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Liquefaction Fragilities for Buried Lifelines 

Jose A. Pires and A. H-S Ang 
Department of Civil Engineering University of California at Irvine, 
Irvine CA 

I. Katayama 
Tokyo Electric Power Services Co. Advanced Engineering Opera­
tion Center Chlyoda-ku, Tokyo, Japan 

SYNOPSIS -- For buried structures, such as conduits and underground pipes, liquefaction induced 
forces will depend on the volume of soil surrounding the structure that will liquefy. Here, a 
methodology to calculate the probability of the onset of liquefaction at a given depth in a soil 
deposit is extended to assess the probability that a specified volume of soil will liquefy when 
liquefaction occurs at a given depth in the deposit. To account for the variability of soil 
properties with depth, the soil deposit is divided into horizontal layers and the volume of 
liquefied soil in each layer is calculated as the product of the layer thickness by the lateral 
extent of liquefaction. Within each layer, the horizontal variability of the soil properties is 
described by a homogeneous and axisymmetric random field. It is assumed that the ground motions 
in the horizontal direction are perfectly correlated. The results are presented in terms of the 
probability of liquefaction spreading over a given area (a circle of radius R) as a function of the 
intensity of the ground motion. 

INTRODUCTION 

The first part of the paper describes a methodology to compute 
the probability of the onset of liquefaction at a given depth in a 
soil deposit[1]. The probability of liquefaction for the critical depth 
plotted as a function of the intensity of the ground motions is denoted 
the liquefaction fragility for the soil deposit. The principal features 
of the method to compute the probability of the onset of liquefaction 
in the soil deposit are: (i) the ground motion input is specified at 
the bottom of the soil deposit; (ii) one-dimensional site amplification 
analysis is used to account for the effect of local site conditions on the 
ground accelerations and stresses in the soil deposit and, (iii) makes 
use of in-situ soil properties and past data on the occurrence or non­
occurrence of liquefaction to represent the soil resistance against 
liquefaction. Additional features of the model are: (i) the ground 
accelerations are represented by stochastic processes and methods of 
stochastic structural dynamics are used to compute the statistics of 
the ground accelerations and shear stresses throughout the deposit; 
(ii) considers the nonlinear and hysteretic soil behavior and, (iii) 
includes a transmitting boundary in the one-dimensional lumped­
mass model for site amplification studies. 

The second part of the paper describes the development of a 
method to calculate the probability that a specified volume of soil 
will liquefy when liquefaction occurs at a given depth in the deposit. 
With the proposed extension, the liquefaction fragility curves will 
represent the probability of liquefaction over a circle with a speci­
fied radius as a function of the intensity of the earthquake ground 
shaking. Since the adverse consequences of liquefaction for a buried 
structure (e.g., a conduit) depend on the lateral extent of liquefac­
tion, a realistic definition of liquefaction ought to include this lateral 
spread. 

LIQUEFACTION IN THE LAYER 

Ground Response Statistics 

The effect of soft soil layers in the severity of shaking in the ligue-

fiable soil layers is evaluated with a one-dimensional ground response 
analysis which idealizes the site amplification as the result of verti­
cally propagating shear waves. This approach has been shown to 
offer a reasonably accurate means for estimating site amplification 
effects for horizontal ground accelerations[2] which are the acceler­
ations of interest in this study. Accordingly, a lumped mass model 
for the soil deposit (see Fig. 1) is constructed as follows[3]: the soil 
deposit is divided into a number of elements (layers); the lumped 
masses, m;, i = 1, 2, ... , n + 1, are obtained by lumping one-half the 
mass of each layer at the layer boundaries and, at the interface be­
tween the lowest element and the base only one-half of the mass of 
the lowest layer is lumped. The motion of the system is described by 
the total displacements x;, i = 1, 2, ... , n + 1, of the layer boundaries. 
Nonlinear springs with stress-strain properties representing the non­
linear, strain-dependent and hysteretic behavior of the soil connect 
the massess as shown in Fig. 1. The total shear strain at each layer 
is defined by -y; = (x;+1 - x;)/ t:.h;. 

A number of soil models capable of representing the nonlinear 
and hysteretic behavior of soils have been proposed [4,5,6]. How­
ever, no analytical solutions exists for determining the statistics and 
probabilities of the soil response to random seismic loadings when 
the soil behavior is represented by any of the nonlinear-hysteretic 
soil models mentioned above. A hysteretic model and an analyt­
ical solution procedure[7] are proposed here to reproduce the soil 
hysteresis and also calculate the necessary statistics of the seismic 
response of horizontally layered soil deposits. The model describes . 
the hysteretic component of the shear stress by a first-order differen­
tial equation which allows for a simple linearization of the equations 
of motion. 

