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ABSTRACT 

This dissertation is subdivided into three topics: Experimental study of 

colloidal unimolecular polymer (CUP) hydration; probing of polymer chain 

dynamics by 13C solid state NMR technique; and the anticorrosive effect of 5-

mercapto-1, 3, 4-thiadiazole-2(3H)-thione (MTT) derivatives.  

The states of water in colloidal unimolecular polymer system were 

investigated by low field proton NMR. Bound and free water fractions were 

determined using spin-lattice relaxation measurements. A model equation was 

used to analyze the inversion recovery data.  

The proton cross polarization and the pulse sequence for total spinning 

sideband suppression CP-TOSS NMR method were developed to determine the 

chain mobility of polymers as a function of temperature. 13C solid state NMR 

spectra were analyzed over a temperature range 260K-370°K. Peak intensities of 

each carbon were plotted verses sample temperature. The plots revealed two 

linear regions with intersection point close to the first deviation temperature 

measured by differential scanning calorimetry (DSC).  

Finally, various 5-mercapto-1,3,4-thiadiazole-2(3H)-thione (MTT) 

derivatives were synthesized and tested for their ability to inhibit corrosion on  

steel and 304 stainless steel  substrates in a 3.5% NaCl solution. The effect of 

structure, substituent size, and steric hindrance on corrosion inhibitor 

performance were investigated.  The size of substituent has a pronounced 

impact on corrosion inhibition ability.  
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1. INTRODUCTION 

 

1.1 COLLOIDAL UNIMOLECULAR POLYMER  

Colloidal unimolecular polymer (CUP) is a unique colloidal system 

contains true nanoparticles dispersed in aqueous media. The CUP particles are 

spheroidal particles that have a collapsed hydrophobic backbone and charged 

surface, see Figure 1.1 [1,2]. The polymer-solvent and polymer-polymer 

interactions have the key role in formation of CUP particles. In view of Flory-

Huggins theory,   a copolymer of methyl methacrylate (MMA) and methacrylic 

acid (MAA) prefers to be in random coil configuration in organic solvent as a 

result of strong polymer-solvent interaction. Changing the solution media from 

organic to the mixture of organic and water results in changing the polymer’s 

configuration due to decrease in polymer-solvent interaction and an increase in 

polymer-polymer interaction.  Removing the organic solvent results in a 

spheroidal particle.  The presence of charged groups on CUP surface prevents 

particle aggregation and drives its spheroidal shape. The typical size of CUP 

particle is 2-9 nm based on the molecular weight of copolymer. Due to its size, 

the surface area per unit gram is ultra-high. These water-based particles can 

hold an appreciable amount of water associated with its surface that play a 

decisive role in CUP properties and application. A previous study [3] on CUP-

water interaction confirmed the presence of approximately two water layers 

associated with CUP particle. 
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                 Figure 1.1. Colloidal Unimolecular Particle (CUP).  

1.1.1 Bound Water 

Newton and Gortner [4] have proposed that colloidal particles always have 

an associated amount of surface water known as bound water. The states of 

water in colloidal system consist of free or ordinary water, and bound or 

associated water, so, the colloidal system is defined by a two-phase model [5, 6]. 

It has been found that the bound water molecules are significantly different in 

their properties from that of bulk water [6]. 

In the past, many attempts have been made to furnish evidence on the 

existence of bound water in biological and colloidal systems. Moran [7] used a 

dilatometric method to measure the amount of bound water in a mammalian 

muscle within a temperature range of -1.5 to -20˚C. Unfortunately, he was unable 

to detect an appreciable amount of bound water. Hill [8] was also unable to 
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detect a considerable amount of bound water in different colloidal systems. 

Greenberg and Greenberg [9] reported the same finding when they used an 

ultrafiltration method to determine bound water in solutions of gelatin, casein, 

starch, glycogen, and blood serum. They assumed that "bound" water loses its 

solvent properties, and only a very tiny fraction of the water can be associated 

with the colloids in this form.  

In 1930, Grollman [10] studied the state of water in gelatin and gum acacia 

by using vapor pressure measurements. Results indicated that the hydration in 

gelatin is relatively small at pH=7 and cannot be detected in gum acacia 

solutions. In conclusion, hydrophilic colloids do not need to be strongly hydrated. 

However, Gortner [11] looked for different approaches when he used freezing-

point depression measurements to determine the amount of bound water in gum 

acacia in aqueous sucrose solutions. Results revealed that the amount of bound 

water extended up to 0.6-0.7 grams per gram of gum. He considered this to be 

evidence that bound water does exist. 

In1952, Buchanan et al. [12] conducted microwave dielectric 

measurements on a protein solution to estimate the amount of bound water 

associated with proteins. This technique is based on the fact that bound water 

molecules are unable to rotate at high frequency field. Therefore, bound water 

molecules that hydrate a protein would have an influence on dielectric constant 

measurement.  Results of this study indicated that bound water molecules shows 

no change over the pH range 2.1-11.7. Moreover, estimation of bound water 
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molecules for serum albumin shows no change within the temperature range 15-

40˚ C. 

Differential scanning calorimetry (DSC) has also been used to determine 

the bound water fraction of macromolecule systems. The method is based on the 

measurement of the heat of melting or crystallization of water.  Wang and 

Gunasekaran [13] studied the state of water in a chitosan and polyvinyl alcohol 

(PVA) hydrogel. They concluded that the bound water fraction increased as the 

PVA concentration increase. In addition, results revealed that the addition of 

hydrophilic groups lowers both the total water content and free water content. 

Polyvinyl alcohol contains the hydrophilic group –OH. This group has a tendency 

to form a hydrogen bond with free water molecules, producing a higher bound 

water fraction. Siahboomi et al. [14] validated this finding when they studied the 

water distribution within cellulous ethers. They concluded that the bound water 

quantity is highly dependent on the substitution type on the polymer chains. The 

highest bound water content was recorded when the hydrophilic substituent 

(hydroxypropylcellulose) was present on the polymer chain. 

The quantification of a bound water fraction was also studied by infrared 

spectroscopy [15]. This technique relies on measurements of a change in the 

natural vibration frequency produced by an interaction between water molecules 

and polymer’s solid surface. Results from methylcellulose films exposed to 

several humid environments indicated the existence of two types of water: bound 

water and free water. These results also revealed that bound water increases as 

the moisture on the methylcellulose films increased. 
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Additionally, a Raman spectroscopy technique was used to study the state 

of water in polymer solutions. Sekine and co-worker [16] investigated the 

temperature dependence of structural changes of bound water in dried glassy 

poly-N, N,-dimethylacrylamide in the temperature range 286.1-329.7˚ K. Results 

indicated the presence of two type of bound water. First type: water is forming a 

shell layer around polymer chains. And the second type: water is bound to the 

polar groups of polymer chains. At temperature below 310˚K, water molecules 

that exist in shell layer evaporates whereas the second water type began to 

evaporate above 310˚K. 

As the bound water molecules have lower mobility than free water 

molecules, nuclear magnetic resonance (NMR) is the most useful technique for 

studying molecular mobility. The nuclear spin-lattice relaxation time (T1) is 

directly related to the molecular motion. The spin-lattice relaxation (T1) is a 

process that quantifies the rate of energy transfer from excited spins to the 

surrounding molecules “the lattice”. This relaxation process can be described by 

the Bloch equation: 

                                        
1(1 )

t

T

Z OM M e

−

= −                                           (1)                                 

Where Mz is the magnetization at time t and Mo is the magnetization at 

equilibrium. 

The objective of this part of the research was to investigate and characterize 

the states of water in colloidal unimolecular polymer (CUP) suspension systems. 
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The work includes synthesizing of two acrylic copolymers (polymethyl 

methacrylate/methacrylic acid) with molar ratio of MMA: MAA 9:1, and different 

molecular weight.  Various concentrations of CUP solutions were prepared in 

order to carry out the low field NMR study. Based on the fact that spin-lattice 

relaxation time (T1) of bound water molecules is lower than free water molecules, 

T1 were measured as a function of CUP concentration, CUP size, and 

temperature. The bound and free water population was calculated using a model 

equation. The bound water relaxation time T1b was also calculated.  

1.2  POLYMER DYNAMICS 
 

The polymers applications are determined based on their state as a 

function of temperature. Amorphous polymers are in glassy state at low 

temperature and as temperature increases, the polymer becomes soft and this 

state represents so-called the rubbery state. The transition from glassy to 

rubbery state occurs over a temperature range known as a glass transition 

region. At the glass transition temperature, the polymer molecules begin 

reptational motion [17]. The glass transition temperature is associated with a 

change in some properties, these are specific heat capacity, elasticity modulus, 

viscosity, refractive index, and coefficient of thermal expansion [17, 18]. The 

determination of the glass transition temperature relies on measuring these 

properties as a function of temperature. One of the most utilized method in 

measuring glass transition temperature is the differential scanning calorimetry 

method (DSC). In the DSC method, the polymer sample is subjected to a 

programmed linear temperature change, and the heat flow into or out of a sample 
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is measured. The glass transition temperature is defined as the temperature at 

which one half of the increase in the heat capacity has occurred [17, 18]. As the 

polymer molecule attains motion, the heat capacity increases. According to 

ASTM standard E1356 – 08[19], the glass transition temperature region is 

represented by a range of temperatures, not only a specific temperature, see 

Figure 1.2. 

 

    Figure 1.2. Glass transition region measured temperatures.  

 Where To is a temperature of first deviation (the point of first detectable 

deviation from the extrapolated baseline prior to the transition),  Tf is an  

extrapolated onset temperature (point of intersection of the tangent drawn at the 

point of greatest slope on the transition curve with the extrapolated baseline prior 
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to the transition), Tm is a midpoint temperature (the point on the thermal curve 

corresponding to 1⁄2 the heat flow difference between the extrapolated onset and 

extrapolated end, and Te is an extrapolated end temperature (the point of 

intersection of the tangent drawn at the point of greatest slope on the transition 

curve with the extrapolated baseline following the transition[19]. 

1.2.1 Nuclear Magnetic Resonance Spectroscopy  
 

There is no doubt that the nuclear magnetic resonance spectroscopy 

(NMR) is one of the most powerful techniques in providing information about 

molecular architecture and dynamics. The wide applications and popularity of 

NMR spectroscopy emerge from the fact that this technique can be applied on a 

large number of samples using a variety of methods. Broad-line proton NMR 

measurements have been used to study polymer dynamics [20].  It has been 

found that at temperatures below the glass transition temperature, the line is 

broad, and at temperature above, the signal is sharp. The reason behind this 

change is attributed to the increase in random proton orientation distribution as 

the chain segments become more mobile [20].   

The basic principle of NMR technique is established in view of the 

quantum physical concept that protons possess spin that generates its own 

magnetic moment, and placing the sample in strong external magnetic field 

allows characterizing its behavior.   In the absence of magnetic field, the 

individual nuclear magnetic moments have random orientation. Once the external 

magnetic field applied, the nuclear magnetic moments either aligned 

preferentially with or against magnetic field. As a result, two spin states are 
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generated, low energy state α where nuclear spin magnetic moment aligned with 

magnetic field and high energy state β where nuclear spin magnetic moment 

aligned against magnetic field. The magnetic moment of spin starts to rotate 

(precession) about the axis of magnetic field. The precession is called a Larmor 

frequency ωo and equal to: 

                                                          o oBω γ= −                                            (2) 

Where γ is the gyromagnetic ratio, a characteristic constant of each type of 

nucleus, and Bo is the applied magnetic field. The radio frequency pulse RF 

applied in order to perturb the system. As a result, the net magnetization rotates 

in xy, and magnetization precession about xy plane, an oscillating signal is 

induced. This signal is called a free induction decay (FID) [21-23].  

1.2.1.1 Chemical Shift Anisotropy 

In NMR experiments, the nucleus absorbs radiation at a frequency known 

as a chemical shift. The chemical shift value greatly depends on the environment 

surrounding the nucleus. Electron distribution around nucleus can either shield or 

deshield the nucleus from an external magnetic field. The orientation of a nucleus 

is important in determining the magnitude of the shielding. In the liquid state, the 

molecule is tumbling very fast, so the chemical shift observed is the average of 

the shift corresponding to different orientations. This is known as an isotropic 

chemical shift.  Contrary to liquid, in the solid state there is a lack of molecular-

level motion. Molecules are not tumbling, so the molecular orientations are 

almost equal. The chemical shift is the so-called anisotropic and results from 
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molecules that are almost static with respect to external magnetic field. The 

signal obtained in solid state NMR depends on the molecular orientation, hence 

broad NMR lineshapes are produced.  

1.2.1.2 Dipolar Coupling 

  Nuclear spin produces a magnetic moment, and a dipolar field is 

generated.  A nuclei neighboring the dipolar field will sense this field, and spin 

interaction takes place. This interaction occurs through space and the dipolar 

coupling constant of two nuclei I and S separated by internuclear distance, r, is 

equal to  

                                                    34

o I S
IS

IS

R
r

µ γ γ
π

= h

                                           (3) 

The dipolar coupling constant is highly dependent upon the distance 

between two spins and their gyromagnetic ratio. For example, the hetronuclear 

interaction of C-H is lower than the H-H interaction with similar distance. Dipolar 

interaction can not be observed in the liquid state because molecules are 

moving, thus dipolar coupling changes and average to zero. However, unlike the 

liquid state, molecules in the solid state do not freely tumble, and the dipolar 

interaction becomes pronounced. Another factor that effects the energy of dipolar 

interaction is the angle between the external field and the vector joining the two 

spins. 

                                          
2

3
(1 3 cos )

A
E

r
θ= −                                    (4)    
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Where r is the distance between the two spins and Ɵ is the angle between the 

external field and the vector joining the two spins. The constant A depends on 

the magnetic moment of the two spins. See Figure 1.3. 

                                 

                   Figure 1.3. Dipolar interaction between 1H spin and 13C spin. 

The dipolar coupling or chemical shift anisotropy can not be removed from 

the spectra and make it difficult to interpret the solid state NMR spectra. 

Fortunately, due to the recent development in solid state technique, the dipolar 

coupling and chemical shift anisotropy issues has been solved and can easily get 

NMR spectra free of these effects [21, 22].   
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1.2.1.3  Magic-Angle Spinning  

Identical nucleuses in the solid state are oriented differently to Bo, 

therefore, produce a broad line. Very rapid sample spinning at an angle of 

approximately 54.7° is adequate to average (3cos2θ-1) to zero, as a 

consequence, the signal intensity enhances and sharp lines are produced. The 

54.7° is called magic angle spinning (MAS). MAS removes the effect of both the 

chemical shift anisotropy and dipolar coupling [21, 22].Figure 1.4 depicted the 

MAS. 

                                       

                                  Figure 1.4. Magic angle spinning. 

 

1.2.1.4  Cross Polarization 
 

The 13C isotopic abundance in solid state is low, and their relaxation time 

is long. Recording of the FID cannot be easily achieved.  In order to circumvent 

this problem, pulses are applied on the proton and carbon frequencies. It is 
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required that the precession frequencies of all nuclei are approximately similar. 

This can be achieved by applying spin-locking field of the same strength on both 

proton and carbon spins. Transferring polarization from the proton to carbon 

atom greatly enhances the signal intensity [21, 24]. Figure 1.5 illustrates a 

diagram of cross polarization. 

                      

      Figure 1.5. Schematic diagram of employing cross polarization. 

