
Scholars' Mine Scholars' Mine 

Doctoral Dissertations Student Theses and Dissertations 

Summer 2015 

Computational intelligence based complex adaptive system-of-Computational intelligence based complex adaptive system-of-

systems architecture evolution strategy systems architecture evolution strategy 

Siddharth Agarwal 

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations 

 Part of the Computer Sciences Commons, Statistics and Probability Commons, and the Systems 

Engineering Commons 

Department: Engineering Management and Systems Engineering Department: Engineering Management and Systems Engineering 

Recommended Citation Recommended Citation 
Agarwal, Siddharth, "Computational intelligence based complex adaptive system-of-systems architecture 
evolution strategy" (2015). Doctoral Dissertations. 2401. 
https://scholarsmine.mst.edu/doctoral_dissertations/2401 

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This 
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2401&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2401&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/208?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2401&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/309?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2401&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/309?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2401&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/2401?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2401&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


 

 

 

 

 

COMPUTATIONAL INTELLIGENCE BASED COMPLEX ADAPTIVE SYSTEM-OF-

SYSTEMS ARCHITECTURE EVOLUTION STRATEGY 

 

 

by 

 

 

SIDDHARTH AGARWAL 

 

 

A DISSERTATION 

 

Presented to the Faculty of the Graduate School of the 

 

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY 

 

In Partial Fulfillment of the Requirements for the Degree 

 

 

DOCTOR OF PHILOSOPHY 

in 

SYSTEMS ENGINEERING 

 

2015 

 

Approved 

Cihan H. Dagli, Advisor 

David Enke 

Abhjit Gosavi 

Ruwen Qin 

Robert Paige 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2015 

Siddhartha Agarwal 

All Rights Reserved 



 

 

iii 

ABSTRACT 

The dynamic planning for a system-of-systems (SoS) is a challenging endeavor. 

Large scale organizations and operations constantly face challenges to incorporate new 

systems and upgrade existing systems over a period of time under threats, constrained 

budget and uncertainty. It is therefore necessary for the program managers to be able to 

look at the future scenarios and critically assess the impact of technology and stakeholder 

changes. Managers and engineers are always looking for options that signify affordable 

acquisition selections and lessen the cycle time for early acquisition and new technology 

addition.  This research helps in analyzing sequential decisions in an evolving SoS 

architecture based on the wave model through three key features namely; meta-

architecture generation, architecture assessment and architecture implementation.  Meta-

architectures are generated using evolutionary algorithms and assessed using type II 

fuzzy nets. The approach can accommodate diverse stakeholder views and convert them 

to key performance parameters (KPP) and use them for architecture assessment. On the 

other hand, it is not possible to implement such architecture without persuading the 

systems to participate into the meta-architecture. To address this issue a negotiation 

model is proposed which helps the SoS manger to adapt his strategy based on system 

owners behavior. This work helps in capturing the varied differences in the resources 

required by systems to prepare for participation. The viewpoints of multiple stakeholders 

are aggregated to assess the overall mission effectiveness of the overarching objective. A 

search and rescue mission (SAR) SoS example problem illustrates application of the 

method.  Also a dynamic programing approach can be used for generating meta-

architectures based on the wave model. 
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1. INTRODUCTION 

In the real world, systems are complex, non-deterministic, evolving, and have 

human centric behaviors. The connections of all complex systems are non-linear, 

globally distributed, and evolve both in space and in time. Because of non-linear 

properties, system connections create an emergent behavior. It is imperative to develop 

an approach to deal with such complex large-scale systems. The approach and goal is 

not to try and control the system, but design the system such that it controls and adapts 

itself to the environment quickly, robustly, and dynamically. These complex entities 

include both socioeconomic and physical systems, which undergo dynamic and rapid 

changes. Some of the examples of complex systems include transportation systems 

(Trentesaux, Knothe, Branger, & Fischer, 2015), health systems (Obal, & Lin, 2015), 

internet of things (Maia, et al., 2014), smart cities development (Wang, 2015), energy 

security systems (Hadian & Madani, 2015), defense frameworks (Marti et al., 2015), and 

manufacturing infrastructures (Nahavandi, et al., 2015).  

