
Scholars' Mine Scholars' Mine 

Doctoral Dissertations Student Theses and Dissertations 

Summer 2015 

Investigation of robust optimization and evidence theory with Investigation of robust optimization and evidence theory with 

stochastic expansions for aerospace applications under mixed stochastic expansions for aerospace applications under mixed 

uncertainty uncertainty 

Harsheel R. Shah 

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations 

 Part of the Aerospace Engineering Commons, Mechanical Engineering Commons, and the Statistics 

and Probability Commons 

Department: Mechanical and Aerospace Engineering Department: Mechanical and Aerospace Engineering 

Recommended Citation Recommended Citation 
Shah, Harsheel R., "Investigation of robust optimization and evidence theory with stochastic expansions 
for aerospace applications under mixed uncertainty" (2015). Doctoral Dissertations. 2420. 
https://scholarsmine.mst.edu/doctoral_dissertations/2420 

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This 
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2420&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/218?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2420&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/293?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2420&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/208?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2420&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/208?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2420&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/2420?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2420&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


INVESTIGATION OF ROBUST OPTIMIZATION AND EVIDENCE THEORY WITH

STOCHASTIC EXPANSIONS FOR AEROSPACE APPLICATIONS UNDER MIXED

UNCERTAINTY

by

HARSHEEL R. SHAH

A DISSERTATION

Presented to the Graduate Faculty of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

AEROSPACE ENGINEERING

2015

Approved by

Dr. Serhat Hosder, Advisor
Dr. Xiaoping Du
Dr. K.M. Isaac

Dr. David Riggins
Dr. Leifur Leifsson



Copyright 2015

HARSHEEL R. SHAH

All Rights Reserved



iii

PUBLICATION DISSERTATION OPTION

This dissertation has been prepared in the style utilized by the Missouri University

of Science & Technology in the form of three journal papers. From here on, the papers will

be referred to by their Roman numerals. The papers are printed as per the university format

however the content is according to their originally published state. The list of journal

publications appended to this dissertation is given below:

(I) Shah, H., Hosder, S., and Winter, T., "A Mixed Uncertainty Quantification Approach

Using Evidence Theory and Stochastic Expansions", International Journal for Un-

certainty Quantification, Vol. 5, No. 1, 2015, pp. 21-48.

(II) Shah, H., Hosder, S., and Winter, T., "Quantification of Margins and Mixed Uncer-

tainties Using Evidence Theory and Stochastic Expansions", Reliability Engineering

and System Safety, Vol. 138, 2015, pp. 59-72.

(III) Shah, H., Hosder, S., Koziel, S., Tefahunegn, Y. A., and Leifsson, L., "Multi-fidelity

Robust Aerodynamic Design Optimization Under Mixed Uncertainty", Aerospace

Science & Technology, Vol. 45, 2015, pp. 17-29.



iv

ABSTRACT

One of the primary objectives of this research is to develop a method to model

and propagate mixed (aleatory and epistemic) uncertainty in aerospace simulations using

DSTE. In order to avoid excessive computational cost associated with large scale appli-

cations and the evaluation of Dempster Shafer structures, stochastic expansions are im-

plemented for efficient UQ. The mixed UQ with DSTE approach was demonstrated on an

analytical example and high fidelity computational fluid dynamics (CFD) study of transonic

flow over a RAE 2822 airfoil.

Another objective is to devise a DSTE based performance assessment framework

through the use of quantification of margins and uncertainties. Efficient uncertainty prop-

agation in system design performance metrics and performance boundaries is achieved

through the use of stochastic expansions. The technique is demonstrated on: (1) a model

problem with non-linear analytical functions representing the outputs and performance

boundaries of two coupled systems and (2) a multi-disciplinary analysis of a supersonic

civil transport.

Finally, the stochastic expansions are applied to aerodynamic shape optimization

under uncertainty. A robust optimization algorithm is presented for computationally effi-

cient airfoil design under mixed uncertainty using a multi-fidelity approach. This algorithm

exploits stochastic expansions to create surrogate models utilized in the optimization pro-

cess. To reduce the computational cost, output space mapping technique is implemented to

replace the high-fidelity CFD model by a suitably corrected low-fidelity one. The proposed

algorithm is demonstrated on the robust optimization of NACA 4-digit airfoils under mixed

uncertainties in transonic flow.
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SECTION

1. INTRODUCTION

A famous quote states "Uncertainty quantification attempts to express the known

unknowns1." In the context of aerospace systems, modern research and engineering in-

creasingly rely on computer simulations (e.g., computational fluid dynamics). As the sim-

ulations are based on numerical modeling of the physics, uncertainties are introduced to

the analysis and design through various assumptions and approximations made in the mod-

els. The inherent variations in design parameters and lack of knowledge of the underlying

physical processes add to the sources of possible uncertainty in the system. All these un-

certainties can affect the solution dramatically, which in turn, becomes uncertain. If the

uncertainties in aerospace simulations are rigorously quantified, the results can be used in

risk analysis, robust optimization and decision making processes during aerospace vehicle

analysis and design.

1.1. MOTIVATION

The challenges that motivate the studies in this dissertation are: (1) computational

cost of uncertainty quantification (UQ) [1, 2, 3] for high-fidelity aerospace simulations, (2)

existence of both inherent and epistemic (mixed) uncertainties in aerospace simulations,

and (3) efficient design of aerospace vehicles under mixed uncertainty with high fidelity

models. The following sections outline how these challenges can be addressed.

1Dr. William Oberkampf, Virginia Tech
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1.1.1. Uncertainty Quantification Using Stochastic Expansions. UQ becomes

challenging for large-scale aerospace engineering systems due to various factors such as

high dimensionality of non-deterministic design parameters, complexity of underlying phys-

ical processes and high-fidelity simulations. The most common methods addressed in liter-

ature for the propagation of uncertainty and reliability assessment are those based on local

expansion such as first order second moment (FOSM) [4], first order reliability method

(FORM), second order reliability method (SORM) [5] etc. mainly due to low computa-

tional cost and ease of implementation. However, these methods are restricted to relatively

small ranges of variation and low degrees of non-linearity. As a result, Monte Carlo meth-

ods [6] (sampling according to a joint probability distribution function) gained attention as

they were independent of the number of uncertain parameters. However, for these methods,

the rate of convergence of the statistics is known to be of the order N−1/2, (where N is the

number of samples) indicating the large sample size requirement for accuracy.

A more recent class of uncertainty propagation methods are those based on stochas-

tic expansions [7, 8, 9], which include both, intrusive and non-intrusive approaches. The

intrusive method involves reformulation of the original governing equations and hence new

solvers must be developed. Non-intrusive methods treat the existing solvers as black boxes

and directly acts over the output quantities of interest. In the current study, non-intrusive

stochastic expansion methods based on polynomial chaos theory have been implemented

due to their capability to formulate and propagate uncertainty in highly non-linear stochas-

tic problems at a significantly reduced cost compared to Monte Carlo methods.

1.1.2. Dempster Shafer Theory of Evidence for Mixed UQ. During the analysis

and design of complex aerospace systems, available resources, such as knowledge of the

physical behavior of the system, experimental budget, literature to rely on may be very lim-

ited. Some of the uncertainties in these systems which occur with the nature of randomness
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can be modeled with well known probabilistic functions depending on the available data.

However, the information available for other parameters might not be sufficient to assign a

probability distribution. Therefore, uncertainties have been segregated mainly as aleatory

uncertainty (irreducible due to the inherent nature of uncertainty) and epistemic uncertainty

(reducible uncertainty due to lack of knowledge or ignorance).

Traditionally, probability theory [10] has been implemented to characterize both

types of uncertainty. However, a probabilistic analysis requires information on the proba-

bility of all events, which is not always possible for epistemic uncertainty unless a uniform

distribution is assumed. Consequently, the result of uncertainty analysis using the proba-

bilistic framework might be the mere reflection of the reinforced assumption. To address

these limitations and to incorporate multiple sources of epistemic uncertainty derived from

expert opinion, Dempster Shafer theory of evidence [11] has been implemented for uncer-

tainty propagation in this work. Although evidence theory has been extensively used for

propagating epistemic uncertainty, very little attention has been given to mixed (aleatory

and epistemic) uncertainty quantification using evidence theory. This research focuses on

developing a new approach to handle mixed uncertainty with evidence theory.

1.1.3. Multi-fidelity Robust Design Optimization Under Mixed Uncertainty.

Various design and optimization approaches have been implemented within the aerospace

industry to increase performance and reduce cost. Deterministic optimization simplifies

the design process as the uncertain parameters are assumed to be constant at their nominal

values. However, the final design may have degraded performance metrics if the parameters

are varied from their nominal values.

Figure 1.1 (design parameter versus performance plot) shows a good example to

differentiate between a robust and deterministic design. The point D is obtained with de-

terministic optimization. It is clear that any variation in the design variables or operating
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Figure 1.1. Robust versus deterministic optimum.

conditions, will significantly reduce the performance of this design. The point R that de-

notes the robust optimum is a preferable design, since a small variation in design parame-

ters affects the optimum performance marginally. Design methods that are least sensitive

to inherent and epistemic uncertainties are of prime importance in aerospace engineering.

To address this requirement, a robust optimization algorithm is proposed for aerodynamic

design under mixed (epistemic and aleatory) uncertainty. However, performing robust opti-

mization can be expensive due to the computational cost of high-fidelity CFD simulations,

which are required for accurate analysis and design. Thus, a combined stochastic expan-

sion approach has been utilized to create a surrogate response model which is used during

the optimization process. To further improve the computational efficiency, a multi-fidelity

approach has been implemented to replace the high-fidelity model with a corrected low-

fidelity one using output space mapping technique [12, 13].
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1.2. OBJECTIVES OF THE CURRENT STUDY

There are three objectives of this study, which are addressed by each of the journal

papers included in this dissertation. A detailed literature review has been presented in each

paper for the better understanding of the readers.

1. to develop a new methodology to incorporate mixed (aleatory and epistemic with

multiple sources) uncertainty within the Dempster Shafer Theory of Evidence frame-

work and apply them to aerospace problems (Paper I).

2. to define procedures for reliability assessment of complex aerospace systems or a

sub-system through the use of quantification of margins and uncertainties (QMU)

framework based on Dempster Shafer structures (Paper II).

3. to present a robust optimization algorithm for computationally efficient aerodynamic

design under mixed (inherent and epistemic) uncertainty using a multi-fidelity ap-

proach (Paper III).

1.3. CONTRIBUTIONS OF THE CURRENT STUDY

Specifically, the research accomplishments are:

1. A new method is proposed to represent the aleatory uncertainty in terms of well-

characterized epistemic uncertainty. Traditionally, the DSTE approach is used to

model and propagate epistemic uncertainty only. This method enables the user to

directly treat the aleatory uncertainty within the DSTE framework for uncertainty

propagation (Paper I).

2. A unified QMU framework based on DSTE is defined. The framework addresses the

certification and risk analysis of systems or a sub-system subject to multiple types
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of uncertainty in operating conditions and physical models used in the calculation

of design and performance boundaries. The focus in this part of the research is to

leverage accurate estimation of the reliability of a system, when there exist multiple

sources of epistemic uncertainty along with aleatory uncertainty (Paper II).

3. A robust aerodynamic design algorithm using a multi-fidelity approach under mixed

uncertainty is developed. The proposed algorithm exploits stochastic expansions de-

rived from the non-intrusive polynomial chaos (NIPC) technique to create surrogate

models utilized in the optimization process. The goal behind using a multi-fidelity

approach is to replace the high-fidelity CFD model with a low-fidelity one, in order

to further reduce the computational cost (Paper III).

4. The proposed approaches are applied to several numerical examples and aerospace

design problems: a high fidelity CFD study of transonic flow over RAE 2822 airfoil

(see Paper I), a multi-disciplinary analysis of a High Speed Civil Transport (HSCT)

(see Paper II) and the robust design of NACA 4-digit airfoils in transonic flow under

mixed uncertainties (see Paper III).

1.4. ORGANIZATION OF THE DISSERTATION

This dissertation is organized in the form of three journal publications. A mixed un-

certainty quantification approach using evidence theory and stochastic expansions (pages

8-61) has been published in the International Journal for Uncertainty Quantification, March

2015. Quantification of margins and mixed uncertainties using evidence theory and stochas-

tic expansions (pages 62-109) has been published in Reliability Engineering & System

Safety journal, January 2015. Multi-fidelity robust aerodynamic design optimization under

mixed uncertainty (pages 110 - 151) has been published in the Aerospace Science &
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Technology journal, March 2015. A detailed literature review has been done for each of

the publications and the reader is advised to refer the respective paper in the dissertation.

Lastly, Section 2 discusses general conclusions from this research and outlines possible

future work areas.
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PAPER

I. A MIXED UNCERTAINTY QUANTIFICATION APPROACH USING
EVIDENCE THEORY AND STOCHASTIC EXPANSIONS

Harsheel Shah1, Serhat Hosder1 and Tyler Winter2

1Missouri University of Science & Technology, Rolla, MO, 65409, USA
2M4 Engineering Inc., Long Beach, CA, 90807, USA

ABSTRACT

Uncertainty Quantification (UQ) is the process of quantitative characterization and propa-

gation of input uncertainties to the response measure of interest in experimental and com-

putational models. The input uncertainties in computational models can be either aleatory

i.e. irreducible inherent variations or epistemic i.e. reducible variability which arises from

lack of knowledge. Previously, it has been shown that Dempster Shafer Theory of Evidence

(DSTE) can be applied to model epistemic uncertainty in case of uncertainty information

coming from multiple sources. The objective of this paper is to model and propagate mixed

uncertainty (aleatory and epistemic) using DSTE. In specific, the aleatory variables are

modeled as Dempster Shafer structures by discretizing them into sets of intervals accord-

ing to their respective probability distributions. In order to avoid excessive computational

cost associated with large scale applications, a stochastic response surface based on Point-

Collocation non-intrusive polynomial chaos has been implemented as the surrogate model

for the response. A convergence study for accurate representation of aleatory uncertainty in

terms of minimum number of subintervals required is presented. The mixed UQ approach

is demonstrated on a numerical example and high fidelity computational fluid dynamics

study of transonic flow over RAE 2822 airfoil.
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NOMENCLATURE

n number of random variables

R support region of random input variable

np oversampling ratio

p order of polynomial chaos

~ξ standard input random variable vector

p(~ξ ) probability density function of ~ξ

ψ random basis function

α coefficient in polynomial chaos expansion

α∗ stochastic function

µ mean

σ standard deviation

U Universal set

U set of focal elements of U

Bel Belief

Pl Plausibility

BPA basic probability assignment

m(ε) BPA corresponding to subset ε of U

PCE polynomial chaos expansion

Nt number of terms in a total-order PCE

cl coefficient of lift

cd total coefficient of drag

Cp coefficient of pressure

M Mach number
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α̃ angle of attack in degrees

Re Reynolds number

1. INTRODUCTION

Uncertainty Quantification (UQ) is the process of quantitative characterization and

propagation of input uncertainties to the response measure of interest in experimental and

computational models. Depending upon the amount of available information, researchers

have been constantly trying to differentiate and characterize various forms of uncertainty.

For decades, uncertainties have been segregated mainly as aleatory uncertainty (if sufficient

amount of data is available such that it can be characterized with a probability distribu-

tion) and epistemic (probabilistic distributions are assumed or non-probabilistic methods

are used e.g., interval analysis). Oberkampf et al. [1] have described various methods for

estimating total uncertainty by identifying all possible sources of variability, uncertainty

and error in computational simulations. As the data is sparse for an epistemic variable,

there is a possibility of multiple sources of uncertainty (different information through ex-

pert opinion). This led to the formulation of mathematical structures for appropriate rep-

resentation of uncertainty like the evidence theory [2], also known as the Dempster Shafer

Theory of Evidence (DSTE). The introduction of this theory was accompanied by a dis-

cussion of merits, demerits and different mathematical operations possible with Dempster

Shafer structures [3, 4, 5].

In previous years, a number of studies have implemented and explored the concept

of evidence theory. Helton et al. [6] have compared the use of several uncertainty represen-

tations like the probability theory, evidence theory, possibility theory and interval analysis
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on a range of test problems proposed as a part of a workshop [7]. In the past decade,

extensive research has been dedicated to improvement of the practical application of the

Dempster Shafer theory due to implicit nature of simulations and excessive computational

costs. Bae et al. [8] introduced an approximation approach for uncertainty quantification

using evidence theory. Their proposed algorithm includes identifying the failure region in

a defined UQ space by employing an optimization routine. Specifically, failure region in

this case is considered as the region in which the limit state function for the system un-

der consideration exceeds a particular limit state value. For example, in an analysis of a

composite cantilever beam with a point load, the failure region is determined by the assess-

ment of the likelihood that the tip displacement (limit state function) of the beam exceeds

the maximum possible displacement (limit state value). Further, a surrogate model con-

structed using Two-point Adaptive Non-linear Approximation (TANA2) and Multi Point

Approximation approach (MPA) is used for repetitive simulations in UQ analysis. Later,

they demonstrated the newly proposed algorithm on a large scale structure problem like the

structural model of an intermediate complexity wing (ICW) [9]. Agarwal et al. [10] inves-

tigated uncertainty quantification in multidisciplinary systems analysis subject to epistemic

uncertainty through the application of evidence theory. The methodology has been demon-

strated using a higher dimensional multidisciplinary aircraft concept sizing.

In view of aforementioned developments in evidence theory for propagating epis-

temic uncertainty, very little attention has been given to mixed (aleatory and epistemic)

uncertainty quantification using evidence theory. This is mainly due to two reasons: (1)

incorporation of aleatory uncertainty in Dempster Shafer structures and (2) computational

costs due to implicit nature of simulations required for deriving evidence theory uncertainty

measures. The objective of this paper is to explore the incorporation of aleatory uncertainty

in Dempster Shafer structures and to implement Non-Intrusive Polynomial Chaos (NIPC),



12

a computationally efficient stochastic response approach, for mixed uncertainty quantifica-

tion using evidence theory.

Eldred and Swiler [11] have reported efficient algorithms for mixed UQ which con-

sist of optimization based interval estimation and stochastic expansion methods. Recently,

Eldred et al. [12] have demonstrated mixed UQ using DSTE by calculating evidence the-

ory uncertainty measures for outer loop of epistemic variables characterized by Dempster

Shafer structures over the inner loop aleatory statistics. They have compared the DSTE

results obtained through global optimization and sampling approach for a short column

test problem. Our work focuses on representing aleatory uncertainty in terms of Dempster

Shafer structures by discretizing the probability distributions into sets of intervals and treat-

ing them as epistemic variables. In order to reduce the computational costs from simulation

point of view, NIPC [13, 14, 15, 16, 17] technique is employed using Point Collocation ap-

proach to construct a stochastic surrogate model which can replace the deterministic model

in interval optimization routines for DSTE analysis.

In Section 3, different types of uncertainties that exist in a model are discussed.

In Sections 4 and 4, the necessary mathematical framework for Point-Collocation NIPC

and Dempster Shafer Theory of Evidence is presented, respectively. Further, an approach

for mixed uncertainty quantification using DSTE is presented in Section 5. A numerical

analysis is performed in Section 6 in order to quantify the minimum number of subintervals

required to accurately represent aleatory uncertainty within the proposed framework. The

approach is demonstrated on a numerical example and a high fidelity Computational Fluid

Dynamics (CFD) study of a transonic supercritical airfoil RAE 2822 in Section 7. We

conclude the paper with important interpretations of the results obtained from mixed UQ

analysis using DSTE in Section 9.
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2. TYPES OF UNCERTAINTY

In computational simulations, uncertainties are assigned to the specification of input

physical parameters that are required for computational models. Two types of uncertain-

ties exist in numerical modeling of physical systems: aleatory uncertainty and epistemic

uncertainty.

2.1. Aleatory Uncertainty. Aleatory uncertainty, also known as probabilistic un-

certainty, arises due to inherent physical variability present in the system. A specific prob-

ability distribution can be attributed to an aleatory random variable based on the data avail-

able. Aleatory uncertainty is irreducible as it is naturally present in the system under con-

sideration. For example, the Mach number can be considered as an aleatory uncertain

variable in a CFD study of airfoils or wings.

2.2. Epistemic Uncertainty. The epistemic uncertainty, also known as model-

form uncertainty, arises due to lack of knowledge and is reducible by performing more

experiments. The stimulant to epistemic uncertainties are the assumptions introduced in

the derivation of mathematical models. This type of uncertainty cannot be defined in a

probabilistic framework unless a specific distribution is assumed, which may lead to in-

accurate results as shown by Oberkampf et al. [18]. Thus, epistemic variables are usually

modeled using intervals derived from experimental data or expert judgment with lower and

the upper bound. For example, the uncertainty in the closure coefficients for a particular

turbulence model used in CFD simulations can be treated as epistemic in nature.

3. POINT-COLLOCATION NON-INTRUSIVE POLYNOMIAL CHAOS

The Point-Collocation non-intrusive polynomial chaos is derived from the polyno-

mial chaos theory, which is based on spectral representation of uncertainty. In previous
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years, many researchers have utilized polynomial chaos theory in stochastic computations.

Importance of spectral representation of uncertainty lies in the fact that a stochastic re-

sponse function can be decomposed into deterministic and stochastic components. Thus,

for any stochastic response function α∗,

α
∗(~x,~ξ )≈

P

∑
j=0

α j(~x)ψ j(~ξ ), (1.1)

where α j(~x) is the deterministic component and ψ j is the random basis function corre-

sponding to jth mode. Generally, α∗ can be a function of deterministic independent variable

vector~x and the n-dimensional standard random variable vector ~ξ = (ξ1, . . . ,ξn). Theoreti-

cally, Eq. (1.1) should include infinite number of terms for absolute accuracy. However, for

practicality purposes, a discrete sum is taken over a number of output modes. For a total

order expansion, the number of output modes is given by:

Nt = P+1 =
(n+ p)!

n!p!
, (1.2)

where p denotes the order of polynomial chaos and n is the number of random variables.

The basis functions used in Eq. (1.1) are polynomials that are orthogonal with respect to a

weight function (p(~ξ )) over the support region (R) of the input random variable vector. In

terms of convergence of statistics, the Hermite polynomial is optimal for normal distribu-

tion whereas the Laguerre and Legendre polynomials are used for exponential and uniform

input uncertainty distributions, respectively. Mathematical basis for the formulation of the

polynomial basis functions is well explained by Hosder et al. [14].

The main objective of NIPC method is to obtain the polynomial coefficients with-

out making any modification to the deterministic code i.e. treating it as a "black box".