A 90° pulse applied to the 1H spin creates transverse 1H spin which is 

transferred to the 13C spin. Decoupling is applied to the 1H spin for line narrowing 

of the 13C spin spectrum during acquisition [25]. 
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 1.2.1.5 Total Suppression of Spinning Sidebands  

Spinning of solid state NMR samples produce spectra that contain sets of 

sidebands. Therefore, the spectra assignments and interpretation are 

complicated [26]. The most utilized technique to eliminate spinning sidebands 

from CP-MAS spectra is total suppression of spinning sidebands (TOSS). Dixon 

[27, 28] demonstrated this method by using a series of pulses synchronized with 

the MAS rotor [26, 27, 28].The 180° pulses can change a precessing nucleus’s 

phase, thus sidebands disappear and only centerbands are left [26-28]. 

The objective of this part of the research was to study polymer chain 

dynamic of both homopolymer and copolymer by 13C CP-TOSS method. This 

method was developed in view of the fact that the carbon signal intensity 

dependence on the distance of neighboring protons and the angle between the 

external field and the vector joining the carbon and proton spins. Temperature 

variation of the polymer sample will result in changing these two parameters 

(distance and angle). At a certain temperature, the change in peak intensity will 

become significant. This temperature will be defined as the temperature at which 

each segment in polymer chain attains the onset motion which can be related to 

a polymer glass transition temperature (Tg). 

1.3. CORROSION 

Corrosion is a process that causes material degradation. The National 

Association of Corrosion Engineering defines corrosion as the degradation of 

material that results from a reaction with its environment [29]. Ores contain 

chemically combined state of metals, typically an oxide.  The ores possess the 



15 

lowest energy state, therefore, it is the most stable state by nature. Conversion of 

ores into metals requires energy to be supplied in order to accomplish the 

transformation.  The metals uses in our life exist in higher energy state than ores, 

and according to thermodynamic laws, they have a great potential to convert 

back to their original oxidized state. The metal degradation occurs via 

electrochemical reactions, oxidation and reduction reactions. The two reactions 

have to be combined and cannot occur separately.   Metals loose electrons by an 

oxidation reaction known as the anodic reaction and take place at the anode.  

The reduction reaction consumes electrons by reduction reaction known as the 

cathodic reaction, and take place at the cathode. In general, the corrosion of 

steel typically consist of the oxidation of iron and the reduction of a non-metallic 

species. At the anode, iron oxidizes and forms a soluble ferrous iron: 

                                                     Fe   → Fe+2 + 2 e-                           

At the cathode, oxygen reduction is the major reduction reaction.  In neutral, and 

alkaline solutions, both oxygen and water presence at the cathode and act as 

electron acceptor. 

                                                ½ O2 + H2O +2e- → 2OH- 

In dearated acidic or neutral solutions, the only possible reduction reactions is 

the hydrogen evolution reaction 

                                                       2H+ + 2e- → H2  

                                                 2H2O + 2e-   → H2 + 2OH- 
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Both oxygen reduction and hydrogen evolution generate hydroxyl ions, thus the 

pH at the cathode increases. The oxygen reduction become the predominant 

cathodic reaction at high pH [30-32]. 

The cathodic and the anodic reactions are coupled, thus the rate of anodic 

reaction will be directly proportional to the rate of cathodic reaction. When a 

metal comes in contact with an aqueous environment, oxidation of metal begins 

at high rate; metal atoms are removed from their lattice to metal cations into the 

electrolyte.  Eventually, dynamic equilibrium is attained and the oxidation process 

slows to zero as a result of negative charge build up on metal surface. Polar 

water molecule will be attracted to the negatively charged metal surface to form 

an ionic structure layer [33]. Figure 1.6 shows a schematic electrical double-layer 

model. 

                     

 

 Figure 1.6. Schematic electrical double layer [34]. 
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Electrical double layer consist of: 

           1-The Inner Helmholtz Plane (IHP) which is an ionic layer that consists of   

              adsorbed dipole molecules. Only specific adsorbed anions bonded to  

               metal surface. 

          2-The Outer Helmholtz Plane (OHP) consists of a plane of adsorbed 

              solvated cations. 

          3-The Diffusion Layer (DL) is a thick layer located in a region of diffuse 

              ions in contact with the OHP and the bulk of the solution. 

1.3.1. Organic Corrosion Inhibitors 

One of the approaches to inhibit corrosion is to eliminate contact between 

metal and electrolyte. Organic inhibitors can adsorb on metal surface and form a 

protective barrier that blocks the active dissolution sites of metal. Once the 

organic molecule reaches the metal surface, adsorption of the inhibitor molecule 

takes place. This will led to change in the potential difference between the metal 

surface and the electrolyte as a result of unbalanced electric charge distribution 

at metal- solution interface [32]. Adsorption of organic molecule on metal surface 

is governed by residual charge on the surface of the metal and chemical 

structure of inhibitor [32]. The two main types of the adsorption of an organic 

inhibitor on a metal surface are physical and chemisorption. Chemisorption is the 

transfer, or sharing of the inhibitor molecules electrons (ligation) to the metal 

surface, forming a coordinate-type bond [32]. 
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Organic molecules have to have various aspects in order to be able to 

inhibit the corrosion process. The organic molecules should have reactive atoms 

which is the active site of chemisorption process and the strength of 

chemisorption relies on the electron density and polarizability of these functioning 

atoms [32]. The effectiveness of functioning atoms in the adsorption process 

varies according to the following sequence: 

                                   Selenium > Sulfur > Nitrogen > Oxygen 

This order is explained by lower electronegativity of elements on the left that 

make their compounds easily susceptible to polarization [35]. Additionally, the 

affinities of organic molecule toward a metal surface highly influence the binding 

strength. In terms of their polarizability, organic inhibitors can be classified as 

either soft or hard inhibitors. The hard molecule is a molecule that has high 

charge density and a small orbital. In turn, the soft molecule is a molecule that 

has lower charge density and a larger orbital. According to the soft and hard 

theory [36] the metal prefers to bond to a soft base (i.e., sulfur-containing 

inhibitors). However, the hard bases (i.e., nitrogen-containing inhibitors) do not 

adsorb as strongly on metal surface as do sulfur containing inhibitors [32, 35, 36, 

37]. 

A substituent on an organic molecule may alter its inhibition ability.  In 

view of this proposition, the Hammett equation [38] has been utilized in the field 

of organic corrosion inhibitors. The effectiveness of inhibitors can be correlated 

with Hammett’s σ parameter by conducting linear -free energy relationships 

(LFER) [39]. These relationships assume that the substituent electronic structure 
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plays an important role on the adsorption process. Either the LFER or Hammett 

relation is given by [40, 41]. 

                                                   log
o

R

R
ρσ=                                              (5) 

Where Ro and R are the corrosion rates in the absence and presence of 

inhibitors, respectively, ρ is the constant for given reaction, and σ reflects the 

influence of a substituent on the electron density of reaction center in molecule. 

The negative σ value represents the electron donating property of the 

substituent. The substituents that attract electrons from the reaction center are 

assigned a positive σ value.  A study of  triazole derivatives[41] found that 

plotting log R/ Ro vs σ produce a good correlation by providing a straight line with 

slope ρ= 1.  The positive sign indicates that the corrosion process is inhibited by 

increasing electron’s density at electron’s center.  Sastri and Perumareddi [42] 

conducted a study on pyridine derivatives and concluded that either the corrosion 

rate decreased or the percent inhibition increased as the negative σ value 

increased. 

The molecular weight of an organic molecule has been correlated with the 

ability of that molecule to retard corrosion. Li, Tan and Lee [43] suggested that 

the molecular weight of an organic molecule greatly influences the corrosion 

inhibitive efficiency. They deduced that a larger molecule will offer better 

corrosion protection as long as the molecule still possesses a minimum solubility 

in water. 
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Previous studies correlated the compound symmetry to corrosion 

inhibition property. Foster et al [44] concluded that symmetrical compounds have 

poor inhibitive properties. However, there is lack of studies to support this 

proposition. Later study indicated that organic compounds with an asymmetrical 

structure are more effective inhibitors than compounds with a symmetrical 

structure [35]. 

Many studies [45-49] have correlated quantum chemical parameters to 

corrosion inhibition efficiencies by the quantitative structure inhibition (activity) 

relationship (QSAR) approach. The highest occupied molecular orbital (HOMO), 

the lowest unoccupied molecular orbital (LUMO), the HOMO–LUMO gap, and the 

dipole moment (μ) have each been used to characterize inhibitor performance. 

The HOMO is the highest energy orbital containing electrons. These electrons 

can be easily donated to metals surface to form coordinating bonds. The organic 

molecules that have high HOMO energy have a great tendency to donate 

electrons to unoccupied d orbitals of the metal. The interaction between organic 

molecule and metal substrate increase the corrosion inhibitive efficiency of 

organic molecules [32]. The LUMO is the lowest energy empty orbital, and is 

associated with the ability of a molecule to accept electrons. The lower the 

ELUMO value of molecule the more likely it is to accept electrons. Thus, the 

effective corrosion inhibitor molecule is capable of electron donating to the 

unoccupied orbital of the metal in conjunction with its ability to accept free 

electrons from the metal [45].  The EHOMO–ELUMO energy difference is directly 

related to the molecule’s stability. A large energy gap results in a high stability 
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during chemical reactions [47, 48]. A smaller (EHOMO-ELOMO) gap leads to 

easier polarization. Sastri [42, 49] found that a smaller EHOMO-ELOMO value 

can enhance corrosion inhibition. The dipole moment is an indication of an 

organic molecule’s polarity [47]. It has been stated that the organic molecule with 

low dipole moment is more prone to adsorb on metal surface and display good 

inhibition performance [45, 50]. However, other studies [47, 51] stated that there 

is no correlation between the dipole moment and the inhibition efficiency. 

5-mercapto-1,3,4-thiadiazole-2(3H)-thione (MTT) is one of the organic 

compounds that possess many reactive atoms. This compound has three sulphur 

atoms and two nitrogen atoms. In addition, it has two acidic hydrogen that can be 

easily substituted. The corrosion inhibition performance of this compound in 

acidic solution has been investigated [52]. Results indicated that MTT inhibit 

corrosion process of mild steel and copper in acid solutions. 

The objective of this part is to synthesis a series of 5-mercapto-1, 3, 4-

thiadiazole-2(3H)-thione (MTT) derivatives. The corrosion inhibition efficiency of 

these derivative on different metal surfaces in 3.5% NaCl was investigated by 

two techniques, electrochemical impedance spectroscopy and electrochemical 

polarization. The chemical structure of MTT derivative were correlated with their 

corrosion inhibition efficiency. The goal was to assess which factor of molecule 

chemical structure has a more pronounced impact of corrosion inhibition 

performance. 
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ABSTRACT 

 
Water-based colloidal unimolecular polymers (CUP) have ultra-high 

surface areas per gram of particles. Many properties of the colloidal CUP system 

are dominated by the associated surface water.  Proton spin-lattice relaxation 

(T1) NMR experiments were conducted at low magnetic field (20 MHz, 1H) over a 

temperature range of 18-37°C to examine the free and surface water populations 

in the system as a function of concentration, temperature, and two molecular 

weights (29kD and 111kD). Inversion recovery T1 NMR data was analyzed using 

a model equation consisting of the sum of two mono-exponential terms and five 

adjustable parameters. The amount of bound water was found to be in the range 

of 2.7-8.1% of the total water in this system, and the bound water layer thickness 

ranged from 0.20 to 0.69 nm. The observed spin-lattice relaxation time constant 

T1 varied with the CUP concentration; the T1 value decreased as the CUP 

concentration increased. The spin-lattice relaxation time constant of the bound 

water (T1b) was shorter than the relaxation time constant of the free water (T1f) by 

a factor of approximately 50. Two intrinsic CUP parameters (particle size and the 
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charge density) were important in determining the amount of associated surface 

water.  Smaller particles had more surface area per gram but the larger particles 

had a higher surface charge density. As the CUP concentration increased the 

thickness of the bound water layer decreased. This reduction of bound water 

layer thickness can be explained on the basis of Manning condensation.  

 

Keywords Colloidal unimolecular polymer (CUP), Bound water, Bulk water, 

Proton spin-lattice NMR relaxation time constant (T1), surface charge density, 

surface area, low field NMR. 

 

INTRODUCTION 

The term “bound water” in a macromolecular system has been used since 

1922.  Newton and Gortner [1] raised the hypothesis that a certain amount of 

water exists in close proximity to constituent particles in hydrophilic colloids; the 

water associated with a macromolecule surface is defined as bound water.  

Water molecules that exist freely in a solution are known as bulk water. In 

general, water molecules bond to the colloidal particle surface via hydrogen 

bonding [2]. In turn, bulk water molecules are not bounded to colloidal particle 

surface. These molecules are considered to move freely in solution media.  

The bound water molecules have been found to possess properties that 

differ from water molecules located further from the surface. For example, bound 

water molecules exhibit a lower vapor pressure, a lower mobility, and a lower 

freezing point than water molecules located far away from the surface [3, 4]. 



29 

Gortner [5] studied the state of water in both colloidal and living systems, 

suggesting that two states of water exist within lyophilic hydrosols and hydrogels: 

bulk water and bound water. He explained the nature of bound water by using 

two hypothesis: an oriented adsorption of the water dipoles at the interface, and 

an oriented adsorption of hydrogen and hydroxyl ions. Another model for waters 

interacting described by Zimmerman and Brittin [6] explains water behavior in 

view of the differences of 1H NMR relaxation rates between adsorbed water and 

free water molecules. They concluded that both transverse and longitudinal 

relaxation data described two-phase systems. Nandi and Bagchi [4] stated that the 

bound water molecules are those molecules which have single or double 

hydrogen bonds with either a protein or a self-assembled aggregate.  

 
Because the mobility of bound water molecules is lower than the mobility 

of free bulk molecules, the nuclear magnetic resonance (NMR) probing method 

has been used to gain a deep understanding about the state of water in colloidal 

systems. Clifford and Pethica carried out numerous studies regarding the use of 

relaxation rate measurements in determining water states in colloidal systems. In 

1965 [7], they studied the spin lattice relaxation time constants of water protons 

in micelle solution. Results revealed that the hydrocarbon chain length influenced 

the rate of spin relaxation in water molecules in proximity to the chain. This effect 

was attributed to dipole-dipole interactions between the alkyl chain protons and 

water protons, and water molecules near alkyl chains exhibit slower rotational 

Brownian motion than the water molecule in the bulk.  Also a linear relationship 

was observed between temperature and spin lattice relaxation rate. A 
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subsequent study [8] conducted on carboxylic acid soaps confirmed this finding, 

and concluded that hydrogen-bonded water molecules to the head group were 

immobile. Another study conducted by Clifford [9] used the spin-lattice relaxation 

time constant measurements of CH2 protons in micelles in D2O. They concluded 

that the spin relaxation rates of CH2 protons were greatly increased as the 

environment changed from D2O to liquid hydrocarbon. Clifford et al. [10] has also 

studied the behavior of a water-silica system. The study examined the spin lattice 

relaxation time constants as a function of hydroxyl group densities on two types 

of silica beads. Results indicated that the hydrogen bonding interaction between 

water molecules and the surface highly influenced the NMR relaxation time. The 

strongly hydrogen bonded molecules on the surface OH group exhibited slower 

motion. Clifford concluded that in the water-solid particle system, there are less 

than two monolayers of water physisorbed on the surfaces of the solids they 

studied [8, 10]. 

