

Missouri University of Science and Technology

Scholars' Mine

International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics 1991 - Second International Conference on Recent Advances in Geotechnical Earthquake Engineering & Soil Dynamics

14 Mar 1991, 10:30 am - 12:30 pm

Liquefaction Potential Prediction by Multiple Stage Multifactorial Evaluation

Limin Zhang Chengdu University of Science and Technology, China

Ting Hu Chengdu University of Science and Technology, China

Follow this and additional works at: https://scholarsmine.mst.edu/icrageesd

Part of the Geotechnical Engineering Commons

Recommended Citation

Zhang, Limin and Hu, Ting, "Liquefaction Potential Prediction by Multiple Stage Multifactorial Evaluation" (1991). *International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics.* 36.

https://scholarsmine.mst.edu/icrageesd/02icrageesd/session03/36

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

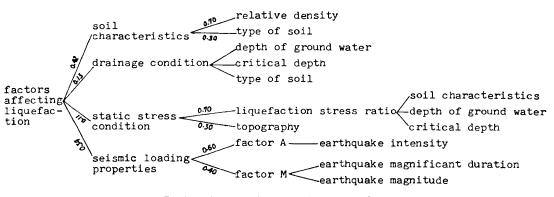
Proceedings: Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, March 11-15, 1991, St. Louis, Missouri, Paper No. 3.56

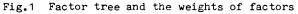
Liquefaction Potential Prediction by Multiple Stage Multifactorial Evaluation

Limin Zhang Assistant Professor, Chengdu University of Science and Technology, Chengdu, Sichuan, China Ting Hu Professor, Chengdu University of Science and Technology, Chengdu, Sichuan, China

ABSTRACT: Factors affecting liquefaction are analysed. Qualitative factors along with liquefaction itself are conceived to be of fuzzinesses the common methods cannot deal with. A new method -- the Multiple-Stage Multifactorial Evaluation is introduced to evaluate the liquefaction potential of sand which can take into account not only the factors considered by the common methods but also these gulaitative factors which otherwise cannot be considered by the explicit mathematic evaluation methods and can treat each fator according to its importance to liquefaction. Tests with the method show a higher correct evaluation rate over other methods. Concludion is drawn about the liquefaction potential of the upper lens in the ground of the Pubugou Power Station under an earthfquake of the seventh degree.

ANALYSES OF THE FACTORS AFFECTING LIQUEFACTION


Many factors affect the liquefaction potential of a sandy deposite, such as soil characteristics, drainage condition, static stress condition, and seismic loading properties. Each category of these factors can be specified by the following subfactors, as shown in the factor tree in Fig.1. Among the factors affecting liquefaction relative density, maximum acceleration, critical depth, and earthquake magnitude etc. are explicit in their concepts although the ground exploration and the earthquake monitoring may conflict with the complicated system of ground liquefaction. It is on these explicit factors that the common liquefaction evalution methods based. Other factors, such as the intensity of earthquake, the type of soil. the uniformity of soil, and the drainage condition of soil layer, on the other hand, are defined by personal experiences or common agreement. No absolute differences exist between each subdivided factor, eg., an earthquake of the seventh degree and an earthquake of the eighth degree show no absolute differences. Factors with the characteristics are called fuzzy factors which cannot be taken into account by common methods with explicit variables. Liquefaction of


soil was defined as the state at which the ratio of the pore-water pressure to the confining pressure equals an unity, ie., χ =1.0, whereas sand boiling occured when χ (1.0, which behaved as the so-called macroliquefaction. Just as the concept of "safe" and "unsafe", the likelihood of liquefaction is a concept depends on a valve value. Neglect of the complexities and the fuzzinesses of the factors will result in a lower corret evalution rate and an inaccurate description of evaluation. A new liquefaction potential evaluation method, the multiple-stage multifactorial evalution , is put forward here to handle the problems involing fuzzy factors.

MATHEMATIC MODEL

Assuming V is a variable set. P is a partition of V which divide V into n subsets.

$$\begin{array}{l}
 \stackrel{1}{U} V_{i} = V \\
 i=1 \\
 V_{i} \cap V_{j}=0 \quad i=j
\end{array}$$