The coefficients are solely based on deterministic code evaluations. The coefficients and
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orthogonality of the basis functions can be used to evaluate the statistics of the distribution

for a stochastic function. For example, the zeroth mode of the expansion corresponds to

the expected value of α∗(~x,~ξ ), which is given by:

µα∗ = ᾱ(~x) =
∫

R
α
∗(~x,~ξ )p(~ξ )dξ = α0(~x). (1.3)

Similarly, by inferring ψ0 = 1 from Eq. (1.3), the variance of the distribution can

be obtained as:

σ
2
a∗ =Var[α∗(~x,~ξ )] =

∫
R
(α∗(~x,~ξ )−α0(~x))2 p(~ξ )dξ =

P

∑
j=1

[α2
j (~x)〈ψ2

j (
~ξ )〉]. (1.4)

We use the fact that 〈ψ j(~ξ )〉 = 0 for j > 0 and 〈ψi(~ξ )ψ j(~ξ )〉 = 〈ψ2
j (
~ξ )〉δi j. Also,

the inner product of ψi(~ξ ) and ψ j(~ξ ) in the support region R is given by:

〈ψi(~ξ )ψ j(~ξ )〉=
∫

R
ψi(~ξ )ψ j(~ξ )p(~ξ )dξ . (1.5)

Further, the strategy for point selection in random space for deterministic code eval-

uations depend upon the non-intrusive technique used. Three techniques often used are;

Sampling based, Quadrature based and Point-Collocation based NIPC. In this paper, the

focus is on using Point-Collocation method to obtain the surrogate model.

The collocation based NIPC starts with replacing uncertain variables of interest

with their polynomial expansions derived from Eq. (1.1). Next, P+ 1 (Nt) vectors (~ξi =

{ξ1,ξ2, . . . ,ξn}i, i = 0,1,2, . . . ,P) are chosen in design space with a Latin Hypercube (LH)

structure for a given polynomial chaos expansion with number of modes evaluated using

Eq. (1.2) and the deterministic code is evaluated at these points. LH design improves
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the coverage of the design space when a small sample set is used. A linear system of

equations can be obtained using the left-hand side of Eq. (1.1) evaluated from the solution

of deterministic code at chosen random points:



ψ0(~ξ0) ψ1(~ξ0) . . . ψP(~ξ0)

ψ0(~ξ1) ψ1(~ξ1) . . . ψP(~ξ1)

...
... . . . ...

ψ0(~ξP) ψ1(~ξP) . . . ψP(~ξP)





α0

α1

...

αP


=



α∗(~x,~ξ0)

α∗(~x,~ξ1)

...

α∗(~x,~ξP)


. (1.6)

Eq. (1.6) represents a linear system of equations which needs to be solved in order

to determine the spectral modes αk for the stochastic function α∗. Eq. (1.2) is considered as

the minimum number of deterministic samples required to solve the linear system of equa-

tions. However, if more deterministic samples are available, the over determined system is

solved using a least squares approach. The term Over-Sampling Ratio (OSR) denoted by

np is related to Eq. (1.2) in the following manner:

Nt = np×
(n+ p)!

n!p!
. (1.7)

Thus, an OSR of 1 corresponds to the minimum number of deterministic samples

required. Hosder et al. [13] demonstrated through different stochastic model problems that

an OSR of 2 is the optimum value. Once the spectral modes are evaluated, various statistics

like the mean and the variance of the solution can be obtained as shown in Eqs. (1.3) and

(1.4), respectively.
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Figure 1.1. Schematic of belief and plausibility

4. DEMPSTER SHAFER THEORY OF EVIDENCE

This section summarizes the evidence theory which is traditionally used for pure

epistemic analysis. The next section will extend this idea to perform mixed UQ analysis

with NIPC based stochastic expansions and converting the aleatory uncertain variables into

Dempster Shafer structures.

4.1. Fundamentals of Evidence Theory. In comparison to probability theory, ev-

idence theory introduces two new measures of uncertainty, Belief (Bel) i.e. lower limit

of probability and Plausibility (Pl) i.e. upper limit of probability. Evidence theory ap-

plication involves the specification of (U,U ,m) where U denotes the universal set, U

denotes the collection of subsets or set of focal elements of U and m is the Basic Prob-

ability Assignment (BPA), which can be viewed as the belief of the user of how likely

it is that the uncertain input falls within the specified interval. BPA, a value between 0

and 1, can be assigned for any possible subset of the universal set based on experimen-

tation or expert opinion. The advantage of this theory is that it does not assume any

particular value within the interval and nor does it assign a specific distribution to the

interval. Figure 1.1 illustrates that the axiom of additivity is not imposed, as the eviden-

tial measure for the occurrence and negation of an event does not have to sum to unity

(Bel(A)+Bel(Ā)≤ 1,Pl(A)+Pl(Ā)≥ 1,Bel(A)+Pl(Ā)= 1) where Ā represents the nega-

tion of event A.
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According to the definition, m(ε) denotes the BPA corresponding to subset ε of

U . Any additional evidence supporting the claim that the uncertain variable lies within a

subset of ε , say B⊂ ε , must be assigned another non-zero BPA m(B). Further, m(ε) should

satisfy following axioms of evidence theory:

• m(ε)> 0 for any ε ∈U ,

• m(ε) = 0 if ε ⊂ U and ε 3U ,

• m() = 0 where denotes an empty set,

• ∑m(ε) = 1 for all ε ∈U .

Once the uncertainty associated with the domain is characterized by an evidence

space in the form of BPA’s, an input sample space is constructed. For example, if y = f (~x)

where~x = [x1,x2, . . . ,xn] with the evidence space defined as (Xi,Xi,mi), the input sample

space is given by:

X= {x : x = [x1,x2, . . . ,xn] ∈ X1×X2× . . .×Xn}. (1.8)

Further for~x, the evidence space can be defined by (X,X ,mX) where X is devel-

oped from the sets contained in Eq. (1.9):

C = {ε : ε = [ε1,ε2, . . . ,εn] ∈X1×X2× . . .×Xn}. (1.9)

Assumption that the xi are independent, mX is defined for subsets ε of X:

mX(ε) =


n

∏
i=1

mi(εi) if ε = ε1× ε2× . . .× εn ∈X

0 otherwise

, (1.10)
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Once the BPA’s for input sample space in Eq. (1.8) are defined by Eq. (1.10), belief

and plausibility for the output y with evidence space (Y,Y ,mY ) can be evaluated as:

BelY (ε) = ∑
S |S⊆ f−1(ε)

mX(S ), (1.11)

PlY (ε) = ∑
S |S∩ f−1(ε)6=

mX(S ), (1.12)

where m(S ) is the likelihood associated with S that cannot be further assigned to specific

subsets of S .

As no assumptions were made to calculate these measures, Bel and Pl provide a

more realistic uncertainty structure consistent with the given evidences. It is clear from

Eqs. (1.11) and (1.12), belief is the minimum likelihood associated with an event i.e. the

sum of BPA’s of the propositions that totally agree with the event and plausibility is the

maximum likelihood associated with an event i.e. the sum of BPA’s of the propositions that

agree partially and totally with the event. The evidence theory statistics can be summarized

in terms of Cumulative Belief Function & Cumulative Plausibility Function (CBF & CPF)

and Complementary Cumulative Belief Function & Complementary Cumulative Plausibil-

ity Function (CCBF and CCPF). Figure 1.2 below shows an example of these uncertainty

measures obtained through the application of DSTE.

Let the uncertainty in y be characterized by the evidence space (Y,Y ,mY ), conse-

quently the evidence theory statistics can be defined as follows:

CBF = [ρ,BelY ( f−1(Yc
ρ))],ρ ∈ Y, (1.13)

CCBF = [ρ,BelY ( f−1(Yρ))],ρ ∈ Y, (1.14)
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Figure 1.2. Example of cumulative and complementary cumulative belief and plausibility
functions

CPF = [ρ,PlY ( f−1(Yc
ρ))],ρ ∈ Y, (1.15)

CCPF = [ρ,PlY ( f−1(Yρ))],ρ ∈ Y, (1.16)

where Yρ = {y : y∈Y and y > ρ} and Yc
ρ = {y : y∈Y and y≤ ρ}. Detailed expla-

nation of the evidence theory with numerical examples has been provided by Oberkampf

et al. [18] and Nikolaidis et al. [19].

4.2. Rule for Combination of Evidences. Dempster Shafer theory is capable of

handling data from a single source or multiple sources for an uncertain variable with the

only assumption that the different sources and the random variables are independent of each

other. Information from different sources is aggregated using the rules of combination to

further evaluate the evidence theory uncertainty measures. The detailed explanation for

the rules of combination is beyond the scope of this paper and can be referred from the

research work of different authors [20, 5, 3]. In this study, the mixing or averaging rule of

combination is implemented which generalizes the averaging operation used for probability

distributions. The formula for the mixing combination rule is given by:
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m1...n(A) =
1
n

n

∑
j=1

w jm j(A), (1.17)

where m′js are the BPA’s for belief structures being aggregated and w′js are the weights as-

signed according to the reliability of the sources. For demonstration purposes, the weights

are assumed to be 1 for the examples presented in Section 6. However, Eq. (1.17) can be

effectively used to incorporate the reliability or the confidence that can be associated with

any of the sources.

5. APPROACH FOR MIXED UQ USING DSTE AND STOCHASTIC EXPANSIONS

In this section, the implementation of the stochastic response surfaces based on

NIPC (Section 4) is described in DSTE for mixed UQ. The stochastic response surface will

be used as a surrogate for the deterministic code with the overall objective of reducing orig-

inal function evaluations, which can be expensive. The flow chart in Figure 1.3 describes

the integration procedure of NIPC into DSTE and steps to compute belief and plausibility

structures.

5.1. Aleatory Uncertainty Representation in Terms of Dempster Shafer Struc-

tures. Although Dempster Shafer theory is primarily used for epistemic uncertainty quan-

tification, there may be instances when aleatory uncertainties are present in the model along

with the epistemic. One may choose to segregate the aleatory uncertainties and treat them

within an inner loop. This may result in multiple belief and plausibility structures as shown

by Eldred et al. [12] or one may choose to discretize the aleatory variables into sets of

intervals according to their respective probability distributions. In this paper, the focus is

on the latter option of discretizing the aleatory variables into sets of intervals and assign

BPA’s to each interval based on the probability distribution. Figure 1.4 shows an example
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Figure 1.3. Flowchart for utilization of NIPC methodology for evidence theory

of the discretization process for the normal (left plot) and uniform (right plot) distributions.

The same kind of analysis (as presented in this paper) can be carried out for any general

dsistribution to formulate the optimum number of intervals equation.

The discretization process depends upon the amount of information needed by the

Dempster Shafer structure to accurately cover the uncertainty domain. For example, a

random variable with uniform distribution between 0.3 and 0.7 as lower and upper bounds,

respectively can be divided into n number of intervals with an equal BPA of 1/n assigned

to each sub-interval. In order to discretize a random variable with normal distribution,

one needs to characterize the same with a lower bound and an upper bound. The left

plot in Figure 1.4 shows a standard normal distribution i.e. with 0 mean (µ = 0) and 1

standard deviation (σ = 1). As per the theory, for a normally distributed random variable

with mean µ and σ as the standard deviation, 99.7% of the area under the curve is within

µ±3σ . Hence, this can be treated as a benchmark for bounding all the normal variables in

any analysis. However, the BPA should be assigned to each sub-interval according to the

Gaussian distribution by solving the definite integral in Eq. (1.18).



23

Figure 1.4. Discretization of normal and uniform variable distributions; standard normal
distribution with µ = 0 and σ = 1 (left plot), uniformly distributed variable with lower and
upper bounds [0.3, 0.7] (right plot)

P(a < X < b) =
∫ b

a
f (X)dx where f (X) =

1
σ
√

2π
exp
−(X−µ)2

2σ2 , (1.18)

where a and b denote the upper and lower bounds of the sub-interval and P(a < X < b)

denotes the probability of X between a and b.

Theoretically, infinite number of intervals for the aleatory variables with appropriate

BPA’s will accurately represent the uncertainty domain. However, we focus on determining

the optimum number of subintervals needed to accurately represent the aleatory domain.

Within a different perspective, suppose that the epistemic interval is modeled with a single

interval with 100% BPA. As the number of subintervals for the aleatory variable in the

analysis are increased, the results (belief & plausibility) will tend to approach the Second

Order Probability (SOP) measures (upper and lower bounds for Cumulative Distribution

Function (CDF)). The SOP [17] method uses a double loop for mixed uncertainty propaga-

tion: inner aleatory loop and outer epistemic loop. In the outer loop, a specific value for the
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epistemic variable is prescribed and passed on to the inner loop. Any traditional aleatory

uncertainty method may then be used to perform aleatory uncertainty analysis in the inner

loop. SOP provides the interval bounds for the output variable of interest at different prob-

ability levels. The SOP method is widely used for mixed uncertainty quantification with a

single interval for the epistemic variable. In this paper, DSTE is utilized since it can handle

multiple sources with different BPA’s for the characterization of epistemic variables.

5.2. Evidence Theory Analysis. Once the aleatory variables are represented as

Dempster Shafer structures, the procedure described in the flow chart (Fig. 1.3) is fol-

lowed, where the first step is to interpret data for each variable from different sources and

to define a matrix for identifying intervals with non-zero evidences. These intervals are

referred to as ’focal elements’ of each variable in DSTE terminology. The next step is to

combine the evidences for each uncertain variable using Eq. (1.17). This will lead to step 3

wherein the input sample space is constructed in the form of different combinations of the

focal elements from each uncertain variable using Eq. (1.8). Consequently, the composite

BPA for each combination in the input sample space is evaluated using Eq. (1.10), which

is the product of the BPA’s of individual focal elements. The 4th step is to construct the

stochastic surface based on Point-Collocation NIPC to be used as a surrogate for the re-

sponse as mentioned in Section 4. The response surface is created within the global bounds

(global minimum and global maximum) for each uncertain variable. Step 5 is to propagate

the uncertainty through the surrogate model which involves finding the minimum and max-

imum response values for each input sample space. This can be accomplished using two

different approaches: sampling or optimization.

5.2.1. Sampling approach. Akram et al. [21] compared Monte Carlo simulation

and evidence theory approach for technology portfolio planning. Their work presented the

impact of sample size, uncertainty quantification method selection and combination rule
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selection. Helton [22] used a sampling approach for the representation of epistemic un-

certainty in his work. First, hundreds of thousands of samples were chosen in the domain

(e.g., for each input sample space) and the samples with minimum and maximum response

values were treated as the bounds of that particular sample space. However, accuracy of

the sampling approach is highly dependent on the number of samples chosen for the anal-

ysis. This method would eventually become computationally expensive with the increase

in the number of variables and the uncertainty information per variable. To overcome the

computational costs, the optimization procedure is implemented to find the minimum and

maximum response.

5.2.2. Interval optimization approach (implemented in the proposed method-

ology). As the epistemic uncertainties are characterized by lower and upper bounds, bound-

constrained optimization is performed within each input sample space. Limited memory

Broyden-Fletcher-Goldfarb-Shanno Bound constrained optimization (L-BFGS-B [23]); a

local gradient-based solver is used for interval minimization and maximization which uses

the BFGS update to approximate the inverse Hessian matrix. Thus, we perform two dif-

ferent optimizations: one for the minimum response and the other for the maximum re-

sponse. This procedure is computationally efficient as compared to the sampling approach

and also the accuracy is improved. An important point to note is that the optimization

is performed using the surrogate model which further reduces the computational cost.The

uncertain variables are transformed into their respective standard random variable bounds

within each input sample space before the optimization procedure. Mathematically, the

bound constrained problem can be expressed as follows:

minimize/maximize f (~ξ )

subject to ~ξL ≤ ~ξ ≤ ~ξU

,
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where f (~ξ ) is the required response value,~ξL and~ξU correspond to lower and upper bounds

of the standard random variable. The final step is to calculate the belief and plausibility

structures using the minimum and maximum response values according to Eqs. (1.11) and

(1.12).

The advantage of using NIPC as the surrogate of the response can be understood

especially for high fidelity simulations if the output statistics are approximated accurately

with a second degree polynomial. In such cases, we can directly use Newton’s optimization

method which would require 1 iteration to optimize the NIPC response surface due to

its Taylor series approximation. In this manner, one can even reduce the NIPC function

evaluations along with the original function evaluations.

6. ANALYSIS FOR OPTIMUM DISCRETIZATION OF ALEATORY VARIABLES

In order to provide a baseline for discretization of an aleatory uncertain variable

and quantify the number of subintervals required to accurately represent the aleatory un-

certainty, a numerical analysis based on mixed UQ using evidence theory is presented.

Numerous combination of uncertain variables (normal or uniform) have been adopted for

the analysis in two multi-dimensional test functions; 1. exponential function and 2. Runge

function. These problems have been widely used as challenge problems due to the inherent

nature of variation which is feasible for any optimization algorithm testing. A stochastic re-

sponse surface based on Point-Collocation NIPC as explained in Section 4 is implemented

as the surrogate model for each of the test functions. At first, NIPC order convergence is

achieved in order to demonstrate the efficiency of DSTE with NIPC.

Mathematically, the two test functions are given by:

• Exponential function
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Y 1 = f 1(~x) = exp

{
−

n−1

∑
i=0

1
i+1

xi

}
, (1.19)

• Runge function

Y 2 = f 2(~x) =
1

1+
n

∑
i=1

x2
i

, (1.20)

where n represents the number of random variables.

6.1. NIPC Order Convergence. We study the NIPC order convergence with the

exponential function in Eq. (1.19) including 8 input variables (xi with i = 0,1, . . . ,7) and

the Runge function in Eq. (1.20) consisting of 4 input variables (xi with i = 1,2, . . . ,4),

characterized by purely epistemic multiple source uncertainty. Y 1 and Y 2 denote the system

responses, respectively. The input uncertainty information for both test functions is given

in Tables 1.1 and 1.2.

The evidence theory analysis is carried out for both test functions as explained in

Section 5-5.2. There are 7680 and 96 combinations in the input sample space structure

for the exponential and the Runge function, respectively. The NIPC response surface was

constructed based on the global bounds for each uncertain variable. For example, x0 in

Table 1.1 has 2 sources of uncertainty with 1 interval from the first source and 3 intervals

from the second. Using these intervals, we choose the global minimum i.e. 0.1 as the lower

bound and the global maximum i.e. 0.9 as the upper bound for x0. Similarly, choosing

the global bounds for the other variables, NIPC order convergence analysis is conducted.

An over sampling ratio of 2 is utilized and the linear system of equations in Eq. (1.6) is

solved using least squares approach. The DSTE analysis results for both test problems are

presented in Figure 1.5.
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Table 1.1. Input uncertainty information for the exponential function (The format for un-
certainty information is: ’[lower bound, upper bound]’ BPA (%)’

Variable Source 1 Source 2 Source 3
x0 [0.6, 0.9] 100% [0.1, 0.3] 33% -

[0.4, 0.6] 34% -
[0.5, 0.9] 33% -

x1 [0.2, 0.3] 50% [0.0, 0.6] 70% [0.1, 0.4] 100%
[0.4, 0.5] 50% [0.5, 0.9] 30% -

x2 [0.1, 0.5] 40% [0.3, 0.8] 100% [0.4, 0.5] 100%
[0.6, 0.9] 60% -

x3 [0.1, 0.4] 100% [0.3, 0.7] 100% -
x4 [0.2, 0.4] 100% [0.5, 0.8] 20% -

[0.7, 0.9] 80% -
x5 [0.1, 0.3] 100% [0.2, 0.5] 100% [0.3, 0.6] 30%

[0.7, 1.0] 70%
x6 - [0.1, 0.5] 100% [0.3, 0.6] 100%
x7 [0.2, 0.8] 100% - [0.7, 0.9] 100%

Table 1.2. Input uncertainty information for the Runge function

Variable Source 1
x1 [0.6, 0.9] 30%, [0.2, 0.4] 20%, [0.1, 0.5] 40%, [0.9, 1.0] 10%
x2 [2.1, 3.5] 30%, [1.5, 3.0] 40%, [1.0, 2.0] 30%
x3 [0.12, 0.25] 20%, [0.3, 0.6] 25%, [0.1, 0.4] 15%, [0.5, 0.9] 40%
x4 [0.4, 0.6] 40%, [0.3, 0.8] 60%
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(a) Exponential function (b) Runge function

Figure 1.5. Results for DSTE with NIPC

It is evident that as the polynomial degree increases, the accuracy of the approxi-

mation increases. In order to quantify accuracy, the error in area is defined as integral of

absolute difference between the original function value Yorg(z) and NIPC response value

Ynipc(z) at zth belief / plausibility level. Mathematically it can be represented as given in

Eq. (1.21) and the integral is evaluated numerically. Further, the error is scaled with re-

spect to the error in 1st order NIPC approximation. Error convergence plots are shown in

Figure 1.6.

Error =
∫ 1

0
|Yorg(z)−Ynipc(z)|dz. (1.21)

The 95% Confidence Interval (CI) is evaluated in terms of belief and plausibility

measures. The lower bound of CI is represented by the response value at 2.5% plausibility

level and the upper bound is indicated by 97.5% belief level. Tables 1.3 and 1.4 show the

convergence summary for different NIPC orders as compared to the original function
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(a) Exponential function (b) Runge function

Figure 1.6. Error convergence results using Eq. (1.21)

statistics. This gives a good comparison basis to show the computational efficiency achieved

through the use of stochastic expansions.

Based on the results of the polynomial order convergence study, a 3rd order expan-

sion is used for the exponential function and a 4th order expansion for the Runge function

in further analysis for computational efficiency as the results are within acceptable limits of

accuracy for demonstration purposes (< 4% difference). It is certain that the final results for

the minimum number of discretized intervals required for an aleatory variable will not be

affected. 330 original function evaluations are needed to construct an inexpensive 3rd order

NIPC response surface for the exponential function over the uncertainty domain as opposed

to 82496 crude deterministic evaluations. Similarly, 140 original function evaluations will

be needed in order to represent the Runge function accurately. Thus, Point-Collocation

NIPC is an effective and computationally efficient uncertainty propagation tool even in

case of multiple sources of uncertainties.
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Table 1.3. Exponential function: convergence of 95% CI with increasing NIPC order

Exponential function
Case (Response used in

optimization)
# of original

function evaluations 95% CI results % Difference

Original function 82496 [0.1151, 0.6348] -
order 1 18 [0.0209, 0.5421] [138.53, 15.75]
order 2 90 [0.1325, 0.6170] [14.05, 2.84]
order 3 330 [0.1125, 0.6310] [2.28, 0.60]
order 4 990 [0.1154, 0.6344] [0.26, 0.06]

Table 1.4. Runge function: convergence of 95% CI with increasing NIPC order

Runge function
Case (Response used in

optimization)
# of original

function evaluations 95% CI results % Difference

Original function 1046 [0.0645, 0.4729] -
order 1 10 [-0.0160, 0.3548] [162.46, 28.54]
order 2 30 [0.0548, 0.3927] [11.42, 18.53]
order 3 70 [0.0558, 0.4541] [10.18, 4.06]
order 4 140 [0.0613, 0.4669] [3.63, 1.28]
order 5 252 [0.0632, 0.4754] [1.46, 0.53]
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Table 1.5. Combination of uncertain variables studied for optimum interval discretization

Case Description
1 1 Epistemic (single source with 100% BPA) and 1 aleatory variable

2
1 Epistemic (single source with 100% BPA) and multiple aleatory variables
(2,4,6 and 8)

3 1 Epistemic (multiple sources) and 1 aleatory variable
4 2 Epistemic (single source with 100% BPA each) and 1 aleatory variable
5 2 Epistemic (single source with 100% BPA each) and 2 aleatory variables
6 2 Epistemic (multiple sources) and 2 aleatory variables

6.2. Optimum Number of Intervals for Representing Aleatory Domain. This

study will provide an overview of different parameters affecting the number of subintervals

needed to accurately represent aleatory variables in terms of Dempster Shafer structures.