Clifford and Pethica et al. [11] attempted to confirm the existence of bound 

water on colloid particles. They prepared polyvinyl acetate (PVA) in the form of 

monodisperse solutions consisting of spherical particles with varying size less 

than 1µm. A direct measurement of relaxation times (T1 and T2) of 0.13µm and 

0.8µm diameter particle, were used. Results indicated that the relaxation rates 

(1/T1 and 1/T2) increased linearly up to a certain concentration. Above this 

concentration a rapid increase of relaxation rates were noticed. The authors 

explained this change in view of a co-operative effect. As the particle approached 

each other, the cooperative effect became dominant.  The study concluded that 
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the total amount of bound water per unit surface area was greater for the larger 

particle [8, 11]. 

Katayama and Fujiwara [12] investigated the states of water in a 

polyacrylamide gel by means of spin-lattice relaxation time constant (T1) 

measurements. Their study concluded that the macromolecule must have a 

hydrophilic substituent such as R–OH, -CO2H, R-CO, R-CHO, R-CONH2, R-NH, 

to be able to capture a certain amount of water. They stated that the nature of a 

substituent plays an important role in determining the amount of bound water. 

Another study [13] supported this finding, as the authors studied the effect of a 

substituent type of cellulose ethers on both the state and the dynamics of water 

in hydrogels. The water proton spin-lattice (T1) and the spin-spin (T2) relaxation 

time constants were measured to probe polymer/water interaction at room 

temperature. The results indicated that the T1 and T2 values of water in hydrogels 

decreases as polymer concentration increases.  The number of bound water 

molecules is also highly dependent on the substituent type. The presence of 

hydrophilic substituents on polymer chains produces a high bound water fraction. 

Moreover, the relaxation rate (1/T1) is sensitive to the type of polymer substituent 

but insensitive to the molecular mass of the polymer.  

The spin-lattice (T1) and the spin-spin (T2) relaxation times were utilized to 

study water behavior in poly (methylmethacrylate) hydrocolloids [14]. Results 

revealed that the relaxation rate (either 1/T1 or 1/T2) increased as the amount of 

polymer increased. The translational diffusion coefficient of water molecules in 

hydrocolloids decreased as the polymer concentration increased. This decrease 
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may be attributed to a restriction of motion of water molecules located on the 

polymer’s surface. Thus, the relaxation rate was found to be directly proportional 

to the bound water fraction. 

Duff [15] examined the temperature and frequency dependence of spin-

lattice relaxation time constants in a porcine L dorsi muscle. Spin-lattice (T1) 

relaxation time constants were recorded at 10.7, 30, 60, and 90 MHz over a 

temperature range 203-263°C. Duff found that the bound water fraction 

decreased from 0.15 at 263˚C to 0.07 at 203˚C.  

Nystrom et al. [16] conducted 1H NMR experiments at 99.6 MHz over a 

temperature range of 14-44˚C to study the motion of small molecules in cellulous 

gels. They also examined the temperature dependency of spin-lattice time 

constant (T1) and diffusion coefficient (D). Their results demonstrated that the 

presence of a polymer reduced the values of T1 and D to the same degree. Over 

the temperature range, the ratio of T1 in gel to T1 in solvent remained constant.  

Blinc et al. [17] measured the T1/T2 ratio of fibrin gels, plasma, and blood 

clots to determine the bound water fraction, in addition to the temperature effect 

on T1 and T2.  Both the T1 and theT2 values decreased as the temperature 

decreased from 40˚C to below 0˚C. The bound water fraction in the fibrin gel at 

room temperature was approximately 3x10-3, whereas, in the collapsed fibrin gel 

the bound water fraction was 10-2. Blinc et al. [18] further investigated the 

dependence of water self-diffusion coefficients, the proton spin-lattice, and spin-

spin relaxation rates on the concentration of gelatin and collagen. In a gelatin 

water system, the water behavior was explained with a two-phase exchange 
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model. The spin-lattice and the spin-spin relaxation rates (1/T1 and 1/T2, 

respectively) varied linearly with the bound water fraction. The spin-lattice 

relaxation rate of bound water was equal to 24.7 sec-1. The spin-spin relaxation 

rate of bound water was equal to 206 sec-1. In turn, in the collagen water system, 

the spin-lattice relaxation time constant was analogous to the water-gelatin 

system. However, the spin-spin relaxation profile exhibited a non-exponential 

decay and displayed two T2 values.  The third water component that exists in the 

collagen-water system was defined as the structural water that stabilizes 

collagen’s helical structure. 

A 1H NMR relaxometry study [19] examined water adsorbed on colloidal 

latex particles in polyelectrolyte solution. It was found that the water relaxation 

rate increased as the concentration increased. This increase was due to the 

increase of bound water fraction attached to polymer chains. The linear 

relationship between the water relaxation rate and the polymer concentration was 

only observed at a low concentration whereas, at a high concentration, deviation 

from linearity occurred. They attribute this deviation to structural changes in the 

polymer solution. 

In summary, the following trends were observed for spin relaxation 

phenomenon in water-containing systems; the spin lattice relaxation time is 

proportional to the temperature and varied linearly with bound fraction. Also, the 

spin-lattice relaxation time constants for protons in bound water (T1b) is shorter 

than the spin-lattice relaxation time constants for protons in free water molecules 

(T1f). The amount of bound water in water-colloid systems is very small, and 
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substituent on the surface play an important role in determining bound water 

layer thickness.   

Colloidal Unimolecular Polymer 

Colloidal unimolecular polymer (CUP) system is a new colloid system that 

exists as solid spheroid particles suspended in an aqueous media. A CUP 

particle has charged groups located on the sphere’s surface, in conjunction with 

a collapsed hydrophobic backbone chain [20].  The hydrophilic groups can be 

anionic, cationic, or non-charged analogues to a micelles (see Figure 1). 

 

Fig. 1 Colloidal Unimolecular Particles System. 

 

Figure 2 shows the steps in the process of forming a CUP particle in a 

solution. The formation of CUP particles is simply accomplished in view of the 

Flory-Huggins theory. A specific amount of a copolymer (MMA-MAA) is dissolved 
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in an organic solvent. In this step the polymer chains are in random coil 

configuration (structure I). Based on the acid number value, the acid groups were 

neutralized by base. Neutralizing the acid groups creates a charge repulsion, 

thus the random coil configuration becomes extended (structure II). Water of pH 

8-9 was added to the solution to change solvent environment.  The water 

addition raises the dielectric constant of polymer solution, so charge repulsion 

increases. In order to minimize the charge repulsion, the polymer chain changes 

its configuration to be an extended chain (structure III) at which point the Mark–

Houwink parameter (a) attains its highest value approaching  2. By continuously 

adding water to the polymer solution, the polymer solution reaches the point at 

which the polymer-polymer interaction became greater than the polymer-solvent 

interaction. Hence, water released from the backbone entropically favors the 

polymer chain collapse (structure IV). Finally, the organic solvent was stripped off 

leaving only solid spheroid particles suspended in aqueous media (structure V) at 

which point the Mark–Houwink parameter (a) approaches zero. The presence of 

an ionic group on the surface is the driving force for preventing particle 

aggregation, and aids in the formation of the spheroidal shape. CUP suspensions 

can be considered as a unique colloidal system, they have typical particle sizes 

of 2 to 9 nm based on the molecular weight of the copolymer. Moreover, CUP 

systems contain only charged particles, water, and counterions without any 

additives.  
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Fig. 2 Process of forming CUP particles 
 
 

 The rheological properties of CUP particles in water suspension was 

studied by Van De Mark et. al. [21].  Results showed that the rheology behavior 

of CUP particles is highly influenced by primary and tertiary electrovisocus 

effects in dilute solutions. The surface water layer thickness increased as the 
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particle size increased due to the increase of surface charge density. In addition, 

a study on the gel point and rheology measurements of a CUP system was 

conducted [22]. A capillary viscometer and a cone-and-plate rheometer were 

used to measure viscosities. Results indicated that the thickness and the density 

of surface water around the CUP particles play an important role in determining 

the gel point. CUP suspension intrinsic viscosity values were found to be 

analogous to spherical polyelectrolytes. This suggested that CUP particles are 

behaving as highly charged spheroid particles. Calculations based on the 

random close packing assumption and the density of bound water and free water 

revealed that the bound water layer thickness was 0.57 nm. Also, a dynamic 

surface tension study [23] using a maximum bubble pressure surface 

tensiometer indicated the existence of bound water in a cationic CUP system, 

and found that the density of bound water was 1.6% larger than the density of 

bulk water. 

This study investigated the bound water in CUP systems experimentally 

by means of low field 1H NMR.  Proton NMR spin-lattice relaxation time constants 

were measured for CUP colloidal systems as a function of CUP particle size, 

concentration, and temperature.    
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EXPERIMENTAL 
 
Materials 

Chemicals used; Methyl methacrylate (MMA), methacrylic acid (MAA), 2, 

2′-azobis (2-methylpropionitrile) (AIBN), and 1-dodecanethiol were purchased 

from Aldrich. MMA was washed with a 10% (w/w) solution of sodium bicarbonate, 

and then deionized water and brine solution. This solution was dried over sodium 

sulfate and filtered. Finally, the solution was distilled under nitrogen gas. MAA 

was purified by distillation. AIBN was re-crystallized from methanol, and 1-

dodecanethiol was used as received. 

Synthesis and Characterization of Poly (MMA/MAA) Copolymers 

The two copolymers of MMA and MAA under investigation were prepared 

in a molar ratio of 9:1 by a free radical polymerization method. To a stirred 2L 

three neck flask were added (750g) of tetrahydrofuran (THF), methyl 

methacrylate MMA (225.25g, 2.25mol), and methacrylic acid MAA( 21.5g, 0.25 

mol). A chain transfer agent 1-dodecanethiol was added. The amount of chain 

transfer agent was calculated based on the desired molecular weight of the 

polymer (2.15g for 25kD and 1.2g for 111kD). The initiator AIBN 0.3g was then 

added. The reaction mixture was heated to reflux for 24 hours under nitrogen 

gas. The solution was then allowed to cool to room temperature and precipitated 

in cold de-ionized water under high shear mixing. Finally, the polymer was placed 

in a 50°C oven under vacuum for 24 hours. The absolute molecular weight of the 

copolymers was measured using gel permeation chromatography using a 

Viscotek model 305 instrument manufactured by Malvern Corp. Flow rate of THF 
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was 0.5ml/min, and the injection volume was 100μl. The GPC was equipped with 

a refractive index detector, low and right angle light scattering detector, and 

intrinsic viscosity detector, thus yielding absolute molecular weight. Table 1 

shows the parameters that characterized the two synthesized polymers.  

Table 1 Molecular weight, particle size, and acid number of copolymers 

Polymer 

MMA-MAA 
Mn 

Particle Size (nm) Acid 

value 

 

Acid 

groups 

per chain 

Acid 

groups       

per  nm2  * 

Calculated DLS 

RX25   29 kD 4.2 4.1 59.1    ~ 29 0.55 

RX22 111 kD 6.6 6.5 62.2 ~ 112 0.85 

*Charge density on CUP surface. 

Acid Number 

Acid numbers were determined by titration method in accordance with 

ASTM D-974. This standard was slightly modified by using potassium hydrogen 

phthalate (KHP) in lieu of hydrochloric acid and phenolphthalein in place of 

methyl orange. 

Water Reduction 

Ten grams of synthesized polymer was dissolved in 40g tetrahydrofuran 

(THF) (20% w/w) and stirred overnight. Based on the value of the acid number, 

1M sodium hydroxide solution was added to neutralize all the acid groups. Then 

80 g of modified water (pH=8~9 adjusted by 1 M NaOH) was added to the 

polymer solution by a peristaltic pump at a rate of 1.24g/minute. It is important to 

maintain the pH of the solution between 8.3 and 9.0. THF was then stripped in-
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vacuo and filtered through a 0.45μm Millipore membrane to remove any foreign 

materials. For higher concentrations, the water was removed under reduced 

pressure. Once all the CUP solutions of various concentrations were prepared, 

one gram of each solution was transferred into 10mm-diameter flat bottom NMR 

tubes, and sealed with a plastic cap. 

Particle Size Analysis 

The particle size of CUP was measured by Microtrac Nanotrac 250 with a 

dynamic light scattering method (DLS). Also an average theoretical diameter of 

CUP particles was calculated from the absolute molecular weight (Mn) measured 

by GPC. The purpose of using two techniques is to compare and confirm the 

results.  

The proton spin-lattice relaxation time constants were measured using a 

Bruker MiniSpec 20-MHz NMR magnet interfaced to a Unity Varian 

spectrometer. A series of 30 spin-lattice relaxation recovery spectra were 

observed by using a standard inversion recovery 180˚- τ -90˚ pulse sequence. All 

experiments were performed without field-frequency locking at 18˚, 27˚, and 

37˚C; field stabilization was achieved through thermal stabilization of the magnet. 

The temperature was controlled by placing the Bruker magnet in Fisher isotherm 

incubator. The accuracy of temperature control was ± 0.2˚C. Each measurement 

was repeated five times on different days to confirm its reproducibility. All data 

reported in this paper are average values.  
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RESULTS AND DISCUSSION 

The solid unreduced sample of poly (MMA/MAA) copolymers RX-25-29kD 

was initially measured by low field proton NMR in order to determine its signal 

contribution to the results. We were unable to detect any significant signal, 

therefore, the polymer’s contribution to the NMR signal was neglected. Proton 

NMR spin-lattice relaxation time constants, T1, for the water solvent were 

measured as a function of CUP concentration at three different temperatures. 

Initially, the data was analyzed using a mono-exponential recovery model. 

Figures 3 and 4 show the plot of   T1 vs CUP concentration for various 

temperatures. T1 indeed varied inversely with CUP concentration; as the CUP 

concentration increases, the T1 values decrease. This behavior strongly 

suggested a two-phase model because a different contribution from each phase 

results in lowering T1 values, and that the data should be analyzed on the basis 

of a bi-exponential recovery model. The spin lattice relaxation time constant can 

therefore characterize the proton relaxation for at least two different proton 

environments.  Our data suggested that the measured T1 value obtained from a 

mono-exponential analysis represented the weighted average value of the spin-

lattice relaxation time constants for protons in bound water (T1b) and in free water 

molecules (T1f). The decrease in T1 value with increasing CUP concentration 

seen in Figures 3 and 4 indicated a progressive increase of the shorter T1b 

contribution. The relationship between the bound and free water fraction can be 

re-expressed using a bi-exponential model expressed in equation (1). The bound 

water molecules have lower molecular mobility than bulk water, and as reported 
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in the literature [13, 18], the nuclear magnetic relaxation time constant, T1b, is 

much shorter than the proton spin relaxation parameter for free water, T1f. 

 

                                                  
1 1 1

1 1

b fT T T

φ φ−= +                                     (1) 

Where, ɸ is the fraction of bound water molecules, and is given by  

                                                       
b

b f

N

N N
φ =

+                                           (2) 

Here, Nb is the number of bound water molecules, and Nf the number of free 

water molecules. 
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 Fig. 3 Water proton NMR spin-lattice relaxation time (T1) of RX25- 29kD as a 
function of CUP concentration. 
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Fig. 4 Water proton NMR spin-lattice relaxation time (T1) of RX22-111kD as a 
function of CUP concentration.  
 

