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Liquefaction Analysis by Multi-Surface Model 
Satoshi Moria 
Senior Research Engineer, Technical Research Institute, 
OKUMURA Corporation 

SYNOPSIS: In recent years, liquefaction phenomena induced by earthquakes have attracted considerable 
attention and extensive research has already been performed on various aspects. Also, many consti­
tutive relations have been proposed in order to represent the deformation behavior during cyclic 
loading. These models, however, have mostly been verified by comparison stress or strain control 
element tests, and there have not been many numerical tests applying them to the boundary value 
problems. 

Tn this study, a simple and practical constitutive relation which is able to simulate the 
unelaslic behavior of soils under multi-directional cyclic stresses is proposed. The proposed model 
has been introduced with the computer code ( DIANA-J ), and the accuracy of this model is examined 
by comparing the numerical results with the experimental ones. 

1. I:-ITHODUCTION 

Sihce deformational behaviour of soils during 
cyclic loading is known to depend greatly upon 
the initial stress state and the stress path, 
constitutive equations accurate enough to ex­
press those characteristics are needed. 
The major C<•nstiLuLive equations of soils so far 
proposed have be<~n based on elastoplasti,: theory 
and most of them on the isotropic hardening 
rule. To suitably express hysteresis behaviour 
such as Lhe accumulation of volumetric strain 
and lhe Haushinger effect during cyclic loading, 
however the anisotropic hardening rule needs to 
be adoptPd. 

There have been cyclic models employing the 
anisotropic hardening rule such as the bounding 
surface model (Mroz,l979) and the model based on 
the concept of the field of hardening moduli 
(Mroz, 1975). Hut few attempts have been made to 
introduce those models in the finite element 
method program and to apply them to various 
boundary value problems. 

This paper proposes an anisotropic hardening 
model representing the behaviour of sand during 
':yclic loading for the purpose of two-dimension­
al liquefaction analysis. 
For (~asy handling, the model has been simplified 
as much as possible with the fewest possible 
parameters. 

Afler introducing this model in the two-phase 
f ini tc element program (DIANA-J; Shiomi,\984) 
based on the effective stress, the analysis of 
element tests (undrained simple shear tests), 
the analysis of the ground liquefaction at 
Kawagishi-cho during the Niigata Earthquake 
(one-dimensional problem) and the simulation 

525 

analysis of the centrifuge test (two-dimensional 
problem) are presented. 

They are all on the agenda of the research 
committee on the behaviour of ground and soil 
constructions during earthquake(lshihara eta]., 
1989) in th(~ .Japannse Society of Soil Mer:hanics 
and Foundation Engineering. 

This paper represents the details of the above 
analyses, and the applicability of this model to 
liquefaction analysis is investigated. 

2.ANALYSTS METHOD 

(!)Outline of the Multi-Surface Hardening Model 
The concept of the field of hardening moduli 

is used in this research. The field of harden­
ing moduli (Mroz,\975) is determined according to 
the arrangement of an infinite number of 
surfaces having a certain hardening modulus in 
the stress spare. This model is composed of 
three types of surfaces ; the bounding surface 
F. the loading surface f and stress reversal 
surface fs 

The bounding surface F plays the role of the 
failure surface. The loading surface f is de­
fined inside F (by interpolation) as an infi­
nite number of surfaces of the similar figure. 
The plastic behaviour of material is given by 
the translation and the expansion (contraction) 
0 f f. 

Figure 1 is an illustration of the outline of 
this model on a two-dimensional stress plane. 
The horizontal axis is for the deviatoric stress 
ratio, the vertical axis for the shear stress 
ratio. a a' is the effective axial stress, a r 

the effective lateral stress, <:: d the shear 
stress and am the effective mean stress. 