The hysteretic component, z, of the shear strain is described by 

(1) 

where 1 is the total shear strain, A, (3, fJ and r are parameters that 
describe the shape of the hysteresis loops. The shear stress is given 
by 

T = aGml + (1- a)Gmz (2) 
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Figure 1 - Lumped Mass Model For Site Amplification Analysis. 

where Gm is the (small strains) shear modulus and o.Gm is the resid­
ual stiffness. The maximum hysteretic shear stress is given by 

(3) 

In this study, the following values are used for the parameters 
of the smooth hysteretic model: A = 1.0, 6 = (3, r = 0.5 and 
/r = 4.0 X w-4 (where /r is a reference strain defined as Tm/Gm)· 

Dynamic equilibrium of each lumped-mass requires that, for 
i= 1,2, ... ,n, 

m;x; +(I- 6;t)[o.;_lf{i-!(X;- Xi-!)+ (I- O.i-t)Ki-1((;- (;_t)] 

-[o.;I<;(xi+l- x;) + (1- o.;)K;((i+1 - (;)] = 0 (4) 

where 6;1 = 0 if i # 1 and 6;1 = 1 if i = 1, /{; = Gm;f!::,.h;, i 
1, 2, ... , nand ((i+1 - (;)/ l::,.h; = z; for i = 1, 2, ... , n. 

For the n + 1st mass the equation of equilibrium is 

ffin+lXn+l + O.nKn(Xn+l - Xn) + 
+(1- O.n)I<n((n+l- (n) = pnVn(2U- Xn+l) (5) 

The term PR Vn(2U - Xn+l) represents the shear stress that is 
applied to the bottom of the soil deposit from the underlying stiffer 
soil or rock base, where PR and Vn are the unit mass and velocity 
of the shear wave propagation in the underlying base. The term 
U denotes the input motion in terms of particle velocity from the 
incident velocity wave(3). 

The strong ground motion phase of the earthquake load is repre­
sented by a stationary Gaussian random process. In this regard, it 
can be characterized by a power spectral density function, such as 
the Clough-Penzien spectrum 

S(w) 
S 1 + 4(h(wfwB)2 

0 [1- (wfwB)2J2 + 4(h(wfwB)2 

(wfwc)4 
(6) 

To solve for the response statistics the equations of motion are 
writen as a system of first order differential equations 

{y} + [G]{y} = {!} (7) 

where the state vector {y} contains the relative (between each two 
consecutive lumped masses) displacements and velocities , plus the 
hysteretic component of the shear-strain, z;, for each spring. In 
addition, the state vector also contains the relative displacements 
and velocities of the two second-order filters that define the Clough­
Penzien power spectrum[8]. The solution for the response requires 
the determination of the covariance matrix [S], of the response vari­
ables satisfying the matrix differential equation 

[S) + [G][S] + [S](Gf = [B] 

where [B] is the matrix of the ground motion parameters[7]. 

Probability of Liquefaction 

(8) 

The resistance of the sand against liquefaction is defined by the 
number of cycles, Nt( f), of constant amplitude shear stress ratio, 

f, necessary to induce liquefaction; this is known as the "cyclic re­
sistance curve". The shear stress ratio is defined as r / u:.O, where 
r is the shear stress in the soil and u:.O is the effective overburden 
stress. Based on the occurrence of liquefaction during past earth­
quakes, values of the cyclic shear stress ratio known to have caused 
liquefaction under a given intensity of shaking have been correlated 
with a readily available measure of the in-situ condition of the sand, 
the Standard Penetration Test blowcount normalized to an effective 
overburden stress of 1.0 ton per sq. ft. and an energy ratio of 60 
percent, i.e., (Nt)60 - SPT[9]. Based on those correlations "cyclic 
resistance curves" for the sand for various values of the ( N1 )so- SPT 
have been obtained[!]. One such "cyclic resistance curve" is shown 
in Fig_ 2. 