 

Even though the NMR measurements were conducted on similar 

concentrations of both polymers, the spin lattice relaxation time constants, T1, for 

solutions of RX22-111kD were smaller than T1 values of RX25-29kD (see Figure 

5). The difference became more pronounced as the CUP concentration 

increased. This change was interpreted in terms of the fact that the RX22-111kD 

had greater surface charge density per unit area than RX25-29kD. Therefore, the 

RX22-111K particles associated a larger amount of bound water than RX25-29K 

particles.                                                         
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Fig. 5 Water proton NMR spin-lattice relaxation time (T1) of both polymers at  
18° C as a function of CUP concentration. 
 

Figure 6 and 7 show the variation of the spin-lattice relaxation time 

constant T1 over the temperature range 291-310 K. We interpreted the 

experimental results where the T1 values increased with temperature to be due to 

the increase in the rate of molecular motion of the waters. The relationship 

between T1 and 1/T for pure water was linear, but it deviated slightly from 

linearity for CUP solutions. The deviation is probably due to the existence of two 

types of waters (free and bound). The temperature has a direct influence on the 
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diffusion coefficient, D, of bulk water molecules. According to the Stokes-Einstein 

equation, the diffusion coefficient, D, is given by: 

                                                     
6

kT
D

rπη
=                                               (3) 

Where k is Boltzmann constant, T is absolute temperature, η is viscosity of the 

solvent (water,) and r is radius of the diffusing solute particle.  The diffusion 

coefficient of water molecules is proportional to the temperature and inversely 

proportional to the viscosity of water. Viscosity measurements of CUP solutions 

(21) found that the CUP solution viscosity increased as CUP volume fraction 

increased. Subsequently, the diffusion constant decreased. The proton spin-

lattice relaxation time constant, T1, has also been related to the diffusion 

coefficient, viscosity, and temperature by the following relationship [24]: 

                                

                                         1 e x p ( )
T E

T D
R T

α α α
η

−
                

Where E is the activation energy, R is gas constant. Proton spin-lattice relaxation 

time constant (T1) measurements of CUP-water systems agreed with the above 

relationship. The T1 values increased as the temperature increased due to the 

increase in the diffusion coefficient of water molecules. As the concentration of 

cup particles increased, it was likely that the electroviscous effect caused an 

increased deviation from linearity in the plots. 
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Fig. 6 Temperature dependence of the proton spin-lattice relaxation time of 
RX25-29kD. 
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Fig. 7 Temperature dependence of the proton spin-lattice relaxation time of  
          RX22-111kD. 
                                                                                                              

In order to calculate the amount of bound and free water in the CUP 

system as well as T1b and T1f,  the proton spin inversion recovery data was 

analyzed by a model equation consisting of the sum of two exponential terms, 

including five fit parameters (a model that describes a two-site system): 

                               
1

1
( ) (1 2 exp )i

n t
T

i
i

F t A
−

=
= Σ −                                  (4) 
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Where, A1 = amount of bound water; A2 = amount of free water, T11 = relaxation 

time constant for bound water, and T12 = relaxation time constant for free water. 

This mathematical construct was effectively used to quantify content and 

microscopic distribution of oil in shale samples [25].  Data analysis was 

performed by SigmaPlot version 12.5 software. Results are presented in Figures 

8 and 9. 
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Fig. 8 Bound water fraction of RX25-29kD as a function of CUP concentration. 
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   Fig. 9 Bound water fraction of RX22-111kD as a function of CUP concentration. 

 

It can be seen from Figures 8 and 9 that the bound water fraction ɸ varies 

almost linearly with CUP concentration up to 15%. At higher CUP concentrations, 

the data deviated from linearity. The reason for the deviation is a surface charge 

density effect. The CUP particle is a charged spheroid particle with negative 

charges on their surface due to the carboxylate groups. According to the 

Manning counterion condensation model [26], the surface charge causes a 

counterion condensation. There are two type of condensation; short range and 

long range condensation.  The short range counterion condensation results from 

neighboring charge repulsion located on the same particle whereas the long 
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range counterion condensation results from charge repulsion between two 

particles. The long range counterion condensation is more pronounced at high 

concentrations. Calculation of surface charge density on CUP particles has been 

performed [21] using the Belloni program. Results indicated that the effective 

charge decreased as the CUP volume fraction increased.  The higher the 

molecular weight, the greater effective charge number. The increase in CUP 

concentration led to an increase in counter ion concentration. This results in the 

accumulation of these ions on the CUP surface causing the electric double layer 

to be shortened, hence a reduction in the bound water layer thickness. 

To gain a deeper understanding of CUP hydration, it is important to relate 

our results to a microscopic model of the CUP system by calculation of the bound 

water layer thickness.  The weight of bound water was calculated from the 

following formula:  

 
                       
                        (5)                               
 
 
Where mbound is the weight of bound water, mcup is the weight of CUP, (the total 

weight of CUP solution was 100 g). To get the total volume of bound water, the 

weight of bound water was divided by the density of bound water, which is equal 

to  1.0688 g/cm3 [22].The total surface area of the CUP particles was calculated 

based on the measured diameter of a single CUP spheroid. Then, the water layer 

thickness was calculated by dividing the total volume of bound water by the total 

surface area of the CUP particles. 

1 0 0

b o u n d

c u p

m

m
φ =

−
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Table 2 Bound water layer thickness for various concentrations of two CUP 
systems at the indicated temperatures. 
 

 RX25-29kD RX22-111kD 

Concentration 
Bound water layer thickness 

in nm 
Bound water layer thickness 

in nm 

 18˚ C 27˚C 37˚C 18˚ C 27˚C 37˚C 

~ 5% 0.45 0.48 0.52 0.63 0.67 0.69 

~10% 0.41 0.43 0.46 0.56 0.60 0.63 

~15% 0.34 0.36 0.39 0.52 0.55 0.57 

~ 22% 0.23 0.21 0.19 0.53 0.33 0.30 

  
 

Table 2 shows that the bound water layer thickness was larger for RX22-

111kD than RX25-29kD. The typical diameter of a hydrogen bonded water 

molecule used in our calculations was 0.27-0.28 nm. At low concentrations of 

CUP, the RX22-111kD particle holds approximately 2.3 bound water layers 

whereas the RX25-29kD particle hold about 1.7 bound water layers. The acid 

groups on CUP particles surface have a propensity to bond with water molecules 

via hydrogen bonding. The RX22-111kD has more carboxylate groups per unit 

area than RX25-29kD, Table 1. Accordingly, the surface charge density of RX22-

111kD is higher than RX25-29kD [21].  Higher surface charge density requires 

more hydrated sodium ions at the CUP surface which cause the bound water 

layer to be thicker. These results agreed with the rheology study [22] that 

indicated the existence of two bound water layers hydrating the CUP particle, 
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and the higher surface charge density holding more water molecules.  As the 

concentration of CUP increased the number of counterions increased (see Figure 

10). The electrostatic coupling between negatively charged CUP particles and 

positively charged sodium ions causes counterions condensation on the CUP 

surface. This charge accumulation reduces the effective charge density [21]. For 

this reason, the bound water layer thickness decreases as the concentration of 

CUP increases above 15%.            

 

Fig. 10 The effect of CUP concentration on bound water layer thickness: (a) 

Dilute solution CUP particles are far from each other and counterion 

concentration is low. (b) Concentrated solution CUP particles approach each 

other and counterions condense, reducing the size of the thickness of bound 

water layer. 
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We observed that there was an insignificant increase in bound water 

fraction as the temperature was increased. This may be explained in terms of 

increasing molecular mobility. Some water molecules are too tightly bound and 

may go “dark” and can not be detected by T1 analysis. As the temperature rises, 

these water molecules become slightly mobile and captured by T1 

measurements.  

From the analysis of the inversion recovery NMR data, we found that the 

bound water relaxation time T1b does not change as the CUP concentration 

increased and as the particle size increased. This suggested that the interaction 

between CUP particle and water molecules take place via only one regime. The 

most probable mechanism is through hydrogen bonding interaction. The value of 

T1b =42 ± 3 ms.  This value is similar to the bound water relaxation time that was 

previously reported in a gelatin-water system (T1b = 40.5 ms) [18], and cellulose 

ether polymer-water system (T1b= 57.1 ms) [13]. 

 

CONCLUSION 

In CUP-water systems, there are generally two states of water; free and 

bound water. One to two water layers directly hydrated the CUP particle surface. 

The hydration of CUP particles was found to be strongly dependent on surface 

charge density of the CUP particle, the higher the surface charge density, the 

thicker the bound water layer.  However, as the concentration of CUP particles 

increased, the bound water layer thickness decreases as a result of Manning 

condensation. The bound water layer thickness is not significantly affected by 
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temperature at low concentration, but it significantly changed at high 

concentration ~ 22% over temperature range 18-37°C. 
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ABSTRACT 

A method for the detection of detailed polymer mobility was developed 

using solid state NMR. Solid-state 13C NMR spectra were obtained for a 

commercial homopolymer and an acrylic copolymer using magic angle spinning 

with proton cross polarization and the pulse sequence for total spinning sideband 

suppression, CPMAS-TOSS. The observed peak intensities of the backbone 

carbons and side chain carbons were monitored as a function of temperature. As 

the temperature increased, the peak intensities decreased because a 

concomitant increase in polymer mobility disrupted proton cross polarization, a 

requirement for the enhancement and observation of 13C NMR peaks.  The 

decays in peak intensities in solid-state 13C CP-TOSS NMR spectra were related 

to specific polymer chains dynamics. The plot of peak intensity vs. temperature 

for a well-resolved peak revealed two intersecting lines. Several intersection 

point temperatures were found to be close to the temperatures of the first 

deviations from the extrapolated baselines measured by differential scanning 

calorimetry (DSC). The NMR method allows distinguishing between the onsets 

temperatures for mobility of the main chain versus the side chains. As expected, 
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the carbons in the rigid backbone displayed higher intersection point 

temperatures than the side chain carbons. 

Keywords: polymer mobility, solid-state NMR, cross-polarization, 13C CP-TOSS 
NMR, chain dynamics, intersection point temperature, DSC, Tg 
 
 
 

1. INTRODUCTION 

In the field of spectroscopy, generally, nuclear magnetic resonance 

spectroscopy (NMR) is the most useful tool for identification of polymer molecular 

architecture. Liquid state proton and 13C NMR dominate utilization capacity for 

structure identification. For determining molecular dynamics, proton NMR has a 

limitation unless, for example, deuterium isotope substitution is performed [1, 2].  

Differential scanning calorimetry (DSC) is commonly used to measure the 

glass transition temperature (Tg) of polymers. The Tg is commonly understood 

as the temperature at which a polymer changes from a glassy state to a rubbery 

state. The DSC technique relies on the measurement of endo and exo heat flow 

to/from the sample when subjected to a programmed linear temperature change 

[3, 4]. As the sample temperature is raised or lowered, there is absorption or 

release of energy [5]. The TG measured by DSC represents a temperature 

range, rather than a specific temperature [6]. The midpoint of the range of 

temperatures over which the molecule shows an increase in heat flow is 

generally reported as the glass transition temperature (TG). 

Solid state 13 C NMR has been used routinely to investigate the chemical 

structure of organic molecules. The growth of usage of solid state NMR can be 
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attributed to several advantages over liquid state NMR such as an absence of 

solvent effects and sample solubility limitations. Also, the instrumentation 

developments of the technique were able to remove the effects of chemical shift 

anisotropies and dipolar interactions, hence narrow spectra were produced. This 

improvement has made solid state NMR an attractive method for also 

characterizing molecular dynamics [7, 8]. 

There are many 13C solid state NMR experiments employed to gather 

information about structure and chain conformation characteristics [1]. Cross 

polarization (CP) combined with magic angle spinning (MAS) is the most 

common solid-state NMR experiment (CP-MAS). In the CPMAS experiment, the 

sample is rapidly spun around the rotor axis which is placed at the magic angle 

(54.74°) with respect to the external applied magnetic field, Bo. Then, cross 

polarization is employed in order to enhance the signal to noise ratio of the 13C 

signal by transferring 1H polarization to 13C [7].  The 1H spins interact with the 13C 

nuclear spins according to the dipolar interaction [8]. This interaction occurs 

through space and depends on the gyromagnetic ratio of both nuclei and the 

distance between them [7, 8]. The dipolar coupling constant R quantifies the 

magnitude of the dipolar interaction and is equal to: 

                                

                                        34
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C H

C H
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µ γ γ
π
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Where μo is the permeability constant of free space, γH and γC are the 

gyromagnetic ratio of hydrogen and carbon, respectively, ħ is the reduced Planck 

constant, and rCH is the distance between carbon and hydrogen spins. As the 

distance between a carbon-proton spin pair increases the dipolar coupling 

constant decreases, and a concomitant decrease in the polarization transfer 

effect results in weaker 13C NMR signals. For instance, the RCH value is equal to 

22.54 kHz when the distance between the carbon and hydrogen is 1.1 Å, the 

typical hydrogen-carbon bond length. This value drops to 3.75 kHz as the 

distance increases to 2Å, the typical distance between a carbon and hydrogen 

located on an adjacent carbon. A large RCH value results in a large enhancement 

of the carbon signal intensity for relatively short CP contact times. It turns out that 

the larger the RCH value, the shorter CP time is required to transfer polarization. 

Since polarization fades away back to equilibrium, it is best to transfer 

polarization from protons to carbon as quickly as possible. Large RCH values 

make it possible to transfer polarization quickly and thereby maximize the 

enhancement of 13C NMR signals. Therefore, enhanced CP efficiency will be 

greatly dependent on carbon-proton distances in a polymer. The CP signal will be 

much weaker for carbons that are not bonded directly to protons [7, 8]. Another 

factor that determines the value of the energy of interaction between proton and 

13C spins is the angle between the external field and the vector joining the two 

spins. The energy of interaction is equal to: 
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Where r is the distance between the two spins and θ is the angle between the 

external field and the vector joining the two spins. The constant A depends on 

the magnetic moment of the two spins. The greater the energy of interaction 

between a proton-13C spin pair the more efficient and effective the polarization 

transfer, and the more intense the 13C NMR peak. 

The CP-MAS techniques have been widely used to characterize organic 

and polymer structures. Schaefer and coworkers [9] pioneered the application of 

this technique. They were able to obtain well-resolved 13C NMR spectra for solid 

poly(methyl methacrylate) and solid polystyrene samples at room temperature. 

Later, this technique was used to probe the group dynamics of polymer chains 

[10, 11]. Schaefer [10] found that the 13C rotating frame relaxation time constant 

(T1ρ) was directly related to motions of main chains in glassy polymers. He stated 

that for glassy polymers, the 13C (T1ρ), is sensitive to motions of the polymers 

having frequencies comparable to the magnitude in kHz of the applied carbon rf 

field. 

CP-MAS experiments have been carried out as a function of temperature 

[12, 13]. The combination of variable temperature and CP-MAS added 

advantages to solid-state NMR. CP-MAS combined with variable temperature 

makes it possible to investigate both molecular structure and molecular dynamics 

[12, 13]. Variable temperature CP-MAS experiments were used to provide 
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information about the amorphous and crystalline state of cured diglycidyl ether of 

bisphenol A (DGEBA) polymers [13]. The study correlated the solid-state line 

splitting and line shape to the state of the polymer. 