 

1.1 BACKGROUND AND MOTIVATION 

A complex system is a system featuring a large number of interacting 

components, whose capability is not a linear sum of its components. Besides this system 

exhibits self-organization and emergent properties. Complex Adaptive Systems (CAS) 

can be referred to as special cases of complex systems. CAS can adapt (through 

learning) and evolve within a dynamic environment.  

Langton's egg diagram (Langton, 1990) depicts three primary classes fixed 

(Class I), periodic (Class II) and chaotic (Class III) as shown in Figure 1.1.  Complexity 

(Class IV) lies at the edge of periodicity and chaos. This figure can help us understand 

that all these classes are continuous and have a thin margin of separation.  

A number of definitions exist that define a system-of-systems (SoS). A 

definition that relates SoS to complex systems is that “systems of systems are 

large scale concurrent and distributed systems that are comprised of complex 

systems” (Kotov, 1997). 
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Figure 1.1. Relative location of periodic, chaotic, and “complex” transitions 

 

 

SoS can be designated as complex systems due to features such as: 

• Emergent behavior that provides the creativity, diversity, and complexity 

• Organized complexity allows system to achieve its goals 

• Dynamic stability is maintained through constant self-adjustment 

 

Another concept that has emerged recently has been the class of Cyber Physical 

Systems (CPS) (Zhang, 2015). CPS is a SoS which integrates physical system with 

cyber capability in order to improve the performance (Dong, P., Han, Y., Guo, X., & 

Xie, F. (2015). Cyber capability includes a model of the process that can be utilized to 

make decisions over the system. 

Although classically Maier (1998) suggests categories of SoS development but 

infinitely many SoS exist on the edges of the categories thus making it a continuum. 

These SoS may vary based on their degree of managerial control over the participating 

systems and their structural complexity. Figure 1.2. is an attempt to show the above 

argument. The author claims many SoS with different configurations can fill this gap. 

SoS achieves the required goal by introducing collaboration between existing 

system capabilities that are required in creating a larger capability based on the meta-

architecture selected for SoS. The level of the degree of influence on individual systems 

architecture through the guidance of SoS manager in implementing SoS meta-

architecture can be classified as directed, acknowledged, collaborative and virtual. 

Acknowledged SoS have documented objectives, an elected manager and defined 

resources for the SoS. Nonetheless, the constituent systems retain their independent 
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ownership, objectives, capital, development, and sustainment approaches. 

Acknowledged SoS shares some similarities with directed SoS and collaborative SoS.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. Types of SoS based on Degree of Control and Degree of Complexity 

 

 

To model any system an approach is needed that specifies the underlying 

properties and is able to successfully recreate the dynamics in the system. Systems 

architecting can be defined as specifying the structure and behavior of an envisioned 

system. Classical system architecting deals with static systems whereas the processes of 

System of Systems (SoS) architecting has to be first done at a meta-level. The 

architecture achieved at a meta-level is known as the meta-architecture. The meta-

architecture sets the tone of the architectural focus (Malan & Bredemeyer, 2001) and it 

drives the process of architecting further. It narrows the scope of the fairly large domain 

space and boundary. Meta-architecture helps in communicating the information to the 

stakeholders at a very high level. Although the architecture is still not fixed but meta-

architecture provides multiple alternatives for the final architecture. Thus architecting 

can be referred to as filtering the meta-architectures to finally arrive at the architecture.   

The SoS architecting involves multiple systems architectures to be integrated to produce 

Full Control          Decreasing Degree of Control     No Control 

Complete Order       Moving from Order to Complexity  Disorder 

Directed Collaborative Acknowledged Virtual 

Moving from Complicated Systems to Chaotic Systems 



 

 

4 

an overall large scale system meta-architecture for a specifically designated mission 

(Jamishidi, 2008).  