The parameters (listed below) and different cases considered for the numerical analysis are

summarized in Table 1.5.

1. Number of aleatory variables

2. Number of epistemic variables

3. Number of sources for epistemic variables

4. Distribution of the aleatory variables (normal and uniform distributions studied)

Note that cases 1,2,4 and 5 are with single source epistemic uncertainty with 100%

BPA. These cases are specifically chosen so as to be compared with the SOP results and

present the error convergence based on Eq. (1.21). For cases 3 and 6, which exhibit mul-

tiple source epistemic uncertainty, the analysis is based on the asymptotic convergence of

relative error between successive iterations as the number of subintervals for the aleatory
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Table 1.6. Uncertainty information for the cases described in Table 1.5 (k = 0 for Expo-
nential function and k = 1 for Runge function)

Case Aleatory uncertainty Epistemic uncertainty
[No. of subintervals per variable per iter-
ation]

1
xk: N(2.5,0.15) or U(3.5,5.5)

xk+1 : [0.1,1.0]100%
[5,15,50,75,100,125]

2

xk to xi(i = 2,4,6,8):

xp : [0.1,1.0]100%N(2.5,0.15) or U(0.5,1.5)
For i = 2 : [5,15,50,75,100,125]
For i = 4 : [5,10,15,25,30,35]
For i = 6 : [2,4,6,8,10] p: total number of variables
For i = 8 : [2,3,4,5]

3
xk: N(2.5,0.15) or U(3.5,5.5) xk+1 : [0.1,0.4]30%,
[5,15,50,75,100,125] [0.3,0.7]40%, [0.8,0.9]30%

4
xk: N(2.5,0.15) or U(3.5,5.5) xk+1 : [0.1,1.0]100%
[5,15,50,75,100,125] xk+2 : [2.0,3.5]100%

5
xk and xk+2 N(2.5,0.15) or U(3.5,5.5) xk+1 : [0.1,1.0]100%
[5,15,50,75,100,125] xk+3 : [2.0,3.5]100%

6

xk: N(2.5,0.15) or U(0.5,1.5) xk+1 : [0.1,0.4]20%,
xk+2: N(2.5,0.15) or U(0.5,1.5) [0.35,0.6]40%, [0.7,1.2]40%
[5,15,50,75,100,125] xk+3 : [0.2,0.5]30%,

[0.9,1.5]40%, [0.6,1.0]30%

variable are increased. Table 1.6 provides the uncertainty information for both test prob-

lems (Exponential and the Runge function).

Evidence theory analysis using NIPC response surface is carried out for each case,

starting with particular number of subintervals for aleatory variables. For iterative conver-

gence, 5 subintervals are chosen for each aleatory variable in case of 1,2 and 4 aleatory

variables per analysis and increase it by 5 at every iteration. Similarly, in case of 6 and

8 aleatory variables, 2 subintervals are chosen. The difference in choosing initial number

of subintervals is due to the fact that the combined BPA of more number of variables is
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expected to be smaller due to the multiplicative effect for the product space expressed in

Eq. (1.10). As two aleatory distributions are studied in this paper, the mathematical func-

tions are tested for each case with 1 aleatory distribution at a time which will enable us to

compare the interval discretization for both distributions.

6.3. An Exponential Decay Model for Predicting Error Convergence. As the

number of aleatory variables increase, the analysis for error convergence becomes more

and more expensive in terms of number of combinations in the input sample space. This

subsection will describe an exponential decay model which can predict the convergence

based on initial 3 to 4 error evaluations. This is especially useful in problems with higher

dimensions which is computationally expensive otherwise. For example, in the present

analysis, the decay model is used to predict the error convergence for the cases with 4, 6

and 8 aleatory variables. The decay model is given by:

Errp = E0×
1

1− exp(−N
k )

, (1.22)

where Errp is the predicted error, E0 and k are constants based on initial error evaluations,

and N is the number of subintervals.

The constants are evaluated by minimizing the sum of squares of differences be-

tween the initial error evaluations and predicted error values for the same number of subin-

tervals. A Generalized Reduced Gradient (GRG) solver was used to minimize the sum of

squares in this analysis. Once they are evaluated, the error prediction model can be used

for different number of intervals N, being the only variable in Eq. (1.22).

Figures 1.7 and 1.8 show the error convergence for both test functions in terms of

increasing subintervals. The most important parameter affecting the choice of number of

subintervals is the number of aleatory variables in the design problem. The other three

parameters i.e. distribution of aleatory variables, number of sources for the epistemic
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Table 1.7. Optimum number of intervals for each case

Description Nopt
1 Epistemic (single source with 100% BPA) and
1 aleatory variable 75

1 Epistemic (single source with 100% BPA) and (50,40,20,and 12)
multiple aleatory variables (2,4,6 and 8) respectively)
1 Epistemic (multiple sources) and 1 aleatory variable 75
2 Epistemic (single source with 100% BPA each) and
1 aleatory variable 75

2 Epistemic (single source with 100% BPA each) and
2 aleatory variables 50

2 Epistemic (multiple sources) and
2 aleatory variables 50

variables and number of epistemic variables seemed to have minimal effect with decreasing

order of sensitivity. As a result, the analysis focus was shifted towards the number of

aleatory variables and optimum number of intervals were formulated. It can also be inferred

that the increase in number of subintervals and thereby the accuracy of the approximation,

will be accompanied with increased computational time and effort. Thus, a trade off needs

to be made between the required accuracy and the computational efficiency.

In case of 1 and 2 aleatory variables, deciding the number of subintervals required

is straightforward as the number of intervals at which the convergence achieved is evident.

For higher dimensions i.e. 4, 6 and 8 variable cases, the minimum number of subintervals

are chosen at a point where there is approximately 90% reduction in error as compared to

the first iteration. Increasing the number of intervals beyond this point will be considered

infeasible in terms of reduction in error with significant increase in number of combinations

for DSTE analysis. Table 1.7 lists the optimum number of subintervals for each case which

is the minimum recommended to cover the aleatory uncertainty domain.
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(a) 1 E - 1 A (b) 1 E - 2 A (c) 1 E - 4 A

(d) 1 E - 6 A (e) 1 E - 8 A (f) 1 E (multiple src) 1 A

(g) 2 E - 1 A (h) 2 E - 2 A (i) 2 E (multiple src) 2 A

Figure 1.7. Exponential function error convergence (a)-(i) with normal and uniform distri-
butions for aleatory variables (E:epistemic variable, A: aleatory variable)
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(a) 1 E - 1 A (b) 1 E - 2 A (c) 1 E - 4 A

(d) 1 E - 6 A (e) 1 E - 8 A (f) 1 E (multiple src) 1 A

(g) 2 E - 1 A (h) 2 E - 2 A (i) 2 E (multiple src) 2 A

Figure 1.8. Runge function error convergence (a)-(i) with normal and uniform distributions
for aleatory variables (E:epistemic variable, A: aleatory variable)
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In case of odd number of uncertain aleatory variables, the optimum number of

subintervals can be evaluated using interpolation. The optimum number of subintervals

should be interpreted as a good enough approximation to accurately represent an uncertain

aleatory variable. The accuracy can always be improved by taking more number of subin-

tervals per variable and /or by increasing the±3 standard deviation limit to±6 for a normal

random variable if the computational architecture permits. In case of huge number of un-

certain variables, advanced dimension reduction techniques based on sensitivity analysis

may be adopted.

6.4. The Effect of the Distribution Type on Aleatory Interval Discretization.

As the distributions of aleatory variables vary, the contribution of each discretized interval

also varies. Error convergence plots in Figures 1.7 and 1.8 imply two mathematical con-

clusions: (1) the error while discretizing the uniform variable is less as compared to that

of the normal variable due to the truncation effect at the tail region and (2) after a certain

number of subintervals, the rate of decrease in error is not as prominent for a normal vari-

able as compared to an uniform variable. This is mainly due to the fact that as the number

of subintervals increase, the resulting BPA’s for most of the intervals is derived from the

tail regions which has a minimal probability value.

In case there are random variables with different distributions in the design problem,

which is the most practical case, a relation can be proposed to identify the number of

subintervals for each distribution:

Ñopt =
Nopt

number of distributions
, (1.23)

where Ñopt represents the number of subintervals for each distribution, Nopt corresponds

to the case of total number of aleatory variables in the problem under consideration and

’number of distributions’ in this paper is adopted as 2. This proposition is based on the
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numerical experiments performed in the previous section where two types of distributions

were studied (normal and uniform). Each of these distributions represented the complete

aleatory domain in the problem. In case of multiple distributions in a specific problem, the

aleatory domain is shared by those distributions and hence the optimum number of intervals

required to represent the domain can be divided between the participating distributions.

Now the question is that which distribution should be given more preference in

terms of number of intervals in case of multiple distributions? Using the fact that the

normal variable contributes less as compared to a uniform variable with same number of

subintervals and based on the numerical analysis performed, the required number of subin-

tervals can be reduced for the normal variable by approximately 20% of Ñopt . For example,

evaluating Eq. (1.23) for a specific problem yields an Ñopt of say 25, the required number

of subintervals for the normal variable can be reduced by 25× 0.2 = 5 intervals i.e. the

variable divided into 20 subintervals. However, in order to cover the aleatory domain af-

ter the correction for the normal variable, the number of subintervals for the uniform are

increased by the same amount (i.e. Ñopt for uniform variable will be 30). This point will

be clear in the next subsection and Section 7 where the implementation of Eq. (1.23) is

demonstrated and verified.

6.5. Demonstration of Difference Between DSTE and Pure Interval Analysis.

One approach in epistemic uncertainty quantification is to approximate the range of output

uncertainty by adopting the interval defined by the global minimum and maximum of the

input uncertainty. Ignoring the multiple sources of information for the input uncertainty

may provide a conservative estimation of the output uncertainty. This subsection provides

a comparison between pure interval analysis and the Evidence theory with the proposed

methodology. The Runge test function is reconsidered with the uncertainty information as

presented in Table 1.8.
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Table 1.8. Input uncertainty information for the Runge function for comparison with pure
interval approximation

Variable Distribution Uncertainty information
x1 Uniform (0.5, 1.5)
x2 Epistemic Source 1: [1.5, 2.0] 30%, [1.7, 2.5] 40%, [2.1, 3.0] 30%
x3 Epistemic Source 1: [0.2, 0.6] 70%, [0.55, 0.85] 30%
x4 Normal (2.5, 0.15)

Two different analyses are carried out for the above problem: (1) SOP analysis by

choosing global bounds for both the epistemic variables (i.e. [1.5,3.0] for x2 and [0.2,0.85]

for x3) and (2) Evidence theory analysis for mixed uncertainty incorporating the informa-

tion from the sources. Note that for both methods; SOP and DSTE, a fourth-order chaos

expansion was chosen in order to propagate the uncertainty. The number of original func-

tion evaluations required were 140, evaluated using Eq. (1.7) with an OSR of 2. Ideally,

using Eq. (1.23), Ñopt is evaluated as 25 which corresponds to the number of subintervals

needed for each distribution. After the correction is implemented for the normal variable,

the number of subintervals are obtained as 20 and 30 for normal and uniform, respectively.

For the purpose of convergence demonstration, five different cases for number of subinter-

vals is summarized in Table. 1.9 with results plotted in Figure 1.9.

It shows that the interval analysis provides us with a conservative or over-prediction

of the uncertainty range. However, an important point to note is that the global bounds of

the uncertainty range does match with the pure interval analysis results which is due to the

fact that the uncertainty domain (i.e. the minimum and maximum bound) is unchanged.

The response values using DSTE analysis and pure interval analysis are compared at dif-

ferent levels in Table 1.10.



41

Case Normal Uniform
1 2 5
2 5 10
3 10 15
4 20 30
5 25 40

Table 1.9. Number of intervals
for aleatory variables Figure 1.9. SOP and DSTE results for Runge function

Table 1.10. UQ results for the Runge function

Probability /
Belief /

Plausibility level
Pure interval analysis DSTE analysis

[Lower bound, Upper bound] [Plausibility, Belief]
0 [0.04765, 0.07377] [0.04611, 0.06754]

2.5% [0.04987, 0.07926] [0.05167, 0.07101]
25% [0.05337, 0.08847] [0.05835, 0.08092]
50% [0.05543, 0.09429] [0.06577, 0.08768]
75% [0.05746, 0.10031] [0.07316, 0.09489]

97.5% [0.06108, 0.11235] [0.08624, 0.10911]
100% [0.06477, 0.12489] [0.09241, 0.12915]
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Table 1.11. Input uncertainty information for the Rosenbrock function

Variable Distribution Uncertainty information
x1 Uniform [-2.048, 2.048]
x2 Normal (N[0.215,0.04])

x3 Epistemic
Source 1: [-3.7, 2.0] 50%, [1.5, 4.5] 50%
Source 2: [0.0, 2.5] 33.34%, [-5.0, -1.7] 33.33%,
[3.7, 5.0] 33.33%
Source 3: [1.25, 4.15] 35%, [-2.9, 1.4] 65%

7. DEMONSTRATION OF MIXED UQ USING EVIDENCE THEORY

7.1. Rosenbrock Function. Before the mixed UQ approach is demonstrated on a

CFD problem, we test the conclusions for the selection of optimum number of subintervals

on a numerical problem, which includes the Rosenbrock function as the response. It is a

smooth non-linear function for which the generalized formulation is given as:

f (~x) =
n−1

∑
i=1

[(1− xi)
2 +100(xi+1− x2

i )
2], (1.24)

where n represents the number of uncertain variables (n = 3). The uncertainty information

is as given below in Table 1.11:

A fourth-order chaos expansion was chosen to model the uncertainty propagation

with the NIPC response surface. The number of original function evaluations required

were 70, evaluated using Eq. (1.7) with an OSR of 2. The DSTE analysis results obtained

with the mixed UQ approach for the Rosenbrock function are given in Fig. 1.10. With

the objective to demonstrate the convergence, Tables 1.12 and 1.13 list the different cases

considered in terms of number of subintervals and compares the response intervals at two

different levels: 2.5% and 97.5%. The percent differences between successive iterations
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Figure 1.10. Mixed UQ results for Rosenbrock function

Table 1.12. Discretization cases for the aleatory variables

Discretization
Case Normal Uniform No. of Combinations

1 5 5 175
2 15 15 1575
3 20 30 4200
4 25 35 6125

give an overview of the convergence as one moves towards the optimum number of intervals

for the case of 2 aleatory variables (Nopt = 50). Case (3) seems to provide comparable

results with case (4) and the number of combinations are also decreased from 6125 to

4200. Thus, choosing the optimum number of intervals as explained in Section 6-6.2 and

6-6.4 does provide the uncertainty results with desired accuracy and efficiency.

7.2. Transonic Flow Over RAE 2822 Airfoil. To demonstrate the mixed UQ ap-

proach based on DSTE and stochastic expansions on a high fidelity CFD problem, a steady,

two-dimensional, viscous, turbulent flow over RAE 2822 airfoil subject to mixed (aleatory

and epistemic) input uncertainties is studied. Witteveen et al. [24] have previously



44

Table 1.13. Mixed UQ convergence results for Rosenbrock function analysis

Response intervals at different levels
Case 2.5% % Difference 97.5% % Difference

1 [0.816,759.42] - [1489.86,4149.45] -
2 [1.181,613.60] [36.55,21.24] [1748.01,4050.18] [15.94,2.42]
3 [1.376,611.43] [15.25,0.35] [1808.07,3720.43] [3.38,8.49]
4 [1.456,611.25] [5.65,0.029] [1852.79.,3696.77] [2.44,0.64]

compared Stochastic Collocation (SC) method based on Gauss quadrature to Simplex El-

ements Stochastic Collocation (SESC) method for transonic flow UQ analysis over RAE

2822. This paper will focus on using the mixed UQ with DSTE approach through interval

discretization for the aleatory variables with NIPC as the surrogate model for the response

variables of interest. The CFD code used in this study for numerical solution of steady

Reynolds-Averaged-Navier-Stokes (RANS) equations is ANSYS FLUENT 13.0 [25]. The

Mach number and the angle of attack have been treated as aleatory uncertainties. One of

the closure coefficients used in the Spalart-Allmaras [26] turbulence model is treated as an

epistemic uncertainty with multiple sources of information.

7.2.1. CFD model and grid convergence. The geometry of RAE 2822 airfoil is

defined by the design airfoil coordinates tabulated in Cook et al. [27]. A suitable compu-

tational mesh size for stochastic simulations is selected by performing a grid convergence

study. The grid convergence analysis is performed for the flow conditions corresponding to

Case 6 in Cook et al. [27] with M∞ = 0.725, α̃ = 2.92◦ and Re = 6.5 million (wind tunnel

corrected values are M∞ = 0.729 and α̃ = 2.31◦). A second order spatial discretization is

used along with Roe flux difference splitting scheme. The iterative convergence is achieved

through the reduction of the residuals of the governing equations by 6 orders of magnitude.

4 grid levels are generated for the grid convergence. The finest grid (level 4) consists of
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Figure 1.11. Grid around the airfoil (grid level 3)

86,400 quadrilateral cells with a mesh size of 721×121. The chord length for the airfoil is

1.0ft with 589 points on the airfoil surface and 66 in the wake region. The far-field is 27ft

away from the trailing edge and the ratio of outer boundary distance to the wake distance

is 0.75. The coarser grids (levels 3, 2 and 1) are obtained by halving the number of points

in the stream-wise and normal direction. Thus, grid levels 3, 2 and 1 are represented by

361× 61, 181× 31 and 91× 16 mesh sizes, respectively. Figure 1.11 shows the 3rd grid

level selected after the convergence study, which is used for further analysis.

The pressure distribution of the deterministic simulations for all the grid levels is

compared with the experimental results of Case 6 in Figure 1.12 along with the estimation

of the discretization error for the drag coefficient calculated by the Richardson extrapolation

technique explained by Hosder et al. [28].

7.2.2. Stochastic problem description. For this study, the Mach number (M) and

the angle of attack (α̃) have been treated as aleatory variables with uncertainty in the form

of normal distributions with the mean values corresponding to the experimental conditions
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(a) Pressure distribution comparison (b) Discretization error for the drag coefficient

Figure 1.12. Grid convergence results

for Case 6 in Cook et al. [27] whereas the standard deviations as σM = 0.005 and σα̃ = 0.1,

respectively. One of the closure coefficients used in the Spalart-Allmaras turbulence model

is treated as an epistemic uncertainty.

The standard form of the Spalart-Allmaras model consists of various closure coeffi-

cients such as Cb1, Cb2, Cv1, σSA, Cw2 and Cw3, detailed description of which can be found in

Spalart and Allmaras [26]. The variation in these parameters has been studied in detail by

many researchers. Recently, Kato and Obayashi [29] proposed an approach for uncertainty

in turbulence modeling based on assimilation technique. They claim that the original val-

ues proposed by the model proposer were statistically accurate for the closure coefficients.

Godfrey and Cliff [30] derived the sensitivity equations for turbulent flow simulations for

different turbulence models. In their study, Spalart-Allamaras model analysis showed that

the most influential coefficients in order of decreasing sensitivity magnitude are Cv1, Cb1,

σSA and Cw2. Coefficients Cb2 and Cw3 had minimal effect on the output quantity studied.
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(a) Pressure distribution comparison (b) Pressure distribution at the shock region

Figure 1.13. Variation in Cp due to variation in Cv1 in Spalart-Allmaras turbulence model

In this work, top three sensitive parameters were tested using the wind tunnel cor-

rected conditions within the bounds obtained with a Coefficient of Variance (CoV ) of ap-

proximately 9% from their baseline values (i.e. Cv1 = 7.1, Cb1 = 0.1355 and σSA = 2
3 ).

The variation in closure coefficients was mainly based on the ranges adopted in previous

research work by Rhee [31] and Cheung et al. [32]. Pressure coefficient on the airfoil sur-

face was monitored for all the simulations and the results showed that the shock region on

the upper surface was the most critical region being affected by the variation in closure

coefficients (See Figure 1.13). Apart from Cv1, none of the other parameters seemed to

have considerable effect on the flow properties in the flow field. Therefore, Cv1 coefficient

is retained as the epistemic uncertain parameter in the CFD problem along with aleatory

variables Mach number and the angle of attack. The input uncertainty information for RAE

2822 transonic airfoil case is given in (Table 1.14).
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Table 1.14. Uncertainty information for RAE 2822: transonic airfoil case

Variable Uncertainty type Uncertainty information
M Aleatory N(0.725,0.005)

Cv1 Epistemic [6.5, 7.7]
α Aleatory N(2.92,0.1)

7.2.3. Determination of DSTE structure for the epistemic variable. The infor-

mation for the epistemic variable can have different sources like an expert opinion who

believes that the value of a particular variable will lie within a single interval or multi-

ple intervals. Another source of information can be the data obtained from experiments.

Evidence theory provides the tools required to incorporate the information from different

sources. In the present analysis, evidence (uncertainty information) for Cv1 is acquired

from two different sources: (1) expert opinion from the literature and (2) the comparison

of numerical simulations to the selected experimental data.

Spalart and Allmaras [26] preferred the value of Cv1 as 7.1 instead of Mellor and

Herring’s [33] 6.9, which they believe yields a low intercept for the log law. The proposed

value of Cv1 is validated by different researchers to be accurately calibrated using different

methods, especially for boundary layer flows. Based on these analyses, for demonstration

purposes the epistemic interval in Table 1.14 is segregated into 3 sub-intervals: [6.5, 6.85],

[6.85, 7.15] and [7.15, 7.7]. Note that the sub-intervals do not need to be continuous but

can also be overlapping or discontinuous in the application of the Evidence theory. As

the values of 6.9 and 7.1 both lie within the 2nd interval, 100% BPA is assigned to that

particular interval on the basis of expert opinion from literature review.

The second source of information regarding the uncertain parameter has been ob-

tained from the comparison of the CFD simulations with different values of Cv1 in the
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selected intervals to the available experimental data. The following procedure is adopted in

order to derive an error-based BPA assignment for each sub-interval k where k= 1,2, . . . ,Nint

(Nint = 3 in present study):

1. Three different Cv1 values have been chosen from each sub-interval (two values close

to the upper & lower bounds and the third value approximately at the mean of that

particular interval). Let j denote the index of the CFD simulation for each sub-

interval where j = 1,2, . . . ,NCFD with NCFD = 3 for each interval in present analysis.

2. As the maximum deviation is observed in the shock region, 3 points (x
c = 0.525,0.55,

0.575) are selected for comparison with the experimental results as shown in Fig-

ure. 1.13(2). Let i denote the index for the number of points selected to be compared

with the experimental results for each sub-interval where i = 1,2, . . . ,Nexp (Nexp = 3

in present analysis).