(0) 

( 

(Zd /\Jm') 
~ 

Figure 

(b) (Zd/\Jm') 

Outline of this model 

(a) in the figure denotes the loading surface f 
and the bounding surface F in the shear process 
from the point 1 to the point 3 in the aniso­
tropic stress state. At the point 1, t: d = 0, 
and a a·> a r', with the loading surface 
represented by f,. As -r: d increases, the 
loading surface expands, reaching f3 at the 
point 3. (b) in the figure denotes the reversed 
shear process from the point 3 to the point 6. 
As soon as the load is reversed, the loading 
surface appears as a dot on f3. 

The loading surface immediately before load 
reversal is defined as a stress reversal surface 
fs. 1\fter the load reversal, f increases as the 
reversed shear progresses. This suggests that 
in the process from the point 1 to the point 3 
L and f2, both situated inside the point 3, 
have been translated by the stress point. 

As understood from the above, all the trans­
lation of the stress ratio in the deviatoric 
stress ratio space is assumed to be a load 
( hardening ) in this model. and caused the 
plastic deformation to occur. 

When the stress point is on f with stress 
increment vector outside f, the hardening 
moduli, i.e., the plastic strain increment, is 
obtained by using the interpolation function in 
the later described equation 14) on the basis of 
the magnitude (radius) of f. On the other hand, 
when the stress point is on F with stress 
increment vector outside F, the plastic strain 
increment is obtained in such a way as to 
fulfill the consistency condition. 
(2)Fundamental Equations of the Model 

The bounding surface F is given by the 
equation 1), which coincides with the Drucker­
Prager model if the cohesion C = 0. 

F = (1/2) n , ; n , ; - A2 -------------------- 1) 

Where n ;;=S;;/a,.·, S;; being the deviatoric 
stress, A is the radius of F and A = 2f3sin¢ I 
(3- sin¢), q, being the internal friction angle 
at the failure. 

In this model, the hardening ofF is not 
considered, and the loading surface f is always 
established so as to have the present stress 
point on it, given by the equation 2). 

f= (1/2) (n;;-a;;)(TJ;;-a;;) -Ao 2 --2) 
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Where a ; ; is the coordinates of the centre of f 
and Ao the radius of f. In the case of material 
having the cohesion C, the same treatment is 
possible by using a,.·- C•coti/J instead of CJ .. 

in the equations 1) and 2). 
The plastic strain increment d£ ;;p is given 

by the equation 3) where the unit normal vector 
n;j for the loading surface, the unit vector g;; 
defining the direction of the plastic strain 
increment, the effective stress increment da ;; 
and the hardening modulus KP are used. 

d£ ;;= (1/KP) ( n;; da ;;) g;; ----------- 3) 

n;; and g;; are given by the equations 4) and 5) 
respectively. For Q in the equation 5), the 
Cam-Clay type's plastic potential surface is 
used which is defined in the equation 6). 
The load reversal is judged from the reversing 
of the sign of dan in the equation 7). 

auaa;; 
n;; = { (B fiB a;;) (a fiB a;;) } 1 / 2 

a Q/ a a i j 

g i j = ...,.{ -( a-Q--:-1 _a....:a:.....::.; :.....,j ).:....(,..:a:.....Q.:..:/:.....,a_a_i_j-:-) -:-} :--, /:-::-2 -

4) 

5) 

Q = Ao /M,.+ ln a,.' ------------------ 6) 

dan = n;; da ij ------------------ 7) 

MmisgivenbyMm = 2f3sin¢,./(3- sin¢,.), 
where the internal friction angle <I> m at the 
maximum volume contraction is used. da ;; is 
given by the equation 8) or, if the total strain 
increment d£ ;; (= d£ E + d£ ;;P) is known, by 
the equation 9). 

d a , ; = DE d £ ; ; ----------------------- 8) 

d a , ; = DEP d £ ; ; ----------------------- 9) 

DEP= DE - n;; DE• DF. g;; 
KP +n;; DE g;; 

Here d £ ; ;E is the elastic strain increment, and 
DE the elasticity matrix. The shear modulus G 
and the bulk modulus K. both composing DE, are 
given by the following equations. 