The 13C NMR peak widths for polymers as a function of temperature have 

been investigated [15, 16]. A study on the effect of solid bisphenol A 

polycarbonate (BPAPC) molecular motion on NMR line width was performed [2]. 

Results indicated that the broadening and narrowing of 13C NMR spectra was 

greatly dependent on temperature. McGrath [15] studied segmental dynamics of 

polyisobutylene (PIB) and poly (vinylethylene) (PVE). His results confirmed that 

there was a direct connection between 13C NMR spectra line width and molecular 

motion [15]. Linewidth measurements from variable temperature 13C CP-MAS 

spectra were also employed in order to distinguish between crystalline and 

amorphous states. Lyeria [7] found that the 13C chemical shift may vary due to a 

variation in intermolecular effects from one molecule to another in the sample. 

One of the unique aspects of the CP-MAS experiment is the possibility to 

perform relaxometry measurements. Spin-lattice relaxation time constants (T1), 

spin-spin relaxation time constants (T2), and proton and carbon rotating-frame 

relaxation time constants (T1ρ) can be determined. The analyses of these 

parameters over a temperature range provide information about the molecular 

motion. Schaefer and Stejskal [9] have carried out T1ρ measurements to probe 

dynamic heterogeneity of the glassy state by conducting a variable temperature 

study on polypropylene (PP) and polymethyl methacrylate (PMMA). They 

observed a progressive broadening of the methyl resonance as the temperature 
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decreased. This broadening was attributed to the reorientation rate of the methyl 

group. As for the T1ρ data for the quaternary carbonyl and methoxy carbons, the 

methyl motion had an influence of relaxing other carbons in solids via long-range 

C-H dipolar interactions [7, 9]. 

In 1982, Dixon and co-workers [16, 17] developed a CP-TOSS technique, 

cross polarization with total suppression of spinning sidebands. It was stated that 

this technique can eliminate spinning sidebands from CP-MAS spectra. In the 

TOSS technique, the pulse sequence consists of a series of four to six (equally –

spaced) 180° pulses applied on the 13C channel just before data acquisition [18]. 

This will suppress rotational echoes and allow the acquisition of the free 

induction decay signals without modulations from spinning.   

In this study we applied the CP-TOSS pulse sequence to measure the 

segmental dynamics of poly(isobutyl methacrylate) and copolymer poly (methyl 

methacrylate/ butyl acrylate/ trifluoroethyl methacrylate/ acrylic acid), poly 

(MMA/BA/TFEMA/AA). We introduce a simple approach that correlates the 

decay of the peak intensities with temperature to Tg measured by DSC.   

 

2. EXPERIMENTAL 

2.1. Materials 

Chemical used; methyl methacrylate (MMA), butyl acrylate (BA), acrylic 

acid (AA), 2,2,2-trifluoroethyl methacrylate (TFEMA), 2,2′-azobis(2-

methylpropionitrile) (AIBN), and 1-dodecanethiol were purchased from Aldrich. 
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MMA and TFEMA were washed with a 10% (w/w) solution of sodium 

bicarbonate, and then washed with de-ionized water and brine solution. The 

solution was then dried over sodium sulfate and filtered. Copper (I) bromide was 

added to the MMA, and TFEMA as an inhibitor. Finally, the solutions were 

distilled under nitrogen gas. Acrylic acid (AA) was purified by distillation with 

copper (I) bromide. AIBN was re-crystallized from methanol, and 1-dodecanethiol 

was used as received. 

2.2 Polymer Synthesis and Characterization 

The homopolymer poly(isobutyl methacrylate) was purchased from 

Aldrich. The copolymer under investigation was synthesized by a free radical 

polymerization method. To a three-neck flask, 750 grams of methyl ethyl ketone 

(MEK) and a magnetic stirring bar were added. Then, methyl methacrylate MMA 

75.68 g (0.76 Moles), BA 37.90 g (0.30 Mole), AA 8.72 g (0.12 Moles) and 

TFEMA 6.50 g (0.04 Moles) were added, giving a molar ratio of  19:7.5:3:1 MMA: 

BA: AA: TFEMA. A chain transfer agent, 1-dodecanethiol (0.81g, 4 mmol) was 

added. Finally, the initiator AIBN (0.14g, 0.8 mmol) was added. The reaction 

mixture was slowly heated to reflux for 24 hours under nitrogen gas. The solution 

was then allowed to cool to room temperature, and the white solid polymer 

precipitated in cold de-ionized water under high-shear mixing. Finally, the 

polymer was placed in a 50°C oven under vacuum for 24 hours. The absolute 

molecular weight of both the homopolymer and copolymers were measured 

using a Viscotek model 305 gel permeation chromatography (GPC) instrument 

manufactured by Malvern Corp. Flow rate of THF was 0.5ml/min, and the 
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injection volume was 100μl. The GPC was equipped with a refractive index 

detector, low and right angle light scattering detector, and intrinsic viscosity 

detector, thus yielding absolute molecular weight. Table 1 includes molecular 

weight values of both polymers. 

 

Table 1 Homopolymer and copolymer molecular weight  

Polymer Mn 

Poly(isobutyl methacrylate) 80 kD 

poly(MMA/BA/TFEMA/AA), RX19 26 kD 

   

2.3 Glass Transition Temperature Measurements 

Glass transition temperature (Tg) of both commercial and synthesized 

polymers were obtained on a DSC Q2000 from TA Instruments- Waters LLC. 

Measurements were conducted in accordance with ASTM standard E1356-08.  

The modulated DSC (MDSC) method was applied by heating samples of mass 5-

20 mg in premium aluminum hermetic pans DSC# 84010 & 84011from DSC 

Consumables, Inc. at a heating rate of 10 °C /min over the temperature range of 

0°C to 100°C. The modulated amplitude was ±1°C with a period of 60 s. The 

typical heat flow thermograms for poly(isobutyl methacrylate) and fluorinated 

polymer RX-19 are illustrated in Figures 1 and 2. The temperature of first 

deviation (the point of first detectable deviation from the extrapolated baseline 

prior to the transition) and the midpoint temperature (the point on the thermal 

curve corresponding to 1⁄2 the heat flow difference between the extrapolated 



67 

onset and extrapolated end) were determined. The first deviation temperature of 

poly (isobutyl methacrylate) occurred approximately at 48°C (321K) whereas the 

midpoint temperature, the glass transition temperature, Tg, was 59°C (332K). 

The synthesized polymer RX-19 revealed a greater Tg value, 70°C (343K), and 

the first deviation temperature occurred approximately at 55°C (328K). 

 

Figure 1. DSC thermogram obtained for poly(isobutyl methacrylate). 
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Figure 2. DSC thermogram obtained for copolymer RX-19. 

 

2.4 Solid State NMR Measurements 

All solid-state 13C NMR spectra were obtained, from samples crushed into 

fine powders using a mortar and pestle, on a Bruker AVANCE III 400 Solid-State 

Spectrometer using magic angle spinning (5 kHz) with broadband proton 

decoupling and the CPMAS-TOSS pulse sequence for total spinning sideband 

suppression.  The measurements were carried out over the temperature range 

260-370K. After collecting data at a specific temperature, the sample and probe 

were allowed to reach thermal equilibrium over a period of ten minutes at the 

new specified temperature.  NMR data was processed and analyzed using 

Bruker TopSpin version 3.2.1 software. 
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3. RESULTS AND DISCUSSION 

3.1 Commercial Polymer poly(Isobutyl methacrylate) 

The polymer backbone of poly(isobutyl methacrylate) contains a 

quaternary carbon and methylene carbon. The side chain consists of pendant 

carbonyl carbon, (-OCH2-), (-CH-), and methyl carbons. The chemical structure of 

poly(isobutyl methacrylate) is shown in Figure 3.to discussion  

                               

Figure 3. The chemical structure of poly(isobutyl methacrylate). 

The peak at 170 ppm in the carbon NMR spectrum was assigned to the 

pendant carbonyl carbon, and peaks at 65, 22, and 13 ppm arose from (-OCH2-), 

(-CH-), and (-CH3), respectively. There are two types of methyl carbon: methyl 

carbon bonded to quaternary backbone carbon, and methyl carbon located far 

away from the backbone. The overlapping of peaks was obvious for both 

carbons. The quaternary backbone carbon resonance appeared at 38 ppm, and 

adjacent methylene backbone carbon resonance appeared at 49 ppm. Figure 4 

shows the decay of peak intensities for different temperatures. At low 

temperatures, the peak intensity decay was small.  At high temperatures, the 

peak intensity decay was large. Some peaks almost disappeared completely 

from the spectra at the highest temperatures.  
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Figure 4. Peak intensity decay of solid-state 13C CPTOSS NMR spectra of 
poly(isobutyl methacrylate) at (A) 270, (B)320, and (C)370 K. 

 

Peak intensities vs temperatures were plotted for each carbon. The 

pendant carbonyl carbon peak intensities decayed as a function of temperature 

as shown in Figure 5. Initially, the decay of peak intensities proceeded very 

slowly. Then the decay of peak intensities increased significantly. As a result, the 

curve exhibited an inflection point. Extrapolation of two linear portions to the 

intersection point yielded the temperature at which the carbonyl carbon may have 

increased its motion. The temperature was 322 K, very close to the first deviation 

temperature observed in the DSC thermogram, which occurred at approximately 

321 K.  

A 

B 

C 
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Figure 5. 13C signal intensities of the carbonyl carbon of poly(isobutyl 
methacrylate) plotted as a function temperature. 

 

Plot of the (-OCH2-) peak intensities as a function of temperature 

illustrated similar behavior (Figure 6). The two linear regions exhibit an 

intersection point at 321 K.  The lower intersection point of the (-OCH2) carbon 

compared to that for the carbonyl carbon was probably due to the fact that the (-

OCH2-) group was flexible and exo to the backbone, hence segment mobility 

occurred at a lower temperature.    
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Figure 6. 13C signal intensities of the (-O-CH2) of poly(isobutyl methacrylate) as a 
function of temperature. 

 

Figure 7 illustrates the decay of the peak intensity for the (-CH-) carbon as 

a function of temperature. The intersection point in the (-CH-) curve appeared at 

314 K. This temperature is lower than the first deviation temperature measured 

by DSC (321K). The results seem to imply that there is more free volume in the 

vicinity of the (-CH-) group, likely due to poor polymer packing. 
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 Figure 7. 13C signal intensities of the (-CH-) carbon of poly(isobutyl 
methacrylate) as a function of temperature. 

 

The plots of methylene and quaternary backbone carbons are shown in 

Figures 8 and 9. The methylene and quaternary backbone carbons curves exhibit 

intersection points at 326K and 324K, respectively.  The backbone carbons 

possessed the highest intersection point temperatures. These temperature points 

are somewhat below the 332K midpoint observed in the DSC measurements. 

This indicates that the NMR method is sensing polymer motion at its earliest 

onset temperature point. The breadth of the DSC transition encompasses all the 

chain movements and is consistent with the NMR data. 
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Figure 8. 13C signal intensities of the methylene carbon of poly(isobutyl 
methacrylate) as a function of temperature. 
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Figure 9. 13C signal intensities of the quaternary carbon of poly(isobutyl 
methacrylate) as a function of temperature. 

 

The decay of the methyl carbon peak intensity as a function of sample 

temperature showed large scatter. It was not possible to accurately determine 

the inflection point temperature (see Figure 10).  It would be assumed that the 

plot displays two intersection points. The first transition occurred at lower 

temperature and was most likely associated with motion of methyl carbons 

located far away from the polymer backbone. The second transition occurred at 

higher temperature and was most likely reflective of the transition of the methyl 

carbon bonded to polymer backbone. Due to their high molar abundance and 

direct bonding to three protons, the methyl carbons have the greatest peak 

intensity.  The methyl carbons on the side chain peaks overlaps with pendant 
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methyl carbon bonded to quaternary carbons in backbone chain. Peak overlap 

may contribute to inaccurate peak intensity determinations especially since both 

should exhibit different peak decays with increasing sample temperature. 

    

Figure 10. 13C signal intensities of the methyl carbon of poly(isobutyl 
methacrylate) as a function of temperature. 

 

 

3.2 Copolymer poly(MMA/BA/TFEMA/AA) 

The chemical structure of the synthesized copolymer 

poly(MMA/BA/TFEMA/AA) is shown in Figure 11.  The most intense peaks in 13C 

CPTOSS NMR spectra were the quaternary and methylene carbons in the 

polymer backbone as well as the carbonyl carbon.  Although the quaternary 

carbon in the polymer backbone has no directly bonded hydrogens, the high 
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molar abundance and protons on adjacent methylene and methyl carbons 

provided substantial signal intensity enhancement through cross polarization.  

The quaternary backbone carbon resonance appeared around 38 ppm, and a 

neighboring methylene carbon resonance was observed at 46 ppm. The pendant 

carbonyl carbon resonance was downfield at 170 ppm. The peak at 59 ppm was 

assigned to the methoxy carbon. The trifluoromethyl group resonance appeared 

at 119 ppm. The 13C NMR results were consistent with similar structures reported 

in the literature [19, 20, 21, 22]. 

                                                                                      

Figure 11. The chemical structure of copolymer RX-19 
 
 

As the sample temperature increased, a decrease in the intensity of 

several spectral peaks was observed. Figure 12 includes the 13C NMR spectra 

recorded at three different temperatures. The reduction of peak intensities was 

small at low sample temperatures, but was more pronounced at high sample 

temperatures. 
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Figure 12. Peak intensity decay of solid-state 13C CP-TOSS NMR spectra of 
copolymer RX-19 sample at (A) 270K, (B) 320K, and (C) 370 K. 

 

Figure 13 shows the peak intensity of the quaternary backbone carbon 

versus the sample temperature. It can be seen from the plot that the peak 

intensity decays slightly as the sample temperature starts to increase, but at a 

sample temperature that approaches 340 K, a significant decay of the peak 

intensity was observed. The data points constitute two linear segments. At lower 

sample temperatures the decay in peak intensity is small, but above the 

intersection point, the peak intensity decay increases more rapidly.  Extrapolating 

the two linear data point portions yields an intersection point at 338 K.  The 

sample temperature corresponding to the intersection point is most likely the 

onset motion of quaternary backbone carbon. The intersection point temperature 

(338 K) was below the DSC midpoint (343 K), and higher than the DSC first 

deviation temperature (328 K).  
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Figure 13. 13C signal intensities of the quaternary carbon of copolymer RX-19 as 
a function of temperature.  

 

A similar finding was observed for the methylene carbon in the backbone. 

Figure 14 illustrates the two regions with an intersection point at 338 K. This can 

be explained based on the fact that both carbons (quaternary and methylene) are 

in the polymer backbone. Therefore, there is an internal self-consistency in the 

molecular motion probed by this NMR method. 
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Figure 14.  13C signal intensities of the methylene carbon of copolymer RX-19 as 
a function of temperature. 