Architecture simulation and modeling techniques for Acknowledged SoS are still 

in their initial stages. The process includes producing a meta-architecture using multi-

objective evolutionary algorithms. Multiple objective decisions making (MODM) 

increases in difficulty with growing number of objectives (Key performance 

parameters). The probability of finding dominated solutions based on three or more 

objectives is very low.  To solve this problem the architectures assessment technique 

uses a fuzzy type II modular rule base approach (fuzzy networks) that allows multiple 

key performance parameters to be evaluated at the same time. The fuzzy rule base 

defines the preference of the decision maker in our case the Acknowledged SoS 

manager. 

Furthermore, meta-architectures are often not fully realizable in real conditions. 

It is often difficult to secure implementation of the generated meta-architectures for 

System of Systems (SoS) in actual situations given the negotiation complexity and 

individual systems behavior. In SoS where individual systems have their own self-

interests, negotiation becomes an important aspect of SoS acquisition. During a 

negotiation, each party communicates its own desires and hence the problem of interest 

is to find that point of mutually beneficial agreement. This major issue is resolved by 

introducing negotiation modules between individual systems and SoS manager based on 

domain specific information. The domain is defined by the set of issues being negotiated 

over which include price (value for capability being acquired), performance (task 

execution capacity) and deadline (delivery date). The meta-architecture generated is 

negotiated for possible implementation by the acknowledged SoS manager through 

machine learning based negotiation model. The negotiation is modeled as a bilateral 

counteroffer, resembling one SoS manager and an individual system. The agreements 

after each negotiation round are not an obligation on either party. 

Additional motivation for pursuing this research is from an engineering research 

viewpoint since no single method of automated negotiation that is applicable to all 

situations.  This research also aims to fill a gap by utilizing machine learning fuzzy logic 

techniques to design a protocol applicable in large scale systems settings. Automated 
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tools can be used in conjunction with the human negotiator to aid in a negotiation task. 

The negotiation strategies are needed to enhance the efforts of people during 

negotiations. Furthermore, large-scale projects that involve different departments 

(systems) are developed to bring sustainability and prosperity. The program managers 

need to have a strategy for negotiating and implementing such projects in an ecological 

and equally beneficial way. Additionally, negotiations involve conflicts over the 

consumption of joint resources or task assignments and conflicts between a buyer and a 

seller. 

This research contributes to the state of the art in Acknowledged SoS-based 

negotiations in two key areas. It presents the first attempt to combine multiple behaviors 

of systems participating in a complex adaptive SoS operational scenario. Secondly, 

research proposes the use of neural network (Agarwal & Ganguli, 2011) architectures as 

techniques for SoS manager to adapt his negotiation strategy while dealing with multiple 

constituent systems on multiple issues such as deadline, funding and performance This 

is a very quick and effective approach to adapt communication strategies in SoS 

environment. Our attempt is to present an integrated acknowledged SoS architecting 

model whose capabilities include extensive SoS meta-architecture generation covering 

the entire design space, flexible and robust architecture assessment, and final 

architecture securement through simulated negotiations. 

The major objectives of this reasearch are: 

– To develop a simulation for acknowledged SoS architecture 

selection and evolution. 

– To have a structured, repeatable approach for planning and 

modeling. 

– To study and evaluate the impact of individual system behavior 

on SoS capability and architecture evolution process. 

