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ABSTRACT 

In networked control systems (NCS), wherein a communication network is used 

to close the feedback loop, the transmission of feedback signals and execution of the 

controller is currently carried out at periodic sampling instants. Thus, this scheme 

requires a significant computational power and network bandwidth. In contrast, the 

event-based aperiodic sampling and control, which is introduced recently, appears to 

relieve the computational burden and high network resource utilization. Therefore, in this 

dissertation, a suite of novel event sampled adaptive regulation schemes in both discrete 

and continuous time domain for uncertain linear and nonlinear systems are designed. 

Event sampled Q-learning and adaptive/neuro dynamic programming (ADP) 

schemes without value and policy iterations are utilized for the linear and nonlinear 

systems, respectively, in both the time domains. Neural networks (NN) are employed as 

approximators for nonlinear systems and, hence, the universal approximation property of 

NN in the event-sampled framework is introduced. The tuning of the parameters and the 

NN weights are carried out in an aperiodic manner at the event sampled instants leading 

to a further saving in computation when compared to traditional NN based control.   

The adaptive regulator when applied on a linear NCS with time-varying network 

delays and packet losses shows a 30% and 56% reduction in computation and network 

bandwidth usage, respectively. In case of nonlinear NCS with event sampled ADP based 

regulator, a reduction of 27% and 66% is observed when compared to periodic sampled 

schemes.  The sampling and transmission instants are determined through adaptive event 

sampling conditions derived using Lyapunov technique by viewing the closed-loop event 

sampled linear and nonlinear systems as switched and/or impulsive dynamical systems.  
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SECTION 

1. INTRODUCTION 

The advent of embedded processors spurred research on digital implementation of 

the controllers. Traditionally, the sampled data [1] and discrete-time control [2] frame 

works are used for this purpose because of the well-developed theory.  In the sample data 

system approach [1], a continuous-time plant is controlled by a discrete time controller 

whereas in a discrete time control [2] the system itself operates under discrete-time mode. 

In both the schemes, a periodic, fixed sampling time, decided a priori, is used for 

sampling the feedback signals and controller execution. This fixed sampling time is, in 

general, governed by the well-known Nyquist sampling criterion by considering the worst 

case scenario.  The wide spread application of this sampling scheme is due to the ease of 

analysis with the numerous available techniques in the literature. 

On the other hand, this periodic sampling leads to ineffective resource utilization 

[3] with higher control cost for dynamic systems having limited computational capability. 

The problem aggravates in the case of systems with shared digital communication 

network in the feedback loop, referred to as networked control systems (NCS) [4]-[7], 

due to limited bandwidth. The periodic sampling and transmission further escalates the 

problem with network congestion leading to longer network induced delays. Furthermore, 

this periodic sampling and transmission of feedback data and controller execution is 

redundant in situations when there is no significant change in overall system performance 

and the system is operating with desired output. 

As an alternative, to alleviate the burden of needless computational load and 

network congestion, various sampling schemes [8]-[12] were proposed. In the recent 
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times, performance based sampling schemes are developed to reduce the computational 

cost and formally referred to as “event-triggered control” [13]-[25]. This sampling 

scheme decides the transmission and controller execution instants when there is a 

significant change in the system state or output errors that can either jeopardize the 

stability or deteriorate the desired performance.  This requires an additional hardware 

device, referred to as trigger mechanism, to evaluate the event-triggering condition which 

orchestrates the sampling instants or simply events.  Since, the objective of this sampling 

is controller execution, not for signal reconstruction, this is equally applicable for both 

continuous [14]-[23] and discrete time systems [24]-[26] to either regulate the system 

state vector to zero [14]-[17] or track a desired trajectory [18]. A general layout of a 

discrete time event-triggered system is shown on Figure 1.1. 

 

ZOH Plant
Trigger 

Mechanism

Event Sampled
Controller

ZOH

 

Figure 1.1  Block diagram of the discrete time event sampled control system. 

 

In the case of a continuous-time system, the sensor measures the system state or 

output vectors continuously and the trigger mechanism determine the sampling instants 

by evaluating the event-triggering condition [14]-[18].  The event-triggering condition is 

usually a function of the state error, referred to as event-triggering error, and a suitably 

designed state dependent threshold [14]. The feedback signals are transmitted and control 
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is executed when the event-triggering error exceeds the threshold.  Lyapunov stability 

technique or its extensions are used as the work horse to design the event-triggering 

condition that ensures the stability and desired performance of the system. 

In the discrete-time case [24]-[26], the sensor measures the system state or output 

and the trigger mechanism evaluates the event-triggering condition at every periodic 

sampling instant and a decision is made whether to transmit or not. The feedback data are 

transmitted and controller is executed only at the violation of the event-triggering 

condition. In both continuous and discrete time cases, the event-triggering instants or 

simply the events turn out to be aperiodic in nature and, hence, save computational load 

and bandwidth usage. These inherent advantages of event-triggered control is proven to 

be more beneficial in large scale systems such a decentralized systems [28]-[31],  multi 

agent systems [32]-[33], and cyber-physical systems [34] to name a few. 

A similar approach called self-triggered control [35]-[36] is also developed for 

systems where the extra hardware for the trigger mechanism is hard to implement. This 

software based scheme, which is a special case of the event-triggered control, predicts the 

sampling instants by using the previously sampled data and the dynamics of the system. 

Hence, a continuous evaluation of the event-triggering condition is not necessary. The 

analysis of the self-triggered [35]-[36] system is similar to that of the event-triggered 

control and is outside the scope of this dissertation.  Next, a detailed overview of the 

event-triggered control schemes available in the literature is presented and the motivation 

behind this research is discussed. 
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1.1 OVERVIEW OF THE EVENT-TRIGGERED CONTROL 

The study of aperiodic sampling for sampled data control dates back to the late 

fifties and early sixties [8]-[12] and was first studied in [8] for quantized systems to share 

the communication channel without increasing its bandwidth. Moreover, a state based 

adaptive sampling method for sampled data servo mechanism is proposed in [9] where 

the adaptive sampling rate is controlled by the absolute value of the first derivative of the 

error signal. Lately, this aperiodic state dependent sampling is studied under various 

names, such as, multi rate sampling [10], interrupt driven triggering [11], level triggered 

sampling [12]. Recently, this scheme is studied under a formal name of event-triggered 

sampling [14]-[41], [43]-[44] and various theoretical [3], [14] and experimental [13], [16] 

results emphasizing its inherent advantages, in computation and communication saving, 

are available in the literature. 

In the last few years, theoretical results started to appear in the literature for both 

deterministic [14]-[35] and stochastic [38] event-triggered control and thereafter various 

controller designs are introduced. A majority of the theoretical results on event-triggered 

control both for linear and nonlinear systems are available for deterministic systems [14]-

[35]. In general, the emulation-based approach [14]-[15], [18], [30] is used for the event-

triggered system design. Emulation based design in the sense that the continuous 

controller is presumed to be stabilizing and an event-triggering condition is developed to 

implement the controller such that the stability and certain level of performance are 

maintained. In the earlier works [14]-[15]  the system was assumed to be input to state 

stable (ISS) [49] with respect to the measurement error, and event-triggering conditions 

are designed to reduce computation and guarantee asymptotic stability.  A non-zero 
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positive lower bound on the inter-event times is also guaranteed to avoid accumulation 

point and Zeno behavior. On the other hand, the stringent ISS assumption is relaxed by 

assuming the asymptotic stability of the continuous system by the authors in [18], [20].  

The event-triggered control approach is also extended to accommodate other design 

considerations, such as, output feedback design [20], [23], [39], decentralized designs 

[28]-[31], and trajectory tracking control [18]. 

The event-triggered control approach  is further extended to the discrete-time case 

[24]-[26]  where the sensor senses the system state periodically in a time triggered 

approach and the transmission of the feedback signals  and controller execution are done 

at the event-triggering instants. A major advantage of the discrete time event-triggered 

control is that the minimum inter-event time is always guaranteed and is the periodic 

sampling interval of the discrete time system [26]. Similar to the event-triggered control 

in a discrete time domain, a periodic event-triggered control approach for continuous-

time systems is presented in [7]. The triggering condition is evaluated periodically with a 

fixed sampling interval and the transmission decision is made at the violation of the 

condition. This design frame work enforces a positive lower bound on the minimum 

inter-event times. The stability analysis is carried out using three different modelling 

techniques used for hybrid systems such as impulsive system, piecewise linear systems, 

and perturbed linear systems. In all the above design approaches the system state or 

output and the control input are held between two consecutive events by a zero order hold 

(ZOH) for the implementation purpose.  

In a second event-triggered approach [17], [24], [44], a model of the system is 

used to reconstruct the system state vector and, subsequently, used for designing the 
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control input. As the control input is based on the model states, no feedback transmission 

is required unless there is a significant change in the system performance due to external 

disturbance or internal parameter variation. In the area of model-based event-triggered 

control design, the authors in [17] used an input generator as a model to predict the 

system state and compute the control. Further, the authors in [44] consider the nominal 

dynamics of the system with uncertainty, usually of smaller magnitude and bounded, to 

form a model. The asymptotic stability was guaranteed by designing the event-triggering 

condition. A discrete-time model based approach is also presented in [24] for systems 

subjected to disturbance. Two modelling approaches (perturbed linear and piecewise 

linear system) are used to analyze the stability and global exponential stability with 

certain 2l  gain is guaranteed via linear matrix inequalities (LMI) based conditions. It is 

observed that the model-based approach reduces the number of events or transmissions 

more effectively when compared to the ZOH based approach, but, with a higher 

computational load due to induction of the model. 

The ETC scheme is also extended to NCS with inherent network constraints [30]-

[31], [34], [37], [40]-[41] such as constant or time varying delays, packet losses and 

quantization errors. In these design approaches, the event-triggering condition is tailored 

[30]-[31] to handle the maximum allowable delays, packet losses [30] and quantization 

error for both state and control input [37] so as to ensure stability. From optimal control 

point of view in the event-triggered context, a few results are available in the literature 

[21], [40]-[42]. Optimal event-triggered control for stochastic continuous time NCS is 

presented in [41]. The problem is formulated as an optimal stopping problem and an 

analytical solution is provided.  The optimal control in an constrained networked 
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environment is studied in [42]. Further, the authors in [40] extended the work to event-

triggered control frame work and characterized the certainty equivalence controller to be 

optimal in a linear quadratic Gaussian (LQG) frame work.  The optimal control input and 

the optimal event-triggering instants are designed using the separation principle. 

Despite these results from the literature on event-triggered control, all these 

schemes consider either the complete knowledge of the system dynamics [14]- [24], [26]-

[39] or system with a smaller uncertainty [25], [44] with known nominal dynamics.  In 

contrast, an L1 adaptive control scheme with known nominal dynamics is proposed in 

[43] where an adaptive law is used to estimate the uncertainty. Therefore, a 

comprehensive theory for the adaptive event-triggered control of a complete uncertain 

system is yet to be developed.  Moreover, the optimal solution of the event-based control 

[21], [40] requires the system dynamics and backward in time solution of the Riccati 

equation making it difficult to implement. Thus, a forward in time and online solution to 

the optimal control problem in an event-triggered context is still an open problem. 

In general, adaptive dynamic programming (ADP) [51], [59] and Q-learning [45], 

[50], [57] based schemes are used for a forward-in-time solution to the optimal control 

problems. The ADP was proposed by the authors in [51], [53], [59]-[60] and later became 

popular with various other names such as approximate dynamic programming (ADP) 

[60] and neuro-dynamic programming (NDP) [53]. These schemes in general use online 

approximator based parameterization and value and/or policy iterations [55], [60] to solve 

the Bellman or Hamilton-Jacobi-Bellman (HJB) equation to obtain the optimal control. 

The policy iteration based techniques require a large number of iterations to 

maintain the stability [54]. Therefore, online implementation of these iterative schemes 
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are computational intensive and not practically viable. In contrast, [54], [61] proposed a 

time-based scheme to solve the ADP based optimal control in an on-line manner for 

discrete-time nonlinear systems. The time histories of the cost-to-go errors were used for 

the approximation of value function. A similar time-based technique is presented in [45] 

for linear networked control systems (NCS) in a stochastic framework by using Q-

learning. In both the approaches, learning of the value function [54] or the Q-function   

[61] and controller executions were carried out periodically at every sampling instant. 

However, as mentioned earlier, the periodic sampled controller schemes will lead to 

higher cost for systems with limited computational and communication bandwidth 

resources.  Therefore, an event sampled ADP and Q-learning scheme is needed for 

effective control of systems with sparse resources. 

Motivated by the above facts, in this dissertation, a suite of novel event sampled 

adaptive control designs for uncertain linear and nonlinear systems is presented. The 

adaptive event sampled design is extended to event sampled optimal adaptive control 

schemes using ADP and Q-learning techniques with limited feedback information for 

systems with completely unknown dynamics. Adaptive and neural network based 

learning methods with intermittently available information are used to learn the unknown 

parameters/dynamics and a forward in time solution is presented. Lyapunov stability 

analysis is used to guarantee stability of the closed-loop event sampled systems. Next, the 

organization of the thesis is presented. 

1.2 ORGANIZATION OF THE DISSERTATION 

In this dissertation, event sampled adaptive regulation schemes of uncertain linear 

and nonlinear systems are developed. The proposed designs use event sampled 
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transmission of feedback data, parameter/NN weight update schemes, and controller 

execution to effectively utilize the available resources, such as communication network 

bandwidth and computational capability. The event sampling or transmission instants are 

determined using adaptive conditions designed by using Lyapunov stability theory. The 

dissertation consists of five papers and each paper portrays a sequential development of 

the research work as outlined in Figure 1.2. The first three papers present the event 

sampled stable and optimal adaptive regulator designs for discrete time systems both for 

linear and nonlinear systems with applications to NCS. The last two papers extended the 

event sampled paradigm to continuous time domain where event sampled stable and near 

optimal regulators for nonlinear continuous-time systems are designed. 

The first paper presents a novel event sampled optimal adaptive state and output 

feedback control scheme for uncertain linear discrete-time systems. The infinite horizon 

optimal control for both the state and output feedback is solved by using the event 

sampled Q-learning and adaptive dynamic programming technique. The designs do not 

require the knowledge of system dynamics and compute the event sampled optimal 

control input in a forward in time and online manner without using any value/policy 

iterations.  Further, the Q-function parameters are updated only at the event sampling 

instants with intermittently available state and control input vector.  The asymptotic 

convergence of the system state vector and the parameter estimation error is proven by 

using Lyapunov analysis by designing novel adaptive event sampling condition for both 

the schemes. This adaptive event sampling condition guarantees the accuracy of the 

parameter convergence with reduced computation. The event sampled Q-learning scheme 

is applied to NCS represented as continuous time linear system with inherent time-
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varying network induced delays and random packet losses.  The randomness of the delays 

and packet losses leads to a stochastic time-varying discrete time system. Therefore, 

event driven Q-learning developed Paper I is analyzed in a stochastic frame work and 

asymptotic stability in the mean is guaranteed with reduced computation and 

communication. The results are placed in Appendix A. 

On the other hand, in the second paper, a nonlinear discrete-time system in 

Brunovsky canonical form is considered where the dynamics are considered unknown. 

First, the universal approximation property of neural network (NN) is revisited in an 

event sampled context. The event sampled approximation is subsequently used to design 

an adaptive state estimator (SE) to approximate the system dynamics and estimate the 

state vector. The SE dynamics and state vector are utilized to obtain the control input, 

during any two event sampled instants.  In this case the event sampling condition turns 

out to be a function of system state and NN weight estimates to facilitate approximation. 

Further, the event sampling condition uses a dead-zone operator to prevent the 

unnecessary triggering of events due to NN reconstruction error once the system state and 

the NN weights converge to the ultimate bound. 

In the third paper, a more general class of nonlinear discrete-time affine system is 

considered and a novel technique to solve the finite horizon optimal control in an event 

sampled paradigm is proposed. This proposed approach uses event sampled NN-based 

identifier in conjunction with actor-critic NNs to solve the Hamilton-Jacobi-Bellman 

(HJB) equation online. Similar to other papers, the event sampling condition is made 

adaptive to ensure approximation accuracy and the ultimate boundedness (UB) of the 

closed-loop system.   This event sampled ADP scheme in an infinite horizon frame work 



11 

 

is applied to nonlinear NCS with network induced time varying delays and packet losses. 

Since the NCS leads to stochastic time varying system, as discussed earlier, stochastic 

analysis is carried out for the actor critic frame work used in Paper III. Ultimate 

boundedness in the mean of the closed-loop event sampled NCS with potential saving in 

communication and computation is shown. The detailed stochastic design and results are 

included in Appendix B. 

 

 

Figure 1.2. Organization of the dissertation. 
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In the last two papers, the event sampled designs of nonlinear continuous time 

dynamical systems are presented. A multi-input multi-output (MIMO) nonlinear affine 

system is considered in the fourth paper. An event sampled stabilizing control is 

developed using approximate feedback linearization. A linearly parameterized neural 

network is used to approximate the control input with event sampled feedback 

information. The event sampling condition is derived using the estimated neural network 

weights. The neural network weighs are updated as a jump at the event sampled instants 

and held during flow period. Therefore, the continuous time event sampled system is 

modeled as a nonlinear impulsive dynamical system to analyze the stability. The ultimate 

boundedness of the closed-loop system parameters are shown using extension of 

Lyapunov direct approach for impulsive dynamical systems. A positive lower bound on 

the inter-sample times is also guaranteed to avoid accumulation point. 

 In the final paper, the stabilizing controller design is extended to optimal control 

design by minimizing an infinite horizon cost function. Continuous time event sampled 

adaptive dynamic programming is developed to solve the optimal control problem with 

aperiodic sampled state and control input vectors. The value function, which is the 

solution of the Hamilton-Jacobi-Bellman equation, is approximated using neural 

networks and the weights are updated as a jump at the event sampled instants. A novel 

identifier is also designed with event sampled approximation of the neural network. The 

closed-loop stability is analyzed and ultimate boundedness is guaranteed by modelling 

the closed-loop system as in impulsive dynamical system. A formula for the minimum 

inter-sample time is derived to guarantee existence of the positive lower bound on the 
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inter-sample times to avoid Zeno behavior or accumulation point. The contributions of 

the dissertation are highlighted next. 

1.3 CONTRIBUTIONS OF THE DISSERTATION 

Traditional event-triggered control [13]-[44] as discussed in Section 1.1 are 

developed with the complete knowledge of the system dynamics [13]-[24], [26]-[42] or 

system with small bounded uncertainty [25], [44]. This made the problem rather simpler 

when compared to complete uncertain systems which are more pervasive in practical 

applications. Hence, event-based adaptive control schemes, where the controller adapts 

the changes in the system parameters in an online manner, will be of more practical 

importance. Therefore, the goal of this dissertation is to develop event-sampled 

regulation schemes for systems with completely uncertain system dynamics and at the 

same time retain the advantages of this approach in computation and communication 

saving. The contributions in this dissertation are summarized as follows. 

The first contribution is the development of an event sampled optimal adaptive 

state feedback scheme for uncertain linear discrete time systems. However, the system 

state vector many not always be available for measurement and, hence, there is a need for 

the output feedback design. Therefore, an observer based optimal output feedback design 

is also provided. Traditional optimal control design needs a backward in time solution of 

Riccati equation [40], [48] or a forward in time iterative approach using policy and value 

iteration [51], [60] to solve the optimal control problem with periodic sampling scheme.  

In contrast, an event sampled Q-learning approach is developed with uncertain system 

dynamics for both state and output feedback. Parameter tuning is carried out at the event 

sampling instants only leading to an aperiodic update scheme to save computation when 
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compared to traditional adaptive control [56], [58]. The traditional event-triggering 

conditions developed for known system dynamics [13]-[40] are not suitable due to the 

adaptive nature of the proposed system. With this effect, novel adaptive event sampling 

conditions which not only guarantee the asymptotic convergence of system state but also 

the parameter estimation error to zero are designed. Asymptotic stability of the closed-

loop system is demonstrated by using Lyapunov direct method.  Further, application of 

this event sampled Q-learning scheme for NCS with network induced time varying delays 

and random packet losses is presented. A stochastic analysis of the event sampled Q-

learning approach is presented to design the optimal control policy for NCS. 

The main contribution of the second paper is the development of a neural network 

(NN) based event sampled adaptive regulation scheme for an uncertain nonlinear 

discrete-time system. The universal approximation property of the NN is revisited and an 

event sampled NN-based approximation is provided. In contrast with the model-based 

approach for system with known dynamics [24]-[25], an event sampled NN-based 

adaptive model design is presented. Further, aperiodic weight update scheme for the NN 

weights at the event sampling instants is proposed to save computation when compared to 

the traditional neural network based control. Moreover, the adaptive event sampling 

condition is designed to ensure the uniform ultimate boundedness of the closed-loop 

system.  

The contributions of the third paper include the design of a finite horizon event 

sampled optimal control scheme for a more general class uncertain nonlinear discrete 

time system in affine form. Since the traditional time driven ADP schemes are 

computational intensive, an event sampled ADP design is provided. A novel neural 
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network based identifier is designed with event sampled availability of the feedback data 

to identify the system dynamics. The event sampled actor-critic frame work with time 

varying activation function to learn the finite horizon time varying value function is 

presented. Similar to the other papers, novel NN weight update schemes which tune the 

NN weights only at event sampling instants, to save computation, is proposed. The 

ultimate boundedness of the closed-loop system is demonstrated by using the Lyapunov 

technique and an adaptive event sampling condition. The application of this design 

approach for NCS is included in the appendix which leads to a stochastic event sampled 

ADP scheme. Finally, the ultimate boundedness for the event sampled system and 

ultimate boundedness in the mean of NCS is proved using Lyapunov stability analysis. 

The contributions of the fourth paper include the design of an event sampled 

feedback linearized controller for continuous time nonlinear systems. The event sampled 

approximation in a continuous time domain is developed to approximate the control input 

using a linearly parameterized neural network. Non periodic update of the neural network 

weights as a jump at the event sampling instant is proposed. A nonlinear impulsive 

dynamical modelling of the event sampled system is presented. The adaptive event 

sampling condition is designed using the estimated neural network weights to decide the 

jump and flow periods. Ultimate boundedness of the system is also proved using 

extension of Lyapunov technique for impulsive dynamical systems.  

The contributions of the last chapter include the design of an event sampled 

continuous-time adaptive dynamic programming based optimal controller. A novel event 

sampled identifier design is presented.  The online approximation of the value function 

using event sampled HJB equation error is demonstrated. The impulsive modelling of the 
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event sampled near optimal system is included to analyze the system during the sampled 

instants and inter-sample times. The determination of the sampling condition in an 

optimal control frame work is proposed which guarantees accuracy of approximation. 

Finally, the ultimate boundedness of closed-loop parameters using the extension of 

Lyapunov technique, for impulsive dynamical system, is also included. 
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PAPER 

I. ADAPTIVE REGULATION OF UNCERTAIN LINEAR SYSTEMS USING Q-

LEARNING WITH APERIODIC PARAMETER TUNING 

Avimanyu Sahoo and S. Jagannathan 

Abstract — This paper presents a novel Q-learning based optimal adaptive state and 

output feedback control of uncertain linear discrete-time systems with aperiodic event-

based feedback information. Both dynamic programming (DP) and Q-learning 

techniques with event sampled system and observer state vectors are used to design and 

learn the optimal control input sequence. The event-based time history of the temporal 

difference error in Bellman equation is utilized to find the solution to the Bellman 

equation in DP without using traditional policy and/or value iterations. The event 

sampled instants are determined via a trigger condition which is analytically derived by 

using Lyapunov stability criterion. The Q-function parameters are tuned only at the event 

sampled instants thereby leading to non-periodic parameter tuning. It is further shown 

that the closed-loop parameters converge asymptotically provided persistency of 

excitation condition on the control input is ensured. Simulation results are included to 

validate both the analytical designs. The net result is the development of event-driven 

dynamic programming via Q-learning for linear systems. 

 

 

Keywords — Q-learning, event sampled adaptive dynamic programming, adaptive 

observer, aperiodic sampling, and optimal control.  
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1. INTRODUCTION 

Optimal control (Lewis & Syrmos, 1995) is a key area of research among the 

control researchers in the past several decades. Adaptive dynamic programming (ADP) 

(Barto, Sutton, & Anderson, 1983, Watkins, 1989) drew more attention because of the 

forward-in-time solution to the optimal control problems. The ADP was proposed by 

Werbos (1992), Barto, Sutton, and Anderson (1983), Watkins (1989), Bertsekas and 

Tsitsiklis (1996), and later became popular with various other names such as approximate 

dynamic programming (ADP) (Werbos, 1992) and neuro-dynamic programming (NDP) 

(Bertsekas & Tsitsiklis, 1996). These schemes in general use online approximator based 

parameterization and value and/or policy iterations to solve the Bellman or Hamilton-

Jacobi-Bellman (HJB) equation to obtain the optimal control in a forward-in-time manner 

(Wang, Jin, Liu, & Wei, 2011).  

Among the ADP based Q-learning schemes, Bradtke, Ydestie, and Barto (1994) 

proposed policy iteration based adaptive Q-learning approach by using the system 

dynamics. In Hagen and Krose (1998), two approximation techniques were proposed to 

compute the optimal policy. The first used a model to identify the system dynamics and 

compute the Riccati solution, whereas, the second scheme used Q-learning with least 

square update. Later, the Q-learning scheme is extended by Tamimi, Lewis, and Murad 

(2007) to the zero-sum-game formulation by using model-free policy iteration.   

The policy iteration based techniques require a large number of iterations to 

maintain the stability (Dierks & Jagannathan, 2012). Therefore, online implementation of 

these iterative schemes are computational intensive and not practically viable. In contrast, 

Dierks and Jagannathan (2012) proposed a time-based scheme to solve the ADP based 
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optimal control in an on-line manner. The time histories of the cost-to-go errors were 

used for the approximation of value function. A similar time-based technique has been 

used by Xu, Jagannathan, and Lewis (2012) for networked control systems (NCS) in a 

stochastic framework by using Q-learning. In both the approaches, learning of the value 

function (Dierks & Jagannathan, 2012) or the Q-function (Xu, Jagannathan, & Lewis, 

2012) and controller executions were carried out periodically at every sampling instant. 

However, the periodic sampled controller schemes will lead to higher cost for systems 

with limited computational and communication bandwidth resources. 

Recently, it was demonstrated that the state or event-based sampling and 

controller execution are advantageous over periodic time-driven sampling counterpart in 

terms of computational cost (Tabuada, 2007; Wang & Lemmon, 2011). Control design by 

using event-based sampling is referred to as event-triggered control (ETC) (Donkers & 

Heemels, 2012; Tabuada, 2007; Wang & Lemmon, 2011). The aperiodic event-based 

sampling instants are determined by using a triggering condition while maintaining 

stability and performance. This event-triggering condition uses the state or output 

information (Donkers & Heemels, 2012; Tabuada, 2007; Wang & Lemmon, 2011) given 

the system dynamics.  

The traditional optimal control (Lewis & Syrmos, 1995) in the context of limited 

communication and event-based sampling is studied by Imer and Basar (2006), Cogill 

(2009), Molin and Hirche (2013) and others. A backward-in-time solution of the Riccati 

equation with separation principle is being used. To the best knowledge of authors, this is 

the first time a forward-in-time and online optimal control scheme using ADP and Q-

learning technique with event sampled state information for uncertain linear systems is 
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presented. In a traditional discrete time system framework, the term sampling represents 

the periodic time instants with a fixed sampling interval. By contrast, in this paper, the 

term event sampled instant refers to the aperiodic time instants when the feedback signals 

are made available to the controller and the parameters are tuned by using a triggering 

condition.  

Event-based sampling requires the development of event-driven dynamic 

programming (DP) and a redesign of the controller with temporal difference (TD) or 

Bellman error. Therefore, in the first part of this paper, a novel Q-learning based optimal 

state feedback control scheme, for uncertain linear discrete-time systems, with event-

based sampling, is introduced. However, since the state vector is unavailable for 

measurement in many applications, an output feedback optimal design using an adaptive 

observer is also presented next. A Q-function estimator (QFE) is used to learn the optimal 

action dependent value or Q-function on-line for both state and output feedback cases at 

event sampled instants.  

The time-histories of the Bellman errors from Bellman equation are used to tune 

the QFE parameters at the event sampled instants and, hence, the parameters are tuned in 

an aperiodic manner. The control input is, subsequently, updated from the QFE 

parameters at event sampled instants. This aperiodic tuning saves the computations when 

compared to traditional adaptive Q-learning. Above all, the adaptive triggering conditions 

to determine the event sampled instants are derived analytically. These conditions ensure 

the convergence of parameters by creating a sufficient number of event sampled instants 

during the initial adaptation while keeping the computation small. Finally, the stability of 

the event sampled closed-loop system was demonstrated by using the Lyapunov method 
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(Wang & Lemmon, 2011). A preliminary version of the work in a finite horizon optimal 

control frame work is published as Sahoo and Jagannathan (2014). Here optimization of 

the event sampled instants is not considered.  

Thus, the primary contributions of this paper include: 1) the development of optimal 

adaptive state and output regulation schemes for uncertain linear systems with event-

based sampling, 2) the design of tuning scheme for online estimation of QFE parameters, 

for both state and output feedback, 3) the development of adaptive triggering conditions, 

and 4) the demonstration of closed-loop stability in the presence of uncertain dynamics 

and aperiodic sampling. The next section presents a brief background on the traditional 

Q-learning for both state and output feedback. 
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2. BACKGROUND 

After a brief Q-learning background, the optimal control problem statement with 

event based sampling is introduced. 

2.1 STATEFEEDBACK DESIGN 

Consider the linear time-invariant (LTI) discrete-time system given as 

 
1 ,  ,p p p p

k k k k kx Ax Bu y Cx     (1) 

where p n

k xx   , opp

k yy   , and m

k uu    represent the system state, the 

output and the control input vectors, respectively.  The system matrices, n nA   and 

n mB  , are considered unknown. The output matrix op n
C


  is known. The system 

(1) satisfies the following assumption. 

Assumption 2.1. The system (1) is considered controllable and observable with the 

control coefficient matrix satisfying maxB B , where max 0B   is a known constant.  

Further, the order of the system is known.  

Consider the value function for (1) given by 

 ( , )p

k j jj k
V r x u




 , (2) 

where ( , )
Tp p p T

k k k k k kr x u x Px u Ru   is a positive definite cost-to-go function at the time 

instant k . The matrices  n nP   and m mR  are, respectively, positive semi-definite 

and definite matrices to penalize the system state p

kx  and the control input ku . The initial 

control input 0u  is assumed to be admissible to keep the value function (2) finite. 

Traditionally the sequence of control inputs, ku , which minimizes the value function (2) 



23 

 

can be obtained by solving the algebraic Riccati equation (ARE) (Lewis & Syrmos, 

1995).    

The solution to the ARE, for computing the optimal control input, is not feasible 

when the system dynamics A and B are not known. Adaptive Q-learning based techniques 

(Tamimi, Lewis, & Murad, 2007; Xu, Jagannathan, & Lewis, 2012) on the other hand are 

employed to generate optimal control input sequence without using system dynamics.  

Define the action dependent value or the Q-function (Bradtke, Ydestie, & Barto, 

1994; Tamimi, Lewis, & Murad, 2007; Xu, Jagannathan, & Lewis, 2012) as 

 
* *

1( , ) ( , ) [ ] [ ]
T Tp p p T p T T

k k k k k k k k kQ x u r x u V x u G x u   , (3) 

where 
xx xuT T

ux uuT T

G GP A SA A SB
G

G GB SA R B SB

  
    

   
with *

1kV   being the optimal value 

function from time instant 1k   onwards. The optimal control input using the Q-function 

(3) is written as * * p

k ku K x   where * 1 1( ) ( )T T uu uxK R B SB B SA G G    . Therefore, the 

optimal control input sequence can be computed online in a forward-in-time manner by 

estimating the Q-function (3). The Q-function (3) in parametric form is given by 

 
*( , )

Tp p p T p

k k k k kQ x u z Gz   , (4) 

where [ ]
Tp p T T l

k k kz x u   with l m n  , p p p

k k kz z     is a quadratic polynomial or 

regression vector,   denotes the Kronecker product, and 
gl

   is the Q-function 

parameter vector formed by vectorization of the parameter matrix G  with ( 1) 2gl l l  , 

as given in Xu, Jagannathan, and Lewis (2012).  

The estimate of the Q-function (4), ˆ ( , )p

k kQ x u , by the QFE with periodically 

sampled state vector is expressed as 
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  ˆ ˆ ˆ( , )
Tp p p T p

k k k k k k kQ x u z G z   , (5) 

where ˆ gl

k   is the estimate of Q-function parameter vector   referred to as QFE 

parameters and 
ˆ ˆ

ˆ
ˆ ˆ

xx xu

k k

k ux uu

k k

G G
G

G G

 
  
  

represents the estimation of G . The Q-function is 

equal to the optimal value function *

kV  when the control input is optimal. Thus, we have

* *min ( , )
k

p

k k k
u

V Q x u . By Bellman’s principle of optimality, the optimal value function 

satisfies 

 * *

10 ( , ) ( , ) ,p p T p

k k k k k k kV V r x u r x u        (6) 

where 1

p p p

k k k     . Since the estimated Q-function (5) does not satisfy (6), the 

temporal difference (TD) error or the Bellman error is given by 

 ˆ( , ) .V p T p

k k k k ke r x u     (7) 

Instead of using iteration based techniques (Tamimi, Lewis, & Murad, 2007), it 

has been shown by Xu, Jagannathan and Lewis, (2012) that an optimal control input can 

be obtained by tuning QFE parameter ˆ
k  with the time history of the Bellman error in an 

forward-in-time and online manner. Next, the optimal control using output feedback is 

introduced. 

2.2 OUTPUT FEEDBACK DESIGN 

The value function for (1) using the output can be redefined as 

( , )y p

k j jj k
V r y u




 where ( , )

Ty p p y p T

j j j j j jr y u y P y u Ru  is the cost-to-go and 
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o op pyP


  is a positive definite matrix to penalize system output.  The value function 

can be rewritten by using the output equation in (1) as 

 
T Tp T y P T p P T

k j j j j j j j jj k j k
V x C P Cx u Ru x Px u Ru

 

 
     , (8) 

where T yP C P C .  From (8), the state feedback Q-learning based design can be utilized 

to the output feedback case by reconstructing the  system state vector. An adaptive 

observer similar to the one from Zhao, Xu, and Jagannathan (2014) can be used to 

reconstruct the system state and is given next. 

Consider the following adaptive observer dynamics  

 1
ˆ ˆ ˆ ( ), ,o o p o o o

k k k k k k k k k kx A x B u L y y y Cx                 (9) 

where o n

kx   and opo

ky   represent the observer state and the output vectors, ˆ n n

kA   

and ˆ n m

kB   denote the estimated observer system matrices and ˆ on p

kL


  is the 

estimated observer gain matrix. The observer matrices are estimated using a parametric 

form given by 

 1
ˆo T

k k kx    ,      (10) 

where ˆ ˆ ˆˆ [ ]T q n

k k k kA B L    is the estimated observer parameter matrix, 

[ ]
T To T y T q

k k k kx u e    is the regression vector, y p o

k k ke y y   is  the observer output 

error, and oq n m p   . The estimated observer parameter matrix ˆ
k  is tuned at every 

sampling instant k   so that the state estimation error given by x p o

k k ke x x   converges 

to zero.  

The event sampled system and observer state vector require a redesign of the 

optimal controller as discussed next. 
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3. PROBLEM STATEMENT 

In this section, the event sampled optimal control problem is formulated. The 

estimation and stability issues with event sampled state vector and parameter tuning are 

addressed for both state and output feedback design. 

3.1 STATE FEEDBACK DESIGN 

The structure of an event-based Q-learning scheme is illustrated in Figure 1. Here, 

the system state vector p

kx  and the control input ku  are sent to the controller and the 

plant, respectively, only at the event sampling instants (when the switches are in closed 

position). 

Let the subsequence ik , 1,2,i  , of k  represent the event sampling instants 

with 0 0k   being the initial sampling instant. The system state vector
i

p

kx , 1,2,i   sent 

to the controller, is held by a zero order hold (ZOH) until the next sampling instant and it 

is expressed as  

 

 

Figure 1. Q-learning based optimal feedback regulator with aperiodic update. 
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 (11) 

where c

kx  is the last held state at the ZOH. The error between the current system state 

vector, p

kx , and the last held system state vector, c

kx , at the ZOH is referred to as event 

sampling error and it is given by 

 ET p c

k k ke x x  , 1i ik k k   , 1,2,i  . (12) 

The event sampled instants are decided by comparing the event sampling error 

with a state dependent threshold (to be computed later) (Donkers & Heemels, 2012; 

Tabuada, 2007) referred to as triggering condition. The triggering condition is evaluated 

at every periodic time instant k  at the trigger mechanism and a decision is made whether 

or not to release the system state vector. The system state vector is released at the 

violation of the condition. Upon receiving the system states at the ZOH, the last held state 

is reset to the current measured value as in (11) and the event sampling error (12) is reset 

to zero for the next event.  

Our objective is to design an optimal controller by minimizing (2) with event 

sampled state vector. The event sampled optimal control input sequence for the cost 

function (2) when used with a Q-function can be written as  

 * * 1( ) ( )c uu ux p ET

k k k k ku K x G G x e     , 1i ik k k   .  (13) 

This optimal control input (13) is governed by ET

ke  and the estimation of G  using event 

sampled state vector. The Q-learning approach in Section 2 cannot be utilized directly to 

estimate the QFE parameter ˆ
k  or ˆ

kG with event sampled state vector due the following 

reasons.  
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    For the Q-function parametric form given in (4), the Q-function estimate by 

using the event sampled state vector  (11) , in contrast with (5),  is given by 

 ˆ ˆ ˆ( , )
Tc c c T c

k k k k k k kQ x u z G z   ,  1i ik k k    , (14) 

where [ ]
Tc c T T

k k kz x u and c c c

k k kz z    being the event sampled regression vector. The 

Bellman error with event sampled state can be represented as  

 ˆ( , ) ,V c T c

k k k k ke r x u   
1i ik k k   , (15) 

where ( , )
Tc c c T

k k k k k kr x u x Px u Ru   and 1

c c c

k k k     . The Bellman error (15) in terms of 

the periodic system state is rewritten as 

  ˆ ˆ( , ) ,, ,
V p T p p ET
k k k k k s k k k

e r x u x e      (16) 

where ˆ ˆ( , , ) (( ), ) ( , ) ( )p ET p ET p T c p

k k k k k k k k k k kx e r x e u r x u          . By comparing the 

event sampled Bellman error (16) with the periodic sampled one from (7), the error (16) 

includes an additional error ˆ( , , )p ET

s k k kx e  . This additional error consists of errors in 

cost-to-go, ( (( ), ) ( , ))p ET p

k k k k kr x e u r x u  and the regression vector, ˆ ( )T c p

k k k    which 

are driven by ET

ke . Hence, the accuracy of the estimation of QFE parameters depends 

upon the threshold for the event sampling error in the triggering condition. A smaller 

threshold value will limit the event sampling error and will ensure a better accuracy. On 

the other hand, this will lead to more events and in turn higher computation. Therefore, a 

trade-off has to be reached via a suitable triggering condition design. 
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3.2 OUTPUT FEEDBACK DESIGN 

In this case the observer states are sent to the controller at the event sampled 

instants. The event sampled observer state can be defined as 

 ,

1

, = ,

, ,
i

o

k io c

k o

k i i

x k k
x

x k k k 


 

 

 (17) 

where ,o c

kx  is last held observer state at the ZOH. The observer based event sampling 

error can be redefined as  

 , ,o ET o o c

k k ke x x  , 1i ik k k   . (18) 

Now to estimate the Q-function the event sampled observer state vector is used. 

The QFE by using (17) can be written as 

 
, , , ,

1
ˆ ˆ ˆ( , ) , ,

To c o c o c T o c

k k k k k k k i iQ x u z G z k k k      (19) 

where 
, ,[ ]

To c o c T T

k k kz x u  is the event sampled observer based regression vector. 

Similar to the state feedback case, the Bellman error using event sampled observer state 

vector (17) is given by 

 
, o, ,ˆ( , ) ,o V c T o c

k k k k ke r x u   
1i ik k k   , (20) 

where 
, , ,( , )

To c o c o c T

k k k k k kr x u x Px u Ru   and , , ,

1

o c o c o c

k k k     . 

This event sampled Bellman error can be expressed in terms of the periodic 

system state as  

 
, ˆ ˆ( , ) ( , , , ),o V p T p p x ET

k k k k k o k k k ke r x u x e e      (21) 

where ˆ ˆ( , , , ) (( ), ) ( , ) ( )p x ET p x ET p T c p

o k k k k k k k k k k k k kx e e r x e e u r x u           .  Similar to 

the state feedback case, the event sampled Bellman error is a function of observer event 
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sampling error ,o ET

ke and state estimation x

ke . Therefore, for the observer based design 

both a suitable triggering condition and update law to tune the observer parameters are 

needed.  

Further, due to the availability of the system and observer state vectors at the event 

sampling instants alone, the QFE parameters must be tuned at these aperiodic instants. The 

frequency of the parameter tuning is a function of the event sampling error and, hence, the 

triggering condition. From the above discussion, unlike the traditional event-triggered 

control (Tabuada, 2007), the design of the triggering condition should not only ensure the 

stability with a reduction in computation but also facilitate the estimation of QFE 

parameters with event sampled system and observer states. This makes the design 

involved especially the triggering condition and proof of stability. Next, the above 

mentioned issues are mitigated by using a novel design framework. 
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4. EVENT SAMPLED STATE FEEDBACK DESIGN 

4.1 PROPOSED SOLUTION  

In this paper, we propose an adaptive threshold for the triggering condition by 

using the estimated QFE parameters and system state vector given in (29). This 

orchestrates the estimation process along with reduction in computation and discussed in 

details in Remark 4.5.  The Q-function parameters are estimated locally at the trigger 

mechanism by a mirror QFE to evaluate the adaptive triggering condition. This saves 

transmissions of Q-function estimated parameters from the QFE at the controller to the 

trigger mechanism in case of an NCS. The mirror and the actual QFE operate in 

synchronism and initialized with same initial conditions.  Note that, the addition of a 

mirror QFE increases the computational load. But, the overall computation is reduced due 

to aperiodic execution of the control input and QFE parameter tuning law both at mirror 

and controller.  The time histories of the event sampled Bellman error is used in the 

tuning law. Further, as we wil see the previous state 1i

p

kx   in addition to the current state 

i

p

kx  is required for QFE parameter tuning, we propose to send both the states together to 

the controller at the event sampled instants. More discussion is given in Remark 4.1. 

4.2 CONTROLLER DESIGN AND APERIODIC LEARNING OF Q-FUNCTION 

Recall the event sampled QFE given in (14). The estimated control gain matrix 

now can be obtained from the QFE estimated parameter vector ˆ
k  or ˆ

kG  in (14). In 

terms of the estimated parameters, the control input is given by 
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 1
ˆ , ,c

k k k i iu K x k k k      (22) 

where 
1ˆ ˆˆ ( )uu ux

k k kK G G  is the estimated control gain.  

  The QFE parameter vector ˆ
k is tuned by using the history of the Bellman error 

(15) that is available at the event sampling instants. By using this, the auxiliary Bellman 

error at the event sampling instants ik k  is expressed as 

 ˆ ,V p T p

k k k k iZ k k    , (23) 

where  
1 1 1 1

1[ ( , ) ( , ) ( , ]
i i i i i j i j

p p p p j

k k k k k k kr x u r x u r x u
     

    and 
1

[
i i

p p p

k k kZ  


    

1
] g

i j

l jp

k  


   for ik k  with 0 j i  . The auxiliary Bellman error (23) uses the 

current estimated QFE parameter vector ˆ
k  to evaluate the error. This makes the learning 

faster. The number of previous value j  depends upon past experience and a value gj l  

is found suitable during simulation studies. A larger time history may lead to a faster 

convergence whereas it leads to higher computation. 

Next update law for the QFE estimated parameter vector ˆ
k , tuned only at the 

event sampling instants,  is given by  

 

1 1 1
1

1 1 1

1 1

ˆ , ,
ˆ

ˆ , ,

T

T

p V

k k k
k i

p p

k k k k

k i i

W Z
k k

I Z W Z

k k k

  
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 

 
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  

  

 (24) 

where 

1 1 1 1
1

1 1 1

1 1

,

,

T

T

p p

k k k k
k i

p p
k k k k

k i i

W Z Z W
W k k

W I Z W Z

W k k k

   


  

 


 

 


 

, (25) 
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with  0W I  , 0   a large positive value and I  is the identity matrix of appropriate 

dimension. Because of the aperiodic execution of (24), it saves computation when 

compared to the traditional adaptive Q-learning techniques (Xu, Jagannathan, & Lewis, 

2012). 

Remark 4.1. The QFE parameter tuning law (24) requires the state vectors 
i

p

kx   and 1i

p

kx   

for the computation of 
1

p

kZ 
 at  ik k  . Thus, both the state vectors are sent to the 

controller together at the event sampling instants as proposed.  

Defining the QFE parameter estimation error ˆ
k k  , the error dynamics 

using (24) , can be represented as 

 1

1

( ), ,

, .

T Tp V p p
k k k k ik k k

k

k i i

W Z k kI Z W Z

k k k




   
  

  

 (26) 

Remark 4.2. The QFE parameter estimation error 
k  will converge to zero if the 

augmented matrix p

kZ  satisfies the persistency of excitation (PE) condition (Green, & 

Moore, 1986). This can be achieved by ensuring the the regression vector p

k  satisfies PE 

condition. The definition of the PE condition is presented next for completeness. 

Definition 4.3. (Goodwin & Sin, 1984) A vector ( )kx  is said to be persistently exciting 

over an interval if there exist positive constants  ,  ,  , and 1dk   such that 

( ) ( )
d

k T

k kk k
I x x I


   




  , where I  is the identity matrix of appropriate dimension. 

A PE like condition for the regression vector p

k  can be achieved by adding an 

exploration noise to the control input ku  during the estimation process (Xu, Jagannathan, 

& Lewis, 2012).  
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The Bellman error V

ke  at the sampling instants in terms of  
k  can be computed 

by subtracting  (6) from (15) with c p

k kx x   for ik k . It is given by 

, .V T p

k k k ie k k     Thus, the auxiliary Bellman error (23)  at the event sampling 

instant becomes 

 , .V T p

k k k iZ k k     (27) 

This expression will be used for proving the asymptotic convergence of the QFE 

parameter estimation error presented next. 

Lemma 4.4. Consider both the QFE (14) and the tuning law (24) and (25) with an initial 

admissible control policy 
0

mu  . Let the Assumption 2.1 holds and the QFE parameter 

vector 0̂  be initialized to be non-zero in a compact set  . Under the assumption that 

the regression vector p

k   satisfies PE condition, there exists a constant 0   such that 

the QFE parameter estimation error k  converges to zero asymptotically when the event 

sampling instants ik   or, alternatively, k  . 

Proof.  Refer to Appendix. 

4.3 TRIGGER CONDITION AND CONVERGENCE 

The system dynamics (1) and the estimated control input (22) can be used to 

represent the closed-loop system dynamics as 

 1
ˆ ˆp p p ET

k k k k k kx Ax BK x BK e    ,  1ik k k   . (28) 

To ensure the closed-loop stability of the system and reduction in computation 

along with estimation of the QFE parameters, the following criterion given by 
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ETCET p
kk ke x , (29) 

is selected as the trigger condition where ETC p
k kx is the adaptive threshold,

22

max
ˆ(1 3 ) 3ETC

k k
B K     being the threshold coefficient, with 0 1   , and 

0 1 3  . To ensure ˆ
kK  in the threshold coefficient non zero while evaluating the 

triggering condition, the previous non-zero value for ˆ
kK is used when the estimated 

control gain becomes zero. The event sampled instants are decided at the violation of the 

condition (29). 

Remark 4.5. The threshold coefficient ETC

k  uses the estimated control gain matrix ˆ
kK

computed from the QFE parameter estimate vector ˆ
k . Thus, the trigger condition (29) is 

adaptive in nature and is implicitly driven by the QFE parameter error 
k . This 

facilitates the learning of the Q-function parameters by generating required event 

sampled instants. Once the QFE parameters converge to their target values the threshold 

coefficient becomes constant which is same as the traditional event-trigger condition 

(Tabuada, 2007).  This further implies that for different initial values of 0̂  in (24) and 

0W  in (25), the threshold will be adjusted accordingly to generate required number of 

events during the initial adaption phase.  

The following lemma is necessary before the main results can be claimed. 

Lemma 4.6. Consider the controllable linear discrete-time system given by (1).  Then 

there exists an optimal control input sequence, *

ku , such that the closed-loop dynamics 

are expressed as 
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2 2

*p p

k k kAx Bu x , (30) 

where 0 1   is a constant.  

Proof.  Consider the Lyapunov function ( )
Tp p p

k k kL x x x . The first difference along the 

system dynamics (1) is expressed as   
2 2 2

*( ) (1 )p p p p
k k k k k

L x Ax Bu x x      . 

 Since, the system is controllable and the optimal control input *

ku  is stabilizing 

(Lewis & Syrmos, 1995), the first difference   0kL x  . This implies the parameter    

should satisfy 0 1  .                                                                                                      ■ 

 

 

Figure 2. Evolution of the Lyapunov function at event sampling instants and inter-event 

times. 

 

Next, the asymptotic stability of the closed-loop system is shown by evaluating a 

single Lyapunov function s

kL  both during the event sampling instants and the inter-event 

times as shown in Figure 2. It is shown that, the Lyapunov function is not decreasing 

monotonically during both the cases. This is also not necessary to prove stability of event 

sampled systems as discussed by Wang and Lemmon (2011). The Lyapunov function 
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may increase during the inter-event times. We only need to show the existence of a 

piecewise continuous function  h k
 , such that 

   s

kh k L . for all k and  lim 0
k

h k


 .   (31) 

Theorem 4.7. Consider the closed-loop system (28), QFE (14), QFE parameter 

estimation error dynamics (26) along with the control input (22). Let the Assumption 2.1 

holds,  be an initial admissible control policy and the regression vector  

satisfies PE condition. Suppose the last held state vector, ,  and the QFE parameter 

vector,  are updated by using (11), (24) and (25), respectively, at the violation of the 

triggering condition (29). Then, there exists a constant  such that the closed-loop 

system state vector  for all  and the QFE parameter estimation error  for all 

non-zero  converge to zero asymptotically with event sampling instants 

or, alternatively, time instants  Further, the estimated Q-function

and estimated control input  as  

Proof.  Refer to the Appendix. 

The flowchart shown in Figure 3 illustrates the implementation of the scheme. 

Since, the initial event sampling instant is considered at , the initial system state and the 

state held by the ZOH are initialized with same value. The Q-function parameters both at 

the trigger mechanism and controller are also initialized with the same value. The system 

is operated with the initial control input. Then, the triggering condition is evaluated and 

the decision for releasing the system state is made if the event sampling error is greater 

than or equal to the threshold. The QFE both at the trigger mechanism and the controller 
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kx 0
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gets updated. Next, the control input is updated and sent to the plant and the time is 

incremented. If the event sampling error is below threshold the QFE and control input are 

not updated and time is incremented for next iteration. In the next section, the state 

feedback design is extended to an output feedback case using an adaptive observer. 
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Figure 3. Implementation of event sampled Q-learning using state feedback. 
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5. EVENT SAMPLED OUTPUT FEEDBACK DESIGN 

The placement of the observer, either at the plant or at the controller, plays a 

crucial role in the event sampled systems. An event sampled observer along with QFE at 

the controller will lead to a large number of event sampled instants for the observer state 

estimation error to converge to zero. From the computation and optimal performance 

point of view, we propose an adaptive observer at the sensor node. Since, the observer is 

connected to the sensor, it has access to the system output, p

ky , at every time instant 

k . Therefore, the observer parameters are tuned at every time instant k  unlike the 

aperiodic tuning in case of QFE. This further helps in faster convergence of the estimated 

observer state to the system state vector as mentioned in Section 3. 

5.1 OBSERVER DESIGN AND PARAMTER CONVERGENCE 

Consider the adaptive observer dynamics (9). The observer state estimation error 

dynamics by using  (1)  and (9) can be written as 

 1 ( ) ,x x T

k k k ke A LC e       (32) 

where [ ]T q n

k k k kA B L    is the observer parameter estimation error with 

ˆ
k k    , ˆ

k kA A A  , ˆ
k kB B B  and ˆ .k kL L L  The parameter matrix

[ ]TA B L 
q n



   is the ideal observer parameters where L  is the ideal 

observer gain matrix. The observability of the system in Assumption 2.1 guarantees the 

existence of an ideal observer gain matrix L  such that the matrix A LC  is Schur. 

Further, it is assumed that the observer gain L  satisfies 

2 2

min min0 min{ 1 2, (2 1)} 1o o

ol         where 0 ,l A LC   min min ( )Tc X C  , 
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min ( ) is the minimum singular value,  op n
X


  is a constant matrix, and 

min0 (1 ) 1T T

k k k k         ensured by the PE condition of the observer regression 

vector. Selection of these parameters ensures a faster convergence of the observer state 

error. 

The observer output error dynamics from (32) is given by 

  1

y x T

k k k ke C A LC e C     .     (33) 

A tuning law to tune the observer parameters at every sampling instant is selected as 

 1 1
ˆ ˆ ( (1 ))

To y T

k k k k k ke X         , (34) 

where 0o

   is the learning gain, and op n
X


  is a constant matrix to match the 

dimension and selected such that 1TX C  . The observer parameter estimation error 

dynamics can be computed from (34) as 

 1 1( (1 ))
To y T

k k k k k ke X         . (35) 

Lemma 5.1. Consider the adaptive observer (9) in a parametric form (10) and let the 

Assumption 2.1 holds. Assume the initial observer parameters 0̂  are initialized in a 

compact set  . Suppose the observer parameters are updated by the tuning law (34). 