 

The pendant carbonyl carbon plot is displayed in Figure 15. This carbon is 

not in the chain backbone, so it has a higher degree of motional freedom 

compare to backbone carbons. The lines shown in the plot intersected at 330 K, 

about 8 degrees lower than the onset temperature of backbone motion, and 

somewhat below 328K, the first deviation temperature determined from the DSC 

result. The carbonyl carbon is part of a pendant group.  The presence of pendant 

groups on the polymer main chain may prevent side chains from packing as 

tightly as the backbone; therefore, the pendant carbonyl carbon has more room 

available for mobility than the backbone. The lower intersection temperature of 
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the pendant carbonyl carbon compared to main chain carbon can be attributed to 

the availability of more free volume.  

 

Figure 15. 13C signal intensities of the carbonyl carbon of copolymer RX-19 as a 
function of temperature. 

 

The methoxy carbon peak intensity versus sample temperature is 

illustrated in Figure 16. At low sample temperature, significant data scattering 

was observed. The scattering can be attributed to peak overlap. The intersection 

point did occur at a similar temperature to that observed for the carbonyl carbon, 

330 K.  
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Figure 16. 13C signal intensities of the methoxy carbon of copolymer RX-19 as a 
function of temperature. 
 

As for the trifluoromethyle group, the values of peak intensity as a function 

of sample temperature revealed much large scatter compared to the data shown 

in Figure 17. Therefore, the intersection point temperature cannot be accurately 

determined. The best intersection point occurs approximately between 330K and 

333K.  The primary reason behind this data point scatter was low signal strength. 

This carbon is not directly bonded to protons and has a low molar abundance. 

The dipolar interaction was expected to be weak, resulting in poor signal 

enhancements [6,7].  
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Figure 17. 13C signal intensities of the trifluoromethyl carbon of copolymer RX-19 
as a function of temperature. 

 

Table 2 summarized the intersection points measured by the CP-TOSS 

method, and includes the DSC measurements. The intersection points of solid 

state NMR peak intensity decay measurements reflect the sample temperature 

where the onset of motion was measured by DSC. The backbone carbons 

exhibited intersection points close to the midpoint, Tg, measured by DSC. In turn, 

the side chain carbons in both polymers exhibited an intersection point 

temperature close to the first deviation temperature measured by DSC. The 

difference between the solid state CP-TOSS and DSC measurements may be 

attributed to the ability of solid state NMR to detect small timescale dynamics 
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[23]. The sensitivity of this NMR technique provides more details about polymer 

dynamics compared to DSC. 

Table 2 

 First deviation and midpoint temperatures measured by DSC and intersection 
points by CP-TOSS method. 

Polymer Segment 

DSC CP-TOSS 

Intersection 

Point 

(K) 

First Deviation 

Temperature 

(K) 

Mid-Point 

 (K) 

Homopolymer 

poly(isobutyl 

methacrylate) 

C=O 321 332 322 

-OCH2- 321 332 321 

-CH- 321 332 314 

quaternary 321 332 324 

methylene 321 332 326 

methyl 321 332 -- 

Copolymer 

fluorinated 

polymer RX-19 

 

 

C=O 328 343 330 

-OCH3 328 343 330 

quaternary 328 343 338 

methylene 328 343 338 

-CF3 328 343 330 
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The cross polarization efficiency is inversely proportional to the distance 

between investigated carbons and nearby protons from which the polarization 

was transferred. Also, the energy of interaction greatly depends on the angle 

between the external field and the C-H vector (see Equation 2). Temperature-

activated motion causes this angle to modulate resulting in an averaging and 

reduction of interaction.  The intersection point of temperature-induced peak 

intensity decay curves reflects the pronounced change of either C-H distance 

and/or the angle between C-H vector and Bo. We suggest that segmental motion 

is responsible for changing distance and angle.   It is apparent from Table 2 that 

there is a different intersection point temperature associated with each segment. 

As the distance from the backbone increases, the intersection point sample 

temperature decreases.  The side groups minimize chain packing efficiency. 

Hence, the energy barrier to segmental motion is lower. The spaces available for 

side chains allow the dynamics to take place at lower onset temperatures than 

the backbone chain. 

 

4. CONCLUSION 

Variable temperatures CP-TOSS 13C NMR experiments were utilized to 

study polymer dynamics. A homopolymer and copolymer were investigated by 

this method. Plots of carbon peak intensities for each segment in the polymer 

chain vs temperature yielded two linear regions. The intersection point 

temperatures for line pairs were found to be close to the first deviation 

temperatures measured by DSC. Variable temperature peak intensity decay can 
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provide information about the dynamic motions of both main chain and side 

chains in polymer systems. However, this method is associated with some 

limitations, carbons with low molar abundance, lack of attached protons, and 

carbons with overlapping peaks do not exhibit clearly defined intersection points.  
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ABSTRACT 

A series of 5-mercapto-1, 3, 4-thiadiazole-2(3H)-thione (MTT) derivatives 

were synthesized and tested for their ability to inhibit corrosion on  steel and 304 

stainless steel  substrates in a 3.5% NaCl solution.  This work sought to assess 

which derivatives possessed the best capacity toward corrosion inhibition.  The 

substituents on the MTT were varied to determine the effect of hydrophobicity, 

molecular size, and steric hindrance on corrosion inhibition.  Both mono and di 

alkylated MTT were prepared and corrosion behavior investigated by 

electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization 

measurements. The results revealed that the best inhibition efficiency of MTT 

derivatives was achieved by 5-(methylthio)-1,3,4-thidiazole-2(3H)-thione (Me-

MTT). In contrast, the poorest inhibition was recorded when 5-(butylthio)-1,3,4-

thidiazole-2(3H)-thione (Bu-MTT) was added, the parent MTT was even poorer. 

Bu-MTT has a greater steric substituent size than Me-MTT, thus the steric 

hindrance effect resulted in poorer packing on metal surface.  
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1. INTRODUCTION 
 

Due to environmental regulations, the use of chromate-based inhibitors 

has been restrained, and a tremendous need for alternative inhibitors has 

emerged. Organic corrosion inhibitors can be regarded as a pragmatic, 

alternative approach to existing chromate-based inhibitors. The protection 

performance of organic inhibitors relies on the molecule’s adsorption strength to 

form an adhered protective film on the metal substrate. The organic molecule 

interacts with the metal surface either by chemisorption or by physical adsorption 

[1]. Chemisorption is the most important type of interaction. It functions by 

forming coordinating –type bonds between metal and organic molecule [1].   A 

coordinate bond involves the transfer of electrons from an organic molecule to a 

metal ion on substrate surface.  

  The chemical structure of an organic molecule is the most important 

element in both selection and design of an effective organic corrosion inhibitor 

molecule. The most efficient organic inhibitors are organic compounds that 

possess reactive atoms with an unshared lone pair of electrons. In general, 

molecules that containing a nitrogen, oxygen, phosphorus, selenium, or sulfur 
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have a good tendency to adsorb on metal substrates [1]. The inhibition efficiency 

generally increases in the following sequence: 

                                Selenium > Sulfur > Nitrogen > Oxygen  

This order is explained by a lower electronegativity of elements on the left that 

make their compounds easily susceptible to polarization [2]. Riggs [3] confirmed 

this finding and found that sulfur containing inhibitors are superior to nitrogen 

containing inhibitors. Moreover, the existence of both nitrogen and sulfur atoms 

in cyclic compounds are more efficient than either element alone.  

It is well established that an increase in the electron density on the 

functional atom will result in increased ability of the organic molecule to be 

adsorbed on the metal surface. For example, the availability of π electrons, due 

to the presence of either multiple bonds or aromatic rings, would aid the electron 

transfer from an organic molecule toward the metal. It would also enhance the 

electron density on the donor atom. Hackerman et al. [4] found that the inhibition 

efficiency is enhanced by increasing the electron density at a ligating atom.  

Trabanelli’s et al. [5] validated this finding as they studied alicyclic amine 

compounds. They concluded that an increase in the inhibitor’s effectiveness is 

associated with the high electron density surrounding the nitrogen atom.  This 

effect can also be influenced by introducing either electron donating or electron 

withdrawing substituents in a suitable position within molecule [1].                                                   

The molecular weights of organic molecules have been correlated with the 

ability to retard corrosion. Li, Tan and Lee [6] suggested that the molecular 

weight of an organic molecule greatly influences the corrosion inhibitive 
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efficiency. They deduced that a larger molecule will offer better corrosion 

protection as long as the molecule still possesses a minimum solubility in water. 

They also suggested that the corrosion protection can be enhanced if the organic 

molecule has an N-H bond. This bond, in turn, establishes hydrogen bonding 

with an oxygen atom of metal oxide [6].  

Recent attempts [7-11] were made to correlate the inhibition efficiency with 

quantum chemical parameters. The highest occupied molecular orbital (HOMO), 

the lowest unoccupied molecular orbital (LUMO), the HOMO–LUMO gap, 

charges on the reactive center, and the dipole moment (μ) have each been used 

to characterize inhibitor performance. Electrons in the HOMO can be easily 

donated to a metal surface. Fang and Li [7] performed quantum chemical 

calculations on four typical amide compounds. They found that the inhibition 

efficiency decreases as the EHOMO level decreases. It has been proposed that the 

effective corrosion inhibitor molecule is capable of electron donating to the 

unoccupied orbital of the metal in conjunction with its ability to accept free 

electrons from the metal [7].  Semi-empirical calculations [8] indicated that high 

efficacy compounds have both a high EHOMO value and a low ELUMO value. The 

EHOMO–ELUMO energy difference is directly related to the molecule’s stability. 

Sastri [11,12] found that a smaller EHOMO-ELOMO value can enhance corrosion 

inhibition. The orbital theoretical calculations performed on substituted methyl 

pyridines and substituted ethane derivatives, clearly showed that the corrosion 

protection improves with the increase in EHOMO, and decrease in EHOMO-ELOMO 

gap.  The dipole moment is another important parameter that may be linked to 
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inhibition efficiency. The available literature [13-14] suggests that a lack of 

agreement exists on the correlation between the dipole moment and the 

inhibition efficiency.  

Among the heterocyclic organic compounds that contain both sulfur and 

nitrogen atoms, 5-mercapto-1,3,4-thiadiazole-2(3H)-thione (MTT) possess five 

electron pair donating atoms, two nitrogen and three sulfur. These atoms can be 

strongly chemisorbed onto a metal surface to form a barrier film.  This compound 

has a broad range of potential applications, and unique chemistries. The 

effectiveness of (MTT) as a corrosion inhibitor for copper in an acid solution has 

been investigated [15]. The results revealed superior inhibition performance. The 

MTT adsorb on copper surfaces and forms a monolayer that inhibit both anodic 

and cathodic reaction sites. Similar findings for MTT corrosion inhibition of mild 

steel in sulfuric acid have been reported [16]. The results showed lower inhibition 

than copper. These studies concluded that the MTT acts as a mixed type 

inhibitor and predominantly acts at the anodic sites. Moreover, a study[17] on 

efficiency of 5-mercapto-3-phenyl-1,3,4-thiadiazole-2-thione potassium) on 

copper substrate in a sodium chloride solution shifted the corrosion potential to 

more positive region which suggest that the MTT was functioning by inhibition of 

the anodic dissolution of copper. The structure of MTT have been reported in 

three different forms. Figure 1. Shows MTT’s possible structures.  
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Fig. 1. Three tautomeric forms of MTT. 

 
A detailed investigation into the structure of MTT and its alkylated 

derivatives was conducted [18].  A combination of X-ray crystallography, 13C 

nuclear magnetic resonance spectroscopy, and ab-initio electronic structure 

calculations were used to explain which tautomer has the most stability. It was 

concluded that thion-thiol form is the lowest energy structural isomer. In turn, the 

most stable structure of mono and di alkylation of MTT are shown in Figure 2. 

 

                          

Fig. 2.  Structures of mono-alkylated and di-alkylated MTT [18]. 

 

The goal of this work was to investigate the corrosion inhibition efficiency 

of 1, 3, 4-thiadiazole-2(3H)-thione (MTT) derivatives on different metal surfaces 
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in 3.5% NaCl. The derivative structure parameters were correlated with their 

effectiveness in corrosion inhibition. These parameters include derivative 

solubility in water, size of molecule, steric hindrance of the substituent, and 

quantum chemistry parameters. Electrochemical impedance spectroscopy and 

electrochemical polarization techniques were utilized for this investigation. 

 

2. EXPERIMENTAL 

. 
 2.1 Materials 

The starting material 5-mercapto-1, 3, 4-thiadiazole-2(3H)-thione (MTT), 

was obtained from R.T. Vanderbilt. This company lists this chemical as 2,5-

dimercapto-1,3,4-thiadiazole (DMTD).  MTT was re-crystallized from benzene 

before use. All of the solvents were dried and distilled before use unless 

otherwise specified.  All MTT derivatives were characterized by 13C, 1H NMR, IR, 

and MS. Cold rolled steel panels were purchased from Q-Lab Corporation, matte 

mill finish, R-36 type.  The stainless steel specimens 304 were purchased from 

Anil Paslanmaz Celik Sanayi ve Ticaret Limited Sirketi, Turkey, composed of 

0.037% C, 0.03% P, 0.52% Si, 0.02% S, 1.59% Mn, 0.48% Mo, 0.48% Cu, 

0.067% N, 8.1% Ni, 18.04% Cr, and Fe the balance. The remaining reagents 

were purchased from either Fisher or Aldrich and used without further 

purification.  The chemical structures, name, and abbreviation of MTT derivatives 

are listed figure 3, and table 1 shows the physical parameters of each compound. 
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         R = H              MTT                                  R, R’ = -CH3                 Me-MTT-Me 

      R =-CH3        Me-MTT                              R, R’ = n-Bu                 Bu-MTT-Bu 

      R= n-Bu         Bu-MTT                              R, R’ = -CH2CO2H       A-MTT-A 

 

Fig. 3.The chemical structures, and abbreviations of the compounds 

 Table 1 
 Physical parameters of MTT derivatives 

 
Compound 

 
Molecular   weight 

g/mole 

 
Solubility in water* 

ppm 

 
MTT 

 
150.25 980 

Me-MTT 164.27 510 (550**) 

n-Bu-MTT 206.35   66 (74**) 

Me-MTT-Me 178.30 170 

n-Bu-MTT-Bu-n 262.46   1.7 

 
A-MTT-A 

 
 

266.32 250 

 

*SciFinder, Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© 1994-2013 ACD/Labs) 
** Experimentally measured using spectrophotometry technique. 
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 2.2 Synthesis of Mono-Methylated MTT (Me-MTT) [19] 

5-Mercapto-1,3,4-thiadiazole-2(3H)-thione (0.1 mol, 15.02g) was added to 

a solution of potassium hydroxide (0.1 mol, 5.61g) in absolute ethanol (2.17 mol, 

99.97 g). The reaction mixture was stirred and heated at 50˚C for 30 min. The 

mixture was cooled before iodomethane (0.11 mol, 15.61g) was slowly added to 

the mixture and refluxed for 6 hours. The solution was then allowed to cool to 

room temperature and filtered. The filtered solution was diluted threefold with 

water to cause separation of the thioether.  The precipitated product was filtered 

off and washed with distilled water. The resulting product 5-(methylthio)-1,3,4-

thidiazole-2(3H)-thione (mol. wt. 164.27) was crystallized in benzene to afford a 

light yellow needle-like crystals. The product was dried in vacuo and the yield 

was 74% (12.15 g) Me-MTT. The melting point of the compound was 137-138 oC. 