 

1.2. IMPACT OF THE RESEARCH 

This research has impacts on expanding the application of systems engineering 

across a wide section of academic and industry domains. 
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1.2.1. Contribution to the State of Systems Engineering Knowledge. In the 

subject of dynamical systems-of-systems (SoS), there has been a great deal of growth 

developing theories that describe the behavior of individual systems. However, 

comparatively less research establishes how various systems form coalitions and 

negotiate with the SoS manager to establish an architecture over time. A stochastic 

architecting technique using computational intelligence (particle swarm & fuzzy logic) 

in an integrated environment is implemented. This allows the SoS managers to be able 

to look at the future scenarios and critically assess the impact of technology and 

stakeholder changes. This aids the manager in looking for options that signify affordable 

acquisition selections and lessen the cycle time for early acquisition and new technology 

addition.  Furthermore, to include and discard system capabilities, a negotiation strategy 

is required. A negotiation strategy usually consists of three main modules: modeling the 

opponent behavior (clustering), decision-making criteria (fuzzy logic) and finally 

generating a counter-offer (time based equations). This overall structure provides a 

useful basis for developing SoS architecting technique that can evolve and adapt to 

changes in its environment. For an SoS manager the challenging problem is to capture 

the hidden objective function of the opponent or autonomous systems. This research 

proposes a novel strategy based on hybrid clustering and neural networks that can be 

used in a multi-issue negotiation setting. The experimental results show that the 

proposed method is effective in a variety of application domains against the state-of-the-

art negotiating agents. The research focusses and improves some key areas in systems 

engineering such as: 

1) Systems Architecting, 

2) Optimization,  

3) Decision-making under ambiguity 

4) Incorporating machine learning tools and;  

5) Domain-specific modeling and simulation 

 

1.3. DISSERTATION ORGANIZATION 

This dissertation is organized as follows: 
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Section 1, introduction, briefly introduces the motivation of this research. 

Section 2, literature review, discusses the application of evolutionary algorithms in 

solving many objective problems. This section also gives a background on automated 

negotiation. This section provides search-based architecture development framework, 

presents the proposed architecture development framework along with the discussions of 

some enabling technologies for each of its components. 

Section 3, overview of integrated model developed to address the problem. It 

provides review of some background knowledge needed to develop the approaches 

proposed in this research such as evolutionary algorithms, fuzzy logic, and machine 

learning algorithms.  

Section 4 presents how the proposed approaches are implemented to design 

search and rescue system-of-systems. 

Section 5 encompasses discusses of results and what-if analysis. It also provides 

some insights into possible future expansions of the current work. Section 6, conclusion 

and future work, discusses strengths and limitations of the proposed approach. The next 

chapter provides a review on SoS and its types, current and past SoS projects, SoS 

acquisition, a review of techniques to handle many objective optimization problems, and 

finally a background on automated negotiation concepts and importance. 
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2. LITERATURE REVIEW ON SOS & AUTOMATED NEGOTIATION 

2.1. SYSTEM-OF-SYSTEMS 

System-of- Systems (SoS) consists of multiple complex adaptive systems that 

behave autonomously but cooperatively (Dahman, Lane, Rebovich, & Baldwin, 2008). 

The continuous interaction between them and the interdependencies produces emergent 

properties that cannot be fully accounted for by the “normal” systems engineering 

practices and tools. System of Systems Engineering (SoSE), an emerging discipline in 

systems engineering is attempting to form an original methodology for SoS problems 

(Luzeaux, 2013). The first task that must be completed in a large scale problem is 

identifying it as a SoS problem. A recent book highlights the case studies in the area of 

SoS (Gorod, White, Ireland, Gandhi, & Sauser, 2014). Figure 2.1.  (Agarwal et al., 

2015), describes the basic framework of system-of-systems (SoS). 

 

Figure 2.1.  An Acknowledged Systems-of-Systems 
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Three major elements include an SoS coordinator, environment variables and 

individual systems. Each system carries a specific capability and many systems can have 

the same capability. Together all systems participate to achieve a larger purpose under 

the supervision of SoS coordinator.  

Figure 2.2. illustrates the logical system architecture design process. This figure 

is adapted from Kaplan (2006). The figure describes the relationships between 

individual systems and overall SoS effectiveness. The figure also describes how 

scenarios, operations, capabilities functions and systems are related to each other.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2.  Systems engineering architecture design 

 

 

Capabilities are decomposed into functions, which are further broken down into 

requirements for individual systems. This figure synthesizes an architectural framework 

for operational scenarios. This design allows for incremental flexibility in capabilities 
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and functions. It is appropriate to be executing only the functions that are necessary and 

making additions as needs evolve. Figure 2.3. defines various concepts utilized in Figure 

2.2. 