3. Error εk as a function of coefficient of pressure Cp on the upper surface at the selected

points for comparison can be given by:

εk =
1

NCFD


NCFD

∑
j=1

√√√√√√
Nexp

∑
i=1

[((Cpexp)i j)k− ((CpCFD)i j)k]
2

Nexp


. (1.25)

4. Weights (ωk) are assigned to each sub-interval on the basis of error value evaluated,

ωk =
1
εk

.

5. BPA’s can now be assigned to each sub-interval by normalizing the weights with the

cumulative weight which can be mathematically expressed as:
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Table 1.15. Uncertainty information for the epistemic variable Cv1

Source BPA
[6.5, 6.85] [6.85, 7.15] [7.15,7.7]

1 29.40% 31.68% 38.91%
2 100%

BPAk =
ωk

Nint

∑
k=1

ωk

. (1.26)

The DSTE structure for the epistemic variable Cv1 obtained through the stepwise

procedure explained above is outlined in Table 1.15:

7.2.4. UQ results. Following the observations made in Section 6, the aleatory vari-

ables were discretized into 50 sub-intervals in the mixed UQ analysis of this CFD problem.

Three output quantities have been monitored in the airfoil case study, namely; coefficient

of pressure (Cp) on the airfoil surface, coefficient of lift (cl) and coefficient of drag (cd).

NIPC response surface is used as a surrogate for each output quantity and DSTE results in

the form of belief and plausibility have been derived. The surrogate model was created with

a 1st , 2nd and 3rd order NIPC expansion with an over sampling ratio of 2, which required

8, 20 and 40 deterministic CFD evaluations, respectively.

The convergence of NIPC expansion orders in terms of uncertainties in lift and drag

coefficient are shown in Figure 1.14. They can be interpreted as lower (plausibility) and

upper (belief) bounds similar to the second order probability analysis for each polynomial

order. For example, the probability of cl ≤ 0.82 is between 0.25 (indicated by 3rd order

CBF) and 0.4 (indicated by 3rd order CPF). These quantities are not affected much by

the epistemic parameter Cv1 which is evident from the width of the probability box (region
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(a) Uncertainty in cl (b) Uncertainty in cd

Figure 1.14. UQ using mixed DSTE results for cl and cd

between the belief and plausibility curves). This is in accordance with the turbulence model

parameter studies which show that the closure coefficient, Cv1 does not significantly affect

the flow properties at lower angles of attack where there is minimal separation of flow.

Evidently, the results may be different if the analysis is performed at higher angles of

attack.

In case of Cp, uncertainty is represented in terms of error bars which is similar to the

documentation standards for experimental data, using a 3rd order NIPC expansion at each

point. The 3rd order expansion is created at 296 different points on the airfoil surface using

the same 40 deterministic function evaluations i.e. CFD runs utilized in the analysis of cl

and cd for each surface pressure coefficient. Belief and plausibility curves are generated

at each point using the corresponding surrogate model. The 95% CI is obtained using the

response value at 2.5% plausibility level and 97.5% belief level as shown in Figure 1.15.

It is clear that the maximum uncertainty is in the shock region and the changing

shock wave location varies the pressure distribution denoted by the length of uncertainty
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Figure 1.15. UQ using mixed DSTE results for Cp

bars. Note that the local oscillations in the shock region are likely due to the global poly-

nomial approximation of the large gradients present in the flow field. Hence application

of local approximation methods can also be considered for uncertainty quantification in

regions of discontinuity.

Further, to quantify the individual contribution of each uncertain parameter to the

uncertainty in cl and cd , Sobol indices [34] were evaluated. The basic procedure to calculate

Sobol Index for a particular variable is explained in Appendix. The sensitivity results for

cl and cd for NIPC orders 1, 2 and 3 are provided in Table 1.16. As expected, the angle

of attack (α̃) is the highest contributor followed by Mach number (M) and Cv1 in terms

of coefficient of lift whereas the Mach number contributes more towards the uncertainty

in coefficient of drag as compared to α̃ . The variation in Sobol indices for the epistemic

parameter Cv1 for both output quantities are in accordance with the uncertainty plots in

Figure 1.15 with the uncertainty range being wider for cl as compared to cd .
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Table 1.16. Sobol indices for the uncertain input parameters for coefficient of lift and drag

Uncertain Parameter Coefficient of Lift (cl) Coefficient of Drag (cd)
1st

order
NIPC

2nd

order
NIPC

3rd

order
NIPC

1st

order
NIPC

2nd

order
NIPC

3rd

order
NIPC

Mach number (M) 0.1149 0.1042 0.1002 0.7514 0.7505 0.7450
Cv1 0.0145 0.0107 0.0188 0.0011 0.00085 0.00047

Angle of Attack (α̃) 0.8706 0.8891 0.8951 0.2475 0.2650 0.2766

8. CONCLUSIONS

In this paper, an approach for mixed UQ with evidence theory and stochastic ex-

pansions is presented. The aleatory variables are discretized into sets of intervals with

appropriate BPA’s according to their probability distributions. They are treated as well

characterized epistemic variables in the DSTE analysis. Also, the Point-Collocation NIPC

has been implemented for construction of a stochastic surrogate model with the overall

objective of reducing original function evaluations and achieving computational efficiency.

A detailed analysis is carried out in order to quantify the optimum number of subin-

tervals required to accurately represent an aleatory domain. In this study, the focus is on

normal and uniform distributions for the aleatory variables. A minimum number of subin-

tervals in case of 1, 2, 4, 6 and 8 aleatory variables in a specific problem have been rec-

ommended as 75, 50, 40, 18 and 12 intervals per aleatory variable, respectively. Also, the

effect of distributions on the number of intervals required has been discussed.

The mixed UQ using NIPC based DSTE approach and verification of the proposed

minimum number of intervals for aleatory discretization is demonstrated using 2 examples:

(1) 3 variable Rosenbrock function and (2) transonic flow over RAE 2822 airfoil. The first

model problem (Rosenbrock function) was modeled with multiple sources of uncertainty



54

for the epistemic variable. A 4th order chaos expansion was chosen for propagation of input

uncertainty using DSTE analysis. The normal variable was modeled with 20 intervals

whereas the uniform variable with 30 intervals (a total of 50 intervals) representing the

aleatory domain for the model problem. This was found to be in accordance with the

numerical analysis carried out for optimum number of subintervals.

For the 2nd model problem, the mixed UQ approach is demonstrated on the tran-

sonic CFD study of the airfoil (RAE 2822). Mach number and angle of attack are treated

as aleatory and the closure coefficient Cv1 in Spalart-Allmaras turbulence model is treated

as the epistemic uncertainty. A method to derive BPA’s for the epistemic variable based on

expert opinion and comparison between experimental data and CFD simulations is demon-

strated. Since both aleatory variables are normally distributed, 50 intervals are used to

discretize the aleatory domain. The epistemic parameter did not have a major contribution

in the output uncertainty which was clear from the Sobol indices and is also in accordance

with the previous findings that variation in Cv1 has minimal effect at lower angles of attack.

Overall, the examples demonstrated that the NIPC based evidence theory is capable

of capturing mixed uncertainty in case of multiple sources of uncertainty for epistemic

variables. It was also shown that global bound approximation for the epistemic variable

by neglecting the sources of uncertainty with beliefs can lead to overestimation of the

output uncertainty. Future research will include application of the proposed approach for

large scale problems by implementing the sensitivity analysis based dimension reduction

techniques.
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APPENDIX

Global Sensitivity Analysis with Sobol Indices. In a system where multiple un-

certain variables are present, it is often useful to demonstrate and rank the relative im-

portance of each input uncertain variable to the overall output quantity of interest using

a global sensitivity analysis approach. In the current study, Sobol [34] indices are used

to perform this analysis. Sobol indices can be derived via Sobol Decomposition which is

a variance-based global sensitivity analysis method. First, the total variance (D) can be

written in terms of the PCE as follows:

D =
P

∑
j=1

α
2
j (t,~x)

〈
Ψ

2
j(
~ξ )
〉
. (1.27)

Next, as shown by Sudret [35] and Crestaux et al. [36], the total variance can be

decomposed as:

D =
i=n

∑
i=1

Di +
i=n−1

∑
1≤i< j≤n

Di, j +
i=n−2

∑
1≤i< j<k≤n

Di, j,k + · · ·+D1,2,...,n, (1.28)

where the partial variances (Di1,...,is) are given by:

Di1,...,is = ∑
β∈{i1,...,is}

α
2
β

〈
Ψ

2
β
(~ξ )
〉
, 1≤ i1 < .. . < is ≤ n. (1.29)

The Sobol indices (Si1···is) are defined by Eq. (1.30) which satisfy Eq. (1.31):

Si1···is =
Di1,...,is

D
, (1.30)

i=n

∑
i=1

Si +
i=n−1

∑
1≤i< j≤n

Si, j +
i=n−2

∑
1≤i< j<k≤n

Si, j,k + · · ·+S1,2,...,n = 1.0. (1.31)
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The Sobol indices provide a sensitivity measure due to individual contribution from

each input uncertain variable (Si), as well as the mixed contributions ({Si, j},{Si, j,k}, · · · ).

As shown by Sudret [35] and Ghaffari et al. [37], the total (combined) effect (STi) of an

input parameter i is defined as the summation of the partial Sobol indices that include the

particular parameter:

STi = ∑
Li

Di1,...,is
D

; Li = {(i1, . . . , is) : ∃ k, 1≤ k ≤ s, ik = i} . (1.32)

For example, with n = 3, the total contribution to the overall variance from the first

uncertain variable (i = 1) can be written as:

ST1 = S1 +S1,2 +S1,3 +S1,2,3. (1.33)

From these formulations, it can be seen that the Sobol indices can be used to provide

a relative ranking of each input uncertainty to the overall variation in the output with the

consideration of non-linear correlation between input variables and output quantities of

interest.
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ABSTRACT

The objective of this paper is to implement Dempster-Shafer Theory of Evidence (DSTE)

in the presence of mixed (aleatory and multiple sources of epistemic) uncertainty to the

reliability and performance assessment of complex engineering systems through the use

of Quantification of Margins and Uncertainties (QMU) methodology. This study focuses

on quantifying the simulation uncertainties, both in the design condition and the perfor-

mance boundaries along with the determination of margins. To address the possibility of

multiple sources and intervals for epistemic uncertainty characterization, DSTE is used for

uncertainty quantification. An approach to incorporate aleatory uncertainty in Dempster-

Shafer structures is presented by discretizing the aleatory variable distributions into sets

of intervals. In view of excessive computational costs for large scale applications and

repetitive simulations needed for DSTE analysis, a stochastic response surface based on

point-collocation Non-intrusive Polynomial Chaos (NIPC) has been implemented as the

surrogate for the model response. The technique is demonstrated on a model problem with

non-linear analytical functions representing the outputs and performance boundaries of two

coupled systems. Finally, the QMU approach is demonstrated on a multi-disciplinary anal-

ysis of a High Speed Civil Transport (HSCT).
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NOMENCLATURE

M margin

U uncertainty

FU upper boundary performance

UFU uncertainty in FU

FL lower boundary performance

UFL uncertainty in FL

F performance at design condition

UF uncertainty in F

MUP upper margin

MLW lower margin

M̃ Mach number

α̃ angle of attack

λ taper ratio

Λ sweep angle

n number of random variables

NS number of samples

np over-sampling ratio

p order of polynomial chaos

~ξ standard input random variable vector

Nt number of terms in a total-order expansion

ψ random basis function

α coefficient in polynomial chaos expansion

α∗ stochastic function
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Bel Belief

Pl Plausibility

U Universal set

U set of focal elements of U

BPA basic probability assignment

m(ε) BPA corresponding to subset ε of U

P belief / plausibility / probability level

γ confidence level

1. INTRODUCTION

The objective of this paper is to implement Dempster-Shafer Theory of Evidence

(DSTE) in the presence of mixed (aleatory and multiple sources of epistemic) uncertainty

to the reliability and performance assessment of complex engineering systems through the

use of Quantification of Margins and Uncertainties (QMU) methodology. Specifically, Un-

certainty Quantification (UQ) has been used as a tool of certification to decide whether a

system is likely to perform safely and reliably within design specifications. The unique

contributions of the current study to the system reliability and safety research can be sum-

marized as follows: The current work focuses on the creation of a novel QMU framework

in terms of Dempster-Shafer structures (belief & plausibility) for the characterization of

uncertainty in system design performance as well as the performance boundaries to obtain

uncertainty and margin metrics to evaluate the system safety and reliability. Specifically,

DSTE is used for uncertainty quantification to address the possibility of multiple sources

and intervals for epistemic uncertainty characterization. Furthermore, the DSTE is utilized
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for mixed uncertainty quantification by discretizing the aleatory probability distributions

into optimum sets of intervals and treating them as well-characterized epistemic variables.

In addition, the response quantities of interest for design performance and boundaries are

represented with stochastic surrogates based on non-intrusive polynomial chaos to reduce

the computational expense of implementing DSTE for uncertainty quantification of high-

fidelity complex system models.

To review the previous work and contrast with the current study, the following

section gives a detailed literature review on QMU methodology, epistemic and aleatory

uncertainty considerations in QMU, and DSTE for epistemic and mixed uncertainty repre-

sentation. Section 3 briefly discusses different types of uncertainties present in a compu-

tational model. Section 4 gives an overview of basics of point-collocation Non-intrusive

Polynomial Chaos (NIPC) methodology. In Section 5, the mathematical framework for

Dempster-Shafer Theory of Evidence for mixed uncertainty quantification using NIPC re-

sponse surface has been presented. Section 6 describes the incorporation of uncertainty

measures of evidence theory into QMU. The newly developed QMU approach is demon-

strated in Section 7 on a model problem with non-linear analytical functions representing

the outputs and performance boundaries of two coupled systems. In Section 8, the pro-

posed QMU methodology is demonstrated on a multi-disciplinary analysis of a supersonic

civil transport. Section 9 concludes the paper by summarizing the findings of the current

study.

2. LITERATURE REVIEW

2.1. QMU Methodology and Confidence Ratio. QMU is a methodology devel-

oped to facilitate analysis and communication of confidence for certification of complex

systems, which is performed with quantified uncertainty and margin metrics obtained for
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various system responses and performance parameters. In the recent years, a number of

studies were reported on the theoretical development and the application of the QMU con-

cept in the certification of reliability and safety of nuclear weapons stockpile [1, 2, 3, 4, 5].

The description of the key elements of a QMU framework that can be used to address risk

and risk mitigation for the certification of nuclear weapons was presented by Sharp and

Wood-Schultz [1]. Eardley et al. [3] described QMU as a formalism dealing with the reli-

ability of complex technical systems and the confidence that can be placed in estimates of

reliability. They also investigated the main components (performance gates, margins, and

uncertainties) of the QMU methodology. Key ideas underlying the concept of QMU were

defined by Pilch et al. [6]. They claimed that QMU provides input for a risk-informed deci-

sion making process and constitutes a decision-support methodology for complex technical

decisions that are made under conditions of uncertainty.

Pepin et al. [7] presented a practical QMU metric for the certification of complex

systems in terms of the ratio of Margin (M) and Uncertainty (U), known as Confidence

Ratio (CR) or confidence factor. The metric allowed uncertainty both on the operating

region and the performance requirement and was not restrictive to a probabilistic definition

of the uncertainty. A study by Lucas et al. [8] utilized the QMU methodology to study

the reliability of a ring structure. According to the author, if U denotes a suitable measure

of uncertainties and has been quantified accurately, the confidence ratio may be taken as

a rational basis for certification. Also, a QMU approach based on confidence ratio was

used for the characterization of the operation limits of the supersonic combustion engine

of a hypersonic air-breathing vehicle by Iaccarino et al. [9]. Some previous work have

expressed a concern for the use of confidence ratio as the sole indicator of confidence [10].

Pilch et al. [6] expressed dissatisfaction with the confidence ratio metric being deceptively

simple and involving significant loss of information.
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Compared to the previous work, the current study is expected to contribute to the

QMU methodology by efficient implementation of DSTE for the calculation of margins

and uncertainties, which is the primary focus of the paper. Following some previous stud-

ies, the current work also utilizes confidence ratio as a measure of system safety in the

demonstration of the UQ and QMU methodologies developed, however more sophisticated

measures utilizing the UQ methodology introduced in this paper could be investigated and

integrated to the QMU framework in future studies.

2.2. Epistemic and Aleatory Uncertainty Considerations in QMU. As implied

in the previous section where the QMU methodology is reviewed, one should not forget that

uncertainty quantification (determination of output uncertainty resulting from uncertainty

in inputs) is a broad research area on which the QMU process is dependent. Uncertainties

in engineering systems can be characterized mainly as aleatory (inherent or irreducible) un-

certainty and epistemic (reducible) uncertainty originating due to lack of knowledge. Pilch

et al. [6] emphasized the need to separate aleatory and epistemic uncertainty in QMU. Hel-

ton [11] presented a comprehensive study on QMU, which included a detailed analysis

of the QMU concept with different representations of uncertainty. Oberkampf et al. [12]

have described various methods for estimating total uncertainty by identifying all possible

sources of variability, uncertainty and error in computational simulations. Urbina et al. [13]

proposed a methodology to quantify the margins and uncertainty in presence of mixed un-

certainties through a framework based on Bayes networks and further developed a QMU

metric in terms of probability of failure. A new formalism based on Bayesian inference,

known as probabilistic QMU or pQMU, was introduced by Wallstrom [14], which was

fully probabilistic and showed how QMU may be interpreted within the framework of sys-

tem reliability theory. Epistemic uncertainty was represented using a Bayesian approach

by transforming the bounds to probability density functions. Many have expressed concern
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about modeling epistemic uncertainty via probability density functions due to the assump-

tion of a higher resolution of knowledge than what is really present [15]. Owhadi et al. [16]

introduced a rigorous framework for UQ (Optimal Uncertainty Quantification) that did not

implicitly impose inappropriate assumptions on the characterization of uncertainty, which

has been the weakness of most of the UQ methods. They further compared the framework

with different UQ methods like Monte Carlo strategies, stochastic expansion methods, sen-

sitivity analysis and Bayesian inference. However, the paper did not specifically discuss

methods for different representation of epistemic uncertainty such as possibility theory,

interval analysis or evidence theory.

2.3. DSTE for Epistemic and Mixed Uncertainty Representation. As an alter-

native to Bayesian approach, formulation of mathematical structures like the evidence the-

ory [17, 18, 19] has been an attractive approach for appropriate representation of epistemic

uncertainty due to the fact that it does not make assumptions regarding the distribution of

the variables described by intervals. DSTE approach is particularly useful when the uncer-

tain variables are defined by more than one interval (i.e., multiple sources or expert opinions

on uncertainty ranges). Probability theory and evidence theory were introduced as possible

mathematical structures for the representation of the epistemic uncertainty associated with

the performance of safety systems by Helton et al. [20]. The results suggested that evi-

dence theory provided a valuable representational tool for the display of the implications

of significant epistemic uncertainty in the inputs of complex systems. Furthermore, Helton

et al. [21] explained the use of evidence theory as an alternative to the use of probability

theory for the representation of epistemic uncertainty in QMU-type analyses. Swiler et

al. [22] studied various approaches like interval analysis and DSTE in order to characterize

epistemic uncertainty in the calculation of margins.
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In previous years, extensive research has been dedicated to improve the practical

application of the Dempster-Shafer theory to complex models due to the excessive compu-

tational cost associated with the required number of simulations [23, 24, 25]. A sampling

based computational strategy for the representation of epistemic uncertainty in model pre-

dictions with evidence theory was introduced by Helton et al. [15] to reduce the computa-

tional cost of crude Monte Carlo method. In the present paper, a stochastic response surface

constructed using point-collocation NIPC [26, 27, 28, 29, 30] has been implemented as a

response surrogate in uncertainty analysis in order to reduce the computational cost.

Recently, Eldred et al. [31] have demonstrated mixed UQ using different methods

like interval optimization, second-order probability [19, 28, 30, 32] and DSTE. They in-

vestigated the use of nested sampling for mixed UQ, where each sample taken from the

epistemic distributions at the outer loop results in an inner loop sampling over the aleatory

probability distributions. In order to demonstrate the accuracy and efficiency over crude

nested sampling, the mixed UQ results obtained through local gradient based and global

non-gradient based optimization on the outer epistemic loop within nested sampling ap-

proach were compared. Recently, Sentz and Ferson [33] proposed the use of probability

bound analysis coupled with Dempster-Shafer theory for treating mixed uncertainty, as

one of the tools relevant for QMU. In their work, the p-boxes [34] for aleatory uncertain

parameters were discretized into 100 equiprobability levels in order to be represented as

Dempster-Shafer structures. In the current paper, the use of DSTE procedure has been pro-

posed for mixed UQ by discretizing the aleatory probability distributions into optimum sets

of intervals (explained mathematically in Section 5) and treat them as well-characterized

epistemic variables. For accurate representation in terms of Dempster-Shafer structures,

these parameters are discretized into an optimum number of sets of intervals based on a

previous study by Shah et al. [35]. This approach enables us to represent mixed uncertainty
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in terms of Dempster-Shafer structures for uncertainty analysis with multiple sources of

uncertainty.

3. TYPES OF UNCERTAINTY

Uncertainties are assigned to the specification of input physical parameters that are

required for computational models. Two types of uncertainties exist in analyses of complex

systems: aleatory uncertainty and epistemic uncertainty. Many contributions have been

dedicated to emphasize the importance of characterization and treatment of uncertainties in

Performance Assessments (PAs) for complex systems [36, 37, 38, 39, 40, 41]. Helton [42]

illustrates the use of the Kaplan/Garrick ordered triple representation for risk in maintaining

a distinction between aleatory (stochastic) and epistemic (subjective) uncertainty.

3.1. Aleatory Uncertainty. Aleatory uncertainty, also known as probabilistic un-

certainty, arises due to inherent physical variability present in the system being analyzed.

It is not strictly due to lack of knowledge and is irreducible. Conducting additional ex-

periments might provide more description of the variability but cannot be eliminated com-

pletely. For example, the Mach number can be treated as an aleatory uncertain variable in

the computational aerodynamics analysis of airfoils or wings.

3.2. Epistemic Uncertainty. The epistemic uncertainty arises due to lack of knowl-

edge and is reducible by using, for example, a combination of calibration, inference from

experimental observations and improvement of the physical models. One source of epis-

temic uncertainty is the set of assumptions introduced in the derivation of mathematical

models of the physical phenomena. This type of uncertainty cannot be defined in a proba-

bilistic framework unless a specific distribution is assumed, which may lead to inaccurate

results as shown by Oberkampf et al. [43]. Thus, epistemic variables are often modeled

using intervals derived from experimental data or expert judgment with specified lower and
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the upper bounds. Turbulence modeling parameters (e.g., closure coefficients) in Compu-

tational Fluid Dynamics (CFD) simulations present a good example for epistemic uncer-

tainty.