Then, the observer state estimation error x

ke and the parameter estimation error k  

converge asymptotically to zero provided the regression vector k  satisfies PE condition 

and the learning gain satisfies
2

min min0 min{ 2, 2(1 || || )}o

kc c    . 

Proof.  Refer to the Appendix. 
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5.2 CONTROLLER DESIGN AND CLOSED-LOOP STABILITY 

Similar to the state feedback case, the QFE parameters are tuned at the event 

sampled instants. Therefore, the observer based Bellman error (20) at event sampled 

instants with ,o c o

k kx x  can be defined as ,o V

ke  ˆ( , ) ,o T o

k k k kr x u   ,ik k where 

( , )
To o o T

k k k k k kr x u x Px u Ru  and 
1

o o o

k k k      . The augmented Bellman error can be 

defined as 

 
, ˆ ,o V o T o

k k k k iZ k k    ,  (36) 

where 
1 1 1 1

[ ( , ) ( , ) ( , ]
i i i i i j i j

o o o o

k k k k k k kr x u r x u r x u
     

   and 
1 1

[ ]
i i i j

o o o o

k k k kZ   
  

     

for ik k  with 0 j i  . 

A tuning law to tune the observer based QFE parameter estimates at the event 

sampling instants is selected as 

 

o,

1 1 1 1 1

1 1

ˆ ( ), ,
ˆ

ˆ , .

T To o V o o
k V k k ik k

k

k i i

Z k kI Z Z

k k k

    

 

   
  

  

 (37) 

where o

V  is the learning gain.  The QFE parameter estimation error dynamics by using 

(37) with a forwarded time step can be represented as 

 

o,

1

1

( ), ,

, .

T To o V o o
k V k k ik k

k

k i i

Z k kI Z Z

k k k






   
  

  

 (38) 

The observer based Bellman error ( ,o V

ke ) by using (36) and  (6)  at the event 

sampled instants ik k  is expressed in terms of the parameter estimation error k  as 

, ( ) ( ) ( )o V T o T o p o p

k k k k k k ke f x f x          for ik k  where ( )
To o o

k k kf x x Px  and 

( )
Tp p p

k k kf x x Px . The observer based augmented Bellman error (36) can be rewritten as 
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 , ( )o V T o T o p o p

k k k k k k kZ Z Z F F       , ik k , (39) 

where 
1 1 1 1

[ ]
T T T

i i i i i j i j

o o o o o o o

k k k k k k kF x Px x Px x Px
     

  and 
1 1 1 1

[ ]
T T T

i i i i i j i j

p p p p p p p

k k k k k k kF x Px x Px x Px
     

 .  

The estimated control input (22) with the event-based observer state vector and 

the Q-function estimated parameters can be written as 

 
, ,

1
ˆ ˆˆ ( ) ,o c uu T ux o c

k k k k k k i iu K x G G x k k k       . (40) 

The closed-loop dynamics of the observer based system by using system dynamics  (1) 

and control input  (40), become 

 
,

1 1
ˆ ˆ ˆ( ) , .p p x o ET

k k k k k k k ix A BK x BK e BK e k k k        (41) 

Consider the observer event sampling error (18). The triggering condition by 

using the observer state is selected as 

 
,0, o ETCET o

kk ke x , (42) 

where
2, 2

max
ˆ(1 4 ) 4o ETC o

k ET k
B K     is the threshold coefficient, 0 1o

ET    and 

1 4  .  Similar to the state feedback case, to ensure the estimated control gain ˆ
kK  is 

nonzero the previous nonzero value is used to evaluate the threshold coefficient when the 

estimated gain ˆ
kK becomes zero. The event sampled instants are decided by the 

violation of the condition (42). 

Theorem 5.2. Consider the uncertain LTI discrete-time system (1), the adaptive observer 

(9), and the observer based controller (40) represented as a closed-loop system (41).  Let 

the Assumption 2.1 holds and the regression vectors k  and o

k  satisfy the PE condition. 

Suppose 0 uu  is the initial admissible control policy and the design parameters satisfy 
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0 1 3o

V   and 
2

min min0 min{ 2, 2(1 )}o

kc c    . Let the state vector ,o c

kx , the 

QFE parameter vector ˆ
k are updated, respectively, by (17) and (37) at the violation of 

the triggering condition (42).  Then, the closed-loop system state vector p

kx  and the 

observer state estimation error x

ke , the QFE parameter estimation error 
k , and the 

observer parameter estimation error k  converge to zero asymptotically for all 
0

p

xx  , 

0
ˆ

  , and  0
ˆ

  with event sampled instants ik   or, k  . Further, the 

estimated Q-function 
* *ˆ ( , ) ( , )p p

k k k kQ x u Q x u and estimated control input *

k ku u  as 

.k    

Proof.  Refer to the Appendix. 

In case of a discrete time system, the minimum inter-event time for both the state 

and the output feedback case is trivial and equal to the periodic sampling interval. 

The event sampled Q-learning scheme designed in the previous section can be 

applied to the NCS in the presence of the networked induced time varying delays and 

random packet losses. The introduction of random parameters due to the communication 

network requires a stochastic analysis frame work for the event sampled Q-learning 

scheme. A complete design procedure along with simulation results are provided in the 

Appendix A of the dissertation. It was observed that the proposed event sampled 

stochastic Q-learning scheme shown a 30% reduction in computation and 56% reduction 

in network bandwidth usage.  
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6. SIMULATION RESULTS 

The proposed optimal adaptive schemes are evaluated in this section by a 

numerical example. The benchmark example of the batch reactor is used here for 

simulation. The discrete-time version of the batch reactor with a sampling interval of 

0.01sT  sec is given by 

 
1  , p p

k k

p p

k k kx Ax B yu Cx   , 

 where

1.0142 0.0018 0.0651 0.0546

0.0057 0.9582 0.0001 0.0067
,

0.0103 0.0417 0.9363 0.0563

0.0004 0.0417 0.0129 0.9797

A

  
 
 
 
 
 
 

 

6

6

4.7798 10 0.0010

0.0556 1.5316 10

0.0125 0.0304

0.0125 0.0002

B





  
 

 
 
 

 

and 
1 0 1 1

0 1 0 0
C

 
  
 

. 

6.1 STATE FEEDBACK DESIGN  

The state feedback design was evaluated first. A quadratic cost function was 

chosen as in (2) with the penalty matrices 4 4P I   and 2 2R I   where I  denotes the 

identity matrix. The initial system states were selected as  0 0.1 0.1 0.3 0.5
T

x    . 

The initial parameter vector 
21

0
ˆ gl 
   was chosen at random from a uniform distribution 

in the interval [0, 1] . The design parameters were
52 10   , 0.3  , and 0.1  . The 

PE condition was satisfied by adding a zero mean Gaussian noise with the control input. 

The simulation was conducted for 10 sec with a fixed sampling interval of 0.01  sec or 

1000 sampling instants.  
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The event sampled optimal controller’s performance is illustrated in Figure 4. The 

convergence of the system state and the threshold to zero are depicted in Figure 4 (a) and 

(b), respectively. The triggering condition is shown in Figure 4(b) evolved during the 

inter-event times and resets to zero at the event sampling instants. The cumulative 

number of event sampled instants plotted in Figure 4 (c) was found to be 108 out of 1000 

sampling instants. This implies the mirror and controller QFE were updated only 108 

times. Thus, the computation was reduced when compared to the traditional Q-learning 

based systems. Table 1 shows the comparison of computational load in terms of the 

additions and multiplications and a saving of 72% of the computation observed in the 

event sampled system when compared to its periodic counterpart. 

 

 

Figure  4.  State feedback controller design: (a) convergence of state vector, (b) evolution 

of threshold and the event sampling error, (c) the total number of event sampled instants. 

 

The control input is plotted in the Figure 5 (a). Figure 5 (b) shows the convergence 

of Bellman error to zero implies the Bellman equation is satisfied and the optimality is 
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achieved with aperiodic tuning of the QFE parameters. The convergence of the QFE 

parameter estimation error to zero is shown in Figure 5 (c). 

 

 

Figure 5.  Optimal control input, (b) Bellman error, and (c) QFE parameter estimation 

error. 

 

Table 1. Comparison of computational load between traditional periodic sampled and 

event sampled system 

System 
Traditional 

periodic sampled 

Event-based non-

periodic sampled 

Samping  instants 1000 108 

Number of additions 

and  Multiplications 

at every sampling 

instant 

QFE 13 13 

Controller 3 3 

Update law(controller and 

trigger mechanism both) 
65 65 x 2 

Trig. Con (periodic 

execution) 
0 7 

Total number of Computation 81000 22768 

 

6.2 OUTPUT FEEDBACK DESIGN 

The output feedback design was evaluated by selecting the following simulation 

parameters. The adaptive gains for the observer were 0 0.01  , 0.2  , and 0.1o

ET  . 
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The observer parameters were initialized at random from the uniform distribution in the 

interval [0,0.5] . The initial observer states were given as 
0 [.02, .02,.03, 0.1]o Tx    . 

The remaining parameters for the state feedback were used here as well. 

 

 

Figure 6.  Output feedback controller design: (a) convergence of system states, (b) 

evolution of both the triggering condition threshold and the observer event sampling 

error, (c) the cumulative number of event sampled instants. 

 

The observer-based output feedback controller performance is illustrated in 

Figures 6 and 7. The system states and the threshold are converged to zero as shown in 

Figure 6 (a) and (b).  It was observed that the number of cumulative event sampled 

instants was increased to 115, as shown in Figure 6 (c), when compared to the state 

feedback case. This is due the additional uncertainty introduced by adaptive observer. 

The convergence of the observer based Bellman error and state estimation error are 

shown in Figure 7 (b) and (c). 
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Figure  7.  Evolution of (a) Optimal control input, (b) Bellman error, and (c) 

convergence of observer state error. 
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7. CONCLUSIONS 

In this paper, two optimal control techniques with event sampled state and input 

vector for an uncertain linear discrete time system were presented. Both the state and the 

output feedback designs were able to regulate the system state vector without needing the 

system dynamics. The triggering conditions ensured sufficient number of events in both 

the cases for estimation of the QFE parameters. The aperiodic tuning guaranteed the 

convergence of the QFE parameter estimation errors as proved by the Lyapunov 

technique. The simulation results for both cases validated the analytical results by 

revealing the convergence of the closed-loop parameters and the reduction in 

computation. It was observed that the cumulative number of aperiodic sampled instants 

was dependent on the initial QFE parameters. In addition, the output feedback design 

triggered a more number of events than did the state feedback case. 
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APPENDIX 

Proof of Lemma 4.4. The proof is carried out by considering both the cases of triggering 

condition, i.e., at the event sampled instants ( ik k  ) and inter-event times ( 1i ik k k   ), 

because of the aperiodic tuning of the QFE parameters. A single Lyapunov function is 

used to evaluate both the cases and the asymptotic stability is shown by combining at the 

end. 

Consider the Lyapunov function candidate given as 

 
1

,

T

k k kk
L W 


  . (A.1) 

where kW  is a positive definite matrix as defined in (25). 

Case I: At the event sampled instants ( ik k ) 

In this case, the QFE parameters are tuned by using (24) and (25) for the case 

ik k . The QFE parameter estimation error dynamics (26) with the augmented Bellman 

error  (27) , can be written as 

 
1

T

T

p p

k k k

k kp p

k k k

W Z Z
I

I Z W Z


 
   

  

. (A.2) 

Again, Eq.  (25)  can be expressed as  

 
1

1

T

T

p p

k k k
k k

p p

k k k

W Z Z
W W I

I Z W Z



  


. (A.3) 

Substituting (A.3) in (A.2), the QFE parameter estimation error dynamics become 

 
1

1 1k k k kW W 

    . (A.4) 

Consider the Lyapunov function (A.1). The first difference 
,k

L


  along (A.4) can 

be expressed as 
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1 1 1 1

1 1 1 1,
( ) .T T T

k k k k k k k k k k k kk
L W W W W W   

   
          

Substituting (A.2) in the above equation one can arrive at 

 
1

,

T

T

T
p p

k k k

k k k kk p p

k k k

W Z Z
IL W

I Z W Z





  
      

    

 

 

T

T

T p p

k k k k

p p

k k k

Z Z

I Z W Z

 
 


.  (A.5) 

The regression vector p

kZ  satisfies the PE condition as discussed in Remark 4.2. 

Therefore, it holds that 
min0 1

T

T

p p

k k

p p

k k k

Z Z
Z

I Z W Z
  


. The first difference in (A.5) by 

using the above observation is upper bounded as 

 
22

min,
0

kk
L Z


    . (A.6) 

This implies, the positive definite Lyapunov function 
,k

L


 is a non-increasing function 

i.e., 
, 1 ,i ik k

L L
  

 . 

Case II: During the inter-event times ( 1i ik k k    ) 

In this case, the QFE parameters are not tuned and held at their previous values. 

Consider the same Lyapunov function in (A.1). The first difference along (25) and (26)

for 1i ik k k    is given by 

 
1 1

1 1 1 1,
0, .T T

k k k k k k i ik
L W W k k k 

   
         (A.7) 

By Lyapunov theorem (Jagannathan, 2006), the QFE parameter estimation error 

k  remains constant during the inter-event times. Now by combining both the cases for 
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the interval 1i ik k k   , we will show that the QFE parameter estimation error converge 

to zero asymptotically.  

From Case I, the first difference (A.6) at the event sampled instants ik k   can be 

expressed as 

 
2 2

1 1 1 1

11 1 1 min 1 max,
( ) ( ) .

i ii i i i i i i ii

T T

k kk k k k k k k kk
L W W W W    

   
         (A.8) 

By using matrix inversion Lemma 
1 1 1(A )BD C A     1 1 1( )A B D CA B CA    

(Goodwin, & Sin, 1984), the inverse of (25) for ik k  can be expressed as 

 
1 1 1

1 (|| || )
T T T

i i i i i i i i i i

p p p p p p

k k k k k k k k k kW W Z I Z W Z I Z W Z Z  

       , 

where (|| || )
T T

i i i i i i

p p p p

k k k k k kI Z W Z I Z W Z  is positive definite matrix. Therefore, it holds that

1 1

min 1 min( ) ( )
i ik kW W  

  1

min 0( )W   and
1

max 1( )
ikW 



1

max ( )
ikW  1

max 0( )W  . By using the 

above relations, (A.8) satisfies 

2 2 2 2
1 1 1 1

1 1min 1 max min 0 max 0,
( ) ( ) ( ) ( ) .

i i i ii ii
k k k kk kk

L W W W W      

 
         (A.9) 

Now, comparing (A.6) with(A.9), it holds that 

 
2 2 2

1 1 2

1min 0 max 0 min( ) ( )
i i ik k kW W Z  

     . (A.10) 

From (25), 0W I  implies 1 1

min 0 max 0( ) ( )W W     . Then, (A.10) becomes 

  
2 2

2

1 min(1 ( ))
i ik kZ    . (A.11) 

Recalling Case II, k  remains constant during the inter-event time and from (26), 

we have 
1 1i ik k    , 1i ik k k   . Therefore, (A.11) can be rewritten as 

  
1

22
2

1 min 1(1 ( )
i ik kZ 

     .   
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Solving the difference inequality with initial value 
0 0 0k B


     and by comparison 

lemma (Chatterjee & Liberzon, 2006)  

 
2

1 2

1 0 , 1i i

i

k k
B B 

   
   , (A.12) 

where 2

min1 ( )Z    and 
, 1ik

B
 

 is a piecewise constant function and remains constant 

for thi  inter-event time. Since, 0 1  , 
, 1ik

B
 

 is converging sequence, i.e., 

1, 1 , 1
,

i ik k
B B

   
  1,2,i  and 

, 1
0

ik
B
 

  as i   . Therefore, 0k   with i  or 

ik  . Since ik  is a subsequence of k , the QFE parameter estimation error 0k   as 

k  .                                                                                                                                ■ 

Proof of Theorem 4.7. To show the asymptotic stability of the closed-loop system we 

will evaluate a Lyapunov function for both cases of the triggering condition and will 

show that (31) holds. Consider the Lyapunov function candidate 

 1 2 ,,p

s

k kx k
L L L


   , (A.13) 

where
,

T

p

p p

k kx k
L x x  and 

1

,

T

k k kk
L W 


   with 

2

1 max2B l


    and 2 2   where 

0 1   and l


 is a positive constants . 

Case 1.  At the sampled instants ( ik k ) 

We will evaluate each term in the Lyapunov function candidate (A.13) 

individually and combine them to compute the overall first difference, for simplicity. 

At the event sampled instants with 0ET

ke  , the closed loop system dynamics (28) 

can be expressed as  

 1
ˆ p p p

k k k kx Ax BK x   ,  ik k .  (A.14) 
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 Consider the first term in (A.13). The first difference, 
1 1,

T T

p

p p p p

k k k kx k
L x x x x    , 

along the system dynamics (A.14) with the relation 
* ˆ

k kK K K   and Cauchy-Schwartz 

(C-S) inequality ,  can be expressed as  

 
* *

,
2 ( ) ( ) 2 ( ) ( ) .

T T T

p

p T p p T p p p

k k k k k k k kx k
L x A BK A BK x x BK BK x x x       

With simple mathematical operations using Lemma 4.6 and norm, one can arrive at  

  
22 2

max,
1 2 2p

p p

k k kx k
L Bx K x     . (A.15) 

Next, considering the second term, 
,k

L


, in (A.13),  the first difference is same as 

in (A.5) of Lemma 4.4. 

 At the final step, combining the individual first differences (A.5) and (A.14), the 

overall first difference 1 2 ,,p

s

k kx k
L L L


       becomes 

  
22 2

max1 2 2
Ts T p pTp p p p

k k k k kk k k k k k
L B Z Zx K x I Z W Z         

Since the initial control input is admissible, kK  is a function of k  and p

kZ  is a 

function of p

kx , by Lipschitz continuity 
2 Tp T p pT p p

k k k k k k k k k
lK x Z Z I Z W Z

    holds 

where 0l

  is a positive constant. With the above facts and recalling the definition  1  

and 2
 
in  (A.13), the overall first difference  can be written as   

  
22

2

1 min1 2 0s p

k k kL x Z         , (A.16) 

where 0 1  , 0 1 2   and minZ is defined in (A.5).  By Lyapunov theorem 

(Jagannathan, 2006), the Lyapunov function is a non-increasing function, i.e., 1i i

s s

k kL L  . 
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Case 2.  During the inter-event times ( 1i ik k k   ) 

Consider the same Lyapunov function (A.13) as in Case 1. The system dynamics 

during the inter-event times become 

  1
ˆ ˆ= p p p ET

k k k k k kx Ax BK x BK e   , 1i ik k k   . (A.17) 

The first difference of the first term, with system dynamics (A.17), Lemma 4.6 and C-S 

inequality can be expressed as 

  
222 2

2 2

max max,

ˆ1 3 3 3 .p

p p ET

k k k k kx k
L x B K x B K e       

Recalling the triggering condition (29)  one can reach at 

   
2

2

max,
1 1 3 3p T

T p pT

k k k kp

kx k p p

k k k

Z Z
L x B l

I Z W Z




 
     


. (A.18) 

 Moving on for the second term, the first difference along (26) for 1i ik k k     

remains same as in (A.7). Combing the individual first differences (A.7) and (A.18), the 

overall first difference 1 2 ,,p

s

k kx k
L L L


       is expressed as 

   
2 22

1 1 max1 1 3 3s p

k k k
L x B l


         . (A.19) 

 From (A.12) in Lemma 4.4, k remains constant for 1i ik k k   . Thus, 

22

1 , 1i i
kk k

B  
   for 1i ik k k   . Substituting the inequality in (A.19), the first 

difference  

   
2

1 , 1
1 1 3

i

s p s

k k k
L x B

 
       , (A.20) 

where 
2

1 max, 1 , 1
3

i i

s

k k
B B l B
    

  . From (A.20), the first difference of the Lyapunov 

function 0s

kL  , as long as 
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    1, 1 , 1
1 1 3 p

i i

p s c

k k x k
x B B

  
     . 

By Lyapunov theorem (Jagannathan, 2006), the system state, p

kx  and QFE 

parameter error k  are bounded. Further, system state p

kx  converges to the ball of radius 

, 1p
i

c

x k
B


 in a finite time and  k  remains constant.  

The bound for the Lyapunov function (A.13) for 1i ik k k   can obtained by 

using the bounds for p

kx  and k  computed in (A.20) and (A.12),  respectively . It is 

given by 

 
2 2

, 1 2 , 1, 1
( ) ( )p

ii

c

L k kx k
B B B

 
    for 1i ik k k   .  (A.21) 

It follows that the Lyapunov function s

kL  for 1i ik k k    converges to the bound ,L kB  in 

a finite time and stay within ,L kB . 

Now, from Case I and Case II, we will show the existence of a function  h k  

such that (31) holds to prove the asymptotic convergence of  p

kx  and k . With this 

effect, define a piecewise continuous function 

   ,max{ , }s

k L kh L Bk  , k . (A.22) 

It is clear that   s

kh Lk   for all k .  From Lemma 4.4,  
, 1

0
ik

B
 

  with event 

sampled instants ik  . Using this relation and (A.20) in Case II , we have 
, 1

0
i

s

k
B
 

  

and, hence, 
, 1

0p
i

c

x k
B


  as ik  . Therefore, it follows form (A.21) that the bound 

, 0L kB   as ik  . Since, the Lyapunov function 1i i

s s

k kL L  for ik k  and ,

s

k L kL B ,
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1i ik k k   , 0s

kL    as  
i

k  .  Consequently, the upper bound functions   0h k   

as 
i

k  . Since ik  is a subsequence of k , by extension   0h k   as k  . 

 Finally, the convergence of  
* *ˆ ( , ) ( , )p p

k k k kQ x u Q x u  can be seen by considering 

   

* ˆˆˆ ( )

ˆ ˆ ,

p cpp c
k k kk kk k k

ETCp ET p p
kk k k kk kk k

Q Q

L Le x 

  

 

    

     
 

 where L  is a positive constant. Since, 0p

kx  and 0k   as k  , imply

* *ˆ ( , ) ( , )p p

k k k kQ x u Q x u . Similarly, to show *

k ku u , consider the difference 

 * * ˆ ccc c
k k kk k kk k k

u u C xK xK x K x 
     . 

 with 0C

  is a constant. Since 0k   as k  , implies * 0k ku u   as k  ,or 

*

k ku u  as k  .                                                                                                             ■ 

Proof of Lemma 5.1. Consider the Lyapunov function candidate given by, 

 , 3 ,,x

o o o

O k ke k
L L L    , (A.23) 

where  
,

T

x

o x x

k ke k
L e e  and , { }o T

k k kL tr   . The positive constant 
2

3 min

o

    where 

min0 (1 ) 1T T

k k k k         is ensured by the PE condition of the regression vector as 

discussed in Remark 4.2.  

Consider the first term, 
,

T

x

o x x

k ke k
L e e , of the Lyapunov function (A.23).  The first 

difference,  
1 1,

T T

x

o x x x x

k k k ke k
L e e e e    , along the state estimation error dynamics (32)  

becomes 

    
,

( ) ( ) .
T

x

T
o x T x T x x

k k k k k k k ke k
L A LC e A LC e e e           
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After simple mathematical manipulation with C-S inequality and norm, the first 

difference can be written as  

 
2 2 22

0,
(1 2 ) 2 .x

o x

k k ke k
L l e        (A.24) 

where 0l A LC   and 2

01 2 0l  by selecting 0 1 2ol  . 

Considering the second term,  , { }o T

k k kL tr   , the first difference along the 

dynamics of the observer parameter estimation error (35) becomes 

    , 1 1( (1 )) ( ( ) (1 )) .
T To o y T T o y T T

k k k k k k k k k k k k kL tr e X e X tr                      

After simple mathematical operations using the output error dynamics (33), C-S 

inequality and the fact
2 2

(1 ) 1k k   , the first difference is upper bounded as  

 

   

 

 

2

2

, min (1 ) 2 (1 )

2 ( ( ) ) ( ( ) )

(( ) )(( ) )

o o T T T o T T T

k k k k k k k k k k k k k

o T x T x T

k k

o x x T T

k k

L c tr tr

tr X C A LC e X C A LC e

tr A LC e A LC e C X

  





             





     

  

  

 

 
222 2

min min 0( 2 ) (1 2 )o o o o x

k kc l e             . (A.25) 

Eq. (A.25) is reached by using the definition min  from (A.23).  

The overall first difference , 3 ,,x

o o o

O k ke k
L L L     , from (A.24), (A.25) becomes 

2 22 2 22 2 2

, 3 3 min min 0(1 2 ) 2 ( 2 ) (1 2 ) .o x o o o o x

O k o k k k k kL l e c l e                     

Substituting 3  from (A.23),  the overall first difference  

 
2 2

, 1 2

o x

O k k kL e      . (A.26) 

where   2 2 2

1 0 min1 2 ( )o

ol l       and 
22

2 min min( 2 2 )o o o

kc           for brevity. 

Note that, 1 0   and  2 0  by the choice of 
o

  and ol  defined earlier. 
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The overall first difference (A.26)  of the Lyapunov function (A.23)  is less than 

zero, i.e., , 0O kL  . Therefore, by Lyapunov theorem (Jagannathan, 2006), 0x

ke   and  

0k   as k   .                                                                                                            ■ 

Proof of Theorem 5.2. Similar to the state feedback case, we will consider both the cases 

for the triggering condition to show that (31) holds by defining an upper bound function. 

Case 1.  At the event sampled instants ( ik k ) 

 Consider the Lyapunov function candidate given by 

 
2

1 , 1 2 2,1, 2 ,,
,p

o o o o o o

k o O k o O kk kx k
L L L L L L   

      (A.27) 

where 
,

,
T

p

o p p

k kx k
L x x

1,
,o T

k kk
L


  2

2,
( ) ,o T

k kk
L


    
2

2, ,( ) ,o o

O k O kL L and ,

o

O kL  is given in 

(A.23). The constant coefficients are defined as  

 

 

    

2 2

1 max 1 4 3 1

2

1 max 3

2 2 2

2 max 3 4 3 3 3 1 12

2 2

max 3 32

2 6 ,

4 , ,

6 2 2 1 ,

8 (2 )

o

o

o M

o

B K

B l

B

B l

 



     

 



 



 

   

 

     

  

 

 where 1 0  and 2 0  as defined in (A.26) and
2

3 min
(1 3 )o o o

V V
Z     and 

2 2 2

4 (2 3 )( )o o

V V F M ZL L     . 

Considering the first term, 
,p

o

x k
L , of the Lyapunov function (A.27), the first 

difference along the system dynamics (41)  for ik k  can be expressed as 

 
,

ˆ ˆ ˆ ˆ[( ) ] [( ) ] .
T

p

o p x T p x p p

k k k k k k k k k kx k
L A BK x BK e A BK x BK e x x        

After simple mathematical manipulation using C-S inequality, Lemma 4.6 and norm, the 

first difference leads to  
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 

22 2
2 2 2

max max,

4 4
2 2 2

max max

1 3 3 6

3 3 .

p
o

o

o p x

k k M kx k

x

k k

L x B l B K e

B l B e






      

  

 (A.28) 

where 
2 T

o

o p T o oT o o
k k k k k k k k

lK x Z Z I Z Z
     and * ˆo o

k kK K K   with *

MK K . 

Next, the second term, ,

o

O kL , of  the Lyapunov function, the first difference is 

same as in (A.26) of Lemma 5.1.  

Now, consider the third term, 
1,

o T

k kk
L


  . The first difference along the 

dynamics (38)  for ik k  , augmented Bellman error (39) and  C-S inequality, leads to  

 

1,

( )( )
(1 3 ) (2 3 )

( )( )
(2 3 ) .

T

T T

T

T o o T o p o p T
o o o o ok k k k k k k k

V V V Vk o o o o

k k k k

o p o p T
o o k k k k
V V

o o

k k

Z Z Z Z Z Z
L

I Z Z I Z Z

F F F F

I Z Z

   

 



     
     

 

 
 



 

Observing that min0 1
T To o o o o

k k k k
Z Z Z I Z Z   , which is ensured by using PE 

condition, 
o p x

Zk k k
LZ Z e  and 

o p x
Fk k k

LF F e  by Lipschitz continuity, the upper 

bound on the first difference can be represented as 

 

2 22 2 2 2

min1,

22

3 4

(1 3 ) (2 3 )( )

,

o o o o o o x

V V V V F M Z kkk

x

kk

L Z L L e

e

   

 


      

  

 (A.29) 

where 
2

3 min(1 3 )o o o

V V Z     and 2 2 2

4 (2 3 )( )o o

V V F M ZL L      for brevity. Note 3 0 

and 4 0   by selecting the learning gain 0 1 3o

V  . 

Considering the fifth term, 2,

o

O kL , the first difference using (A.26) can be 

expressed as  
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   

22 2

2, , 1 , , , ,

4 42

3 1 1 2 2

( ) ( ) 2

2 1 2 1 ,

o o o o o o

O k O k O k O k O k O k

x

k k

L L L L L L

e    

      

     
  (A.30) 

where 1(1 ) 0   and 2(1 ) 0   by definition.  

Finally, the first difference of the last term, 
2
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k kk
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where 32 0   since 0 1 3o

V  . 

At the final step,  the overall first difference 1 , 1 1,,p

o o o o

k o O k kx k
L L L L 

      

2
2 2, 2 ,

,o o

o O k k
L L

 
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From (A.32), the first difference of the Lyapunov function  0o

kL  . Therefore, 

by Lyapunov theorem (Jagannathan, 2006),  the Lyapunov function is a non-increasing 

function i.e., 1i i

o o

k kL L  .. 

Case 2.  During the inter-event times ( 1i ik k k   ) 

Consider the Lyapunov function o

kL  same as in Case 1. The first difference of the 

first term, along the system dynamics (41)  can be written as 
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Recalling the triggering condition (42) one can reach at 
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 Moreover, the first difference ,

o

O kL  remains same as (A.26) in Lemma 5.1.   

Moving on, the first differences 
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o

k
L
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  and 
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k
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 along the observer QFE parameter 

estimation error dynamics  (38) for 1i ik k k    are given by 
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Finally, the first difference of 2,
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O kL  is same as in (A.30). At the final step, the overall 
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where 
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 is a piecewise constant function.  
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 From (A.36),  the Lyapunov first difference 0 0kL   as long as, 
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Therefore, 0o

kL   as ik  or alternatively, k  . This implies   0oh k   

as k  .Finally, using the above results, it is routine to check, 
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k kQ Q  and 
*

k k
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II. ADAPTIVE NEURAL NETWORK BASED EVENT-TRIGGERED 

CONTROL OF SINGLE-INPUT SINGLE-OUTPUT NONLINEAR DISCRETE 

TIME SYSTEMS 

Avimanyu Sahoo, Hao Xu and S. Jagannathan 

Abstract — This paper presents a novel adaptive neural network (NN) control of single-

input and single-output (SISO) uncertain nonlinear discrete time systems under event 

sampled NN inputs. In this control scheme, the feedback signals are transmitted and the 

NN weights are tuned in an aperiodic manner at the event sampled instants. After 

reviewing the NN approximation property with event sampled inputs, an adaptive state 

estimator (SE), consisting of linearly parameterized NNs, is utilized to approximate the 

unknown system dynamics in an event sampled context. The SE is viewed as a model and 

its approximated dynamics and the state vector, during any two events, are utilized for 

the event-triggered controller design.  An adaptive event-triggering condition is derived 

by using both the estimated NN weights and a dead-zone operator to determine the event 

sampling instants. This condition both facilitates the NN approximation and reduces the 

transmission of feedback signals. The ultimate boundedness (UB) of both the NN weight 

estimation error and system state vector is demonstrated via Lyapunov approach. As 

expected, during an initial online learning phase, events are observed more frequently. 

Over time with the convergence of the NN weights, the inter-event times increase thereby 

lowering the number of triggered events. These claims are illustrated via simulation 

results. 

 

Index Terms - Adaptive control, event-triggered control, function approximation, neural 

network control.   
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1. INTRODUCTION 

Traditional periodic transmission of feedback control signals in a closed-loop 

networked environment requires a higher network bandwidth. Event-triggered control 

(ETC) [1]-[16], on the other hand, is emerged recently as an alternate method to reduce 

the network communication and controller execution.  In ETC, the aperiodic sampling of 

system state vector is proven to be advantageous computationally over periodic sampled 

control schemes [1].  

The ETC technique allows the system errors to increase to a predefined threshold 

before transmitting the feedback signals. The threshold is designed to both avoid 

instability and meet a certain desired performance. Therefore, the transmissions of the 

feedback signals and control input are reduced while achieving a desired control 

performance. These transmission instants are usually referred to as event sampled instants 

or simply event-triggered instants [2]. The condition under which a decision is made to 

transmit the feedback and control signals is known as event-triggering condition [2]. The 

event-triggering condition is normally a function of the system state error which is 

referred to as event-trigger error [2]-[13] along with a state dependent threshold.   

In an earlier work [2] on ETC, the authors assumed input-to-state stability (ISS) of 

the system with respect to the event-trigger error for designing an event-triggering 

condition. It was shown that the event-based controller ensured the asymptotic stability of 

the system with reduced computation. Later, various other ETC schemes [1], [4]-[16] are 

developed for both linear and nonlinear systems. A majority of these ETC schemes are 

implemented by using a zero-order-hold (ZOH) [2]-[5] in order to maintain both the last 

transmitted state vector and control input until the next transmission.  
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An alternate to the ZOH scheme is the model-based scheme [7]-[9], [11], [14]-[15] 

where the state vector from a model is used to generate the control input within any two 

event-triggered instants. The model-based approach is shown to reduce network traffic 

more than a ZOH-based scheme at the expense of additional computation due to the 

model.  However, in all the ETC effort [2]-[11], the system dynamics are considered 

available a priori while a small bounded uncertainty can be tolerated [8]. In contrast, in 

our preliminary work [14]-[15], adaptive model-based schemes both for uncertain linear 

systems and partially unknown nonlinear systems, respectively, were introduced.  

From the stability point of view and to account for the aperiodic transmissions of 

the feedback signals, several closed-loop modelling techniques are also presented. A 

representative list includes the piece-wise linear system model [11], the perturbed system 

model [8], the hybrid and impulsive [11] dynamical system models. All these modelling 

approaches utilized the Lyapunov method or its extension for the stability analysis and to 

design the event-triggering condition. 

In this paper, an adaptive model-based ETC scheme for a nonlinear discrete-time 

system in Brunovsky canonical form is presented. Both the internal dynamics and the 

control coefficient function are considered unknown. By using the approximation property 

of neural networks (NN) [20], in an event sampled context, an adaptive state estimator 

(SE) is designed.  The adaptive SE serves as a model of the system and both approximates 

the system dynamics and estimates the state vector. The approximated system dynamics 

and the estimated state vector are subsequently utilized for generating the control input, 

during any two event sampled instants.  
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A novel event-triggering condition is derived using the Lyapunov method of 

stability. The threshold in the event-triggering condition is designed as a function of both 

the NN weight estimates and the system state vector. Thus, the threshold becomes 

adaptive unlike the traditional threshold conditions [2]-[7] which are functions of system 

state vector alone. This modified adaptive event-triggering condition not only ensures the 

function approximation by using a non-periodic weight update law but also the stability.  

The event-triggering condition further uses a dead-zone operator to prevent the 

unnecessary triggering of events, due to the NN reconstruction error, once the system state 

is inside the ultimate bound.  

The contributions of this paper include: a) the event sampled NN approximation 

with model state vector, b) the development of a novel model-based adaptive NN ETC 

scheme, c) an aperiodic tuned NN-based state estimator (SE) or model, and, d) an adaptive 

event-triggering condition to ensure the stability and convergence of NN weight estimates.  

The completely uncertain system dynamics make the event-triggering condition 

design different from the traditional one [2]-[8] including partially unknown dynamics in 

[15] The stability of the event-triggered closed-loop system is proven by using the idea of 

switched systems as discussed in [10], [17]. The Lyapunov function is allowed to increase 

during the inter-event times but bounded. It is shown that the bound for the Lyapunov 

function during inter-event times converge to the ultimate value with events occurring. 

This enables the proposed NN-based adaptive event-triggered scheme to ensure stability in 

the presence of significant level of dynamic uncertainty.  It also reduces the network 

traffic with fewer numbers of triggered events when compared to a traditional discrete-

time system.   
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The remaining part of the paper is organized as follows. Section 2 revisits the 

event-based approximation and formulates the problem for the ETC of uncertain 

dynamical systems.  Section 3 details the design procedure for the NN-based adaptive 

ETC. The stability is claimed in Section 4. Before concluding in Section 5, the simulation 

results are presented in Section 6.  The Appendix details the proofs for the lemmas and 

theorems. 
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2. BACKGROUND 

This section presents a brief background on the traditional ETC and formulates 

the problem for adaptive ETC. 

2.1 BACKGROUND ON ETC 

Consider a controllable nonlinear uncertain discrete-time system in Brunovsky 

canonical form given by  

  (1) 

where , , and denote the state vector, the 

input and the output of the system. The internal dynamics and the control coefficient 

function,  and , respectively, are unknown nonlinear smooth 

functions. The system is considered to be feedback linearizable [21] in the sense that 

there exists a diffeomorphism to transform the system into a linear form. 

The system (1) can be written in simplified form as 

 , (2) 

where  and .  

The system dynamics (2) can be rewritten in a compact form as 
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where  and  are the augmented system 

dynamics and input vector,  respectively.  These augmented forms are utilized in the 

model development and controller design. To design a controller by using feedback 

linearization, the following assumption is required. 

Assumption 1[18]: The nonlinear function  is lower bounded, i.e., 

 where  is a known positive constant and   denotes the absolute 

value.  

For the system (1), under complete knowledge of system dynamics, a feedback 

linearizable controller of the following form 

 , (4) 

yields an asymptotically stable closed-loop system. The closed-loop dynamics can be 

written as 

 , (5) 

where  is the ideal control input. The stabilizing control input is given by  

where  is the control gain vector. The control gain vector  

can be designed to ensure  is Schur via suitable pole placement design. The closed-

loop system matrix can be written as . For the 
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sampled system state  for implementation along with  and . In contrast, 

our main objective in this paper is to implement the controller (4) in the event sampled 

context without the knowledge of the system dynamics. 

 In the case of traditional ETC, the system state vector  is transmitted to the 

controller only at the event sampled instants. Define a subsequence  of the discrete 

sequence of time instants , referred to as event sampled instants. The events are 

triggered at  ,  with the first event occurring at the time instant  . The 

system state vector, , is transmitted through the communication network and held by a 

ZOH till the next transmission at  . The last held state,  for  at the ZOH 

is piecewise constant and used for the controller implementation.  

The event sampled instants are determined at the trigger mechanism by evaluating 

the event-trigger error against the threshold value. The deviation between  and the last 

transmitted state  is usually referred to as the event-trigger error, . This is 

represented as 

 ,  , .  (6) 

Though event-triggering condition is evaluated periodically at all , the state vector 

is transmitted to the controller only at the event sampled instants determined by the 

violation of the event-triggering condition.  
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the universal approximation property of the NN is revisited for event-based sampling in 

the next subsection. 

2.2 PROBLEM FORMULATION 

The problem of ETC is formulated in this subsection by addressing event sampled 

NN approximation and transmission of state vector. 

2.2.1 Event Sampled Neural Network Approximation. According to the 

universal approximation property [20] of the NN, a nonlinear smooth function  

can be approximated in compact set for all . A linearly parameterized NN 

[20] with two hidden layers can be used for the purpose. The two layer NN can consists 

of a layer of randomly assigned constant weights, , in the input layer and tunable 

weight matrix, , in the output layer. It has been proven that by randomly selecting the 

input layer weights, the activation function forms a stochastic basis [20].  Thus, the NN 

approximation property holds [20] for all inputs  belong to a compact set . 

The function  with the linearly parametrized NN can be represented as 

 ,    (7) 

where  is the NN target weight matrix. The randomly assigned input weight 

matrix is denoted by  and   is the activation function vector. The NN 

reconstruction error, the number of hidden layer neurons, and the number of inputs are 

denoted by , , and , respectively. So far in the literature, the universal NN 

approximation property considers the availability of  at all-time instants k  .  
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In the case of an ETC, the approximation of the function at event sampled instants 

 can be expressed as [16] 

 ,  (8) 

where  is the activation function with event sampled state vector, .  The 

reconstruction error at event sampled instants is given by . Note that, the 

approximations (7) and (8) become equal if the events are triggered at all-time instants. 

Since the events are occurring in an aperiodic manner, the function  for  

can be expressed as 

 , , , (9) 

where  is the event sampled reconstruction error computed next. 

Consider the periodic approximation of the function  as in (7) . By adding 

and subtracting  and definition (6), it can be rewritten as 
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sampled state vector,  , and the event-trigger error . Therefore, to approximate a 

function with a desired level of accuracy in an ETC context, the event-trigger error, , 

must be kept small. This can be achieved by designing a suitable event-triggering 

condition.  Higher is the number of event sampled instants, better will be the NN 

approximation.  However, this will increase the number of transmissions leading to 

higher network bandwidth usage.  

The NN estimation of the function for ,  can be written 

as 
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where  is the NN weight estimate. The second term 

 is an additional error in estimation and a function of 

event-trigger error. 

It is important to mention here that the event-based aperiodic transmission 

precludes the traditional periodic NN weight update [20]. The NN weights must be tuned 

in an aperiodic manner only at the event sampled instants,  with the latest 

measuring state vector. This, further, requires a suitable event-triggering condition. 

From the above discussion, the accuracy of NN approximation, the reduction in 

transmissions, and the system stability depend upon the event-triggering condition. Thus, 

a trade-off must be reached through a careful design of the event-triggering condition. As 

a solution, the threshold of the event-triggering condition is made adaptive in contrast 

with the fixed threshold utilized in traditional ETC design with known dynamics [2]-[5]. 
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An alternate to this ZOH based technique is the model-based approach and discussed 

next. 

2.2.2 Model-base ETC. The structure of a model-based event-triggered control 

(MBETC) scheme [7]-[9], [11] is illustrated in Figure 1. 

 

 

Figure 1.  Structure of the traditional MBETC system. 

 

 Traditionally, a system model (known a priori) generates the state vector between 

the event sampled instants. The model state vector is subsequently used by the controller 

to update the control input periodically in contrast with a ZOH ETC. The event sampled 

instants are determined by the deviation of the model state from the measured system state 

vector due to model uncertainty or disturbance. The measured system state vector is 

transmitted at the event sampled instants to reinitialize the model state vector. 

The event-trigger error for a MBETC scheme can be redefined as the difference 

between the measured system state and the model state vector. It is given by 

  , , (12) 

where  is the model state vector. The reinitialized model state vector at the trigger 

instants can be represented as 
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 ,  , , (13) 

and then it evolves with model dynamics during the inter-event times for . 

Since the system dynamics in (1) are uncertain, the traditional model-based ETC 

framework cannot be directly used. This requires an adaptive NN scheme to construct the 

model or SE.  Further, the model dynamics must also be approximated in the MBETC 

context similar to the ZOH based case as discussed before. The detailed design procedure 

is presented next. 
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3. MODEL BASED ADAPTIVE ETC DESIGN 

The adaptive MBETC scheme for an uncertain nonlinear discrete-time system is 

proposed in this section. We assume a communication network between the sensor and 

controller but without packet losses and delays. This assumption is consistent with the 

ETC literature [9], [11] for the purpose of controller design.  

 

 

Figure 2.  Structure of the adaptive METC system. 

 

The structure of the traditional MBETC, shown in Figure 1, is modified for an 

adaptive MBETC and shown in Figure 2. A NN-based adaptive model or SE is included 

not only to estimate the state vector but also to approximate the unknown system 

dynamics. An adaptive event-triggering condition is also proposed using the SE’s 

estimated NN weights and the system state. Therefore, a mirror SE at the trigger 

mechanism is used to evaluate the event-triggering condition. This mirror SE estimates 

the NN weights locally at the trigger mechanism to avoid the transmission of the NN 

weight estimates through the communication network. The mirror SE operates in 

synchronism with the SE at the controller.  At the violation of the triggering condition at 

, the system state  and , are transmitted together. The received state vectors 
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are used to update the NN weights at trigger instants in an aperiodic manner. Then, the 

event-trigger error, , in (12) is reset to zero for the next cycle of triggering. The 

detailed design procedure for the NN-based adaptive MBETC scheme is presented next. 

3.1 ADAPTIVE ESTIMATOR AND CONTROLLER DESIGN 

The dynamics of the adaptive SE can be expressed as 

 ,  , , (14) 

where  represents the estimated state vector. The 

functions 
 
and  represent the approximation of the nonlinear 

functions  and , respectively. The system state vector, , is 

available intermittently only at . Thus, the approximation of the nonlinear functions 

are express as  and  with the estimated state vector, . Further, as proposed, 

the SE sate vector is reinitialized as in (13). 

The dynamics of the SE in (14), in an augmented form as in (3), for both inter-event 

times and trigger instants using (13), can be represented as  

  (15) 

where  and .   

Consider the augmented system dynamics (3). The nonlinear function, , can 

be approximated in the event-triggered context, similar to (8) and (9), using the SE state 

 as input to the NN.  Hence, can be expressed as 
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 ,  , , (16) 

where 2 1[ ]T T T l

f g
W W W    is the unknown target NN weight matrix with l

f
W   

and l

g
W   represents the target weights for  and .  The event-based 

activation function matrix is denoted by    where 

 and  are randomly assigned constant weights at the input layers, and 

 and  represent the NN activation functions for  and , respectively.  The 

input matrices can be selected as . Then, .  

The event-based reconstruction error using SE state vector is denoted by 
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respectively. The additional error term, as in the case of ZOH based approximation in (9), 

is given by . 

The actual NN estimation of the function, , with SE state, , can be 

written similar to (11) for  as 
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Remark 1: The error term , both in  (16) and (17), is the result 

of the model state  as input to the activation function during  instead of 

system state  . In the case of a traditional NN based model [20], where the system state 

is used periodically, this error is not present. Since the activation functions are smooth 

functions, this error can be represented in terms of event-trigger error,  by using the 

Lipschitz continuity as given next.  

Assumption 2 [20]: The target weight vector  , the NN activation function  and 

the reconstruction error  are bounded above  satisfying , and 

 where , , and  are positive constants. 

Assumption 3: The NN activation function is Lipschitz continuous on a compact 

set for all  . Then, there exists a constant  such that  

 are satisfied where  is a constant.  

The SE dynamics (15) by NN approximation can be expressed as 

  (18) 

The event-based control input with the estimated SE state vector, , and the SE 

dynamics (15), can be represented as 

  (19) 
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The control law using the approximated dynamics from (18) is given by 

  (20) 

To ensure the control law (20) is well-defined, i.e.,  at all-time instants , 

the estimate  is defined as 

  .  (21) 

The augmented function approximation error can be written from (16) and (17) as 

     (22) 

where  with  and  are the function 

approximation errors for  and , respectively. The NN weight estimation error is 

denoted as . 

3.2 EVENT TRIGGER ERROR DYNAMICS AND APERIODIC UPDATE LAW 

The dynamics of the event-trigger error (12)  using (3) and (15) for  
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 , , (24) 

where  and  for brevity. Similarly, the event-trigger 

error dynamics at the trigger instants using (3) and (18)  become  

 . (25) 

To ensure the convergence of the NN weight estimation error, , the NN weight 

update law in an event-triggered context is selected as  

 , , (26) 

where  is the learning rate and  is sigma modification term similar to that in 

traditional adaptive control [19]. The indicator function, , is defined as 

  (27) 

The indicator function enables the NN weights to be updated once an event is 

triggered, i.e., . The event-trigger error  is first used to update the NN weights in 

(26) and then reset to zero for the next trigger. As the trigger instants are aperiodic in 

nature, the NN weights are updated in a non-periodic manner, as proposed.  This saves 

the computation when compared to the traditional NN based control approaches [20]. 

The update law (26) needs both  and  at the trigger instant  for updating 

the NN weights and to reset the model state.  As proposed, both the current and previous 

state vectors are transmitted as a single packet at the trigger instants.  

The NN weight estimation error dynamics using (26) and forwarding one time step 
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 , . (28) 

The convergence of the NN weight estimation  requires the vector  in 

(28) satisfy the persistency of the excitation condition (PE) which is a well-known fact in 

traditional adaptive and NN based control [19]-[20], [23]-[24]. For completeness the 

definition of the PE condition is given below. 

Definition 1[22]: (Persistency of excitation) A vector  is said to be persistently 

exciting over an interval if there exist positive constants ,  ,    and  , such that 

 ,  (29) 

where  is the identity matrix of appropriate dimension.  

Remark 2: A PE like condition for  can be achieved by adding an exploration 

noise to the control input [25]. This keeps the control input and, in turn, the system states 

away from zero. Further, the activation function also satisfies PE and 

 holds. 

Lemma 1: Consider the adaptive SE (18) and the control law (20). Suppose the 

Assumptions 1 and 2 hold, the NN weights be initialized in a compact set and tuned by 

using (26), and the vector  satisfies the PE condition. Let  be the initial trigger 

instant,  be  trigger instant for an integer  and  is an integer representing 

the time instant. Then, the NN weight estimation error  is bounded for all time and 

will converge to the ultimate bound when  or, alternatively, for all time instants 

 provided the learning gains satisfy  and .  
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Proof: Refer to Appendix. 

Note that the ultimate bound can be made arbitrarily small by selecting the proper 

design parameters and number of neurons as discussed in Remark 5. Next, the main 

results are claimed. 
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4. EVENT-TRIGGERING CONDITION AND STABILITY 

In this section, the ultimate boundedness (UB) [20] of the closed-loop ETC 

system state vector and NN weight estimation error is presented by designing a suitable 

adaptive event-triggering condition. 

4.1 CLOSED-LOOP SYSTEM DYNAMICS 

The closed-loop dynamics of the ETC system can be derived by using (2) and 

(19). Consider the inter-event times, i.e., , . The closed-loop dynamics 

can be written as  

 

 

By using the NN estimation (17) , (18) and the function approximation error  (22), 

the closed-loop dynamics become 

  (30) 

Similarly, at the trigger instants, , ,  the closed-loop dynamics using 

(2), (3), (19) and (20) can be written as  

  (31) 

The closed-loop dynamics of the SE can be derived by using (14) and (19) as 

  (32) 

The flowchart in Figure 3 shows the implementation of the adaptive MBETC 

scheme designed in Section 4. 
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Figure 3.    Flowchart of the proposed event-triggered control system. 

 

4.2 MAIN RESULTS 

In this section, we claim the main results by designing an adaptive event-

triggering condition. The closed-loop stability of the adaptive MBETC is shown by 

evaluating a single Lyapunov function for both during the trigger instants and inter-event 

times. It is shown in [10], [17] that the Lyapunov function need not monotonically 

decrease both during the inter-event and event times [10]. Due to the aperiodic NN 

weight update, it is shown that the Lyapunov function may increase during the inter-event 

times but remains bounded. It is further shown that the bound during the inter-event times 

converges to the ultimate value with trigger of events. This is illustrated in Figure 4. 
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Figure 4.  Evolution of the Lyapunov function during event and inter-event times 

 

Consider the event-trigger error (12). We introduce the following condition as the 

event-triggering condition and given by 

 ,  (33) 

where  is the threshold coefficient 

and . The matrices  and  are positive definite matrices and satisfy the 

Lyapunov equation   with  as in Remark A.1. The minimum 

singular value of  is denoted as . The dead zone operator  is defined by  

  (34) 

with  the desired ultimate bound for the system state vector. The events are triggered at 

the violation of the inequality (33) .  
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Remark 3: The threshold coefficient  in (33) is a function of the NN weight 

estimate,  and gets updated by (26). Therefore, the event-triggering condition (33) 

becomes adaptive. This helps in generating the required number of events for the function 

approximation during the learning phase of the NNs as discussed in Section 2.2.1. 

Further,  is also function of the control gain . The choice of control gain  is 

based on the desired closed-loop performance and stability of the system such that  is 

Schur. This implies, the event-triggering condition is also driven by the system 

performance. Hence, for different choice of , the triggering condition will ensure the 

required number of events to achieve the desired performance.  

Remark 4: The dead-zone operator (34) is utilized in the event-triggering condition in 

order to reset the event-trigger error   to zero once the state vector is within the 

ultimate bound. This avoids unnecessary triggering of events due to the NN 

reconstruction error of the functions. 

Theorem 1: Consider the nonlinear discrete time system (1) along with the NN-based SE 

given in (18). Assume Assumptions 1 through 3 hold and the NN initial weight matrix 

 be initialized in a compact set.  Suppose the system state vectors,  and , are 

transmitted, the SE state vector, , is reinitialized and the NN weights are updated using  

(26) at the violation of the inequality (33). Let  be the initial trigger instant,  be  

trigger instant for any positive integer  and  is an integer represents the time 

instant. Then, the control input (20) ensures the closed-loop event-triggered system state 

vector, , the SE state vector, , and the NN weight estimation error, ,  are bounded 

ET

k


ˆ
k

W

ET

k
 K K

c
A

K

s

k
e

0
Ŵ
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for all time and converge to the ultimate bound for all trigger instants  or, 

alternatively, for all  provided learning gains satisfy  and  

. 

Proof: Refer to the Appendix. 

Remark 5: From the proof of Theorem 1 (see Appendix), the bounds on the system state 

vector, , and NN weight estimation errors, , depend upon the traditional NN 

reconstruction error, , and the design parameters,  and .  Through proper 

selection of the number of neurons in the hidden layer, and the design parameters  and 

, the bounds  and  can be made arbitrary small (see simulation results).  