 

 

 

Figure 2.3.  Systems engineering logical architecture design 

 

 

2.1.1. Types of System-of-Systems. Maier (1998) discussed both the applicable 

conditions required to ascertain that a problem is indeed SoS. One of the SoS types of 

immediate importance is the Acknowledged SoS, which has recognized objectives, a 

designated manager with limited authority, and resources for the SoS (Ncube, Lim, & 

Dogan, 2013). Acknowledged SoS shares several attributes with both Collaborative SoS 

and Directed SoS (Bergey et al., 2009). Figure 2.4. illustrates this concept (Dahmann, 

Baldwin & Rebovich, 2009). The other broad type of SoS, Virtual lacks a central 

management and a centrally approved purpose for SoS, and has independent 

 

 

Scenarios define operational location, enemy order of battle, and the 
corresponding enemy startegy and tactics (Analysis of Alternatives, 
2008). 

 Operation: It is a military action or the carrying out of a strategic 
operational, tactical, service, training, or administrative military mission 
(Flynn & Richardson, 2013). 

Capability is the ability to achieve a desired effect under specified 
standards and conditions through combinations of ways and means to 
perform a set of tasks (Bodner et al. ,2011). 

Function is an intermediate concept between a capability and a 
requirement. There may be many levels of functions as capabilities are 
decomposed into functions, and then further into requirements (Bodner 
et al., 2011). 

System requirements delineate the functions which should fulfill to 
satisfy the stakeholder needs, and are conveyed in a fitting combination 
of textual statements and over views (OV1) (Bodner et al., 2011). 
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development processes (Dahman & Baldwin, 2008).  Acknowledged system of systems 

(SoS) accomplishes best when the contributing systems have no direct control over them 

yet they deliver capabilities required to meet the purpose of the SoS operating in an 

interdependent environment. Acknowledged SoS have political and economic 

interdependence, the need to share resources and interconnect systems for global 

partnerships. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4.  Properties of Acknowledged SoS  

 

 

The System of Systems (SoS) have been found to exhibit properties similar to 

complex adaptive systems (Sage & Cuppan, 2001). Russell Ackoff (1971) offered a 

systematic view on the concepts and terms related to the science of complex systems. He 

recommended that a systems approach be used to analyze the system as a whole rather 

than analyzing its parts individually. Ackoff classified systems into four major types 

according to not only their behavior but also the outcome of the behavior itself: state 

maintaining, goal seeking, multiple-goal-seeking and purposeful.  

Whereas, four major types of SoS are usually defined as the following (Dahman 

et al., 2011): 

• Directed: Have SoS objectives, management, funding and authority; systems are 

subordinated to SoS 
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• Acknowledged: Have SoS objectives, management, funding and authority; 

however systems retain their own management, funding and authority in parallel 

with the SoS 

• Collaborative: No objectives, management, authority, responsibility, or funding 

at the SoS level; Systems voluntarily work together to address shared or common 

interest 

• Virtual: Like collaborative, but systems don’t know about each other 

 

2.2. LITERATURE REVIEW OF SOS PROJECTS 

In this section a brief description of major SoS projects currently being pursued 

in a variety of domains are discussed. This section will help the reader get an overview 

of the scope of research being conducted. The descriptions do not necessarily follow any 

order in which the projects came into inception. DANSE SoS stands for Designing for 