The set V under partition P is $V/P = (V_u, V_{ur}, \dots, V_{ur})$, while the substage factor is $V_{1^{(2)}}(V_u, V_{ur}, \dots, V_{ur})$, i=1,2,...,n. The multifactorial evaluation of V_1 is,

$$B_i = A_i R_i = (b_{i1} b_{i2} \dots b_{in})$$

i=1, 2,n

in which, b_{R} evaluation result of V_{R} , A_{i} eweight vector of $V_{i};\ R_{i}$ evaluation matrix of $V_{i},$

$$R_{i} = \begin{pmatrix} a_{i1} & a_{i2} & \cdots & a_{ik} \end{pmatrix}$$
$$R_{i} = \begin{pmatrix} a_{i1} & a_{i2} & \cdots & a_{ik} \end{pmatrix}$$
$$\begin{pmatrix} a_{i11} & a_{i12} & \cdots & a_{ik1} \\ a_{i21} & a_{i22} & \cdots & a_{i2n} \\ \cdots & a_{ik1} & a_{ik2} & \cdots & a_{ikn} \end{pmatrix}$$

in which, a weight of the factor V_{hh} unimomenation bership degree of V_{hh} to the mth evaluation resultant set. The calculation rule $M(\cdot, \phi)$ is used.

$$b_{im} = \sum_{k=1}^{k} a_{im} \cdot u_{ilm}$$

The resultant B_1 is the evaluation of V_1 in the partition V/P. If the weight vector of V/P is A, the general evaluation matrix will be,

$$R = \begin{bmatrix} B_1 \\ B_2 \\ \vdots \\ B_n \end{bmatrix} = (b_{ij})_{m n}$$

The two-stage multifactorial evaluation of all the factors of V is then,

B* =A ⋅R

In this paper, the factors are divided into two stages Models of more than two stages should be used if the affecting factors are divided further.

DETERMINATION OF MEMBERSHIP DEGREES

Seven factors are chosen for liquefaction analysis from the factor tree in Fig.1, viz. relative density, type of soil, drainage condition, lique-faction stress ratio τ_1/σ_{e^+} topography, earthquake intensity, the ground water, the crictive vertical stress and factor A=am σ_1/σ_{e^+} (σ_2^- total vertical stress, $\sigma_2^{d^-}$ effective vertical stress). The significant earthquake duration is closely related to the earthquake magnitude M.

Liquefaction potential increases with decreasing relative density. By the Aseismic Design Code(1978), no liquefaction will occur if the relative density of sand is larger than 70%, whereas a sand with relative density less than 40% is susceptible to liquefaction. membership functions suggested bs The Kaufmann(Zhongxiong Ho.1983) are recmmended here for relative density Dr. Similar functions are recommended for A, M, and τ/σ_{o} , as shown in Fig.2 and Tab. 1. The parameters in these functions are the results of the exaggerated common scopes of variables, as shown in Tab. 3. The values of membership degrees of gualitative factors come from experts' estimates, as listed in Tab.2.

factor	membership of 'li	quefaction '	membership of 'no liquefaction'					
	[¹	O∢x≼a	ſ°	0 ≼x≼a				
D _r and	$f(x) = \begin{cases} 1\\ \frac{1}{2} - \frac{1}{2} \sin \frac{\pi}{b-a} \\ 0 \end{cases}$	(x- <u>a+b</u>) a <x<b< td=""><td>$f(x) = \begin{cases} \frac{1}{2} + \frac{1}{2} \sin \frac{\pi}{b-a} \end{cases}$</td><td>(x- <u>a+b</u>) a<x<b< td=""></x<b<></td></x<b<>	$f(x) = \begin{cases} \frac{1}{2} + \frac{1}{2} \sin \frac{\pi}{b-a} \end{cases}$	(x- <u>a+b</u>) a <x<b< td=""></x<b<>				
40	lo	x=b	l1	x=b				
	ſ°	O≼x≼a	[1	O≼x≼a				
A and M	$f(x) = \begin{cases} 0\\ \frac{1}{2} + \frac{1}{2} \sin \frac{\pi}{b-a} \\ 1 \end{cases}$	$x = \frac{a+b}{2} = a < x < b$	$f(x) = \frac{1}{2} - \frac{1}{2} \sin \frac{\pi}{b-a}$	x- <u>a+b</u>) a <x<a< td=""></x<a<>				
1.1	1	x=b	lo	x=b				

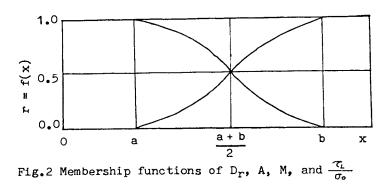

Tab.1 Membership Functions of Dr. A. M. and τ/σ_{e}

Table 2 Membership degrees of qualitative factors

type of soil	membership		drainage	memb	ership	topography	membership		
	Liq.	No Liq.		Liq.	No Liq.		Liq.	No Liq	
gravel sandy gravel coarse sand medium sand fine sand silty sand	0.00 0.30 0.50 0.60 0.75 0.75	1.00 0.70 0.50 0.40 0.25 0.25	open very good good average poor confined	0.50 0.55 0.60	1.00 0.60 0.50 0.45 0.40 0.40	inclined slightly inc level	0,50	0.60 0.50 0.45	

Table 3 Parameters of membership functions

valve value	A	М	Dr	τι/σ.
a	0.1	5.0	40	0.0
Ъ	0.5	9.0	80	0.4

EVALUATION OF LIQUEFACTION POTENTIAL

The evaluation matrix can be set up after the values of the membership degrees have been determined. The weights of each factor are the averages from experts' estimated, as shown in Fig.1. Typical procedures can be seen from the following example case.