   The minimum inter-event time, , where  for 

i  , implicitly defined by the event-triggering condition (33), is the minimum time 

required for the event-trigger error to evolve from zero and reach the event-triggering 

threshold over all inter-event times. In the case of a discrete-time system, which can be 

considered as discretized version of a continuous time system with a suitable fixed 

sampling time, trivially the minimum inter-event time is the sampling time [4]. Further, 

in our case of model-based adaptive NN ETC, minimum inter-inter time may be one 

sampling time during the learning phase but the inter-event times increases with the 

convergence of NN weight estimation error and thereby reducing the transmission. 
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5. SIMULATION RESULTS 

In this section, the proposed NN-based MBETC scheme is evaluated by using two 

examples. 

5.1 EXAMPLE 1 

A second order SISO nonlinear discrete time system was selected for simulations 

whose dynamics are given as 

  (35) 

where and . 

The following parameters were considered during the simulations. The initial 

states of the system and the SE were selected to be since first event is considered 

at .  Initial NN weights ,  and  were chosen randomly 

from a uniform distribution in the interval  with 15 neurons each in the hidden 

layers. The activation functions used were symmetric sigmoid functions    ( ) for 

both the NNs with learning gains  and  . The control gain 

 such that the matrix   is Schur. The event-triggering condition 

was derived from (33) with  and . The Lipschitz constant  was 

computed as  with . The system was simulated for 15 sec. with a 

sampling time of 0.01 sec, i.e., 1500 sampling instants. The UB for the system state 

vector was chosen to be .The simulation results are presented in Figure 5, 6 and 7.  
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Figure 5. Convergence of (a) state vector, (b) control input, (c) function approximation 

error , and (d) function approximation error . 

 

Figure 5 (a) shows the convergence of the system state vector close to zero with 

the event-based approximated control input in Figure 5 (b). The NN approximation errors 

of the nonlinear functions and  are shown in Figure 5 (c) and (d), 

respectively. Due to NN initial weights being far away from the target, large initial errors 

are noticed in the plot and finally they converge to a bound close to zero. The 

boundedness of these errors close to zero validated the event-based approximation 

discussed in Section 4. 

Next, the performance in terms of the triggering of events is plotted in Figure 6 

and 7. Figure 6 (a) shows the evolution of the state dependent event-trigger threshold and 

the error. The event-trigger error (see the zoomed figure in Figure 6 (a)) resets to zero 

once the error reaches the threshold and the system states were transmitted. Figure 6 (b) 

illustrates the count on the number of trigger instants that have occurred with respect to 

the total number of sampling instants. It was found that a total of 306 events occurred out 
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frequently at the initial phase as a result of large approximation error resulting from 

random initialization of NN weights. As the NN weights are updated and converge close 

to the target weights, inter-trigger times increase. As expected, changing initial NN 

weights resulted in different number of events for the convergence of the weights.  

 

 

Figure 6.  Performance of the model-based adaptive NN ETC: (a) evolution of event-

trigger threshold and event-trigger error,  (b) cumulative number of trigger instants with 

and without dead zone operator, (c) inter-event time, and (d) comparison of the data rate 

between the traditional periodic transmission and event-triggered transmission.  
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the proposed ETC, the data rate reduces over time since the transmissions are reduced 

and finally reaches to 100 bits/sec. This confirms a reduction in bandwidth usage and 

proves the effectiveness of the approach. Further, the NN weights are updated 306 times 

thus reducing the computation for approximating the unknown nonlinear functions when 

compared to traditional NN based approach. However, the use of mirror adaptive SE for 

evaluation of the event-triggering condition requires additional computation.  

A comparison between the trigger mechanisms with and without a dead zone 

operator, in terms of cumulative number of event-trigger instants, is presented in Figure 6 

(b). When the dead zone operator is not used, as shown in Figure 6(b) (dotted line), the 

events trigger continuously due to the NN reconstruction error even the system state 

vector is inside the ultimate bound. Hence, the dead-zone operator is necessary to reset 

the event-trigger error to zero once the state vector converge and stay inside the ultimate 

bound. This stops the unnecessary triggering of events as shown in Figure 6 (b) (bold 

line).  

 

 

Figure 7.   Cumulative number of events with different values of the learning gain and 

event-trigger parameter .  
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Further, the effect of different learning gains  and event-trigger parameters  

on the number of events is shown in Figure 7. As shown in Figure 7 (a), for different 

values of  the cumulative number of events is different. This is due to the change in 

convergence rate of the NN weight updates.  The number of cumulative triggers reduced 

with an increase in value  since the threshold value increases with an increase in . 

Note that Lyapunov stability is a sufficient condition. Therefore, the event-trigger 

threshold for  still maintains the stability of the system. 

5.2 EXAMPLE 2 

In this example, another second order system as in (35) was chosen where the 

system dynamics are given by  

  and  

The simulation parameters were as follows. The initial vales for the system and 

SE states were . The initial NN weights, ,  and  

were chosen randomly in the interval  with 16 neurons each in the hidden layers. 

Symmetric sigmoid functions were used as activation functions for both the NNs. Design 

parameters were selected as , , , ,  and  

. The system was simulated for 5 sec. with a sampling time of 0.01 sec, 

i.e., 500 sampling instants.  The ultimate bound threshold of system state vector was 

chosen to be .   

The convergence of the system state and the control input are shown in Figure 8 

(a) and (b), respectively. The NN approximation errors  and  are illustrated in Figure 
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8 (c) and (d), respectively.  The cumulative number of triggers was observed to be 80 out 

of 500 sampling instants implying the saving in network resources and computation. 

 

 

Figure 8.  Convergence of (a) state vector,  (b) control input, (c) function approximation 

error , and (d) function approximation error . 

 

 

Figure 9.  Performance of the model-based adaptive NN ETC: (a) evolution of event-

trigger threshold and event-trigger error,  (b) cumulative number of trigger instants vs the 

total number of sampling instants with and without dead zone operator, (c) inter-event 

time, and (d) comparison of the data rate between the periodic transmission and event-

triggered transmission. 
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From both the examples, it is clear that the adaptive triggering condition is able to 

generate required number of triggers for event-based function approximation with 

aperiodic update law. Further, the reduction in the number of transmission verified the 

saving in communication bandwidth. 
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6. CONCLUSIONS 

In this paper, a NN based adaptive ETC scheme for an uncertain nonlinear 

discrete-time system was introduced.  Approximation of system dynamics by using NN 

was accomplished in the context of reduced event sampled communication. Two linearly 

parameterized NNs approximate the unknown nonlinear functions quite satisfactorily.  

The novel adaptive event-triggering condition ensured the stability and desired 

performance of the complete uncertain system. In addition, the simulation results proved 

the efficacy of the proposed algorithm in terms of reducing the network traffic. It was 

observed that the number of triggered instants vary with initial NN weights and learning 

gain.  Though a stabilizing controller was designed, it is not optimal. Hence, the design of 

event-based optimal controller for uncertain systems will be as part of future research. 

  



101 

 

7. REFERENCES 

[1] K. Astrom and B. Bernhardsson, “Comparison of Riemann and Lebesgue sampling 

for first order stochastic systems,” in Proceedings of the 42st IEEE Conference on 

Decision and Control, vol. 2, Las Vegas, Nevada, USA, Dec. 2002, pp. 2011–2016. 

 

[2] A. Anta, and P. Tabuada, “To sample or not to sample: self-triggered control for 

nonlinear system,” IEEE Transactions on Automatic Control, vol. 55, no. 9,  pp. 

2030-2042,  Sep.  2010. 

 

[3]  P. Tabuada, “Event-triggered real-time scheduling of stabilizing control tasks,” 

IEEE Transactions on Automatic  Control, vol. 52, no. 9,  pp. 1680-1685,  Sep.  

2007.  

 

[4] A. Eqtami, D. V. Dimarogonas, and K. J. Kyriakopoulos, “Event-triggered control 

for discrete-time systems,” in Proceedings of the  American Control Conference, 

Baltimore, MD, USA, Jun.  2010, pp. 4719-4724.  

 

[5] M. Donkers and W. Heemels, “Output-based event-triggered control with 

guaranteed ℒ∞ -gain and improved and decentralised event-triggering,” IEEE 

Transactions on Automatic Control, vol. 57,  no. 6,, pp. 1362–1376, Jun. 2012. 

 

[6] J. Lunze and D. Lehmann, “A state-feedback approach to event-based control,” 

Automatica, vol. 46, no. 1, pp. 211–215, Jan. 2010. 

 

[7] C. Stocker and J. Lunze, “Event-based control of nonlinear systems: An input-

output linearization approach,” in Proceedings of the 50
th

  IEEE Conference on 

Decision and Control and European Control Conference, Orlando,  FL, USA, Dec. 

2011, pp. 2541–2546. 

 

[8] E. Garcia and P. J. Antsaklis, “Model-based event-triggered control for systems 

with quantization and time-varying network delays,” IEEE Transactions on 

Automatic Control, vol. 58, no. 2, pp. 422-434, Feb. 2013. 

 

[9]  E. Garcia and P. J. Antsaklis, “Parameter estimation in time-triggered and event-

triggered model-based control of uncertain system,” International Journal of 

Control, vol. 85, no. 9, pp. 1327-1342, Apr. 2012. 

 

[10] X. Wang and M. D. Lemmon, “On event design in event-triggered feedback 

systems,” Automatica, vol. 47, no. 10, pp. 2319-2322, Oct. 2011. 

 

[11] W. Heemels and M.  Donkers, “Model-based periodic event-triggered control for 

linear systems,” Automatica, vol. 49, no. 3, pp. 698-711, Mar.. 2013. 

 



102 

 

[12] X. Wang and N. Hovakimyan, “L1 adaptive control of event-triggered networked 

systems,” in Proceedings of the American Control Conference, Baltimore, MD,  

USA, Jun. 2010, pp. 2458-2463.  

 

[13] P. Tallapragada and N. Chopra, “On event triggered trajectory tracking for control 

affine nonlinear systems,” in Proceedings of the 50
th

  IEEE Conference on Decision 

and Control and European Control Conference, Orlando, FL, USA, Dec. 2011, pp. 

5377–5382.  

 

[14] A. Sahoo, Hao Xu, and S. Jagannathan, “Adaptive event-triggered control of an 

uncertain linear discrete time system using measured input-output data,” in 

Proceedings pf the  American Control Conference, Washington, DC, USA, Jun.  

2013, pp. 5692-5697. 

 

[15] A. Sahoo, Hao Xu, and S. Jagannathan, “Neural network-based adaptive event-

triggered control of affine nonlinear discrete time systems with unknown internal 

dynamics,” in Proceedings of the American Control Conference, Washington, DC, 

USA, Jun. 2013,  pp. 6433-6438. 

 

[16] A. Sahoo, Hao Xu, and S. Jagannathan, “Near optimal event-based control of 

nonlinear discrete time system in affine form with measured input output data,” in 

Proceedings of the  International Joint Conference on Neural Networks, Beijing, 

China, Jul.  2014, pp. 3671-3676. 

 

[17] H. Ye, A. Michel, and L. Hou, “Stability theory for hybrid dynamical systems,” 

IEEE Transactions on Automatic Control, vol. 43, no. 4, pp. 461–474, Apr .1998. 

 

[18] A. Yesildirek and F. Lewis, “Feedback linearization using neural networks,” 

Automatica, vol. 31, no. 11,  pp. 1659-1664,  Nov. 1995.  

 

[19] K. S. Narendra and A. M. Annaswamy, Stable Adaptive Systems. New York: Dover 

Publication, 2005.  

 

[20] S. Jagannathan, Neural Network Control of Nonlinear Discrete-time Systems. Boca 

Raton, FL: CRC Press, 2006.  

 

[21] H. Khalil, Nonlinear Systems, 3rd ed. New Jersey: Prentice Hall, 2002. 

 

[22] Michael Green and John B. Moore, “persistency of excitation in linear systems,” 

Systems & Control Letters, vol.  7, pp. 351 -360, Sep. 1986. 

 

[23]  G. C. Goodwin and K. S. Sin, Adaptive Filtering Prediction and Control. New 

York: Dover Publication, 2009. 

 



103 

 

[24] D. Gorinevsky, “On the persistency of excitation in radial basis function network  

identification of nonlinear system,” IEEE Transactions on Neural Networks, vol. 6, 

no. 5, pp 1237-1244, Sep. 1995. 

 

[25] H. Xu, S. Jagannathan, and F. Lewis, “Stochastic optimal control of unknown linear 

networked control system in the presence of random delays and packet losses,” 

Automatica, vol. 48, no. 6, pp. 1017-1030, Jun.  2012. 

  

http://scholar.google.com/scholar?oi=bibs&hl=en&cluster=2808134389320067587&btnI=1
http://scholar.google.com/scholar?oi=bibs&hl=en&cluster=2808134389320067587&btnI=1


104 

 

APPENDIX 

Proof of Lemma 1: The NN weights are updated only at the trigger instants and held 

during the inter-events times. Thus, the proof for the ultimate boundedness of the NN 

weight estimation error is carried out by evaluating a Lyapunov function candidate for 

both the cases as follows. 

Case I: At the event-triggered instants (  ) 

Consider the Lyapunov function given by 

   . (A.1) 

The first difference, , along the weight estimation error 

dynamics (28) with the indicator function  can be written as 

  

Substitute the error dynamics in (25). Applying Cauchy-Schwartz (C-S) inequality with  

definitions  and , the first difference satisfies 
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By using the inequality  and Frobenius norm, the first difference 

leads to  

 

Since  is ensured due the PE condition as discussed in Remark 2, the 

following inequality holds. .  The 

first difference using the above inequality leads to 

         

where  and . Dropping the first 

negative term, it holds that 

 ,  , ,  (A.2) 

where  by selecting . From (A.2), the first difference of the 

Lyapunov function, , is less than zero as long as . Therefore by 

using Lyapunov theorem [20], the NN weight estimation error  is bounded at the 

trigger instants provided the vector  satisfies the PE condition. 
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Case II: During the inter-event times (  , ) 

Consider the Lyapunov function in (A.1). Along the NN weight estimation error 

dynamics (28) with  , the first difference of   can be expressed as 

 . (A.3) 

From (A.3), the NN weight estimation error  is a constant during the inter-event times. 

Since, the NN weights are bounded at the trigger instants as demonstrated in Case I, and 

the initial weights are being finite, the weight estimation error, , is bounded during the 

inter-event times. 

 From both the cases, we need to show that the NN weight estimation error 

converges to the ultimate bound. The first difference (A.2) in Case I for   can be 

expressed as 

  

 .  

Rearranging the above expression one can express the above inequality as 

 . (A.4) 

It is clear that   by the choice of . Further,  during the 

inter-event times, from (A.3) in Case II, remains constant. Thus,  for  

 , . Therefore, (A.4) can be rewritten as 

 . (A.5) 
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Solving the difference inequality in (A.5) recursively, with initial NN weight estimation 

error , the NN weight estimation error in (A.5) can be expressed as 

 . (A.6) 

Therefore, the constant upper bound on the NN weight estimation error during the inter-

event times from (A.6) is given by 

 ,   (A.7) 

for , . 

The NN weights are initialized with a finite value and the target weights are 

bounded. Therefore, the initial NN weight estimation error  is bounded. 

Further, from (A.6),  is a converging sequence of piecewise constant functions since

 satisfies . Therefore, there exists an integer (number of events) such that 

for the number of events , the upper bound  converges to the ultimate bound, 

i.e.,  for all event-trigger instants  where  from (A.2). 

Consequently, from Case I and Case II, the NN weight estimation error  is 

bounded for all time instants and converges to the ultimate bound when . Since  

is a subsequence of , the NN weight estimation error  is UB for  where 

 is a positive integer.                                                                                               ■ 

Proof of Theorem 1: The proof of the theorem is completed by considering two cases, 

i.e., at the event triggered instants and during the inter-event times. The first difference of 

the Lyapunov function is evaluated for both the cases and  combined to show the UB. 
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Case I: Event triggered instants (  ) 

Consider the Lyapunov function candidate given as 

 , (A.8) 

where     . 

The matrices  and  are symmetric positive definite matrices and satisfy the 

Lyapunov equations  and  ,  where . The 

matrices  and  are positive definite matrices. The constant coefficients are defined as  

   

 , 

 ,  and   

   

with  is the minimum singular value. 

For brevity we will compute the first difference of each term in (A.8) individually 

and combine them at the final step to obtain the overall first difference.   Consider the 

first term, . The first difference along the system dynamics (31) can be 

expressed as 

  

Applying C-S inequality, one can arrive at 
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where  and .  

Remark A.1: The Lyapunov equation  has a positive definite solution 

only when the matrix  is Schur. As per the definition of matrix  in (5), the 

control gain  can be selected to ensure  is Schur. 

By using the facts  and , the control input at the trigger 

instants given in (20) satisfies 

  (A.9) 

Substituting the inequality (A.9) and separating the cross product term using Young’s 

inequality, ,  the first difference is bound by 

 (A.10) 

Considering the second term of the Lyapunov function , the first difference 

along the closed-loop SE dynamics (32) with  at becomes 
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Moving on for the third term, the first difference 

can be written as

Substituting  from  (A.11)  reveals that 

  (A.12) 

Now, the first difference of the fourth term  in the Lyapunov function can be 

written from (A.2) in Lemma 1 and given by 

 . (A.13)  

Considering the last term , the first difference can be computed 

using (A.13) as follows 

  

Appling Young’s inequality  reveals that 
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where  . 

 From (A.15), the Lyapunov first difference  is less than zero as long as  

  or 

  . 

  Therefore, by using the Lyapunov theorem [20], the system state , SE state , 

and the NN weight estimation error   are bounded at the trigger instants. Further, when 

 or, alternatively, all trigger instants  where  is an integer representing the 

events, the system state , SE state , and the NN weight estimation error   are all 

ultimately bounded.  

Case II: During the inter-event times (  , ) 

Consider the Lyapunov function given in (A.8) in Case I. Similar to Case I, we 

will evaluate the individual terms separately. Note that the NN weights are not updated 

during the inter-event times and held at their previous values. 

 Consider the first term  of the Lyapunov function candidate (A.8). 

The first difference  along the closed-loop system trajectory (30) can be expressed 

as 
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Applying C-S inequality, the first difference can be represented as 

   

where  satisfies the Lyapunov equation  with . By using 

Frobenius norm and triangle inequality with the fact  reveals 

. . 

Applying C-S and Young’s inequalities and replacing

 from Assumption 3, the first difference can be 

expressed as 

  (A.16) 

By definition of the control input (20) for ,  the following inequality holds. 
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manipulation one can reach at 

 

       

   

, 1 1

1

8 ( ) ( ) 8

ˆ ˆˆ ˆ4 , ,,

k k k k

T TT T T

x k k k k k k k k k

s T s T

k k k k k k k

T

kk k

V x Qx BW x BW x B B

BKe B

u u u u

W x x BKe Bu uW x x

         

       



 
 

Q 1 1

T

c cA A Q    2c cA A

1B 

 

 

22 22

, min max 1 1

2

1

2 2
8 8

ˆ ˆ4 , .

k kx k k k k

s T

k k k kk

V Q x W u u

uBKe BW x x

     

  

 



 ˆ ˆ, s

k k k k kx x L x x L e   

 
2 22 22

, min max 1 1

2 2 2 22

1 1

2

2

8 8

ˆ8 8

s

x k k k k

s

k k

k

k k k

V Q x W K e

L W

u

u ue





       

   

1i ik k k  

22 2 2
2 2max max max

2 2 2

min min min

2 24 4
ˆ1 .kk k

KW
W x

g g
u

g

 
   

     
2 2 2 2 42 2 2 2

, min min max 1 min 1 max

2 222 22 2 2 2 2 2

1 1 max 1 min max max max

4 22 2 2 2 2 2 2 2

min max 1 max max min 1 max max 1 max

ˆ ˆ16 8

ˆ(8 8 ) 8 (1 (4 )( ))

(8 ) (4 ) .32( ) 8

x k

k

k k k

s

k k k

k

V Q x g K x g K x

K L W e g W W

g W K g W

u





        

         

          



113 

 

Recall the event-triggering condition (33) for the case when the system state 

vector is outside the ultimate bound. During the inter-event times the inequality (33) 

holds.  Substituting in the above first difference one can arrive at 

  (A.18) 

Consider the second term  of the Lyapunov function (A.8). The first 

difference  along the closed-loop SE dynamics  (32) for can be 

represented as 

 , (A.19) 

where the positive definite matrix  satisfies the Lyapunov equation .  

The first difference of the third term  can be written using (A.19) 

as 

   (A.20)  

 The first difference of the fourth term, ,  in (A.8) can be written 

from (A.3) and given as  

  (A.21) 

Therefore, the first difference of  from (A.21) is written as  

 . (A.22) 
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The overall first difference, , by 

combining (A.18), (A.19) , (A.20), (A.21), and (A.22), and recalling the definition of   

and , is upper bounded by 

  (A.23) 

where  

and with is piecewise constant bound of 

for  inter-event time from Lemma1. From (A.23) the overall first difference  is 

less than zero as long as  

   or  

.  

This implies, either the system state vector outside the ball of radius  or the 

SE state vector outside the ball of radius , both will converge to their respective 

bounds in a finite time. Since, inter-event times are followed by the trigger instants, the 

initial values of  , , and ,  during the inter-event times are the updated values 

from the trigger instants. It is shown in Case I that , , and ,  are bounded at the 

trigger instants. Therefore, the system and SE state vectors are bounded during the inter-

event times. Note that the function  in (A.23) is a piecewise constant function since 
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bounds for the system and the SE state vectors, , and , respectively, are piece 

wise constant functions. 

 During initial learning phase of the NN, the upper bound on the NN weight 

estimation error  in (A.7) may be large. Hence, the piecewise constant function  

and in turn , and  are of larger value. The system and SE state vectors inside the 

ball of radius , and , respectively,  may increase within these bounds. It follows 

that the Lyapunov function (A.8) may increase and bounded by the piecewise constant 

bound. The upper bound on the Lyapunov function using the upper bounds of the system 

state, SE state and NN weight estimation error can be expressed as 

 , (A.24) 

 for ,  .  

 To show the UB of , , and , we need to show the functions , , 

and converge to their ultimate values. The bounds , , and  are functions of  

. Since,  in (A.7) is a converging sequence, shown in Lemma 1,  and converges to 

 for all , the function  in (A.23) converges to the ultimate value, i.e., 

 for all  where  
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 Therefore, combining results from Case I and Case II,  the system state , SE 

state , and the NN weight estimation error  are bounded for all time and converge to 

the ultimate  bound  when  or with events occurring such that . Therefore, all 

the closed-loop system signals are UB for all time  since  is a subsequence 

of   where  represents the time instant.  

From both the cases of the proof and Lemma 1, the bounds for the system state 

vector, SE state vector and NN weight estimation error can be selected as 

, , and , respectively.      

Remark A.2: It is routine to check that for the case , in (21), the first 

differences in (A.15) and (A.23) also hold. Therefore, with similar arguments the closed-

loop event-triggered system is ultimately bounded.                                                            ■ 
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III. NEAR OPTIMAL EVENT-TRIGGERED CONTROL OF NONLINEAR 

DISCRETE-TIME SYSTEMS USING NEURO DYNAMICS PROGRAMMING 

Avimanyu Sahoo, Hao Xu and S. Jagannathan 

Abstract — This paper presents an event-triggered near optimal control of uncertain 

nonlinear discrete time systems. Event driven neuro-dynamic programming is utilized to 

design the control policy. A neural network (NN) based identifier, with event-based state 

and input vectors, is utilized to learn the system dynamics.  An actor-critic framework is 

used to learn the cost function and the optimal control input.  The NN weights of the 

identifier, critic and actor NNs are tuned once every triggered instant with aperiodic 

update laws. An adaptive event-triggering condition to decide the trigger instants is 

derived. Thus, a suitable number of events are generated to ensure a desired accuracy of 

approximation. A near optimal performance is achieved without value and/or policy 

iterations. A detailed analysis of nontrivial inter-event time is presented. An explicit 

formula to show the reduction in computation is also derived. The Lyapunov technique is 

used in conjunction with the event-triggering condition to guarantee ultimate 

boundedness of the closed-loop system. Simulation results are included to verify the 

performance of the controller. The net result is the development of event-driven neuro 

dynamic programming. 

 

Index Terms — Event-triggered control, Hamilton-Jacobi-Bellman equation, neuro-

dynamic programming, neural networks, optimal control. 
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1. INTRODUCTION 

Event-triggered control (ETC) [1]-[7] is evolved as an alternate control paradigm 

in the recent times. This control paradigm is found to be effective in terms of resource 

utilization. The ETC scheme uses events to sample the system state and execute the 

controller in an aperiodic manner. The aperiodic sampling and execution reduces 

computational costs for the closed-loop system.  In the case of a networked control 

system (NCS) [8], the ETC scheme saves network bandwidth due to the event-based 

aperiodic transmissions. The sampling and transmission instants, referred to as event-

trigger instants, are decided by using a state dependent criterion.  The threshold in the 

criterion is designed analytically via the Lyapunov stability technique. Thus, the event-

triggered paradigm saves resources, and maintains both stability and closed-loop 

performance. 

 Recently, various event-triggered control schemes [1]-[5] have been introduced in 

the literature for linear [3], [5] and nonlinear systems [2], [4].  Typically, in the event-

triggered control schemes [2]-[5], system dynamics are considered either completely 

known [2], [4]-[5], or with a small uncertainty [3].  In contrast, in our previous work [6], 

[7] an attempt has been made to design an event-based controller for systems with 

uncertain dynamics. In [6], the knowledge of system dynamics is partially relaxed by 

using an event-based neural network (NN) approximator. The NN based design is 

extended to the case of completely unknown dynamics in [7]. In both cases, the state 

dependent criteria, referred to as event-trigger conditions, are made adaptive. This is in 

contrast with traditional non-adaptive event-trigger conditions [2]-[4] in the literature. 

These adaptive criteria generated a required number of events during initial online 



119 

 

learning phase of NN. This facilitated the event-based approximation of the unknown 

dynamics with aperiodic weight update. A trade-off is observed between the accuracy of 

NN approximation and reduction in computation. However, these designs [6]-[7] have 

only considered stability without having any performance index to optimize.  

The traditional optimal control design approach [9] has also been studied in an 

event-triggered control context by the authors in [10]-[12]. The authors in [10] studied 

the optimal ETC in a constrained communication scenario by using the certainty 

equivalence principle. Further, the authors in [11] extended the results to an event-

triggered context with the help of a linear quadratic Gaussian (LQG) approach. The 

separation principle is used to design the optimal control input and the optimal 

transmission instants. However, these methods [10]-[11] use backward-in-time Riccati 

equation (RE) based solution with completely known system dynamics. 

Traditionally, adaptive dynamic programming (ADP) or neuro-dynamic 

programming (NDP) [13] techniques are used to design the optimal control policy in a 

forward-in-time and online manner. These techniques use the policy and/or value 

iterations to solve the Hamilton-Jacobi-Bellman (HJB) equation online. However, a 

significant number of iterations within a sampling interval are needed to maintain system 

stability resulting in high computational cost. Further, the knowledge of the control 

coefficient function is also necessary to compute the optimal control policy. 

For a finite-time [14] optimal control, the solution to the HJB equation (i.e., the 

cost function) becomes explicitly time varying. The terminal cost constraint must also be 

satisfied at the same time. The event-based sampling of the state vector and uncertain 
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system dynamics complicate the problem further. Therefore, NDP over the finite-horizon 

becomes more involved than in the infinite horizon case. 

 Motivated by the above limitations, in this paper, we propose a novel NDP 

technique to solve the fixed final-time optimal control. An event-triggered uncertain 

nonlinear discrete-time system is considered for the purpose of design. The proposed 

approach functions in a forward-in-time and online manner. Two NNs, in an actor-critic 

NN [15] framework, are used to approximate the time-varying cost function and the 

optimal control input. A NN identifier is used to relax the complete knowledge of system 

dynamics. A novel adaptive event-trigger condition is also developed which not only 

reduces the number of controller updates but also facilitates the NN approximation.  

Aperiodic NN tuning laws are introduced to update the identifier, actor and critic 

NN weights. The NN weights are updated once a triggered instant and held during the 

inter-event duration.  These aperiodic updates reduce the computation when compared to 

a traditional NN based schemes [16].  The Lyapunov direct method as in [4], [17] is used 

to prove the ultimate boundedness (UB) of the closed-loop event-triggered system. 

The contributions of this paper include: 1) the design of event-triggered finite-

time optimal control scheme for an uncertain nonlinear discrete time system, 2) the 

design of a novel adaptive event-trigger condition, 3) the development of aperiodic 

tuning laws to save computation, and 4) the demonstration of the closed-loop stability by 

using the Lyapunov technique. 

The rest of the paper is organized as follows. Section 2 presents the background 

along with the problem statement. Section 3 details the finite horizon event-based optimal 

control design. The main results are claimed in Section 4 and non-triviality of the inter-
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event times is discussed in Section 5. Simulation results are included in Section 6. 

Conclusions are drawn in Section 7. The appendix contains the detailed proof of the 

lemmas and the theorems. 
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2. BACKGROUND AND PROBLEM FORMULATION 

In this section, we present a brief background on the ETC. Subsequently, the near 

optimal control design is formulated. A discussion on the extension of NN approximation 

to event-based sampling is also presented. 

2.1 BACKGROUND ON ETC 

Consider the uncertain nonlinear discrete-time system represented as 

 1 ( ) ( )k k k kx f x g x u   ,          (1)                                                        

where n

kx   and m

ku   represent the system state and the control input vectors, 

respectively. The smooth functions ( ) n

kf x   and ( ) n m

kg x  denote the system 

dynamics that are considered unknown. Let the equilibrium point 0x   be unique in a 

compact set for all n

k xx  D .  The following standard assumption is necessary in 

order to proceed. 

Assumption 1: The system (1) is controllable and observable. The unknown control 

coefficient matrix ( )kg x  is bounded for all n

k xx  D  such that ( )k Mg x g  where 

0Mg   is a known, positive constant.  The state vector is available for measurement.  

In the event-triggered formalism, the system state vector 
k

x  is released and the 

controller is updated only when an event occurs. Hence, zero-order-holds (ZOH) are used 

to retain the last event-sampled state and the control input vectors until the next arrives. 

The error between the current measured state vector,  
k

x ,  and the state vector at the 

ZOH, kx ,  is referred to as event-trigger error. It is defined by 

 ,ET k k ke x x  . (2) 
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The event-trigger error (2) is used to determine the event-trigger instants by 

comparing it with a state dependent threshold.   A monotonically increasing subsequence 

of time instants 
1{ }i ik 


 with 

0
0k   can be defined as the event-trigger instants. The last 

held state vector, kx , at ZOH is updated at each ik k  for 1,2,i  with the current 

system state. Thus, the last held state vector can be written as 

 
1

,
ik k i i

x x k k k


   , 1,2,i  . (3) 

In an event-based framework, the control input can be described as  

 1( ),k k i i+u x k k < k  ,   1,2,i  , (4) 

where ( )kx  is a function of the event-based state vector.  Next, the problem for the finite 

horizon optimal control in an event-based scenario is formulated. 

2.2 PROBLEM FORMULATION 

Our primary objective is to design a sequence of control inputs, ku  to minimize a 

time-varying cost function in an ETC framework. The cost function is given by 

 
1

( , ) ( , ) ( , , )
N

k N j jj k
V x k x N r x u j




  , (5) 

where ( , , ) ( , ) T

j j j j jr x u j Q x j u Ru   is the cost-to-go in the interval of interest  

[ , ]j k N . The function ( , )kQ x k   is a positive definite function that penalizes the 

system state, kx . The matrix m mR   is a positive definite matrix that penalizes the 

control input, ku . The terminal cost ( , )Nx N  penalizes the terminal state Nx  where N  

is the terminal time instant.  For finite horizon case, the cost-to-go, ( , , )k kr x u k , depends 
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explicitly on time k  in the interval of interest [ , ]k N . Therefore, the control input also 

becomes time varying.  

Assumption 2: The initial control input, 
0

u , is admissible [15] to keep the cost function 

finite. 

The terminal cost for the finite horizon cost function (5) can be written as 

 ( , ) ( , )
N N

V x N x N , (6) 

where ( , )
N

V x N  is the cost at the terminal time N . The cost function can also be 

rewritten as  

  
1

1
( , ) ( , , ) { ( , , )} ,

N

k k k j j Nj k
V x k r x u k r x u j V x N



 
     

 
1

( , , ) ( , 1),
k k k

r x u k V x k


    (7) 

where  
1

1 1
( , 1) , ( , , )

N

k N j jj k
V x k V x N r x u j



  
    is the cost function from the time 

instant 1k  onwards. According to Bellman’s principle of optimality, the optimal cost,

( , )kV x k  satisfies the discrete-time Hamilton-Jacobi-Bellman (HJB) equation. It is given 

by 

  1( , ) min ( , , ) ( , 1)
k

k k k k
u

V x k r x u k V x k 

   , (8) 

where ( , )kV x k  is the optimal cost at the time instant k  and 1( , 1)kV x k

   is the optimal 

cost for 1k   onwards. The optimal control sequence  can be derived by using 

stationarity condition [9] and written as 

      * 1 *

1 11 2 , 1T

k k k ku R g x V x k x

      . (9) 

*

ku
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The optimal control policy (9) depends explicitly on the solution of the HJB 

equation, i.e., the optimal cost ( , )kV x k . The control policy is also a function of control 

coefficient function ( )kg x  and the state vector 1kx   at the time instant k . 

It is practically almost impossible to find an analytical solution of the HJB 

equation. Therefore, approximation based techniques (NDP) are used to solve the HJB 

equation.  In this paper, actor and critic NNs are utilized to approximate both the optimal 

control policy and cost function, respectively.  The approximations are carried out with 

the event-based availability of the system state vector.  Hence, the universal 

approximation property of the NNs is revisited with an extension to event-based 

approximation. 

2.3 NN APPROXIMATION WITH EVENT BASED SAMPLING 

The universal approximation property [16] of NN can be extended to achieve a 

desired level of accuracy with event-based availability of the state vector in (3).  The 

theorem introduced next extends the approximation property of NNs for event-based 

sampling. 

Theorem 1: Let ( , ) n

kh x k   be a smooth and continuous function in a compact set for 

all
n

x
x D . Then, there exists a NN with a sufficient number of neurons such that 

( , )
k

h x k  can be approximated with event sampled inputs. Further, the function ( , )
k

h x k  

with constant weights and event-based time-varying activation function is given by 

 
,

( , ) ( , ) ( , , )T

k k e k ET k
h x k W x k x e k   ,  (10) 

where 
l nW   is the constant unknown target weight matrix. The number of hidden-

layer neurons denoted by l  while ( , ) l

k
x k   is a bounded event-based time varying 
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activation function. The event-based NN reconstruction error is denoted by 

, , ,
( , , ) [ ( ( , ), ) ( , )] ( ( , ), )T
e k ET k k ET k k k ET k
x e k W x e k x k x e k  where 

, ,( , )k ET k k ET kx e x e  

. The function 
,( ( , ), ) ( , )k ET k kx e k x k    is the periodic time-based activation function, 

,( ( , ), ) ( , )k ET k kx e k x k  
 
is the traditional reconstruction error, and 

kx  is the latest available 

event-sampled state. 

Proof: Refer to the Appendix. 

Remark 1: The event-based reconstruction error ,( , , )e k ET kx e k  is a function of event-

trigger error, ,ET ke , and the traditional NN reconstruction error, ( , )kx k . An arbitrarily 

small event-based reconstruction error can be obtained by increasing both the frequency 

of events and the number of neurons. As a consequence, a properly designed event-

trigger condition is necessary. A compromise has to be reached between the 

reconstruction error and computational load in an event-sampled approximation and 

control scheme. 
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3. EVENT BASED OPTIMAL CONTROLLER DESIGN 

In this section, the near optimal event-triggered controller design is detailed for 

the uncertain discrete-time system.  

3.1 PROPOSED SOLUTION 

The proposed optimal event-triggered control system is illustrated in Figure 1. It 

consists of: i) a nonlinear discrete-time system, smart sensor and trigger mechanism with 

a mirror actor-critic network, and ii) an event-based optimal controller.  The event-based 

optimal controller entails three NNs as online approximators: the identifier, critic and 

actor NNs. These three NNs are used to approximate the system dynamics, time-varying 

cost function which is the solution to the HJB equation, and the control input, 

respectively. All the NNs use activation functions with event-sampled inputs. The NN 

weights are updated in an aperiodic manner at the trigger instants only. 

 

 

Figure 1.  Block diagram representation of the event-triggered control system 
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The event-trigger instants, 
i

k   for 1,2,i   are decided by the smart sensor and 

the trigger-mechanism.  The event-trigger condition is evaluated at every time instant  

to determine the trigger instants.  At the trigger instants 
i

k k   for  1,2,i  , the current 

system state vector, 
ik

x  , and its previous value  
1ik

x


  are together sent to the controller.  

These event-sampled state vectors are subsequently used to update the NN weights and 

control input. The updated value of the control input is then sent to the system and held 

by the ZOH, and utilized until the next update.  

Most importantly, the event-trigger condition is made adaptive by designing a 

suitable threshold. This adaptive trigger condition ensures online approximation of 

nonlinear functions, as discussed in Remark 1. The threshold is designed as function of 

the actor NN weight estimates and the system state vector. To evaluate the event-trigger 

condition, the trigger mechanism consists of a mirror actor-critic NN (see Figure 1). This 

mirror actor-critic NN operates in synchronism with the one at the controller. Both the 

actor-critic neural networks are initialized with same initial values. The NN weights are 

adjusted with events. Thus, the adaptive trigger-condition gets updated at every-trigger 

instant.   

Remark 2: The mirror actor-critic NN estimates the NN weights locally at the trigger 

mechanism thus relaxing the need for the transmission of NN weights from the controller 

to the trigger mechanism in the case of NCS. Therefore, the transmission cost only 

depends upon the transmission of system state and control input vector. Although, the 

addition of a mirror actor-critic NN increases the computational cost, the overall 

computation is still reduced due to the event-based execution (also see simulation 

section). 

k
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3.2 IDENTIFIER DESIGN 

The input coefficient matrix function  is required to compute the optimal 

control policy (9). This will be generated by the NN based identifier. The universal 

approximation property of NNs, in a compact set, can be used to represent the nonlinear 

system in (1). It is given by 

  (11) 

where  denotes the unknown constant target weight matrix 

of the identifier NN. The matrices ,  and 

 for . The function  

represents the NN activation function matrix where  and 

. The reconstruction error is denoted 

by , where  and  are the 

traditional reconstruction errors.  The augmented control input is denoted as 

. The subscript  and  are used to denote the variable for the 

functions  and , respectively.  The number of neurons in the hidden layer is 

denoted by . The notation  denotes the matrix formed by the activation function 

vectors as diagonal blocks and the off diagonals are zero vectors of appropriate 

dimensions. 

Assumption 3[16]: The target weight vector, , the activation function, , and 

the traditional reconstruction error, , of the NN are upper bounded such that 
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,  and  where ,  and  are positive 

constants. 

 The control input is updated only at the event-trigger instants and requires the 

approximated identifier dynamics. Therefore, the event-based identifier dynamics can be 

represented as 

 , , (12) 

where  being the identifier state vector at the time instant . The functions 

 and  represent the approximated identifier dynamics. Note that 

the identifier structure is based on event-sampled states and held during the inter-event 

time.  This novel event-based structure is selected to reduce additional and redundant 

computation during the inter-event times. 

The identifier dynamics (12) with NN approximation can be written as 

 ,  , (13) 

where  is  the actual estimated weight matrix, and 

 is the event-sampled activation function matrix for the identifier 

NN. 

 The identification error can be defined as . Hence, the identification 

error dynamics using this equation with (11) and (13) are found to be 

  (14) 

for ,  where  is the identifier NN weight estimation 

error. The reconstruction error is denoted by  for brevity.  

,I I M
W W

,
( )

I k I M
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,I M
 ,I M

1 1
ˆˆ ˆ( ) ( ) ,k k k k i ix f x g x u k k k     1,2,i 

ˆ n
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kg x 

1 ,
ˆˆ ( )T

k I k I k kx W x u 
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Consider the case when an event is triggered, i.e.,  for . The 

identifier dynamics in (13)  with the updated state vector can be expressed as 

 , , . (15)    

Therefore, the identification error dynamics from (14) for  is written as 

  , . (16) 

The aperiodic event-based tuning law for NN identifier weights now can be selected as  

  (17) 

where  is the learning gain. The update law (17) requires the state vector   to 

compute  at trigger instant .  Hence, the current state,  and previous state, 

 are together sent to the controller once an event is triggered at , as proposed in 

Section III.A.  The weight update law (17) is aperiodic in nature to save computation.   

   The identifier NN weight estimation error dynamics from (17), forwarding one 

time instant ahead, can be expressed as 

  (18)   

 The ultimate boundedness of the identifier NN weight estimation error is 

guaranteed by the following lemma. Before introducing the lemma, the following 

assumption is needed. 
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Assumption 4: The identifier NN activation function is Lipschitz continuous in a 

compact set for all  . Then, there exists a constant 
 
 such that

 
. 

Lemma 1: Consider the nonlinear discrete-time system (1) along with the identifier  (13). 

Assume the Assumptions 1 through 4 hold and the NN initial weights, , is initialized 

in a compact set.  Let the identifier NN weights are tuned by (17) at the event-trigger 

instants and the activation function   satisfies the persistency of excitation (PE) 

condition [16]. Suppose the control input is stabilizing and the learning gain  satisfy 

. Then, there exist two positive integers  and  such that the weight 

estimation error  is ultimately bounded (UB) with a bound  for all   

or, alternatively, . 

Proof:  Refer to the Appendix.  

The stabilizing assumption for the control input is later relaxed in the closed-loop 

stability proof by using an initial admissible control. 

3.3 CONTROLLER DESIGN 

In this subsection, event-based actor-critic NN designs are presented. Besides the 

HJB or temporal difference (TD) error, an additional error term corresponding to the 

terminal cost is defined and used to tune the Critic NN such that the terminal cost can be 

properly satisfied. 
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3.3.1 Critic NN Design. Consider the Bellman equation (7). It can be rewritten 

as  

 
1

0 ( , 1) ( , ) ( , )T

k k k k k
V x k Q x k u Ru V x k


     .          (19) 

The cost function in (5) using the universal approximation property of NN [16] in a 

compact set can be written as         

 
,

( , ) ( , ) ,T

k V k V k
V x k W x k                   (20)  

where  Vl

VW   is the unknown constant target critic NN weights. The time-varying 

activation function is denoted as ( , ) Vl

kx k  . The traditional NN reconstruction error 

,
( , )

V k V k
x k   , for brevity. The number of hidden layer neurons in the network is 

given by Vl . The following assumption holds for the critic NN. 

Assumption 5[15]: The target NN weights, activation functions and the reconstruction 

errors of the critic NN are bounded above and satisfy ,V V MW W , ( , ) M  , and 

  ,,V V M   where ,V MW  M , and  ,V M  are positive constants. The gradient of the 

activation function and reconstruction error satisfy    , Mk     and 

   , ,V k k  ,V M , where M  and ,V M  are positive constants. In addition, 

the activation function, ( , )kx k ,  is Lipschitz continuous for all k xx D  and satisfies 

,( , ) ( , )k k k k ET kx k x k C x x C e       where C  is a positive constant. 

The Bellman equation (19) using (20)  can be expressed as 

 
,

0 ( , ) ( , ) ,T T

V k k k k V k
W x k Q x k u Ru       (21) 

where 
1

( , ) ( , 1) ( , )
k k k

x k x k x k  


    and 
, , 1 ,

.
V k V k V k
  


    
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The approximated/estimated cost function by the critic NN with the event-based 

system states, kx , can be represented as 

   ,
ˆ ˆ, ( , )T

k V k kV x k W x k , 1i ik k k   , 1,2,i  , (22) 

where ,
ˆ VlT

V kW   is the estimated weight, and ( , ) Vl

kx k   is the event-based time 

varying activation function. The activation function is selected such that  0, 0k   for 

0kx   in order to ensure  ˆ 0 0V  . 

The approximated cost function (22) with the event-based availability of the 

system state kx  for 1i ik k k   , 1,2,i  , does not satisfies the relation (21). Therefore, 

the HJB error or the temporal difference (TD) error, 
,HJB k

e , associated with (21) can be 

written as 

 , 1
ˆ ˆ( , ) ( , 1) ( , )T

HJB k k k k k ke Q x k u Ru V x k V x k     , (23) 

for 1i ik k k   , 1,2,i  .The positive definite function  ( , )kQ x k  is a function of the 

event-based state vector. 

The TD error (23) with the approximated cost function  (22)  can be represented 

as 

  , ,
ˆ ( , ) ( , ) ,T T

HJB k V k k k k k
e W x k Q x k u Ru     1i ik k k   ,      (24) 

where 1 , 1
ˆ ˆ( , 1) ( , 1)T

k V k kV x k W x k    , and ( , )
k

x k 
1

( , 1) ( , )
k k

x k x k 


  . 

 The terminal cost (6) in term of NN approximation(20) can also be represented as 

 
,

( , ) ( , )T

N V N V N
V x N W x N   , (25) 
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where ( , )
N

x N  and 
,V N

   ( , )
V N

x N  are the activation function and the reconstruction 

error, respectively, at the terminal time N . 

The approximated/estimated terminal cost from (22) can be expressed as 

 
,

ˆ ˆ( , ) ( , )T

N V N N
V x N W x N . (26) 

The terminal state vector, 
N

x , is not known. Thus, it not possible to compute the terminal 

cost (26) at time k , and hence, the actual terminal cost error. Therefore, a projected 

terminal cost error, 
,FC k

e , can be represented as the difference between the desired 

terminal cost and the estimated cost at time instant, k . It is represented by 

 , ,
ˆ( , ) ( , )T

FC k N V k k
e x N W x N   , 1i ik k k   , 1,2,i  .   (27) 

Note, the activation function, ( , )
k

x N ,  is an explicit function of final time and the final 

time N  is known. Thus, we can compute ( , )
k

x N  at time k . 

 The total error in cost function estimation becomes 

 
, , ,total k HJB k FC k

e e e  , 1i ik k k   , 1,2,i  .                       (28) 

At the event-trigger instant, ik k , 1,2,i  , the HJB equation or TD error can be 

written from (24) as 

 , ,
ˆ ( , ) ( , ) ,T T

HJB k V k k k k k
e W x k Q x k u Ru              (29)  

where 
1

( , ) ( , 1) ( , )
k k k

x k x k x k  


    . Similarly, the terminal cost error from (27) for 

ik k , 1,2,i   becomes 

 , ,
ˆ( , ) ( , )T

FC k N V k k
e x N W x N   .          (30) 
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The total error at trigger instant by combining (29)  and (30) becomes 

 , ,
ˆ ( , ) ( , ) ( , ),T T

total k V k k k k k N
e W x k Q x k u Ru x N       (31) 

for 
i

k k , 1,2,i  , where ( , ) ( , ) ( , )k k kx k x k x N      . 

 To minimize the total error in an event-triggered context, the critic NN weights 

are proposed to be updated at the trigger instants for ik k  and held constant during the 

inter-event duration, 1i ik k k   . With this effect, using the previous values for 

implementation point of view, the update law of critic NN can be selected as 

 

1 , 1

, 1

1 1,

, 1 1

( , 1)
ˆ ,

ˆ ( , 1) ( , 1) 1 ,

ˆ ,

T

V k total k

V k iT

k kV k

V k i i

x k e
W k = k

x k x kW

W k k k

 

 

 



 

 

  

     


 

  (32) 

where 0V   is the learning gain, 
1

( , 1) ( , )
k k

x k x k 


  
1

( , 1)
k

x k


  . The total error 

, 1total ke   cab be computed from (31) by moving one time step backward. 

Remark 3: Similar to the identifier NN, the critic NN weights are updated in an 

aperiodic manner. This further saves computation when compared to traditional NN 

based control.  

Adding the difference between (24)  and (21) to (27), the total error can be 

represented in terms of the critic NN weight estimation error, , ,
ˆ

V k V V kW W W  .  It is 

found to be 

  
total, ,

, 1

( , ) ( , , ) ( , , )

( ( , ) ( , )) , ,

T T

k V k k V k k k k

T

V N k V k i i

e W x k W x x k Q x x k

W x N x N k k k

 

  


     

    
 (33) 
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where 
, , ,V k V k V N

      , ( , ) ( , ) ( , )
k k k

x k x k x N      , ( , , ) ( , )
k k k

Q x x k Q x k

( , )
k

Q x k , ( , , ) ( , ) ( , ).
k k k k

x x k x k x k      It is routine to check ( , )
M

     

and  
, ,V k V M

    from Assumption  5. The total error at the event-trigger instant from 

(33) with k kx x  for ik k becomes 

 
, , ,

( , ) ( ( , ) ( , )) .T T

total k V k k V N k V k
e W x k W x N x N          (34) 

 The critic NN weight estimation error dynamics, from (32)  by moving one step 

forward, can be expressed as 

 

,

,

, 1

, 1

( , )
,

( , ) ( , ) 1 ,

,

T

V k total k

V k iT

k kV k

V k i i

x k e
W k = k

x k x kW

W k k k

 

 




 

   


 

   (35)  

The last task is to design the actor NN which is given next. 

3.3.2 Actor Design. In this subsection, we approximate the optimal control 

policy through the actor NN to implement it forward in time. The identified control 

coefficient matrix of the NN identifier is also used to update the actor NN. 

 The optimal control input (9) by the approximation property of NN [16] in a 

compact set can be written as 

 *

,
( , )T

k u u k u k
u W x k   ,     (36) 

where ul m

u
W


  is the unknown constant target weight matrix. The time varying 

activation function is denoted by ( , ) ul

u k
x k   and the traditional reconstruction error is 

,
( , ) m

u k u k
x k   . The number of neurons of the actor NN is given by ul . 

 Assumption 6: The target NN weights, activation function, and the reconstruction error 

of the actor NN are upper bounded and satisfy 
,u u M

W W , 
,

( , )
u u M

   and 
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  ,
,

u u M
  , where  

,u M
W , 

,u M
 , and 

,u M
  are positive constants. The actor NN 

activation function is Lipschitz continuous for all k xx D  such that 

( , ) ( , )u k u kx k x k   ,u uk k ET kC x x C e     where 
u

C  is a positive constant. 

Moreover, the optimal control input (9) by using gradient of cost function (20) 

can be expressed as 

    * 1 1

, 1 , 1
1 2 ( ) ( , 1) 1 2 ( ) ,T T T

V k k k V k V k
u R g x x k W R g x  

 
       (37) 

where 
1 1 1

( , 1) ( , 1)
k k k

x k x k x 
  

       and 
, 1V k




 
1 1

( )
V k k

x x
 

  . Both the 

optimal control inputs (36) and (37)should be equal. Their difference can be expressed as 

   1 1

, 1 , 1
0 ( , ) 1 2 ( ) ( , 1) 1 2 ( ) .T T T T

u u k u k k k V k V k
W x k R g x x k W R g x    

 
      

 (38) 

The approximated/estimated optimal control input by the actor NN in an event-

trigger context can be represented as 

 ,
ˆ ( , )T

k u k u k
u W x k , 1i ik k k   , 1,2,i                          (39) 

where ,
ˆ ul m

u k
W


  is the estimated actor NN weights, and  , ul

u k
x k   denotes the 

time varying event-based activation function.  

Further, the estimated control input,  ,V ku , using the gradient of  the estimated cost 

function (22), can also be written as 

   1

, 1 ,
ˆˆ1 2 ( ) ( , 1)T T

V k k k V k
u R g x x k W


    , (40) 

for 1i ik k k   , 1,2,i  , where  ĝ x  is the approximated event-based control 

coefficient matrix from the NN-based identifier and 
1 1 1

( , 1) ( , 1)
k k k

x k x k x 
  

      . 

The control policy (39) applied to the system (1) and the control policy (40) which 
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minimizes the estimated cost function (22)  will not satisfy (38). Hence, the control input 

estimation error, 
,u k

e  for  1i ik k k   , 1,2,i   is represented as the difference between 

(39) and (40), and found to be 

   1

, , 1 ,
ˆ ˆˆ( , ) 1 2 ( ) ( , 1)T T T

u k u k u k k k V k
e W x k R g x x k W 


    .     (41) 

 Similar to the critic NN, the actor NN weights are proposed to be updated at the 

trigger instants only. The update law of actor NN, using previous values, is chosen as 

 

1 , 1

, 1

1 1,

, 1 1

( , 1)ˆ ,  ,
ˆ ( , 1) ( , 1) 1

ˆ ,  ,

T

u u k u k

u k iT

u k u ku k

u k i i

x k e
W k = k

x k x kW

W k k < k

 

 

 



 

 




   




   (42) 

where u  is the learning gain.  The control input estimation error 
, 1u k

e


 can be computed 

form (41) by moving one time step backward at the trigger instant and given by 

   1

, 1 , 1 1 1 1 , 1
ˆ ˆˆ( , 1) 1 2 ( ) ( , 1)T T T

u k u k u k k k V k
e W x k R g x x k W 

     
     . (43) 

      The control input estimation error can be expressed in terms of the actor NN 

weight estimation error, ,u kW ,  by subtracting (38) from (41). This is described by 

 

 

   

1

, , 1 ,

1 1

1 , 1

1

, 1

( , ) 1 2 ( ) ( , 1)

1 2 ( ) ( , 1) 1 2 ( ) ( , 1)

,  , 1,2,

T T T

u k u k u k k k V k

T T T T

k k V k k k V

sum

u k i i+

e W x k R g x x k W

R g x x k W R g x x k W

k k < k i

 

 







 

 

    

     

  

 (44) 

where    1 1 1

, 1 1
( , , ) 1 2 ( ) ( , , 1) 1 2 ( , )sum T T T T

u k u u k k k k k V k k
W x x k R g x x x k W R g x x   

 
     

  1

1 , 1 ,
( , 1) 1 2 ( )T T

k V k V k u k
x k W R g x  

 
       with ( , ) ( ) ( )

k k k k
g x x g x g x  , 

( , , ) ( , ) ( , )
u k k u k u k

x x k x k x k      and 
1 1 1 1

( , , 1) ( , 1) ( , 1)
k k k k

x x k x k x k  
   

      .  