Me-MTT was characterized by 13C, 1H NMR, IR, and MS. The Me-MTT showed 

13C peaks in d-DMSO at 159.39 (–N═C–S–Me), 187.51 (–N–C═S), and 14.67 

ppm (–CH3); 1H singlet peak in d-DMSO at 2.52 (S–CH3) and 14.30ppm (N–H); 

IR bands at 3050, 1480, 1365, and 1100 cm–1; MS peaks at 164, 91, 88, 73 and 

59m/z. 

 
2.3 Synthesis of Mono-Butylated MTT  (Bu-MTT) [20] 

5-Mercapto-1,3,4-thiadiazole-2(3H)-thione (0.1 mol, 15.02g) was added to 

a solution of potassium hydroxide (0.1 mol, 5.61g) in absolute ethanol (2.17 mol, 

99.97 g). The reaction mixture was stirred and heated at 50˚C for 30 min. The 

mixture was cooled before 1-bromobutane (0.11 mol, 15.07g) was slowly added 

to the mixture and refluxed for 6 hours. The refluxed solution was then allowed to 
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cool to room temperature and filtered. The filtered solution was diluted threefold 

with water to cause separation of the thioether.  The precipitated product was 

filtered off and washed with distilled water. The resulting product 5-(butylthio)-

1,3,4-thidiazole-2(3H)-thione (mol. wt. 206.35) was dried in vacuo yielding 70% 

(14.4 g) Bu-MTT. Then Bu-MTT was recrystallized from benzene to afford a 

yellowish precipitate. The melting point of the compound was 94-95o C.  Final 

product was characterized by 13C, and 1H NMR. The Bu-MTT showed 13C peaks 

in d-DMSO at 159.39 (–N═C–S–CH2-), 187.51 (–N–C═S), 22 (–S-CH2), 34.3 

ppm (-CH2), and 14.67 ppm (–CH3); 1H peaks in d-DMSO, triplet at 3.2 (S–CH2), 

multiple peaks at 1.46 and 1.68 (-CH2), triplet peaks at 1.1 (-CH3), and 14.30 

ppm (N–H). IR bands at 3050, 1480, 1365, and 1100 cm–1. MS peaks at 206,148, 

104,57, and 32. 

 
2.4 Synthesis of Di-Methylated MTT  (Me-MTT-Me) [21] 

 5-Mercapto-1,3,4-thiadiazole-2(3H)-thione (0.1 mol, 15.02g) was added to 

an aqueous solution 100 ml distilled water with sodium hydroxide (0.3 mol, 12g) 

in 1,4-dioxane (0.12 mol, 100 ml). The reaction mixture was stirred and heated at 

50˚C for 30 min. The mixture was cooled before iodomethane (0.21 mol, 29.80g) 

was slowly added to the mixture and refluxed for 6 hours. The refluxed solution 

was allowed to cool to room temperature and then poured into water. This 

solution was extracted twice with diethyl ether and dried over anhydrous sodium 

sulfate.  The dried solution was filtered and rotovaped. The resulting product was 

a yellowish liquid 2, 5-bis(methylthio)-1,3,4-thiadiazole (mol. wt. 178.30). The 

yield was 79% (14.08 g). The boiling point of the compound was 311-313°C at 
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atmospheric pressure.  Final product was characterized by 13C, 1H NMR, and 

MS. The Me-MTT-Me showed 13C peaks in d-DMSO at 165.56 (–N═C–S–Me) 

and 15.60 ppm (–CH3); 1H singlet peak in d-DMSO at 2.55 ppm (–CH3), and GC–

MS parent peak at 177 and significant m/z peaks at 146, 162, 91, and 87. 

2.5 Synthesis of Di-Butylated MTT (Bu-MTT-Bu) [21] 

5-Mercapto-1,3,4-thiadiazole-2(3H)-thione (0.1 mol, 15.02g) was added to 

an aqueous solution 100 ml distilled water with sodium hydroxide (0.3 mol, 12g) 

in 1,4-dioxane (0.12 mol, 100 ml). The reaction mixture was stirred and heated at 

50˚C for 30 min. The mixture was cooled before 1-bromobutane (0.21 mol, 

28.77g) was slowly added to the mixture and refluxed for 6 hours. The refluxed 

solution was allowed to cool to room temperature and then poured into water. 

This solution was extracted twice with diethyl ether and dried over anhydrous 

sodium sulfate.  The dried solution was filtered and rotovaped. The resulting 

product was a yellowish liquid 2,5-bis(butylthio)-1,3,4-thiadiazole (mol. wt. 

262.46). The yield was 73% (19.1 g). The boiling point of the compound was 

382-384oC at atmospheric pressure.  Final product was characterized by 13C, 1H 

NMR, and MS. 13C, 1H NMR, and MS. The Bu-MTT-Bu showed 13C peaks in d-

DMSO at 159.39 (–N═C–S–), 14.67 (CH3), 22 (–S-CH2), 34.0 and 36.2 ppm 

(CH2-); 1H peaks in d-DMSO triplet peaks at 3.2 (S–CH2), multiple peaks at 1.46 

and 1.68 (-CH2), and triplet peak at 1.1 ppm, and GC–MS parent peak at 262 

and 205. Significant m/z peaks at 133 and 57. 
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2.6 Synthesis of 2,5-Bis(thioacetic acid)-1,3,4-Thiadiazole  (A-MTT-A) [22] 
 

5-Mercapto-1,3,4-thiadiazole-2(3H)-thione (75 g, 0.5 mol) was added to an 

aqueous solution of chloroacetic acid (94.5 g, 1 mol) and sodium carbonate (53 

g, 0.5 mol). The reaction mixture was stirred and refluxed for 3 hours. The 

refluxed solution was then allowed to cool down to room temperature, then 

concentrated hydrochloric acid was added with stirring until pH = 2 with formation 

of white crystals. The precipitate was filtered off and washed with distilled water. 

The resulting product was 2,5-bis(thioacetic acid)-1,3,4-thiadiazole (mol. wt. 

266.32). The product was dried in vacuo to afford white crystals and the yield 

was 83% (110.51 g). The melting point of the compound was 164-165 oC. Final 

product was characterized by 13C, 1H NMR, IR, and MS. The A-MTT-A showed 

13C peaks in d-DMSO at 164.56 (–N═C–S–), 169.11 (–CO2H), and 35.74 ppm (–

CH2–); 1H peaks in d-DMSO, singlet at 4.11 (–CH2) and 11.46 ppm (–OH); IR 

bands at 3410, 2920, 2830, 1750, and 1600 cm-1. MS peaks at 262, 207, 131,91 

and 59. 

2.7 Test Protocol 
 

All electrochemical studies were carried out in 3.5 % NaCl solution using a 

conventional Princeton flat cell  model K0235 comprising a mild steel substrate or 

304 stainless steel with an exposed area of 1 cm2 as a working electrode (WE), 

saturated calomel electrode as a references electrode (SCE), and platinum foil 

as a counter electrode. Reference electrode was brought to close proximity with 

the working electrode by a Luggin capillary. Prior to each experiment the WE was 

polished with 1200 grade emery paper, washed with distilled water and acetone. 
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To prepare the saturated solutions, the compounds under investigation were 

added to a 3.5% NaCl solution at its maximum solubility and stirred overnight 

then filtered. Also, in order to get a quantitative comparison, the measurements 

were carried out on steel substrates exposed to sodium chloride solutions 

containing the same concentration of inhibitor, 50 ppm. The Bu-MTT-Bu has low 

solubility in water 1.7 ppm, thus it has been excluded from 50 ppm 

measurements.  Measurements were recorded after 1 h of exposure of the 

working electrode in the test solution at room temperature. Each test was 

repeated five times on different specimens in five different solutions at the same 

concentration to confirm its reproducibility. 

 
 
 2.8 Electrochemical Impedance Measurements 
 

Electrochemical impedance measurements were carried out at open 

circuit potential OCP. Measurement system was composed of a Solartron SI 

1260 impedance gain-phase analyzer connected to a Solartron 1287 

electrochemical interface. The amplitude of sine wave signal was 10 mV, and the 

frequency range extended from 100 kHz to 0.01Hz for steel specimens and from 

100 kHz to 0.1 Hz for 304 stainless steel specimens. The impedance spectra 

were simulated by ZView software from Scribner Associates, Inc.                             

 

2.9 Polarization Measurements 

The potentiodynamic polarization measurements were performed 

immediately after the EIS on the same electrode. Potential range of ±250 mV 

with respect to open circuit potential, and a scan rate of 2mV/sec were applied.  
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3. RESULTS AND DISCUSSION 

 

 3.1 Electrochemical Impedance Spectroscopy (EIS) 

Figure 4 and Figure 5 show the Nyquist plot for steel substrates exposed 

to 3.5% NaCl solution containing either saturated or 50 ppm MTT derivatives at 

room temperature. It is obvious from the results that the addition of MTT 

derivatives causes significant change in the impedance response. The 

impedance data were analyzed and interpreted in terms of an equivalent 

standard circuit displayed in Fig (6). This circuit has been generally used to 

describe the inhibition mechanism of organic compounds [23].   The circuit 

consists of a solution resistance ( RΩ), a constant phase element (CPE), and a 

charge transfer resistance (Rct). The introduction of CPE instead of the double 

layer capacitance Cdl is to get accurate impedance fitting of the electrical double 

layer. The impedance of a CPE is given by: 

                                                              
1

( )
C P E n

O

Z
Y jω

=                                         (1)     

Where Yo is the magnitude of CPE, ω is the angular frequency (in rad s-1), j is the 

imaginary number where  j2 = -1,  and n is a CPE exponent (phase shift) that  

indicates the roughness of surface and ranges from 0 to 1 [24]. The capacitance 

values can be derived from the CPE parameter value Yo and n by using the 

expression: 

                                            
1 1 /( . )n n

d l O c tC Y R −=                                                  (2) 
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The characteristic parameters associated with the impedance response, charge 

transfer resistance, double layer capacitance and the inhibition efficiency are 

tabulated in Table 2 & 3. 

 

Fig.4. Nyquist plot of steel in 3.5% NaCl solutions with and without addition of 
saturated MTT derivatives. 

0 500 1000 1500 2000

-1700

-1200

-700

-200

Z'

Z
''

3.5% NaCl
Sat MTT
Sat Bu-MTT
Sat Bu-MTT-Bu
Sat A-MTT-A
Sat Me-MTT-Me
Sat Me-MTT



103 

 

Fig. 5. Nyquist plot of steel in 3.5% NaCl solutions with and without addition of 50 
ppm MTT derivatives. 
 

 

                                     
 
                           Fig. 6. Equivalent circuit for impedance analysis. 
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Table 2 
Parameters of EIS spectra obtained for steel in the absence and the presence of 
saturated MTT derivatives. 
 

Compounds Rct (Ω cm2) Cdl (µF cm-2) E% * 

Blank               433 380 -- 

MTT               585 374 26 

Me-MTT             1870 339 77 

Bu-MTT               750 365 42 

Me-MTT-Me 1472 344 70 

Bu-MTT-Bu 1170 356 63 

A-MTT-A 1402 352 69 
* Inhibition efficiency calculated from equation 3 

 

Table 3 
Parameters of EIS spectra obtained for steel in the absence and the presence of 
50 ppm MTT derivatives. 
 

Compounds Rct (Ω cm2) Cdl (µF cm-2) E% * 

Blank   433 380 -- 

50 ppm MTT   522 375 17 

50 ppm Me-MTT 1466 346 70 

50 ppm Bu-MTT   698 371 38 

50 ppm Me-MTT-Me 1170 355 63 

50 ppm A-MTT-A   984 358 56 

* Inhibition efficiency calculated from equation 3 
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The shape of the Nyquist plot indicates a charge transfer process [23]. The 

diameter of the semi-circle of steel samples exposed to a solution containing 

MTT derivatives have larger radius than the blank control solution. Consequently, 

the charge transfer resistance values in the presence of MTT derivatives were 

higher than the blank solution. It was also observed that the charge transfer 

resistance values increases only moderately as the MTT derivatives 

concentration increases from 50 ppm to the saturated state. This indicated that 

the MTT derivatives are most likely functioning by surface adsorption.  Corrosion 

rate is inversely proportional to the value of charge transfer resistance, thus, Rct 

values can be used to calculate the inhibition efficiency by applying the following 

equation: 

                                            (%) 100
ORct R ct

E
Rct

−= ×                                        (3) 

Where, Rct and Roct are the charge transfer resistances of substrate with and 

without inhibitors, respectively. Charge transfer resistance (Rct) can also be used 

as an indication of protective film formation on substrate surface. The adsorption 

of organic molecules on a metal surface causes water molecules to be displaced 

from the surface, thus, increasing the charge transfer resistance. The higher the 

Rct, the better the formation of the protective layer [25,26]. Furthermore, the 

results show that the electrical double layer capacitance decreases as a result of 

adding MTT derivatives to the NaCl solution. This may also be attributed to the 

adsorption of MTT derivatives on metal surface.  The existence of double layer at 

metal surface and solution interface can be substantially altered by the 
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adsorption of organic molecules. The altering of the water layer lowers the 

dielectric constant and decrease the double layer capacitance [27]. The double 

layer capacitance can be related to dielectric constant and thickness of double 

layer by the following formula:                                                             

                                                           
o

d l

A
C

d

εε=                                                                     (4) 

Where Cdl is double layer capacitance, ɛ the dielectric constant of the water 

layer, ɛo is the dielectric constant of free space (8.854x10-12 F/m), A is the 

substrate exposure area, and d is double layer thickness. 

The increase in Rct and decrease of Cdl upon addition of MTT derivatives 

suggested that the MTT derivatives is functioning by adsorption on the metal 

surface and blocking the active site of the metal.  

The corrosion behavior of the 304 stainless steel specimens was 

investigated using electrochemical impedance spectroscopy in 3.5%NaCl. 

Nyquist plot, Fig 7 shows that the charge transfer resistance, Rct, dramatically 

increases upon addition of the MTT derivatives, which indicate the inhibition 

effect of these compounds. Values of the associated parameters are presented 

in Table 4. The results for 304 stainless steel paralleled the results for the steel 

substrate with only small difference in the percent inhibition. 
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Fig. 7. Nyquist plot of 304 stainless steel in 3.5% NaCl solutions with and without 
addition of saturated MTT derivatives. 
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Table 4 
Parameters of EIS spectra obtained for 304 stainless steel in the absence and 
the presence of saturated MTT derivatives. 
 

Compounds Rct (kΩ cm2) Cdl (µF cm-2) E%* 

Blank 10.9 23.1 -- 

MTT 15.5 20.5 30 

Me-MTT 72.6   6.7 85 

Bu-MTT 21.9 20.1 50 

Me-MTT-Me 68.3   8.4 84 

Bu-MTT-Bu 31.1   9.9 64 

A-MTT-A 41.8   9.2 74 

* Inhibition efficiency calculated by equation 3 
 
 
 
 3.2 Tafel Extrapolation 
 

The potentiodynamic polarization curves for steel substrates exposed to 

3.5% NaCl in the presence and the absence of either saturated or 50 ppm MTT 

derivatives are shown in Fig 8 and Fig 9.  The pertinent   parameters to 

electrochemical process of each curve were derived by evaluation and 

extrapolation of both the anodic and cathodic region of the tafel plots; i.e. 

corrosion current density (icorr), corrosion potential (Ecorr), and cathodic and 

anodic tafel slopes (βc and βa). Data analysis was conducted by using CorrView 

software. Different concentrations of MTT derivatives do not affect corrosion 

potential significantly,  but did affect the corrosion current. Values presented are 

the average value of five experiments. All data are summarized in Table 5 and 6.  
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Fig.8. Polarization curves of steel in 3.5% NaCl solutions with and without 
addition of saturated MTT derivatives. 
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Fig. 9. Polarization curves of steel in 3.5% NaCl solutions with and without 
addition of 50 ppm MTT derivatives. 
 