Adaptation and Evolution in System of Systems (Arnold et al., 2013). DANSE project 

addresses the challenging technical, management, and political problems within 

organizations. The main features include combining the strengths of several 

infrastructures and objects present because of advances in communications, sensors and 

actuating competencies. DANSE is among several projects in SoS funded by the 

European Commission as part of the Seventh Framework Program. The purpose of the 

DYMASOS (Dynamic Management of Physically Coupled Systems of Systems) project 

is to explore methods for the distributed management of large physically connected 

systems along with distributed autonomous management and global coordination 

(Paulen, & Engell, 2014). COMPASS stands for Comprehensive Modelling for 

Advanced Systems of Systems and aims to develop collaborative research on model-

based techniques for developing and maintaining SoS (Coleman et al., 2012). For 

example, a flexible and responsive SoS can be developed for emergency management, 

given the fact that individual systems were not intended for collaboration. T-AREA-SoS 

(Trans-Atlantic Research and Education Agenda on Systems of Systems) was developed 

through cooperation between EU-US Systems of Systems (SoS) research (Siemieniuch 

et al., 2013) T-AREA-SoS aims to achieve European competitiveness and improve the 

societal impact through development and management of large complex systems.  
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The CYPHERS project aims at developing an integrated cyber-physical roadmap 

and strategy for Europe (CPS20, 2014). Its ultimate goal is to combine and expand 

Europe’s capability in embedded and mobile computing as well as in control of 

networked embedded systems. Some projects that are closely related to CYPHERS are 

Hycon2: highly-complex and networked control systems; EMSIG: embedded systems 

special interest group; artist design: European network of excellence on embedded 

systems design; and CPSoS: cyber-physical systems of systems. AMADEOS aims 

critical systems certification for SoS (Montecchi, Lollini, & Bondavalli, 2014). Its 

abbreviation stands for Architecture for Multi-criticality Agile Dependable Evolutionary 

Open System of Systems. The AMADEOS project emphasizes on evolution, emergence, 

dependability and security, taking into consideration-embedded devices and the cloud as 

the projects execution platform. It has three significant objectives namely: to introduce a 

concept of global time that can be accessed and recognized by all elements of the SoS, 

ability to explain and formalize SoS evolvability and dynamicity, and handling emerging 

properties in SoS. The CPSOS is a support action, to be completed in 30 months, that 

aims at developing a roadmap on research and innovation in engineering and 

management of cyber-physical systems of systems (Reniers & Engell, 2014). CPSOS 

are cyber‐physical systems which exhibit the features of systems of systems. The aim of 

CPSOS is to study and analyze computing and communication systems that interact with 

large complex physical systems. Local4Global- project stands for Systems of Systems 

that act locally for optimizing globally (Local4Global, 2013). One of its desired goal is 

to develop, comprehensively test and evaluate in real-life Traffic Systems of Systems 

(TSoS). In addition, the project needs to generate a generic, integrated and fully 

functional methodology for TSoS. The optimization method developed so far is 

demonstrated in two real scenarios: the climate control of a building and optimizing the 

traffic on a test site in the North of Munich. A traffic prediction project involving SoS 

techniques for smarter traffic predictions in collaboration with IBM for the city of 

Cologne, Germany (IBM Smart Traffic, 2010) was able to predict traffic volume and 

flow with over 90 percent accuracy up to 30 minutes in advance. 

COBWEB - Citizens OBservatory WEB – is another project that is funded under 

the European Union’s Seventh Framework Programme (FP 7) for developing 
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community-based environmental systems using innovative and novel earth observations 

applications (Hodges, 2014).  The projects major aim is to create a platform 

environment enabling citizens living under the biosphere reserves designated by 

UNESCO (United Nations Educational, Scientific and Cultural Organization) to collect 

environmental data using their mobile devices. FP7 is a large collaboration of experts 

from 13 partners and 5 countries. EU FP7 project, Road2SoS, has developed a roadmap 

of multi-site manufacturing SoS in order to explore the potential pathways to a future 

vision of a globally reconfigurable manufacturing SoS (Rauschecker, Ford, & 

Athanssopoulou, 2014). The aim is to have a global network of interoperable factories, 

permitting the dynamic allocation of manufacturing. GEOSS stands for global earth 

observation system of systems, aims to provide solutions for a number of problems 

around the world (Uhlir, Chen, Gabrynowicz, & Janssen, 2009). So far, it has been used 

in forecasting meningitis outbreaks, guarding biodiversity, and helping in improving 

climate observations in Africa and Central and South America. The environmental 

protection agency (EPA) in USA along with Group on Earth Observations (GEO) helps 

in advancement of GEOSS. GEOSS provides decision makers with correct and prompt 

scientific information for advancement of social benefits. Integrated Mobile Security Kit 