It clear that 
1 1

, ,
0 sum sum

u k u M
    where 1

,

sum

u M
  is a positive constant. 
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 Further, from (44) the control input estimation error at 
i

k k , 1,2,i   can be 

written as 

 
   

 

1 1

, , 1 ,

1

1 , 1 ,

( , ) 1 2 ( ) ( , 1) 1 2 ( )

( , 1) 1 2 ( ) ( , 1) ,

T T T T

u k u k u k k k V k k

T T T sum

k V k k k V u k

e W x k R g x x k W R g x

x k W R g x x k W

 

  

 





 

     

     
 (45) 

where   1

, , 1 ,
1 2 ( )sum T

u k k V k u k
R g x  


     and 

, ,

sum sum

u k u M
  .  

The weight estimation error dynamics of the actor NN, from (42), moving one 

time step ahead, becomes  

 

,

,

, 1

, 1

( , )
,  ,

( , ) ( , ) 1

,  .

T

u u k u k

u k iT

u k u ku k

u k i i+

x k e
W k = k

x k x kW

W k k < k

 

 





 
 

   (46) 

Next, the main results of the near optimal event-triggered system are claimed. 
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4. EVENT TRIGGER CONDITION AND STABILITY ANALYSIS 

In this section we formulate the closed-loop event-triggered dynamics. The main 

results are claimed by designing an adaptive event-trigger condition. The closed-loop 

system dynamics are obtained by using  (1) , the actual control input (39) , the ideal  

control input (36) with simple mathematical manipulation and given by 

 
 

 

*

1 , , ,

1

ˆ( ) ( ) ( ) ( , ) ( )

( , ) ( , ) , .

T T

k k k k k u k u k u k k u k

u k u k i i

x f x g x u g x W x k g x W

x k x k k k k

 

 





    

   
 (47) 

 At the event-trigger instants, 
i

k k  with updated state vector, the closed-loop 

system dynamics can be rewritten from (47) as 

  *

1 , ,( ) ( ) ( ) ( , )T

k k k k k u k u k u kx f x g x u g x W x k      . (48) 

Before, claiming the main result in the theorem, the following lemma is necessary. 

Lemma 2[15]: Consider the nonlinear discrete-time system given by (1). Then, there 

exist an optimal control policy 

ku  for (1) such that the closed-loop dynamics satisfies the 

inequality 

 
2 2*( ) ( )

k k k k
f x g x u K x  , (49) 

where 
*0 1K   is a constant.  

Now consider the event-trigger error (2). The following condition is selected as 

the event-trigger condition: 

  , ,ET k ET k k
D e x , (50) 

where the threshold coefficient is denoted by 

 
2

* 2 2

, ,
ˆ(1 2 ) 4

uET k ET M u k
K g C W


    , (51) 
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with 0 1ET   , *0 1 2K  . The dead-zone operator  D  is defined as 

   ,

,

, ,

0, otherwise,

ET k k x

ET k

e x b
D e

 
 


 (52) 

with 
x

b  being the ultimate bound for the state. The system state and the control input 

vectors are transmitted to the controller and the plant, respectively, when the event-

trigger condition in  (50) is not satisfied (or violated). Further, an event is trigger when 

the estimated NN weight ,
ˆ 0
u kW   to update the NN weights without evaluating the trigger 

condition. 

 

3k 2k

ik
1ik

k

1ik
2ik 

2k  4k 6k 7k

clL
During Event
During Inter-event

,cl kL Time varying Bound

 

Figure 2.  Evolution of the Lyapunov function. 

 

Next, the theorem guarantees the UB of the closed-loop event-trigger system. The 

UB is shown by using a Lyapunov function for both cases of triggering, i.e., at the events 

and inter-events. It is important to mention that, the Lyapunov function is not 

monotonically converging to the ultimate bound both during both the events and inter-

event times. This is also not necessary to show stability of the system as discussed in [4] 

for event-trigged control system, and [17] for switched systems. Therefore, in our case, 
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during the inter-event times the Lyapunov function is allowed to increase but within a 

time varying upper bound. Further, it is shown that with trigger of events the time 

varying upper bound and the Lyapunov function converge to the UB as illustrated in the 

Figure 2. 

Theorem 2: Consider the nonlinear discrete-time system (1), the NN identifier (13), NN 

critic (22) and NN actor networks (39). Assume  0 ku x be an initial stabilizing control 

policy for the system (1) and Assumptions 1 through 6 hold. Let the identifier, critic and 

actor NN weight estimates , ,0
ˆ

IW  , ,0
ˆ

VW  and ,0
ˆ

uW , respectively, are initialized in their 

respective compact sets.  Suppose, the system state vector is sent to the controller and the 

NN weights are updated using (17), (32) and (42) through the violation of the event-

trigger condition (50).  Let the activation functions ( )I kx , ( , )kx k and ( , )
u k

x k  satisfy  

the PE condition [16]. Then, there exists positive constants 0 1 2
I

  , 0 1 3V   and 

0 1 5
u

   such that the closed-loop event-triggered system state vector, kx , the 

identifier, critic and actor NN weight estimation errors ,I kW , ,V kW  and ,u kW , respectively, 

are UB for all 
0i

k k T   or, alternatively 
0

k k T  . Further, 
* ˆ

VV V b   and 

*

uu u b   with Vb  and ub  are small positive constants. 

Proof: Refer to the Appendix. 

Remark 4: The selection of *0 1 2K   satisfies Lemma 2 and varies according to the 

desired performance of the system.  The adaptive event-trigger condition (50) with (51) 

implicitly depends upon the actor NN weight estimation error, ,u kW . During the initial 

learning phase, the NN weight estimation error will be large. Hence, the events are 
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triggered frequently. This facilitates the approximation of the cost function, control 

policy and the system dynamics to achieve near optimal performance.  

Remark 5: The dead zone operator (52) used with the event-trigger condition helps to 

stop unnecessary triggering due to the NN reconstruction error. The dead zone is enabled 

once the system state is in the ultimate bound
xb . The bound  1, 2,max ,x x

x M Mb b b

computed from (A.14) and (A.18) is a function of the tuning parameters 
I

 , 
V

 , 
u

  and 

the NN reconstruction error bounds 
,I M

  , 
,V M

 , and 
,u M

 . Therefore, the bound can be 

made arbitrarily small as mentioned in the Remark A.1. 
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5. NON-TRIVIAL MINIMUM INTER-EVENT TIME 

In this section we discuss the non-triviality of the inter event times for the near 

optimal event-triggered control system. An explicit formula for the minimum inter-event 

time is also presented. The minimum inter-event time is the minimum time interval 

between two consecutive event-sampling instants over all sampling instants, i.e., 
min

k

min{ }
i

i
k


  where 

1i i i
k k k


   for 1,2,i   are the inter-event times. This is implicitly 

defined by the event-trigger condition (50). In case of a discrete time system, the 

minimum inter-event time is trivial and becomes the sampling time, 
s

T  or 
min

1k  . So, it 

is important to guarantee nontrivial inter-event times, i.e., 1
i

k   to reduce the 

computational load. In the case of approximation-based control design, the inter-event 

times largely depend on NN weight estimation error and presented in the following 

theorem. 

Theorem 3: Let the hypothesis in Theorem 2 holds. The minimum inter event-time can 

be expressed as 

  min ,min
min{ln 1 (1 )(( 1) ) ln( )}

i i ET i
i

k N M M 


   , (53) 

for 1,2,i   and  the non-triviality of the inter-event times are guaranteed if the 

following condition is satisfied: 

 
,min

ln(1 (1/ )( 1) ) ln( )
i i ET i

N M M   , 1,2,i   (54) 

where *

, , ,
(( 1) ( ))

i ii k M u M u k u M
N K x g W      and  

*

,
ˆ( )

u ii M u k
M K g C W


   and 

,minET
 

,
min{ }

ET k k
k

x


 is the minimum event-trigger threshold. 

Proof: Refer to Appendix. 
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Remark 6: It is important to note that the inter-event times will be non-trivial, i.e.,

1
i

k  , 1,2,i   if (54) is satisfied. To achieve nontrivial inter trigger times during the 

initial learning, the initial NN weights needs to be selected close to the target parameters. 

This will reduce the NN weight estimation error, 
,u k

W  which in turn decreases the value 

of 
i

N  and increases 
i

M   in (53). Thus, the condition (54) is satisfied leading to non-

trivial inter-event times. In addition, along with the update of the NN weights, 
,

ˆ
u k

W , the 

weight estimation error, 
,u k

W , will further decrease and, hence, the variable 
i

N . This, 

further, ensures elongated inter-event times. 

 The proposed event sampled design can be used mutatis mutandis for nonlinear 

networked control systems (NNCS) in the presence of time varying network induced 

delays and random packet losses. The detailed design procedure along with the 

simulation results are presented in Appendix B of the dissertation. The NNCS is 

represented as a continuous time nonlinear system in affine form. The proposed event 

sampled ADP design discussed in Section 3 through 5 is extended for a stochastic design 

due to random network constraints. An infinite horizon cost function is minimized to 

design the event sampled control policy. It was observed that the event sampled 

stochastic ADP for NNCS resulted in 66% saving in computational load and 27% saving 

in the network bandwidth usage.  
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6. SIMULATION RESULTS 

In this section, a two-link robot has been considered for simulation. The 

continuous time dynamics of the two-link robot is given by  (1)  

    x f x g x u  , (55) 

with internal dynamics ( )kf x  and control coefficient matrix ( )kg x   given as 

where

3

4

2 2 2

3 4 4 3 3 2 2

1 1 2 2

2

2

2 2 2

3 4 4 3 4 2 4 2 3

2

3 2 1 2 1

2 2 1 2

2

2

(2 cos )sin

20cos 10cos( )cos

cos 2( )

(2 2 cos cos 3

2 cos 20(cos( ) cos )

(1 cos ) 10cos cos( )

cos 2

x

x

x x x x x x x

x x x x

xf x

x x x x x x x x x

x x x x x

x x x x

x




     

     



    
 
     

    
 








 
 
 
 
 
 
 
 
 
 



and 2

2 2

2 2

2 2

2 2

2 2

0 0

0 0

1 cos1
( )

2 cos 2 cos

1 cos 3 2cos

2 cos 2 cos

x
g x

x x

x x

x x

 
 
 
  

  
  

   
 

   

 

The continuous dynamics was discretized first for simulation. The following 

simulation parameters were selected to carry out the simulation. The cost-to-go was 

selected as quadratic function with ( ) T

k k x kQ x x Q x , 4 4xQ I   and 2 20.001*R I   where 

I  is the identity matrix. The non-quadratic terminal cost was chosen as N( , ) 1x N  . 

The initial weights for the critic NN were selected as zero. The actor and the identifier 

NN weights were initialized with random values from a uniform distribution in the 

interval of zero to one. The time-varying activation functions for both the critic and actor 

NNs were constructed as state-dependent and time-dependent terms, i.e., 

( , ) ( ) ( )
k t x k

x k k x   . The state-dependent part, ( )x kx , was chosen as  

2 2 3 4 4 45 1

1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 3, 4,( ) { , , , , , , , , , , , }x k k k k k k k k k k k k kx x x x x x x x x x x x x   [18] and 

the time-dependent part, ( )t k , was also selected as   
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1 44 44 43 45 45( ) {1,[exp( )] ,...,[exp( )] ; ;[exp( )] ,[exp( )] ,...,1}t k              [15] where 

N)(N k  is the normalized time index.  The identifier activation function was chosen 

as 2 5 6

1, 1, 2, 1, 2, 4,tanh{( ) , , , ( ) ( ),..., ( ) }k k k k k kx x x x x x . The number of neurons for the 

identifier was 39 and the critic and the action NN were 45 each. 

 The learning rates for the NN tuning were selected as 0.03I  , 0.01V   and 

0.05u   per the conditions derived in Theorem 2. The event-trigger condition 

parameters were 
* 0.45K  , 0.92

ET
  , 2

u
C


  and 1.5

M
g  . The initial admissible 

control was selected as 0 1 3[ 500 500 ,u x x    2 4200 200 ]Tx x  and the terminal time 

was 10000N  . The ultimate bound selected for the system state was 0.0005. The event-

trigger threshold was computed using (50), with (51), and (52) with the above parameters 

selected for simulation. 

 

 

Figure 3.  (a) Triggering threshold with event-trigger error; (b) cumulative number of 

triggered events vs. sampling instants. 
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Figure 3 (a) shows the evolution of the threshold (solid) over time along with the 

event-trigger error (dotted).  From this figure it is evident that the event-trigger error reset 

to zero once it reaches the threshold with trigger of events.  In Figure 3 (b), the 

cumulative number of trigger instants is plotted against the total sampling instants. Even 

though a large number of triggering occurs in the initial phase, the cumulative number of 

triggers is reduced.  The cumulative triggering became constant after 8000 time instants. 

This implies the system state is in the ultimate bound 45 10
x

b    . The number of events 

during the sampling time of 10 sec with a sampling interval of 0.001 sec was found to be 

110. 

 

 

Figure 4.  Convergence of (a) system state; (b) near optimal control inputs; (c) HJB error; 

and (d) terminal cost error.   
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system. Furthermore, if a communication network is included between the plant and the 

controller, fewer transmissions are needed due to event based sampling. This will reduce 

the communication cost significantly. 

The performance of the optimal controller is shown in Figure 4. The optimal 

control input (Figure 4 (b)) regulates the system states to zero as shown in Figure 4(a). 

The control input also converges to zero with system states. This implies that with a 

reduced number of controller executions the system is near optimally regulated.  Further, 

the HJB equation error, shown in Figure 4 (c), converges to near zero implying the 

optimality achieved in finite time. The terminal cost error also converges to near zero and 

shown in Figure 4 (d). 

 

Table  1.  Comparison of computational load between traditional and event-based discrete 

time systems. 

Systems  

Number of 

additions and  

Multiplications  

Sampling 

instants 

Total 

computation 

Traditional 

discrete 

time 

Identifier 10 

10000 310000 Critic 13 

Actor 8 

Event-

based 

discrete 

time 

Identifier and 

mirror  
20 

110 106820 
Critic and mirror 26 

Actor and mirror 16 

Trig. Con 

(periodic) 
10 
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7. CONCLUSIONS 

In this paper, a near optimal event-triggered control of an uncertain nonlinear 

discrete time system in affine form is introduced. The actor-critic frame work used to 

solve the finite horizon optimal control problem with event-based approximation was 

able to regulate the system. The novel adaptive event-trigger condition generated the 

required number of events at the initial learning phase to achieve a small approximation 

error. This also saved the computation by fewer updates in the control law. Near 

optimality was achieved in a finite time with complete unknown system dynamics. With 

an explicit formula, it is shown that a nontrivial inter-event time can exist with proper 

initialization of weights and event-based NN weight updates.  It was observed that the 

cumulative number of triggered events varies with initial NN weights. The effectiveness 

of the controller is validated using simulation. 
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APPENDIX 

Proof of Theorem 1: The smooth and continuous function ( , )
k

h x k , with the universal 

approximation theorem [19] of NN, can be represented in a compact set as 

 ( , ) ( , ) ( , )T

k k k
h x k W x k x k   ,    (A.1) 

with 
k

x  as input to the activation function at every sampling instant k . Consider the 

event-based sampling where the state  
k

x  is available intermittently as defined in (3). 

Equation (A.1) can be expressed as 

 ( , ) ( , ) ( , ) ( , ) ( , ),T T T

k k k k k
h x k W x k W x k W x k x k         (A.2) 

where ( , )
k

x k  and x  are is event-based activation function and state vectors. 

The state, 
k

x , in terms of the event-based state, 
k

x ,  and event-trigger error, 
,ET k

e , 

in (2) can be written as 
,

( , )
k k ET k

x x e
,k ET k

x e  . Substituting this expression,  (A.2) 

can be represented as 

 
,

( , ) ( , ) ( , , ),T

k k e k ET k
h x k W x k x e k      (A.3) 

where 
, ,

( , , ) [ ( ( , ), ) ( , )]T

e k ET k k ET k k
x e k W x e k x k    

,
( ( , ), )

k ET k
x e k  .                      ■ 

Proof of Lemma 1: The UB of the identifier weight estimation error is proven by 

demonstrating the boundedness of the weight estimation error for both trigger conditions, 

separately. A single Lyapunov function is used to evaluate the first difference and 

combined at the end to show overall UB.  

Case I : Event Triggered, i.e., 
i

k k , 1,2,i    

Consider a Lyapunov function candidate given by 

 , , ,{ }T

I k I k I kL tr W W .                              (A.4) 
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The first difference, , , 1 , 1 , ,{ } { }T T

I k I k I k I k I kL tr W W tr W W    , along the dynamics of 

the identifier NN weight estimation error (18) for 
i

k k , becomes 

 
 

 

, , , 1

2 2

, 1 , 1

2 ( ) ([ ( ) ] [ ( ) ] 1)

[ ( ) ] [ ( ) ] ([ ( ) ] [ ( ) ] 1) .

T T T

I k I I k I k k I k I k k I k k

T T T

I I k I k k I k k I k I k k I k k

L tr W x u e x u x u

tr e x u x u e x u x u

   

    



 

   

 
  

Substituting the identification error dynamics (16), and using Cauchy-Schwartz (C-S) 

inequality with the fact that [ ( ) ] [ ( ) ] ([ ( ) ] [ ( ) ] 1) 1T T

I k k I k k I k k I k kx u x u x u x u      , the 

first difference is bounded by  

 
2, ,

, ,2

[ ( ) ][ ( ) ] (2 )
(1 2 ) .

[ ( ) ] [ ( ) ] 1 ( ) 1

T T

I k I k k I k k I k I I
I k I I I kT

I k k I k k I k k

W x u x u W
L tr

x u x u x u

   
  

  

   
     

   
 

By definition, the augmented control input 1ku  , and, 
,m ,

0 ( )
I I k I M

x      is 

satisfied due to the PE condition [15]  and Assumption 3.  Hence, 
,

0 ( )
I m I k k

x u   . 

By the above facts, the first term in the above equation satisfy 

2 2 2

, ,, ,

2 2 2 2

( ) ( )[ ( ) ][ ( ) ]

[ ( ) ] [ ( ) ] 1 ( ( ) 1) ( ( ) 1)

T TT T
I k I k k I k I k k kI k I k k I k k I k

T

I k k I k k I k k I k k k

W x u W x u uW x u x u W
tr

x u x u x u x u u

  

   

  
  

    
  

2
2

,

,2

, 1

I m

I k

I M

W






 where ,0 ( )I m I k k kx u u   with a bounded control input. 

Substituting the above inequality: 

  
2

2 2

, , , ,(1 2 ) ( 1)
I

I k I I I m I M I k W
L W B         , (A.5) 

where 
2 2

, ,(1 2 ) (1 )
I

I I I M I mW
B       . From (A.5), by selecting 0 1 2

I
  , the 

Lyapunov first difference , 0I kL   as long as  

 2 2

, , , ,
( 1) (1 2 )

I

M

I k I M I I I mW W I
W B B       .   
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Therefore, by the Lyapunov theorem [16], the identifier weight estimation error, 

,I kW  is UB with a bound 
,

M

W I
B  for all 0ik k T   with the occurrence of events. 

Case II: Event not triggered, i.e., 
1i i

k k k


  . 

Consider the same Lyapunov function (A.4). The first difference along the 

identifier weight estimation error dynamics (18) for 
1i i

k k k


   

 , , 1 , 1 , ,{ } { } 0T T

I k I k I k I k I kL tr W W tr W W     . (A.6) 

From  (A.6) the Lyapunov first difference, ,I kL , during the inter-event time 

remains at zero. This implies the NN weight estimation error, ,I kW , remains constant 

during the inter-events times. The initial weight estimate, ,0
ˆ

IW , is finite and from 

Assumption 3 the target weight matrix is bounded. Therefore, initial weight estimation 

error, ,0IW  is also bounded.  Further, ,I kW  is bounded at the trigger instants as shown in 

Case I. Thus, the initial value , iI kW , 1,2,i  , for each inter-event time, which is the 

updated value at the previous trigger instant, is also bounded. Consequently, the weight 

estimation error, ,I kW , is constant and bounded during the inter-event times, i.e.,  

1i i
k k k


   for 1,2,i   .  

From Cases I and II, the identifier weight estimation error is bounded both at the 

trigger instants and inter-event times. Further, with the occurrence of events followed by 

each inter-event time, the identifier weight estimation error, ,I kW , is UB with a bound 

,

M

W I
B  for all 0ik k T  . Alternatively, ,I kW  is UB for all 0k k T   as ik  is a 

subsequence of k  and T is a function of T .                                                                       ■   
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Proof of Theorem 2: The stability of the closed-loop system is proved by considering 

both the event-conditions, i.e., event is triggered,
i

k k  and event is not triggered, 

1i i
k k k


  , 1,2,i   .  A single Lyapunov function is evaluated for both cases, 

separately, and combined at the end to show the convergence to the UB. 

Case 1: Event triggered, i.e., 
i

k k , 1,2,i  . 

Consider the Lyapunov function candidate given by 

 , , , , , , ,cl k x k I k V k u k A k B kL L L L L L L      , (A.7) 

 where ,

T

x k x k kL x x  , , , ,{ }T

I k I I k I kL tr W W  , , , ,

T

V k V V k V kL W W    , , ,

T

u k u k u k
L tr W W , 

, 2 , ,{ }T

A k I I k I kL tr W W   , and 2

, 2 , ,{ } .T

B k V V k V kL W W  The positive constants  

  2

,

2 2 2

, ,

1 5
,

8 ( 1)

u u u m

x

M u M u Mg

  

 


 


 

 2

,

2

,

2 1

(1 2 )

I M

I

I I I m

 

 


 

 
, 

 
 

2

2

2 1
,

1 3

M

V

V V m

 

  

 
 

 
 

     
 

2
2 1 2 2 2

max , ,

2 2 2 2 2

, , , ,

2 4 5 1
,

4 (1 2 ) 2( 1) (1 2 ) ( 1)

u u M I M I M

I

I I I M I I I m I m u m

R     

     

  
 

      
 

     
      

2
2 1 2 2 2

max ,

2 2 2 2 2

,

2 4 5 1
,

4 1 3 2 1 1 3 ( 1)

u u M I M M

V

V V M V V m m u m

R     

       

   
 

       
 

   
 

  
 

2 22 1 2 2 2
2 , ,max , ,

2 2

, ,

2 1 (1 2 )4 5
,

2 1 1

I
I I M I I I mWu u M V M I M

u m I M

BR W       


 

      
 

 
 

and 

       2 1 2 2 2 1, 2 2

max , 2

2 2

,

4 5 2 2( 1) 1 3
.

4( 1) ( 1)

M

u u M I M M V V M V V m

u m M

R g         


 

        
 

  
 

Consider the first term in the Lyapunov function candidate (A.7), ,

T

x k x k kL x x  . 

The first difference along the closed-loop system dynamics (48) is bounded above by 
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2 2

, 1

2 2*

, ,( ) ( ) ( )( ( ) ) .

x k x k x k

T

x k k k k u k u k u k x k

L x x

f x g x u g x W x x 

   

     
 

Recalling the Lemma 2 and applying C-S inequality
2 2 2 2( ) 2 2a b a b   , it reveals that 

 
22* 2 2 2 2

, , , ,(1 2 ) 4 4 .x k x k M u M x u k x M u ML K x g W g           (A.8) 

Consider the second term in the Lyapunov function (A.7), , , ,{ }T

I k I I k I kL tr W W  . 

The first difference can be written from (A.5)  and  is given by 

  
2

2 2

, , , ,(1 2 ) ( 1) .
I

I k I I I I m I M I k I W
L W B          (A.9) 

Moving on for the third term , , ,

T

V k V V k V kL W W  , in the Lyapunov function 

candidate (A.7), the first difference becomes , , 1 , 1 , ,

T T

V k V k V k V k V kL W W W W    . Along the 

critic NN weight estimation error dynamics (35) for ik k ,  the first difference can be 

represented as 

 

2

, , , ,

, 2

2 ( , ) ( , ) ( , )
.

( , ) ( , ) 1 ( ( , ) ( , ) 1)

T T T T

V V V k k total k V V total k k k total k

V k T T

k k k k

W x k e e x k x k e
L

x k x k x k x k

    

   

    
  

     
 

Substituting (34)  into the above equation and using the C-S inequality, the first 

difference of Lyapunov function candidate  

 
 

, ,

,

, , ,

2

,

2 ( , ) ( , )

( , ) ( , ) 1

2 ( , ) ( , ) ( , ) 2 ( , )

( , ) ( , ) 1 ( , ) ( , ) 1

3 ( , ) ( , ) ( , )

T T

V V V k k k V k

V k T

k k

TT T T T

V V V k k N k V V V V k k V k

T T

k k k k

T T

V V V k k k k

W x k x k W
L

x k x k

W x k x N x N W W x k

x k x k x k x k

W x k x k x k

  

 

      

   

   

  
  

  

     
 

     

   


 
,

2

( , )

( , ) ( , ) 1

T

k V k

T

k k

x k W

x k x k



 



  
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   

 

 

2

2

2

, ,

2

3 ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) 1

3 ( , ) ( , )
.

( , ) ( , ) 1

TT T

V V V N k k k N k V

T

k k

T T

V V V k k k V k

T

k k

W x N x N x k x k x N x N W

x k x k

x k x k

x k x k

      

 

    

 

    


  

    


  

 

By using Young’s inequality  2 1T T Ta b qa a q b b  , with 0q  , 

( , ) ( , ) ( ( , ) ( , ) 1) 1T T

k k k kx k x k x k x k          and  1 ( , ) ( , ) 1 1T

k kx k x k     , 

the first difference becomes 

 

 

    

 

, ,

,

, ,

( , ) ( , )
1 3

( , ) ( , ) 1

2 3 ( , ) ( , ) ( , ) ( , )

( , ) ( , ) 1

2 3
.

( , ) ( , ) 1

T T

V k k k V k

V k V V V T

k k

TT

V V V V N k N k V

T

k k

T

V V V V k V k

T

k k

W x k x k W
L

x k x k

W x N x N x N x N W

x k x k

x k x k

 
 

 

     

 

   

 

 
   

  

   


  

   


  

 

From Assumption 5, ( , ) ( , ) 2N k Mx N x k     and , ,V k V M    . With these 

facts and simple manipulation using C-S inequality and Frobenius norm, we arrive at 

   
2

2 2 1,

, ,1 3 ( 1) ,M

V k V V V m M V k V VL W             (A.10) 

where     1, 2 2 2 2 2

, ,2 3 ( 1) 2 3 ( 1)M

V V V M V M m V V V M mW                 , 0 1 3V    

and 
m

0 ( , )
k

x k    
M

   which is satisfied by ensuring PE condition [15]. 

Consider the next term in the Lyapunov function candidate (A.7), 

 , , ,

T

u k u k u k
L tr W W . The first difference along the actor NN weight estimation error 

dynamics (46) for ik k  becomes 

 
 

, , , ,2

, 2

( , ) ( , ) ( , )
2 .

( ( , ) ( , ) 1) ( , ) ( , ) 1

T T T T

u k u k u k u k u k u k u k

u k u uT T
u k u k u k u k

W x k e e x k x k e
L tr tr

x k x k x k x k

  
 

   

     
     

      

 



160 

 

Substitute the control input estimation error 
,u k

e  from (45) in the above equation.  After 

some mathematical manipulation using  C-S inequality and the fact  ( , ) ( , )T

u k u k
x k x k   

( ( , ) ( , ) 1) 1T

u k u k
x k x k    , we arrive at 

 

 

 

 

, ,

,

1 1

1 , 1 ,

1

1 ,

( , ) ( , )
1 5 { }

( , ) ( , ) 1

( ( ) ( , 1) )( ( ) ( , 1) )
4 5 { }

4( ( , ) ( , ) 1)

( ( ) ( , 1) )
4 5 {

4

T T

u k u k u k u k

u k u u T

u k u k

T T T T T

k k V k k k V k

u u T

u k u k

T T

k k V k

u u

W x k x k W
L tr

x k x k

R g x x k W R g x x k W
tr

x k x k

R g x x k W
tr

 
 

 

 
 

 


 

 

 





   


   
 



 
 

 

 

1

1 ,

1

11

1

, ,

( ( ) ( , 1) ) }
( ( , ) ( , ) 1)

( ( ) ( , 1) )
4 5 { ( ( ) ( , 1) ) }

4( ( , ) ( , ) 1)

4 5 { )( ) ( ( , ) ( , ) 1)}.

T T T

k k V kT

u k u k

T T

T T Tk k V

u u k k VT

u k u k

sum sum T T

u u u k u k u k u k

R g x x k W
x k x k

R g x x k W
tr R g x x k W

x k x k

tr x k x k


 


  

 

     











 


 
   



  

 

Using Frobenius norm, Young’s inequality and the relation 
, ,k ,

( )
k I M I I M

g x W   , it 

holds that  

   

 

2 2 1 2 2 2
2 2

, max ,

, , ,2 2

, ,

2 1 2 2 2 1 2 2
4 4

max , max ,

,k ,2 2

, ,

2 1

max

(1 5 ) (4 5 ) ( )( 2 )

( 1) 4( 1)

4 5 ( ) 4 5 ( )

4( 1) 4( 1)

( )
4 5

u u u m u u M I M M

u k u k V k

u M u m

u u I M M u u I M M

I V k

u m u m

u u

R g
L W W

R R
W W

R

       

 

         

 


 



 



    
       

   
 

 

   

 

2 2 2 2 1 2 2 2
2

, , max , ,

,k2 2

, ,

2

,

2

,

( )
4 5

2( 1) 2( 1)

4 5 ( )
,

4( 1)

I M V M M V M M I M

I u u

u m u m

sum

u u u M

u m

W R W
W

    
 

 

  



 
 

 






 (A.11) 

where   , ,
0 ,

u m u k u M
x k     , is ensured by the PE condition,  1

max
R   is the 

maximum eigenvalue of 
1R
.  

Considering the next term  
2

, 2 , ,

T

A k I I k I kL tr W W  . The first difference,

   
2 2

, 2 , 1 , 1 2 , ,

T T

A k I I k I k I I k I kL tr W W tr W W     , from (A.9) ,  becomes 
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   

    

4
2 2 2 2

, 2 , , , , ,

2 2
2 2

2 2 , , ,

(1 2 ) 2 (1 2 ) ( 1) ( 1)

2 (1 2 ) ( 1) .
I I

A k I I I I I I m I M I m I M I k

I I I I I m I M I kW W

L W

B B W

               

        

 (A.12) 

where   2 2

, ,2 (1 2 ) ( 1) 0I I I m I M         with 0 1 5
u

  . 

Similarly, the first difference of the last term  
2

, , ,

T

B k V k V kL W W using (A.10) can 

be written as 

       
      

2 2 2 2

, 2

4 2 2
1, 2 2 1,

, 2 , 2

1 3 ( 1) 2 1 3 ( 1)

2 1 3 ( 1) .

B k V V V m M V V m M

M M

V k V V V V m M V k V V

L

W W

       

     

           

       

 (A.13) 

At the final step, combine the individual first differences (A.8), (A.9), (A.10), 

(A.11), (A.12) and (A.13) to get the overall first difference. Substituting the constants  

x
 , 

I
 ,

V
 ,

2I
  and 

2V
 , from (A.7), the overall first difference satisfies 

  

    

    

2 22* 2 2

, , , , ,

2 4
2 1 2 2 2 1

, max , , ,k ,

4
2 1 2 2 2

max , , ,

1
(1 2 ) 1 5 ( 1)

2

4 5 4( 1)

4 5 4( 1) ,

cl k x k I k V k u u u m u M

c

u k u u M I M u m I cl total

u u M I M u m V k

L K x W W

W R W

R W

     

      

     





         

     

   

 (A.14) 

where 

1 1, 2 2 1 2 2 2 2

, 2 max , , ,

2 2 2 2 1, 2

, , , 2

( ) (2 (4 5 ) ( ) 4( 1))

( (4 5 )( ) ( 1)) 4 ( ) .

I I

c M

cl total I V V I u u M V M I M u mW W

sum M

u u u M u m x M u M V V

B B R W

g

       

     

       

     
 

From  (A.14), and selecting 0 1 5
u

  , the first difference of the Lyapunov function, 

, 0cl kL   as long as 

 
1 *

, 1,(1 )c x

k cl total x Mx K b    , 

       2 1 2 1 2 2 14
, , , max , ,max{ 4 1 4 5 , }

I

c c

I k u m cl total u u M I M cl total W
W R b              or  
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      2 1 2 1 2 2 14
, , , max , ,{ 4 1 4 5 ), }

V

c c

V k u m cl total u u M I M cl total W
W R b              or  

 
2 1

, , ,(2( 1) c

u k u M cl total uW       2

,1 5 )
u

u u m W
b   .  

This implies the system state, 
k

x  the NN weight estimation errors for the 

identifier, critic and the actor, ,I kW , ,V kW , and ,u kW  are UB for all 0ik k T  . 

Case 2: Event not triggered, i.e., 
1i i

k k k


  , 1,2,i  . 

Consider the same Lyapunov function candidate (A.7) as in Case I. The first 

difference 
2

, 1x k x kL x   
2

x kx  of the first term along (47) with Lemma 2 and C-S 

inequality, can be written as  

 
2 22 2* 2 2 2 2

, , , , , ,
ˆ ˆ2 4 ( , ) ( , ) 4 ( ).T T

x k k M u k k u k k k M u M u k u ML K x g W x k W x k x g W           

From the Lipschitz continuity of the actor NN activation function, in Assumption 6, it 

holds that 

 
2 22* 2 2 2

, , , , ,
ˆ(1 2 ) 4

u

c

x k k M u k ET k cl total kL K x g C W e        ,   (A.15) 

with 
2

2 2 2 2

, , , , ,4 ( )c

cl total k M u M u k u Mg W    . Recalling the event-trigger condition (50) for the 

case when system state vector is outside the ultimate bound, the first difference satisfies  

 
2* 2

, , ,(1 2 )(1 ) c

x k ET k cl total kL K x       ,        (A.16)                                                 

where 0 1
ET

    and *0 1 2K  . 

Considering the remaining terms of Lyapunov function candidates (A.7), the first 

differences becomes zero due to no update. They are represented as  

 , 0I kL  , , 0V kL  , , 0A kL   and , 0B kL  .  (A.17) 

Finally, combining (A.16) and (A.17) the first difference of the overall system is given by 
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2* 2

, , ,(1 2 )(1 ) c

cl k ET k cl total kL K x       . (A.18) 

From (A.18), the first difference 
, 0cl kL   as long as 

  
2 *

, , 2,(1 2 )(1 )c x

k cl total k ET kx K b    .   

The actor NN weight estimation error, ,u kW ,  is  constant during each thi  inter-

event time, 
1i i

k k k


  , as the weights are held. Therefore, 2

, ,

c

cl total k   and, hence, 2,

x

kb  are 

piecewise constant functions. Thus, the system state is bounded by a time varying bound 

2,

x

kb during the inter-event times. The boundedness of the NN weight estimation errors 

during inter event times can be shown as follows. The NN initial weight estimates are 

finite. Therefore, the initial the weight estimation errors are also bounded.  From Case I, 

the NN weight estimation errors are bounded at the trigger instants. Therefore, the initial 

values during inter-event times are bounded. Further, from (A.17), the NN weight 

estimation errors are remain constant at their respective previous values during the inter-

event times. Therefore, the NN weight estimation errors ,I kW , ,V kW  and ,u kW   remain 

bounded during the inter-event times. 

  Note that, from Case I, with trigger of events, the system state vector and the NN 

weight estimation errors converge to UB for all 0ik k T  . During the inter-event times, 

from Case II, the system states are bounded by the time varying bound, 2,

x

kb , and NN 

weight estimation errors are held at their previous values. During the initial learning 

phase, the piecewise constant bound 2,

x

kb  may be large. Therefore, the system state vector 

may increase. Alternatively, the Lyapunov function ,cl kL  may increase during inter-event 

times, 
1i i

k k k


  , for 1,2,i   as shown in Figure 2. Since the change in system state 
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vector is governed by the event-trigger condition, a large value of system state vector will 

lead to an event. Hence, the NN weights and control inputs will be updated which will 

make the state and weight estimation error to converge. 

 Further, since each inter-event is followed by an event, the function 2

, ,

c

cl total k  for 

1i ik k k   , in (A.18), is less than the previous inter-event time 1i ik k k    and, hence, 

2,

x

kb . This implies that for all 0ik k T  , the function 2 2

, , ,

c c

cl total k cl M   where 2

,

c

cl M

2 2 2 2

, ,4 ( )
u

M u M u MW
g b   is a constant  and 

uW
b  is the ultimate bound for ,u kW  from Case I. 

Therefore, the bound for the system state 2,

x

kb  will also converge, i.e., 2, 2,

x x

k Mb b  for 

0ik k T    where 
2 *

2, , (1 2 )(1 )x c

M cl M ETb K    is a small constant.  

Consequently, from Case I and Case II, the system state, 
k

x  the NN weight 

estimation errors for the identifier, critic and the actor, ,I kW , ,V kW , and ,u kW  are UB with 

trigger of events for all 0ik k T  , or alternatively, for all 0k k T   since ik   is a 

subsequence of k  and, hence, T  is a function of  T . Therefore, the Lyapunov function 

will converge it its ultimate value. 

Remark A.1: From both the Cases, the UB for system state, NN weight estimation errors 

of identifier, critic and actor NNs are found to be 1, 2,max( , )x x

x M Mb b b , 
IW

b , 
VW

b  and 
uW

b , 

respectively. The bounds xb , 
IW

b , 
VW

b  and 
uW

b are function of learning parameters 
I

 ,
V



,
u

  and the NN reconstruction error bounds 
,I M

 , 
,V M

 , and 
,u M

 . Hence, a smaller UB 

for the closed-loop system can be obtained by selecting 
I

 , 
V

 , 
u

  properly and 

increasing the number of neurons in the NN to reduce 
,I M

  , 
,V M

 , and 
,u M

 . 



165 

 

Finally, to show the convergence of estimated value function and control input to 

their optimal values, subtract (22) from (20) and (39) from (36) to get 

  *

, , ,
ˆ ˆ|| || ( , ) ( , ) ( , )T T

V k k V k k k V kV V W x k W x k x k          

 ,max ,max ,
ˆ ,

V

T

M V ET x V M VW
b W C b b       (A.19)  

and  

   *

, , ,
ˆ|| || ( , ) ( , ) ( , )T T

k k u k u k u k u k u k u k
u u W x k W x k x k         

 
, ,max ,max ,

ˆ ,
uu

u M u ET x u M uW
b W C b b


       (A.20) 

where 
,max ,

ˆ ˆmax{ }
V V k

k
W W  and 

,max ,
ˆ ˆmax{ }

u u k
k

W W  are the maximum estimated values for 

the critic and actor NNs. The maximum value of the event-trigger threshold coefficient is 

denoted by ,maxET .  The constants C  and 
u

C


are the Lipschitz constants for the critic 

and actor NN activation functions, respectively.  Note that bounds Vb  and ub  depend on 

the UB of the system state vector xb , NN weights 
VW

b and 
uW

b , which are small as 

mentioned in Remark A.1. Therefore, Vb  and ub  are small constants and the estimated 

control input converge to the near optimal value.                                                         ■    

Proof of Theorem 3: Consider the event-trigger error  (2)
,ET k k k

e x x  . The error 

dynamics, 
, 1 1 1ET k k k

e x x
  
  ,  the by using the closed-loop system dynamics (47) is upper 

bounded by  

 
, 1 ,ET k i ET k i

e M e N

  ,  

1i i
k k k


  , 1,2,i   (A.21) 

where *

, , ,
(( 1) ( ))

i ii k M u M u k u M
N K x g W      and 

i
M  *

,
ˆ( )

u iM u k
K g C W


 , 

1,2,i   with *0 1 2K   . 
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Remark A.2: The variables iM  and iN  are piecewise constant functions since 
, iu k

W , 

,
ˆ

iu k
W  and 

ik
x  are constant for each 

thi  inter-event time. Hence, the error 
,ET k

e  is also a 

piece wise continuous function. 

By comparison lemma [20], the solution of the inequality (A.21) is bounded 

above as 

 
1 1

,
( ) ( 1)i

i

k k kk j

ET k i i i i i ij k
e M N N M N M

  


    , (A.22) 

for 
1i i

k k k


  , 1,2,i  . The lower bound on the inter-trigger times for 
thi  inter-event 

duration,
1i i i

k k k


  , is the time it takes 
,ET k

e  in (A.22) to reach the minimum 

threshold, 
,minET

  for all k . It is computed using (50)  given as 

  * 2 2 2

,max ,min
ˆmin{ } (1 2 ) 4

uET k ET M u x ET
k

x K g C W b


 


    ,  (A.23) 

where 
x

b  is the lower bound of the system state for an event to trigger as in (52). The 

weight matrix   ,max ,
ˆ ˆmax

u u k
k

W W is the maximum value of the actor NN weight 

estimates for all k . The maximum value of the NN weight matrix ,max
ˆ

u
W exists since 

the weight estimates are bounded for all time.  

The triggering instants are decided by the violation of the event-trigger condition. 

Thus at 
1i

k


 for 
thi  interval, it holds that

1, ,miniET k ET
e 


 . Therefore, from  (A.22) we 

get 

 1

,min
( ) ( 1)i ik k

i i i i ET
N M N M  

   , 1,2,i  . (A.24) 

Solving the above inequality, the lower bound on the inter-event times found to be 

        ,min
ln 1 1 1 ln

i i i ET i
k N M M    , 1,2,i   (A.25) 
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From (A.25), the minimum value of inter-event time: 

    min ,min
min min ln(1 (1 )(( 1) )) ln( )

i i i ET i
i i

k k N M M  
 

    .   

The inter-event times becomes non trivial, i.e., 1
i

k   when 

 
,min

ln(1 (1 )(( 1) )) ln( )
i i ET i

N M M   , i ,  

is satisfied.                                                                                                          ■ 



168 

 

IV. NEURAL NETWORK-BASED EVENT-TRIGGERED STATE FEEDBACK 

CONTROL OF NONLINEAR CONTINUOUS-TIME SYSTEMS 

Avimanyu Sahoo, Hao Xu and S. Jagannathan 

Abstract — This paper presents a novel approximation based event-triggered control of 

multi-input multi-output (MIMO) uncertain nonlinear continuous-time systems in affine 

form. The controller is approximated by using a linearly parameterized neural network 

(NN) in the context of event-based sampling. After revisiting the NN approximation 

property in the context of event-based sampling, an event-trigger condition is proposed 

by using the Lyapunov technique to reduce the network resource utilization and to 

generate the required number of events for the NN approximation.  In addition, a novel 

weight update law for aperiodic tuning of the NN weights at triggered instants is 

proposed to relax the knowledge of complete system dynamics and to reduce the 

computation when compared to the traditional NN-based control.  Nonetheless, a non-

zero positive lower bound for the inter-event times is guaranteed to avoid accumulation 

of events or Zeno behaviour. For analysing the stability, the event-triggered system is 

modelled as a nonlinear impulsive dynamical system and the Lyapunov technique is used 

to show local ultimate boundedness of all signals. Further, in order to overcome the 

unnecessary triggered events when the system states are inside the ultimate bound, a 

dead-zone operator is used to reset the event-trigger error to zero. Finally, the analytical 

design is substantiated with numerical results. 

Keywords- Adaptive control, approximation, event-triggered control, neural network 

control.  
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1. INTRODUCTION 

Growing interest in the networked control system (NCS) has given rise to an 

alternate control paradigm known as event-triggered control (ETC) [1]-[18] in order to 

reduce communication traffic and save computational load on the processors. Instead of 

transmitting and executing the controller in a traditional periodic sampled manner, the 

ETC approach provides a mechanism for deciding the sampling instants without 

compromising the desired performance. The analytically designed trigger condition 

allows the system error to grow before deciding the transmission instant without affecting 

the system’s stability requirements. This in turn reduces the communication and 

computation.  In recent times, various event-trigger approaches have been presented in 

the literature [2]-[17], and different formulations have been introduced to analyze system 

stability.  In general, the Lyapunov direct method is utilized to guarantee stability by 

designing an event-trigger condition.  

Among the earlier works, the author in [2] presented an event-triggered control 

scheme by assuming the input-to-state stability (ISS) of the system with respect to 

measurement error. Further an event-trigger condition is developed for deciding the 

trigger instants to execute the controller with a desired closed-loop performance. A lower 

bound on the inter-event times is also guaranteed to avoid the accumulation point. The 

traditional ETC [2]-[4] is further extended to a model-based scheme [5]-[8], which 

reduces the communication network traffic more effectively demanding a higher 

computation.  The ETC also finds its application in large scale and decentralized systems 

[9]-[11]. An extension to the ETC approach is the self-triggered control design [12]-[15] 
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where the trigger instants are determined by the past state information and, hence, 

continuous monitoring of current state is not required. 

In these previous works [2]-[7], a known system dynamics have been considered 

for the ETC design both for linear and nonlinear systems with a few exceptions [8], [17]. 

In [8], the authors considered known uncertainty for the system and developed a model-

based event-triggered control scheme. Further, in [17], an L1 adaptive control scheme is 

proposed where the nominal system dynamics are considered known, and uncertainties 

are compensated for by using an adaptive term tuned with a projection-based tuning law. 

On the other hand, in our previous preliminary work [18], the complete knowledge of the 

system dynamics were relaxed by using neural network (NN) based approximation of 

system dynamics while a zero-order-hold (ZOH) was used for the controller 

implementation.   

In contrast, this paper introduces the development of ETC of MIMO nonlinear 

continuous time systems in affine form when the system and the controller are separated 

by an ideal communication network with no delays and packet losses. Instead of 

approximating the unknown nonlinear functions of the system dynamics by using two 

NNs [18], the controller is approximated by using a linearly parameterized NN in the 

event-triggered context under the assumption that the system states are measurable. An 

event-trigger condition based on system state and estimated NN weight is designed to 

orchestrate the transmission of state vector and control input between the plant and 

controller. Since the approximation is carried out using the event-based state vector, the 

event-trigger condition is made adaptive in order to attain a trade-off between resource 

utilization and function approximation.  In addition, the NN weights and the control 
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inputs are only updated at the trigger instants, which are aperiodic in nature and held until 

the next update. Consequently, the proposed scheme reduces the overall computation 

when compared to the traditional NN schemes [19] where weights are updated 

periodically. 

In addition, to analyze the system stability and design the event-trigger condition, 

the nonlinear impulsive dynamical model of the closed-loop dynamics is considered. The 

well-developed Lyapunov approach for the nonlinear impulsive dynamical system [20]-

[21] is utilized to study inter-event and event time behavior, and used to  prove the local 

ultimate boundedness (UB) of the system state and the NN weight estimation errors. An 

NN-based control design for a traditional impulsive dynamical system is presented by the 

authors in [21].  In contrast to [21], in this paper, we modelled the closed-loop event-

triggered system as an impulsive dynamical system to analyze stability and performance. 

The main  contributions of this paper include: (1) the design of an NN-based 

event-triggered control of uncertain nonlinear continuous-time MIMO systems in affine 

form, (2) the design of an online approximate controller in the event-triggered context, 

(3) development of aperiodic event-based NN weight update law to reduce computation, 

(4) design of novel adaptive event-trigger condition for uncertain nonlinear dynamics to 

facilitate approximation and to maintain system stability and performance while reducing 

the transmission, and (5) demonstration of closed-loop stability using the impulsive 

dynamical system formulation.  

The remaining part of the paper is organized as follows. Section 2 discusses the 

preliminaries. Section 3 presents the state feedback design of the event-triggered control 

followed by the discussion on non-zero positive lower bound on the inter-event times in 
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Section 4. The analytical results are verified using numerical example in Section 5 and 

conclusions are presented in Section 6. The Appendix provides the detailed proofs for the 

lemmas and theorems. 
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2. PROBLEM FORMULATION 

First the notations used in this paper are briefly introduced followed by the 

stability notions. Subsequently, a brief background on traditional ETC is presented along 

with the problem formulation. Finally, the NN based function approximation is revisited 

in the context of event-based sampling. 

2.1 NOTATION 

Let ( , )    be the set of real numbers. [0, )    becomes the set of 

nonnegative real numbers, and n  is the n -dimensional Euclidean space. For a vector,

nx , we denote Tx x x  its 2-norm. For a matrix, n mA  , 
2

1 1

n m

ij

i j

A a
 

  

denotes the Frobenius norm. The transpose of A  is denoted by T m nA   and { }tr  is 

the trace operator of a square matrix.  Let 
a b

W
c d

 
  
 

 be a matrix, then

( ) [ ]TW a b c dvec  is the vectorization of the matrix W  and 

( ) ( ) { }T TW W tr W Wvec vec . For a square matrix, n nA  , we denote max ( )A  and 

min ( )A  represent the maximum and minimum eigenvalues  of A . 

2.2 STABILITY NOTION 

Consider a nonlinear impulsive dynamical system represented as 

     0, 0 , , ,cF         C D Z   (1) 

   , ,dF      D Z , (2) 
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where 
n  D  is the state vector, C D  and Z D , which are, respectively, the 

flow and the jump sets, and D  is an open set with 0D , ( ) ( )t t      where 

( )t 
 

0
lim t


 


  . The nonlinear functions  
n

cF    and  
n

dF    are 

respectively the continuous and reset dynamics of the impulsive dynamical system. Next, 

the definitions are stated. 

Definition 1[20]: The nonlinear impulsive dynamical system (1) and (2) is locally 

bounded if there exists a 0  such that, for every (0, )  , there exists ( ) 0   

such that (0)   implies   , 0t t   . 

Definition 2[20]: The nonlinear state dependent impulsive dynamical system (1) and (2) 

is locally UB with bound   if there exists 0   such that, for every (0, )   there exists 

( , ) 0T T     such that (0)   implies  t  , t T  and  globally UB with 

bound   if,  for every (0, )   , there exists, ( , ) 0,T T     such that (0)   

implies ( ) ,t t T   . 

Definition 3[23]:  A continuous function :[0, )a  is said to belong to class K  if it 

is strictly increasing and  0 0  . It is said to belong to class K  if a   and 

 r   as r  . 

To prove the ultimate boundedness of the impulsive dynamical systems the 

following Lemma will be used. 

Lemma 1 [20]: Consider the impulsive dynamical system (1) and (2). Assume that the 

jumps occur at distinct time instants and there exists a continuously differentiable 

function . :V D  and class K  functions    and   such that 
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       , ,V       D  (3) 

 
 

  0, , , ,
c

V
F


    




   


D Z  (4) 

      0, , , ,
d

V F V           D Z  (5) 

where 0   is such that 
   1

:
n

  
 


  B   1    D  with     . 

Further, assume   sup
d

V F


  
 


B Z

 exists. Then the nonlinear state dependent 

impulsive dynamical system (1)  and (2) is UB with bound  1   where 

  max ,    . Furthermore,  1limsup ( ) ( ) .
t

t   



  

In the next subsection, the problem formulation along with a brief background on 

the traditional event-triggered control will be introduced. 

2.3 BACKGROUND AND PROBLEM FORMUATION 

Consider the multi-input multi-output (MIMO) nonlinear uncertain continuous-

time system represented in the affine form as 

 
0

( ) ( ) , (0) ,x f x g x u x x    (6) 

where 1 2[ ] xnT

nx x x x   and um
u  are the state and input vectors of the 

system (6), respectively. The nonlinear vector function, ( ) xn
f x  , and the matrix 

function, ( ) x un m
g x


 , represent the internal dynamics and control coefficient function, 

respectively. The following assumption on system dynamics is needed in order to 

proceed. 
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Assumption 1: The system (6) is controllable and input-to-state linearizable [23]. The 

internal dynamics, ( )f x  and control coefficient ( )g x  are considered unknown with the 

control coefficient matrix, ( )g x , bounded above in a compact set for all xn

xx  , 

satisfying   maxg x g  with max 0g   being a known positive constant [19].  

 The input-to-state linearizable assumption is satisfied by a wide variety of 

practical systems such as a robot manipulator, mass damper system and many others. For 

these classes of controllable nonlinear systems [23] in affine form with complete 

knowledge of system dynamics, ( )f x  and ( )g x , it is demonstrated that there exists an 

ideal control input du  for the system (6) of the form 

 ( )du K x , (7) 

which renders the closed-loop system asymptotically stable where ( )K x is a function of 

system state vector. The linear closed-loop dynamics can be represented by 

 x Ax , (8) 

where A  is a Hurwitz matrix  and can be designed as per the closed-loop performance 

requirement.  By converse Lyapunov theorem [23], an asymptotically stable system 

admits a Lyapunov function, ( ) : xV x   , which satisfies the  following inequalities 

      1 2 ,x V x x    (9) 

    3 ,V x x   (10) 

where 1 , 2  and 3  are class K  functions.  