G Go(am'/amo') 1 /
2 --------------- 10) 

K = Ko(a,.'/amo')l/ 2 --------------- 11) 

Where a mo' , Go and Ko are the initial ef­
fective mean stress, and the initial value of G 
and that of K respectively. 

In the case of f'i= F, a new loading surface fK 
is formed every time the stress point is trans­
lated in the deviatoric stress ratio (n ;;) 
space. Then, the coordinates a ; ;K of the 
centre of fK and its radius AoK are determined 
in such a way as to satisfy the equation 2) and 
the following equation 12). 

a .i.jK 
=a ;; 1 (A 0

5 -AoK) +a ;; 5 (AoK-Ao 1
) __ 

12
) 

Ao 5
- Ao 1 

Where the suffixes K, I and S are the index of 
quantities of the active loading surface, previ­
ous loading surface and the bounding surface or 



stress reversal surface respectively. 
This principle is established so that any 
surface can not be intersected with each other, 
and is the same as the rule in the deviatoric 
stress (S 1 J) space of the INS model (Mor io, 1989) 
formulated in the three-dimensional stress space. 

Figure 2 illustrates the equation 12) on the 
same plane as Figure 1. In Figure 2, the active 
loading surface is denoted by fK and the 
previous surface by f 1

• 

(Zd /\Jm') 

(
era'- llr') 
J3\Jm' 

Figure 2 Hardening rule 
The equation 12) expresses the fact that the 
centre of fK is determined on the line es­
tablished by joining the centre of f 1 and that 
of f 5

• In other words, using the radius 
expansion dAo (= AoK - Ao 1 ), the translation 
da 1d=a ijK-a ij 1 ) of the centre of the load­

ing surface is expessed by; 

d a 1 j = ( a • j s - a 1 j 1 
) dA o / (A o s - A o 1 

) -- 13) 

When the hardening rule in the equation 12) and 
the later described equation 14) are used, this 
model satisfies the Masing rule in the case 
where a"'' is constant. 

As far as this kind of multi-surface model is 
concerned, many stress reversal surfaces should 
be memorized in the case of the cyclic loading 
with decreasing amplitudes. This makes the model 
more complicated (Hashiguchi, 1985; Norris,l986). 
To cope with this problem, only the latest 
stress reversal surface is memorized in this 
model as in Mroz's INS model (Mroz,l981). 
And then, a new stress reversal surface is 
defined, as shown in Figure 3, in the case where 
the stress point goes beyond this latest stress 
reversal :::urface. In the figure, the stress 
reversal surfaces at points A, B and C, when 
stress reversal occurs in this order, and are 
denoted by fsAo fss and fsc respectively. 
However, if every stress reversal surface is ex­
pressed actually, AoK and a i jK are determined, 
fs being fsc. when the stress point is inside 
fsc, being fss when the point is inside fss and 
outside fsc and being fsA when the point is 
inside fsA and outside fss· That is to say, an 
infinite number of fs need to bememorized, so 
the memory area for the program and the CPU time 
need to be increased. 

In this model, when the stress point is inside 
fsc, only the latest stress reversal surface fsc 
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is memorized. Afterwards, when the stress point 
goes beyond fsc, a new stress reversal surface 
fso on the periphery of fsc is defined by the 
centre the or1g1n. The use of this fso allows 
the smooth interpolation of Ao and the hardening 
modulus KP and at the same time economizes the 
memory area for the program. 

(Zd /\Jm') 

Figure 3 New stress reversal surface 
The interpolation rule for KP is as follows. 