4. POINT-COLLOCATION NON-INTRUSIVE POLYNOMIAL CHAOS

Polynomial Chaos is an uncertainty propagation approach which has been used in

many recent UQ studies. In this work, the focus is on generalized polynomial chaos using

the Wiener-Askey scheme, which is explained in detail by Xiu and Karniadakis [44]. In

previous years, many researchers have utilized polynomial chaos theory in stochastic com-

putations [26, 27, 28, 35, 45, 46]. In non-intrusive Polynomial Chaos Expansion (PCE),

simulations are used as black boxes and the calculation of chaos expansion coefficients

is based on a set of simulation response evaluations. The point-collocation NIPC is de-

rived from the polynomial chaos theory, which is based on spectral representation of un-

certainty [47]. An important aspect of the spectral representation of uncertainty is that a

stochastic response function can be decomposed into deterministic and stochastic compo-

nents. Thus, for any stochastic response function α∗, one can write,

α
∗(~x,~ξ )≈

P

∑
j=0

α j(~x)ψ j(~ξ ) (1.34)

where α j(~x) is the deterministic component and ψ j is the random basis function corre-

sponding to jth mode. Generally, α∗ is a function of deterministic variable vector ~x and

the n-dimensional independent standard random variable vector ~ξ = (ξ1, . . . ,ξn). In theory,

the expansion given in Eq. (1.34) is an infinite series. However, in practice this series is

truncated at a finite number of terms (hence the approximation sign used in Equation 1)

based on a selected expansion order and finite number of uncertain variables. The PCE can
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be created on a complete order. In this case, the total number of output modes (Nt) for an

expansion order of p and n random variables is given by

Nt = P+1 =
(n+ p)!

n!p!
(1.35)

An alternative approach as indicated by Eldred et al. [48] is to employ a "tensor-

product expansion", in which polynomial order bounds are applied on a per-dimension

basis including all combinations of the one-dimensional polynomials. In this work, a total-

order expansion has been implemented for creating the polynomial chaos response sur-

faces. The basis functions used in Eq. (1.34) are optimal polynomials that are orthogonal

with respect to a weight function over the support region of the input random variable vec-

tor. In terms of L2 convergence of the statistics, the Hermite polynomial is optimal for

normal distribution whereas the Laguerre and Legendre polynomials are used for expo-

nential and uniform input uncertainty distributions, respectively. The detailed description

of the orthogonal polynomials for different input uncertainty distributions (e.g., uniform,

normal, exponential, etc.) and the associated weight functions are given by Hosder [29],

Xiu and Karniadakis [44], and Eldred et al. [48].

The collocation based NIPC starts with replacing uncertain variables of interest

with their polynomial expansions derived from Eq. (1.34). Next, P+1 (Nt) vectors (~ξ j =

{ξ1,ξ2, . . . ,ξn} j, j = 0,1,2, . . . ,P) are sampled from the uncertainty space defined by the

bounds of the uncertain variables with Latin Hypercube (LH) sampling for a given polyno-

mial chaos expansion with number of modes determined from Eq. (1.35). The deterministic

model (e.g., Computational Fluid Dynamics Model, Finite Element Model, etc.) is evalu-

ated at these points. With the left hand side of Eq. (1.34) known from the solutions of the

deterministic model evaluations at the sample points, a linear system of equations can be

obtained:
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ψ0(~ξ0) ψ1(~ξ0) . . . ψP(~ξ0)

ψ0(~ξ1) ψ1(~ξ1) . . . ψP(~ξ1)

...
... . . . ...

ψ0(~ξP) ψ1(~ξP) . . . ψP(~ξP)





α0

α1

...

αP


=



α∗(~x,~ξ0)

α∗(~x,~ξ1)

...

α∗(~x,~ξP)


(1.36)

Eq. (1.36) represents a linear system of equations which needs to be solved in

order to determine the spectral modes α j( j = 0,1, . . . ,P) for the stochastic function α∗.

Eq. (1.35) is considered as the minimum number of deterministic samples required to solve

the linear system of equations. However, if more number of deterministic samples (NS) are

available, the over-determined system is solved using a least squares approach. The term,

over-sampling ratio denoted by np is related to Eq. (1.35) in the following manner:

NS = np×
(n+ p)!

n!p!
(1.37)

Thus, an np of 1 corresponds to the minimum number of deterministic samples

required. Hosder et al. [26] demonstrated through different stochastic model problems that

an np of 2 is the optimum value for most problems, which has also been implemented in

the current study.

5. AN APPROACH FOR MIXED UQ USING EVIDENCE THEORY

This section summarizes the evidence theory traditionally used for pure epistemic

analysis and extends this idea to perform mixed UQ analysis by converting the aleatory

uncertain variables into Dempster-Shafer structures.

5.1. Fundamentals of Evidence Theory. Evidence theory introduces two new

measures of uncertainty, Belief (Bel) i.e., lower limit of probability and Plausibility (Pl)
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Figure 1.1. Schematic of belief and plausibility

i.e., upper limit of probability. Evidence theory application involves the specification of

(U,U ,m) where U denotes the universal set, U denotes the collection of subsets or set

of focal elements of U and m is the Basic Probability Assignment (BPA), which can be

viewed as the belief of the user of how likely it is that the uncertain input falls within the

specified interval. BPA, a value between 0 and 1, can be assigned for any possible subset of

the universal set based on experimentation or expert opinion. The advantage of this theory

is that it does not assume any particular value within the interval and nor does it assign a

specific distribution to the interval. Also, Figure 1.1 illustrates that the axiom of additivity

is not imposed, as the evidential measure for the occurrence and negation of an event does

not have to sum to unity (Bel(A)+Bel(Ā) ≤ 1,Pl(A)+Pl(Ā) ≥ 1,Bel(A)+Pl(Ā) = 1)

where Ā represents the negation of event A.

According to the definition, m(ε) denotes the BPA corresponding to subset ε of

U . Any additional evidence supporting the claim that the uncertain variable lies within a

subset of ε , say B⊂ ε , must be assigned another non-zero BPA m(B). m(ε) should satisfy

following axioms of evidence theory:

• m(ε)> 0 for any ε ∈U

• m(ε) = 0 if ε ⊂ U and ε 3U

• m() = 0 where denotes an empty set
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• ∑m(ε) = 1 for all ε ∈U

In case of multiple sources of uncertainty per variable, the Dempster rule of com-

bination has been extensively used with a strong assumption that there is some degree of

consistency or agreement among the opinions of different sources. It has been proved

by Yager [49] that the Dempster’s rule completely ignores the conflict among different

sources. Zadeh [50] in his review of Shafer’s book, A Mathematical Theory of Evidence,

pointed out that using Dempster’s rule with conflicting evidences results in erroneous anal-

ysis. In this study, the mixing or averaging rule has been adopted which generalizes the

averaging operation used for probability distributions. The mathematical formulation is

given by:

m1...n(A) =
1
n

n

∑
j=1

w jm j(A) (1.38)

where m′js are the BPAs for belief structures being aggregated and w′js are the weights

assigned according to the reliability of the sources. There is abundant literature dedicated

to combination rules for the evidence theory [51, 52] which is beyond the scope of this

paper.

Once the uncertainty associated with the domain is characterized by an evidence

space in the form of BPAs, an input sample space is constructed. For example, if y = f (~x)

where ~x = [x1,x2, . . . ,xn] with the evidence space defined as (Xi,Xi,mi) for each input

uncertainty, the input sample space is given by

X= {x : x = [x1,x2, . . . ,xn] ∈ X1×X2× . . .×Xn} (1.39)

Further for~x, the evidence space can be defined by (X,X ,mX) where X is devel-

oped from the sets contained in Eq. (1.40).
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C = {ε : ε = [ε1,ε2, . . . ,εn] ∈X1×X2× . . .×Xn} (1.40)

Under the assumption that the xi are independent, mX is defined as:

mX(ε) =


n

∏
i=1

mi(εi) if ε = ε1× ε2× . . .× εn ∈X

0 otherwise

(1.41)

for subsets ε of X.

Once the BPAs for input sample space in Eq. (1.39) are defined by Eq. (1.41), belief

and plausibility for the output y can be evaluated as:

BelY (ε) = ∑
S |S⊆ f−1(ε)

mX(S ) (1.42)

PlY (ε) = ∑
S |S∩ f−1(ε)6=

mX(S ) (1.43)

As no assumptions were made to calculate these measures, Bel and Pl provide a

more realistic uncertainty structure consistent with the given evidences. The evidence the-

ory statistics can be summarized in terms of Cumulative Belief and Plausibility Functions

(CBF and CPF) and Complementary Cumulative Belief and Plausibility Functions (CCBF

and CCPF) as shown in Figure 1.2.

These measures are calculated on the basis of minimum and maximum response

values for each combination in the input sample space. Interval optimization approach

(mathematical formulation given in Eq. (1.44)) can be implemented to provide accurate

results for both, the original function or the response surface based on point-collocation

NIPC, which is used as a surrogate of the original function in this work.
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Figure 1.2. Example of cumulative and complementary cumulative belief and plausibility
functions

minimize/maximize
x

f (~ξ )

subject to ~ξL ≤ ~ξ ≤ ~ξU

(1.44)

where f (~ξ ) is the required response value,~ξL and~ξU correspond to lower and upper bounds

of the standard random variables. The final step is to calculate the belief and plausibility

structures using the minimum and maximum response values according to Eqs. (1.42) and

(1.43).

Now, if the uncertainty in output y is characterized by (Y,Y ,mY ), the output uncer-

tainty is summarized using CBF, CPF, CCBF and CCPF given by Eqs. (1.45),(1.46),(1.47)

and (1.48).

CBF = [ρ,BelX( f−1(Yc
ρ))],ρ ∈ Y (1.45)

CCBF = [ρ,BelX( f−1(Yρ))],ρ ∈ Y (1.46)
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Figure 1.3. Discretization of a normally and uniformly distributed variable

CPF = [ρ,PlX( f−1(Yc
ρ))],ρ ∈ Y (1.47)

CCPF = [ρ,BelX( f−1(Yρ))],ρ ∈ Y (1.48)

where Yρ = {y : y∈Y and y > ρ} and Yc
ρ = {y : y∈Y and y≤ ρ}. Detailed expla-

nation of the evidence theory with numerical examples has been provided by Oberkampf

et al. [43], Helton et al. [53] and Nikolaidis et al. [54].

5.2. Aleatory Uncertainty Representation in Terms of Demspter-Shafer Struc-

tures. Although Dempster-Shafer theory is primarily used for epistemic uncertainty rep-

resentation, there may be instances when aleatory uncertainties are present in the model

along with the epistemic. In that case, one may choose to segregate the aleatory uncertain-

ties and treat them within an inner loop of nested sampling. The end result may be multiple

belief and plausibility structures, as shown by Eldred et al. [31]. As an alternative, one may

choose to discretize the aleatory variables into sets of intervals according to their respective

probability distributions. Figure 1.3 shows an example of the discretization process for the

normal (left plot) and uniform (right plot) distributions.
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In this paper, the focus is on the latter option of discretizing the aleatory variables

into sets of intervals and assign BPA’s to each interval corresponding to the probability

distribution. Shah et al. [35] gave a detailed description of the methodology of aleatory

uncertainty representation in terms of Dempster-Shafer structures. For example, a random

variable with uniform distribution can be divided into n number of intervals with an equal

BPA of 1/n assigned to each sub-interval as can be seen in the right hand side plot of

Figure 1.3. Suppose x1 is a uniformly distributed variable with lower and upper bounds

as [0.1,0.7] and the same is discretized into 5 sub-intervals (n = 5). The Dempster-Shafer

structure for x1 can be given by:

x1 = ([0.1,0.22],m1),([0.22,0.34],m2),([0.34,0.46],m3), ...

([0.46,0.58],m4),([0.58,0.7],m5)

where mi =
1
n
=

1
5

(i = 1,2, ..,5)

In order to discretize a random variable with normal distribution, one needs to

characterize the same with a lower bound and an upper bound. Consider the left plot in

Figure 1.3 which shows a standard normal distribution i.e., with 0 mean (µ = 0) and 1

standard deviation (σ = 1). As per the theory, for a normally distributed random variable

with mean µ and σ as the standard deviation, 99.7% of the area under the curve is within

µ±3σ . Hence, this can be treated as a benchmark for bounding all the normal variables in

any analysis. However, the BPA should be assigned to each sub-interval according to the

Gaussian distribution by solving the definite integral in Eq. (1.49):

P(a < X < b) =
∫ b

a
f (X),dx where f (X) =

1
σ
√

2π
exp
−(X−µ)2

2σ2 (1.49)
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where a and b denote the upper and lower bound of the sub-interval and P(a < X < b)

denotes the probability of X between a and b.

Suppose x2 is a normally distributed variable with a mean value of 0.5 (µ = 0.5)

and standard deviation of 0.01 (σ = 0.01). The lower and upper bounds for x2 using µ±3σ

are [0.47,0.53] and discretized into 3 intervals. The Dempster-Shafer structure for x2 can

be given by:

x2 = ([0.47,0.49],m1),([0.49,0.51],m2),([0.51,0.53],m3)

where m1 = 0.1573,m2 = 0.6827 and m3 = 0.1573

In the current study, the interval discretization is based upon the convergence study

performed by the authors [35] for the minimum number of intervals required to accurately

capture the aleatory uncertainty in a model problem. The discretization process mainly

depends upon the amount of information needed by the Dempster-Shafer structures to ac-

curately cover the uncertainty domain.

6. QMU BASED ON EVIDENCE THEORY

6.1. Key Measures Required for QMU. The key measures of the QMU frame-

work to be developed are shown in Figure 1.4. In this QMU framework, for the whole

engineering system (e.g., aircraft or spacecraft) or for each sub-system, the first step will

be to determine performance metrics (system outputs) relevant to the systems modeling,

which should ideally be functions of all input parameters including the operating condi-

tions. Then these metrics will be evaluated at a design condition determined for the safe

and reliable operation of the engineering system. Each of these metrics F will typically
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Figure 1.4. Schematic of key measures used in a QMU framework

involve some amount of uncertainty UF due to the inherent real-life variation of parameters

used in physical models as well as the epistemic uncertainties. The safe and reliable oper-

ation region of the spacecraft or aircraft (performance gates) will be bounded with a lower

bound FL and an upper bound FU for each metric (i.e., metrics evaluated at the off-design

boundaries), which will also include some uncertainty (UFL for FL and UFU for FU) due to

the aforementioned uncertainty sources.

A measure of the distance between the design value of each performance metric

and the lower boundary including the effect of uncertainties UF and UFL will give the

lower margin MLW and the distance between the upper boundary and the design value of

each performance metric including the effect of uncertainties UFU and UF will give the

upper margin MUP. The margins must significantly exceed any associated uncertainty in

order to avoid failure. Using the uncertainty (U) and the margin (M) information, a QMU

metric has to be developed to quantify and certify the confidence for the safe operation of

the system or each sub system (e.g., confidence ratio, CR) which is given by:

CR =
M
U

(1.50)
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where M is a measure of the margin and U represents a measure of the uncertainty. The con-

fidence ratio can be used as a degree to which the operation of a system or each sub-system

is considered to lie within ’safe’ bounds. As mentioned earlier, margins should exceed any

associated uncertainty thereby stating that a CR sufficiently larger than 1 indicates safe and

reliable conditions.

Since there exist two performance gates for each performance metric (upper and

lower bound), the evaluation of margin and uncertainty will result in two confidence ratios;

(1) confidence ratio with respect to lower boundary CRLW and (2) confidence ratio with

respect to the upper boundary CRUP. However, it is important to note that the CR is calcu-

lated for each system, sub-system and / or component of a sub-system in a particular QMU

analysis. The system confidence ratio CRsystem is represented by the minimum CR which

replicates the worst case scenario as far as system safety is concerned. Theoretically speak-

ing, there is a family of confidence ratios in a problem with mixed uncertainties due to the

presence of multiple cumulative distribution functions (CDFs) per p-box. The bounding

CDFs (lowest & highest) of the p-box are used to calculate the 95% confidence interval

in uncertainty quantification [29]. Similar methodology is used to calculate the confidence

ratio for the lower and upper boundary, respectively. Further, the minimum value of the

two CRs (CRLW & CRUP) will result in the worst case scenario and a reliable value to carry

out the performance assessment and certification.

Mathematically, the two confidence ratios can be formulated as follows:

CRLW =
MLW

ULW
and CRUP =

MUP

UUP
(1.51)

In Eq. (1.51), similar to the measure of the margins, UUP is a function of perfor-

mance metric and upper boundary uncertainties i.e. UF and UFU whereas ULW is a function

of performance metric and lower boundary uncertainties i.e. UF and UFL. The system
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confidence ratio can be chosen to be the smallest out of the two performance gates. Thus,

the minimum confidence ratio from among CRLW and CRUP is likely to tend towards the

failure region and can be considered as the confidence ratio for the system.

6.2. QMU Framework Based on Evidence Theory. This section formulates the

QMU framework in terms of evidence theory uncertainty measures, belief and plausibility.

The usage of DSTE for QMU is preferred especially in situations where multiple sources

of uncertainties are encountered for epistemic variables. If this is not the case and pnly

single source of uncertainty exists for both probabilistic and epistemic variables, then one

can consider to perform mixed uncertainty quantification using methods like second or-

der probability. When a problem formulation consists of probabilistic distributions along

with Dempster-Shafer structures for epistemic variables, the discretization procedure as

mentioned in Section 5.2 should be used for representing aleatory variables in terms of

well-characterized epistemic variables.

Based on this discussion, four cases are presented for the formulation of uncertainty

(U) and margin (M) calculations; 1) no uncertainty, 2) pure epistemic uncertainty, 3) pure

aleatory uncertainty and 4) mixed (aleatory-epistemic) uncertainty. As this paper focuses

on QMU using evidence theory for mixed UQ, the epistemic variables will be considered

with Dempster-Shafer structures. Thus, the pure epistemic and mixed uncertainty analysis

results will be quantified in terms of CBF and CPF as explained in Section 5.1. For pure

aleatory analysis, the response surface is sampled over a large number of Latin Hypercube

samples and the uncertainty is quantified in terms of Cumulative Distribution Functions

(CDFs).

The uncertainty calculation parameters with respect to upper and lower boundaries

are provided in Tables 1.1 and 1.2, Eqns. (1.52) and (1.53), respectively.



84

Table 1.1. Formulations for uncertainty calculation with respect to upper boundary

Type of uncer-
tainty UUP1(FU) UUP2(FU) UUP3(F) UUP4(F)

No Uncertainty FU FU F F
Pure Epistemic BelP=0.5 PlP= 1−γ

2
BelP= 1+γ

2
PlP=0.5

Pure Aleatory FUP=0.5 FUP= 1−γ

2
FP= 1+γ

2
FP=0.5

Mixed aleatory-
epistemic BelP=0.5 PlP= 1−γ

2
BelP= 1+γ

2
PlP=0.5

Table 1.2. Formulations for uncertainty calculation with respect to lower boundary

Type of uncer-
tainty ULW1(FL) ULW2(FL) ULW3(F) ULW4(F)

No Uncertainty FL FL F F
Pure Epistemic PlP=0.5 BelP= 1+γ

2
PlP= 1−γ

2
BelP=0.5

Pure Aleatory FLP=0.5 FLP= 1+γ

2
FP= 1−γ

2
FP=0.5

Mixed aleatory-
epistemic PlP=0.5 BelP= 1+γ

2
PlP= 1−γ

2
BelP=0.5

UUP =
√
(UUP1−UUP2)2 +(UUP3−UUP4)2 (1.52)

ULW =
√
(ULW1−ULW2)2 +(ULW3−ULW4)2 (1.53)

MUP = |MUP1−MUP2| and MLW = |MLW1−MLW2| (1.54)

Table 1.3 indicates the metric (for the design condition or the off-design bound-

aries) to be adopted corresponding to the type of uncertainty encountered for the calcula-

tion of upper and lower margins. Mathematical formulations for MUP and MLW are given
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Table 1.3. Formulations for margin calculation

Type of uncer-
tainty MUP1(FU) MUP2(F) MLW1(F) MLW2(FL)

No Uncertainty FU F F FL
Pure Epistemic PlP= 1−γ

2
BelP= 1+γ

2
PlP= 1−γ

2
BelP= 1+γ

2

Pure Aleatory FUP= 1−γ

2
FP= 1+γ

2
FP= 1−γ

2
FLP= 1+γ

2

Mixed aleatory-
epistemic PlP= 1−γ

2
BelP= 1+γ

2
PlP= 1−γ

2
BelP= 1+γ

2

in Eq. (1.54). The subscript P corresponds to the belief / plausibility / probability level

whichever is applicable and γ is the specified confidence level (for e.g., γ = 0.95).

The confidence ratio for the system can then be evaluated using Eqs. (1.51), (1.52),

(1.53) and (1.54).

CRsystem = min{CRLW ,CRUP}= min{MLW

ULW
,
MUP

UUP
} (1.55)

7. ANALYTICAL QMU MODEL PROBLEM

In order to demonstrate the implementation of evidence theory for mixed UQ us-

ing stochastic expansions in QMU methodology, a model problem is presented for coupled

systems (System 1 and System 2, see Figure 1.5) represented by analytical non-linear func-

tions. This section will be segregated into 3 subsections; first section will describe the de-

sign condition for both systems, second section will describe the boundaries / performance

gates for System 1 and the third section will describe the boundaries / performance gates

for System 2.
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Figure 1.5. Mathematical QMU problem

Table 1.4. Uncertainty information for the mathematical QMU problem

Variable Distribution Uncertainty information
x1 Uniform [-0.5, 0.8]
x2 Epistemic Source 1: [-0.5, -0.1] 50%, [0.1, 0.4] 50%

Source 2: [0.0, 0.5] 33.34%, [-0.4, 0.2] 33.33%,
[-0.1, 0.1] 33.33%
Source 3: [0.25, 0.35] 35%, [-0.45, -0.29] 65%

x3 Normal N(0.25,0.03)
x4 Epistemic Source 1: [0.2, 1.0] 30%, [-1.0, 0.4] 70%

Source 2: [-0.2, 0.3] 33.34%, [-0.5, -0.15]
33.33%, [0.15, 0.9] 33.33%

7.1. UQ for Design Condition of the QMU Model Problem. The mathematical

structure of the design condition for Systems 1 and 2 is shown in Figure 1.5. Here, F1 and

F2 represent the outputs for System 1 and 2, respectively. System 1 comprises of Rosen-

brock function with 4 uncertain variables (xi, i = 1,2,3,4) and System 2 is the McCormick

function which has shared input variables x1 and x2 with System 1. The mixed uncertainty

information for all the variables is given in Table 1.4.