Moreover, considering a standard quadratic Lyapunov function, ( ) TV x x Px , for 

the closed-loop system (8), the class K  functions are expressed as    
2

1 minx P x  ,
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   
2

2 maxx P x   and    
2

3 min
x Q x  . The matrices x xn n

P


  and 

x xn n
Q


  are symmetric, positive definite, and satisfy the Lyapunov equation given by 

 
TA P PA Q   . (11) 

In the case of a traditional NCS, the state vector, x , and the control input, u , are 

transmitted with a fixed sampling interval sT . On the other hand, in an event-trigger 

context, the system state vector is sampled and transmitted at the event-trigger instants 

only. 

 Let { }k , for 1,2,..k   be a monotonically increasing sequence of time instants 

with 
0

0   such that 1k k    and k   as k   represent when the events are 

triggered and the system states, ( )kx   , and control inputs, ( )ku  ,  are transmitted. The 

event-based/transmitted state and the control input vectors are held, respectively, at the 

controller and plant by the ZOHs. It is important to note that k  is a function of system 

state x  and the last transmitted system state, ( )
k

x x  , 1k kt    , and  is aperiodic in 

nature.  

Define the event-trigger error, xn

s
e  , as 

 
s

e x x  , 1k kt    . (12) 

The trigger instant, k , is determined by the event-trigger condition consists of the event-

trigger error (12) and a state dependent threshold. Once the event-trigger error exceeds 

the threshold (time instant, 
k

t  ), the sensor and trigger mechanism initiates the 

transmission of the current state vector x . The last held event-based state vector x  jumps 

to the new value, i.e., , for kx x t     and held for 
1k k

t 


   where  kx x    and 
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k
 

 is the time instant just after k . The event-trigger error is then reset to zero for the 

next event to occur, i.e.,    

 0
s

e   for 
k

t  . (13) 

Since the system dynamics ( )f x  and ( )g x  are considered unknown, the 

implementation of the controller (4) is not possible.  Further, in the event-based sampling 

and transmission context, the intermittent availability of the system state vector at the 

controller precludes the traditional NN based approximation with a periodic update of the 

NN weights. Therefore, the NN function approximation property is revisited under the 

event-based sampling and transmission. 

2.4 FUNCTION APPROXIMATION 

By the universal approximation property of NN, any continuous function ( )f x  

can be approximated over a compact set for all xn

xx   up to a desired level of 

accuracy 
f

  by the selection of suitable activation functions and an adequate number of 

hidden layer neurons. Alternatively, there exists an unknown target weight matrix W  

such that ( )f x in a compact set can be written as 

   ( ) ( )T T

ff x W V x x   , (14) 

where 
l bW   and a lV   represent the target NN weight matrix for the output and 

input layers, respectively,  and defined as 

 
 ,

( , ) arg min[sup ( ) ( ) ]
x

T T

W V x

W V W V x f x


  . (15) 

The activation function ( ) : a l    is a hyperbolic tangent activation function and 

given by ( )   
2 21 1x xe e   with Tx V x . The term ( ) xn

f
x   is the traditional 
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reconstruction error and the constants , , andl a b  are the number of neurons in the 

hidden layer, number of input and output of the NN, respectively. 

 

1x

nx

1f

nf

V W 

 

 

 o

 o

Linear

tanh(.)
 

Figure 1.   Neural network structure with event-based activation function. 

 

In this paper we will consider the  linearly parameterized  [24] NNs, as shown in 

Figure 1, for approximating the unknown function as in (14) where the output layer 

weights  are updated while the input layer weight matrix  is initialized 

at random and held.  This linearly parameterized NN is also known as random vector 

functional link networks (RVFL) [24]. The activation function  forms a basis for 

the unknown function and the universal approximation property is retained [24]. The 

output layer activation functions, ,  are selected to be purely linear.  

With intermittent event-based transmission of the system state vector, x , the 

universal NN approximation property can be extended to achieve a desired level of 

accuracy by properly designing a trigger condition. The trigger condition will generate 

required number of events for the availability of system state vector for approximation. 

l bW  a lV 

( )TV x

( )
o


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The theorem introduced next extends the approximation property of NN for event-based 

sampling. 

Theorem 1: Let ( ) : xn

xf x   , be smooth and uniformly continuous function in a 

compact set for all xn

xx  . Then, there exists a single layer NN with sufficient 

number of neurons such that the function ( )f x  can be approximated with constant 

weights and event-driven activation function, such that 

 ( ) ( ) ( , )T

e s
f x W x x e   ,   (16) 

where xl n
W


  is the target NN weight matrix with l  being the number of hidden-layer 

neurons, ( )x  is the bounded event-driven activation function, and ( , )
e s

x e  is the event-

driven NN reconstruction error with x  representing the last event sampled state held at 

the ZOH. 

Proof: Refer to Appendix. 

Remark 1: From the proof of Theorem 1, the event-based reconstruction error 

 ( , ) ( ( , )) ( )T

e s s
x e W x e x     ( ( , ))

sf
x e   where ( , )

s s
x e x e    is a function of the 

traditional reconstruction error ( )
f

  and event-trigger error 
s

e  as in (12). A small event-

based reconstruction error ( , )
e s

x e can be observed by increasing the frequency of event-

based samples. This requires a suitable event-trigger condition for obtaining both 

approximation accuracy and a reduction in computation. A small event-based 

reconstruction error means a higher number of events, which results in more 

computations and transmissions. Hence, a tradeoff exists between reconstruction error 

and transmission.  
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3. ADAPTIVE EVENT-TRIGGERED STATE FEEDBACK CONTROL 

In this section, a state-feedback design of the NN-based adaptive ETC is 

proposed. 

3.1 STRUCTURE 

 

Plant 

 k
x 

 x t  k
x  k

u 

 x t
sensorZOH

Trigger
Mechanism u t

Update law

Controller ZOH

 x t

Network

 

Figure 2.  Structure of the adaptive state feedback ETC system. 

 

The structure of the proposed adaptive ETC scheme with a communication 

network between the plant and the controller is depicted in Figure 2.  Further, for 

simplicity, the following assumption regarding the network is considered. 

Assumption 2: The communication network between the plant and the controller is ideal 

[3], [17], i.e., the networked induced delays including the computational delay and the 

packet losses are not present. 

In the proposed scheme, a smart sensor and trigger mechanism is included at the 

plant to decide the event-trigger instants by evaluating the event-trigger condition 

continuously.  At the violation of the event-trigger condition, the state vector is 
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transmitted first and then the controller is updated and transmitted to the plant.  The ZOHs 

are used to hold the last transmitted state and control input, respectively, at the controller 

and the plant until the next transmission is received.  

Since, the system dynamics are considered unknown the control input is 

approximated by using a NN in an event- sampling context. Further, the NN weights are 

updated in an aperiodic manner at every trigger instant and held during the inter-event 

durations. In order to achieve desired approximation accuracy, an adaptive event-trigger 

condition is designed to generate the required number of events during the learning 

phase. Thus, the event-trigger condition becomes a function of the NN weight estimates 

and the system state vector, whereas in the traditional ETC design, it is a function of 

system state only [2]-[3].  Therefore, to evaluate the event-trigger condition locally, 

without transmitting the estimated NN weights, the NN weights are updated at both the 

trigger mechanism and controller in synchronism. This increases the computation but due 

to the event-based aperiodic update at both places the overall computation reduces. Next, 

the event-triggered controller design is presented. 

3.2 CONTROLLER DESIGN 

In this subsection, the approximation-based event-triggered controller design is 

presented. By the universal approximation property of the NNs, the ideal control input (4) 

is written as  

    T

d u u u
u W x x   , (17) 

where u ul m

uW


  is the output layer unknown ideal NN weight matrix, and ( ) ul

u
x   is 

the tangent hyperbolic activation function with 
T

u
x V x . The function ( ) um

u
x   is the 
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traditional NN reconstruction error, x un l

u
V


  is the input layer weight matrix and 

u
l l ,  

x
a n , and 

u
b m  are the number of neurons in the hidden layer, number of inputs and 

outputs of the NN, respectively. 

Before presenting the approximation-based controller design, the following 

standard assumptions are introduced for the NN. 

Assumption 3[19]: The target weights, 
u

W , the activation function, ( )u , and the 

reconstruction error ( )
u
  of the NN are upper bounded in compact set  such that 

,maxu u
W W , 

,max
( )

u u
   and 

,max
( )

u u
   where 

,maxu
W ,

maxu,
 , and 

,maxu
  are  positive 

constants. 

Assumption 4:  The NN activation function, ( )
u

x , is considered Lipschitz continuous 

in a compact set for all xn

x
x  .  Then, for every xn

x
x  , there exists a 

constant 0
u

L

  such that    u u

x x 
u

L x x


   is satisfied. 

 In the event-triggered context, the actual controller uses the event-based state 

vector x  held at the ZOH. Hence, by Theorem 1, the actual event-based control input is 

represented as 

 ˆ ( )T

u uu W x , 
1
,

k k
t 


   (18) 

where ˆ u ul m

u
W


  is the estimated NN weight matrix,   ul

u
x   is the event-based NN 

activation function where T

u
x V x  is the scaled input to the NN. Since, the last held state, 

x  and the NN weights are updated at the event-trigger instants, kt  , the control input 

is also updated at the trigger instant, and, then, transmitted to the plant and held by the 

ZOH until the next update is received. 
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Further, as proposed, the estimated NN weights, ˆ u ul m

u
W


 , are held during 

inter-event durations 1k kt     and updated at the trigger instants or referred to as 

jumps at 
k

t  . Therefore, the NN update law during inter-event durations is defined as 

 
1

ˆ 0, for .u k kW t      (19) 

Further, at the event-trigger instants, the update law is selected as  

  2
ˆ ˆ ˆTu

u u u s u

s

W W x e L W
c e


    


, kt  , (20) 

where ˆ u ul m

uW
   is the updated NN weight estimate just after the trigger instant with 

0
u

   being the NN learning rate, 0c   is a positive constant, x un m
L


  is a design 

matrix to match the dimension, and 0   is a positive constant serving the same role as 

the sigma-modification [25] in the traditional adaptive control. Note that the update law 

(20) uses traditional activation  u x since the system state vector, x ,  is available for 

the update at the trigger instant. 

Next, define the NN weight estimation error as ˆ
u u u

W W W  . The weight 

estimation error dynamics during the flow, by using (19), can be written as  

 ˆ 0
u u u

W W W   , for 
1k k

t 


  ,        (21) 

while for the jump instant, 
k

t  , the NN weight estimation error dynamics derived from 

(20) becomes   

 ˆ
u u u

W W W     ˆ , for ,T

u u s u s u kW x e L W t         (22) 

with  2

1
s s

c e   .  
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In the next subsection, we will formulate the closed-loop dynamics of the 

adaptive ETC system as a nonlinear impulsive dynamical system to analyze the system 

behavior for both inter-event and event time instants. 

3.3 CLOSED-LOOP SYSTEM IMPULSIVE DYNAMICAL MODEL 

As per the proposed scheme, the last transmitted state and the NN weights are 

updated at the trigger instants only. Hence, the closed-loop event-trigger system behaves 

as an impulsive dynamical system. Assuming the event instants are distinct, i.e., there 

exists a non-zero lower bound on the inter-event times, 1 0k k k     , which is 

proven in Section 4, the closed loop dynamics can be formulated in two steps. 

  The first step towards the impulsive system modeling is to formulate the flow 

dynamics. The closed-loop system dynamics during the flow interval for 1( , ]k kt     can 

be derived by using both (6) and (18), and represented as 

 ˆ( ) ( ) ( )T

u ux f x g x W x  , 1( , ]k kt    .   (23) 

Adding and subtracting the ideal control input du  yields 

  ˆ( ) ( ) ( )T

u u d dx f x g x W x u u    , 1( , ]k kt    . (24) 

Recalling the NN approximation of the ideal controller (18) and the ideal closed-loop 

dynamics (8),  (24) becomes  

       ˆ ( ) ,T T

u u u u ux Ax g x W x W x x      1( , ]k kt    . (25) 

From the definition, ˆ
u u u

W W W  ,  the closed loop dynamics (25) can be written 

as 

            1
ˆ ˆ( ) , ( , ].T T T

u u u u u u u k kx Ax g x W x x g x W x W x t             (26) 
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Similarly, the dynamics of the last transmitted state vector, x , held by the ZOH, 

during the flow interval becomes  

 0x  , 1( , ]k kt    . (27) 

Further, the flow dynamics of the NN weight estimation error is given by (21). 

In the second and final step, it only remains to formulate the reset dynamics to 

complete the impulsive modeling of the event-triggered system. This consists of the 

jumps in the system state, i.e., 

 x x  , for kt  , (28) 

the last transmitted state held by the ZOH,  

 x x  ,  for kt   , (29) 

and NN weight estimation error dynamics (22).  

From (28), (29) and (22), the reset dynamics for the system are given by 

 0x x x    , for kt  , (30) 

 , for ,s kx x x x x e t         (31) 

and 

 u u uW W W     ˆ , for .T

u s u s u kx e L W t          (32) 

 For formulating the impulsive dynamical system, we consider  

  s
T nT T

s ux x W    
  

vec  as the augmented states where   u ul m

uW vec  is 

the vector form of the NN weight estimation error matrix and 
s x x u u

n n n l m

   .  Now 

combine (26), (27) and (21) to obtain the flow dynamics as 

   , ,s

s c s s s s sF      C D Z .   (33) 
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Next combine (30), (31) and (32) to get the reset dynamics  as 

   , , ,s

s d s s s s sF      D Z  (34) 

for the impulsive dynamical nonlinear system where the nonlinear functions,  s

c sF   and 

 s

d sF  , are defined as 

 

 
0

0

s

s

c s

H

F





 
 

  
 
 

and  

  

0

ˆ

s

d s s

T

u s u s u

F e

x e L W



   

 
 
 
 

 
 
vec

with  

           ˆ( )T T

s u u u u uH Ax g x W x x g x W x        ˆ T

u uW x and s s s     . 

The set 
n

s
D  is an open set with 0 sD . The flow set s sC D  is defined as 

 :s s s s se x   C D , s sZ D  is the jump set and defined as 

 :s s s se x   Z D  where s x  is the event-trigger threshold to be designed 

next. 

3.4 STABILITY ANALYSIS 

In this section the stability results of the closed-loop system are established. 

Before proceeding, the following lemma for the boundedness of the NN weight 

estimation error both during the flow and the jump instants is necessary. 

Lemma 2 (Boundedness of the NN weight estimation error): Consider the nonlinear 

continuous-time system (6) and the controller (18) expressed as a nonlinear impulsive 

dynamical system (33) and (34). Let Assumptions 1 through 4 be satisfied while the 

initial NN weights,  ˆ 0
u

W , are initialized in the compact set 
uW . Under the assumption 

that a non-zero positive lower bound on the inter-event times, 
1

0
k k k

  


   , k
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exists, there exist positive constants 0u  , 0 1 2  , T  and T  such that the weight 

estimation error, 
u

W , is bounded during the flow period and ultimately bounded for all  

k T   or, alternatively t T  when the NN weights are updated by using (19)  and (20). 

Proof: Refer to the Appendix. 

Next we introduce the event-trigger condition given by 

  s sD e x , (35) 

where  

 min max
ˆ4

us s uq g L W P   , (36) 

is the threshold coefficient with 0 1
s

    and 
u

L  is the Lipschitz constants for the 

activation functions, 
min

q is the minimum eigenvalue of Q , P  is a symmetric positive 

definite matrix with P  and Q  satisfying (11), and  D  is a dead-zone operator defined 

as 

   ,max, if ,

0, otherwise,

x

s s

s

e x B
D e

 
 


  (37) 

where ,max

x

sB is the bound for the system state vector x . The system state vector is 

transmitted to the controller and the updated control input is transmitted to the plant by 

the violation of the event-trigger condition (35). To ensure ˆ
uW  in (36) is non zero while 

evaluating the trigger condition, the previous non zero value of ˆ
uW  is used when the 

estimates become zero.  
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Next, our main result on the local ultimate boundedness of the closed-loop 

impulsive dynamical system is introduced by utilizing the adaptive event-trigger 

condition (35) with the help of the Lyapunov approach [20].  

Theorem 2 (Closed-loop stability): Consider the nonlinear system (6), the control input 

(18), NN update laws (19) and (20), expressed as an impulsive dynamical system (33) 

and (34). Let Assumptions 1 through 4 hold. Assume there exists a non-zero positive 

lower bound on the inter-event times given by  1 0k k k     , k and the initial 

NN weight,  ˆ 0uW , is initialized in the compact set 
uW . Then, the closed-loop system 

state vector s  for any initial condition  0
n

s s
  D  is locally ultimately bounded 

with a bound s    provided the events are triggered at the violation of the condition 

(35). Further, the ultimate bound is given by  

  min P   ,  (38) 

where  , ,P diag P P I  is a positive definite matrix where I  is the identity matrix with 

appropriate dimension and   2

maxmax ,sP     with   sup
s ss

s

s s d s
V F



  
 

 
B Z

, 

 ,max ,max ,max
max , ,x x W

s s s s
B B B   where 

,max

x

s
B , 

,max

x

s
B , and 

,max

W

s
B  are the bounds for the 

system state, x , the last transmitted state, x , and the NN weight estimation error, 
u

W , 

respectively.   

Proof: Refer to the Appendix. 

Remark 2: The threshold coefficient 
s

  of the event-trigger condition (35) is a function 

of the norm of NN weight estimates ˆ
u

W and, hence, adaptive in nature. Since the 
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weights are updated only at the trigger instant, ˆ
u

W  is piecewise constant and jumps at 

the trigger instant  
k

t  , according to the update law (20). This implies that 
s

  is also a 

piecewise constant function and changes at the trigger instant. This variation in 
s

 , 

implicitly depends on the NN weight estimation error, 
u

W  (more details are in Section 4), 

which generates the required number of triggers for the NN approximation of the control 

input during the learning phase. Once the NN weight matrix, ˆ
u

W , converges close to the 

unknown constant target weight matrix, 
u

W , the weight estimates, ˆ
u

W  becomes steady; in 

turn, 
s

  becomes a constant like the traditional event-triggered control with complete 

knowledge of the system dynamics [2]-[16] .   

Remark 3: The dead-zone operator ( )D  is used to stop the unnecessary triggering of 

events due to the NN reconstruction error once the state vector reaches and stays within 

the UB region. This implies that, for an event to trigger, the following two conditions 

need to be satisfied: 

 The system state vector is outside the bound, i.e.
,max

x

s
x B , and 

 The event-trigger condition (35) is violated, i.e., 
s s

e x .  

Remark 4: The assumption on the non-zero positive lower bound on inter-event times in 

Theorem 2 is relaxed by guaranteeing a non-zero positive value in Theorem 3, which is 

discussed in detail in Section 4. In addition, an explicit formula for analyzing the lower 

bound on the inter-event times when the system state vector 
,max

x

sx B  to avoid 

accumulation point is also derived.  
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Remark 5: From the proof given in the appendix, the system state vector, x , and NN 

weight estimation error, 
uW , remain locally UB  for  all  

k T   or alternatively, for all 

t T where the time T depends on  T . This implies that the control input and the event-

trigger error are also locally ultimately bounded. Consequently, all the closed-loop 

system parameters remain ultimately bounded for all time t T . The next section will 

present the lower bound on inter-event times. 
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4. LOWER BOUND ON INTER-EVENT TIMES 

In this section, the existence of non-zero positive lower bound on inter-event 

times is presented in the following theorem. In addition, an explicit formula for the inter-

event times is derived.  

Theorem 3: Consider the event-triggered system (6) along with the controller (18) 

represented as an impulsive dynamical system (33) and (34).  Let Assumptions 1 through 

4 hold and NN weights,  ˆ 0
u

W is initialized in a compact set 
uW and updated using (19) 

and (20) by the violation of event-trigger condition (35). Then, the lower bound on the 

inter-event times 1k k k     for all k  implicitly defined by (35) is bounded away 

from zero and is given by  

     1, ,min ,max1 ln 1 0x

k k s sA A B     , (39) 

where ,mins  is the minimum value of the threshold coefficient over all inter-trigger times. 

Further,  1, max , ,max ,max max ,max ,
ˆ2

uk u k u u u u kg W g L W       with ,u kW   and 
,

ˆ
u kW  are the 

NN weight estimation error and weight estimate for thk  flow interval. 

Proof: Refer to the Appendix. 

 Furthermore, it is interesting to study the effect of NN weight estimation error uW  

on the inter-event times. The following proposition defines a relation between the lower 

bound on inter-event times k  and the NN weight estimation error, uW . 

Proposition 1: Assume the hypothesis in Theorem 3 holds. Then the lower bound on 

inter-event times also satisfies 

     , ,min ,max1 ln 1 ,x

k M k s sA A B     (40) 
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where  , max ,max , ,max max ,max ,max(1 2 ) 2
u uM k u u k u u uv g L W g L W        

Remark 6: It is clear from (40)  that the lower bound on inter-event times depends on 

,M kv  which is a function of NN weight estimation error 
uW . During the initial learning 

phase of the NN, the term ,M kv  in (40) might become larger for certain initial value  ˆ 0uW

and lead to  smaller inter-event times closer to zero. A proper initialization of the NN 

weights, ˆ (0)uW , close to the target will reduce the weight estimation error, 
uW , and in 

turn 
,M kv  in (40). This will keep the inter-event times away from zero and reduce the 

number of transmissions in the initial phase. In addition, as per Lemma 2, the 

convergence of the NN weight estimation errors to the bound will further increase the 

inter-event times leading to less resource utilization as this is verified in the simulation 

results. Next, the analytical design is evaluated by numerical examples. 
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5. SIMULATION RESULTS 

In this section, we validate the theoretical design in the Section 3 and 4 by using 

numerical examples.  Two examples are considered to show the effectiveness of the 

controller design in terms of saving in communication and computational resources. The 

first example considers a second order system and is an academic example providing an 

intuitive idea of the analytical design. In addition, the second example emphasizes the 

practical application point of view by considering a practical industrial example of a two-

link robot manipulator. 

5.1 EXAMPLE 1  

 The following single-input second order nonlinear dynamics [16] was chosen for 

simulation and given by 

 
1 2

3

2 1 2

,

.

x x

x x x u



   
 (41) 

The simulation parameters include the initial state vector as [5 1]T whereas the 

closed-loop system matrix is given by [0 1; 3 4]A     and the positive definite matrix, 

 0.1, 0.1Q diag . The learning gain, 0.001u  , 0.001  0.9s  , 1c   and

2 1L  with elements are all one. The ultimate bound for the system state vector was 

chosen as 0.001. The tangent hyperbolic activation function,  tanh T

u
V x , was used in the 

NN hidden layer with a randomly initialized fixed input weight, 
u

V , from the uniform 

distribution in the interval[0, 1] . The Lipschitz constant for the activation function was 

computed to be 4.13
u u

L V

  . The number of neurons in the hidden layer was chosen 
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as  15
u

l  . The NN weight  ˆ 0
u

W  was initialized at random from the uniform 

distribution in the interval [0, 0.01] . The sampling time chosen for simulation was 0.001 

sec. 

Figure 3 (a) illustrates the evolution of the state dependent event error and 

threshold, and in Figure 3 (b), the cumulative number of events occurred. A total number 

of events triggered was found to be 645, and the events occurred frequently during the 

initial NN learning phase.  This is due to large initial NN weight estimation error, uW  as 

discussed in Remark 6. Alternatively, the event-trigger condition generates the required 

number of triggers for the NN to approximate the control input. A proper selection of the 

initial weights,  ˆ 0uW , will further reduce the number of initial triggers.  

 

 

Figure 3. (a) Evolution of the event-trigger threshold; and (b) cumulative number of 

events 

 

 

 

Furthermore, the lower bound on the inter-event times is observed to be 0.002 sec, 

as shown in Figure 4, implying the existence of a non-zero lower bound on the inter-

event times to avoid accumulation point. It is clear from Figure 4 that the inter-event 

times are gradually increasing along with the convergence of the weight estimation error, 
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, to its ultimate bound, as presented in Proposition 1 and discussed in Remark 6. This 

elongated inter-event times and reduces resource utilization which is one of the primary 

objectives of the design. 

 

 

Figure 4. Existence of a nonzero positive lower bound on inter-event times and gradual 

increase with convergence of NN weight estimates to target. 

 

 

 

Figures 5 (a) and (b) depict the convergence of the closed-loop ETC system state 

vector, and approximated control input. This implies the event-based control input with 

reduced computation is able to regulate the system state close to zero. Figure 6 shows the 

convergence of the estimated NN weights with aperiodic weight update. Next, we 

consider the benchmark example of an MIMO system to evaluate the design. 

 

 

Figure 5. Convergence of (a) system states; and (b) approximated control input. 
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Figure 6. Convergence of the NN weight estimates. 

 

5.2 EXAMPLE  2 

A two link robot manipulator is considered whose dynamics are given by  

    x f x g x u  , (42) 

where

3

4

2 2 2

3 4 4 3 3 2 2

1 1 2 2

2

2

2 2 2

3 4 4 3 4 2 4 2 3

2

3 2 1 2 1

2 2 1 2

2

2

(2 cos )sin

20cos 10cos( )cos

cos 2( )

(2 2 cos cos 3

2 cos 20(cos( ) cos )

(1 cos ) 10cos cos( )

cos 2

x

x

x x x x x x x

x x x x

xf x

x x x x x x x x x

x x x x x

x x x x

x




     

     



    
 
     

    
 








 
 
 
 
 
 
 
 
 
 



and 2

2 2

2 2

2 2

2 2

2 2

0 0

0 0

1 cos1
( )

2 cos 2 cos

1 cos 3 2cos

2 cos 2 cos

x
g x

x x

x x

x x

 
 
 
  

  
  

   
 

   

. 

The following simulation parameters were selected for the simulation. The initial 

state vector is given by  / 3 /10 0 0
T

x     while the closed-loop matrix 

 diag 3, 4, 6, 8A       and the positive definite matrix was chosen as 

 diag 0.1, 0.1, 0.1, 0.1Q  .  The learning gain was selected as 0.5u  , 0.9s  , 

0.0015  , 4 2L  with elements all one, max 3g   and 1c  . The bound for system 

state vector was chosen as 0.001. The tangent hyperbolic activation function was used in 

the hidden layer of the NN with a randomly initialized fixed input weight uV  from the 
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uniform distribution in the interval  0, 1 . The Lipschitz constant for the activation 

function was computed to be 3.42
u u

L V

  . The number of neurons in the hidden 

layer was selected as 15l  . The NN weight  ˆ 0
u

W  was initialized at random from the 

uniform distribution in the interval  0, 0.01 . The sampling time chosen for simulation 

was 0.001 sec. 

 

 

Figure 7. (a) Evolution of the event-trigger threshold; (b) cumulative number of events. 

 

The event-trigger threshold is shown in Figure 7 (a) along with the event-trigger 

error. The cumulative number of triggered events is illustrated in Figure 7(b), which 

shows the state vector is only transmitted 2000 times indicating the reduction in 

communication bandwidth usage when compared to a continuous transmission. Further, 

the lower bound on the inter-event times is found to be 0.002 sec proven in Theorem 3. In 

addition, as per Proposition 1, the inter-event times increase with convergence of the NN 

weight estimates to target as shown in Figure 8. 
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Figure 8. Existence of a nonzero positive lower bound on inter-event times and gradual 

increase with convergence of NN weight estimates to target. 

 

 

 

Further, from Theorem 3 the cumulative number of events depends upon the 

initial NN weights. The histogram in Figure 9 shows the plot between the norm of initial 

weights and cumulative number of events. It is clear that the cumulative number of 

events varies with weight initialization.  

 

 

Figure 9. Cumulative number of events with different NN initial weights. 

 

Convergence of the system state and control input is shown in Figures 10 (a) and 

(b), respectively, implying the event-based controller-regulated system states close to 

zero. Further, the convergence of the estimated NN weights to target value with aperiodic 

event-based update law is shown in Figure 11. 
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Figure 10. Convergence of (a) system state vectors; and (b) control input. 

 

 

Figure 11. Convergence of the NN weight estimates. 

 

Table 1. Comparison of computational load between traditional periodic and 

event sampled system. 

System 

Traditional 

periodic sampled 

data system 

Event-based 

non-periodic 

sampled 

Sampling  instants 30,000 2000 

Number of additions 

and  Multiplications at 

every sampling instant 

NN update law at 

the controller 
10 10 

Controller 3 3 

Update law at the 

trigger mechanism 
0 10 

Trig. Condition  

(periodic) 
0 6 

Total number of Computation 390,000 226000 
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Finally, comparison results in terms of computation and the network traffic 

between a sampled-data system with a fixed periodic sampling and the event-based 

sampling is presented in Table 1 and Figure 12 respectively. 

Table 1 gives the number of computations observed in terms of addition and 

multiplications that is needed for realizing both the methods. It is evident that with the 

event-based system, a 48% reduction in computation when compared to the sample data 

approach is observed. Further, considering each packetized transmission is of 8 bit data 

through the ideal network, Figure 12 shows a comparion between the data rate in both the 

cases. It is clear that the data rate in the case of event-based sampling is lower implying 

that the needed network bandwidth is less.  This verifies the resourcefullness of the 

event-triggered control design. 

 

 

Figure 12. Comparison of data transfer rate between periodic sampled-data and 

the event-sampled controller for a physical system with a network. 
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6. CONCLUSIONS 

This paper presented an event-triggered stabilization of MIMO uncertain 

nonlinear continuous-time systems. The control input was directly approximated by using 

an NN in the context of event-based transmission.  Novel event-trigger condition was 

developed based on the system state vector and NN weight estimate to ensure the 

reduction in transmission of feedback control signal. The weights were updated in a non-

periodic manner at the trigger instants. The controller design guaranteed the desired 

performance while relaxing the need for system dynamics.  Lyapunov analysis confirmed 

the closed-loop stability. Simulation results confirmed the validity of the control design 

and reduction in resource utilization. 
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APPENDIX 

Proof of Theorem 1: Recall universal approximation theorem [26][19], the smooth and 

uniformly continuous function ( )f x  can be approximated by utilizing a NN with 

constant weights and time-driven periodic activation function as 

 ( ) ( ) ( )T

f
f x W x x    .    (A.1) 

Moreover, the equation (A.1) can be expressed using event-driven activation function 

(i.e., ( )x ) with the event-based state  kx x   for 
1k k

t 


   as 

 ( ) ( ) ( ) ( ) ( )T T T

f
f x W x W x W x x             

 ( ) [ ( ) ( )] ( )T T

f
W x W x x x       .           (A.2) 

Further, from the event-trigger error (12), the current system state x  can be represented 

by using last event-based state and the event-trigger error given by ( , )
s s

x x e x e   . 

Therefore, the (A.2) can be written as 

 ( ) ( ) ( , ),T

e s
f x W x x e      (A.3) 

where ( , ) [ ( ( , )) ( )] ( ( , ))T

e s s sf
x e W x e x x e        .                                                     ■  

Proof of Lemma 2:  By the hypothesis of Lemma 2, the events are occurring at discrete 

time instants, i.e., a nonzero positive lower bound on the inter-event times, exists. 

Therefore, the proof is carried out, considering the flow and the jump dynamics of the 

NN weight update law as in Lemma 1, in two different cases as follows. 

Case I: (Boundedness of the weight estimation error during the flow for 
1

( , ]
k k

t  


 ). 

 This proof is trivial and can be seen by selecting a Lyapunov function

( ) { }T

s u u u
V W tr W W  and the first derivative along the weight estimation error   
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 ( ) 0
s u

V W  . (A.4) 

It is clear from (A.4) that weight estimation error remains constant during the 

flow intervals for 
1

( , ]
k k

t  


 . As the initial weights are finite and the target NN weights 

are bounded, the NN weight estimation error 
u

W  is constant and bounded during the flow 

interval. It only remains to prove that the weight estimation error during the jump is also 

remains bounded and converge to the ultimate bound.  

Case II: (Boundedness of the weight estimation error during jump for
k

t  )  

Consider the same Lyapunov function, as in Case I, for the jump instants 

 ( ) { }T

s u u u
V W tr W W . (A.5) 

The first difference ( )s uV W  is written as 

 ( ) { } { }T T

s u u u u uV W tr W W tr W W    . (A.6) 

Along the weight estimation error dynamics (22), the first difference ( )s uV W  in (A.6) is 

expressed as   

  ˆ ˆ( ) ( ( ) ) ( ( ) ) { }T T T T

s u u u s u s u u u s u s u u uV W tr W x e L W W x e L W tr W W               

 
     

    

2 2

2

ˆ2 ( ) 2 { } ( ) ( ) 2

ˆ ˆ ˆ( ) .

T
T T T T T

u s u u s u u u s u s u s u s

T
T T

u s u u u

tr W x e L tr W W tr x e L x e L

tr x e L W tr W W

         

 

   

 

 

By replacing ˆ
u u uW W W   from the definition, the first difference leads to  

 

       

      
    

2 2

2

2 ( ) 2 2

( ) ( ) 2 ( )

2 ( ) ( ) ( ) .

T T T T

s u u s u u s u u u u

T T
T T T

u s u s u s u s u s u

T
T T

u s u s u u u u u

V W tr W x e L tr W W tr W W

tr x e L x e L tr x e L W

tr x e L W tr W W W W

    

      

   

   

 

   
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By using the bounds from Assumption 3, applying Cauchy-Schwartz (C-S) 

inequality and applying Young’s inequality, and with the fact that  one can 

arrive at 

 
2

2

,max( ) 2 (1 ) ( 2 ) ,uW

s u u u u uV W L W W B           (A.7) 

where
22 2 2 2

,max ,max ,max ,max2 (2 )uW

u u u u u uB L W W L         . Defining 

2

1 ( 2 ) 0a      with 0 1/ 2  , and 2 ,max2 (1 )u ua L    , the first difference 

becomes 

  
2

1 2
uW

s u u uV W a W a W B     . 

Completing the square for uW  reveals that 

      
22

1 1 2 1 12 2 2 uW

s u u uV W a W a W a a B     
 

where  2

1 2 12u uW W
B a a B  . Since the second term is always negative, it also holds that 

    
2

1 12 uW

s u uV W a W B    . (A.8) 

From (A.8) the first difference ( ) 0s uV W   as long as 
2

1 1 max(2 )u uW W

uW B a B  . 

Hence, by Lyapunov theorem, the NN weight estimation error is ultimately bounded [20] 

with the trigger of events and for all k T   or alternatively for all  t T  where T  is 

function of  T .  

Consequently, from Case I and II, the NN weight estimation error remains 

constant and bounded during the flow period and converges to the ultimate bound with 

the trigger of events for all 
k

T  . Therefore we can conclude that the NN weight 

estimation error is ultimately bounded for all t T .                                                          ■ 

0 1s se 
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Proof of Theorem 2: To prove this theorem we will use the Lemma 1. In other words, 

we need to show that (4) for flow and (5) for reset dynamics hold. For the flow duration, 

consider a Lyapunov function candidate for 1( , ]k kt     

   T

u u u uV P   , (A.9) 

with  , ,P diag P P I  where P  is a symmetric positive definite matrix, I  is the identity 

matrix of appropriate dimension. The Lyapunov function  (A.9) can be expanded as 

   uWx x

s s s s sV V V V    , (A.10) 

with x T

sV x Px , x T

sV x Px  and   ( ) ( )uW T T

s u u u uV W W tr W W vec vec . 

The first derivative of the first term in (A.10), x T T

sV x Px x Px   along the system 

trajectories (33) can be expressed as  

 
         

  

ˆ ˆ( ) ( )

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )

T
x T T T

s u u u u u u u

T T T T

u u u u u u u

V Ax g x W x x g x W x W x Px

x P Ax g x W x x g x W x W x

   

   

    

    

 

        ˆ ˆ2 ( ) 2 ( ) ( )
T TT T T T

u u u u u u ux Qx g x W x x Px g x W x W x Px         , 

where Q  is a positive definite matrix satisfying the Lyapunov equation 
TA P PA Q   . 

Using Frobenius norm and applying C-S inequality, it also holds that 

 
 

   

2

min max ,max ,max

max

2

ˆ ˆ2 ,

x

s u u u

T T

u u u u

V q x g W P x

g W x W x P x

 

 

   

 
 (A.11) 

where min 0q   is the minimum eigenvalue value Q . Again using the Lipschitz continuity 

from Assumption 4 and separating the cross terms using Young’s inequality, 

  2 22 1ab p a pb  ,  in (A.11), we arrive at 
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  
2 2

min min max
ˆ2 2

u

x x

s u s sV q x q x g L W P x e B      (A.12) 

where    
222

min max ,max ,max2x

s u u uB q g P W    . Note that x

sB  is constant during flow, 

1( , ]k kt    , for a fixed k  as the NN weight estimation error 
uW  remains constant.   

Recalling the event-trigger condition (35), the first difference in (A.12) becomes 

  
2 2

min max
ˆ2 2

u

x x

s s u sV q x g L W P x B    . 

Substituting s  from (36), the first difference leads to 

   
2

min1 2x x

s s sV q x B    . (A.13) 

 Similarly, consider the second term in (A.10), the first derivative, using (33), is 

given by  

 0x T T

sV x Px x Px   .           (A.14) 

As the NN weights are not updated the first derivative of the third term, uW

sV ,  in the 

Lyapunov function (A.10) also becomes zero as given in (A.4), i.e., 0uW

sV  .  

 Combining (A.13), (A.14) and (A.4), first derivative of the Lyapunov function 

(A.10) for the overall system during flow for 1( , ]k kt     becomes 

    
2min 1

2

x

s s s s

q
V x B      for 1( , ]k kt    . (A.15) 

From (A.15) it is clear that the first derivative   0sV    as long as 

 min 12 1x x

s sx B q B   . This implies that the system state is bounded during the 

flow. Further, since the NN weight estimation error, 
u

W , and the last held state, x , are 

constant due to no update, 
u

W  and x  also remain bounded during the flow.  



211 

 

Note that x

sB  in (A.15) is a function of 
u

W . And, from Lemma 2, the NN weight 

estimation error 
u

W  remains constant during the flow and converges to the bound max
uW

B  

for all trigger instants 
k

T  . This implies x

sB  will converge to ,

x

s bB  for all  
k

T   or, 

alternatively, for all t T  where  
22 2

, min max max ,max ,max2 ( )uWx

s b u uB q g P B    . It follows 

that, the bound 
1

xB  for the system states, x , is will converge to 
max

x

s,
B  with trigger events 

for  all time t T  where  ,max , min2 1x x

s s b sB B q  . It only remains to show that  (5) 

holds for the reset dynamics.  

Remark A.1: From (A.15) it is clear that the system state x  will remain bounded during 

the flow for 1( , ]k kt    . As per the reset dynamics (34) of the impulsive dynamical 

system, x x  . Hence, with a finite initial value, the system state vector also remains 

bounded at the jump instant at kt   for all 1,2,3...k  . Further, since x x  for kt  , 

x  also remains bounded during the jump.  

 To show that (5) holds during the jump, we select the same Lyapunov function 

candidate as in (A.9)   

   T

s s s sV P   . (A.16) 

The first difference in an expanded form is given by 

       1 2T T

s s s s s s s s s s sV V V P P V V                , (A.17) 

with  1 T T T T

sV x Px x Px x Px x Px         and    2 T T

s u u u uV tr W W tr W W    . 

Evaluating along the reset dynamics (34) the first difference of the first part becomes 

 1 , for .T T

s kV x Px x Px t                                    (A.18) 
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Now, using Frobenius norm we can express 1

sV  as 

  
21

min ,jp

s s kV P x B t      . (A.19) 

where min ( )P  is the minimum eigenvalue of the symmetric positive definite matrix P  

and 2

1( )jp x

sB P B  where 
1

xB is the bound for system state x  during flow. 

The first difference of the second Lyapunov function candidate 2

sV  , it can be 

written  from (A.8) in Lemma 2. 

Finally, combining (A.19) and (A.8) 

    
22 1

min 1
2

uWjp

s s u s

a
V P x W B B       , kt  . (A.20) 

 From (A.20) Lyapunov, the first difference   0s sV    as long as 

 1 min ,2( )uWjp x

s sx B B P B    or 
1 12( )uWjp

u sW B B a 
,2
uW

sB . Since, 1 ,max

x x

sB B  

and 1 max
u uW W

B B  for all k T   from Case I and Lemma 2, respectively, the bounds 

,2 ,max

x x

s sB B  and 
,2 ,max
u uW W

s sB B  for all k T   where  ,max ,max max min( )uWx jp

s sB B B P   

and  
,max ,max max 1( )u uW Wjp

s sB B B a   with  
2

,max ,max

jp x

s sB P B .  This implies, all the system 

variables x , x , uW  are ultimately bounded during the jump for all k T   or alternatively 

for all t T .  

Remark A.2: From both parts of the proof, the stability conditions  (4) and (5) in Lemma 

1 holds with the bound  ,max ,max ,max
max , ,x x W

s s s s
B B B  . Further, since   0s sV   , for 

s s  ,   s

s s d s
F      is also bounded. Therefore,    sup

s ss

s

s s d s
V F



  
 

 
B Z

 exists. 

Hence, we conclude that the augmented system state s  of the impulsive dynamical 
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system (33) and (34) is locally ultimately bounded for all time t T . To compute the 

ultimate bound, consider the Lyapunov equation (A.9). It is clear that 

    
2 2

min max

T

s s s s
P P P        .  (A.21) 

Therefore, the ultimate bound  min
P    where   2

max
max ,

s
P    .            ■ 

Proof of Theorem 3: From the closed-loop dynamics (26)  and the NN weight update 

law (19) the following inequality  

 1,kx A x   ,    for  
1k k

t 


   (A.22) 

holds where  1, max , ,max ,max max ,max ,
ˆ2

uk u k u u u u kg W g L W      is a piece wise constant 

function since the NN weight estimation error ,u kW  and weight estimate 
,

ˆ
u kW  are constant 

for each thk   flow interval  due to no weight update. 

Consider the event-trigger error 
s

e . The derivative of 
s

e  can be expressed as 

 
1,s s k

de dt e x x x A x       , (A.23) 

for  
1k k

t 


  . By comparison lemma [23], the solution of the differential inequality 

(A.23)  with initial condition 0se   for 
 kt 

 
is upper bounded by 

    1,exp

k

t

s ke A t s ds






    

     1, [exp 1]k kA A t    ,  
1k k

t 


  .  (A.24) 

 The lower bound on thk  inter-event time, i.e., 1k k k     , is the time it takes  

se  to grow from 0 to the minimum value of the threshold  ,min ,mins s k
k

x   over all 

flow interval.  Note that the threshold coefficient s  in (36)  is a piece wise constant 
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function since the NN weight, ˆ
u

W ,  is not updated during the flow period. Hence, the 

minimum value of the threshold, s x ,  from (35) over flow interval  1
,

k k
 


 for all 

1,2,k   becomes 

  ,min ,max ,maxmin max ,max
ˆ4

u

x x

s s ss u
B Bq g L W P

   ,  (A.25) 

where ,max

x

sx B  for an event to trigger as per Remark 3 and ,max ,
ˆ ˆmax( )u u k

k
W W  is the 

maximum value of the NN weight estimates for all 1,2,k  . The maximum value 

,max
ˆ

uW
 
exists since the weight estimates are bounded for all t T  and proven in   

Theorem 2.  

Further, at the next event, i.e., 1k  , it holds that  1 ,min ,max

x

s k s s
e B 


 . Using this 

relation and comparing with (A.24), we arrive at 

      ,min ,max 1, 1exp 1x

s s k k kB A A      . (A.26)  

Solving the inequality (A.26), the lower bound on inter-event times 

     1, ,min ,max1 ln 1 x

k k s sA A B     (A.27) 

From (A.27) the lower bound on the inter-event times 0k   for all 1,2,k   since 

 1, ,min ,max 0x

k s sA B   .                                                                                             ■ 

Proof of Proposition 1: Recalling the definition of 1,kv  form (A.22) and using the 

definition ˆ
u uW W W 

uW W  yields 

 
   

  

1, max ,max , ,max max ,max ,

max ,max , ,max max ,max ,max ,

2

1 2 2

u

u u

k u u k u u u u k

u u k u u u M k

g W g L W W

g L W g L W



 

   

   

   

    
 (A.28) 
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Substituting (A.28) in (A.27), it holds that the lower bound on the inter-event times 

satisfies the relation 

  , ,min ,max(1 ) ln(1 ( ) )x

k M k s sA A B    .      ■ 
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V. APPROXIMATE OPTIMAL CONTROL OF AFFINE NONLINEAR 

CONTINUOUS TIME SYSTEMS USING EVENT SAMPPLED NEURO 

DYNAMIC PROGRAMMING 

Avimanyu Sahoo, Hao Xu and S. Jagannathan 

Abstract — This paper presents an approximate optimal control of nonlinear continuous-

time systems in affine form by using the adaptive dynamic programming (ADP) with 

event sampled state and input vectors. The knowledge of the system dynamics are relaxed 

by using a neural network (NN) identifier with event sampled inputs. An approximate 

solution to the Hamilton-Jacobi-Bellman (HJB) equation, by using event sampled NN 

approximator, is introduced. Subsequently, the NN identifier and approximated value 

function are utilized to generate the optimal control policy.  Both the identifier and value 

function weights are tuned only at the event sampled instants leading to an aperiodic 

update scheme. A novel adaptive event sampling condition is designed to determine the 

sampling instants such that the approximation accuracy and stability are maintained. A 

positive lower bound on the minimum inter-sample time is guaranteed to avoid 

accumulation point and the dependence of inter-sample time upon the NN weight 

estimate is analyzed in detail. The extension of Lyapunov theory is utilized to guarantee 

the local ultimate boundedness of the resulting nonlinear impulsive dynamical closed-

loop system.  Finally, a numerical example is utilized to evaluate the performance of the 

near optimal design through simulation studies.  The net result is the design of event 

sampled ADP-based controller for nonlinear continuous-time systems. 

 

Index Terms - Adaptive dynamic programming, Hamilton-Jacobi-Bellman equation, 

event sampled control, neural networks,  optimal control.  
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1. INTRODUCTION 

Optimal control [1]-[2] of dynamic systems in continuous-time is a challenging 

problem due to the difficulty involved in obtaining a closed-form solution to the 

Hamilton-Jacobi-Bellman (HJB) [2] equation. Adaptive dynamic programming (ADP) 

[1]-[13] techniques, on the other hand, are used to solve the optimal control of uncertain 

systems online by finding an approximate value function which becomes a solution to 

HJB equation. Among the earlier works on ADP-based optimal control [1]-[13], the 

reinforcement learning technique is combined with dynamic programming, using an 

actor-critic neural network (NN) based framework [4], to generate an online yet 

approximate solution to the optimal control without needing the knowledge of system 

dynamics.  Later, online policy iteration schemes [4] are introduced to obtain the solution 

of HJB equation and attain optimality. In addition, an alternate single NN-based ADP 

approach is presented in [10] for an affine nonlinear continuous-time system without 

using an iterative technique. The NN weights are tuned online and periodically to achieve 

near optimality.  

For controller implementation, the traditional sampled data approach with a fixed 

sampling interval is found to be computationally intensive.  Event-based sampling [14]-

[15] and control, on the other hand, is increasingly gaining prominence among control 

researchers because of its computational and/or communication resource saving 

capability. In an event sampled framework, the state vector is sampled based on certain 

state dependent criteria referred to as event-triggering condition. The controller is 

executed at these aperiodic sampling instants. The event-triggering condition is designed 

by taking into account the stability and closed-loop performance, and, hence, proven to 
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be advantageous [14] over its periodic counterpart.   However, the majority of the event-

triggered techniques [14]-[15], are designed for stabilization without any performance 

criterion and under the assumption that the system dynamics are known.  

In practice, the system dynamics may not be known accurately for the traditional 

backward-in-time optimal techniques to work. Therefore, development of an ADP 

scheme in an event sampled context is necessary and this is a challenging and an open 

problem.  Motivated by the above limitations, in this paper, we propose a novel ADP 

method to solve the approximate optimal control of nonlinear continuous-time systems in 

an event sampled paradigm. After revisiting the NN approximation under this paradigm, 

NNs are subsequently used to identify the unknown system dynamics, and the value 

function which becomes the solution of the HJB equation. The optimal control policy is 

derived by using both the approximated system dynamics and the value function.  

Although this work is motivated by [10] where a continuous-time near optimal 

controller is designed using a single NN as a value function approximator, this effort 

develops an event sampled NN approximation scheme to achieve near optimality. 

Another major difference with [10] is the aperiodic tuning of the NN weights and 

execution of the control at the event sampled instants. Above all the hybrid/impulse 

system [19]-[21] framework is used to analyze the stability due to aperiodic availability 

of state and input vector. 

An adaptive sampling condition using actual NN weight estimates is analytically 

derived via Lyapunov techniques.  Since, the actual NN weight estimates are tuned at the 

event sampled instants, the computation is reduced when compared to traditional NN 

based schemes [10], [16].  Next, the closed-loop system is formulated as a nonlinear 
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impulsive dynamical system [19]-[21] and the extension of Lyapunov direct method [19] 

is used to prove the local ultimate boundedness (UB) of all signals. A minimum inter-

sample time is guaranteed to avoid accumulation point. It is demonstrated that the events 

will occur more frequently during the initial learning phase to attain the approximation 

accuracy. Nevertheless, the overall computational load is reduced over its traditional 

periodic sampled counterpart. A preliminary version of the paper is published as [22]. 

The remaining of the paper is organized as follows. Section 2 presents a brief 

background on the traditional ADP schemes and formulates the problem. Section 3 

details the design procedure of the proposed event sampled ADP. The stability of the 

closed-loop system is analyzed in Section 4 followed by the simulation results in Section 

5. Section 6 presents the conclusions. The detailed proof for the theorems and the lemmas 

are provided in the Appendix. 

  



220 

 

2. BACKGROUND AND PROBLEM STATEMENT 

In this section, after introducing notations, a brief background of traditional ADP 

is presented. Then, the problem of event-sampled ADP is formulated.  

2.1  NOTATIONS 

 Let n  is the n  dimensional Euclidean space. For a vector ( ) nx t  , we denote 

x  its vector 2-norm.  For a matrix n mA  , A  is its Frobenius norm, T m nA   is 

the transpose of A  and ( )vec A is the vector operator to stack the columns in a vector. For 

a square matrix n nA  , max ( )A  and min ( )A  are the maximum and minimum 

eigenvalues of the matrix, and { }tr A  is the trace of A .  

Consider the impulsive dynamical system [19] given by  

 0( ), , (0)cF        C Z, ,  (1) 

 ( ); ,dF       Z , (2) 

where 
n

  
 
represents the state vector, :

n

cF 

 
 
and :

n

dF 

  denotes the 

nonlinear continuous and reset/jump dynamics, respectively. The set C   and Z  

are respectively the flow and the jump sets and 
  is an open set with 0  . The 

difference is defined as ( ) ( ) ( )t t t      where 
0

( ) lim ( )t t


  


  . For brevity, we 

write  t   . The time variable t  is dropped from the states and other functions 

where there is no ambiguity. 
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2.2 BACKGROUND 

Consider the controllable nonlinear continuous-time system in affine form 

represented as 

 ( ) ( ( )) ( ( )) ( )x t f x t g x t u t  ,  0(0)x x   ,      (3) 

where nx  and mu  are the state and the control input vectors, respectively. The 

unknown functions ( ) nf x   and ( ) n mg x   represent the nonlinear system dynamics 

satisfying (0) 0f   with the following assumption.  

Assumption 1[10]: The nonlinear system is controllable and observable. The nonlinear 

matrix function ( )g x  for all 
x

x  satisfies ( )m Mg gg x  , with Mg  and mg  are 

known positive constants, and 
x

  is a compact set. 

Consider the value function  

    ( ) ( , )
t

V t r x u d  


  , (4) 

to be optimized where ( , ) ( ) Tr x u Q x u Ru   is the cost-to-go function. The function

( )Q x   and the matrix m mR   are positive definite quadratic function and matrix, 

respectively, to penalize the system state vector and the control input. The initial control 

input 0u  must be admissible to keep the infinite horizon value function (4) finite.  

The Hamiltonian for the cost function (4) can be given by 

 
( , ) ( ) [ ( ) ( ) ]T T

xH x u Q x u Ru V f x g x u    ,  

where 
x
V V x     is the gradient with respect to x .   

The optimal control policy 
*( )u x  which minimizes the value function (4) can be 

computed using stationary condition as 
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    * 1 *( ) ( )1 2
Tu x R g x V x

    , (5) 

where *V   is the optimal value function. Then, substituting the optimal control input 

into the Hamiltonian, the HJB equation becomes 

    * * * * 1 *( , ) ( ) ( ) (1 4) ( ) ( ) ( ) 0,T T

x x xH x u Q x V f x V g x R g x V xx x
            (6) 

where  * *

x
V V xx    . It is extremely difficult to obtain an analytical solution to the 

HJB equation (6). Therefore, ADP based techniques [10] are utilized to generate an 

approximate solution in a forward-in-time manner by using periodically sampled state 

vector. Next, the problem for the event sampled ADP is formulated. 

2.3 PROBLEM STATEMENT 

In this section, we will formulate the event sampled optimal control problem by 

highlighting the challenges involved in the design with respect to approximation and 

stability.  In an event sampled framework [14]-[15], the system state vector is sensed 

continuously and released to the controller only at the event-sampled instants.   

To denote the sampled instants we define an increasing sequence of time instants 

 
1k k

t



, referred to as event-sampled instants satisfying 1k kt t  , 1,2,k   and  0 0t   

is the initial sampling instant. The sampled state, ( )
k

x t , is released to the controller and 

the last sampled state at the controller denoted by ( )x t  is updated. It can be represented 

as a jump in the state ( )x t  at the event sampled instants and defined as 

  ( )
k

x t x t  , 
k

t t , 1,2,k  . (7)  

Then it is held at the controller until the next update and is given by 

  ( )
k

x t x t , 
1k k

t t t


  , 1,2,k  . (8)  
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The error introduced due to the event-sampled state can be written as 

 ( ) ( ) ( )
ET

e t x t x t  ,
1k k

t t t


  , 1,2,k  , (9) 

where ( )
ET

e t  is referred to as event sampling error. Thus, the event sampling error is 

reset to zero with the update in the state i.e., 0ETe  ,  kt t , 1,2,k  .  