KP= KPo (a .. '/a .. o')n ( 1 -Ao/A ),. --14) 

Where Kpo = a•Go with a, n and m the parameters 
of this model. The above equation is analogous 
to Ghaboussi's hardening modulus interpolation 
rule (Ghaboussi,l984). But in our research, n = 
1 and m = 2 are used. In the case of n = 1 and 
m=2, the Ao-£sP (£sP:thesecond-order 
invariable of plastic deviatoric strain) re­
lation during the virgin loading (skeleton curve 
) is expressed as hyperbolic. Then, Kpo is 
determined by the initial tangential slope of 
the hyperbola, and A is the asymptote. 
(3)Solution Method of Nonlinear Equations 

The analysis in 3. (1) below does not use 
DIANA-J, so convergence calculation is not per­
formed. Since it is the analysis of undrained 
simple shear tests, the equation 9) is used to 
control the shear stress by specifing both the 
lateral strain increment and the vertical strain 
increment as zero and the shear strain increment 
as ( lX 10- 5 ). 

In 3. (2) and (3) the initial stress method is 
adopted for convergence calculation. 
However, in the two-phase dynamic analysis a 
small load reduction (stress reversal) occurred 
in the convergence process (though none in the 
static analysis). Since this load reduction can 
not be assumed in this model to be the stress 
hysteresis, the stress increment was calculated 
by using a strain increment from the strain at 
the start of each convergence process. 

3. ANALYSIS RESULTS 

(1) Analysis of Element Tests (Undrained Simple 
Shear Tests) 

The analysis of the clement tests for 8m to 14 
m ground level at Kawagishi-cho (later described 
figure 6) was conducted using the material 
constants ( ¢ = 37° , ¢,. = 27" , Go = 65030 KPa 



and Poisson's ratio v = 0.2) . 
The parameter a was determined, as specified 

by the committee, so that the resistance against 
liquefaction will agree with the experimental 
results. As a result, a= 12 was used. 

_] ••~WNW ~ -10·· ',ff_ / Ko= 1.0 

_ -, ____ :!~_!_rmo' = o.3o 
0 50 100 -0.2 0 0.2 

~ ~
V"1 

~ / ---r. 7 ---
' / Ko=10 !~ ~d'r""'· o., 

0 50 100 -0.2 0 0.2 

301 
0 -

-JO---r -, J£r~·:~530 
~-I 

0 100 -0.2 0 0.2 

MEAN STRESS < Kpa) SHEAR STRAIN(%) 

Figure 4 Simulation analysis of element tests 

~0 0.4 
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lfl 
lfl 
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0: 

Ko = 1.0 
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0 

in 0. 0 -+--,-.--,---,-rr-rr---.,--,---,---, 

2 5 10 20 50 
NUMBER OF CYCLES Nt 

Figure 5 Liquefaction resistance curve 
Figure 4 illustrates the effective stress path 

and the stress-strain relation when the stress 
ratio is 'l:'d!amo' =0.3, 0.21 with the iso-
tropic consolidation Ko =1.0 (axo' =ayo' = 
azo' =98 kPa) and when 'l:'d/amo' =0.3, with 
anisotropic consolidation Ko=0.5(axo' =a zo' 
= 73.5 kPa,ayo=l47 kPa). 
Note that a xo' and a .o' are the initial ef­
fective lateral stresses and a yo' is the 
initial effective vertical stress. 

In Figure 4, as the behaviour of the cyclic 
mobility is shown, there is an increasing 
strain. But, the strain is as small as 0.17%. 
Only 1 to 2 cycles after the start of the cyclic 
mobility, the effective stress path and the 
stress-strain relation become a steady state. 
Therefore, the number of cycles at the beginning 
of the steady state is assumed as the resistance 
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against liquefaction. 
The liquefaction resistance curve is shown in 

Figure 5. The experimental results are marked 
with 0 in the figure. Since the slope of the 
liquefaction resistance curve is steep in the 
case of this model, it has been impossible to 
correctly express the experimental results. 

Therefore, parameter a has been established in 
Figure 5 so that the centre between the given 
two points will be passed. 

The following will be understood from Figures 
4 and 5. 
CD When the resistance against liquefaction is 

expressed by using 1:' d/a mo'' this model has 
almost the same liquefaction resistance 
betweenKo =0.5andKo= 1.0. 