The in-situ information of the Jensen Power Station during the San Francisco Earthquake, 1971, are listed in Tab.4. The evaluations of the first stage factors are,

for the soil characteristics

$$B_{1} = (0.7 \ 0.3) \begin{bmatrix} 0.794 \ 0.206 \\ 0.750 \ 0.250 \end{bmatrix} = (0.62 \ 0.38)$$

for the drainage condition

 $B_{2} = (0.4 \ 0.6)$

for the statio stress conditions

$$B_{3} = A_{3} R_{3} = (0.7 \ 0.3) \begin{bmatrix} 0.655 \ 0.345 \\ 0.550 \ 0.450 \end{bmatrix} = (0.55 \ 0.45)$$

for the seismic loading properties

$$B_4 = A_4 R_4 = (0.6 0.4) \begin{bmatrix} 0.699 & 0.310 \\ 0.345 & 0.655 \end{bmatrix} = (0.55 0.45)$$

The general evaluation of all the factors is.

$$B^* = A R = (0.34 0.11 0.13 0.42) \begin{bmatrix} 0.78 0.22 \\ 0.40 0.60 \\ 0.62 0.38 \end{bmatrix}$$

The ground of the power station would liquefy under the effect of the earthquake because of $b_i > b_i$. This conclusion accorded with the case study. Information in Tab.4 were compiled partly by Seed and Christian. The drainage conditions are determined in terms of ratio of the depth of ground water to the critical depth and the type of soil. Tests with the similar procedure show that the results of 36 cases out of 38 cases agree with the in-situ investigations, with the correct evaluation rate P=92.1%, as shown in Tab.4.

The method presented above is based mainly on the accumulated experience of sand liquefaction studies. The powerful mathematic tool can take into account not only the factors considered by the common methods but also these qualitative factors which otherwise cannot be considered by a explicit mathematic evaluation method. It is capable of considering the general effects of many factors without leaving out the effects of some minor factors by allocating a weight to a factor. Compared with the accmulated failure procedure (Valera, 1977), P=85.4%, the statistic method (Tanimoto, 1976), P=83.2%, and the method in the Chinese Aseismic Design Code (1978) , P is approximately 80% for cases during the Tangshan earthguake. 1976, and the Haichen earthguake. 1975, the presented theory is more reliable.

For the case of the upper stream lens in the ground of Pubugou Power Station, the in-situ information are listed in Tab.4. The seismic loading propertis are, M=6.5. a=0.1g, A=0.2, the revised in-situ liquefaction stress ratio $\tau/\sigma=0.125(N=8)$. The evaluation results of the first stage factors are, for the soil characteristics

$$B_{1} = (0.7 \ 0.3) \begin{bmatrix} 0.15 \ 0.85 \\ 0.75 \ 0.25 \end{bmatrix} = (0.33 \ 0.67)$$

for the drainage condition

$$B_{2} = (0.6 \ 0.4)$$

for the static stress conditions

$$B_{3} = (0.7 \ 0.3) \begin{bmatrix} 0.78 \ 0.22 \\ 0.55 \ 0.45 \end{bmatrix} = (0.71 \ 0.29)$$

for teh seismic loading properties

$$B_{4} = (0.6 \ 0.4) \begin{bmatrix} 0.69 \ 0.31 \\ 0.15 \ 0.85 \end{bmatrix} = (0.47 \ 0.53)$$

The general evaluation of all teh factors is, [0, zz, 0, b7]

$$B^{*} = (0.34 \ 0.11 \ 0.13 \ 0.42) \begin{vmatrix} 0.33 \ 0.60 \ 0.40 \\ 0.71 \ 0.29 \\ 0.47 \ 0.53 \end{vmatrix}$$
$$= (0.47 \ 0.53)$$

Because 0.47<0.53, macorliquefaction will not occur if the upper lens is subjected to an earthquake of the seventh degree. Further computation result in the conclusion that if the relative density of a part of the lens is larger than 62%, the part will not liquefy under an earthquake of the seventh degree, and the persent sand lens will liquefy if earthquake intensity equal or larger than 8 degree.