For optimal policy generation using ADP in an event sampled framework, the 

value function and the system dynamics need to be approximated with intermittently 

available system state vector.  Therefore, to ensure desired accuracy of approximation, 

the universal approximation property of the NNs is revisited in the next few paragraphs. 

By the universal approximation property of the NN a continuous function 

( ) nh x   for all n

xx   can be approximated as 

 ( ) ( ) ( )T

h h h
h x W x x    .    (10) 

where 
l n

h
W   is the unknown constant target NN weight matrix. The function ( )

h
x  

is a bounded activation function, and ( )
h

x  is the traditional NN reconstruction error 

with l  being the number of hidden-layer neurons. The implicit assumption here is that 

the state vector is available continuously for approximation. 

For approximating the function ( )h x  with an event sampled state vector ( )x t  

defined in (7) and (8), the equation (A.1) can be rewritten as  

 ( ) ( ) ( ) ( ) ( )T T T

h h h h h h h
h x W x W x W x x             

 
,

( ) ( , )T

h h e h ET
W x x e   , 1k kt t t   , 1,2,k  ,  (11) 

where ( )x  is the event sampled activation function and 
,

( , ) [ ( )T

e h ET h h ET
x e W x e  

( )] ( )
h h ET

x x e     is the event sampled reconstruction error. The reconstruction error 
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,
( , )

e h ET
x e

 
consists of a second term [ ( ) ( )]T

h h ET h
W x e x    in addition to the traditional 

reconstruction error, ( ) ( )
h h ET

x x e    which appears to be a function of the event 

sampling error, 
ET

e . It is clear that the event sampled approximation is equal to the 

traditional universal approximation if the event sampling error 
ET

e  is zero. Since, our 

objective is to reduce computation by allowing this error to increase without affecting the 

stability, a tradeoff exists between the approximation accuracy and reduction in 

computation which is decided by the sampling frequency. 

The optimal value function with event sampled state vector (11) can be written as         

 *

,
( ) ( ) ( , )T

V e V ET
V x W x x e    , 1k kt t t   ,               (12)  

where Vl

VW   is the unknown constant target NN weights, ( ) Vlx   is the event 

sampled activation function, 
,

( , ) ( ( ) ( )) ( )T

e V ET V V ET
x e W x x x e        is the event-

based reconstruction error with    V ET V
x e x     is the traditional reconstruction 

error.   

The HJB equation (6)   with event sampled approximation of the value function 

(12) can be expressed as 

 
 

    

* *

,

, ,

( ) ( , )( , ) ( ) ( )

( ) ( , ) ( ) ( , )(1 4) ( ) ,

T

V x x e V ET

T T

V x x e V ET x V x e V ET

W x x eH x u Q x f x

W x x e x W x eD xx

 

   

  

   
 (13) 

where 
1( ) ( ) ( )TD x g x R g x , ( ) ( )x x x x     , and  , ,( , ) ( , )x e V ET x e V ETx e x e x     . 

It is clear from (13), the HJB equation is also a function of  the event sampling error 
ET

e .

In other words, the performance is governed by the event sampling condition design.   
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 Thus, the event sampled optimal control problem can be defined more precisely 

as follows: 1) Approximate the unknown system dynamics ( )f x  and ( )g x ,  and the value 

function V   in an event sampled context with a desired level of accuracy; 2)  Design the 

event sampling condition not only to reduce computation but also to minimize 

approximation error. Finally, 3) guarantee a positive lower bound on the inter-sample 

time. A solution along with the detailed design procedure of the event sampled near 

optimal control design is presented in the next section. 
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3. EVENT SAMPLED NEAR OPTIMAL CONTROL DESIGN 

The proposed structure of the event sampled near optimal design is illustrated in 

Figure 1 and the design will be carried out using two NNs with event sampled state 

vector. One NN is used as an identifier to approximate the unknown system dynamics 

and the second one is used to approximate the solution of the HJB equation which is the 

value function. Now to reduce the computation and ensure accuracy of the 

approximation, we propose an adaptive event sampling condition as the function of event 

sampling error, the estimated NN weights and the system state vector. The system state is 

sent to the controller at the event sampled instants and used to tune the NN weights. The 

weights are held during the inter-sample times and, hence, tuning scheme becomes 

aperiodic. 

 

Nonlinear

 System x

ZOH

Identifier

x

Value Function 

Approx (VFA)

NN

Controller

x

x̂

ZOH Sensor
Trigger 

Mechanism

Identifier NN

VFA NNZOH

 k
x t

x

 

Figure 1 .  Near optimal event-sampled control system 

 

Remark 1: To evaluate the proposed adaptive event sampling condition at the trigger 

mechanism, in case of an NCS [54], will require transmission of the NN weight estimates 

from the controller. To mitigate this additional transmission cost, mirror identifier and 
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value function approximator NNs are used at the trigger mechanism to estimate the NN 

weights locally. Both the actual and mirror NNs operate in synchronism at the event 

sampled instants. Thus, this design can be considered as an event sampled NCS with 

negligible delays and packet losses.  

The detailed design procedure of the NN identifier and the controller are 

presented along with their weight tuning laws in the next subsections. 

3.1 IDENTIFIER  DESIGN 

The knowledge of the system dynamics, ( )f x  and ( )g x are needed for the 

computation of the optimal control policy (5). To relax this, an event sampled NN based 

identifier design is presented in this subsection. By using the event-based approximation 

(11), the nonlinear continuous-time system in (1) can be represented as 

 ,( ) ( ) ( )T

I I e Ix f x g x u W x u     , (14) 

where 
( )

[ ] f gl ml nT T T

I f gW W W
 

   with 
fl n

fW


  and 
gml n

gW


  are the unknown 

target NN weight matrices, 
( ) 0

( )
0 ( )

f

I

g

x
x

x






 
  
 

 with   fl

f x   and 

  gml m

g x


  are the event sampled activation functions.  The error 

, ,,
( , ) ( , )e f ET e g ETe I
x e x e u      is the event-based reconstruction error with

 , , ( ( ) ( )) ( )T

e f ET f f f f ETx e W x x x e       ,       , , ( ) ( )T

e g ET g g g g ETx e W x x x e        

and [1 ]T Tu u . The subscript f  and g  denotes parameters corresponding to the 

functions ( )f  and ( )g , respectively. The event sampled reconstruction error can also be 

written as , ( , )T

e I I I IW x x u     where ( , ) ( ) ( )I I Ix x x x     is the activation 
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function error and [ ]
I f g

u    the augmented traditional reconstruction error. The 

constants  
f

l  and 
g

l  denote the number of neurons of the NNs. The following assumption 

holds for the NN [16]. 

Assumption 2: The target weight vector, 
I

W , the activation function, ( )I , and the  

reconstruction error ( )I  are bounded above in a compact set such that I,I MW W ,   

,( )I I M  ,  ,( )I I M  , satisfied where ,I MW ,  ,I M ,  ,I M  are positive constants. 

Further, it is assumed that the activation function ( )
I

x  is Lipschitz continuous in a 

compact set and satisfies ( ) ( )
II I

Cx x x x
     where 0

I
C


  is a constant. 

Since the system state vector is only available at event-sampled instants, the 

event-based identifier dynamics is defined as 

 ˆˆ ˆ ˆ( ) ( ) ( )x A x x f x g x u    , 1k kt t t   , (15) 

where ˆ nx  is the identifier estimated state vector, A  is a user defined Hurwitz matrix 

and satisfies  the Lyapunov equation 
TA P PA     where P  and   are positive 

definite matrices. The matrix A  ensures the stability of the identifier. The functions 

ˆ( ) nf x   and ˆ( ) n mg x   are the estimated system dynamics. By using the event 

sampled NN approximation for the system as in (14), the estimated value of identifier 

dynamics are represented as 

 ˆˆ ˆ( ) ( ) ( )T

I Ix A x x W t x u   ,    1k kt t t   , (16)    

where ˆ ( )IW t  is the estimated NN weight matrices and ( )I x being event-sampled the 

activation functions. 
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Defining ˆ
Ie x x   as the identification error, the identification error dynamics, 

from (14) and (16), can be expressed as 

 ˆ( ) ( , )T T

I I ET I I I I I
e Ae Ae W x u W x x u       . (17) 

Since, 
I

e  can only be computed at the event-sampled instants with available 

current sampled state at the identifier, the NN identifier weight matrices are tuned at the 

event-sampled instants only. This can be considered as a jump in the identifier NN 

weights which is given by 

  22ˆ ˆ ˆ( ) ( )T
I I I II I I I

W W Wx ue c eu  
    , kt t , (18) 

where 0I   denotes the learning rate and 0c   is a positive constant. During the inter-

sample times referred as flow duration, 1k kt t t   , the weights are held at the previously 

tuned values. Therefore, the tuning law during the inter-sample times or flow duration, 

1k kt t t   , is given by 

 ˆ 0IW  , 1k kt t t   . (19) 

From (18) and (19), it is clear that the NN weights are  tuned aperiodically and, 

hence, saves computation when compared to traditional NN [10], [16]. To ensure the 

ultimate boundedness of the closed-loop system parameters, the approximated control 

coefficient function is held once it becomes less than equal to the lower bound. It can be 

expressed as 

 min min
ˆ,     if  ( ) , 

ˆ ( )
ˆ( ) ,  otherwise .

g g x g
g

g

 
 


 (20) 
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Define the NN weight estimation error ˆ
I I IW W W   . The weight estimation error 

dynamics at both jump and flow duration can be expressed as 

  22 ˆ( ) ( )T
I I I II I I I

W W Wx ue c eu  
    , 

kt t , (21) 

 ˆ 0I I IW W W   ,  1k kt t t   . (22) 

We will use the identifier dynamics to design an event-sampled near optimal controller in 

the next subsection. 

3.2 CONTROLLER DESIGN 

In this section, the solution to the HJB equation, essentially the value function, is 

approximated by a second NN with event-sampled state vector. The approximated value 

function is utilized to obtain the near optimal control input. Consider the event sampled 

approximation of the optimal value function in (12). The following assumptions hold for 

the NN. 

Assumption 3: The target NN weights, activation functions and the traditional 

reconstruction errors are bounded above satisfying ,V V MW W , ( ) M  , and 

  ,V V M   with 
,V MW , M , and  ,V M  are positive constants.  It is further assumed that 

the gradient of the activation function and the reconstruction error are bounded by a 

positive constant, i.e., 
'( ) ( )

x M
x        and '

,
( ) ( )

x V V V M
x       .  

Assumption 4: The activation function and its gradients are Lipschitz continuous in a 

compact set such that for 
n

x
x   and there exist positive constants 0C


  and  

0C    satisfying    x x C x x


     and    x x
x x C x x


 


    .   
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The optimal control policy (5) in terms of event-sampled NN approximation of 

the value function becomes 

  * 1

,(1 2) ( ) ( ) ( , )T T

x V x e V ETu R g x x W x e     . (23) 

The estimated value function in the context of event sampled state can be represented as 

  ˆ ˆ ( )T

VV x W x , 1k kt t t   . (24) 

Therefore, the actual control policy by using the estimated value function (22) and the 

identifier dynamics is given by 

 1 1

1
ˆ ˆˆˆ( ) (1 2) ( ) ( ) (1 2) ( ) , .( )

T
T T TT

x V x V k kg g
u x R g x x W R x W t t tW x 

 

            (25) 

Now with the estimated value function (24) and approximated system dynamics 

(15),  the error introduced in the HJB equation (13), referred to as temporal difference 

(TD) or HJB equation error, can be expressed as 

 ˆˆ ˆ( , ) ( ) ( )[ ( ) ( ) ]T T

xH x u Q x u Ru V x f x g x u    , (26) 

for 1k kt t t  
 
where ˆ ˆ( ) ( )xV x V x x    . Substituting the actual control policy (25) in 

(26), the TD or HJB equation error can be expressed as 

 1
ˆˆ ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( ) (1 4) ( ) ( ) ( ) , ,T T T

V V x V x x V k kH x W Q x W x f x W x D x x W t t t            (27) 

where 1ˆ ˆ ˆ( ) ( ) ( )TD x g x R g x .  

    Similar to the identifier, the value function is updated at the event-sampled 

instants with the updated HJB error. The HJB error (27)  with event sampled state at the 

trigger instants, i.e.,  x x  , 
k

t t  can be written as 

 ˆˆ ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( ) (1 4) ( ) ( ) ( ) , .T T T

V V x V x x V kH x W Q x W x f x W x D x x W t t           (28) 
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The value function NN tuning law at the event sampled instants is selected as 

  2ˆ ˆ ˆ ˆˆ ˆ ˆ( , ) (1 )T T
V V V V

W W H x W   
    , kt t , (29) 

where 0V   is the  NN learning gain parameter and  

  ˆ ˆ ˆˆ ( ) ( ) (1 2) ( ) ( ) ( )T

x x x Vx f x x D x x W       .  (30) 

During the inter-sample times or flow period, the tuning law for the value 

function NN is given as 

 
1

ˆ 0,V k kW t t t    . (31) 

Define the value function NN weight estimation error  as ˆ
V V VW W W   . The NN 

weight estimation error dynamics by using  (29) and  (31) can be expressed as  

  2ˆˆ ˆ ˆ( , ) (1 )T T
V V V

W W H x u   
    , kt t ,   (32) 

 10,V k kW t t t    .    (33) 

The HJB or TD error in terms of the value function NN weight estimation error 

VW , using (13) and (27) can be expressed as 

  1

ˆˆ ˆ ˆ( , ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ(1 4) ( ) ( ) ( ) (1 4) ( ) ( ) , ,

T T

V V x V x

T T T T

V x x V V x x V H k k

H x W Q x Q x W x f x W x f x

W x D x x W W x D x x W t t t

 

     

     

        
 (34) 

where  *( ) (1 4) ( ) ( ) ( )( ) ( )
T T

H x V x V x Vx x D x xf x g x u       . It is routine to check 

that ,H MH   where  ,H M
 
is a positive constant. 

Similarly, the HJB equation error at the event-sampled instants with x x   can 

be computed from (34), and found to be  

 

 

ˆˆ ˆ ˆ( , ) ( ) ( ) ( ) ( ) (1 2) ( ) ( ) ( )

(1 4) ( ) ( ) ( ) (1 4) ( ) ( ) , .

T T T T

V V x V x V x x V

T T T T

V x x V V x x V H k

H x W W x f x W x f x W x D x x W

W x D x x W W x D x x W t t

   

    

        

       
 (35) 
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4. EVENT SAMPLING CONDITION AND MINIMUM INTER-SAMPLE TIME 

In this section, we design an adaptive event sampling condition and present 

theoretical results. Before proceeding, the following stability notions are important. 

Definition 1 [19]: The nonlinear state dependent impulsive dynamical system (1) and (2) 

is ultimately bounded with bound   if there exists 0   such that, for every  0,  , 

there exists ( , ) 0T T     such that (0)   implies   ,t t T   .  

4.1 IMPULSIVE DYNAMICAL SYSTEM  

Consider the augmented state vector [ ( ) ]T T T T T T

I I Vx e x vec W W  . The 

dynamics during the flow 1k kt t t    and the jump instants, kt t , are computed as 

follows. 

4.1.1 Flow Dynamics. The closed-loop system dynamics during the flow 

1k kt t t   , can be represented by using (1) and the control policy (25) as 

   1 ˆˆ( ) ( ) 1 2 ( ) ( )T T

x Vx f x g x R g x x W    . (36) 

Adding and subtracting ( ) *g x u in (36) and after some simple mathematical operations, 

the closed-loop dynamics during the flow can be written as 

 
   

       

1 1

1 1

ˆ( ) ( ) * 1 2 ( ) ( ) ( ) 1 2 ( ) ( ) ( )

ˆˆ1 2 ( ) ( ) ( ) ( ) 1 2 ( ) ( ) ,

T T T T

x V x V

T T T T

x x V x V

x f x g x u g x R g x x W g x R g x x W

g x R g x x x W g x R g x x

 

  

 

 

     

    
(37) 

1for .k kt t t     

The flow dynamics for the identification error Ie  is same as in (17). The last held 

state, x , during the flow period remains constant. Thus the dynamics of the last held 

state, x , is given by   
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 10, .k kx t t t     (38) 

Finally, the dynamics of the NN weight estimation errors ( )
I

vec W  and 
V

W  during 

the flow are as in (22) and (33) represented in vector form.  

Combining (17), (22), (33), (37), and (38),  the flow dynamics for 1k kt t t    of 

the impulsive dynamical system as 

   , , ,cF        C Z ,  (39) 

where [ 0 0 0 ]Ie TsT T T T T

c c cF F F  with   1( ) ( ) * 1 2 ( ) ( ) ( )s T T

c x VF f x g x u g x R g x x W     

        1 1ˆ ˆ1 2 ( ) ( ) ( ) 1 2 ( ) ( ) ( ) ( )T T T T T

x V V x x V Vg x R g x x W W g x R g x x x W W           

   11 2 ( ) ( ) ,T

x Vg x R g x x  ˆ( ) ( , )Ie T T

c I ET I I I I I
F Ae Ae W x u W x x u        and 0T

s 

are null vectors of appropriate dimensions. The set   is the flow set and 

a open set with ,  and  . 

4.1.2 Jump Dynamics. The jump dynamics of the system state vector and the 

identification error are given by 

 x x  ,   kt t , (40) 

 ˆ ˆ
I Ie x x x x e       ,  kt t . (41) 

The jump dynamics of the last held state, x , is given by 

 , .kx x t t    (42) 

Further, the jumps in the NN weight estimation errors are given by (21) and (32).  

 

Defining the first difference       and using (21), (32), (40), (41),  and 

(42), the difference equation for the reset/jump dynamics  can be written as 

C

n
  0  I Vn n n l l     ( )

I f g
l l ml n 
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   , ,dF       Z , (43) 

where   [0 0 ( ) ( ) ]T T T T T T

d ET I VF e vec W W     with 

 22

( ) T

I I I
I I I I

I

x ue
W W W

c eu

 
    


 and 

2

ˆ ˆˆ ( , )

ˆ ˆ(1 )

V V
V T

H x W
W

 

 



 


. The set Z  the 

jump set. The flow and the jump set are decided by the event sampling condition 

introduced next.  

Consider the event sampling error in (9). Define the event sampling condition 

given by 

    ˆ ˆ, ,ET ETC V I
D e x W W , (44) 

where    1 2
ˆ ˆ, , min ( ) , 2 ( )ETC V I

x Q x Q xW W      is the threshold with

1 '

1 max ,
ˆ ˆ( )M I M M V I

g R CW W    

 , 1 '

2 max , min
ˆ( ) (32 )

IM I M M I
CC g R W    

  


2 2 2 2ˆ

IW u P AP  . The constants   0 1   , C   and 
I

C are the Lipschitz 

constants and min min ( )   . To ensure the estimated NN weights ˆ
VW and ˆ

IW in (44) 

are non-zero while executing the event sampling condition, the previous non zero update 

of the NN weight estimates are used to evaluate the event sampling condition when the 

updates become zero. The dead-zone operator  D is defined as 

  
, ,

0,

x

ubx B
D

 
 


  (45) 

where x

ubB is the desired ultimate bound for the closed-loop system. The event sampled 

instants are decided at the violation of the condition (44). 
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Remark 2: The main advantage of this event sampling condition is that its threshold gets 

updated with NN weight estimates and system state. Therefore, states will be sampled 

based on the NN weight estimation errors and the system performance. This ensures the 

accuracy of approximation. Once the NN weights converged close to their target values 

and becomes constant, the threshold becomes similar to those used in traditional event 

sampling condition [14]-[15]. 

Remark 3: The dead zone operator ( )D  prevents unnecessary triggering due to the NN 

reconstruction error once the system state is inside the ultimate bound.  

To show the locally ultimately boundedness of the closed-loop event-sampled 

system we will use the following lemma as in [19] for the nonlinear impulsive dynamical 

systems. Before claiming the main results the following technical results are necessary. 

Lemma 1: Consider the definition of ̂  given in (30). For any positive number 0N  , 

the following relation holds 

 

 

2 2

2

ˆ ˆ 1 ˆˆ(1 2) ( ) ( ) ( ) ( ) ( )
ˆ ˆ ˆ ˆ(1 ) (1 )

ˆˆ(1 2) ( ) ( ) ( ) ( ) ( )

1 ˆ ˆ( ( ) ( ) ( ) ) ( ( ) ( ) ( ) ) .
ˆ ˆ4( 1)(1 )

T T
T TV V

V x x V xT T

T
T

x x V x V

T T T T T

V x x V V x x VT

W W
W x D x x W x f x

N

x D x x W x f x W

W x D x x W W x D x x W
N


  

   

  

   
 

    
 

  

    
 

 (46) 

Proof: Refer to Appendix. 

We will use the above results to show the locally ultimately boundedness of the 

NN weight estimation errors in the following lemma. 

Lemma 2: Consider the nonlinear continuous-time system (3) along with the NN based 

identifier (16) and the value function approximator (24) with event sampled state vector. 

Let the Assumptions 1 through 4 hold and the initial identifier and value function NN 



237 

 

weights, ˆ (0)IW  and ˆ (0)VW , respectively, be initialized with nonzero finite values in the 

compact sets  
IW  and 

VW .  Suppose there exist a positive minimum inter-sample time 

between two consecutive event sampling instants, min 1 0k kt t    , and the value 

function activation function ( )x  satisfies the persistency of excitation condition. Then, 

the weight estimation errors IW  and 
VW  are locally ultimately bounded (UB) for all event 

sampling instant 
k

t T  or t T  for T T provided the NN weights are tuned by using 

(18) and (19), and the learning gains satisfies 0 1 3I  ,   1
0 min ,

40
V 

2 (1 )

2( 1)(16 )

N N

N N

 


  
with 0 1N  . 

Proof:  Refer to the Appendix.  

Theorem 1: Consider the nonlinear continuous-time system (3), identifier (16), and the 

value function approximator (24) represented as an impulsive dynamical system (39) and 

(43). Let 0u be an initial stabilizing control policy for (3). Let the Assumptions 1 through 

3 hold, and assume there exist a minimum inter-sample time min 0  . Suppose the value 

function activation function ( )x  satisfies the persistency of excitation condition and the 

system states are transmitted at the violation of the event-trigger condition (44).  Let the  

initial identifier and value function NN initial weights,  ˆ 0IW  and  ˆ 0VW , respectively, 

are nonzero and bounded in compact sets 
IW  and 

VW , and updated according  to (29) 

and (31). Then, the closed-loop impulsive dynamical system is locally UB for all event 

sampling instant 
k

t T  or t T  for T T . Further, the estimated value function 
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satisfies * ˆ
VBV V   with VB  is small positive constants provided the design 

parameters are selected as in Lemma 2. 

Proof: Refer to the Appendix. 

The assumption on the inter-sample time in Theorem 1 is relaxed by guaranteeing 

the existence of a positive minimum inter-sample time the next subsection. The flow 

chart in Figure 2 illustrates the implementation of the event sampled ADP scheme 

designed in Section 3 and 4.  

 

Initialize 

Plant

Check Trigger
 Condition

Update NN weights

Update Control input

No NN weight 
update

( ) ( ( )) ( ( )) ( )x t f x t g x t u t 

ˆ ˆ0, 0I VW W 

0(0), (0), (0),I Vx W W u

No

Yes

   ˆ ˆ, ,ET ETC V I
D e x W W

No Control 
update

 2ˆ ˆ ˆ ˆˆ ˆ ˆ( , ) (1 )T T
V V V V

W W H x W   
   

 22ˆ ˆ ˆ( ) ( )T
I I I II I I I

W W Wx ue c eu 
   

 1 ˆˆ( ) (1 2) ( )( )
T

TT
x Vg g

u x R x WW x 
  

 

Figure 2. Flowchart of event sampled ADP scheme. 
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4.2 MINIMUM INTER-SAMPLE TIME 

The following theorem guarantees the existence of the non-zero positive 

minimum inter-sample time min 1min{ }k k
k

t t 


  . 

Theorem 2: Consider the event sampled continuous time system (3) represented as 

impulsive dynamical systems (39) and (43) along with the event sampling condition   

(44).  Then, the minimum inter-sample time min  , implicitly defined by (44), is lower 

bounded by a nonzero positive constant and it is given by  

      min ,minmin 1 ln 1 0k ETC
k

K K M 


   , (47) 

where ,minETC  is the minimum threshold coefficient value, 0K  is a constant and  

 1 ' 1 '

max , max , , ,, ,
ˆ ˆ( ) (1 2) ( )k M I M M M M V M I M II kI k V k

M g R g R W WW W           

1 ' 2 1 '

max , max ,,,
ˆ(1 2) ( ) (1 2) ( )M I M M M V MV kI k

g R g RWW        where the subscript k  

represents the thk  inter-sample time.  

Proof. Refer to the Appendix. 

Remark 4: The constant K  satisfies the inequality *( ) ( ) Kf x g x u x . This 

inequality holds [22] since the optimal control input is stabilizing.   

Remark 5: It is clear from (47) that the lower bound on inter-sample times depends on 

kM  or alternatively, on the NN weight estimation errors VW , and IW  by the definitions  

ˆ
I IW W W   and ˆ

V VW W W  . During the initial learning phase of the NN, the term kM  

in (47) may become large for certain initial values  ˆ 0VW and  ˆ 0IW , which may lead to 

smaller inter-sample times. Hence, a proper initialization of the NN weights,  ˆ 0VW  and 
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 ˆ 0IW  is necessary during learning phase. In addition, with update in NN weights, the 

convergence of the NN weight estimation errors will elongate the inter-sample times 

leading to fewer sampled events and less resource utilization.  
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5. SIMULATION RESULTS 

   In this section, the dynamics of a two-link robot manipulator is considered for 

simulation. The dynamics are given in by 

    x f x g x u  , (48) 

where 

3

4

2 2 2

3 4 4 3 3 2 2 1

1 2 2

2

2

2 2 2

3 4 4 3 4 2 4 2 3

2

3 2 1 2 1 2

2 1 2

2

2

(2 cos )sin 20cos

10cos( )cos

cos 2( )

(2 2 cos cos 3

2 cos 20(cos( ) cos )(1 cos )

10cos cos( )

cos 2

x

x

x x x x x x x x

x x x

xf x

x x x x x x x x x

x x x x x x

x x x

x




      
     



    
 
     
   
 









 
 
 
 
 
 
 
 
 
 

and 2

2 2

2 2

2 2

2 2

2 2

0 0

0 0

1 1 cos
( )

2 cos 2 cos

1 cos 3 2cos

2 cos 2 cos

x
g x

x x

x x

x x

 
 
 
  

  
  

   
 

   

. 

The following simulation parameters were chosen for simulation, The initial 

system state vector was chosen as  6 6 0 0
T

  . The cost function was selected 

as in (4) with 
4 4

Q I


  and 
2 2

R I


 . The learning parameters were chosen as 0.025
V

  , 

0.055
I

  , other design parameters were 3
M

g  , 1
m

g  , 0.99  , 10A I  , and 

P I  where I  is the identify matrix.  The basis function for approximating the value 

function is given by the expansion of   2 2 2 2

1 2 3 4 1 2

4 4 3

1 2 1 2
; ; ; ;; ; ; ;[ ; x xx x x x x x x xx 

2

1 2 3 1 2 3 4
; ; ; ]x x x x x x x . The activation functions for the identifier

  {tanh( ) tanh( )}
I

diag  . Number of hidden layer neurons for identifier and value 

function NN are selected as 25  and 39 , respectively. All the NN weight estimates are 

initialized at random from a uniform distribution in the interval
 
(0, 1) . The ultimate 

bound for the system state is chosen as 0.001.  
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The performance of the event sampled control system is shown in Figure 3. The 

system state is regulated close to zero as shown in Figure 3(a) along with the control 

input in Figure 3(b). The HJB equation error converges close to zero (shown in Figure 3 

(c)) representing a near optimal solution is achieved with an event sampled 

implementation.  

 

 

Figure 3. Convergence of (a) the system state; (b) control input (c) HJB error. 

 

The evolution of the event sampling threshold along with the event sampling error 

is shown in Figure 4(a).  Cumulative number of event sampled instants is shown in 

Figure 4 (b) and the inter-sample times in Figure 4(c).  From the cumulative number of 

event sampled instants, it is evident that a fewer number of sampled instances occurred 

when compared to the traditional periodic sampled data system.  The number of event 

sampled instants found to be 15783 for simulation duration of 50 sec with a sampling 

interval of  0.001 sec or 50,000 sampling instants for a traditional sampled data system.  
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Figure 4. Evolution of  (a) event sampling condition; (b) cumulative number of event 

sampled instants; (c) inter-sample times. 

 

 

Figure 5. Convergence of the norm of the NN weight estimates. 

 

It is further clear from the Figure 4 (b) that the event sampling condition 

generated a large number of sampled instants at the initial online NN learning phase. This 

is due to the large weight estimation error and makes the NN to learn the unknown 

system dynamics and the value function to achieve near optimality. Over time, as the NN 
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approximate the system dynamics and value function and the inter-sample times 

increased thereby reducing the number of sampled events. The convergence of all the NN 

weight estimates is shown in Figure 5 (a), (b) and (c). 
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6. CONCLUSIONS 

In this paper, we proposed an event sampled near optimal control of an uncertain 

continuous-time system.  A near optimal solution of the HJB equation is achieved with 

event sampled approximation of the value function and system dynamics. The NN weight 

tuning at the event sampled instants with adaptive event sampling condition is found to 

ensure convergence of the NN weight estimates to their respective target values.  It was 

observed that the inter-sample times depend on the initial values of the NN weight 

estimates. Further, the inter-sample times found to increase with convergence of the 

parameters.  The simulation results validated all the analytical design. The cost function 

considered in this paper only optimizes the control policy. The optimization of the event 

sampled instants will be an interesting problem and will be studied in the future. 
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APPENDIX 

Proof of Lemma 1: Consider the term ˆ ˆT . By definition  (30), it can be represented as 

  ˆ ˆˆ ˆ ˆ ˆˆ ˆ ( ) ( ) (1 2) ( ) ( ) ( ) ( ) ( ) (1 2) ( ) ( ) ( ) .
T

T T T

x x x V x x x Vx f x x D x x W x f x x D x x W              

Since  
2 2( )a b b a   , we can rewrite the above equation as 

  ˆ ˆˆ ˆ ˆ ˆˆ ˆ (1 2) ( ) ( ) ( ) ( ) ( ) (1 2) ( ) ( ) ( ) ( ) ( ) .
T

T T T

x x V x x x V xx D x x W x f x x D x x W x f x              (A.1) 

Recalling the definition of the value function NN weight estimation error, we 

have ˆ
V V VW W W  . Substituting into (A.1) one can arrive at 

 

 

ˆ ˆˆˆ ˆ (1 2) ( ) ( ) ( )(1 2) ( ) ( ) ( ) ( ) ( )

ˆˆ ˆ .(1 2) ( ) ( ) ( ) ( ) ( ) (1 2) ( ) ( ) ( )

T TT

x x Vx x V x

T
T T

x x x x x VV

x D x x Wx D x x W x f x

x D x x W x f x x D x x W

    

    

     

      

  (A.2) 

Moreover, by Young’s inequality 2 22 (1/ )ab l a lb   , 0l   . Using this relation it holds 

that 

 
2 2 2( ) (1 ) (1 (1 ))a b l a l b       (A.3) 

Using the above inequality, we have 

 

  

 
 

ˆˆˆ ˆ 1 (1 2) ( ) ( ) ( ) ( ) ( )

ˆˆ(1 2) ( ) ( ) ( ) ( ) ( )

ˆ ˆ1 (1 ) (1 4) ( ( ) ( ) ( ) ) ( ( ) ( ) ( ) ) .

T T

x x V x

T
T

x x V x

T T T

x x V x x V

l x D x x W x f x

x D x x W x f x

l x D x x W x D x x W

   

  

   

    

   

      

 

By selecting ( 1)l N N 
 where 0N   is a positive integer, we have 

 

 

 

1 ˆˆˆ ˆ (1 2) ( ) ( ) ( ) ( ) ( )

ˆˆ(1 2) ( ) ( ) ( ) ( ) ( )

1 ˆ ˆ( ( ) ( ) ( ) )( ( ) ( ) ( ) ) .
4( 1)

T T

x x V x

T
T

x x V x

T T T

x x V x x V

x D x x W x f x
N

x D x x W x f x

x D x x W x D x x W
N

   

  

   

    

   

    


 (A.4) 
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Pre and post multiplying T

VW  and VW  both side of (A.4), respectively, and 

changing the sign one can reach at (46) of Lemma 1.                                                         ■ 

Proof of Lemma 2: Since we assume that a minimum inter-sample time exists between 

two consecutive sampling instants, the jumps occur at distinct time instants. Thus, the 

boundedness of the NN identifier weight estimation errors is proven by considering both 

the flow duration and jump instants as in [19]. 

Case 1:  During the flow for 1k kt t t   , 1,2,k   . 

Consider the Lyapunov function candidate given as 

 ,1 ,2 ,2I I V I IW
L L L L    , (A.5) 

where { }T

I I IL tr W W , T

V V VL W W , and 2

,2 { }T

I I IL tr W W  with ,1 32 (1 3 )I I I      

and ,2 2 42I   with 
1  , 

2  , 
3  and 

4  are positive constants defined during the 

proof.  

The first derivative of the Lyapunov function candidate (A.5) by using the weight 

estimation error dynamics (22) and (31) becomes 

 ,1 ,22 { } 2 4 { } { } 0.T T T T

I I I V V I I I I IW
L tr W W W W tr W W tr W W        (A.6) 

From (A.6), the first derivative 
W

L  is zero, which implies the NN weight 

estimation errors remain constant during the flow for 1k kt t t   , 1,2,k   .  Since, 

the initial NN weights ˆ (0)IW  and ˆ (0)VW , and the target NN weights 
IW  and 

VW , are 

bounded, the initial weight estimation errors  (0)IW  and (0)VW are bounded. Therefore, 

to prove the boundedness of IW  and VW  for all time we only need to show that IW  and 

VW  are bounded during the jump instants. 
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Case 2: At the jumps ( kt t , 1,2k   )   

Consider  (A.5) in Case I as a discrete Lyapunov function candidate. We will 

consider each term in (A.5) individually to evaluate the first difference at jump instants 

and combine them to reach the overall first difference to prove locally UB. 

Consider the first term of the Lyapunov function candidate (A.5). The first 

difference is given by 

    T T
I I I I I

L tr trW W W W    . (A.7) 

Recalling the dynamics of the weight estimation error (21),  the first difference IL  of the 

Lyapunov function becomes  

 
     

   

2

2 2 2

ˆ ˆ2 2 ( ( ) ) 2( )

ˆ ˆ ,( ( ) ) ( ( ) )

T TT T T
I I I I I I I II I I I I I

T T T T
I I II I I I I I

L tr tr x ue W trW x ue W W

tr trx ue x ue W W

     

   

    

 
 

where 
2

1 ( )I Ic e   . By replacing ˆ
I I IW W W   and using the inequality 

2 2
( ) (1 2) (1 2)tr AB A B  , the first difference is upper bound by 

 

2 22 22 22 2 2 2 2 2 2 2

, , ,

2 22 22 22 2 2 2 2 2 2

, , ,

22 2 2

,

2
2

2 2
2

2 2 .

I
I I I I M I I I I I I M I I I I M

I
I I M I I I I I M I I I M II I

I I M I I

L W e W e Wu u

e W eW Wu u

W W


       


       

 

     

    

 

 

Observe that 
22

( ) 1I I I Ie e c eu u u     and combining similar terms we 

arrive at  

 
2

,(1 3 )I I I W II
L BW      , (A.8) 

where 2 2 2 2

, , ,(2 3 ) ( 3 )W I I I I M I I I MB W        . 
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Next, considering the second term 
VL , the first difference 

( )T T

V V V V VL W W W W    , along the dynamics of the weight update law (32) can be 

expressed as 

 
2 2 2

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ2 ( , ) ( , ) ( , )
.

ˆ ˆ ˆ ˆ ˆ ˆ(1 ) (1 ) (1 )

T
T T T T

V V V V V V
V T T T

W H x u H x W H x W
L

     

     

     
      

     

 

Substituting ˆ ˆ( , )VH x W from (35) and applying Young’s inequality 

2 (1 )T T Ta b p a a pb b  , along with the relation  
2ˆ ˆ ˆ ˆ(1 ) 1T T     , the first difference 

is upper bounded by 

2 2

2

2

ˆ ˆ ˆ ˆ
((1 8) 5 )

ˆ ˆ ˆ ˆ(1 ) 2 (1 )

(8 5 ) ( ) ( )) ( ) ( )

ˆ ˆ(1 )

(1 5 ) ˆ ˆ((1 4) ( ) ( ) ( ) )((1 4) ( ) ( ) ( ) )
ˆ ˆ(1 )

T T T T

V V V V V
V V V T T

T T T

V V V x x V

T

T T T T TV V
V x x V V x x VT

W W W W
L

W x f x f x x W

W x D x x W W x D x x W

  
 

   

   

 

 
   

 



    
 

  





    



    

 

2

2

(8 5 )
((1 4) ( ) ( ) )((1 4) ( ) ( ) )

ˆ ˆ(1 )

ˆ ˆ .(8 5 ) (1 )

T T T T TV V
V x x V V x x VT

T T

V V H H

W x D x x W W x D x x W


   
 

     


   



  

 (A.9) 

Recall the Lemma 1 and multiply
 

2V  both side of (46). Substituting into (A.9), 

and applying Frobenius norm and Young’s inequality 2 22ab a b  , reveals that  

 

 

   

 

22

2
2 4

min

2 2

min

4

2

ˆ ˆ (1 5 )1
((1 8) 5 )

ˆ ˆ ( 1) 2(1 ) ˆ ˆ8 1

1
ˆ( ) ( ) ( )

ˆ ˆ ˆ ˆ1 1

(8 5 )ˆˆ(1 2) ( ) ( ) ( ) ( ) ( )
ˆ ˆ(1 )

T T
VV V V

V V V T T

VT T

VV x x V T T

T V V
x x V x T

W W
L

N

D
WW x D x x W

N D N

x D x x W x f x

 
 

   


 

   

 
  

 

 
        

   
 


    


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 
2

2

2

2

(8 5 )
( ) ( )( ) ( )) ( ) ( )

ˆ ˆ16(1 )

(8 5 )
.

ˆ ˆ(1 )

T TV VT T T
V x x VTV x x V

V V H

T

W x D x x WW x f x f x x W
 

  
 

  

 


    








 

where 
minD is a positive constant and satisfies the inequality 

min
ˆ0 ( ) ( ) ( )T

x x
D x D x x     . Note that the gradient of the activation function, 

( )x x , of the value function neural network satisfies PE condition. Further, from (20) 

the function 1ˆ ˆ ˆ( ) ( ) ( )TD x g x R g x  is lower bounded. Therefore, it holds that 
minD  is a 

positive constant. By using this relation and applying Cauchy inequality 

4 4 4( ) 4 4a b a b   with one can reach at 

 

 

 

4
min

22

44 2'8 4 '4 '2 2

, ,

min min

2'4 4 2

, ,

ˆ ˆ (1 5 ) 81
((1 8) 5 )

ˆ ˆ ( 1) 2(1 ) ˆ ˆ8 1

1 4
ˆˆ (8 5 ) ( )( ) ( )

4

(8 5 ) (8 5 ) .

T T
V VV V V

V V V VT T

M V M M V V M V M

V V M V M V V H M

W W D
L W

N N

W W f xD x f x
D N D N

W D x

  
 

   

    

     

 
         

   

   

 

Recalling the dynamics of the identifier we have the following conclusions: 

      [ ( ) ( )]
T

I I IW x xf x f x g x     , 

 

1 1

1 1 1

1

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 ( ) ( ) ( ) ,

T T

T T T

T

M M I I I

D x D x D x g x R g x g x R g x

g x R g x g x R g x g x R g x

R g W x x  

 

  



   

  

 

 

    ˆ ˆˆ ˆ[ ( ) ( )]
T

I IW xf x f x g x   , and  

          1ˆ 2 T

M M M M I I ID D R g W x xD xD x        .  
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Substituting the above facts, the first difference is upper bounded by 

 

   

  

4
min

22

4
'8 4 4 1 4 4 '4 4 '2 2 2

, , , , ,

min

2
'4 4 2 1 2 2

, , ,2

ˆ ˆ (16 5 )1
((1 8) 5 )

ˆ ˆ 2( 1) 2(1 ) ˆ ˆ8 1

2
8 2 (8 5 )

8 (8 5 )

T T

VV V V
V V V VT T

M V M M M I M IM I M V V M V M I M

V V M V M M M I M I V

NNW W D
L W

N N

W R g W W
D N

W R g W

 
 

   

        

     





 
        

  

  

 (A.10) 

where '4 4 2 1 2 2 '2 2 2

,2 , , , ,8 (8 5 ) ( ) 2 (8 5 )V V V M V M M M I M V V M V M I MW R g W              

'4 4 '8 4 4 1 4 4 '8 4 4 2

, , , , ,

min min min

16 2 1
( ) (8 5 )M I M M V M M M I M M V M M V V H MW R g W D

D N D N D N
              

and 
(16 5 )1

0
2( 1) 2

VNN

N N


 


 by selecting 

1 2 (1 )
,0 min

40 2( 1)(16 )
V

N N

N N


 
   

  
 with 

0 1N  . 

Considering the third term 2

,2
{ }T

I I I
L tr W W , the first difference can be written as 

 2 2

,2
{ } { }T T

I I I I I
L tr W W tr W W     

    
22

2 { } 2T

I I I I I I I
L L tr W W L L W        . (A.11) 

Substituting the first difference (A.8), the 
,2I

L  can be expressed as 

 
4

2

,2 ,
[2 (1 3 )(1 (1 3 )) 1] 3 .

I I I I I W II
L BW            (A.12) 

At the final step, combining all the individual first differences, (A.8), (A.10), 

(A.10),  and (A.12), the overall first difference of the Lyapunov function (A.5) becomes 

 

4 24

1 2 32

2 4

,1 ,2 4

ˆ ˆ
((1 8) 5 )

ˆ ˆ(1 )

(1 3 ) ,

T T

V V
V V I IVTW

I I I II I W

W W
L W WW

W W


    

 

     

      


   

 

where   

 
min

1 2

(16 5 )1

2( 1) 2ˆ ˆ8 1

VV

T

NND

N N




 

 
   

 , 
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  '8 4 4 1 4 4 '4 4

, , ,

2

min

2 8M V M M M I M M I M
W R g

D N

    





   

    2 1 2 2'2 2 2 '4 4

3 ,, , ,2 (8 5 ) 8 (8 5 ) M M I MV V M V M I M V V M V M
R gW W              

 4 [2 (1 3 )(1 (1 3 )) 1]I I I I           

and 2

,2 , ,1 , ,23 I W I I W I VW
B B       are the new variables introduced for simplicity. 

Recalling the definition of ,1 32 (1 3 )I I I      and ,2 2 42I   , the first 

difference is upper bounded by 

 
4 24

1 2 3 .I IVW W
L W WW          (A.13) 

From (A.13), the first difference 0
W

L   as long as  

 4
2max{ (1 3 ), }

I
I I IW W W

W B       or 

  4
1

VV W W
BW    .  

Hence, the NN weight estimation errors IW  and VW  are bounded at the jump instants.  

From Case 1 and Case 2, the NN weight estimation errors IW  and VW  remains 

constant during the flow and are locally ultimately bounded during jump. Therefore, IW  

and VW  are locally ultimately bounded for all kt T or for t T  for T T  with an 

ultimate bound max{ , }
I V

ub

W W W
B B B .                                                                                  ■      

Proof of Theorem 1:     For proving the Theorem 1 we need to show the nonlinear 

impulsive dynamical system is locally ultimately bounded both during flow period and 

jump instants as discussed in [20].  
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Case 1: Flow period (i.e. 
1k kt t t   , 1,2,k  ) 

Consider the Lyapunov function candidate given as 

 
Icl x e x W

L L L L L    , (A.14) 

where ( )xL V x , 
I

T

e I IL e Pe , T

xL x x , { }T

I I IL tr W W ,  and 
W

L  is defined as in 

Lemma 2.  

Considering the first term the first derivative along the closed loop system 

dynamics 

 ( ) ( )( ( ) ( ) )x x xL V x x V x f x g x u   . 

Substituting the closed-loop dynamics from (37), the first derivative leads to 

 

* 1

1 1

( )( ( ) ( ) ) ( )[(1 2) ( ) ( ) ( )

ˆˆ ˆ(1 2) ( ) ( ) ( ) (1 2) ( ) ( )( ( ) ( )) ].

T

x x x x V

T T T

x V x x V u

L V x f x g x u V x g x R g x x W

g x R g x x W g x R g x x x W



   



 

   

     
 

Recall the definition of the optimal value function, then it holds that 

*( )( ( ) ( ) ) ( )xV x f x g x u Q x    . Substituting the above inequality and using the 

Lipschitz continuity of the gradient of the value function activation function one can 

arrive at 

 

1

max

1 1

ˆ( ) (1 2) ( ) ( ) (1 2) ( )( )

ˆ+(1 2) ( )( ) ( ) ( ) ( )( ) ( )

( ) .

x M x ET x

T T
xx V x

x u

L Q x g R V x C e V xg x

V xg x g x g x g xx W x WR R

V x



 







 

     

  

 

 

By Assumption 1 ( ) Mgg x   and using the NN approximation, 

( ) ( ) ( )T

I I I
g x W x x   , ˆˆ( ) ( )T

I I
g x W x ,  and ( ) ( ) ( )T

x x V
V x x W x     . 

Using the above facts and applying Young’s inequality 2 22ab a b  , the first derivative 

satisfies 
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1 ' 1

max , max

2'

, 1

ˆ ˆ( ) (1 2) ( ) (1 4) ( )

ˆ ,

x M I M M ET MV I

I M M ET FI

L Q x g R C e C g RW W

e BW

    

 

 

    

 
 (A.15) 

where   

 

2 21 ' 1 '

1 max , max , ,

1 ' ' '

max , , , , ,

1 ' ' '

max , , , ,

1 ' '

max , ,

(1 4) ( ) (1 4) ( )

(1 2) ( )( )( )

+(1 2) ( )( )

+(1 2) ( )( )

F M I M M M I M M I MV VI

M M V M V M I M I M M V MI

M M V M V M I M M I M V

M M V M V M I

B C g R C g R WW WW

g R W WW

g R W W W

g R W

      

     

    

   

 

 







 

  



 ' ' '

, , , ,( ) .M M M V M V M u MVI
WWW    

 

Considering the second term  
i

T

e I IL e Pe , the first derivative along the identifier 

error dynamics (17) can be expressed as 

 ˆ( ) 2 2( ( ) ( , ) )

ˆ2 2( ( ) ( , ) ) .

I

T T

e I I I I

T T T T T T

I I ET I I I I I I I

T T T T T

I I ET I I I I I I I

L e Pe e Pe

e A P PA e e APe W x u W x x u Pe

e e e APe W x u W x x u Pe

  

  

 

     

      

 

By triangle inequality, the first derivative leads to 

2

min
ˆ2 ,2( )2( ( ) ) 2( ( , ) )

I

TT T T T
e I ET I I II I I I I I

L e e e PeW x u Pe W x x u PeAP       

where 
TA P PA    is the Lyapunov equation and min min ( )    with  

min
  is the 

minimum eigenvalue. 

Applying Young’s inequality 
2 22 (1/ )ab q a qb  and recalling the Lipschitz 

continuity of the identifier activation function, one can arrive at 

 
 22 22 2 2

min min

2 2 2 2

min min ,

1
ˆ(8 )

2

(8 ) (8 ) .( )

I I
e I ETI

T
I MI I

L e eC W u P AP

W x u P P





     

   

 (A.16) 

Next, the first derivatives of the third term can be expressed as 

 0.T T

xL x x x x    (A.17) 
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Considering the last term 
W

L  , the derivative remains same as in (A.6) of  Lemma 

2  and given as 

 ,1 ,22 { } 2 4 { } { } 0.T T T T

I I I V V I I I I IW
L tr W W W W tr W W tr W W      (A.18) 

Finally combining all individual first derivatives (A.15), (A.16), (A.17), and 

(A.18)  the first derivative of the Lyapunov function becomes 

  

2 1 '

min max ,

21 ' 2 2 2
max , min

2

,1

ˆ ˆ( ) (1 2) (1 2) ( )

ˆ ˆ(1 4) ( ) (32 )( )

.

I

cl M I M M ETI V I

M I M M I I

cl kET

L Q x g R C ee W W

C g R CW W u P AP

Be



 

  

  









    

   

 

 (A.19) 

where 
2 2 2 2

,1 min min , 1(8 ) (8 )( )T
cl k I M FI I

B BW x u P P      . 

Recalling the event sampling condition (44) and substituting in (A.19). The first 

derivative leads to 

 
2

min ,1(1 ) ( ) (1 2)cl cl kIL Q x Be      ,      (A.20) 

Observe that ,1cl kB  is a piece wise constant function since the NN weights are not 

updated during the flow duration and 
IW  and 

VW are constant during each thk  flow 

duration. 

From (A.20) it is clear that the first derivative of the Lyapunov function 0clL  as 

long as 

 ,1( ) (1 ) Q

cl k kQ x B B   or 

 ,1 min(1 2) Ie

cl k kI B Be    .  
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Since 
,1cl k

B  is a piece wise constant function the bounds 
Q

k
B  and Ie

k
B  are also 

piece wise constant during functions and remains constant during the flow period 

1k k
t t t


   for each 1,2,k  . 

Recalling the fact,  Q x is a positive definite quadratic function of x , with 

 0 0Q   and  Q x   as x , the closed-loop system state, x , is bounded during 

flow period with a bound  1x Q

k k
B Q B . Further, as the NN weights for the value 

function and the identifier are not updated during the flow period the NN weight 

estimation errors 
V

W  and 
I

W  , respectively, remain constant and bounded. Therefore, the 

states of the impulsive dynamical system   remains bounded during the flow period. 

 Furthermore, from Lemma 2, the weight estimation errors 
V

W  and IW  converge 

to the ultimate bound ub

W
B  for all  

kt T . Therefore, the system state x  and the last held 

state x  converge to the ultimate bound  given by  1x Q

ub ub
B Q B  where 

,1
(1 )Q ub

ub cl
B B   

where 
,1

ub

cl
B  computed from (A.20) by replacing 

V
W  and 

I
W  with their ultimate bounds 

ub

W
B  in the expression for 

,1cl k
B

 
. Similarly the ultimate bound for the identification error 

is given by 
min(1 2)Ie ub

ub clB B  .  Therefore, the closed-loop nonlinear impulsive 

dynamical system state    locally UB  for all kt T with an ultimate bound 

max{ , , }Iex ub

f ub ub W
B B B    .  Next, it remains to prove that the closed-loop signals are 

bounded during jump. 
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Case 2: When an event is triggered (i.e. kt  ) 

Consider the discrete Lyapunov function candidate given by 

 
Icl x e x W

L L L L L    , (A.21) 

where ( ),xL V x  
I

T

e I IL e Pe , ,T

xL x x    and 
,1 ,2 ,2I I V I IW

L L L L     as in Lemma 2. 

The first difference of Lyapunov function candidate can be represented as 

 
Icl x e x W

L L L L L       (A.22) 

Consider the first term of the first difference (A.22). Along the jump dynamics 

(40), the first difference 

 ( ) ( ) 0xL V x V x    . (A.23) 

Similarly, the first difference of the second term along the identification error 

dynamics (41) becomes 

 0
I

T T T T

e I I I I I I I IL e Pe e Pe e Pe e Pe       . (A.24) 

Consider the second term ,T

xL x x , the first difference can be expressed as 

 
2T T T T x

x kL x x x x x x x x Bx
         . (A.25) 

where  1x Q

k k
B Q B is the bound during each flow interval defined earlier in Case I. 

Next, the first difference of the rest of the terms can be written from using Lemma 

2 and given by 

 
4 24

1 2 3I IVW W
L W WW         . (A.26) 

Combining the individual first differences (A.23), (A.24), (A.25) and (A.26) 

 
4 242

1 2 3 ,2cl I I cl kV
L W W BWx          , (A.27) 

where ,2

x

cl k k W
B B    is a piece wise constant function. 
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From (A.27) it is evident that 0clL  as long as  

  ,2cl kx B   or 

  4
,2 1

V

JP

V cl k W k
W B B    or 

 4
,2 2 ,2 3max{ , }

I

JP

I cl k cl k W k
W B B B   .  

Hence, the system state, x , the identification error, 
I

e  , last held system state, x , 

NN weight estimation errors ,
VW , and 

IW , are bounded. 

  Since, the system state x  is ultimately bounded for 
kt T  with an ultimate bound  

x

ub
B , as shown in Case I, ,2cl kB  in (A.27) converges to the ultimate value  ,2

ub x

cl ub W
B B    

for all  
kt T  .  Therefore, for all jump instants 

kt T  , the system state x  , the last 

transmitted state x , the NN weight estimation errors are, respectively, locally ultimately 

bounded as x

ub
Bx  , ,2

ub

clx B , ,

V

JP ub

V W
BW   and ,

I

JP ub

I W
BW   where 

, 4
,2 1

V

JP ub ub

clW
B B   

and 
, 4

,2 2 ,2 3max{ , }
I

JP ub ub ub

cl clW
B B B   for all kt T  . Therefore, the closed-loop 

nonlinear impulsive dynamical system state     locally UB  for all kt T with an 

ultimate bound , ,

,2max{ , , , }
V I

x ub JP ub JP ub

c ub cl W W
B B B B    .  