Table 5 
 Potentiodynamic polarization parameters obtained for steel in the absence and 
the presence of saturated MTT derivatives. 

Compound 
Ecorr 

 
mV 

βa 
 

mV/decade 

βc 
 

mV/decade 

Icor 
 

µA/cm2 

Inhibition 
efficiency 

 
E%* 

Blank -890 153 138 7.23 -- 

MTT -742   60 140 5.56 23 

Me-MTT -766   70 154 1.09 85 

Bu-MTT -794   60 100 3.91 46 

Me-MTT-Me -802   70 190 1.99 72 

Bu-MTT-Bu -841   80 213 2.80 61 

A-MTT-A -774  60 221 2.14 70 

* Inhibition efficiency calculated using equation 5. 
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Table 6 
Potentiodynamic polarization parameters obtained for steel in the absence and 
the presence of 50 ppm MTT derivatives. 

Compound 
50 ppm 

Ecorr 
 

mV 

βa 
 

mV/decade 

βc 
 

mV/decade 

Icor 
 

µA/cm2 

Inhibition 
efficiency 

 
E%* 

Blank -890 153 138 7.23 -- 

 MTT -749   80 110 5.99 17 

 Me-MTT -740   60 120 1.45 80 

Bu-MTT -780 100 110 4.50 38 

Me-MTT-Me -790   77 110 2.63 63 

 A-MTT-A -750   60   80 2.81 61 

* Inhibition efficiency calculated using equation 5. 

Figure 10 shows the polarization curves of the 304 stainless steel 

immersed in 3.5% NaCl. The values of the corrosion current density (icorr), 

corrosion potential (Ecorr), and the cathodic and anodic tafel slopes (βc and βa) 

are calculated and displayed in Table 7: 
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Fig. 10. Polarization curves of 304 stainless steel in 3.5% NaCl solutions with 
and without addition of saturated MTT derivatives. 
 
Table 7 
 Potentiodynamic polarization parameters obtained for 304 stainless steel in the 
absence and the presence of saturated MTT derivatives. 

Compound 
Ecorr 

 
mV 

βa 
 

mV/decade 

βc 
 

mV/decade 

Icor 
 

µA/cm2 

 
E%* 

Blank -360   90   50 0.79 -- 

MTT -320   85   55 0.50 37 

Me-MTT -150   68   30 0.09 88 

Bu-MTT -230 100 100 0.34 57 

Me-MTT-Me -160 100 100 0.11 86 

Bu-MTT-Bu -160 100   60 0.28 64 

A-MTT-A -150   90   50 0.18 77 

 
* Inhibition efficiency calculated using equation 5. 
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It can be clearly seen from the figures 8, 9, and 10 that the presence of 

MTT derivatives caused a reduction in the corrosion current. The inhibition 

efficiency was calculated from the following formula: 

 

                                               (%) 100o

o

i i
E

i

−= ×                                          (5) 

 
 
Where io and i are the value of corrosion current density in the absence and the 

presence of inhibitors, respectively. 

The presence of MTT derivatives results in the Ecorr values which were 

shifted toward more positive potential suggesting that these inhibitors are 

blocking the active sites by adsorption on metal surface [15, 17]. According to 

Riggs [28], the classification of a compound as an anodic or cathodic inhibitor is 

feasible when the OCP displacement is at least 85mV in relation to that 

measured for the blank solution. The OCP displacement associated with the 

addition of MTT derivatives is greater than 85 mV, therefore, the MTT derivatives 

acted as an anodic inhibitor.  These results agreed with previous finding that 

MTT inhibited the corrosion by forming a mono layer on steel and stainless steel 

substrates and inhibit both anodic and cathodic reactions with an anodic 

predominance [15, 17, 29]. 

The inhibition efficiency E% of the MTT derivatives tested decreases in 

the order Me-MTT˃ Me-MTT-Me ˃ A-MTT-A ˃ Bu-MTT-Bu˃ Bu-MTT ˃ MTT 



114 

There was a slight improvement in inhibition efficiency of MTT derivatives 

for 304 stainless steel over the steel substrate. This difference may be explained 

in view of the previous finding that MTT has a greater affinity toward copper 

substrates [15, 17]. The 304 stainless steel contains 0.48% Cu. However, the 

corrosion current was an order of magnitude lower for stainless steel than regular 

steel. 

The mono substituent derivative Me-MTT shows the most effective 

inhibition. Similar performance has been noted with di substituent Me-MTT-Me, 

which displays good corrosion protection. The -CH3 group acts as an electron 

donating group and enhances the electron density at the active adsorption sites 

(sulfur atoms) [4,5]. The other important factor that predetermines the greatest 

inhibition potency of mono and di methylated MTT may be the size of methyl 

group. The steric hindrance effect of a -CH3 group is minimal due to its small 

size. As a consequence, there is no significant congestion around sulfur atoms, 

and can easily adsorb and pack on a metal substrate. Previous studies [30, 31] 

discussed the adsorption modes of thiophene derivatives. They reported the 

possibility of two adsorption modes, parallel and vertical see figure 11.  For 

imidazole derivatives the small size of –CH3 groups allows it to reside on metal 

surface in parallel resulting in better surface coverage [32]. The effectiveness of 

mono and di methylated MTT over the MTT itself can be attributed to the 

presence of hydrophobic –CH3 groups that help the displacement of water 

molecules from the metal substrate. Additionally, the superiority of inhibition 

efficiency of Me-MTT over Me-MTT-Me is probably due to better packing on 
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metal surface. Also the presence of the N-H bond in Me-MTT may also contribute 

to its efficiency. The N-H bond can establish hydrogen bonding with an oxygen 

atom in a surface metal oxide resulting in increased adhesion of the protective 

film [6]. It is also possible that the thione may exist as the thiol form, a tautomer, 

when bonded to the metal surface. 

 

Metal

 

 

 
 
Fig. 11. Schematic of possible adsorption modes and packing suggested of Me-
MTT on substrate surface: vertical mode (A), and parallel mode (B). 
 

The mono and di butylated MTT showed lower inhibition. Previous study 

[33,34] on corrosion inhibition ability of bis-thiadiazole derivatives (1,3,4-

thiadiazol-2-amine, 5,5'-methylenebis and 1,3,4-thiadiazol-2-amine, 5,5'-(1,2-
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ethanediyl)bis-)  and 2-amino-5-alkylthiadiazole derivatives as a corrosion 

inhibitors of mild steel and carbon steel in 1 M HCl and H2SO4 have been 

performed. It has been concluded that the presence of long aliphatic chains 

showed better inhibition and was attributed to the increase in size of the 

molecule.  However, the presence of the C4H9 bulky group on sulfur atoms may 

cause a steric effect which reduces the packing density on the surface.  The 

lowest protection performance of mono and di butylated MTT is adsorption mode 

that the bulky butyl groups in mono and di butylated MTT resides on metal 

surface perpendicularly in order to minimize steric effect (see figure 12) [32]. This 

stacking mode results in less surface coverage and lower hydrophobic effect [32]. 

The better performance of Bu-MTT-Bu over Bu-MTT is probably due to the 

greater hydrophobic effect [33]. The Bu-MTT-Bu has the lowest solubility in water 

among all the MTT derivatives (1.7 ppm), but Bu-MTT-Bu shows inhibition ability 

close to Me-MTT-Me inhibition ability. The inhibition ability of Bu-MTT-Bu can be 

attributed to the greater hydrophobicity effect of long aliphatic chain. It would be 

concluded that in addition to electronic interaction, there are two factors that 

govern the MTT derivatives corrosion inhibition performance; hydrophobicity and 

steric hindrance.       
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Metal

 

Fig. 12. Schematic of possible adsorption mode and packing suggested of Bu-
MTT-Bu on substrate surface. 
 
 

The di-acetic acid A-MTT-A showed good inhibition efficiency.  This can 

be attributed to the presence of extra electron donor atoms. Oxygen atoms act as 

an additional adsorption active site [1]. Thus, adsorption of the protective layer 

may be enhanced [1]. Previously, A-MTT-A has been tested as a flash rust 

inhibitor [22] and it showed excellent inhibition ability.    

3.3 Theoretical Calculation 

In order to get a better insight into the electronic interaction of MTT 

derivatives with steel and stainless steel surfaces, the quantum chemical 

parameters were calculated with B3LYP functional at basis set 6-311G. Table 8 

summarized the EHOMO, ELUMO, energy different EHOMO-ELUMO, and dipole moment 

µ. 
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Table 8  
 Molecular properties of MTT compounds using B3LYP. 

Compound 
EHOMO   

Hartree 

ELUMO  

Hartree 
EHOMO- ELUMO 

Dipole moment 

µ Debye 

MTT 
-0.23535 -0.0642 -0.17115 5.803 

Me-MTT 
-0.23208 -0.0620 -0.17008 7.184 

Bu-MTT 
-0.23145 -0.0614 -0.17005 7.861 

Me-MTT-Me 
-0.23159 -0.0485 -0.18305 0.524 

Bu-MTT-Bu 
-0.23011 -0.0474 -0.18265 0.152 

A-MTT-A 
-0.23921 -0.0534 -0.18578 2.978 

 

The correlations between experimental inhibitor efficiency and quantum chemical 

parameters are displayed in Figure.13. 



119 

 

 

Fig.13. Correlation between quantum parameters and inhibitor efficiency E%: 
EHOMO (A); ELUMO (B);  EHOMO-ELUMO (C); and Dipole moment µ (D).  
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Fig.13. Correlation between quantum parameters and inhibitor efficiency E%: 
EHOMO (A); ELUMO (B);  EHOMO-ELUMO (C); and Dipole moment µ (D).  
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Figure 13 revealed no good correlation between the quantum parameters 

and inhibitor efficiency. The inhibition ability of the MTT derivatives may be 

dominated in part by steric hindrance.   The electron interaction between the 

MTT derivatives and metal substrates is not only the factor controlling the 

inhibition performance of these molecules. 

Electron densities on each atom have also been calculated in order to 

determine the most possible adsorption site of MTT molecules.  Atoms with the 

highest electron density are the preferred center for ligation [ 35,36]. Figure 14 

and table 9 display the electron density on all adsorbing centers of MTT 

derivatives.  

                   

 

Fig. 14. Charge distribution of MTT. 
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Table 9 
 Electron density of MTT derivatives. 

 N-1 N-2 S-1 S-2 S-3 O-1 O-2 

MTT -0.218 -0.150 -0.285 -0.404 -0.788 -- -- 

Me-MTT -0.287 -0.060 -0.373 -0.376 -0.787 -- -- 

Bu-MTT -0.339 -0.005 -0.408 -0.525 -0.809 -- -- 

Me-MTT-Me -0.214 -0.214 -0.364 -0.415 -0.560 -- -- 

Bu-MTT-Bu -0.206 -0.206 -0.380 -0.560 -0.560 -- -- 

A-MTT-A -0.204 -0.204 -0.368 -0.485 -0.485 -0.491 -0.401 

 

Table 9 shows that there is a variation in negative charges located on the 

sulfur and nitrogen atoms in all MTT derivatives. These atoms act as nucleophilic 

agents, and they would be the most favorable points of interaction between MTT 

derivatives and metal surface [16]. The performance benefit for the alkylated 

MTT is likely in part due to the higher charge density on S-1, for all the 

derivatives.  As the charge density of thiazole ring atoms is pronounced, it is 

possible to expect these atoms can adsorbed on the surface, and the parallel 

adsorption mode is anticipated to be the most possible mode. Previous studies 

[31,37] on thiophene and pyridine derivatives found the existence of two 

adsorption modes. However, the steric hindrance effect of long aliphatic chain in 

Bu-MTT may lower the stacking density and contribute in low inhibition 

performance see figure 12.  Oxygen atoms in A-MTT-A have also showed high 

electron density and contribute in molecule surface interaction. 
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4. CONCLUSION 

1- By derivatizing MTT, the corrosion inhibition ability for steel and 

304 stainless steel in 3.5% NaCl solutions was improved. 

 
2- The electrochemical measurement results indicated that the inhibition  

     efficiency of MTT derivatives of steel and 304 stainless steel in 3.5%  

     NaCl were in the following order Me-MTT˃ Me-MTT-Me ˃ A-MTT-A ˃  

      Bu-MTT-Bu˃ Bu-MTT ˃ MTT. 

3- The inhibitive impact of MTT derivative is affected by the nature and 

     size of substituent group. 

4- Hydrophobicity aids and steric hindrance reduces the performance of 

     the inhibitor . 

5- Mono and di methylated MTT were found to be the most effective 

    corrosion inhibitors on both steel and stainless steel. 

6- The MTT derivatives inhibit corrosion process by forming a protective  

     film on metal substrate. They function in part by inhibit the anodic 

      reactions. 

7- There was a good agreement between the results obtained by  

    polarization measurements and EIS. 

8- The theoretical study showed that the inhibitors efficiency does not  

    directly correlate with quantum chemistry parameters. This may 

    propose that the corrosion protection mechanism of MTT derivatives is 

    governed by both electronic and steric hindrance effect. 

9- The characterization of corrosion inhibition efficiency of MTT derivatives  

     has to be made in terms of a combination of several molecular 
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     structure parameters.  An individual parameter is not adequate to 

     provide clear explanations of molecule inhibition ability.  
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SECTION 

 

2. SUMMARY 

Two acrylic copolymers were synthesized, and colloidal unimolecular 

polymer (CUPs) suspension system was prepared through water reduction 

process. The CUP particles of the two copolymers are true nano scale particles, 

their measured size is 4.1 and 6.5 nm. The CUP systems were studied by low 

field proton NMR. The bound water fraction was determined using spin-lattice 

relaxation T1 measurements. The existence of bound water layer was confirmed, 

and particles with 6.2 nm diameter hold thicker water layer thickness than particle 

with 4.1 nm. The charge density on CUP surface is the key role in determining 

the amount of bound water. The increase of CUP associated with a decrease in 

measured spin lattice relaxation time due to the increase of bound water 

population.    

Variable temperature 13C Solid state NMR was used to examine the 

polymer chain dynamics of a homopolymer and a copolymer.  A method that 

relies on obtaining 13C NMR spectra free of rotational echoes was used. The 

magic angle spinning of the sample with polarization and the pulse sequence for 

total spinning sideband suppression CP-TOSS was used. Measurement of peak 

intensity decay as a function of temperatures provided an information about the 

segment onset motion, Tg. Results were compared with results obtained by 

differential scanning calorimetry (DSC) technique with exactly agreement. 
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The substitution of 5-mercapto-1,3,4-thiadiazole-2(3H)-thione MTT at 

thion-thiol position were carried out. Five MTT derivatives were synthesized and 

characterized including MTT itself for their corrosion inhibition performance on 

both steel and stainless steel substrates. The substituent size was found to be 

crucial in the molecule inhibiting corrosion. The steric hindrance caused by the 

substituent prevents molecules from proper packing on metal surface. 
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