It is clear that one needs to propagate mixed uncertainty using DSTE through dis-

cretization procedure described in Section 5.2. A fourth-order chaos expansion was
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(a) System 1: Design condition (b) System 2: Design condition

Figure 1.6. Design condition for the QMU model problem

chosen to model the uncertainty propagation with the NIPC method. With an over-sampling

ratio of 2 and number of uncertain variables of 4, 140 original function evaluations are re-

quired for an accurate stochastic response surface according to Eq. (1.37). The inexpensive

response surface replaces the deterministic model which proves to be computationally ef-

ficient in view of repetitive simulations required for DSTE analysis. This advantage is

substantial for large scale computational models such as aerospace simulations including

high fidelity models.

Based on the analysis presented by Shah et al. [35] for aleatory uncertainty dis-

cretization, the uniformly distributed variable x1 is segregated into 30 different intervals

with an equal BPA of 1/30 for each sub-interval and the normally distributed variable is

discretized into 20 intervals with BPA assigned to each sub-interval according to the Gaus-

sian distribution shown in Eq. (1.49). The DSTE analysis is carried out with the composite

Dempster-Shafer structure for mixed UQ for the design condition (See Figure 1.6).
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Table 1.5. Input uncertainty information for the performance limits of System 1

Lower Boundary: Single parameter with N(−100.0,5.5)
Upper Boundary

Variable Distribution Uncertainty information
y1 Normal N(30.0,2.5)
x2 Epistemic Source 1: [-0.5, -0.1] 50%, [0.1, 0.4] 50%

Source 2: [0.0, 0.5] 33.34%, [-0.4, 0.2] 33.33%,
[-0.1, 0.1] 33.33%
Source 3: [0.25, 0.35] 35%, [-0.45, -0.29] 65%

7.2. Performance Gates and UQ for System 1. In this example problem, System

1 is considered to be bounded by both, upper and lower boundaries. The lower boundary

consists of a normally distributed parameter, treated as a pure aleatory limit which provides

a single CDF and the upper boundary for System 1 is represented by a 2 variable Booth

function which is given by:

FUsys1 = (y1 +2x2−7)2 +(2y1 + x2−5)2 (1.56)

where FUsys1 denotes the upper boundary for System 1. As can be seen from Eq. (1.56),

the upper boundary has a shared input variable in the form of x2. The input uncertainty

information for the performance gates is given in Table 1.5.

As the variable x2 is an epistemic variable with a Dempster-Shafer structure and

y1 represents aleatory uncertainty, uncertainty is quantified using DSTE with discretization

process for the aleatory variable. In this case, normally distributed variable y1 is discretized

into 75 intervals to carry out the DSTE analysis for the composite Dempster-Shafer struc-

ture using a 2nd order chaos expansion (see Figure 1.7). Thus, only 12 original function

evaluations were required with an over-sampling ratio of 2.
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(a) System 1: Lower bound (b) System 1: Upper bound

Figure 1.7. Performance gates for System 1

7.3. Performance Gates and UQ for System 2. There exists an upper boundary

for System 2 in the form of Dakota textbook problem [55] with 2 uncertain variables which

is given by:

FUsys2 = (x1−1)4 +(z2−1)4 (1.57)

Eq. (1.57) represents the same scenario as in the upper boundary for System 1. It

shares an input variable x1 with the design condition, uncertainty data for which is shown

in Table 1.4. z2 is an epistemic variable with a Dempster-Shafer structure from a single

source as listed in Table 1.6.

As the upper boundary for System 2 is also characterized by mixed uncertainty,

DSTE analysis is carried out by segregating the uniformly distributed variable x1 into 75

intervals with an equal BPA to each sub-interval (see Figure 1.8). A 4th order chaos expan-

sion with over-sampling ratio of 2 required 30 original function evaluations.
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Table 1.6. Uncertainty Information for Upper Boundary of System 2

Variable Distribution Uncertainty
x1 Uniform [-0.5, 0.8]
z2 Epistemic [6.0, 6.5] 50%, [6.3, 6.75] 30%, [5.9, 6.2] 20%

Figure 1.8. Performance gate for System 2: Upper Bound
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Table 1.7. Computational efficiency of NIPC methodology

Performance metric Polynomial
order

Original
Function
evalua-
tions

Original
Function
evaluations
using NIPC

Design Point: System 1 4 47967 140
Upper Bound: System 1 2 560 12
Design Point: System 2 4 39219 140
Upper Bound: System 2 4 180 30

Table 1.8. System 1: QMU Analysis Metrics

Performance Gate Margin Uncertainty CR
Lower 91.3959 109.859 0.8319
Upper 2124.765 1292.169 1.6443

The surrogate models for each metric, including the performance gates, are com-

pared to the original function output statistics in Figures 1.6, 1.7 and 1.8. It is evident

that the NIPC response surfaces are accurate. Computational efficiency is also achieved in

terms of original function evaluations which can be compared in Table 1.7.

7.4. Quantification of Margins and Uncertainties for QMU Model Problem. A

confidence level of γ = 0.95 is chosen for the QMU model problem. For better understand-

ing, Figure 1.9 gives a pictorial presentation for calculation of uncertainties and margins

for System 1 with the specified confidence level. For System 1, QMU analysis based on

upper and lower boundaries is summarized in Table 1.8.

Similarly for System 2, QMU analysis is solely based on the upper boundary which

is summarized in Table 1.9. Thus, the system confidence ratio can be given as CRsystem =

min{CRsys1,CRsys2} = 0.8319. We see that the confidence ratio for the whole system is
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Figure 1.9. Demonstration for calculation of uncertainties and margins for System 1 (Note
that the figures are not drawn to scale to increase the clarity)

Table 1.9. System 2: QMU Analysis Metrics

Performance Gate Margin Uncertainty CR
Upper 571.9426 339.7115 1.6836

governed by that of System 1, in particular the confidence ratio related to the lower per-

formance boundary and associated uncertainties including the design point. The parameter

CR basically helps the decision-maker in risk assessment and risk mitigation. Post analysis

may be carried out on the basis of the confidence ratio parameter to make the design robust,

which will be measured by the improvement in the confidence ratio.

8. MULTIDISCIPLINARY ANALYSIS OF A SUPERSONIC CIVIL TRANSPORT

A multidisciplinary analysis system for the High Speed Civil Transport (HSCT) was

selected as the 2nd model problem in order to demonstrate QMU using DSTE with stochas-

tic expansions. The Integrated Multidisciplinary Optimization Object System (IMOO) [56],
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analysis tool used for this model problem, is a tool set designed to address many issues for

next generation vehicle applications. It utilizes an object-oriented integration framework

that allows users to efficiently link high fidelity analysis modules. The problem setup time

is significantly reduced by simplifying the definition of interdisciplinary coupling, allow-

ing the creation of complex data objects and eliminating laborious manual data conversion.

The IMOO system succeeds in sharing complex data by utilizing an object-oriented ap-

proach in which upstream modules create objects that are used by downstream modules

on demand. Both the data and the methods reside in the object and downstream modules

may request the data when needed. An example of this is mesh generation. IMOO im-

plements automatic mesh generation and morphing through advanced parametric geometry

and grid technology for multidisciplinary modeling [57]. M4 Engineering has developed

a parametric grid morphing tool, Geometry Manipulation by Automatic Parameterization

(GMAP [58]), and a parametric Finite Element Analysis (FEA) model generator for inter-

nal structures (RapidFEM [59]). These tools are integrated into the framework environment

to quickly analyze FEA / CFD cases, morph geometry, re-mesh, apply loads, and generate

useful results. Thus, the IMOO system allows configurations to be rapidly assessed and

different numerical optimization techniques be used to help determine the optimal design.

8.1. Description of the Deterministic Model. For the current study, the analysis

configuration selected is the HSCT [60] as shown in Figure 1.10. The design variables used

in the IMOO system model of the HSCT include the wing area, aspect ratio, sweep angle,

taper ratio, span-wise location of break chord, leading edge position of break, break chord,

and tip chord ratio (Figure 1.11).

For the QMU demonstration, a modified version of the supersonic vehicle design

process was chosen (shown in Figure 1.12). The five modules considered are: 1. Geometry,

2. Aerodynamics, 3. Propulsion, 4. Structures and 5. Range Performance (Brequet Range).
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Figure 1.10. Generic HSCT configuration

Figure 1.11. HSCT with geometric design variables
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Figure 1.12. Supersonic vehicle design structure matrix

The standard design structure matrix shows the analysis modules as blue boxes on the

diagonal of the matrix, and the data items used by or generated by the modules are shown

as yellow boxes. The far left column of yellow boxes represents inputs to the entire process,

and the far right column represents outputs from the process. The outputs from a particular

module are placed on the same row as the module, and the inputs are in the same column

(for example, Propulsion Performance is an output of the Propulsion Module and an input

to the Breguet Range Module). In general, module execution is shuffled to get as much

information as possible into the upper-right triangle of the matrix, which represents a feed-

forward path, where the module generating the data is executed prior to the module using

the data. Feedback paths are possible, but require special consideration (e.g., iteration to

convergence) and hence, will not be included in this demonstration.

In this process, the geometry Module takes the geometric variables and generates

(through GMAP) an updated CFD model (via mesh morphing), a FEM mesh (through para-

metric geometry & meshing), and information for the propulsion module. Figure 1.13(a)
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(a) HSCT Base Geometry (shown without vertical tail)

(b) HSCT PANAIR Model (Wing Body Wake)

Figure 1.13. HSCT: Geometry & Aerodynamics model

shows the initial geometry used to develop the baseline aerodynamic and structural meshes.

The baseline geometry is analyzed using different modules as explained below.

The aerodynamics module calculates the vehicle aerodynamic coefficients and dis-

tributed pressures at various flight conditions for use in performance simulation and load

calculations. In order to expedite aerodynamic analyses, the current implementation of the

aerodynamics module utilizes Panair [61] to compute aerodynamic loads. Panair (Panel

Aerodynamics) solves the linearized potential flow problem for subsonic and supersonic

regimes using a higher-order panel method [62, 63, 64]. Figure 1.13(b) shows the half

model used for aerodynamic analysis.

The second module (propulsion) utilizes the Numerical Propulsion System Simula-

tion (NPSS) [65] to calculate the propulsion performance (specific fuel consumption etc.)

for use in the Breguet Range module. NPSS is a comprehensive propulsion simulation
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Table 1.10. HSCT Uncertain Parameters

Variable Distribution Uncertainty information
Mach Number (M̃) Normal N(2.0,0.02)

Angle of Attack (α̃)
Epistemic

Source 1: [2.4, 2.45] 20%, [2.43,
2.56] 50%, [2.51, 2.6] 30%
Source 2: [2.58, 2.6] 10%, [2.5,
2.55] 60%, [2.45, 2.49] 30%

Wing Sweep Angle (Λ) Normal N(68.0,1.0)
Wing Taper ratio (λ ) Uniform [0.06, 0.1]

tool capable of accurately predicting aerothermodynamic behavior of jet engines in various

flight regimes.

The structural module, using a NASTRAN optimization, calculates loads and struc-

tural sizing to estimate the takeoff gross weight (TOGW). The design load case simulated

corresponds to a 1.5-g pull up (consistent with FAR part 25 criteria). The Breguet Range

Module computes the range performance for the supersonic vehicle based upon the outputs

from the upstream modules.

8.2. Description of the Stochastic Model. This section describes the stochastic

model problem chosen to demonstrate the proposed QMU methodology based on DSTE

measures.

8.2.1. Design condition. For the HSCT model problem, two modules (Geometry

and Aerodynamics) have been chosen to include uncertain input parameters. The schematic

of the stochastic model for the HSCT problem is shown in Figure 1.14. The geometry

module has 2 uncertain input parameters: wing sweep angle and the wing taper ratio. The

Mach number and the angle of attack, being the two important parameters in aerodynamic

analysis, have been chosen as the source of uncertainty for the design of supersonic vehicle.

The uncertainty information for all the parameters is summarized in Table 1.10.
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Figure 1.14. Stochastic model for HSCT

Given the input uncertainty, the range and the drag coefficient are considered as

the performance metrics which are related to multiple systems, each subject to inherent

and epistemic uncertainties. The Range plays an important role in the design of a civil

transport vehicle and coefficient of drag is one of the key design parameters that affects the

vehicle performance.

8.2.2. Performance gates for the Range. In an aircraft design, a minimum value

of range for which the aircraft should fly, is specified. For demonstration purposes, a lower

boundary for the range is selected as 2700 nautical miles (nmi) with no uncertainty.

8.2.3. Performance gates for the coefficient of Drag. In aircraft design, a maxi-

mum value of drag coefficient may be used as a criteria to limit engine selection size and

reduce fuel economy. In present analysis, drag coefficient is constrained by an upper limit

of 0.0085 with no uncertainty.

8.3. Uncertainty Quantification using DSTE. This section summarizes the un-

certainty quantification results for the supersonic civil transport.
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(a) HSCT: Range (b) HSCT: Coefficient of drag

Figure 1.15. UQ for HSCT using DSTE

8.3.1. Design condition. UQ analysis for the HSCT design condition is carried out

using the DSTE approach with stochastic expansions. As there are 4 uncertain variables

in the system, according to Eq. (1.35), 30 deterministic evaluations were required with a

np of 2 for a second order PCE. The taper ratio was discretized into 23 sub-intervals and

the Mach number and sweep angle were discretized into 22 sub-intervals each to obtain the

belief and plausibility measures. The CBF and CPF for the output quantities, range and

coefficient of drag are shown in Figure 1.15.

To assess the accuracy of the response surface for range and coefficient of drag, 10

sample points were chosen in the uncertainty domain at which the difference between the

actual model and the surrogate (i.e. the response surface) were calculated. It was found

that, the surrogate models for the range and coefficient of drag, based on a second order

PCE, were accurate with the highest mean error being approximately 0.05%. As a result of

this error analysis, the QMU analysis was performed using the second order expansion.
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Table 1.11. HSCT Range: QMU Analysis Metrics

Performance Gate Margin Uncertainty CR
Lower 611.951 289.347 2.1149

Table 1.12. HSCT Drag Coefficient: QMU Analysis Metrics

Performance Gate Margin Uncertainty CR
Upper 5.085×10−4 3.947×10−4 1.289

8.3.2. Performance limits. As mentioned before, no uncertainty was considered

in case of performance gates for both the output quantities. Thus, they are treated as being

constant which will correspond to the row with "No uncertainty" in Tables 1.1, 1.2 and 1.3.

8.4. Quantification of Margins and Uncertainties for HSCT. Now that the un-

certainties are quantified in the design condition, the next step is to perform the QMU

analysis on HSCT. Similar to the previous example problem, a confidence level of γ = 0.95

is chosen for the HSCT problem. The design metric for the range of the supersonic vehicle

is represented by mixed uncertainty whereas the lower performance limit is attributed with

no uncertainty. Using the equations and tables given in Section 6.2, the uncertainty and

margin calculations are performed and summarized in Table 1.11 in terms of CR.

Similarly, the drag coefficient is also represented with mixed uncertainty whereas

the upper performance limit has no uncertainty. The QMU analysis results are summarized

in Table 1.12.

Using Eq. (1.55), system wide confidence ratio is the minimum CR from among the

two output quantities under consideration. The minimum value is chosen as it indicates the

weakest link in the system design. In present analysis, the system wide confidence ratio

is obtained as 1.289 for coefficient of drag, indicating that the margins are greater than
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the uncertainties. In case the uncertainties are greater than or equal to the margins (i.e.

CR ≤ 1), a re-design of the system, performance limits or both may be required to make

the system more reliable.

9. CONCLUSION

The objective of this paper is to implement Dempster-Shafer Theory of Evidence

(DSTE) in the presence of mixed uncertainty to the system reliability and performance

assessment of complex engineering systems through the use of Quantification of Margins

and Uncertainties (QMU) methodology. Specifically, uncertainty quantification (UQ) has

been used as a tool of certification to decide whether a system is likely to perform safely

and reliably within design specifications. Importance and contribution of the current study

lies in creation of a novel QMU framework in terms of Dempster-Shafer structures (belief

& plausibility) which can be used for performance assessment of a system under uncer-

tainty. Specifically, DSTE is used for uncertainty quantification to address the possibility

of multiple sources and intervals for epistemic uncertainty characterization. Furthermore,

the DSTE is utilized for mixed uncertainty quantification by discretizing the aleatory prob-

ability distributions into optimum sets of intervals and treating them as well-characterized

epistemic variables. In addition, the response quantities of interest for design performance

and boundaries are represented with stochastic surrogates based on Non-intrusive Poly-

nomial Chaos (NIPC) to reduce the computational expense of implementing DSTE for

uncertainty quantification of high-fidelity complex system models.

The first QMU model problem consisted of a complex system of nonlinear functions

which are typically used in numerical optimization studies. The QMU methodology using

the evidence theory is demonstrated on the coupled analytical system of equations, which

have shared inputs with their respective performance boundaries. In order to demonstrate
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the usage of evidence theory in propagating mixed uncertainties, different combinations of

performance metrics and limits were adopted in the QMU analysis.

The second model problem was multi-disciplinary analysis of a high speed civil

transport for the demonstration of the QMU methodology for complex engineering systems

in aerospace applications. The drag coefficient and the Range performance were studied as

the output quantities which are considered critical during an aircraft design process. Sec-

ond order NIPC expansions were used as surrogates for both performance metrics, which

proved to be computationally efficient in quantifying the margins and uncertainties using

evidence theory.

Overall, the proposed approach outlined a computationally efficient framework for

quantifying margins and uncertainties with DSTE and stochastic expansions. Two model

problems were utilized to demonstrate the QMU methodology, which included various

types of uncertainty representations for the performance metrics and limits. The results

indicate the potential of the proposed QMU approach for the evaluation of safety and reli-

ability of complex engineering systems in terms of efficiency and effectiveness.
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ABSTRACT

The objective of this paper is to present a robust optimization algorithm for computa-

tionally efficient airfoil design under mixed (inherent and epistemic) uncertainty using a

multi-fidelity approach. This algorithm exploits stochastic expansions derived from the

Non-Intrusive Polynomial Chaos (NIPC) technique to create surrogate models utilized in

the optimization process. A combined NIPC expansion approach is used, where both the

design and the mixed uncertain parameters are the independent variables of the surrogate

model. To reduce the computational cost, the high-fidelity Computational Fluid Dynamics

(CFD) model is replaced by a suitably corrected low-fidelity one, the latter being evaluated

using the same CFD solver but with a coarser mesh. The model correction is implemented

to the low-fidelity CFD solutions utilized for the construction of stochastic surrogate by

using multi-point Output Space Mapping (OSM) technique. The proposed algorithm is

applied to the design of NACA 4-digit airfoils with four deterministic design variables

(the airfoil shape parameters and the angle of attack), one aleatory uncertain variable (the

Mach number) and one epistemic variable (β , a geometry parameter) to demonstrate robust

optimization under mixed uncertainties. In terms of computational cost, the proposed tech-

nique outperforms the conventional approach that exclusively uses the high-fidelity model
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to create the surrogates. The design cost reduces to only 34 equivalent high-fidelity model

evaluations versus 168 obtained with the conventional method.

NOMENCLATURE

n number of design variables

N number of random variables

pd deterministic state variable vector

SR support region of random input variable

np oversampling ratio

p order of polynomial chaos

ξ standard input random variable vector

p(ξ ) probability density function of ~ξ

ψ random basis function

a coefficient in polynomial chaos expansion

a∗ stochastic function

µ mean

σ standard deviation

Nt number of terms in a total-order expansion

Cl coefficient of lift

Cd coefficient of drag

M Mach number

α angle of attack in degrees

β geometry parameter in thickness distribution

formula for NACA 4-digit airfoils

Re Reynolds number
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Nh number of high-fidelity CFD simulations

N f number of low-fidelity CFD simulations

Ncost total design cost

LF low-fidelity

HF high-fidelity

CLF corrected low-fidelity

1. INTRODUCTION

Robust Design is a design methodology for improving the quality of a product by

minimizing the impact of uncertainties on the product performance. The objective of robust

design is to optimize the mean performance while minimizing the variation of performance

caused by various uncertainties. In the context of aerodynamic shape optimization, robust

design implies that the performance (such as coefficient of drag, the lift-to-drag ratio, etc.)

of the final configuration should be insensitive to the uncertainties in the operating con-

ditions (e.g., free-stream Mach number) and the geometry (e.g., manufacturing uncertain-

ties). An important component of robust design is Uncertainty Quantification (UQ), which

may significantly increase the computational expense of the design process compared to

the computational effort of deterministic optimization. This is particularly the case when

high-fidelity analysis tools are involved in the design process in order to ensure sufficient

accuracy. Therefore, it is important to develop and implement computationally efficient

robust design methodologies while keeping the desired accuracy level in the optimization

process.
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Two types of input uncertainty should be considered in robust aerodynamic design

studies: inherent (aleatory) uncertainty and epistemic uncertainty [1, 2]. Aleatory uncer-

tainty, which is probabilistic and irreducible, describes the inherent variation associated

with the physical system (e.g., the operating conditions). Epistemic uncertainty[3] is re-

ducible and described as lack of knowledge or information in any phase or operation of

a design process (e.g., turbulence models used in CFD simulations). These two types of

uncertainties usually co-exist (e.g., mixed uncertainties) in real-world systems. In mathe-

matical terms, aleatory uncertainties are characterized by probability density functions with

sufficient information on the type of the distribution. In order to characterize epistemic un-

certainty, probabilistic methods are not suitable due to insufficient information about the

uncertainty. One possible approach to model the epistemic uncertainty is to characterize it

with intervals. For mixed uncertainty quantification, formulations that combine probabilis-

tic methods and interval approach are usually sought. The aerodynamic response (e.g., the

drag coefficient) should be in the form of the combination of probability distribution due

to the effect of aleatory input uncertainty and interval distribution which indicate the effect

of epistemic uncertainty.

This paper attempts to further reduce the computational cost of the robust design

procedure introduced in Zhang et al.[4] and builds upon the recent study by the authors[5],

which focused on robust optimization under inherent uncertainties only. The proposed ap-

proach is based on replacing the computationally expensive High-Fidelity (HF) CFD model

by its inexpensive representation referred to as the Corrected Low-Fidelity (CLF) model.

The Low-Fidelity (LF) model is evaluated using the same CFD solver but with a coarser

mesh and relaxed convergence criteria. The misalignment between LF and HF models is

reduced by means of Output Space Mapping (OSM) [6, 7, 8, 9]. The OSM technique has

traditionally been used as an auxiliary response correction method in the context of design
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optimization, with the LF model being corrected at each iteration using the HF model data

accumulated during the process. In the proposed approach, the correction can only be per-

formed once, for the points used for constructing the stochastic surrogate model based on

Non-Intrusive Polynomial Chaos (NIPC) technique. Moreover, the CLF model has to be

aligned sufficiently well with the HF model in the entire design space to be considered in

the construction of the surrogate model subsequently utilized in the optimization process.

Such an alignment is obtained by using design-variable-dependent multiplicative OSM set

up with sufficient number of HF training samples.

In the next section, different robustness measures and objective function formula-

tion for robust design depending on the input uncertainty type are given. The UQ approach,

which is the point-collocation NIPC based stochastic expansions is described in Section 3.