~ This model can not express the soil behaviour 
while strain begins to increase after the 
phase transformation line and grows into a 
large strain. A solution to this matter may 
be to decrease KPo in the equation 14) under 
an undrained condition by assuming it to be a 
function for plastic shear strain or the 
accumulation of shear work. But it is not 
yet certain whether this method can be 
applied to a case where effective stress 
recovers under drained condition. 

~ The pore pressure occurring during the first 
cycle is smaller than that of later cycles. 

(2) One-Dimensional Analysis of the Ground at 
Kawagishi-cho during the Niigata Earthquake 

a. Analysis Conditions 
The ground at Kawagishi-cho during the Niigata 

Earthquake (with depth 70m and groundwater level 
2m) was divided into 20 elements shown in Figure 
6. Then, the analysis was conducted by entering 
a seismic wave with maximum 120 cm/s 2 

( twice as 
large as the incident wave ) from the lower end 
of the viscous dashpot attached to the base of 
the so i 1 mode 1. 

The input accelerogram is shown in Figure 7. 
This wave is the result of modifying the strong 
earthquake wave recorded at the basement of the 
Akita Prefectural Office with respect to the 
difference in epicentre distance and distance 
attenuation (Ishihara et al., 1989). 

The initial stress state Ko is 0. 5. 
And an undrained condition is assumed. For time 
integration Newmark's {3 scheme is adopted. 
The size of the time increment is 0.005 sec, and 
the coefficients of the Rayleigh damping is a= 
0. 0 and {3 = 0. 001. The parameter a of this 
model is shown in Figure 6. The curves for the 
resistance against liquefaction worked out from 
these constants are shown in Figure 8. 
The experimental results for each depth are also 
shown in the figure. 

The linear elastic model is used for the 
ground level Om to 2m, and the Drucker-Prager 
model for the level 14m to 70m. 

b. Results of the Analysis 
Figure 9, 10 and 11 are the time history of 
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Figure 6 Model of the ground at Kawagishi-cho 
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Figure 7 Input accelerogram 

acceleration, shear stress and pore pressure. 
Referring to Figure 11, the pore pressure be­
comes equal to the initial vertical effective 
stress in about 4 seconds at ground level 3.5 to 
5m and in about 6 seconds at ground level 2 to 
3.5m, resulting in liquefaction. This result 
may not seem very different from that of the 
other seven models (lsihara et al.,1989). 
But closer examination will reveal that the 
increase of pore pressure at ground levels 2 to 
3. 5m and 10 to 12m is a little larger in this 
model. It is probably because the slope of the 
liquefaction resistance curve, as illustrated in 
Figures 5 and 8, is steeper in this model, with 
the result that the pore pressure increase at 
low stress ratio has been overestimated. 
Figures 9 and lD show that the shear stress 
amplitude and the acceleration amplitude become 
smaller at the ground levels above 3. 5m after 
the liquefaction occurs in about 4 seconds at 
the level 3.5 to 5m. This is a typical response 
observed in the liquefied ground and the shaking 
table experiment, etc. 

Figure 12 illustrates the distribution of 
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Figure 8 Liquefaction resistance curve 
maximum acceleration and maximum displacement by 
depth. The distribution may not seem very 
different from that of other models in form and 
the absolute value. But if closely studied, the 
values around ground level 5 to 12m seem larger. 
Yet, direct comparison between the models is 
impossible here, because damping and convergence 
criteria are not specified. 
The maximum acceleration in about 6 seconds is 
shown by an arrow in Figure 9. 

Figures 13,14 and 15 illustrate the time 
history of the effctive stress (ax', a Y', am 
) , the effective stress path and the stress­
strain relation at ground levels 3.5 to 5m and 
6. 5 to 8m. In Figures 14 and 15, the tendency 
is expressed for the secant modulus for the 
relation between stress and strain to decrease 
hut for the hysteresis damping to increase. 