Any of the "cyclic resistance curves" can be interpreted by 

(9) 

where W,. is an arbitrary constant, Ec(f) is the energy dissipated 
through hysteresis in one cycle of shear stress amplitude f, and h(f) 
is a weighing function. The oncept of the number of equivalent 
uniform loading cycles[9] implies that under N loading cycles with 
different shear stress, r;, liquefaction will occur when 

N 

W = 'LEc(r;)h(f;) (10) 
i=l 

reaches W,.. For an earthquake with a given intensity (peak ground 
acceleration or rms ground acceleration), A = a, and a strong motion 
duration TE = t, liquefaction occurs when 

Z = W,.- W(a,t) < 0.0 (11) 

where W,. denotes the hysteretic energy dissipation capacity of the 
soil layer (liquefaction will be triggered when this energy dissipation 
capacity is exhausted). The quantity W(a,t) is given by 

W(a,t) = fo' X(r)e:r(r)dr (12) 
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where ei-( r) is the rate of hysteretic energy dissipated at time r 

and X(r) is an equivalent weighing function to include the effect of 

random stress amplitude[1] which is given by 

X(r) = [lm h(f)Ec(f)JT(r,r)dr]f[[m Ec(r)JT(r,r)dr] (13) 

where fm is the normalized maximum oi the hysteretic component of 

the shear stress for the sand and h( f, r) is the probability density 

function of the peaks of f at time r. 
The mean and variance of W(a, t) are obtained from the random 

vibration analysis, in particular from the mean and variance of the 

hysteretic energy dissipated[10]. The statistics of Wu are obtained 

from the uncertainty analysis of the cyclic resistance against lique­

faction. On this basis, the "cyclic resistance curves" shown in Fig. 2 

are regarded as mean "cyclic resistance curves", and_ the coeffi~ient 

of variation of the number of loading cycles that w1ll cause lique­

faction at a given stress ratio is independent of the stress ratio and 

equal to 0.57(1]. 

0.6 
'~ 

~ 

Blowcounl 
(N1)60-SPT 
--G-20 
-o-15 
--6-10 
_...,_ 5 

Table 1. Lumped-Mass Model for the Soil Deposit Analyzed 

Element Element Depth cr. mass Shear Modulus 

Number Height (Midpoint) (tonf/m2 ) (ton) Gm 
(m) (m) (tonf/m2 ) 

1 1.5 0.75 1.065 2.13 3,710 

2 1.5 2.25 3.195 2.13 3,710 

3 2.0 4.00 4.680 2.84 3,710 

4 2.0 6.00 5.520 2.84 3,710 

5 2.5 8.25 6.640 3.90 4,760 

6 2.5 10.75 8.040 3.90 4,760 

7 2.5 13.25 9.765 4.55 9,210 

8 2.5 15.75 11.815 4.55 9,210 

9 3.0 18.50 13.680 5.04 11,858 

10 3.0 21.50 15.900 5.04 11,858 

11 (boundary element with Cn = 90tonf- secfm and a mass 

of 2.52 ton) 

liquefaction has ~ccurred from those data for which liquefaction has 

not occurred for 7.5-magnitude earthquakes. The further the data 

point plots below the line the smaller should be the probability of 

liquefaction while the further the data point plots above the line the 

greater should be the probability of liquefaction. The probabilities 

of the onset of liquefaction computed with the methodology appear 

to be consistent with the observed data. 

Name of Width of N-Value Shear Wave Unit 

G.L. Layer Layer SPT VelOCitY We~ lilt Fe(%) 

(m) (m) 1m/sec) "~*~ 

g· 0.4 

< 
3.0 

GHT 
Kanto 

"' Vl 
Vl 

~ 0.2 ...... 
Vl 

o~~--~2---~~5~~~~o----2~o---~~5o 

NUMBER OF CYCLES, N1 

Figure 2 - Cyclic Resistance Curves. 

Example Application 

Probabilities of the onset of liquefaction under various earth­

quake load intensities were calculated for the soil deposit shown in 

Fig. 3. The soil deposit was idealized with the lumped-mass model 

as indicated in Table 1 below and subjected to the respective lev­

els of earthquake intensities (peak ground accelerations). The pa­

rameters of the Clough-Penzien spectrum were chosen to be WB = 
16.9 radf sec, (B = 0.94, (a = 0. 7 and wa = 1.25 radf sec. Figure 4 

shows the calculated probabilities of liquefaction as a function of the 

earthquake intensity and a strong motion duration of 8.0 seconds. It 

has been previously shown that the probabilities of liquefaction are 

far less sensitive to the strong motion duration than to the ground 

motion intensity [1], therefore, the liquefaction fragilities are shown 

for a given strong motion duration. 

To assess the reliability of the method probabilities of liquefac­

tion were computed for some past case histories of occurrence or 

non-occurrence of liquefaction. The case histories investigated are· 

summarized elsewhere[1]. The results of the investigation are shown 

in Fig. 5. The line shown in Fig. 5 separates the data for which 
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Figure 3 - Soil Deposit Analyzed. 
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Figure 5 - Probabilities of Liquefaction Computed 
for Some Data Cases. 