Further, the multi-fidelity approach involving the construction of the CLF model based on

the HF model using OSM strategy is explained in Section 4. To demonstrate the multi-

fidelity robust optimization methodology under mixed uncertainties, a CFD example is

presented in Section 5 with Mach number considered as aleatory uncertainty and β (geom-

etry) parameter as the epistemic uncertainty. The NACA airfoil shape parameters and the

angle of attack are treated as deterministic design variables. Section 6 concludes the paper

with important interpretations of the results obtained.

2. PROBLEM FORMULATION FOR ROBUST OPTIMIZATION

2.1. Deterministic Design. In general, the goal of Aerodynamic Shape Optimiza-

tion (ASO) is to find a shape such that one or more performance metrics are optimized for

a given operating condition(s), while at the same time fulfilling a set of constraints. Mathe-

matically, the ASO problem consists of determining values of design variables x∈ Rn, such

that the objective function J : Rn→ R is minimized,
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min J(x,Q), (1.58)

subject to constraint equations,

g(x,Q)≤ 0, (1.59)

where Q denotes the vector of conservative flow variables, and g : Rn→Rm is a vector func-

tion containing m constraints. The flow variables must satisfy the governing flow equations,

R,

R(x,Q) = 0. (1.60)

The functions J and g are assumed to be continuous and differentiable over the design space

of interest.

The problem formulation (1.58)-(1.60) is general and can be applied to different

design approaches. The one-point and one-objective approach is widely adopted, where

the aerodynamic surface is optimized for one operating condition with a single merit func-

tion. The most common example for this type of optimization is the lift-constrained drag

minimization problem. Here, the goal is to improve the aerodynamic efficiency while main-

taining a required lift. The objective function is set as

J =Cd, (1.61)

where Cd is the drag coefficient and the lift constraint is

g =C∗l −Cl ≤ 0, (1.62)



116

Figure 1.1. Robustness estimation of response in presence of aleatory uncertainties.

where Cl is the lift coefficient obtained for design x, and C∗l is the required lift coefficient.

Parameters of the operating condition include the Mach number, M∞, the Reynolds number,

Re, and the angle of attack, α (which can be set as a design variable or it can be considered

a state variable that is adjusted during the flow solution to satisfy (1.60)). Formally, one

can say that the lift and drag coefficients are a function of the design variables, x, and the

state variables, p = [M∞ Re α]T , i.e., Cd =Cd(x,p) and Cl =Cl(x,p).

2.2. Robust Design with Aleatory Uncertainty. Aleatory uncertainty, which is

probabilistic and irreducible, describes the inherent variation associated with the physical

system (e.g., the operating conditions). Aleatory uncertainties are mathematically charac-

terized by probability density functions when there is enough information on the type of

the distribution. In this case, the robustness measure can be based on the mean and the

variance (or standard deviation) of the model response. Figure 1.1 shows the propaga-

tion of input aleatory uncertainties through the simulation code and the uncertainty of the

response, R = f (Sal).
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Based on this, the objective for robust aerodynamic design optimization under pure

aleatory uncertainty can be formulated as

J = µCd +σCd , (1.63)

where µCd is the mean drag coefficient and σCd is the standard deviation. The lift constraint

can be formulated as

g =C∗l −µCl ≤ 0, (1.64)

where µCl is the mean lift coefficient.

In the above formulation, the drag and lift coefficients are a function of the deter-

ministic design variable vector x, the deterministic state variable vector pd and the aleatory

input uncertainty vector Sal , i.e., Cd =Cd(x,pd,Sal) and Cl =Cl(x,pd,Sal). The input un-

certainty vector is defined as Sal = (Sal1,Sal2, ...SalNal
) where Nal is the number of aleatory

uncertainties. Note that, in this case, input uncertainty vector may also contain uncertain

state variables such as the free-stream Mach number.

For probabilistic output uncertainty, the mean can be calculated by

µCd = E(Cd) =
∫

SR
Cd(x,pd,Sal)P(Sal)dSal, (1.65)

and the variance as

σ
2
Cd

= E[(Cd−µCd)
2] =

∫
SR
(Cd(x,pd,Sal)−µCd)

2P(Sal)dSal, (1.66)

where P(Sal) represents the joint probability function (PDF) of Sal and SR stands for the

support region of Sal .
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Figure 1.2. Robustness estimation of response in presence of mixed uncertainties.

2.3. Robust Design with Mixed Uncertainty. In real-world engineering systems,

both aleatory and epistemic uncertainties exist - called mixed uncertainty. Epistemic un-

certainty is reducible and described as lack of knowledge or information in any phase or

operation of a design process [3]. For the characterization of epistemic uncertainty, the

probabilistic methods are not suitable due to the lack of information about the uncertainty.

One approach to model the epistemic uncertainty is to characterize it with intervals. For

mixed uncertainty quantification, formulations that combine probabilistic methods and in-

terval approach are sought. When mixed uncertainties exist as input variables, the re-

sponse R becomes a function of both (aleatory and epistemic) uncertainties, R = f (Sal,Se)

as shown in Figure 1.2.

The aerodynamic response should be in form of a combination of the probabil-

ity distribution due to the effect of aleatory input uncertainty and an interval distribution

indicating the effect of epistemic uncertainty. In this case, Cd = Cd(x,pd,Sal,Se) and

Cl =Cl(x,pd,Sal,Se), where Se = (Se1 ,Se2, ...,SeNe
) are the epistemic uncertainties and Ne

represents the number of epistemic input uncertainties. The uncertainty of Cd will consist

of infinite number of probability distributions each due to the aleatory input uncertainties
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at a fixed value of epistemic input uncertainty vector. The intervals at each probability

level reflect the effect of epistemic uncertainties on Cd . For the mixed uncertainty case, one

approach for the formulation of the objective function can be given as

J = w1µCd
+w2σCd +w3δσCd , (1.67)

where wi (i = 1,2,3) are user-assigned weights, µCd
denotes mean value of Cd , σCd rep-

resents the average standard deviation in Cd , and δσCd denotes the difference between

maximum and minimum standard deviations in Cd .

The mean value of Cd will be calculated by

µCd
=

1
2
(µmax

Cd
+µ

min
Cd

), (1.68)

where µmax
Cd

and µmin
Cd

are the maximum and minimum means of Cd , respectively. The

average value of standard deviation of Cd is obtained by

σCd =
1
2
(σmax

Cd
+σ

min
Cd

), (1.69)

where σmax
Cd

and σmin
Cd

are the maximum and minimum standard deviations of Cd , respec-

tively. The difference between the standard deviations of Cd are given by

δσCd = σ
max
Cd
−σ

min
Cd

, (1.70)

The lift constraint can be formulated as

g =C∗l −µCl
≤ 0. (1.71)

In this study, the average standard deviation σCd is used as a robustness measure
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Figure 1.3. Flow chart of robust optimization process under mixed uncertainties with com-
bined stochastic expansions.

for aleatory input uncertainties Sal , whereas the difference in standard deviations δσCd

is utilized as the robustness measure due to epistemic uncertainties Se. Both measures

will be minimized along with the average Cd using a weighted objective function as given

by Eq. 1.67. The flowchart of robust optimization under mixed uncertainties based on

combined stochastic expansions is shown in Figure 1.3.
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3. STOCHASTIC EXPANSIONS FOR SURROGATE MODELING

For the robust optimization methodology described in this paper, stochastic ex-

pansions obtained with the NIPC technique is used due to its computational efficiency

and accuracy in uncertainty propagation as shown in the previous studies [10, 11]. The

stochastic expansions are used as response surfaces (i.e., surrogates of the response) in the

optimization procedure and are used to approximate the stochastic objective function and

the constraint functions. In the robust optimization problems, the point-collocation NIPC

approach has been used as explained below.

3.1. Point-Collocation Non-Intrusive Polynomial Chaos. The point-collocation

NIPC is derived from polynomial chaos theory, which is based on the spectral represen-

tation of the uncertainty. An important aspect of spectral representation of uncertainty is

that one may decompose a random function (or variable) into separable deterministic and

stochastic components. For example, for any response variable (i.e., R) in a stochastic

optimization problem, one can write:

R(~ξ )≈
P

∑
j=0

a jΨ j(~ξ ), (1.72)

where a j is the coefficient of each term in the expansion and Ψ j(~ξ ) is the random basis

function corresponding to the jth mode and is a function of n-dimensional random variable

vector ~ξ = (ξ1, ...,ξn), which has a specific probability distribution. In theory, the poly-

nomial chaos expansion given by Equation 1.72 should include infinite number of terms,

however in practice a discrete sum is taken over a number of output modes. For a total

order expansion, the number of output modes is given by,

Nt = P+1 =
(N + p)!

N!p!
, (1.73)
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which is a function of the order of polynomial chaos (p) and the number of random di-

mensions (n). The basis function ideally takes the form of multi-dimensional Hermite

Polynomial to span the N-dimensional random space when the input uncertainty is Gaus-

sian (unbounded), which was first used by Wiener [12] in his original work of polynomial

chaos. To extend the application of the polynomial chaos theory to the propagation of

continuous non-normal input uncertainty distributions, Xiu and Karniadakis [13] used a

set of polynomials known as the Askey scheme to obtain the "Wiener-Askey Generalized

Polynomial Chaos". The Legendre and Laguerre polynomials, which are among the poly-

nomials included in the Askey scheme are optimal basis functions for bounded (uniform)

and semi-bounded (exponential) input uncertainty distributions, respectively in terms of the

convergence of the statistics.

An arbitrary polynomial chaos expansion proposed by Witeveen et al. [14] can han-

dle arbitrary distributions of input parameters with limited statistical moments. According

to the authors, the Gram-Schmidt orthogonalization algorithm can be used to compute an

optimal orthogonal polynomial chaos basis for any type of input distribution. The mul-

tivariate basis functions can be obtained from the product of univariate orthogonal poly-

nomials (See Eldred et al. [15]). If the probability distribution of each random variable is

different, then the optimal multivariate basis functions can be again obtained by the product

of univariate orthogonal polynomials employing the optimal univariate polynomial at each

random dimension. This approach requires that the input uncertainties are independent

standard random variables, which also allows the calculation of the multivariate weight

functions by the product of univariate weight functions associated with the probability dis-

tribution at each random dimension. The detailed information on polynomial chaos expan-

sions can be found in Walters and Huyse, [16] Najm, [17] and Hosder and Walters. [18]
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To model the uncertainty propagation in computational simulations via polynomial

chaos with the intrusive approach, all dependent variables and random parameters in the

governing equations are replaced with their polynomial chaos expansions. Taking the inner

product of the equations, (or projecting each equation onto jth basis) yields P+ 1 times

the number of deterministic equations which can be solved by the same numerical meth-

ods applied to the original deterministic system. Although straightforward in theory, an

intrusive formulation for complex problems can be relatively difficult, expensive, and time

consuming to implement. To overcome such inconveniences associated with the intrusive

approach, non-intrusive polynomial chaos formulations have been considered for uncer-

tainty propagation.

The point-collocation NIPC method starts with replacing the uncertain variables of

interest with their polynomial expansions given by Equation 1.72. Then, Nt = P+1 vectors

(~ξ j = {ξ1,ξ2, ...,ξN} j , j = 0,1, ...,P) are chosen in random space for a given PC expansion

with P+1 modes and the deterministic code is evaluated at these points. With the left hand

side of Equation 1.72 known from the solutions of deterministic evaluations at the chosen

random points, a linear system of equations can be obtained:



R(
−→
ξ0)

R(
−→
ξ1)

...

R(
−→
ξP)


=



Ψ0(
−→
ξ0) Ψ1(

−→
ξ0) · · · ΨP(

−→
ξ0)

Ψ0(
−→
ξ1) Ψ1(

−→
ξ1) · · · ΨP(

−→
ξ1)

...
... . . . ...

Ψ0(
−→
ξP) Ψ1(

−→
ξP) · · · ΨP(

−→
ξP)





a0

a1

...

a0


(1.74)

The coefficients (a j) of the stochastic expansion are obtained by solving the linear

system of equations given above. The solution of the linear problem given by Equation 1.74

requires Nt deterministic function evaluations. If more than Nt samples are chosen, then
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the over-determined system of equations can be solved using the Least Squares approach.

Hosder et al. [19] investigated this option on model stochastic problems by increasing the

number of collocation points in a systematic way through the introduction of oversampling

ratio (np) defined as the number of samples divided by Nt . Based on the study on different

model problems, they suggested an effective np of 2.0. The point-collocation NIPC has the

advantage of flexibility on the selection of collocation points. With the proper selection of

collocation points, it has been shown that point-collocation NIPC can produce highly accu-

rate stochastic response surfaces with computational efficiency [19]. In the model problems

considered in this study, Latin Hypercube sampling is implemented with an oversampling

ratio of 2. The number of response evaluations will be np×Nt when the point-collocation

NIPC is used to construct the stochastic response surface.

3.2. Combined NIPC Expansion Approach. In this work, a combined NIPC ex-

pansion approach is used to create the stochastic surrogate model, which will be a function

of both the design and the uncertain variables. With the introduction of design variables

x, parameters with epistemic uncertainty Se, and parameters with aleatory uncertainty Sal ,

a combined stochastic expansion of R (i.e., Cd or Cl) based on polynomial chaos can be

written as

R(Sal(ξ sal),Se(ξ se),x(ξ d)) =
P

∑
j=0

a jΨ j(ξ sal,ξ se,ξ d). (1.75)

In this approach, multi-dimensional basis functions Ψ j are derived from the tensor

product of one-dimensional optimum basis functions for the aleatory uncertain variables

Sal selected based on the input probability distributions (e.g., Hermite polynomials for

normal uncertain variables), the Legendre polynomials (basis) for the epistemic uncertainty

variables, and the Legendre polynomials (basis) for the deterministic design variables. The

selection of the Legendre polynomials for the epistemic uncertainties & the design variables
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are due to their bounded nature (xl ≤ x ≤ xu and Se,l ≤ Se ≤ Se,u ) and should not be

interpreted as a probability assignment to these variables.

In Eq. (1.75), ξ sal corresponds to a standard aleatory random variable vector,

whereas ξ se and ξ d are the standard variables in interval [-1,1], which are mapped from the

associated intervals of Se and x via

ξ se =

(
Se− (

Se,l +Se,u

2
)

)
/

(
Se,u−Se,l

2

)
, (1.76)

ξd =

(
x− (

xl +xu

2
)

)
/

(
xu−xl

2

)
. (1.77)

In general, using the combined stochastic expansion and polynomial chaos theory,

the mean and variance of R can be calculated by

µR(ξ se,ξ d) =
P

∑
j=0

a j
〈
Ψ j(ξ sal,ξ se,ξ d)

〉
ξ sal

, (1.78)

σ
2
R(ξ se,ξ d) =

{
P

∑
j=0

P

∑
k=0

a jak
〈
Ψ j (ξ sal,ξ se,ξ d)Ψk (ξ sal,ξ se,ξ d)

〉
ξ sal

}
−µ

2
R(ξ se,ξ d),

(1.79)

where the inner product expression < .. > used in the above equations represent

〈 f (ξ )g(ξ )〉
ξ
=
∫

SR
f (ξ )g(ξ )p(ξ )dξ , (1.80)

written in terms of two generic functions f (ξ ) and g(ξ ) in the support region SR of ξ with

p(ξ ) being the weight function. Note that when the design variables are not considered as

uncertain (as the case studied in this paper), the surrogates need not to be recreated at every
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optimization iteration. In this case one can directly compute the output statistics (mean,

standard deviation and variance) by using a single stochastic response surface created for

the response quantity of interest (i.e., Cd and Cl)

4. MULTI-FIDELITY MODELING APPROACH

The robust design formulations described in Section 2 are desired to be obtained

using a HF CFD model. However, accurate CFD models are computationally expensive

and if the design space is large, the computational cost can be prohibitive. Therefore, to

reduce the computational effort, a multi-fidelity approach is considered. In this process, the

HF CFD model is replaced by a CLF model. In the following sections, the HF CFD model,

LF CFD model and the CLF model construction using space mapping method is described.

4.1. High-fidelity CFD Model. The poposed design approach is demonstrated for

the drag minimization of NACA 4-digit airfoils described with three geometric design vari-

ables over the range of uncertainties at transonic flow conditions. The deterministic CFD

simulations were performed with the FLUENT [20] code to solve steady, 2-D, compress-

ible, turbulent RANS equations. The fluid medium is air, assumed to be an ideal gas, with

the laminar dynamic viscosity (µ) described by Sutherland’s formula [21].

For modeling the turbulent kinematic eddy viscosity (νt), the turbulence model by

Spalart and Allmaras [22] is used. The Spalart-Allmaras model, designed specifically for

aerodynamic wall-bounded flows, is a one-equation model that solves a single conservation

partial differential equation for the turbulent viscosity. This conservation equation contains

convective and diffusive transport terms, as well as expressions for the production and

dissipation of νt . The Spalart-Allmaras model is economical and accurate for attached

wall-bounded flows, and flows with mild separation and recirculation. The flow solver and

the domain used for the analsysi is as explained below.
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Figure 1.4. A typical airfoil section and a computational grid: (a) Airfoil section is shown.
The free-stream flow is at Mach number M∞ and at an angle of attack α relative to the
chord axis. (b) Example computational grid.

The solution domain boundaries are placed at 25 chord lengths in front, below and

above the airfoil with front to wake ratio of one. An example computational grid along

with a typical airfoil section is shown in Figure 1.4. A hyperbolic grid generator [23] is

used for the mesh generation. The non-dimensional normal distance (y+) from the wall to

the first grid point is roughly one. The free-stream Mach number, angle of attack, static

pressure, and the turbulent viscosity ratio are prescribed at the farfield boundary. A grid

convergence study is performed using the NACA 2412 airfoil at Mach number M = 0.75

and angle of attack α = 1◦. The study revealed that a grid level of approximately 510,000

cells are needed for mesh convergence, which is treated as the HF model for the current

study.

The flow solver utilizes implicit density-based formulation and the fluxes are cal-

culated by an upwind-biased second-order spatially accurate Roe flux scheme. Asymptotic

convergence to a steady state solution is obtained for each case. In order to gradually
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Table 1.1. Mesh size nomenclature and discretization error results for Cd .

Grid level Mesh size Cells DE (%)
1 99×20 1980 28.83
2 199×40 7960 12.23
3 399×80 31920 5.49
4 799×160 127840 1.75
5 1599×320 511680 0.56

ramp up the Courant number and accelerate convergence, automatic solution steering is

employed. Full multi-grid initialization is used to accelerate the iterative convergence. The

iterative convergence of each solution is examined by monitoring the overall residuals,

which is the sum (over all the cells in the computational domain) of the L2 norm of all

the governing equations solved in each cell. In addition to this, the lift and drag forces

are monitored for convergence. The solution convergence criterion for the CFD runs is a

reduction in the residuals by six orders of magnitude.

4.2. Low-fidelity CFD Model. The LF CFD model is constructed with the same

solution and physical modeling parameters as the HF model, but with a coarser compu-

tational mesh. In the determination of the LF model, 5 grid levels (Table 1.1) have been

studied. The grid levels affect the magnitude of the discretization error as it determines

the spatial resolution. Richardson extrapolation [24] technique has been used to estimate

the magnitude of the discretization error for Cd at each grid level and the results are sum-

marized in Figure 1.5. In this work, two case studies are presented in terms of LF CFD

models. Grid levels 2 and 3 solutions are treated as the low-fidelity models and the results

are compared with the HF model, after correction.

The computational resources for all CFD simulations consisted of 3 processors with

a CPU speed of 2.66 GHz. The ratio of simulation times (in seconds) of the high- and
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Figure 1.5. Computational cost comparison for different grid levels (left Y-axis) and grid
convergence in terms of Discretization Error (DE) for Cd (right Y-axis).

low-fidelity models (for grid level 2 and 3) is around 14 and 9, respectively. Figure 1.5 also

compares the computational cost of the high- and low-fidelity models in terms of simulation

time (in seconds) scaled with respect to the HF model.

4.3. Corrected Low-fidelity Model Construction Using Output Space Map-

ping. To reduce the computational cost of the design process, the HF CFD model is re-

placed by a suitably corrected low-fidelity one, the latter being evaluated using the same

CFD solver but with a coarser mesh. In specific, the model correction is implemented to the

LF CFD sample points (solutions) utilized for the construction of stochastic surrogate based

on NIPC by using Output Space Mapping (OSM) technique. The OSM correction can be

obtained without costly parameter extraction procedure and ensures that the low-fidelity

model represents the high-fidelity one with sufficient accuracy. The correction procedure

can be outlined as follows: Define vector xc = [x Sal Se]
T and let the HF model response be
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h(xc) = [Cl.h(xc)Cd.h(xc)]
T , where Cl.h and Cd.h are (high-fidelity CFD-simulated) lift and

drag coefficients. Similarly, the LF model response is f (xc) = [Cl. f (xc) Cd. f (xc)]
T . The

CLF model is denoted as c(xc) = [Cl.c(xc)Cd.c(xc)]
T .

In space mapping, the corrected model is a composition of the low-fidelity model

and simple, usually linear, transformations (or mappings)[6]. In this work, the correction

terms are directly applied to the response components Cl. f (xc) and Cd. f (xc) of the low-

fidelity model. The corrected model is defined as:

c(xc) = A(xc)◦ f (xc)+D = [al(xc)Cl. f (xc)+dl ad(xc)Cd. f (xc)+dd]
T , (1.81)

where ◦ denotes a component-wise multiplication. The multiplicative correction term is

design-variable-dependent and takes the form of

A(xc) = [al.0 +[al.1 al.2 . . . al.n] · (xc−xc
0)ad.0 +[ad.1 ad.2 . . . ad.n] · (xc−xc

0)]T , (1.82)

where xc
0 is the center of the design space. Response correction parameters A and D are

obtained as

[A,D] = argmin
A,D

K

∑
k=1
||h(xc

k)− (A(xc
k)◦ f (xc

k)+D)||2, (1.83)

i.e., the response scaling is supposed to (globally) improve the matching for all training

points xc
k, k = 1, . . . ,K. 2n+1 training points (n being the number of design variables) are

chosen for correcting the LF model. The correction parameters A and D can be calculated

analytically as follows
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Fd =
[
Cd.h(xc

1) Cd.h(xc
2) · · · Cd.h(xc

K)
]T

, (1.88)

which is a least-square optimal solution to the linear regression problems Cl [al.0 al.1 . . .

al.n dl]
T = Fl and Cd [ad.0 ad.1 . . . ad.n dd]

T = Fd , equivalent to (1.83). An important point
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to note is that the matrices CT
l Cl and CT

d Cd are non-singular for K > n+ 1, which is the

case for the choice of the training set in this study.

5. DEMONSTRATION EXAMPLE

In this section, the multi-fidelity robust design approach is demonstrated on an air-

foil shape optimization problem under mixed uncertainty. In particular, the accuracy and

optimization cost of the proposed approach is compared with the cost of using directly the

high-fidelity CFD model for creating stochastic surrogate.