Especially at ground level 3.5 to 5m, perma­
nent strain is accumulated, causing a large 
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Figure 10 Time history of shear stress 
strain of about 1.4%. Moreover, when cyclic 
mobi I i ty occurs, the relation between stress 
and strain shows little reversal. 

In Figure 13, in which the process is well 
expressed, Ko = 0.5 ri!>es into Ko= 1.0 only 
after the vertical nffective stress o ,. ' greatly 
decresses at an early stage when the lateral 
~~ffective stress o,' shows little decrease. 

ln Figures 10, 14 and 15, the peak shear 
stress corresponding to the maximum acceleration 
in about 6 seconds is marked with an arrow for 
the ground level 6. 5 to 8m. The reason for the 
increase of acceleration in the range of the 
ground level 5 to 12m is thought to be the 
occurrence of a large shear stress due to the 
recovery of the effective stress on the phase 
transformation line. 
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Figure 11 Time history of pore pressure 
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Figure 12 Maximum response 
(3) Simulation Analysis of Centrifuge Test 
a. Analysis Conditions 

The subject is an oscillation test for a sub­
merged (in silicon oil) embankment on the 
Cambridge Geotechnical Centrifuge. The test was 
carried out at a centrifuge gravity level of 
41.8g. The input seismic wave is a pseudo sine 
wave at 58. 8Hz, and the maximum acceleration 20 
%G (representing a percentage of 41.8g). 
The wave, by means of a 200Hz low-pass fi 1 ter, 
was used in the analysis, as shown in Figure 16. 
The divided elemenls used for the analysis is 
shown in Figure 17. The figure is provided 
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Figure 13 Time history of effective stress 
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Figure 14 Effective stress path 
with node numbers (NP) and element numbers 
(enclosed in squares) for comparison between the 
results of the test and those of the analysis. 

The model is submerged fully. And an un­
drained condition is assumed. 
The initial stress has been decided as follows. 
First, the linear elastic gravity analysis was 
conducted at the level of 41.8g and then the 
initial shear modulus Go from the resultant 
a m • of each e 1 em en t was o b ta in e d by us i n g Go = 
8672 ( am·) 1

/
2 kPa. Once more the 1 inear 

elastic gravity analysis was conducted, using 
this Go and the Poisson's ratio v = 0. 3, and 
the resultant stress was assumed to be the 
initial stress. But note that for elements 
whose ratio Ko between lateral effective stress 
and vertical effective stress is less than 0.4, 
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Figure 15 Shear stress and shear strain 
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Figure 17 Model for the analysis 
the lateral effective stress was modified to 
make sure that Ko = 0.4. 

§! 

The same spH if i cation as in 3. (2) has been 
given to time integration and the coefficient of 
the Rayleigh damping, but the size of the time 
increment has been specified as 0.1 msec. 

The material properties used for the test are 
shown in Table 1. The parameter of this model 
has been specified as a = 25. The curve for the 
liquefaction resistance in the vicinity of the 



centre of the embankment is established by using 
the average am., as shown with a solid line in 
fiqure 18. The circle in the figure denotes the 
resistance against liquefaction designated by 
the committee. Because only one point was 
designated, we have considered the resistance 
curve like the coloured one and specified the 
parameter so that the centre will be passed as 
in Figures 5 and 8 . 
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Figure 18 Liquefaction r~sistance curve 
b. Results of the Analysis 
Figures lY and 20 show the comparison between 

the analysis result and the test result for the 
time history of pore pressure and acceleration 
time history respectively. Concerning the time 
history of pore pressure, good agreement is 
achieved between both results. 

nut pore pressure increases with large fluctu­
ations during the test, while with only small 
fluctuations in the analysis. That is probably 
because of the effect of the dynamic pressure of 
liquid (silicon oil) during the lest. Generally 
speaking, fluctuation in pore pressure depends 
on the change of total stn~ss or on cyt:lic 
mobility. The small fluctuations in the 
analysis are thought to be caused by the former, 
for their period is the same as that of the 
i n p u t II' a v ~~ . 

