIX A. 

CHOOSING THE NUMBER OF NEURONS 
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The neural network must be designed with the right number of neurons for the best 

possible classification results. This becomes evident when regression analysis is 

performed. The MATLAB training function “train” performs regression analysis to give 

an idea of how close the output values after training are to the target values. In other 

words, the R-value gives an idea of how close the simulated output values are to the 

desired target values (ones and zeroes). An R-value of 1.0 implies that after training, the 

neural network produces exactly ones and zeroes. Figure A.1 shows a plot of the R-value 

versus the number of neurons in the neural network. The neural network had two layers 

for every datum point except for the first one where it had one layer. When the number of 

neurons is lesser than 4, the neural network is not able to generate exactly ones and 

zeroes after training, which makes it necessary to introduce the rule where any number 

greater than 0.5 was taken as a “1” and any number lesser than 0.5 was taken as a “0”. 

When the number of neurons is more than 10, the neural network also has trouble 

generating exactly ones and zeroes. When such neural networks are presented with fresh 

data, misclassification of data occurs. Too few neurons are not enough to recognize a 

pattern but too many neurons cause inputs to be misclassified by the neural network. 



 

 

165 

 

Figure A.1: R-Value versus number of neurons in a neural network trained with 22 input 

vectors with 10 rows and target vectors with 2 rows. 
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APPENDIX B. 

ELECTRIC MOTOR SENSITIVITY ANALYSIS 
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Figure B.1 shows the results of sensitivity analysis. Figures B.1a and B.1b suggest 

that the main thesis is fairly immune to changes in the gear ratio. For a chosen speed of 

45 mph, certain gear ratios lead to Approach 1 fronts with greater dominated space than 

Approach 2 (Figure B.1b) but they also dominate fewer solutions (Figure B.1a). For K/If, 

in Figure B.1c, extreme values suggest Approach 2 is better for 25 mph whereas in-

between values suggest that Approach 1 is better. For 45 mph, Approach 2 is clearly 

better. In Figure B.1d, the difference between the approaches for both speeds is very 

small. However, more K/If ratios point to Approach 2 being better than Approach 1. 

Finally, Figures B.1e and B.1f show Ra/La results. Figures B.1e indicates that Approach 2 

is clearly superior to Approach 1 considering the former’s fronts dominate more solutions 

than the latter’s fronts. Figure B.1f shows interesting results. More Ra/La ratios suggest 

that Approach 1 is better than Approach 2. For 25 mph, lower Ra/La ratios favor multiple 

accelerations and higher ratios favor a single acceleration. For 45 mph, Approach 1 

results are fairly constant regardless of the Ra/La ratio. Approach 2 is favored by higher 

Ra/La ratios. These results need to be confirmed using different electric motor models. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure B.1: Results of sensitivity analysis for two chosen speeds. 
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APPENDIX C. 

ADDITIONAL FIGURES 
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Figure C.1: EV free body diagram. 

 

 

Figure C.2: Multi-layer neural network with an input layer, an output layer, and two 

hidden layers.
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