LIQUEFACTION SPREAD 

Methodology 

Consider the soil deposit shown in Fig. 6. The probability that 
liquefaction will occur at any point in the layer (say point 0), inde­
pendently of what happens anywhere in the layer, is given by 

P[Eo] = l>O Fw.(q)fw(a,t)(q)dq (14.) 

where Fw. denotes is the PDF of W,. and fw(a,t) is the probability 
density function of W(a, t). To simplify the notation introduceS= 
Wu and R = W(a, t). 

To compute the probability that liquefaction will extend over a 
circle of radius R (axisymmetric random field), the circle is divided 
into segments of length D, as shown in Fig. 6 for 5 segments num­
bered 0, 1, ... , 4. The soil resistances against liquefaction at the center 
of each segment are random variables denoted by S;, i = 0, 1, ... , 4. 
The random variables S; are identically distributed hut are not sta­
tistically independent. The correlation coefficients between any pair 
of random variables S;, Sj is calculated from the autocorrelation 
function Rss(x) of the random field S(x) as described below. Sup­
pose that S; and Sj) are separated by a distance kD where k is a 

positive integer, then the desired correlation coefficient is 

(kD) = Rs,s(kD) 
ps,s us;us, 

(15) 

in which Rs 5 ( x) is the autocorrelation function of the random field 
S(x) and u~; is the standard deviation of 5; which is equal to the 
standard deviation of 5j, us,. 
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D 

Figure 6- Idealization of Liquefaction Spread in the Layer. 

The probability that liquefaction will extend over the entire circle 
of radius R = 4.5D is the probability that all segments in the circle 
will liquefy. Therefore, 

PL(R = 4.5D) = Probability[( 50 < Q) n (51 < Q) n (52< Q) 
n(53 < Q) n (54 < Q)J (16) 

which can be writen as 

PL(R = 4.5D) = fo Fs0 s1 s2 s3 s,(q,q,q,q,q)/Q(q)dq (17) 

where 

Fsos,s,s,s, ( q, q, q, q, q) kq ... kq fsos,s,s,s,(so,St,S2,s3,s 4) 

dSodStdS2dS3d54 (18) 

The random variables S; may be assumed to follow a lognormal 
distribution with median Sm and standard deviation u 5 ,. The matrix 
of the correlation coefficients for the random variables S; is given by 

1.0 pss(D) pss(2D) pss(3D) Pss(4D) 
1.0 Pss(D) Pss(2D) pss(3D) 

[p] = 1.0 Pss(D) Pss(2D) (19) 
Symmetric 1.0 Pss(D) 

1.0 
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Evaluation of the multiple integral in Eq. 18 requires numerical in­
tegration. All numerical integrations were performed using an adap­
tive algorithm for numerical integration over an N-dimensional rect­
angular region[ll]. With this algorithm, the numerical integrations 
can be performed without major difficulties except when the corre­
lation matrix becomes nearly singular. 

Example Application 

The method described in the previous section is used to compute 
the newly defined liquefaction fragilities for the soil deposit analyzed. 
Each liquefaction fragility gives the probability of liquefaction over 
a circle with a specified radius as a function of the peak ground 
acceleration. 

The correlation function of the soil resistance against liquefaction 
is assumed to be of the form 

ps,s(x) = exp[-(x/WJ (20) 

where b is a positive parameter. This form of the autocorrelation 
function has been suggested for some soil properties (e.g., relative 
density, grain-size distribution and shear strength[12,13]). Other 
possible forms for the correlation function have also been used [13,14]; 
e.g., 

Ps,s(x) = exp(-lxlfa) (21) 

with a > 0.0. This second form has the disadvantage that its second 
derivative at x=O.O does not exist which implies that the random 
field representing the soil property is not differentiable. This prob- · 
!em is not present with the form of Eq. 20 which is adopted in this 
study. Here, b is treated as a parameter and the results are pre­
sented as a function of the dimensionless parameter Rfb. First, the 
radius of the circle is fixed (R = l.69b) and the sensitivity of the 
results to the number of segments in which the circle is subdivided 
is investigated. Next, the liquefaction fragilities are computed for 
different radii of the circle. Finally, results showing the probability 
of liquefaction over a circle with a given radius conditional on the oc­
currence of liquefaction at the center of the circle are also presented 
and discussed. 