On the other hand, concerning acceleration 
Lime history the analysis result does not agree 
with the test result very well. The decrease of 
acceleration amp! i tude in response to the rise 
in pore pressure during the test contrasts with 
the almost fixed amplitude of acceleration in 
tho analysis. Though no definite cause has been 
found, there is a possibi I ity of the input of 
tho initial str<~ss Omo' bt:ing too large in lh'~ 
analysis. 

Figur1~ 21 illustrates the ddormation pattern 
and the contour diagram of the pore pressuro 
distribution at the end of the earthquake (in 
0.18 seeonds). Above the line with pore water 
pr1!ssure zero, \.her(~ is small negative pore 
pres~ure of approximately 0 to -3 kPa. 
Ttw final settlement of the top of the embank­
ment is reported to be about 2 mm during the 
test. But the analysis result shows a small 
settlement, about 0.1 mm. 
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Figure 19 Time history of pore pressure 
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Figure 20 Time history of acceleration 
Figure 22 shows the relation between shear 

stress and shear strain and the effective stress 
path for both elements 44 and 57. Element 44 is 
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figure 21 Deformation pattern and pore 
pressure distribution contour diagram 
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.figure 22 Stress path and stress-strain 
re Ia tion 

positioned on the left side of the embankment, 
hqving negative initial shear stress. 

0 

Element 57 is on the right side of the embank­
ment, having positive initial shear stress. 
Figure 22 illustrates the tendency for shear 
strain to accumulate in the direction of this 
initial shear stress. It is because the harden­
ing modulus KP becomes smaller (i.e., the radius 
Ao of the loading surface expands) as the shear 
stress works in the direction of the initial 
shear stress. In addition, the figure shows the 
tendency for Lhe shear stress amplitude to 
decrease after the sixth wave (in about lOOmsec) 
in response to the rise in pore pressure. 

The deformation pattern shown in Figure 21 
represents the sum of the deformation due to the 
(permanent) shear strain depicted in figure 22 
and another one resulting from the gravity under 
the condition of the decrease in soil strength 
in response to the rise in pore pressure. 

This analysis has been carried out under an 
undrained condition. Considering the dissi­
pation of pore pressure after an earthquake, it 
is expected that some different results will be 
drawn. 

4. CONCLUSION 

An anisotropic hardening rule which does not 
allow the intersection of the bounding surface, 
the loading surface and the stress reversal 
surface in the deviatoric stress ratio (n ij) 
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space is proposed. 
A I so , the de f i n i Li on of a new s tress r c v ~~ r sa I 
surface allows the smooth interpolation of the 
hardening modulus KP and at the sam(' time ~~cono­

m i z e s t. he nt emu r y a r ~~a for t. he program . 
This muiLi-surface model uses these five 

parn.lneit'rs: t.he initial shear modulus Go, the 
initial bulk modulus Ko, the internal friction 
anglt• ¢ at !.he failure. the internal friction 
anglr~ <I>m at. the maximum volum·~ r~ontraction and 
a · us i! d f 'l r l. he e q u a t. i on 1 4) . The par am~~ t. e r a 
hils hP·!n determined according to the simulation 
<lf elnment tests so that lhe I iquefaction 
resistance curve will agree with the given 
condition. 

After introducing this model in a two-phase 
finite element program based on the effective 
str.~ss, one and two-dimensional 1 iquefaction 
analysis was conduet,!d. The analysis results 
are not Vt!ry d i ffercnt. from !.hose for the other 
SI!Ven models (Ishihara eta!., 1989). In view 
l)f the neeess i t.y of improvements such as by t.he 
rnseilreh on intensity anisotropy, this model 
will lH~ a useful tool for l iqudact.ion analysis. 

Incidentally, CPU time SPl'nl on the two­
dimensional analysis in 3. (3) 1s 75 minutes on 
Ill M- 4 :l 8 I ( 3 . 8 M I P S ) • 
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