Consequently, from Both the cases the closed-loop nonlinear impulsive dynamical 

system state    locally UB  with an ultimate bound max{ , }f c   for all 
kt T or 

alternatively t T  for T T .  

To show the convergence of the estimated value function near to the optimal 

value, consider the difference  
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  *
, , ,

ˆˆˆ .( ) ( ) ( )
ub xT T

M V M ETC M ub V M VV V V W
B W C B BW x W x xV V                    

where 
,ETC M  ,  , ,

ˆ ˆmaxV M V k
k

W W


  are  the maximum value of the threshold over all 

flow interval, and
VB  is a small positive constant.                                                              ■ 

Proof of theorem 2: Recall the closed-loop dynamics (37) of the event sampled system 

for 
1k k

t t t


  . The upper bound of the system dynamics for thk inter-sample time can be 

expressed as 

 kx K x M  ,  
1k k

t t t


  , (A.28) 

where 1 ' 1 '

max , , , max , , ,

1ˆ ˆ( ) ( ) ( )
2

k M I M M I k V k M M V M I M I k IM g R W W g R W W         

1 ' 2 1 '

max , , , max ,
ˆ(1 2) ( ) (1 2) ( ) .M I M M I k V k M V Mg R W W g R        Note that kM  is  constant 

during the 
thk  flow period as the vale function NN weight estimation error  ,V kW , ,

ˆ
I kW  

and  value function NN weight estimates ,
ˆ

V kW  remain constant during the the 
thk  flow 

period. 

 The derivative of the event sampling error 
ET

e  can be expressed as 

  ET ET k
d e dt e x x x K x M       , (A.29) 

for  
1k k

t t t


   , 1,2,k  . By comparison lemma [18], the solution of the differential 

inequality (A.29)  with initial condition 0ETe   for 
 kt t

 
is bounded above by 

       exp exp 1 ,

k

t

ET k k k

t

e K t s M ds M K t t K


      (A.30) 

for each 
1k k

t t t


  , 1,2,k   
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To compute lower bound on the inter-sample times we consider the minimum 

value of the threshold over all flow intervals 
1k k

t t t


   , 1,2,k  . The minimum 

threshold can be computed as  

       ,min min , ,
ˆ ˆ ˆ ˆ ˆ ˆ, , min , , , ,ETC I V ETC I V ETC I M V M

k
x W W x W W Q W W  


   (A.31) 

where,  , ,
ˆ ˆmaxV M V k

k
W W


 ,  , ,

ˆ ˆmaxI M I k
k

W W


  are the maximum value of the NN weight 

estimates over all flow intervals 
1k k

t t t


   for all 1,2,k  . 

It is pertinent to mention here that ,
ˆ

V MW  and ,
ˆ

I MW exist as the NN weight 

estimation errors are bounded as proves in Lemma 2. Further, the dead-zone operator 

(45) ensures a lower bound on the system state, i.e., x

ubB  for the sampling. Hence, by 

definition it holds that   min 0Q x Q  .  

 For a minimum inter-sample time, the event sampling condition (44),   at next 

sampling  instants satisfies 

   1 ,minET k ETC
e t 


 .   (A.32) 

Comparing (A.32) and  (A.30) at 
1k

t


 , it holds that  

      ,min 1exp 1ETC k k kM K K t t    . (A.33) 

Solving the inequality  (A.33), one can reach at 

     1 ,min1 ln 1 0k k k ETCk
t t K K M       , 1,2,k   (A.34) 

From (A.34), the inter-sample times 0k   for 1,2,k   as   ,min 0k ETCK M   . 

Consequently, the minimum inter-sample time 

      min ,minmin 1 ln 1 0ETCk
k

K K M 


   .       ■ 
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SECTION 

2. CONLUSIONS AND FUTURE WORK 

In this dissertation, event-sampled deterministic and stochastic Q-learning and 

adaptive dynamic programming techniques were developed for linear and a class of 

nonlinear systems for both in discrete and continuous time domain. The application of the 

designs for the NCS with time-varying delays and packet losses are also included. The 

system dynamics both in the linear and the nonlinear cases were considered completely 

uncertain. The universal approximation property of the neural network (NN) was 

revisited and event sampled approximation was derived. The event sampled 

approximation was used to estimate the deterministic and stochastic Q-function (for 

NCS) for linear systems and approximate the system dynamics, value function and 

optimal control input for nonlinear systems. The aperiodic transmission and controller 

execution instants were determined by designing novel adaptive event sampling 

conditions. The event sampling conditions orchestrated the sampling and transmission 

instants to achieve the accuracy in estimation/approximation and control performance 

with effective resource utilization. 

2.1 CONCLUSIONS 

In the first paper, the event sampled optimal adaptive regulation of a linear discrete 

time system using both state and output feedback is solved in a forward in time manner 

without requiring the knowledge of the system dynamics. Event driven Q-learning 

techniques were developed both for state and output feedback to design the optimal 

control policies. The designed event sampled optimal adaptive control policies were able 

to regulate the system states in both the cases with a reduced number of controller 
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executions.  The adaptive event sampling conditions found to generate required number 

of event sampled instants to achieve desired estimation accuracy and, hence, optimality. 

It was observed that the output feedback design resulted in more number of controller 

execution when compared to the state feedback. This was due to the additional 

uncertainty introduced by the adaptive observer used to reconstruct the system state. In 

addition, the event sampling condition turned out to be a function of estimated Q-function 

parameter ensuring the desired performance and stability. It was further observed that the 

initial Q-function parameters and the learning gain of the parameter tuning law affect the 

number of event sampled instants. The application of this technique for NCS with 

network induced time varying delays and random packet losses found to regulate the 

system for delays longer than a sampling interval. The redesigned adaptive event 

sampling condition for the stochastic system and tuning law ensured the asymptotic 

convergence in the mean of the closed-loop system with 56% average saving in 

communication.  

On the other hand, for the case of nonlinear systems, in Paper II, a NN based 

adaptive state estimator was employed as a model. The event sampled NN based 

approximation and weight update scheme approximated the unknown nonlinear functions 

with a small bounded error. The event sampled instants were occurred frequently during 

the initial learning phase, but the inter-sample times were increased with the convergence 

of the NN weight estimates to their respective target values. Further, it was observed that 

the change in the NN weight initialization and learning gains for the weight update 

schemes affect the number of controller update. These results were validated with the 

numerical examples. The dead zone operator, used to stop the unnecessary triggering 
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once the system state is in the ultimate bound, found to further reduce the redundant 

computation. The introduction of a model increased the computation when compared to 

model free schemes whereas it is found to be more effective in reduction of event 

sampled or transmission instants and best suitable for NCS. 

An event sampled near optimal adaptive regulator was proposed in Paper III.  The 

actor-critic frame work, to solve the finite horizon optimal control problem in a forward 

in time manner, was redesigned with event-sampled feedback information; leading to an 

event-driven adaptive dynamic programming. The near optimality is achieved in a finite 

time with complete unknown system dynamics. The novel identifier structure proposed to 

approximate the system dynamics with intermittent update at the event sampled instants 

performed satisfactorily. The aperiodic update scheme at the event sampled instants 

determined by the adaptive event sampling condition drove the NN weight estimation 

errors within a small bound. With an explicit formula, the existence of the non-triviality 

of the inter-sampled times were proven and corroborated by the simulation results. An 

event-sampled stochastic ADP scheme was also developed to overcome the time-varying 

network induced delays and packet losses as an application for the proposed design. The 

stochastic optimal controller performed satisfactorily for delays more than a sampling 

time.  

  The fourth paper presented a continuous time event-based control using 

approximate feedback linearization. The novel NN weight update law as a jump in the 

weights at the event sampled instants able to approximate the control input with aperiodic 

update. It is observed that the initial NN learning phase plays a key role in ensuring 

minimum inter-event time.  In the final paper the event sampled continuous time ADP 
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scheme guaranteed near optimality with a reduction in computation. The approximation 

of the value function with event-sampled information was found satisfactory with a near 

optimal performance. Similar to the previous paper, a larger number of triggers were 

observed in the initial learning phase and therefore a proper initialization of the weights 

are necessary to ensure the lower bound on the inter-sample times. 

2.2 FUTURE WORK 

As part of the future work, the optimization of the event sampled instants could be 

considered. This needs a redefinition of the performance index by penalizing the 

transmission instants which is not considered in this thesis. Although a few results are 

available in the literature utilizing certainty equivalence principle, this problem in an 

adaptive dynamic programming frame work will be a challenging one for a forward in 

time solution. However, this will increase the effectiveness of resource utilization for the 

networked control systems.  

On the other hand, the event sampled control is best suitable for spatially 

distributed systems. The nationwide pervasive distributed systems, such as, electrical 

power grid, transportation system, formation control of mobile robots to name a few, 

need large amount of computational power and communication network bandwidth. 

Although, there are quite a few results available in the literature, event sampled optimal 

control of uncertain distributed interconnected system is a perspective area and can be 

part of future research. Application of the event based optimal control to formation 

control, consensus based control can be another future area of research. 
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Self-triggered control which is the counter part of the event-triggered control 

could be an area of future research to explore the optimal event design schemes without 

continuous measurement. This would be a more interesting problem for systems with 

uncertain dynamics. 
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A.  REGULATION OF LINEAR NETWORKED CONTROL SYSTEMS BY 

USING EVENT SAMPLED Q-LEARNING AND DYNAMIC PROGRAMMING 

Avimanyu Sahoo and S. Jagannathan 

Abstract —  In this paper, the optimal regulation of networked control systems (NCS) in 

the presence of time-varying delays and random packet losses is presented by using event 

sampled state and input vector.  A stochastic optimal regulator is designed using 

adaptive dynamic programming and Q-learning technique with event sampled feedback 

information. The Q-function parameters are tuned at the event sampled instants in a 

aperiodic manner with a novel parameter tuning law.  An adaptive event sampling 

condition is derived analytically to determine the event sampled instants. This adaptive 

sampling condition not only maintains stability and saves communication but also 

facilitates parameter estimation with event sampled state and input information. The 

asymptotic stability in the mean of the closed-loop system is demonstrated through 

Lyapunov technique. A condition for non-trivial inter-sample times is derived. Finally, 

simulation results are included to substantiate the analytical design. 

 

Keywords - Q-learning, event sampled control, adaptive dynamic programming, adaptive 

control, optimal control.  
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1. INTRODUCTION 

Networked control systems (NCS) [1]-[4] are gaining popularity in recent years 

due to their reduced complexity and distributed architecture. However, the 

communication network introduces various imperfections such as time-varying delays, 

random packet losses, and quantization errors. These network artifacts deteriorate NCS 

performance and may jeopardize the stability of the closed-loop system [2] with a 

traditional controller. In the recent past, an ample amount of research has been carried out 

for studying the stability of NCS [1]-[4] in the presence of the network imperfections. 

From the optimal control point of view for NCS, stochastic Riccati equation based 

approach [2][4] is used and solved backward in time. 

In contrast, forward-in-time solution of the optimal policy is obtained by using 

reinforcement learning [5]-[7], adaptive dynamic programming (ADP) [8], and Q-

learning [2]-[3] techniques. These schemes use policy or value iteration to solve the 

Bellman [9] or Hamilton-Jacobi-Bellman (HJB) equation [8] required for computing 

optimal control policy.  Instead of using these computational intensive iterative 

techniques, the authors in [3]-[4] presented a time-based  adaptive Q-learning approach 

for NCS by using the time history of the temporal difference (TD) or Bellman error to 

estimate the Q-function. In all the schemes [1]-[4], a fixed sampling interval is utilized to 

transmit the feedback information from the system to the controller thus requiring a large 

network bandwidth.  

To alleviate the problem of higher bandwidth usage, an alternate framework 

referred to as event sampled or triggered control [11]-[13] is introduced in the recent 

times. This control paradigm reduces both the network traffic and computation by 
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orchestrating the transmissions and controller executions using a state dependent 

sampling scheme. The main idea behind the event-triggered control design is the 

selection of aperiodic sampling/transmission instants or simply referred as event sampled 

instants without sacrificing stability and performance. The event sampled optimal control 

of NCS is studied by the authors in [13]-[14]. The optimal control design still uses the 

backward-in-time solution of the Riccati equation (RE) with known system dynamics.  

In this paper, we present an optimal adaptive regulation of NCS represented as an 

uncertain linear continuous-time system in the presence of the time-varying delays and 

packet losses with event sampled state and input vector. The system state vector is 

sampled periodically by the sensor whereas the feedback signals are transmitted only at 

event sampled instants. The optimal regulator is designed by using novel stochastic Q-

learning and ADP [8] with event sampled state and input vector without using the 

knowledge of system dynamics.  

An adaptive estimator is designed to estimate the action dependent value or Q-

function parameters which are tuned at the aperiodic event sampled instants. In contrast 

to traditional event-triggered control [11]-[12], an adaptive event sampling condition is 

designed to determine the  event sampled instants which facilitates the estimation of the 

Q-function parameters while retaining the advantages of the traditional event-triggered 

control [11]-[13] in terms of resource saving, stability and performance. A condition to 

show the existence of the non-trivial inter-sample times is presented. However, the 

optimization of the event sampled instants is not attempted.  
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The remaining of the paper is organized as follows. Section 2 gives a brief 

background of NCS and formulates the problem.  The design procedure and simulation 

results are presented in Section 3 and Section 4, respectively.  Section 5 presents the 

conclusion. The Appendix gives the proof for the theorems and the corollaries. 
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2. BACKGROUND AND PROBLEM FORMULATION 

In this section, a brief background on stochastic Q-learning is discussed. Then, the 

problem of event sampled Q-learning is addressed by investigating the effect of the 

aperiodic transmissions on estimation and stability. 

2.1 SYSTEM FORMULATION AND PERIODIC Q-LEARNING 

 Consider the NCS shown in Figure 1 and represented by a linear time invariant 

(LTI) continuous-time system given by 

 ( ) ( ) ( )x t Ax t Bu t  , (1) 

where ( ) nx t   and ( ) mu t   are the system state and the control input vectors, 

respectively, with
n nA   and

n mB  being unknown system matrices. Before 

proceeding further the main assumption on the NCS are introduced. 

 

Plant
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Controller

ikx

kx̂
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BuAxx 

kkk zKu ˆˆ
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Trigger 
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ˆ ˆˆ T

k kQ g 

Communication network with

Delay ( , ) and Packet loss ( )sc ca ca  

ActuatorZOH

 

Figure 1.  Structure of the event sampled networked control system. 

 

Assumption 1:  (a) The system (1) is controllable and the order of system is known [3]. 

The state vector is measurable and the control coefficient matrix B satisfies 
max

BB   



274 

 

where 
max

0B   being a known constant. (b) The sensor is time-driven and it samples the 

state vector with a fixed periodic sampling time 
sT  [1]-[4]. (c) The networked induced 

time-varying delays from the sensor to the controller, ( )
sc

t , and controller to the actuator 

( )
ca

t , respectively, satisfy ( )
sc sc

t    and ( )
ca s

t dT   where 
sc s

T   is a constant skew 

between the sensor and controller sampling instants [1] and d  is a positive integer. (d) 

The packet losses from the sensor to the controller, 
sc

  is negligible [3], while from the 

controller to the actuator 
ca
 follows the Bernoulli distribution.  

  The system (1) uses a discrete time controller due to the packet switched network 

in the feedback loop. The discretized version of the system (1) after incorporating the 

delays and the packet losses, similar to that in [1]-[4], can be represented as  

 
1 , ,k z k k z k k

z A z B u

  ,            (2) 

where ( ) ( )

,

n dm n dm

z k
A     and ( )

,

n dm m

z k
B    are the transformed system matrices [3] 

given by 

 

, 1 1, , , , ,

,

0 0 0

0 0 0

0 0 0

0

0 0 0

s ca k k ca k l l k ca k d d k

m

z k

m

m

A B B B

I
A

I

I

  
  

 
 
 
 

  
 
 
 
  

and

, 0,

,

0

0

0

ca k k

m

z k

B

I

B

 
 
 
 

  
 
 
 
 

  

The vector 
1 2

[ ]T T T T T n dm

k k k k k d
z x u u u 

  
   is the augmented state vector with 

n

k
x   and 

m

k
u   are the discrete-time state and the control input vectors at time 

s
kT . 

The matrices sAT

s
A e  and  1

,

k
l

s

k
l

t
A T s

l k
t

B e Bds
 

   represent the discretized system matrices 
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and 
k

l
t , 0,1,2, ,l d  is the time instant after 

s
kT  when the delayed control inputs are 

applied to the plant. The variable 
,ca k

  is the packet loss indicator given by 

 
,

,  control input is recieved

0 ,  control input is not received ,

n n th

ca k n n th

I k

k







 


 (3) 

where 
n nI 

 is the identity matrix and 0n n
 is a matrix with all elements zero. The 

augmented system matrices 
,z k

A
 
and 

,z k
B

 
are stochastic and time-varying. The integer d  

is selected such that the pair (
,z k

A ,
,z k

B ) [4] is controllable.  From Assumption 1(a) it is 

clear that
, ,maxz k z

B B  where 
,max

0
z

B   a known constant.  

From the optimal control point of view, consider the stochastic cost function [3] 

for the system (2) given by  

  
,

( , )
k j jj k

V E r z u
 




  , (4) 

where ( , ) T T

k k k z k k z k
r z u z P z u R u   is the cost-to-go at the time instant k . The matrices 

z
P  

and 
z

R , respectively, are positive semi-definite and positive definite penalty matrices of 

appropriate dimensions and 
,
{ }E

 
 is the expectation operator (mean value) with 

sc
   

and 
ca

   for brevity. The optimal control input can be computed online  and in a 

forward-in-time  manner without knowledge of 
,z k

A  and 
,z k

B  by using the stochastic Q-

learning based scheme discussed in  [2]-[4]. A brief back ground is discussed here.  

The stochastic optimal action dependent value function or the Q-function [3] is 

given by 

 
*

1
, ,

( , ) {( ( , ) )} [ ] { }[ ] ,T T T T T T

k k k k k k k k k k k k k
Q z u E r z u V z u E G z u w G w

   


     (5) 
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where 
1k

V


 is the cost for time 1k   onwards,  [ ] mnlT T T

k k k
w z u  ,   ( 1)

mn
l n d m    

and  q q

k
G  , ( 1)q n d m   , is the  Q-function parameter matrix given by 

 
, 1 , , 1 ,

, ,

,
, 1 , , 1 ,

, ,

{ } { }
{ }

{ } { }

T T
xx xu

z z k k z k z k k z k
k k

k k T T ux uu

z k k z k z z k k z k k k

P E A S A E A S B G G
G E G

E B S A R E B S B G G

   

 

   

 

 

   
     

    

 (6) 

The optimal control input from (6)  is given by 

 
* 1 *

,
( )uu ux

p k k k k k k
u G G z K z    , (7) 

where * 1 1

, 1 , , 1 ,
, ,

( ) [ ( )] ( )uu ux T T

k k k z z k k z k z k k z k
K G G R E B S B E B S A

   

 

 
   . 

With the following standard assumption, the Q-function parameters are estimated online 

to execute the control (7). 

Assumption 2 [3]: The matrix
k

G  is slowly time-varying and can be expressed as a linear 

in the unknown parameters.  

Then, the parametric form for (5) can be represented as 

 
*( , ) T

k k k k
Q z u g  , (8) 

where gl

k
g  , ( 1) / 2

g
l q q  , is the vector form of 

k
G  as in [3], and 

k k k
w w    is 

the regression vector with   denotes the Kronecker product. The estimated value of the 

stochastic Q-function (8) can be expressed as 

 
ˆˆ ˆ( , ) T T

k k k k k k k
Q z u w G w g   ,  (9) 

where 

ˆ ˆ
ˆ

ˆ ˆ

xx xu

k k

k
ux uu

k k

G G
G

G G

 
 
 
 

 is the estimates of G  and ˆ gl

k
g   is the vector form of ˆ

k
G . It is 

known that the optimal cost function * * *

,
( , )

k k p k
V Q z u when the control input is optimal. 
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By Bellman principle of optimality, using the parametric form (8), the value function 

satisfies 

 
1

, ,
0 { ( , )} { ( , )} ,T

k k k k k k k k
E r z u V V E r z u g
   




       (10) 

where 
1k k k

  


   . The Bellman or TD error with the estimated Q-function (9) can be 

expressed as 

 
,

,

ˆ{ ( , )} T

V k k k k k
e E r z u g

 
   . (11) 

It was shown in [3]-[4] that by using an initial admissible policy, the optimal 

control policy can be attained by adjusting the Q-function parameters and using the 

augmented time history of the Bellman error (11). This relaxes the value and policy 

iterations. Here periodically sampled system state vector, 
k

x , is transmitted to the 

controller for implementing the scheme which consumes significant network bandwidth. 

The problem of event sampled intermittent transmission is discussed next. 

2.2 PROBLEM FORMULATION 

In this paper, our main objective is to transmit the system state vector 
k

x  and 

execute and transmit the control policy 
k

u
 
at the event sampled instants. In addition, the 

Q-function parameters are estimated with the constrained information to achieve 

optimality. Let a subsequence  
1i i

k



 of time instants k  be the event sampled instants 

with initial transmission at 
0

0k  . Then, the transmitted state vector held at the controller 

till the next transmission denoted by ˆ
k

x   is given by  

 
1

ˆ ,
ik k i i

x x k k k


   , 1,2,i  . (12) 
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Thus, the event sampled augmented state vector ˆ
k

z  at the controller is defined as 

 
1

ˆ ,
ik k i i

z z k k k


   , 1,2,i  ,  (13) 

where 
1 2

[ ]
i i i i i d

T T T T T

k k k k k
z x u u u

  
 , 1,2,i   is the augmented state formed by 

storing the previous values. The error introduced by the event sampled transmission 

referred to as event sampling error is given by 

 
, 1

ˆ ,
ET k k k i i

e z z k k k


    , 1,2,i  . (14) 

The event sampled instants 
i

k , 1,2,i   are determined by a state dependent event 

sampling condition evaluated at each sensor sampling instant k  at the trigger mechanism. 

A transmission decision is made only at the violation of the condition. This enables the 

control update and resets the error, 
,ET k

e , to zero for the next cycle of operation. 

Now, the optimal control input (7) with event sampled state vector (13) becomes 

 
* * * *

, ,
ˆ

e k k k k k k ET k
u K z K z K e     , 

1i i
k k k


  . (15) 

The estimation of the Q-function in a parametric form (9) with event sampled state vector 

(13) is rewritten as 

   ˆˆ ˆˆˆ ˆˆ , T T

k k k k k k k
Q z u w G w g   , 

1i i
k k k


  , 1,2,i  , (16) 

where ˆ ˆ ˆ
k k k

w w    is the event sampled regression vector with ˆ ˆ[ ]T T

k k k
w z u T

.  The 

event sampled Bellman error (11) by using (12) becomes 

 
,

,

ˆˆˆ{ ( , )} T

V k k k k k
e E r z u g

 
   , 

1i i
k k k


  , 1,2,i  . (17) 

The additional error introduced due to event sampled transmission can be seen by 

rewriting (17) in the form of  (11) to get 
, ,

,

ˆ{ ( , )} ( , )T

V k k k k k k ET k
e E r z u g z e

 
    . The 
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error 
, ,

,

ˆˆˆ ˆ( , ) { ( , ) ( , , )} ( )T

k ET k k k k k ET k k k k
z e E r z u r z u e g

 
       is a function of the event 

sampling error both in the cost-to-go and the regression vector. Further, since the 

Bellman error (17) gets updated only at the event sampled instants, the Q-function 

parameters must only be updated at that time. This reduces the frequency of the 

parameter update when compared to the traditional adaptive control [15]. Since the 

Bellman error is driven by event sampling error, the proposed technique is referred to as 

event driven dynamic programming. 

From the above discussion, for an optimal policy the event sampling condition 

needs to be designed in such a way that the estimated Q-function parameters converge to 

the optimal values while keeping the transmission small. Since the event sampling error 

is driving the estimation, a smaller error will increase the accuracy of estimation, 

transmission and computation. Therefore, a properly designed event sampling condition 

is necessary to create suitable number of transmissions in order to minimize this error as 

presented in the next section. 
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3. EVENT SAMPLED OPTIMAL REGULATOR DESIGN 

The structure shown in Figure 1 is used for the proposed design. In contrast with 

the traditional event-triggering conditions [11]-[12], the threshold in the proposed event 

sampling condition is adjusted with the update in the estimated Q-function parameters. 

This leads to a transmission scheme based on both the parameter estimation error and 

system state. On the other hand, once the parameters converged close to target values, it 

becomes the traditional event-triggering condition [11]-[12].  

The challenge in implementing the adaptive event sampling condition is the 

transmission of the estimated Q-function parameters between the trigger mechanism and 

controller which will require a large bandwidth. This can be avoided by using a mirror Q-

function estimator at the trigger mechanism to estimate the Q-function locally provided 

the information at both sides of the network (trigger mechanism and controller) are same.  

Thus, the mirror Q-function estimator is designed to operate in synchronism with the one 

at the controller. In other words, the mirror and the actual Q-function estimators are 

initialized with the same initial conditions and get updated at the event sampled instants. 

As we will see later, the update of the Q-function parameter estimates require the state 

vectors, 
ik

x and
1ik

x


, 1,2,i  , it is proposed that they are packetized together and 

transmitted to the controller at the event sampled instants.  

Remark 1: From Assumption 1, the delays between the sensors to controller satisfy 

sc sc
    and the packet losses are considered negligible. Thus, the mirror and the actual 

Q-function estimator use the same state information for updates. The addition of a mirror 

increases the computation when compared to a single estimator at the controller but the 

overall computation is reduced due to event sampled implementation. 
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3.1 EVENT SAMPLED Q-LEARNING AND CONTROLLER DESIGN 

 Consider the event sampled estimation of the Q-function in  (16) and the Bellman 

error in (17). The Q-function estimated parameters will be updated only at the event 

sampled instants with ˆ
k k

z z  for 
i

k k , 1,2,i   using the Bellman error.  The 

Bellman error (17) at the event sampled instants becomes  

 
,

,

ˆ{ ( , )} ,T

V k k k k k i
e E r z u g k k

 
    , 1,2,i  .  (18) 

An augmented Bellman error, similar to [3], using the time history can be written as 

 
,

ˆ ,T

V k k k k i
E g Z k k   , 1,2,i  ,  (19) 

where 
1 1 1

1

1
, , ,

[ { ( , )} { ( , )} { (z , )}]
i i i i i i v

v

k k k k k k v k
E r z u E r z u E r u
        



 
    and 

1 1
[ ] g

i i i v

l v

k k k k
Z   

  


      is the history of the cost-to-go and  regression 

vector, respectively.  The difference between the augmented error (19) and that in [3] is 

that (19) uses the histories only at the event sampled instants. It is clear that convergence 

of 
,V k

E  to zero ensures the convergence of 
,V k

e . The length of the time history v  is 

determined based on the designer’s experience and 1
g

v l   found to be suitable for the 

estimation during the simulation study. A larger size of the history information will lead 

to a faster convergence. 

The tuning law to update the Q-function parameter estimates can be selected as  

 

1 , 1

1

1 1

1 1

ˆ , ,
ˆ

ˆ , ,

T

V k V k

k iT

k kk

k i i

Z E
g k k

I Z Zg

g k k k


 



 

 


 

 


 

 (20) 
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where 0
V

   is the adaptive gain parameter. The tuning law (20) is aperiodic due to the 

event sampled instants. This reduces the computation when compared to a periodically 

sampled adaptive control [15]. 

Remark 2: The computation of the regression matrix 
1ik

Z


 in (20) at the event sampled 

instants requires the augmented state 
ik

z
 
and 

1ik
z

  
which is formed at the controller using 

the received state vectors, 
ik

x and 
1ik

x


. Therefore, it is proposed that both the state 

vectors are packetized together and transmitted at the event sampled instants.  

By using the estimated Q-function parameters, the event sampled estimated 

control policy can be expressed as 

 
1

ˆ ˆ , ,
k k k i i

u K z k k k


    1,2,i  , (21) 

where 1ˆ ˆˆ ( )uu ux

k k k
K G G  with ˆ ux

k
G  and ˆ uu

k
G  defined in (9). Denoting the Q-function 

parameter estimation error ˆ
k k k

g g g  , the dynamics, from (20), can be represented as 

 
1

1

, ,

, .

TV

V k k

k iT

k kk

k i i

Z E
g k k

I Z Zg

g k k k








 

 


 

 (22) 

Remark 3: It is necessary that the regression matrix 
k

Z  must satisfy the persistency of 

the excitation (PE) condition [15] for the convergence of the estimation error 
k

g to zero. 

This further implies the regression vector 
k
  must satisfy the PE condition. The PE 

condition can be enforced on the regression vector 
k
  by adding an exploration noise to 

the control input as discussed in [3]. 
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The event sampled Bellman error can alternatively be represented in terms of the 

parameter estimation error 
k

g  by subtracting (10)  from (18) and found to be 

,
,T

V k k k
e g     

i
k k . Thus, the augmented Bellman error can be written as 

 
,

, .T

V k k k i
E g Z k k    (23) 

We will use this alternate expression while carrying out the proof for the following 

theorem. 

Theorem 1: Consider the NCS dynamics (1), represented as an augmented system (2) 

along with the Q-function estimator (16) and the parameter tuning law (20). Let the 

Assumptions 1 and 2 hold and the initial parameters 
0

ˆ
g

g   with 
g

  a compact set. 

Suppose 
0

u be the initial admissible control policy and the regression vector 
k
  satisfies 

the PE condition.  Then, for an adaptive gain 0 2
V

  , the Q-function parameter 

estimation error 
k

g  converges asymptotically to zero in the mean when the trigger 

instants  
i

k  , or , alternatively, the time k  . 

Proof: Refer to the Appendix. 

3.2 EVENT SAMPLING CONDITION AN D CONVERGENCE ANALYSIS 

The closed-loop dynamics of the event sampled system by using (2) and (22) is 

given by 

 
1 , , , , 1

ˆ ˆ , .
k z k k z k k k z k k ET k i i

z A z B K z B K e k k k
 
      

Defining the control gain error * ˆ
k k k

K K K   and using (7) the closed-loop dynamics can 

be rewritten as  

 *

1 , , , , , ,
ˆ

k z k k z k p k z k k k z k k ET k
z A z B u B K z B K e


    ,

1i i
k k k


  . (24) 
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 Next we introduce the following adaptive event sampling condition. Consider the 

event sampling error (14). The system states are transmitted when the condition 

 
, ,ET k ET k k

e z , (25) 

is violated where  
2

2

, ,max
ˆ1 3 3

ET k z k
B K      is the adaptive threshold coefficient , 

0 1   and ˆ
k

K is defined in (22). The constant   satisfies 

2 2*

, , ,
,
{ }

z k k z k p k k
E A z B u z
 

 
 
as discussed in [3].  Further, it was found from Theorem 

2 that  0 1 3   will ensure asymptotic stability in the mean of the event sampled 

system. To ensure the estimated value of  ˆ
kK  is not zero while evaluating the trigger 

condition (25), the previous nonzero value is used when the estimated value becomes 

zero. 

The asymptotic stability in the mean [17] for the closed loop system (24) is shown 

by considering a single Lyapunov function candidate, 
k

L , for both event sampled instants 

and inter-sample times. As the parameters and the control policy are only updated at the 

event sampled instants and held during the inter-sample times, the Lyapunov function 

may not decrease monotonically during both the cases. This is not necessary as discussed 

in [12]. We only need to show the existence of a piecewise continuous function

 h k
 , such that 

 
k k

h L  and lim 0
k

k
h


 , k , (26) 

holds as illustrated in Figure 3 given below. 
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k 1k

1ik 

ik

3k

2ik 

3ik

5k 7k 9k  11k
 

k
L

1k

 h k

 

Figure 2. Evolution of the Lyapunov function during the event sampled instants and inter-

sample times and the upper bound function. 

 

 

Theorem 2: Consider the uncertain LTI discrete-time system (2) with the Q-function 

estimator (16) and the state feedback controller (21). Suppose the Assumptions 1 and 2 

hold and the regression vector, 
k
 , satisfies the PE condition. Let the initial parameter 

estimate 
0

ˆ
g

g  . Given an initial admissible control policy 
0

m

u
u    and adaptive 

gain parameter satisfying 0 2
V

  ,  the closed-loop event sampled system (24), with the 

event sampling condition (29) and update law (20), is  asymptotically stable in the mean 

as 
i

k  .  In addition, the control input  *

,k e k
u u   as 

i
k   or alternatively, k  .  

Proof:  Refer to the Appendix. 

Corollary 1:  Consider the NCS (2) with the Q-function estimator (16) and the state 

feedback controller (21). Then closed-loop event sampled system (24)  is asymptotically 

stable in the mean with the event sampling condition given by  

  , , ,
ˆ(1 )

ET k ET k ET k k
e z   . (27) 

Proof: Refer to the Appendix. 
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The event sampling condition is evaluated at every time instants k  with a fixed 

sensor sampling time 
s

T . Therefore, the minimum time between two consecutive event 

sampled instants is 
s

T . Alternatively, 
min 1

min{ } 1
i i

i
k k k




   . A condition to achieve the 

non-trivial inter-sample times i.e., 
1

1
i i i

k k k


   , to save the communication and 

computational load, is presented next.  

Theorem 3: Given the hypothesis of Theorem 2 with the event sampling condition (27), 

the inter-sample times 
1i i i

k k k


  implicitly defined by (27) satisfies 

     ln 1 (1 ) 1 ln
i i i

k M F F    , 1,2,i  , (28) 

where  
, ,

(1 )
i ii ET k ET k

     for the 
thi  inter-sample time. Further, *

,max maxz
F B K    

and 
,max

( 1)
ii z k

M B K    with 
*

max
K  is the maximum value of the optimal control 

gain matrix.  Further the inter-sample times 
i

k   become non-trivial when 1
i i

M  .  

Proof: Refer to the Appendix. 

Remark 4: The function 
i

M
 
and the threshold coefficient 

, iET k
  depend on the control 

gain estimation error 
k

K  via the relation * ˆ
k k k

K K K  . Hence, the inter-sample times 

i
k  in (28) are a function of 

k
K

 
or 

k
g . It is clear that the convergence of  

k
g  close to 

zero, as proven Theorem 1, will satisfy the non-triviality condition. This further implies 

that the number of triggers will depend on the initial Q-function parameters and the 

adaptive learning gains. 
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4. SIMULATION RESULTS 

The bench-mark example of batch reactor [2] is presented as an example in this 

section whose continuous-time dynamics are represented by 

 

1.38 0.2077 6.715 5.676 0 0

0.5814 4.29 0 0.675 5.679 0
.

1.067 4.273 6.654 5.893 1.136 3.146

0.048 4.273 1.343 2.104 1.136 0

x x u

    
   
 
    
    
   

   

 

The following parameters were chosen for simulation. The initial vales were as 

chosen as  0
0.2 1 3 0.5

T

z    and 
0

ĝ  is random from a uniform distribution in the 

interval [0, 1] . The delay bound for 
ca
  is 2d   to retain the controllability of the system 

[3] with a mean value of   12.5 ms as shown in Figure 3 (a). The packet loss 
ca
  follows 

the Bernoulli distribution with 0.8p   as shown in Figure 3 (b). The plot in Figure 3 is 

shown for 2 sec for clarity where 1 indicates the packet is received and 0 indicates the 

packet is lost. The sensor sampling time was selected to be 0.01
s

T  sec. A quadratic cost 

function (4) was selected with 
3

8 8
10

z
P I


  and 

3

2 2
10

z
R I


  where I  is the identity 

matrix. The learning gain 
V

  was selected as 0.05  satisfies 0 2
V

  , 0.99  , and 

0.25  . A Monte Carlo simulation is run for 25 sec or 2500 sampled instants. 

The performance of the event sampled optimal regulator is shown in Figures 3 to 

6. The state vector is regulated to zero by the proposed regulator as shown in Figure 4 (a).  

It is clear that this event sampled regulator is able to handle random delays and packet 

losses in the presence of uncertain system dynamics.  The optimal control policy is 

shown in Figure 4 (b). The convergence of the event sampled Bellman error to zero 
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shown in Figure 4(c) indicates that the optimal cost is attained with the designed 

regulator.  

 

 

Figure 3. Distribution of (a) delays; and (b) packet losses. 

 

 

 

The evolution of the event sampling threshold and error are plotted in Figure 5 

(a). The event sampled or the transmission instants are illustrated in Figure 5(b).  The 

vertical lines shows the inter-sample times. The minimum inter-sample-time observed is 

the sensor sampling time, i.e., 0.01 sec. Further, it is clear that nontrivial inter-sample 

time exist (height of the vertical line) as discussed in Remark 4. The mean value of the 

cumulative number of event sampled instants during the simulation time is found to be 

853 as shown in Figure 6 (a). Therefore, the transmissions and computations are reduced 

when compared with the traditional discrete time systems. A comparison of computation 

using the mean value in terms of the additions and multiplication is shown in Table 1. A 

30% reduction of the computation is shown in case of event sampled NCS when 

compared to its periodic implementation. 
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Figure 4.  Convergence of: (a) closed-loop state vector; (b) event sampled optimal control 

policy; and (c) event sampled Bellman error. 

 

 

Figure 5. Evolution of (a) the threshold and event sampling error; and (b) inter-sample 

times. 

 

In terms of bandwidth usage, assuming a packet size of 8 bit data, Figure 6(b) 

depicts the comparison of data rate in bits per sec (bps) between the event sampled and 

the traditional periodic schemes. It is evident that the proposed event sampled scheme has 

a low average data rate. A saving of 56% in the bandwidth usage was observed during the 

simulation time. 
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Table 1. Comparison of computational load between traditional periodic sampled and 

event-based non-periodic sampled system 

System 
Traditional periodic 

sampled 

Event-based 

non-periodic 

sampled 

Samping  instants 2500 853 

Number of 

additions and  

Multiplications at 

every sampling 

instant 

VFE 13 13 

Controller 3 3 

Update law 

Controller and 

Mirror 

65 65*2 

Trig. Con  0 7 

Total number of Computation 202500 142038 

 

 

 

Figure 6. Comparison of the: (a) cumulative number of events with sampled instants; and 

(b) data rate between periodic and event-triggered system. 
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5. CONCLUSIONS 

In this paper, we presented an event sampled optimal regulator design of an NCS with 

time varying delays and random packet losses.  The novel adaptive event sampled 

condition along with the tuning law is able to regulate the parameter estimation error and 

the Bellman error. Finally, the simulation results substantiated the analytical design. It 

was found that the event sampled Bellman error converged to zero guaranteeing optimal 

solution. Further, it was determined that the proposed event sampled adaptive optimal 

regulator is not only able to handle the delays and packet losses but also helps to regulate 

the state vector while saving the network bandwidth and the computation thereby 

validating the analytical design.   
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APPENDIX 

Proof of Theorem 1: The proof is carried out by considering a single Lyapunov function 

candidate and evaluating it both at the event sampled instants (with parameter update) 

and inter-sample times (no update). Both cases are combined together to show the 

asymptotic convergence of the Q-function parameter estimation error. 

Case I: At the event sampled instants (
i

k k , 1,2,i   ) 

  Consider the Lyapunov function candidate given as 

 
,

T

k kg k
L g g , 

i
k k , 1,2,i  .  (A.1) 

The first difference, 
1 1, ,

{ }T T

k k k kg k
L E g g g g

 
 

   , along the Q-function parameter 

estimation error dynamics (22) for the case 
i

k k  becomes 

, ,
{( ( )) ( ( ))} ,

T TV T V TT T

k V k k k V k k k k ik k k kg k
L E g Z E g Z E g g k kI Z Z I Z Z

 
         

Substituting the Q-function error, 
,V k

E , from  (23), the first difference is given by 

 
, ,

(2 ) { }T T T

V V k k k kk kg k
L g E Z Z gI Z Z

 
      ,

i
k k .  

Observe that 
k

Z satisfies the PE condition. Therefore, it holds that 

min
,
{ } 1T T

k k k k
Z E Z Z I Z Z

 
  , 

i
k k . Then, the first difference is bounded above by 

 
2

2

min,
(2 ) 0,

V V kg k
L Z g     

i
k k ,   (A.2) 

by selecting the learning gain 0 2
V

  . By Lyapunov theorem [16], the Q-function 

parameter estimation error is bounded at the event sampled instants. Next, we will 

evaluate the same Lyapunov function during the inter-sample times. 
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Case II: During inter-sample times (
1i i

k k k


  ) 

Consider the same Lyapunov function as in Case I. The first difference along the 

Q-function parameter estimation error dynamics (22) for 
1i i

k k k


  is given by 

 
1 1, ,

{ } 0T T

k k k kg k
L E g g g g

 
 

    , 
1i i

k k k


  . (A.3) 

 Note that, initial value 
0

g  is bounded since 
0

ĝ  is initialized in a compact set and the 

target parameters 
k

g  are finite.  

Next, by combining both the cases we need to show that 0
k

g   as k with 

trigger of events. From Case I, 
,

0
ig k

L  , this implies
1i ik k

g g

 . The first difference 

(A.2) can be expressed as  

 
22 2

2

11 1 min, ,
{ } (2 ) .

i ii i i i ii

T T

k kk k k k V V kg k
g gL E g g g g Z g

 
 

 
         

Rearranging the above equation leads to 

 
22

1
(1 ) ,

i ik k
g g


 

1i i
k k k


  , (A.4) 

where 2

min
0 (2 ) 1

V V
Z      . From Case II, 

,
0

g k
L  ,

1i i
k k k


  , 1,2,i   , 

therefore, 
11i ik kk

g gg


  ,
1i i

k k k


  . By solving this difference inequality (A.4)

recursively with initial condition 
0 0 ,0k g

g Bg   and using comparison Lemma [17], 

(A.4) satisfies 

  
1 1

22 21

1 1 0 ,
1

i i ki

i

k k g
g g g B 

 



 
   , 1,2,i  . (A.5) 

Observe that 
, 1ig k

B


 is a piecewise constant and converging sequence of functions 

since 0 1 1   . This implies 
, 1

lim 0
ii

g kk
B


 . It follows that 

1
0

ik
g


  as the event 
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sampled instants 
i

k  . Since 
i

k  is a subsequence of k , 
i

k   implies k  . 

From the above, we can conclude that  0
k

g   as k  .                                              ■ 

Proof of Theorem 2: To show the asymptotic stability in the mean we will prove that 

conditions in (26)  holds by defining a piecewise continuous upper bound function on the 

Lyapunov function for all time k .  

Case 1:  At the event sampled instants (
i

k k , 1,2,i  ) 

  Consider a positive definite Lyapunov function candidate 

 
1 , 2 ,k z k g k

L L L   , (A.6) 

where 
,

T

z k k k
L z z  and . The positive constant coefficients 

 and  with , , 

and are positive constants defined during the proof.  

The first difference of the first term ,  along the 

closed-loop dynamics (24) for , i.e., with  and , can be written as 

  

By applying Cauchy-Schwartz (C-S) inequality and using Frobenius norm, the 

first difference leads to 

  

 , , (A.7) 

where  and .  

,

T

k kg k
L g g

2 2 2

1 ,max
2

z M Mg
B C W    2 min

2 2
V V

Z     0 2
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  0 1  ,
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,
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
M

W

, 1 1
,
{ }T

z k k k
L E z z

 
 

 
1

T

k k
z z

i
k k

i
k k ˆ

k k
z z ,

0
ET k

e 

* *

, , , , , , , , ,
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z k z k k z k p k z k k k z k z k p k z k k k k k i
L E A z B u B K z A B u B K z z z k k
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       

22 2*

, , , , ,
, ,

2 { } 2 { }
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L E A z B u z E B K z
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22 2

1 1 ,max
(1 2 ) 2

k z k k
z B K z    
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k k

, ,maxz k z
B B

2 2*
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The first difference of the second term,  , remains same as in (A.2) of 

Theorem 1. 

 Now, combining (A.7)  and (A.2) the overall first difference is given by 

   (A.8) 

Since  is a function of Q-function parameter estimation error , it holds that 

 where  by Lipschitz continuity. Further, the initial 

control input  is admissible, thus, the time history  and 

 where . By using the above facts and substituting the 

definition of  and  from (A.6), (A.15) is bounded as 

  (A.9) 

for  where is a constant defined in (A.6). Since , it is evident 

from (A.9) that and, hence, the Lyapunov function ,   is a non-increasing 

function, i.e., . 

Case 2:  During the inter-sample times ( ) 

Consider the same Lyapunov function as in Case I. The first difference of the first 

term along (24) for  and with simple mathematical manipulation using C-S 

inequality and Frobenius norm is upper bounded by 

  

,g k
L

2 22 2

1 1 ,max 2 min
(1 2 ) 2 (2 ) , .

k k z k k V V k i
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2 22 2 2 2 2

1 1 ,max 2 min
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1

1 2 2 (2 )

1 2 .

s s
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0
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L
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L L




1i i
k k k


 

1i i
k k k


 

22 22 2 2

, 1 ,max ,
,

ˆ(1 3 ) 3 { } 3 .
k k z k k k z k ET k

L z E B K z B K e
 

      



298 

 

Recalling the event sampling condition (29) and substituting in the above first difference, 

one can further obtain 

 , 

for .  From (A.5) in Theorem 1, we have , . 

Then, the first difference is bounded above by 

 , , (A.10) 

where .  

Next, the first difference of the second term is same as in (A.3) of Theorem 1.   

Finally, the overall first difference, by combining the (A.18) and (A.3), can be 

expressed as 

 , .  (A.11) 

From (A.11), the first difference of the Lyapunov function   , as long as 

, . By Lyapunov theorem [16],  and 

 ,  are bounded. Observe that, in (A.5),  and  in (A.11) are 

piecewise constant for  inter-sample time. Again, from  (A.11), it follows that,  

outside the ball of radius ,  will decrease to the ball. Therefore, the 

Lyapunov function , ,  will converge to a bound in finite 

time where is define as 

 , . (A.12) 
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The bound  in  (A.12) is computed  from (A.6) using the upper bound  of   

from (A.11) and  of  from (A.5) for . 

From the above, we can define a piecewise continuous function  such that the 

conditions (31)  holds. Consider the Case I and Case II and define a piecewise continuous 

function 

 , .  (A.13) 

It is clear that  is positive definite and  , . Further, from Case I, 

 and Case II, ,  in a finite time. Furthermore, from 

Theorem 1, we have  as . This implies,  and, hence,  

as . Therefore,  as  or, alternatively, . 

 Consequently, from both the cases, the closed-loop system state and Q-function 

parameter estimation error converge to zero asymptotically in the mean.  

 Finally to show that, , consider the difference  

 . 

 Since,   as .                                                                                ■ 

Proof of Corollary 1: The event sampling condition (27) can be rewritten as  

 .  

By rearranging the expression one can reach at 

  

,L k
B

1i

M

k
B

 k
z
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 Since the hypothesis of Theorem 1 holds, the closed-loop NCS is asymptotically 

stable in the mean.                                                                                                               ■ 

Proof of Theorem 3: Consider the event sampling error (14). The error dynamics for  

 is given by 

 . 

where . Recalling (13) and substituting in the above equation, it reveals that 

 , , (A.14) 

where  and . The variables  and  in  

(A.14) are constant during the  inter-sample time. Hence, (A.14) becomes a stochastic 

difference equation with constant input. The solution of difference equation, (A.14) by 

using comparison lemma [17], is bounded above by 

 .  (A.15) 

Now at the -th event sampled instant we have where 

 is the threshold coefficient, from (27), for  inter-sample time. 

  Then, expressing (A.15) for  time instant, it holds that 

  .  

By solving this, the inter-sample times  satisfies 

 , . (A.16) 
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Further, from (A.16), the inter-sample times becomes non-trivial when  

  

Alternatively,    .                                                                    ■

 ln 1 (1 )( 1) ln( )
i i

M F F  

1
i i
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  B.   OPTIMAL REGULATION OF NONLINEAR NETWORKED 

CONTROL SYSTEMS BY USING EVENT-DRIVEN ADAPTIVE 

DYNAMIC PROGRAMMING 

Avimanyu Sahoo and S. Jagannathan 

Abstract —  In this paper a stochastic near optimal regulation of nonlinear networked 

control systems (NCS) is presented with event sampled state and input vector. Event-

driven stochastic adaptive dynamic programming (ADP) based technique is utilized with 

neural networks (NN) to design the near optimal policy. An actor-critic framework with 

event sampled feedback information is utilized to implement the ADP scheme. The system 

dynamics are approximated by using a novel NN identifier with event sampled inputs. 

The stochastic identifier, actor, and critic NN weights are tuned at the event-sampled 

instants leading to aperiodic tuning laws. Above all, an adaptive event sampling 

condition based on estimated NN weights is designed by using the Lyapunov technique to 

ensure ultimate boundedness of all the closed-loop signals and to ensure approximation 

accuracy. The net result is event-driven approximate dynamic programming technique 

that can significantly reduce the computation and network transmissions. Finally, the 

analytical design is substantiated with simulation results. 

Index Terms - Adaptive dynamic programming, event sampled control, neural networks, 

optimal control. 
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1. INTRODUCTION 

The presence of the packet switched communication network between the plant 

and the controller in a networked control system (NCS) [1]-[7] brings in the unavoidable 

network constraints. These constraints are of the form of time-varying network induced 

delays, random packet losses, quantization error and congestion. A traditional controller 

may jeopardize the stability and performance of the NCS in the presence of these 

artifacts. The effect of these constraints on stability of the linear and nonlinear systems is 

studied in detail by various authors [1]-[7]. 

Traditional optimal control methods are also extended to NCS [3] by using 

stochastic Riccati equation. Since, the backward-in-time solution is not preferred in 

practical implementation, adaptive dynamic programming (ADP) [5]-[6], [8]-[15] in 

conjunction with reinforcement learning technique is used for a forward-in-time and 

online solution. In general, policy and value iteration based techniques [9] are used to 

solve the Hamilton-Jacobi-Bellman (HJB) equation to compute the optimal control 

policy. These iterative approaches are computational intensive and may require the 

complete knowledge of the system dynamics.  

 In the recent years, the ADP scheme is also extended to the NCS with time-

varying network induced delays and random packet losses where the system dynamics 

become uncertain and stochastic [3]-[6]. A time-driven ADP scheme without using the 

knowledge of the system dynamics and policy/value iteration is presented in [4]-[6] both 

for linear [4] and nonlinear systems [5]-[6]. Although these schemes [3]-[6] result in 

satisfactory performance and stability requirement under periodic sampling and 
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transmission, they, however, lead to higher computational cost and require considerable 

network bandwidth. 

 State based sampling and transmission scheme when used for control, formally 

known as event-triggered control (ETC) [16]-[21], is found to be effective in terms of 

resource utilization with a certain level of performance guarantee. The ETC scheme for 

NCS with inherent network constraints such as constant or time-varying delays and 

packet losses presented in [16]. A reduction in network bandwidth usages with 

asymptotic stability for bounded delays and packet losses is shown. The design assumed 

the complete knowledge of the system dynamics for implementation. On the other hand, 

optimal control with event sampled transmission is studied by various authors [19]-[22]. 

The traditional backward-in-time solution of the Riccati equation (RE) is used under the 

assumption of separation principle [20], [22]. To the best knowledge of the authors, no 

known event-driven ADP scheme is available for nonlinear NCS (NNCS). 

Therefore, in this paper, we propose a stochastic event sampled optimal regulator 

design for NNCS with network induced time-varying delays and random packet losses. 

Stochastic actor-critic neural network (NN) based ADP scheme is introduced with event 

sampled state and control input vector. The optimal regulator is designed for systems 

with completely uncertain system dynamics and time delays greater than one sensor 

sampling instant in the network between the controller and actuator. The main differences 

between the ADP scheme presented in this paper and that in  [5]-[6] include: the NN-

based approximation of the dynamics with event sampled state and input vectors and the 

NN weight tuning only at the event sampling instants leading to an aperiodic update. 

Therefore, the ADP scheme in this paper requires the design of a novel event sampling 
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criterion in order to facilitate the event sampled NN approximation and retain the 

advantage of the traditional ETC [16]-[18].  

First, the universal NN approximation property is revisited in the context of 

event-based sampling. The system dynamics, the control policy, and the value function 

are approximated using the event sampled identifier, actor, and critic NNs, respectively. 

The NN weights are tuned at the sampled instants to force the Hamilton-Jacobi-Bellman 

(HJB) error to a minimum. The adaptive event sampling condition is designed based on 

the approximation accuracy and the system stability to determine the sampling instants. 

This adaptive sampling condition assists the approximation with reduced communication 

and computation.  Finally, the ultimate boundedness (UB) in the mean of the closed-loop 

event sampled system is presented using the Lyapunov technique. A preliminary version 

of the work is published in [23]. 

The remaining of the paper is organized as follows. Section 2 presents a brief 

background on stochastic ADP and formulates the problem. Section 3 presents the 

detailed design procedure. Before concluding in Section 5, simulation results are included 

in Section 4. The appendix gives details of the proof of lemmas and theorems. 
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2. BACKGROUND AND PROBLEM FORMULATION 

In this section, a brief background on the reformulation of the NCS dynamics 

incorporating the delays and packet losses is presented. Then, the problem we considered 

in the paper is formulated. 

2.1 NNCS REFORMULATION 

 Consider the NNCS represented by a nonlinear continuous-time system described 

by 

 ( ) ( ( )) ( ( )) ( )x t f x t g x t u t  , (1) 

where ( ) nx t  and ( ) mu t  represent the system state and the control input vectors, 

respectively. The nonlinear functions ( ( )) nf x t   and ( ( )) n mg x t   denote the 

internal dynamics and the control coefficient function, respectively, with (0) 0f  at 0x   

being the unique equilibrium point. It is considered that the functions ( ( ))f x t and ( ( ))g x t  

are unknown with the following standard assumption. 