(IMSK) is used for assessing critical situations (Laudy, Petersson, & Sandkuhl, 2010). It 

helps to provide quickly an effective deployment of information fused with intelligence 

on mobile platforms for enhanced security. Some examples of its application are mass 

events such as football games and terrorism attacks. Lastly, the ministry of economics 

and technology in Germany sponsors Shared e-Fleet project (2013). It aims at higher 

utilization of systems electric vehicles so that they can be used commonly and very 

efficiently. 

SoS has found applications in the field of emergency management response 

systems as well. An excellent paper using fuzzy logic and genetic algorithms describes 

the application of SoS methodology in post-disaster relief and recovery operation for an 

earthquake situation (Chandana, & Leung, 2010). The effectiveness of the proposed 

approach to disaster situation management is demonstrated using Chinese earthquake 

site. Liu (2011) also propose principles and rules for the design of an Emergency 

Management System of Systems (EMSoS) in China. A workshop entitled "Building a 
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Systems of Systems (SofS) for Disaster Management" was conducted in Australia by the 

CSIRO (Fraser, & Hawkins, 2014). CSIRO is known as Commonwealth Scientific and 

Industrial Research Organization. CSIRO is Australia's national science agency. The 

workshop aimed to underline a plan that would help in achieving situational awareness 

for natural disasters such as forest fires at a national extent. 

 

2.3. SOS ACQUISITION PROCESS    

The DoD 5000.2 is currently used as the acquisition process for complex 

systems. Schwartz (2010) described this process as an extremely complex systemic 

process that cannot always constantly produce systems with expected either cost or 

performance potentials. The acquisition in DoD is an SoS problem that involves 

architecting, placement, evolution, sustainment, and discarding of systems obtained 

from a supplier or producer.  

Numerous attempts undertaken to modify and reform the acquisition process 

have found this problem difficult to tackle because the models have failed to keep pace 

with actual operational scenarios. Dombkins (1996) offered a novel approach to model 

complex projects as waves. He suggested that there exists a major difference in 

managing and modeling traditional projects versus complex projects. He further 

illustrated his idea through a wave planning model that exhibits a linear trend on a time 

scale; on a spatial scale, it tries to capture the non-linearity and recursiveness of the 

processes. In general the wave model is a developmental approach that is similar to 

periodic waves. A period, or multiple periods, can span a strategic planning time. The 

instances within the periods represent the process updates. 

  A recently proposed idea (Dahman, Lane, Rebovich, & Baldwin, 2008) that 

SoS architecture development for the DoD acquisition process can be anticipated to 

follow a wave model process. According to Dahman DoD 5000.2 may not be applicable 

to the SoS acquisition process. Acheson (2013) proposed that Acknowledged SoS be 

modeled with an Object-Oriented Systems Approach (OOSA). Acheson also proposes 

that for the development of SoS, the objects should be expressed in the form of a agent 

based model.  
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The environment and the systems are continuously changing. Let there be an 

initial environmental model which represents the SoS acquisition environment.  As the 

SoS acquisition progresses through, these variables are updated by the SoS Acquisition 

Manager to reflect current acquisition environment. Thus, the new environment model at 

a new time has different demands. To fulfill the demands of the mission a methodology 

is needed to assess the overall performance of the SoS in this dynamic situation. The 

motivation of evolution is changes in the SoS environment (Chattopadhyay, Ross, & 

Rhodes, 2008). The environmental changes consist of: 

• SoS Stakeholder Preferences for key performance attributes 

• Interoperability conditions between new and legacy systems 

• Additional mission responsibilities to be accommodated 

• Evolution of individual systems within the SoS 

• Capabilities of individual systems 

  

The methodology for architectural evolution in SoS should be such that it 

addresses all the changes in the environment stated above.  