It should be noted that wacroliquefaction doesn't mean by its fuzzy concept, a pore-water pressure ratio of one and the conclusion of no macroliquefaction doesn't mean a very low pore-water pressure. So, it is necessary to reexamine the possible effects of the high pore-pressure on the general stability of the

Site	Magni- tude	Date	to	Critical depth in feet		A in g	Dr in %	<u>τ</u> σ.	Type of soil	Drainage condi- tion	Topo- graphy	lique-	Predicted lique- faction
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
Niigata	6.6	1802	3						sand	poor	level	No	No
Niigata	6.6	1802	3						sand	poor	level	No	No
Niigata	6.1	1887	3						sand	poor	level	No	No
Niigata	6.1	1887	3					0.09		poor	level	No	No
Mino Owari	8.4	1891	6					0.39		poor		Yes	Yes
Mino Owari	8.4	1891	6					0.37	sand	average		Yes	Yes
Mino Owari	8.4	1891	8					0.35	grave	1		No	No
Mino Owari	8.4	1891	8		0.35	0.5	272	0.35	sand	average		Yes	Yes
Sheffield dam	6.5	1935	15	25	0,20	0.2	5 40	0.16	sand	good	incline	Yes	Yes
Brawley	7.0	1940	15		0.25	0.2	5 58	0.16	sand	very good	d _	Yes	Yes
All american cana	1	1940	20	25	0.25	0.2	3 43	0.20	sand	good		Yes	Yes
Sofatara canal	7.0	1940	5	20	0.25	0.4	2 32	0.26	sand	average		Yes	Yes
Komii	8.3	1944	5	13	80.0	0.1	2 40	0.08	sand	average		Yes	Yes
Meiko street	8.3	1944	2	8	80.0	0.1	4 30	0.09	silt	average		Yes	Yes
Takaya	7.2	1948	11	23	0.30	0.4	2 72	0.30	sand	average		Yes	Yes
Shonenji temple	7.2	1948	4	10	0.30	0.4	5 40	0.29	sand	average		Yes	Yes
Agricultural unio	n	1948	3	20	0.30	0.5	5 50	0.33	silt	poor		Yes	Yes
Lake Merced	5.5	1957	8						sand	very good	d	Yes	Yes
Puerto Montt	8.4	1960	12					0,15		average		Yes	Yes
Puerto Montt	8.4	1960	12					0.15		silt		Yes	Yes
Puerto Montt	8.4	1960	12						silt	good		No	No
Niigata	7.5	1964	3						sand	poor	level	Yes	Yes
Niigata	7.5	1964	3						sand	poor	level	Yes	Yes
Niigata	7.5	1964	3						sand	poor	level	No	Yes
Niigata	7.5	1964	12						sand	average	level	No	Yes
Snow river	8.3	1964	ŏ					0.18		Door		inc. Yes	Yes
Snow river	8.3	1964	8					0.15		average		inc. Yes	Yes
Quarts creek	8.3	1964	õ		0.12				sand	poor	slightly		No
Scott glacier	8.3	1964	ŏ					0.19		poor	eligntly	inc. Yes	-
Valdez	8.3	1964	5						grave		STIBUCTY		Yes
	7.8	1968	3						sand	average		Yes	Yes
Hachinohe	7.8	1968	3						sand			No	No
Hachinohe	7.8	1968	5					0.19		average		Yes	Yes
Hachinohe		1968	3							average		No	No
Hakodate	7.8		2 10					0.21	sand	average		Yes	Yes
Huachipato	6.6	1960 1960	10		0.25					average		No	No
Huachipato	6.6				0.25					average	4	No	No
Jensen plant Pubugou plant	7.7 6.5	1971	55 0		0.35 0.10			0.13	silt sand	very goo poor	d level	Yes	Yes No

structure system in which the studied sand layer acts as a part even if the sand layer is identified " no liguefaction".

CONCLUSION

Some major factors affecting liquefaction and macroliquefaction itself are of fuzzinesses the common evaluation methods cannot deal with. The persented theory in this paper, the Multiple-Stage Multifactorial Evaluation, is capable of incorporating both quantitative and qualitative factors into consideration and rsults in a higher correct evaluation percentage than the common methods.

REFERENCES

Ministry of Water Conservancy and Hydroelectric Power, the Chinese Aseismic Design Code, 1978.

Tanimoto, K., "A statistic method of evaluating liquefaction potential of sand," Proc. of the Japanese Civil Engrg. Society, 1976. Valera, J.E., "Sand liquefaction procedures--a review"

Journal of Geotechnical Engineering, Vol.103, 607-625. Zhongxiong Ho, Fuzzy mathematics and its applications, First edition. Tianjin Science & Technology Press. Tianjing, 1983, 67-71.