Assumption 1[6]:  The system (1) is controllable and observable and the system state 

vector is measureable. The matrix ( )g x  satisfies ( ) Mg x g  in a compact set for all

xx  with 0Mg   is a known constant.  

Considering the networked induced time-varying delays from the sensors to the 

controller, ( )sc t , the controller to the actuator, ( )ca t , and the random packet losses ( )t  

between controller and actuator, the system in (1) can be expressed as [2] 

 ( ) ( ( )) ( ) ( ( )) ( ( ))cax t f x t t g x t u t t    , (2) 

The packet losses ( )t  is denoted by 
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,control input received at actuator at time ,

( )
0 ,control imput lost at time .

n n

n n

I t
t

t







 


 

For reformulating the dynamics of the system by incorporating the network 

constraints, the following properties of the communication network are assumed [2]-[4]. 

Assumption 2:  

(a). The sensor is assumed to be time driven and samples the system state at a fixed 

sampling interval sT  [2] whereas the feedback and control input is transmitted at event 

sampled instants; 

(b) The communication network used is a wide area network so that the sensor to 

controller and controller to actuator network induced delays are considered independent 

and satisfy the following criteria. The delays sc s    [2] and ca sdT  where s sT   

between the sensor and controller sampling instant is the fixed skew and d  is a positive 

integer [2]-[4]; 

 (c) The packet losses between sensor and controller is negligible and the distribution 

between controller to actuator is known; 

 (d) The initial system state is deterministic [3][4]. 

Since, the communication network uses packet switched transmission and for 

implementation the regulator in a digital platform, a discrete-time formulation of the 

system is necessary for the control design. The system dynamics (2) can be discretized by 

integrating it within a sensor sampling interval [ ( 1) ]s skT k T for all k . The 

discrete-time representation is given by [6] 

 
1 , 1 , 1( , , ) ( , , )k k k k k kk d k d

x F x u u G x u u u      
 

,
 (3) 
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where , 1( , , )k k k d
F x u u     

and  , 1( , , , )k k k d
G x u u     

are the transformed NCS dynamics 

given in [5]-[6]. The vector  k sx x kT  is the discretized state vector, (( ) )s k lu k l T u   , 

0,1, ,l d  is the delayed control input. It is possible that the control input vectors 

arrive simultaneously at the actuator. Thus, a packet reordering mechanism selects the 

latest control input for use. 

 By selecting an augmented state vector 
1[ ]T T T T

k k k k d
z x u u 
 , the discrete-

time system  (3) can be presented in a compact form as 

 1 ( ) ( )k k k kz F z G z u   , (4) 

where
, 1 1 1

( ) [ ( , , , ) 0 ]T T T T T dm n

k k k kk d k d
F z F x u u u u 



   
  and

 
, 1( ) [ ( , , , ) 0]0

dm n m

k k k mk d
G z G x u u I 

 

 
   with [ ]CA B  denotes the 

vertical concatenation of the matrices A  , B  and C . The matrix I  is the identity matrix 

and ‘ 0 ’ represents the null vectors or the matrices of appropriate dimensions. The 

transformed system is a stochastic uncertain nonlinear system due to the presence of 

random packet losses and delays. From Assumption 1 and definition (4) the stochastic 

matrix function ( )kG z  satisfies ( )k MG z G  with 0MG   is a computable constant [6].  

To design an optimal controller for the system in (1) in the presence of the 

networked induced time-varying delays and packet losses, it is sufficient to design an 

optimal controller for the augmented NCS dynamics in (4).  With this respect, consider 

the value function given by [3][4]-[6] as 

  
,

T T

k j z j j z jj k
V E z Q z u R u

 




  ,  (5) 
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where n dm n dm

zQ   
 
and m m

zR 
 
 are, respectively, symmetric positive semi-definite 

and definite penalty matrices. The operator 
,

( )E
 

 is the expectation operator over all the 

random delays and packet losses. The initial control, 0u , is assumed to be admissible [15] 

to keep the value function finite. 

The value function (5) can be written as 

   1
,

T T

k kj z j j z jj k
V E Vz Q z u R u

 




   (6) 

where  1 1,

T T

k j z j j z jj k
V E z Q z u R u

 



  
   is the cost from 1k   onwards.  The optimal 

control input by differentiating the optimal value function 

* *

1
,

min( { })
k

T T

k k z k k z k k
u

V E z Q z u R u V
 

    can be represented as 

 
* 1 *

1 1
,

(1 2) { ( ) }T

k z k k ku E R G z V z
 



    
 
. (7)  

By using (7), the discrete time HJB equation can be expressed as 

 
* * 1 * *

1 1 1 1 1
,
{ (1 4)( ) ( ) ( )( )}T T T

k k z k k k k z k k k kV E z Q z V z G z R G z V z V
 



           . (8) 

Since, a closed form solution of (8) is quite difficult, stochastic ADP based techniques 

[5]-[6] are used for an online and forward-in-time solution. Next, the problem of event 

sampled stochastic ADP is formulated. 

2.2 PROBLEM STATEMENT 

Our objective is regulate the augmented system dynamics of the NNCS (4) with 

event sampled feedback information minimizing the value function (5). The event 

sampled instants can be characterized as a subsequence  
1i i

k



 of periodic sensor 

sampling instants k .  We will assume the initial event sampling instant is at time 
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0 0k   and the initial state and control input are transmitted. The event sampled state 

vector denoted by kx
 
held the controller by the zero-order-hold is given by  

 
ik kx x , 1i ik k k   ,  1,2,i  . (9) 

where
ikx , 1,2,i  is the state vector at the event sampled instants.. 

 The event sampled augmented system state vector by using  kx  can be expressed 

as 

 
ik kz z , 1i ik k k   , , (10) 

where 1[ ]T T T T

k k k k d
z x u u 
  and 

1[ ]
i i i i

T T T T

k k k k d
z x u u 

 . The corresponding error between

kz
 
and kz  can be expressed as 

 ,ET k k ke z z  , 1i ik k k   , 1,2,i   (11) 

where ,ET ke  is referred to as event sampling error . This event sampling error (11) is reset 

to zero along with the update of kx  at the sampling instants and denoted by 

 , 0ET ke  , ik k , 1,2,i  . (12) 

 Since, the system dynamics, the value function, and the control input are 

unknown, the NN approximation property with event sampled information is revisited 

next. 

Consider a continuous stochastic function ( ) n

kh z   in a compact set for all

k zz  . By universal approximation property, the function ( ) n

kh z   in the compact 

set can be expressed as 

 
,

( ) { ( ) ( )}T

k h h k h kh z E W z z
 

   ,   (13) 
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where 
,
{ } hl n

hE W
 


  is the unknown constant target NN weights, ( ) hl

h kz   is the 

periodic sampled activation function, and ( ) m

h kz   is the traditional reconstruction 

error with hl  as the number of neurons. With event sampled transmission the available 

state vector kz  will be used for approximation. The NN approximation (13) is given by  

  , , 1
,

( ) { ( ) ( , )},T

k h h k e h k ET k i ih z E W z z e k k k
 

       (14) 

where , , ,
,

( , ) { ( ( ) ( )) ( )}T

e h k ET k h h k ET k h k h kz e E W z e z z
 

       . The error , ,( , )e h k ET kz e is 

clearly a function of the event sampling error ,ET ke  due to the relation ( ( ) ( ))h k h kz z 

,( ( ) ( ))h k ET k h kz e z     along with the traditional reconstruction error expressed as 

,( ) ( )h k h k ET kz z e   . This implies the event sampling error drives the accuracy of event 

sampled approximation. 

By using (14), the event sampled approximation of the value function (5) can be 

expressed as 

 , ,
,
{ ( ) ( , )}T

k V V k e V k ET kV E W z z e
 

   , 1i ik k k   , (15) 

where
,
{ } Vl

VE W
 

  is the unknown constant target NN weights, 
,
{ ( )} Vl

V kE z
 

   is the 

event sampled activation function. The error , , ,
,

( , ) { ( ( ) ( ))T

e V k ET k V V k ET k V kz e E W z e z
 

    

,( )}V k ET kz e   is the event sampled reconstruction error where ( )V kz   is the 

traditional reconstruction error with Vl  being the number of neurons.  

 Substituting the approximated value function (15) into (6), equation (6) can be 

expressed as 
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 , , 1 , 1 , 1
, , ,
{ ( ) ( , )} { } { ( ) ( , )}T T T T

V V k e V k ET k k z k k z k V V k e V k ET kE W z z e E z Q z u R u E W z z e
     

           

Rewriting the above expression 

 , , 1
, , ,
{ ( , )} { } { ( )},T T T

e V k ET k k z k k z k V V kE z e E z Q z u R u E W z
     

        (16) 

where 1( ) ( ) ( )V k V k V kz z z      and , ,( , )e V k ET kz e , 1 , 1 , ,( , ) ( , )e V k ET k e V k ET kz e z e    . 

 One can notice that ideal HJB equation (16) results in a higher reconstruction 

error 
, ,

,
{ ( , )}e V k ET kE z e

 
  due to the event sampling error. From the above discussion, 

both the accuracy of the approximation and optimality depends upon the event sampling 

error or in turn the event sampling condition. 

In addition, from the NN weight estimation point of view, the NN weights can 

only be tuned at the event sampled instants since the feedback information is available 

only at these instants. This further leads to an aperiodic update in contrast to the periodic 

ones used in traditional NN based approach. Moreover, the ADP scheme requires the 

control coefficient matrix (z )kG  to implement the optimal control input (7). Since, the 

matrix (z )kG  is unknown there is requirement for identifying the system dynamics also.  

 From the above discussion, the optimal control problem  can be precisely defined 

as: (a) design a novel event sampling condition which will ensure the accuracy in 

function approximation, (b) design an identifier to to approximate the control coefficient 

function ( )kG z , and (c) retain the advantages of traditional ETC while ensuring 

optimality. A solution to the above problem is presented next. 
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3. EVENT SAMPLED OPTIMAL REGULATOR DESIGN 

In this section, a solution for event-based ADP with the detailed design procedure 

is presented.  

3.1 PROPOSED SOLUTION 

 The structure of the proposed stochastic NN based ADP scheme is illustrated in 

Figure 1. Event sampled actor-critic NNs architecture will be used for control input and 

value function approximation, respectively. A novel event sampled NN based identifier is 

also proposed to approximate the unknown system dynamics. 

 

Plant
Sensor

Actor NN

ikx

kz

ku

   uxgxfx 

ZOH

Trigger 
Mechanism
With Mirror 

net.

Identifier

kx

Communication network with

 Delay ( , ) and Packet loss ( )sc ca t  

ActuatorZOH

Critic NN

Controller

1 ,
,

ˆˆ { ( ) }T

k I I k k kz E W z u
 

  

,
,

ˆ ˆ{ ( )}T

k V k V kV E W z
 


,

,

ˆ{ ( )}T

k u k u ku E W z
 



 

Figure 1.  Proposed event-triggered NCS architecture. 

 

For ensuring the accuracy of NN approximation, an adaptive event sampling 

condition is proposed. The event sampling condition is a function of NN weight estimates 

and the system state vector, and gets updated with every update of the NN estimates at 

the event sampled instants. This implies that the event sampling condition is implicitly 

adjusted by the approximation errors. A detailed discussion is included in Remark 3. 
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The trigger mechanism at the sensor evaluates the event sampling condition at 

every periodic sampling instant. A transmission decision is made once the event sampling 

condition is violated.  Since the condition is a function of the actor-critic NN weight 

estimates, the weights must be transmitted from the controller to the trigger mechanism. 

To avoid this transmission of the NN weights, a mirror actor-critic NN is used at the 

trigger-mechanism to estimate the NN weights locally. This further requires 

synchronization of both the actor-critic NNs to ensure same information at both trigger-

mechanism and controller.  

Since, the delay from the senor to controller,
sc s   , the state information at the 

sensor’s sampling instant and controller’s sampling instants are same [2]. Further, by 

initializing the weights at both the actor-critic networks with same value and updating at 

event sampled instants synchronism can be achieved.  Although, the use of additional 

mirror actor-critic NN at the trigger mechanism increases the computation when 

compared to the traditional ADP schemes, the event sampled execution reduces the 

overall computation. 

3.2 EVENT SAMPLED ADP BASED OPTIMAL CONTROL DESIGN 

The event sampled stochastic ADP design entails four design steps: identifier, 

critic, actor, and event sampling condition. The identifier design is presented next. 

3.2.1 Event Sampled Identifier Design. The main objective of the identifier 

design is to approximate the control coefficient matrix function  kG z  for computing the 

optimal control policy. Consider the augmented stochastic dynamics (4). By using event 

sampled NN approximation in (14), the  stochastic dynamics of the augmented system 

can be written as 
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1 ( ) ( ) [ ( ) ( )][1 ]T T

k k k k k k kz F z G z u F z G z u     

 , ,
,
{ ( ) ( , )},T

I I k k e I k ET kE W z u z e
 

   1i ik k k   , (17) 

where ( 1) ( )
[ ] Im l dm nT T T

I F GW W W
  

  is the constant target NN matrix with 

( )Il dm n

FW
 

 and ( )Iml dm n

GW
 

 are the target for respective functions ( )F  and ( )G . 

The matrix function  ( ) ( ) ( )I k F k G kz diag z z   ( 1) Im l m   is the event sampled 

activation function with ( ) Il

F kz  ,  ( ) Iml m

G kz 
 , and Il  is the number of neurons in 

the network. The vector 1[1 ]T T m

k ku u    is the augmented control input and 

, , , ,( , ) [ ( ) ( )] ( )T

e I k ET k I I k ET k I k I k ET kz e W z e z u z e         is the event sampled 

reconstruction error where ,( )I k ET k I kz e u  
 
with [ ( ) ( )]I F k G kz z  

 
is the 

traditional reconstruction error. The following assumption holds for the identifier NN in a 

compact set. 

Assumption 3 [24]: The NN identifier target weight matrix, activation function and the 

traditional reconstruction error are upper bounded in the mean. Then, it holds that

,,
{ }I I M

E W W
 

 , 
,,

{ ( )}I I M
E
 

  , and 
,,

{ ( )}I I M
E
 

   where ,I MW , ,I M , and ,I M  

are positive constants. In addition, the activation function is Lipschitz continuous in the 

compact set for all k zz   . Then, there exists a constant 
I

C such that

, , , ,
{ ( )} { ( )} { } { }

I
I k I k k kE z E z E z E zC

       
    . 

The Lipschitz continuity assumption is satisfied by all NN activation functions 

and will be used later during the closed-loop stability proof. The event sampled identifier 

dynamics for the system dynamics (17) can be defined as 
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 1
ˆˆˆ ( ) ( )k k k kz F z G z u   ,

1i ik k k   . (18) 

where ˆ
kz  is the identifier state vector,  ˆ ( )kF z  and ˆ ( )kG z  are the identifier dynamics. The 

function ˆ ( )kF z  and ˆ ( )kG z  uses the event sampled state vector 
kz  instead of the identifier 

state ˆ
kz . This architecture reduces unnecessary computation due to the identifier during 

the inter-sample times.  

The identifier with NN weight estimates is given by 

 
1 ,

,

ˆˆ { ( ) }T

k I I k k kz E W z u
 

   , 
1i ik k k   . (19) 

Defining the identification error as
, ,

ˆ{ } { }k k kE z E z z
   

  , 1i ik k k   , the 

identification error dynamics can be written as 

 
1 ,

, ,

ˆ{ } { ( ) [ ( ) ( )] ( )}T T

k I k I k k I I k I k I kE z E W z u W z z u z
   

       ,  (20) 

1for i ik k k    where
, ,

, ,

ˆ{ } { }I k I I kE W E W W
   

   is defined as the identifier NN weight 

estimation error. 

The identifier NN weights are tuned at the event sampled instants such that the 

identification error converges close to zero in the mean. To achieve this identifier weight 

update law using the previous values can be selected as 

 
1 1 ,

, , 1
, ,

1 1 1 1

( )ˆ ˆ{ }
( ( ) ) ( ( ) ) 1

T

I I k k I k

I k I k k T

I k k I k k

z u z
E W E W

z u z u   


  



   

 
  

   
, (21) 

where 0I   is the learning gain, 
k  is an indicator function defined as 

 
1, transmission received

0, no transmission
k


 


 (22) 
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 The indicator function 1k   at the event sampled instants  ik k  , 1,2,i   

and, hence, the NN weights are updated. During the inter-sample times 1i ik k k   , 

0k 
 
and the NN weights are held. Thus, the NN weights are updated in an aperiodic 

manner. This reduces computation when compared to the traditional periodic update [6], 

[15], [24]. 

 By using (21) with a time step forward and the definition 
, ,

, ,

ˆ{ } { }I k I I kE W E W W
   

  , 

the identifier NN weight estimation error dynamics can be expressed as 

 
, 1

, 1 ,
, ,

( )
{ }

( ( ) ) ( ( ) ) 1

T

k I I k k I k

I k I k T

I k k I k k

z u z
E W E W

z u z u   

  



 
  

   
, 1i ik k k   . (23) 

Remark 1: The regression vector ( )I k kz u  must satisfy the persistency of excitation 

(PE) condition [24] for the identifier NN weight estimation error to converge to zero in 

the mean. The PE condition requirement is standard in the adaptive and NN based control 

literature [15], [24]. For completeness the definition of PE condition is presented next. 

Definition 1[15]: A vector ( )kz  is said to be persistently exciting over an interval if 

there exists positive constants , ,  and 1dk   such that ( ) ( )
d

k T

k kk k
I z z I


   




 

where I  is the identity matrix of appropriate dimension. 

 The ultimate boundedness (UB) in the mean of the NN weight estimation error is 

claimed in the following theorem. Before stating the theorem, the following stability 

notion is necessary. 

Definition 2 [5]: An equilibrium point ex is said to be ultimately bounded (UB) in the 

mean if there exists a compact set nS   so that for all 
0x S  there exists a bound 

and a number  0,N x
 
such that    k eE x E x     for all  0k k N  . 
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Theorem 1: Consider the event sampled NN identifier (19) and the tuning law given by 

(21). Let the Assumption 3 holds and the NN identifier initial weights 
,0

ˆ
II WW  with

IW being a compact set. Suppose the vector ( )I k kz u  satisfies the PE condition. Then, 

for a positive constant 
I  satisfying 0 1 2I   and positive integers N  and N the 

identifier NN weight estimation error  ,
,

I kE W
 

 is UB in the mean for all 0ik k N   or, 

alternatively, 
0k k N    with N N . 

Proof: Refer to the Appendix. 

3.2.2 Stochastic Value Function Approximation: Critic NN Design. In this 

step we will approximate the value function by using the event sampled critic NN and 

design the update law to estimate the value function. Recall the event sampled 

approximation of the value function given in (15). The following assumption holds for 

the critic NN. 

Assumption 4: The target critic NN weight, the activation function and the traditional 

reconstruction error are upper bounded in the mean such that ,,
{ }V V M

E W W
 

 , 

,,
{ ( )}V V M

E
 

  , and ,,
{ ( )}V V M

E
 

   where ,V MW , ,V M , and ,V M  are positive 

constants. The gradient of the activation function and traditional reconstruction error are 

upper bounded in the mean [5], i.e., 
'

1 ,,
{ ( ) }V k V M

E z
 

     and 

'
1 ,,

{ ( ) }V k V M
E z
 

    . In addition, the activation function is Lipschitz continuous in 

the compact set for all k zz  . Then, there exists a constant 
V

C  such that 

, , , ,
{ ( )} { ( )} { } { }

V
V k V k k kE z E z E z E zC       
   . 
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 The estimated value function by the critic NN in an event sampled context can be 

written as 

 
,

,

ˆ ˆ{ ( )}T

k V k V kV E W z
 

 , 
1i ik k k   , (24) 

where 
,

,

ˆ{ } Vl

V kE W
 

  is the estimated critic NN weight matrix.  The activation function 

( )V kz
 
is selected such that it forms a basis [15] for value function approximation and 

satisfies  0 0V  . 

 Using the estimated value of the value function (24), Equation (6) does not hold 

any more. Therefore, the temporal difference (TD) or HJB equation error with event 

sampled estimation of value function is given by 

 
, ,

, , ,

ˆ{ } { } { ( )}T T T

V k k z k k z k V k V kE e E z Q z u R u E W z
     

    ,  (25) 

for 1i ik k k  
  
where 1( ) ( ) ( )V k V k V kz z z     . 

 An augmented HJB error, similar to that in [15], will be used to estimate the critic 

NN weights without using policy and value iteration. As discussed earlier, the critic NN 

weights will be updated only at the event sampled instants. Therefore, we define the 

augmented HJB error at the event sampled instants by defining the new augmented cost-

to-go vector 
k  and activation function matrix k  given by [ ( , )

i ik k kr z u 
 

1 1 1 1

1( , ) ( , )]
i i i j i j

j

k k k kr z u r z u
     

  and 
1 1

[ ( ) ( ) ( )] V

i i i j

l j

k V k V k V kz z z   
  


     , 

where ( , )
i i i i i i

T T

k k k z k k z kr z u z Q z u R u  , 0 j i  . Then the augmented HJB error ,V k  is 

given by  

 
, ,

, , ,

ˆ{ } { } { }T

V k k V k kE E E W
     

    , 
ik k .  (26) 
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 It is clear that convergence of 
,

,
{ }V kE

 
 will ensure convergence of

,
,
{ }V kE e

 
. Similar 

to the identifier, the critic NN weight update law is selected such that it will force the 

augmented HJB error 
,

,
{ }V kE

 
  close to zero. Define the update law for the critic NN 

weight as 

   , , 1 1 , 1 1 1, ,

ˆ ˆ{ } T T
V k V k k V k V k k k

E W E W I
   

        
    , (27) 

where 0V   is the critic NN learning gain and
k is the event indicator function as 

defined earlier in (22). 

Remark 2: Similar to the NN identifier, the critic NN weights are tuned only at the event 

sampling instants. Further, the computation of the augmented HJB error, , 1V k ,  at 
ik k  

requires the state vectors 
ikz  and 1ikz   . Therefore, both the state vectors

ikx and 1ikx   are 

packetized together and transmitted to the controller at the event sampled instants,  
ik k

, 1,2,i   to form 
ikz  and 1ikz  . 

 Finally, using (27) with a forwarded time instant and the definition of critic NN 

weight estimation error, i.e.,  
, ,

, ,

ˆ{ } { }V k V V kE W E W W
   

  , the critic NN weight estimation 

error dynamics can be represented as  

   , 1 , ,
, ,
{ } T T

V k V k k V k V k k k
E W E W I
   

         , (28) 

In terms of the critic NN weight estimation error, ,V kW ,  the value function estimation 

error, ,V ke , can be rewritten by subtracting (16)  from (25) 

, , ,
, , , ,

1
,

ˆ{ } { } { ( )} { ( ( ) ( )}

{ ( )}, .

T T T T

V k k z k k z k V k V k V k V k V k

V k i i

E e E z Q z z Q z E W z E W z z

E z k k k

       

 

  

 

      

   
 (29) 



322 

 

At the event sampled instants with 
k kz z , the HJB error (29) can be written as

, ,
, ,
{ } { ( ) ( )}T

V k V k V k V kE e E W z z
   

     , 
ik k . Thus, the augmented error at the event 

sampled instants can be expressed as 

 
, , ,

, ,
{ } { }T

V k V k k V kE E W
   

    , ik k  ,  (30) 

where 
1, [ ( ) ( ) ( )]

i i i j iV k V k V k V kz z z  
  

      is the augmented reconstruction error 

and satisfies , ,V k V M
   . 

 The next lemma claims the boundedness in the mean of the critic NN weight 

estimation error. 

Lemma 1: Consider the critic NN (24) and its weight tuning law (27). Let the 

Assumption 4 holds and the critic NN initial weights, 
,0

ˆ
VV WW  , with 

VW being in a 

compact set. Suppose the activation function  V kz  satisfies the PE condition. Then, for 

a constant learning gain 
V  satisfying 0 1 2V  , and positive integers N  and N ,  the 

critic NN weight estimation error ,
,
{ }V kE W

 
 is UB in the mean for all 

0ik k N   or, 

alternatively, 0k k N   for N N . 

Proof: Refer to the Appendix. 

It only remains to approximate the control input using the actor NN and presented 

in the next subsection. 

3.2.3 Control Input Approximation: Actor NN Design. The optimal control 

input with event sampled NN approximation can be written as 

  
*

, ,
,
{ ( ) ( , )}T

k u u k e u k ET ku E W z z e
 

   , 1i ik k k    (31) 
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where 
,
{ } ul m

uE W
 


  is the unknown constant target NN weights, 

,
{ ( )} ul

u kE z
 

   is the 

activation function and ,u , , ,
,

( , ) { [ ( ) ( )] ( )}T

e k ET k u u k ET k u k u k ET kz e E W z e z z e
 

        is 

the event sampled reconstruction error where
,
{ ( )} m

u kE z
 

   is the traditional 

reconstruction error with  ul  as the number of neurons. The following assumption holds 

for the actor NN. 

Assumption 5: The target NN weight, the activation function and the traditional 

reconstruction error are upper bounded in the mean such that ,,
{ }u u M

E W W
 

 , 

,,
{ ( )}u u M

E
 

  , and ,,
{ ( )}u u M

E
 

   where ,u MW , ,u M , and ,u M  are positive 

constants. The actor NN activation function ( ) ul

u kz  is Lipschitz continuous in a 

compact set for all k zz   and satisfies 
, ,
{ ( )} { ( )}u k u kE z E z

   
 

,
, , ,
( ) ( ) { }

u u
k k ET kE z E z E eC C      
   where 0

u
C   is a computable constant. 

The ideal control input *

,V ku  which minimizes the value function (15) can also be 

computed by computing the gradient of  (15) and given by 

 * 1

, 1 1 , , 1 , 1 1
,

1
{ ( )[( ( ) ) ( , ) )]}

2

T T

V k z k V k k V k e V k ET k ku E R G z z z W z e z
 

 

           (32) 

The control input *

ku , in  (31)   is equal to the control input *

,V ku  in (32), and, hence, it can 

be written as 

 
  1

1 1 , , 1 , 1 1
,

, ,

{ ( ) 1 2 ( )[ ( ) ) ( , ) ]

( , )} 0

T T T

u u k z k V k k V k e V k ET k k

e u k ET k

E W z R G z z z W z e z

z e

 
  





         

 
 (33) 
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The estimated control input using the actor NN can be represented as 

 
,

,

ˆ{ ( )}T

k u k u ku E W z
 

 , 
1i ik k k   , (34) 

where 
,

,

ˆ( ) ul m

u kE W
 


  is the estimated actor NN weight matrix.  The activation function 

( )u kz  is selected such that it forms basis for approximation of the control input and 

satisfies (0) 0u  . 

 The estimated control input which minimizes the estimated value function (24) 

can also be computed by taking the gradient of the estimated value function (24)  and 

given by 

 
 

 

1

, 1 1
,

1

1 1 ,
,

ˆ ˆ(1 2) ( )( )

ˆ ˆ{ 1 2 ( )( ( ) ) }

T

V k z k k k

T

z k V k k V k

u E R G z V z

E R G z z z W

 

 




 



 

   

   
 , (35) 

where ˆ ( )kG z is computed from the identifier. The estimated control inputs (34) and (35) 

does not satisfy the relation (33). Define the difference between ku
 
in (34) and ,V ku  in 

(35) as control input estimation error. It is given by 

   1

, , 1 1 , 1
, ,

ˆˆ ˆ{ } { ( ) 1 2 ( )( ( ) )}, .T T

u k u k u k z k V k k V k i iE e E W z R G z z z W k k k
   

 

         (36) 

 In order to drive the control input estimation error close to zero, similar to the 

other two NNs, an event sampled update law for the actor NN is selected as 

 
1 , 1

, , 1
, ,

1 1

( )ˆ ˆ{ }
( ) ( ) 1

T

k u u k u k

u k u k T

u k u k

z e
E W E W

z z   

  

 

 



 

 
  

 
, (37) 

 where 0u  is the actor NN learning gain. 

 Defining the actor NN weight estimation error as
, ,

, ,

ˆ{ } { }u k u u kE W E W W
   

  , the 

actor NN weight estimation error dynamics by using (37) can be written as 
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,

, 1 ,
, ,

( )
{ }

( ) ( ) 1

T

k u u k u k

u k u k T

u k u k

z e
E W E W

z z   

  

 


 
  

 
, (38) 

Further, subtracting (33) from (36), the control input estimation error can be written as 

 



 

1

, 1 1,, ,

1 1

1 1 , 1 1

, ,1 1

ˆ{ } (1 2) ( )( ( ) )( ) ( ) ( )

ˆ ˆ(1 2) ( )( ( ) ) (1 2) ( )( ( ) )

ˆˆ ( )( ( ) )

TT T
u k z k V k k Vu u k u k u k u k

T T
z k V k k V k z k V k k

T
V k e kk V k k

E e E R G z z z WW z W z z

R G z z z W R G z z z

WG z z z

   
  

 





 

 

   

 

     

     

  

 (39) 

where 1

, 1( ) (1 2) ( )( ( ) )T T

e k u k z k u k kz R G z z z  

     satisfying , ,e k e M
   and ( )kG z 

ˆ( ) ( )k kG z G z . We will use (39) for closed-loop stability presented next. 

3.3    DESIGN OF EVENT SAMPLING CONDITION AND STABILITY 

In this section, the UB of the event sampled closed-loop system is shown by using 

Lyapunov stability technique and designing an adaptive event sampling condition. 

 The closed-loop system dynamics by using (4) and control input  (34) becomes 

 
 *

1 , ,
, ,

1
,

ˆ( ) ( ) ( )( { ( ) { ( ) ( ) }

{ ( )}, .

T T

k k k k k u k u k u k u k u k

u k i i

z F z G z u G z E W z E W z z

E z k k k

   

 

  







    

  
 (40) 

Before claiming the main results for the closed-loop event sampled system, the following 

lemma is necessary. 

Lemma 2[4]: Consider the controllable augmented NCS system (4) and the optimal 

control input *

ku  in (7).  Then the closed-loop system satisfies 

 
2 2*

,,
{ }{ ( ) ( ) } kk k k

E zE F z G z u
  

  , (41) 

where 0 1   is a constant. 
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Now, we will introduce the adaptive event sampling condition to decide the 

transmission instants. The system state vector and updated control input are transmitted 

when the following adaptive event sampling condition is violated. It is given by 

  
2 2

,, , ,
{ } { }ET k kET k

E e E zD
   

  , (42) 

where 
2 2

2 2
, ,, , ,

ˆ ˆ{ } { }12
u I

u k I kET k M
E W E WG C C    

    and 2 (1 2 )     with 0 1   , 

0 1/ 2,   and 
MG  is the upper bound of the matrix function ( )kG z . The operator 

 D is the dead zone operator and defined as 

   ,
, if { }

0, otherwise

k zE z B
D  

 
 


 (43) 

where zB is the UB for the system state. To ensure the estimated NN weights ,
,

ˆ{ }u kE W
 

 

and  I,
,

ˆ{ }kE W
 

 in (42) are non-zero while evaluating the trigger condition, the previous 

nonzero values are used for evaluating the event sampling condition when the current 

estimated values become zero. 

Remark 3: As proposed, the event sampling condition (42) is a function of the actor and 

identifier NN weight estimates. With the update of the NN weights the condition also 

gets updated. This adaptive condition generates the required number of event sampled 

instants based on the NN weight estimation error during the initial learning phase. Once 

the NN weights converge to the UB, the coefficient ,ET k  becomes a constant and the 

event sampling condition becomes same as the traditional event-triggering condition 

[16]-[18]. In addition, the dead zone operator in the event sampling condition prevents 
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the unnecessary event sampled instants generated due to the NN reconstruction error once 

the system state is inside the UB. 

Next, the UB in the mean of the closed-loop event-triggered system is claimed in 

the following theorem. 

Theorem 2: Consider the NCS dynamics (4) along with the NN identifier, critic NN and 

actor NN defined as in (19), (24) and (34) with event sampled weight update laws (21), 

(27) and (37) respectively. Let the Assumptions 1 through 5 hold and the NN initial 

weights ˆ,0
ˆ

I
I W

W  , 
,0

ˆ
VV WW   and 

,0
ˆ

uu WW  . Suppose the last transmitted state, 
kz , 

the NN weights ,
ˆ

I kW , 
,

ˆ
V kW , 

,
ˆ

u kW , and control input, 
ku , are updated at the  violation of 

the event sampling condition (42). Then, for learning gains satisfying 0 1 2I  , 

0 1 2V   and 0 1 4u  , and  positive integers N and N  the event sampled closed-

loop system state 
,
{ }kE z

 
, identifier estimation error 

,
{ }kE z

 
, identifier, critic NN, and the 

actor NN weight estimation errors ,
,
{ }V kE W

 
, ,

,
{ }I kE W

 
, and ,

,
{ }u kE W

 
, respectively, are UB  

in the mean for all sampling instants 
0ik k N  or alternatively, 0k k N    for N N . 

Further, the estimated value function and control policy converge close to their respective 

optimal values, i.e., 
*ˆ

k k VV V B   and 
*

k k uu u B  where VB  and 
uB are small positive 

constants. 

Proof: Refer to Appendix. 

Remark 4: The bound zB
 
is a function of design parameters and NN reconstruction error. 

Hence, the bound for the system state can be made small by increasing the number of 

neurons in the NNs and selecting the learning gains accordingly.  
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4. SIMULATION RESULTS 

In this section, the analytical results are illustrated with a numerical example of 

second order system. The continuous-time system dynamics chosen for simulation are 

given by [17] 

 
1 2

3

2 1 1

,  x x

x x x u



   
. (44) 

The simulation parameters were selected as follows. Sampling time for the sensor 

sampling is chosen ad 0.01sT  sec, time varying delay bound chosen as 2d  , the mean 

value of the delay is chosen as  
,

12E ms
 

  . The packet losses follows a Bernoulli 

distribution with 0.4p  . The penalty matrices were selected as 4 4zP I 
 
and 1zR  . The 

critic NN activation function was selected as     2 2

1, 1, 2, 2,tanh ; ; ; ;V k k k kz z z z 

2 4 3 4 39

2, 3, 4, 1, 1, 2, 1, 2, 3, 4, 4,; ; ; ; ; ; ;k k k k k k k k k k kz z z z z z z z z z z  , the actor NN and identifier NN 

activation functions respectively are ( ) tanh( )I   and ( ) tanh( )u  . Number of 

neurons for the critic is 39, actor is 15 and identifier is 50. The learning gains were

0.04V  , 0.05u  , and 0.01I  . The parameters for the event-trigger condition 

were selected as 0.45  , 0.99  , 1MG   and the Lipschitz constant for identifier 

and  the actor NN activation function is computed to be 5.2 and 16.9 respectively. All the 

three NN weights were initialized at random from a uniform distribution in the interval 

 0 1 . Further, the initial state vector is taken as  0 2 1
T

x   and for the identifier as

 0
ˆ 1 3 0 0

T
z   . The Monte Carlo simulation is run using the same initial condition 
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with randomly generated delays and packet losses. The simulation results are given in 

Figures 2 through 5. 

Figure 2 (a) and (b) shows the regulation of the systems state vector and 

convergence of the control policy close to zero.  The stochastic optimal controller is able 

to regulate the system in the presence of the networked induced time-varying delays and 

packet losses.  

 

 

Figure 2. Time history of (a) the system state; (b) control input; (c) cumulative number of 

transmission or event sampled instants; (d) inter-sample times. 

 

With respect to the number of transmissions, it is clear from Figure 2 (c) that a 

total of 285 transmissions occurred out of 3000 sampling instants. This shows the 

reduction in bandwidth and also computation since the controller is executed at the event 

sampled instants only. It is important to note that the number of event sampled instants 

varies with initial values of the NNs. Further, the aperiodic inter-sample times are 

depicted in Fig. 2 (d). Once the NN weights converge close to the target values the inter-

sample times or the transmission intervals are elongated.  
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The event sampling condition (42) is plotted in Fig. 3(a) shows the evolution of 

the event sampling error (zoomed figure) between event sampled instants.  It is observed 

that there is a frequent transmission during the initial learning phase due to large initial 

approximation errors. The convergence of the HJB error close to zero is shown in Fig. 

3(b). This indicates the near optimality of the control input.  

 

 

Figure 3. Evolution of (a) the event sampling threshold and event sampling error and (b) 

HJB error.  

 

 

 

Considering a data packet of 8 bit data, the comparison of the data rate for a 

periodic system and event sampled system is shown in Fig. 4. An average data rate of 270 

bits/ sec for event sampled system is observed where as in periodic 800 bits/ sec. It shows 

a saving of approximately 66% of the bandwidth usage. The reduction in computation in 

terms of the addition and multiplication for the proposed design when compared to 

traditional periodic implementation is shown in Table 1. A reduction of 27% was 

observed. 

Further, the convergence of the three NN weights is shown in Fig. 5. The norm 

of the NN weight estimates become constant implying the convergence of the estimates. 
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This further implies the boundedness of the NN weight estimation errors and their 

convergence to the ultimate bound. 

 

 

Figure 4. Comparison of data rate (bits/sec) between periodic and event sampled system.  

 

Table 1. Comparison of computational load between traditional periodic sampled 

and event sampled system. 

System 

Traditional 

periodic 

sampled 

Event-based 

non-periodic 

sampled 

Samping  instants 3000 285 

Number of 

additions and  

Multiplications at 

every sampling 

instant 

Critic and update law 8 8 

Actor NN and update law 8 8 

Identifier and update 12 12 

Trig. 

Mechnaism 

Critic and update 

law 
0 8 

Actor NN and 

update law 
0 8 

Identifier and 

update 
0 12 

Event sampling 

condition 

(periodic) 

0 15 

Total number of Computation 84000 60960 
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Figure 5. Convergence of the NN weight estimates. 
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5. CONCLUSIONS 

In this paper, a stochastic event sampled ADP based near optimal regulator design 

is presented in the presence of network induced delays and packet losses. The additional 

error introduced in the system due to event sampled transmission was taken care of by 

designing the adaptive event sampling condition. The adaptive event sampling condition 

is found to provide reasonable accuracy in approximation while ensuring stability. A 

reduction is transmission is observed along with near optimal performance.  Initial 

transmissions found to be higher due to large NNs weight estimation error. Further, it was 

observed that different initial condition and learning gain resulted in different number of 

event sampled instants and transmission to achieve the approximation accuracy. Finally, 

the simulation results validated the analytical design. Furthermore, the cost function 

considered in this case only penalizes the system state and control input. It will be 

interesting to optimize the transmission instants and included in our future research. 
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APPENDIX 

Proof of Lemma 1: The proof is carried out considering two cases of the event sampling 

scenario, i.e., event sampled instants (identifier NN weights are updated) and inter-

sample times (identifier NN weights are not updated). We will evaluate a common 

Lyapunov function for both the cases and finally combine them to show UB of the 

identifier NN weight estimation error. 

 Case I: At event sampling instants ( , 1 1,2,ik k    ) 

At the event sampling instants 
k kz z , 1k  ,  ik k , 1 1,2,  . Therefore, 

the NN identifier weight estimation error  (23) at 
ik k  becomes 

 
, 1

, 1 ,
, ,

( )
{ }

( ( ) ) ( ( ) ) 1

T

I I k k I k

I k I k T

I k k I k k

z u z
E W E W

z u z u   

 



 
  

   
,

ik k , (A.1) 

where the identification error dynamics (20) at event sampled instants is given by  

 1 , ,( )T

k I k I k k I kz W z u     , ik k  (A.2) 

Consider the Lyapunov function candidate given by 

  , ,, ,
{ }T

I k I kI k
E W WL tr
 

 . (A.3) 

The first difference of (A.3) along the dynamics (A.1) can be represented as 

   , 1 , 1 , ,, , ,

, , 1

,

2

, 1 , 1

2,

{ } { }

2 ( )

( ( ) ) ( ( ) ) 1

( ( ) ) ( ( ) )

(( ( ) ) ( ( ) ) 1)

T T

I k I k I k I kI k

T T

I I k I k k I k

T

I k k I k k

T T

I I k I k k I k k I k

T

I k k I k k

E W W E W WL tr tr

W z u z
tr E

z u z u

z z u z u z
tr E

z u z u

   

 

 





 



 

  

   
          

  
  

  
, , 1 1,2, .ik k

 
    

 

 

Substituting the identification error dynamics  (A.2) and applying Cauchy-Schwartz (C-

S) inequality, ( ) ( ) 2 2T T Ta b a b a a b b    , the first difference is bounded above as 
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2

2 2
,, , ,,

{ }(1 2 ) (1 2 ) .I kI k I m I I I I I M
E WL
 

           (A.4) 

for 
ik k  where

2

,

( ( ) )( ( ) )
0 min

( ( ) ) ( ( ) ) 1

T

I k k I k k
I m Tk

I k k I k k

z u z u

z u z u

   
    

    
 is satisfied due to PE 

condition as discussed in Remark 1, 0 1 2I   and , ,I k I M
   for identification. From 

(A.4), the first difference 
, 0I kL   is negative as long as  

 2 2

, , ,
,
{ } (1 2 ) (1 2 ) IW

I k I I M I m I ubE W B
 

       .  

By Lyapunov theorem [24] the NN identifier weight estimation error, 
,

,
{ }I kE W

 
,  is 

ultimately bounded (UB) in the mean  at the event sampled instnats. 

Case II:  During inter-sample times (
1i ik k k   ) 

In this case, the identifier weights are not tuned and held at the previous values. 

This implies 0k  , 
1i ik k k   . Therefore, the identifier NN weight estimation error 

dynamics can be rewritten as 

 , 1 ,
, ,
{ } { }I k I kE W E W

   
  ,

1i ik k k   . (A.5) 

 Consider the same Lyapunov function (A.3) in Case I. The first difference using (A.5) 

can be written as 

    , 1 , 1 , ,, , ,
{ } { } 0

T T

I k I k I k I kI k
E W W E W WL tr tr
   

     . (A.6) 

From (A.6) , the first difference, , 0I kL   This implies the NN 
,

,
{ }I kE W

 
 is held for 

1i ik k k   , 1 1,2,  .    

Now combining both Cases, we will show that 
 ,

,
{ }I kE W

 
 is UB in the mean.  

Since, the initial NN weights 
,0

ˆ
II WW   are bounded and the target NN weights IW  are 
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also bounded from Assumption 3, ,0IW  is bounded. Further, from Case I, 

, 1 ,
, ,
{ } { }

i iI k I kE W E W
   

   and from Case II,  
1, 1 , ,

, , ,
{ } { } { }

i iI k I k I kE W E W E W
         ,

1i ik k k   . 

From both the cases, we have 
1, ,

, ,
{ } { }

i iI k I kE W E W
   

 . This implies 
,

,
{ } I

i

W

I k ubE W B
 

  is for 

all 
0ik k N   where N  being a positive integer. Since 

ik  is a subsequence of k , 

there exist a positive integer satisfying N N such that 
,

,
{ } IW

I k ubE W B
 

  for all time 

0k k N  . Consequently,  ,
,
{ }I kE W

 
is UB in the mean with an ultimate bound IW

ubB .        ■ 

Proof of Lemma 2: The proof for UB in the mean is shown similar to the NN identifier 

by considering both event sampled instants and the inter-sample times with a common 

Lyapunov function. 

Case 1: At event sampled instants (
ik k , 1 1,2,  ) 

At the event sampled instants, 1k  ,  
k kz z , 

ik k , 1 1,2,  . Therefore, the 

critic NN weight estimation error dynamics (28) becomes 

   , , ,
, ,
{ } T T

V k V k V k V k k k
E W E W I
   

       , 
ik k . (A.7) 

where ,V k  is given in (30). 

Consider the Lyapunov function candidate given by 

 , , ,
,
{ }T

V k V k V kL E W W
 

 . (A.8) 

The first difference 
,V kL  along with the critic NN weight estimation error dynamics 

(A.8) can be written as 

 , , 1 , 1 , ,
, ,
{ } { }T T

V k V k V k V k V kL E W W E W W
   

    . (A.9) 
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Substituting the augmented HJB error (30), the first difference leads to  
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Observe that 
min0 1T T

k k k k I       satisfied due to PE condition. 

Applying C-S inequality with simple mathematical operations, the first difference is 

upper bounded by 

      2

, , , , , , ,
, , ,

(1 2 ) 2T T T TT
V k V V V k k k V k V VV k V k V k V kk k
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                

Using Frobenius norm and collecting the similar terms, the first difference is upper 

bounded as 

 
2

2
,, min ,,

{ }(1 2 ) (1 2 )V kV k V V V V V M
E WL
 

           . (A.10) 

From (A.10), the first difference , 0V kL   as long as 

  2

, ,
,
{ } (1 2 ) (1 2 ) VW

V k V V M V ubE W B
 

      .  

By Lyapunov theorem [24] the critic NN weight estimation error, 
,

,
{ }V kE W

 
,  is 

ultimately bounded (UB) at the event sampled instants. 

Case II: During inter-sample times (
1i ik k k   ) 

In this case, the critic NN weights are not updated since the indicator function 

0k  , 
1i ik k k   . Considering the same Lyapunov function (A.8) as in Case 1, the 

first difference  
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{ } { } 0T T

V k V k V k V k V kL E W W E W W
   

     . (A.11) 

From (A.11), the critic NN weight estimation error 
,

,
{ }V kE W

 
remains constant during the 

inter-sample times.  

Now we will combine both Cases to show the UB in the mean. From Case I, we 

have , 1 ,
, ,
{ } { }

i iV k V kE W E W
   

   and from Case II 
1, 1 , ,

, , ,
{ } { } { }

i iV k V k V kE W E W E W
         ,

1i ik k k   . From both the cases,  
1, ,

, ,
{ } { }

i iV k V kE W E W
   

 , 1,2,i   . Therefore, 

,
,
{ } V

i

W

V k ubE W B
 

  for all 
0ik k N   where N  is a positive integer. Since 

ik  is a 

subsequence of k , by extension 
,

,
{ } VW

V k ubE W B
 

  for all time 0k k N   where 

N N  is a positive integer. Consequently, ,
,
{ }V kE W

 
is UB in the mean with an ultimate 

bound VW

ubB .                                                                                                                          ■ 

Proof of Theorem 1: The proof of UB in the mean for the event sampled closed-loop 

system is carried out by evaluating a common Lyapunov function both at event sampled 

instants and inter-sample times.  

Case I: At event sampled instants (
ik k , 1,2,  ) 

At the event sampled instants we have 
k kz z , , 0ET ke   and 1

k
   , 

ik k ,

1 1,2,  . By using these facts, the control input error 
,

,
{ }u kE e

 
from  (39) becomes 

1 11 1
, ,,

, ,
1 1

( ) ( )1 1 ˆ( ) ( ) ( ){ } .
2 2

T T TV k V k
u u k z k V z k V k e ku k

k k

z z
W z R G z W R G z WE e E
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 
   

 

  
     

  
 (A.12) 

Then, the actor NN weight estimation error dynamics at the event sampling instants, by 

using (A.12), can be written as 



342 

 

 

, 1 ,
, , ,

1 1

,

1

1 1

,

( )( ( ))
{ } { }

( ) ( ) 1

1 ( ) ( )
( )

2 ( ) ( ) 1

1 ( ) ( )ˆ ( )
2 ( ) ( ) 1

T T

u u k u u k

u k u k T

u k u k

T

Tu u k V k

z k VT

u k u k k

Tu u k V k

z kT

u k u k k

z W z
E W E W E

z z

z z
E R G z W

z z z

z z
E R G z

z z z

     

 

 

  

 

  

 

  

 



 



 



 
   

 

   
   

    




 
,, ,

1

{ }.

T

e kV k
EW
 


   

  
   

 (A.13) 

Further, the closed-loop dynamics from (40) at the event sampling instants can be written 

as 

  *

1 ,( ) ( ) ( ) ( ) ( )T

k k k k k u k u k u kz F z G z u G z W z z      ,
ik k . (A.14) 

 With the above conclusions, now consider the Lyapunov function candidate 

given as 
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where ,
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 . The positive 

constants coefficients are defined as 
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We will consider each term in (A.15) individually and combine the individual 

first differences to compute the overall first difference. Consider the first term 

,
,
{ }T

z k k kL E z z
 

  of the Lyapunov function (A.15). The first difference along the closed-

loop system dynamics (A.14) can be expressed as 
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
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   

  

 

By using Frobenius norm and applying C-S inequality  
2

1 2 na a a   2 2

1 ,nna na    

the first difference is bounded by 
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Recalling the Lemma 2, the first difference becomes 
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Moving on for the second term z, ,
{ }kk

E zL
 

  in  (A.15), , the first difference 

along the identification error dynamics (A.2) can be computed as 
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Substituting the control input (34) and applying C-S inequality, the first difference leads 

to 
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 (A.17) 
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Next, considering the third term ,  , ,, ,
{ }T

I k I kI k
E W WL tr
 

 , the first difference 

remains same as in  (A.4) and given by 
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Now, considering fourth the term, , , ,
,
{ }T

V k V k V kL E W W
 

 , the first difference is same as in 

(A.10) of Lemma 1 and given by 

 
2

2

, , ,
,

(1 2 ) { } (1 2 )V k V V m V k V V V ML E W
 

           . (A.19) 

Considering the fifth term,  , ,, ,
{ }T

u k u ku k
E W WL tr
 

 , the first difference is given by 
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 (A.20) 

Substituting the control input error , 
,u ke , from (A.12), applying the  C-S and replacing 

with upper bounds i.e., 
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1
( ) ( ) 1

T

u k u k

T

u k u k

z z

z z

 

 



, the first difference is bounded by 

  

2, ,

,
, ,

2 1 1

1 1 1
,

( ) ( ) ( ( ))( ( ))
4

( ) ( ) 1( ) ( ) 1

(3 4 ) ( ) ( ) ( ) (

T T T T T

u k u k u k u k u u k u u k
u k u u TT

u k u ku k u k

T T

u u z k V k k V z k V k

W z z W W z W z
L tr E tr E

z zz z

tr E R G z z z W R G z z

   

 

   
 

  

    

  

       
                   

       
     

   

1

2 11

1 1 ,1 1 ,,

2
, , , ,

, ,

)

ˆˆ3(3 4 ) ( ) ( )( ) ( )

{ } { }3 4

T

k V

T
TT

u u z k V k k V kz k V k k V k

T T

e k e k e k e ku u

z W

tr E R G z z z WR G z z z W

E Etr tr

 

   

  

    





  



    

 

 

By definition , ,
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I k I I kW W W   and using the identifier dynamics for 
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Taking the Frobenius norm and a using the above inequalities, the first difference 

satisfies the following inequality 
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where  2 2 2 2 2 1 '2 2 2
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Substituting the first difference from (A.19), and with simple mathematical operations, 

the first difference is bounded by 
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 (A.22) 

  Considering the last term,  
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 , the first difference using the 
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Finally, combining all the individual first differences (A.16), (A.17), (A.18), 

(A.19), (A.21), (A.22), and (A.23), and recalling the definition of 
I ,

V ,
u ,

2V , and 

2I ,the overall first difference of the Lyapunov function is given by 
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 (A.24) 
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Define the following new variables for simplicity.  

 2 2 1 '2 2 2

1 , , max , , ,(1 2) 4 (3 4 ) ( ) ,I M u M u u u z V M V M I MR W            

 2 '2 2 1 2

2 , max ,(1 2) (3 4 ) ( )u u u V M z I MR         ,  

 2 '2 2 1 2 2

1 , max , ,(3 4 ) ( )u u u V M z I M I MR W         , and 



347 

 

 2 '2 2 1 2

2 , max ,(1 2) (3 4 ) ( )u u u V M z I MR         .  

From (A.24), the overall first difference , 0cl kL   as long as  
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the event sampled instants.  

Case II: During inter sample times (
1i ik k k   , 1,2, ) 

The closed loop system dynamics remains same as in (40) for 
1i ik k k   . Now 

consider a Lyapunov function candidate same as in Case I. The first difference of the first 

term along the closed-loop event-triggered system dynamics (40) for 
1i ik k k    can be 

expressed as 
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Recall the Lipschitz continuity of the actor NN activation function from 

Assumption 5. Using Frobenius norm and C-S inequality, the first difference satisfies 
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 Considering the second term, the first difference along the identification error dynamics 

(20) for 
1i ik k k     
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 (A.26) 

 Since the identifier, critic and actor NN weights are not updated and held at their 

previous values, the first difference of the rest terms are zero, i.e., 

 
2 2

, , , , ,
0, 0, 0, 0, 0

V I
I k V k u k W k W k
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Finally combining all individual first differences (A.25), (A.26), and (A.27), the total first 

difference of the Lyapunov function becomes 
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Recalling the event-trigger condition(42) , ˆ
I I IW W W   and applying C-S inequality, the 

first difference satisfies 

 
2

2

, ,, ,
{ } { }(1 2 )(1 ) c

k kcl k W k
E z E zL B
   

        (A.28) 

where 
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From (A.28), it is evident that the first difference of the Lyapunov function is less 

than zero as long as  
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This implies
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1i ik k k    are bounded. Note that the initial NN 

weight estimation errors are bounded due to finite initial values and bounded target 

weights. Again, from(A.27), the NN weight estimation errors 
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during the inter-sample times. 

Further, from Case II, 
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Next, we will combine both the cases to show the convergence of closed-loop 

parameters 
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1,2, . This further implies 
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Consequently, the closed-loop parameters 
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 Now to show the convergence of the estimated value function and control input to 

their respective optimal values consider the differences 
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where 
VB  and 

uB  are small positive constants.                                                       ■
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