5.1. Formulation and Setup. The robust airfoil optimization under mixed uncer-

tainty is formulated as

min w1µCd
+w2σCd +w3δσCd , (1.89)

subject to C∗l −µCl
≤ 0,

0.005≤ m≤ 0.05,

0.3≤ p≤ 0.7,

0.08≤ t/c≤ 0.14,

0.5≤ α ≤ 1.5,

where the profile drag coefficient (Cd) and the lift coefficient (Cl) are a function of deter-

ministic design variable vector x = {m, p, t/c,α}, aleatory input uncertainty vector Sal and

the epistemic input uncertainty vector Se. In particular, the NACA 4-digit parameterization

method is used where the airfoil shape is defined by three parameters: m (the maximum
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ordinate of the mean camber line as a fraction of chord), p (the chordwise position of the

maximum ordinate as a fraction of chord) and t/c (thickness-to-chord ratio). The NACA

4-digit parameterization is explained in detail by Abbott and Doenhoff [25].

The free-stream Mach number is treated as a normally distributed aleatory (inher-

ent) input uncertainty (Sal = {M}) with a mean value µ = 0.75 and standard deviation

σ = 0.015. The equation for a modified symmetrical 4-digit NACA airfoil is given by

Eq. 1.90:

yt =
t
β
[0.2969

√
x
c
−0.1260

x
c
−0.3516

x
c

2
+0.2843

x
c

3
−0.1036

x
c

4
]. (1.90)

The geometry parameter β (default value of 0.2 in the nominal equation) is modeled

as an epistemic input uncertainty (i.e., Se = {β}) with bounds [0.17, 0.23]. The range of β

is chosen to mimic the epistemic uncertainty in the thickness distribution formula defining

the shape of the airfoil. Figure 1.6 shows the pressure distributions of NACA 2412 airfoil at

M = 0.75 and α = 1◦ for two β values corresponding to the limits of the epistemic interval.

It can be seen that the β parameter has considerable effect on the pressure distribu-

tion including the shock location. In the optimization formulation, the mean lift coefficient

limit is set to C∗l = 0.55. The formulation also includes geometric constraints for the profile

shape, which bound the maximum camber, maximum camber location and the thickness.

In this study, equal weights (w1,w2,w3 = 1) are assigned to each term in the objective

function for demonstration purposes, however one can choose different values depending

on the emphasis on each term. Besides the selection of different weights, it is also possible

to normalize each term in Equation 1.67 with the statistics obtained from a reference design

(e.g., initial design) to control the dominance of each term in the objective function.
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Figure 1.6. Pressure distribution for NACA 2412 at M = 0.75, α = 1◦

5.2. Stochastic Response Surface (Surrogate Model). The robust optimization

approach is based on stochastic expansions derived from the NIPC technique, which are

used as surrogates in the optimization process. The combined expansion approach (see

Section 3.2) used in this study makes the optimization process very efficient, since a single

response surface is created as a function of both design variables and the uncertain vari-

ables. It should be noted that the combined expansion approach will be ideal for problems

with fewer number of design and uncertain variables (e.g., Nd ≤ 4 and Np≤ 2). On the other

hand, in optimization problems with large number of design variables, one can choose an

alternative approach which is based on the expansion of polynomial chaos surface only on

the uncertain (aleatory and epistemic) variables. A separate response surface should be

created at each iteration, which will increase the computational cost, however the accuracy

of the response surface will increases as the number of expansion variables decrease.
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Figure 1.7. NIPC Response surface accuracy at 20 LH sample points within the domain

For this particular study, a 3rd order polynomial chaos expansion is implemented

with an oversampling ratio of 2, which required a total number of 168 CFD evaluations

to create the response surface. In addition to the high-fidelity CFD model (grid level 5,

Section 4.1), the stochastic response surfaces were also created with two low-fidelity mod-

els (grid level 2 and grid level 3, Section 4.2) and the corrected low-fidelity models (Sec-

tion 4.3) to evaluate the results of the multi-fidelity approach. In order to check the accuracy

of each response surface, the coefficient of drag is compared to that of CFD simulations at

the same fidelity level at 20 Latin Hypercube (LH) samples chosen in the design and un-

certainty space. Figure 1.7 demonstrates the accuracy of the surrogate model created with

the high-fidelity CFD model (i.e., grid level 5) with a Root Mean Square Percentage Error

(RMSPE) of 4.94% in Cd values, evaluated using Eqs. 1.91 and 1.92.
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Percentage Error (PE) =
(CCFD

d −CNIPC
d )

CCFD
d

×100, (1.91)

Root Mean Square PE =

√√√√√nchk
∑

i=1
PE2

i

nchk
, (1.92)

where nchk represents the number of check points which is 20 in this case.

After the creation of stochastic response surfaces, the robust optimization is per-

formed with the procedure described in Section 2.3 and outlined in Figure 1.3. For the

non-linear constraint optimization, sequential least squares quadratic programming algo-

rithm is implemented.

5.3. Optimization Results & Discussion. The objective of the optimization for-

mulation is to reduce the average of the mean (µCd
), average standard deviation (σCd ) and

the difference in standard deviation of the drag coefficient (δσCd ) simultaneously in order

to obtain an airfoil shape with minimum drag that is least sensitive to the change in Mach

number M and the β parameter over the uncertainty range specified for each variable. Be-

sides the geometric constraints on design variables, the optimization is performed such that

the mean lift coefficient is greater than or equal to 0.55.

5.3.1. Accuracy of the corrected low-fidelity model. To demonstrate the multi-

fidelity approach, the robust optimization is performed on the surrogates created by the

following two CLF models with the OSM technique:

• CLF (grid level 2): OSM applied to grid level 2 as the LF model

• CLF (grid level 3): OSM applied to grid level 3 as the LF model

The stochastic response surfaces for drag and lift coefficients are created for the HF

CFD model, LF CFD models and the CLF responses (i.e., CLF grid level 2 and CLF grid
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Table 1.2. Optimization results using the stochastic surrogates created with the low-fidelity
(LF), high-fidelity (HF) and the corrected low-fidelity (CLF) models, GL: grid level

Variable LF (GL 2) LF (GL 3) CLF (GL 2) CLF (GL 3) HF
m 0.0189 0.0198 0.0193 0.0196 0.0195
p 0.7 0.7 0.7 0.7 0.7

t/c 0.08 0.08 0.08 0.08 0.08
α 0.5 0.5 0.5 0.5 0.5

µCl
0.55 0.55 0.55 0.5499 0.55

µCd
78 69 71.17 67.42 66.618

σCd 12.6 12.9 17.26 14.99 13.55
δσCd 10.7 10.5 13.301 9.268 9.523
N f 168 168 181 181 0
Nh 0 0 13 13 168

Ncost 12 19 26 34 168

level 3). The optimization was performed starting with an initial airfoil geometry of NACA

2412. As can be seen from Table 1.2, the optimization runs converged to similar optimum

airfoil shapes in terms of location of maximum camber (p = 0.7, the design variable upper

bound) and the thickness (t/c = 0.08, the design variable lower bound). The maximum

camber slightly varies for the LF and CLF models as compared to the HF model. One

of the reasons for similar designs using a low-fidelity model is that the flow field around

the optimal airfoil shape does not include complex flow features such as strong shocks

and shock induced separation over the range of uncertain parameters, making it possible

to capture the flow behavior using a lower grid resolution. Another reason is the relatively

low number of design variables (i.e., shape parametrization variables) defining the NACA

4-digit airfoil, which allow only a limited number of designs to evaluate.

Although the optimized designs are comparatively similar, the difference can be

attributed to the LF and HF models in terms of accuracy or convergence of statistics (for

e.g., µCd
,σCd etc.). Figure 1.8(a) provides a summary of results for the average of the mean
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(a) (b)

Figure 1.8. (a) Average mean Cd for varying target lift coefficients, C∗l . (b) Probability box
for Cd at a target lift coeffcient of 0.55.

of the drag coefficient (µCd
) for the optimized design with varying target lift coefficient

values (C∗l ). It can be inferred that the convergence of the LF model for grid levels 2

and 3 are inaccurate in terms of µCd
, the most dominant term in the objective function.

The CLF model for grid level 2 does show improvement as compared to its corresponding

LF model. However, the CLF model for grid level 3 approximates the HF model with

considerable accuracy. For example, the µCd
of LF model for grid levels 2 and 3 for a

target lift coefficient of 0.4 are 74.5 and 64 drag counts, respectively. After the correction

is applied to the LF models, the optimization process converges to 65 drag counts for CLF

grid level 2 and 62 drag counts for CLF grid level 3 which exactly matches with the HF

model. This behavior is expected as the grid level 3 has 32,000 mesh cells as compared

to only 8,000 mesh cells for grid level 2, which corresponds to less noise and better grid

resolution.
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Figure 1.8(b) represents the probability box (p-box) for Cd over the uncertainty

range of the Mach number (M) and the β parameter for the optimized airfoil design at a

target lift coefficient C∗l = 0.55. Similar to previous results, the LF model for grid level

2 inaccurately represents the uncertainty in Cd as compared to the HF model. In con-

trast, the difference between the HF model and the CLF model for grid level 3 is minimal.

The 95% confidence interval (CI) for the LF model using grid level 2 and grid level 3 are

[48.90, 124.83] and [39.32, 119.80] drag counts, respectively. Similarly, the 95% CI for

CLF model using grid level 2 and grid level 3 are [33.20, 127.80] and [33.22, 120.67] drag

counts, respectively as compared to [33.94, 118.33] drag counts for the HF model. As

explained previously, the OSM correction can be obtained without costly parameter extrac-

tion procedure and ensures that the CLF model represents the HF model with sufficient

accuracy (CLF grid level 3 in this study).

In terms of computational cost, there is a large difference between the direct HF

and the multi-fidelity approach. The total computational cost (Ncost) of optimization varies

with the number of expansion variables by a power of 3 (polynomial order 3 is used in this

study), in case of using the HF model directly to create the surrogate. For the current study,

as the over-sampling ratio is 2, the total cost corresponds to np×Nt = (n3 + 6n2 + 11n+

6)/3. The total computational cost of optimization using the multi-fidelity approach is the

sum of cost of the HF model evaluations (Nh) and LF model evaluations (N f ). The HF

model is sampled Nh = 2n+ 1 times and the LF model is sampled N f = np×Nt +(2n+

1) = (n3 + 6n2 + 17n+ 9)/3. The overall cost of the multi-fidelity approach in terms of

equivalent HF model evaluations can be given by Ncost = Nh +N f /r, where r is the ratio

of HF to LF simulation times. As can be seen from Table 1.2, the total cost of using the

HF model directly is 168 HF simulations, whereas the multi-fidelity (CLF grid level 3)

approach requires 181 LF model evaluations and 13 HF model evaluations, corresponding
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Figure 1.9. The total design cost versus the number of variables (design + uncertain vari-
ables) for optimization with different models.

to a total cost of 34 equivalent HF model evaluations. Further, a comparison of the design

cost for the HF model and the CLF model is shown in Figure 1.9 up to a variable number

of 10, which may include both the design variables and the uncertain parameters.

5.3.2. Robustness for the optimized design. Figures 1.10 and 1.11 present the

optimization results (uncertainty for the optimized airfoil as compared to the initial airfoil

design) and the convergence history of average mean (µCd
, see Figure 1.10(b)), average

standard deviation (σCd , see Figure 1.11(a)) and the difference in standard deviation (δσCd ,

see Figure 1.11(b)) for for a target lift coefficient of 0.55. The results correspond to an

initial airfoil shape of NACA 2412 being optimized for robustness under mixed uncertainty.

The p-box plot in Figure 1.10(a) demonstrates the robustness of the optimized design as

compared to the initial design. The robustness of the optimized design is evaluated in the

sense that it is insensitive to the variation in input parameters.
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(a) Probability box for Cd (b) Average mean of Cd , µCd

Figure 1.10. The optimization history for Cd and the average mean of Cd under mixed
uncertainty with an initial airfoil geometry of NACA 2412 with C∗l = 0.55.

(a) Average standard deviation of Cd , σCd (b) Difference in standard deviation of Cd , δσCd

Figure 1.11. The optimization history for average standard deviation of Cd and difference in
standard deviation of Cd under mixed uncertainty with an initial airfoil geometry of NACA
2412 with C∗l = 0.55.
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In specific, along with the average mean for Cd , the average standard deviation

(robustness in terms of aleatory uncertainty) and the difference in standard deviation that

defines the width of the p-box plot (robustness in terms of epistemic uncertainty) is also

reduced simultaneously. All three quantities are reduced as compared to their starting val-

ues but the converged value is different for different models (HF and CLF). CLF using grid

level 3 is a better approximation for the HF model in terms of all three quantities. The

reduction in the average mean of Cd is the highest in terms of drag counts, followed by the

average standard deviation and the difference in standard deviation for Cd . This is due to

the fact that the average of the mean of Cd is the most dominant term in the objective func-

tion. One may also expect different convergence statistics if different weights are assigned

to each term. Alternatively, the difference in standard deviation increases as compared to

the initial design. However, an important point to note is that the Cl constraint is satisfied

at the 3rd and 4th iterations for the HF and CLF models, respectively. Thereafter, the δσCd

quantity reduces and converges to its optimum value. Figure 1.12 shows the surface plot of

the drag coefficient over the range of Mach number (M) and the β parameter.

Both CLF models ( CLF grid level 2 and 3) verify that the aerodynamic character-

istics for the optimum airfoil are better as compared to the characteristics of NACA 2412.

However, even in this case, the CLF using grid level 3 outperforms the one using grid level

2 in terms of accuracy with respect to the HF model. The results show that there is a sig-

nificant drag rise for the CLF model using grid level 2 at high Mach numbers and lower

β values. On the other hand, the drag coefficients for CLF model using grid level 3 are in

good agreement with the HF model.

5.3.3. Optimization using different initial airfoils. To ensure that the optimiza-

tion process does not converge to a local minimum, different initial airfoil designs have

been implemented. Along with NACA 2412 as the initial airfoil shape, NACA 4412 and
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(a) High-fidelity (Grid 5) (b) Corrected low-fidelity (Grid 2)

(c) High-fidelity (Grid 5) (d) Corrected low-fidelity (Grid 3)

Figure 1.12. Drag coefficient values of the optimized airfoil and NACA 2412 for varying
Mach number (M) and β parameter with grid levels 2 and 3 compared with grid level 5.
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(a) (b)

Figure 1.13. Characteristics of the initial and optimized airfoils: (a) initial and optimized
airfoil shapes, and (b) pressure coefficient plot at a lift coefficient of 0.55.

NACA 5412 have been tested as initial airfoils with the same formulation and setup for

the robust optimization as mentioned in Section 5.1. The mean lift coefficient limit is set

to C∗l = 0.55. Figure 1.13(a) compares the initial airfoil designs with the optimum airfoil

shape corresponding to CLF model using grid level 3. The pressure coefficient plot is also

compared for all the initial airfoil designs with the optimum airfoil in Figure 1.13(b).

At a free-stream Mach number M = 0.75 and β = 0.2, all the initial airfoil designs

have a strong shock on the top surface, whereas the strength of the shock is reduced con-

siderably on the optimized airfoil. This is mainly due to the increase in minimum suction

pressure and reduction in the maximum velocity on the top surface of the optimized air-

foil. The aft camber compensates for the loss in lift in the suction region. Furthermore,

the Mach and pressure contours for the optimized airfoil design are compared to NACA

2412 in Figure 1.14. The reduced shock strength and elimination of the shock induced flow

separation over the optimized airfoil geometry can also be observed in this figure.
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(a) NACA 2412: Mach contours (b) Optimized design: Mach contours

(c) NACA 2412: Pressure contours (d) Optimized design: Pressure contours

Figure 1.14. Comparison of Mach & pressure contours for NACA 2412 and the optimized
airfoil design at a lift coefficient of 0.55.
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6. CONCLUSIONS

The objective of this paper was to present a robust optimization algorithm for com-

putationally efficient airfoil design under mixed (inherent and epistemic) uncertainty using

a multi-fidelity approach. Stochastic expansions derived from the NIPC technique are used

to create surrogate models utilized in the optimization process. In this work, a combined

NIPC expansion approach is used, where both the design and the mixed uncertain parame-

ters are the independent variables of the surrogate model. In order to reduce the computa-

tional cost, the high-fidelity CFD model is replaced by a suitably corrected low-fidelity one,

the latter being evaluated using the same CFD solver but with a coarser mesh. The model

correction is implemented to the low-fidelity CFD solutions utilized for the construction of

stochastic surrogate by using a multi-point Output Space Mapping (OSM) technique.

The proposed methodology is demonstrated for the aerodynamic optimization of

NACA 4-digit airfoils at transonic flow. The objective was to reduce the mean, standard

deviation and the difference in standard deviation of the drag coefficient simultaneously to

obtain an airfoil shape with minimum drag that is least sensitive to the change in uncertain

parameters. The Mach number is treated as a normally distributed aleatory uncertain vari-

able with a mean of µ = 0.75 and standard deviation σ = 0.015. A geometric parameter

β (from the thickness distribution formula) is treated as the epistemic uncertain parameter

with a specified range of [0.17, 0.23]. The optimization is performed such that the mean

lift coefficient is greater than or equal to 0.55. Two low-fidelity models (grid levels 2 and

3 from the grid convergence study) are chosen for the robust optimization study. After the

correction is applied to both the low-fidelity models, the optimization results are compared

to those obtained with the surrogates created with the high-fidelity model directly.

The results of both optimization cases confirmed the effectiveness of the multi-

fidelity robust optimization approach with stochastic expansions. Although the optimized
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design obtained by using the low-fidelity model (without correction) was comparable to

that of the high-fidelity one, the statistics for the drag coefficient (for e.g., average mean

Cd , average mean σCd etc.) did not converge to the correct optimum. The accuracy in terms

of convergence of statistics was achieved through the use of corrected low-fidelity model.

As expected, corrected low-fidelity model based on grid level 3 performed better than the

one based on grid level 2. In terms of computational cost, the proposed multi-fidelity

technique outperforms the conventional approach that exclusively uses the high-fidelity

model to create the surrogates. The design cost reduces to only 34 equivalent high-fidelity

model evaluations (for CLF grid level 3) versus 168 for the conventional method. Overall

this study demonstrates that the computational cost of robust design is reduced significantly

by replacing the expensive high-fidelity model with a corrected low-fidelity model, without

compromising on the accuracy.
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SECTION

2. CONCLUSIONS AND FUTURE WORK

2.1. CONCLUSIONS

In the presence of aleatory and multiple sources of epistemic uncertainties in the

aerospace simulations, the DSTE approach can be implemented to carry out the statistical

inference of output quantities of interest. In this work, an approach for mixed (aleatory

and epistemic) UQ with evidence theory and stochastic expansions was presented. In spe-

cific, the aleatory variables were discretized into sets of intervals with appropriate BPA’s

according to their probability distributions. They were treated as well characterized epis-

temic variables in the DSTE analysis. Also, the Point-Collocation non-intrusive polyno-

mial chaos (NIPC) was implemented for construction of a stochastic surrogate model with

the overall objective of reducing the number of original function evaluations and achieving

computational efficiency. The mixed UQ approach and verification of the minimum num-

ber of intervals for aleatory discretization were demonstrated on two examples: (1) three-

variable variable Rosenbrock function and (2) transonic flow over a RAE 2822 airfoil. The

results of these example studies showed that the NIPC based evidence theory is capable

of capturing mixed uncertainty in case of multiple sources for epistemic variables. It was

also shown that global bound approximation for the epistemic variables, which neglect the

sources of uncertainty with beliefs can lead to overestimation of the output uncertainty.

The proposed DSTE approach was later extended to the system reliability and per-

formance assessment of complex aerospace systems under mixed uncertainties through the
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use of QMU methodology. A novel QMU framework was devised in terms of Dempster-

Shafer structures (belief & plausibility) which can be used for performance assessment of

a system under multiple types of uncertainty. In addition, the response quantities of in-

terest for design performance and boundaries were represented with stochastic surrogates

based on NIPC to reduce the computational cost of implementing DSTE for uncertainty

quantification of high-fidelity complex system models. Two model problems were utilized

to demonstrate the QMU methodology, which included various types of uncertainty repre-

sentations for the performance metrics and limits. The results indicated the potential of the

proposed QMU approach for the evaluation of safety and reliability of complex aerospace

systems in terms of efficiency and effectiveness.

Finally, a robust optimization algorithm for computationally efficient airfoil design

under mixed uncertainty using a multi-fidelity approach was presented. For this part of

the research, a combined NIPC expansion method was used, where both the design and the

mixed uncertain parameters were the independent variables of the surrogate model. In order

to reduce the computational cost, the high-fidelity CFD model was replaced by a suitably

corrected low-fidelity one, the latter being evaluated using the same CFD solver but with

a coarser mesh. The model correction was implemented to the low-fidelity CFD solutions

by using a multi-point Output Space Mapping (OSM) technique. The proposed methodol-

ogy was demonstrated for the aerodynamic optimization of NACA 4-digit airfoils in tran-

sonic flow. The objective was to reduce the mean, standard deviation and the difference

in standard deviation of the drag coefficient simultaneously to obtain an airfoil shape with

minimum drag that is least sensitive to the change in uncertain parameters. The optimiza-

tion results confirmed the effectiveness of the multi-fidelity robust optimization approach

with stochastic expansions. In terms of computational cost, the proposed multi-fidelity

technique outperformed the conventional approach that exclusively used the high-fidelity
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model to create the surrogates. Overall this study demonstrated that the computational cost

of robust design is reduced significantly by replacing the expensive high-fidelity model

with a corrected low-fidelity model, without compromising the accuracy.

2.2. FUTURE WORK

Although significant improvement has been achieved for efficient implementation

of DSTE for uncertainty quantification, there are certain areas which provide a leeway for

future work. Some of these areas are listed below:

First, different combination rules to combine the evidences from different sources

can be tested with the proposed approach. The current study explored the mixing and

averaging rule of combination for different evidences. It will be interesting to compare the

results of the example problems with different rules of combination of the evidences.

Second, the proposed approach can be applied to a large scale model problem with

more number of uncertain variables using the dimension reduction technique based on

sensitivity analysis. In the current study, no sensitivity analysis had been performed to

reduce the dimension of the problem. The sensitivity results can be used to further reduce

the computational cost of creating the surrogate response model.

Third, the proposed robust design optimization algorithm does not exploit the ev-

idence theory concept for uncertainty quantification. An evidence based robust aerospace

design optimization using the multi-fidelity approach can be applied to problems with

mixed uncertainty (aleatory & multiple sources of uncertainty).

Lastly, the design approach can be applied to aerodynamic optimization problems

under uncertainties with general shape parametrization techniques, such as B-splines, PAR-

SEC, Hicks-Henne bump functions etc. This method would be able to analyze and design

any airfoil geometry. However, since this approach involves more number of design
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(control) points, it is not feasible to use the combined expansion approach (stochastic sur-

rogate over both, design and uncertain parameters). One of the solutions is to create the

stochastic surrogate at each iteration over uncertain variables only. Although the approach

compromises on the computational cost, the accuracy of the surrogate used in the design

process increases significantly, which in turn improves the accuracy and reliability in the

optimal design.
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