Two, 3, 4 and 5 segments are considered, which correspond to D 
equal to 1.127b, 0.676b, 0.483b, and 0.376b, respectively. The com­
puted probabilities of liquefaction are shown in Fig. 7 as a function 
of the peak ground acceleration. The results shown in Fig. 4 are 
reproduced in Fig. 7 for reference purposes. The probabilities of liq­
uefaction (over a circle of radius R = 1.69b) decrease as the number 
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Figure 7 - Probability of Liquefaction Extending Ovet 
a Given Area. 

of segments increase and appear to converge for D = 0.3766. For 
a smaller D, D = 0.3076, the correlation matrix (Eq. 19) becomes 
almost singular and the integral in Eq. 18 can not be evaluated 
as accurately as before. Nevertheless, the approximate values were 
found to be almost identical to those for D = 0.3766. As expected, 
the probability of liquefaction for a circle of radius R is significantly 
lower than the probability of liquefaction for a.single point in the 
layer. 

The probabilities of liquefaction for a peak ground acceleration 
of 0.24g for three different radii, namely R = 0.946, R = 1.69b and 
R = 2.44b, as given by Eq. 17, are shown in Table 2 in the column 
labeled Equation 17. 

Table 2. Probabilities of Liquefaction for Various Radii 

Radius 
17.8m 
32.0m 
50.3m 

Equation 17 
0.1583 

0.07868 
0.03867 

Approximate Expression 
0.14 78 

0.07868 
0.04094 

To compute the probability of liquefaction over a circle with ra­
dius Rn = (n + 0.5)D, where n is a positive integer, an (n+1)-fold 
integral needs to be evaluated numerically (see Eq. 18). As the 
radius of the circle increases to Rm+n = (m + n + 0.5)D, a numer­
ical integration of an (m+n+1)-fold integral is involved. If many 
different radii need to be considered, the numerical integrations can 
become very time consuming. Therefore, it is desirable to find a sim­
plified method to compute the probability of liquefaction for a circle 
of a given radius, say Rk = (k + 0.5)D, given that the probability 
of liquefaction for a circle with radius Rn is known. The following 
simplified method is proposed: 

(i) assume that the probability of liquefaction for a circle with 
radius Rn = (n + 0.5)D and for a load effect with intensity q 
can be written as 

PL(Rn,q) = Fs0 (q)exp[-na(q)] (22) 

which can be solved for a( q), obtaining 

a(q) = ln[PL(Rn, q)/ Fs0 (q)]/( -n) (23) 

and 

(ii) for other radii, Rk = (k + 0.5)D, where k is a positive integer, 
the value of PL(Rk, q) is 

(24) 

The probabilities of liquefaction over circles with radii, R = 
0.94b, R = 1.69b and R = 2.44b, as computed by Eqs. 22-24, are 
shown in Table 2 in the column labeled approximate expression. It 
appears, that for this load intensity, sufficient accuracy is achieved 
with the approximate procedure. 

Figure 8 shows liquefaction fragility curves for cicles with radii, 
R = 0.94b, R = 2.44b (solid lines) computed by Eqs. 22-24 and 
taking the results for R = l.69b as the reference values. The same 
probabilities computed by Eq. 17 are shown in Fig. 8 by dashed 
lines. It thus appear that the approximate method (Eqs. 22-24) 

is sufficiently accurate. The results in Fig. 8 also show that the 
probabilities of liquefaction decrease significantly as the radiius of 
the circle increases. This last effect seems to be more significant for 
the lower ground intensities. 
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Figure 9 shows the conditional probabilities of liquefaction spread­
ing over circles of different radii assuming that liquefaction occurs 
at the center of the circles. These conditional probabilities of lique­
faction are equal to 1.0 at the center of the circle and decrease as 
the radius of the liquefied zone increases. As the radius increases, 
the probabilities shown in Fig. 9 decrease more rapidly when the 
peak ground accelerations are small, i.e., when the probabilities of 
liquefaction anywhere in the layer are smaller. This implies that 
the mean size of the liquefied zone will increase if the probability of 
liquefaction anywhere in the layer also increases. 
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Figure 8- Probabilities of Liquefaction Spreading Over a Given 
Area Computed with Eq. 17 and Eqs. 22-24. 
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Figure 9 - Probabilities of Liquefaction Spreading Over a Specified 
Area Conditional on The Occurrence of Liquefaction 
in its Center. 

CONCLUSIONS 
A method to calculate the probability of the onset of liquefaction 
in horizontally layered soil deposits was presented. In general, 
probabilities of the onset of liquefaction computed with the method 
are consistent with observed data on occurrence or non-occurrence 
of liquefaction. The method was extended to compute the 
probability that liquefaction will spread over a given area. It was 
observed that the probability that liquefaction will spread over a 

given area decreases as the contiguous lateral extent of liquefaction 
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increases. Also, the probability that liquefaction will spread over a 
specified area, on the condition that liquefaction occurs at the 
center of that area, decreases as the probability of occurrence of 
liquefaction anywhere in the layer decreases. 
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