 

2.4. ASSESSING SYSTEMS ARCHITECTURE 

In principle, systems engineering may be thought of as a decision-making 

activity. The architecting process involves the hierarchical reduction of ambiguity where 

a set of alternatives is evaluated so that the most suitable alternatives are selected. SoS 

design problems are based on multi- objective functions for binary variables (Singh, 

2011). The design is judged based on a number of key performance parameters that 

together form a highly non-linear hyper surface. These techniques were employed in this 

study. The multi-objective approach combines multiple objectives into the following 

single objective [13]:  

Max fk (x)
T
 ∀ k; gi (x)

T
 ≤ bi   ∀ I; xT

 = { x1  x2  …  xn  } ϵ X ; x
T≥ 0 

x: vector of the variables; f: objective function(s); g: inequality constraints;  

A solution to the multi-objective problem includes compromise that is acceptable 

to the decision maker with respect to all of the objectives pursued (Schutze, Lara, & 

Coello Coello, 2011). 
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2.5. HANDLING MANY OBJECTIVES 

Multi-objective optimization algorithms are well known and fully developed for 

situations with two or three objectives. Coello (1999) gives a list of references on 

evolutionary multiobjective optimization.  Some popular and established ways (Figure 

2.5.) to solve such problems are weighted approach (Marler & Arora, 2010), goal 

programming (Deb, 1999), Pareto dominance (Horn, Nafpliotis, & Goldberg, 1994), ε–

Pareto Dominance Optimization is applied to workflow grid scheduling (Garg & Singh, 

2011), and ranking of objectives (Garza-Fabre, Pulido, & Coello, 2009).  

Many objective optimization refers to conditions which more have than three 

objectives. Solving many objective optimization problems with the above listed methods 

can be difficult because nearly all solutions in a population grow into non-dominated, 

with increasing number of objectives. Secondly, the number of solutions required for 

approximation increases exponentially with the increase in dimensionality of the 

objective space (Schutze, Lara, & Coello Coello, 2011). As the number of objectives 

goes beyond five or more, the number of non-dominated solutions in a randomly 

generated population is more than 90% (He & Yen, 2014).  The effectiveness of the 

recombination operators usually used in evolutionary algorithms is reduced (Deb & Jain, 

2014).  

Besides it is hard to visualize solutions in higher dimensional spaces, weakening 

in search ability of Pareto dominance based algorithms and a very high computational 

cost (Ishibuchi, Tsukamoto, & Nojima, 2008). Stochastic heuristic techniques such as 

evolutionary algorithms are often used to generate solutions and fuzzy logic may be 

used for assessing the fitness of these solutions (Agarwal, Pape, & Dagli, 2014). These 

techniques were employed in this study (Coello Coello, 2002).  

Some methods to deal with many objective problems include using reference-

point-based nondominated sorting approach (Deb & Jain, 2014), Pareto corner search 

evolutionary algorithm and dimensionality reduction (Singh, Issacs, & Ray, 2011). 
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Figure 2.5. Different methods to handle multiple objectives in optimization  

 

 

Other methods as listed in Figure 2.5. are objective reduction using  linear and 

nonlinear algorithms (Saxena, Duro,Tiwari, Deb, & Zhang, 2013),  designing a grid 

based evolutionary algorithm (Yang, Li, Liu & Zheng, 2013), fuzzy-based Pareto 

optimality (He & Yen, 2014),  Borg multi-objective evolutionary algorithm (MOEA) 

proposes to combine all techniques such as ε-dominance, convergence speed measuring 

process called progress, random initialization, and auto-adaptive multi-operator 

recombination (Hadka & Reed, 2013), multiobjective optimization problem can be 

decomposed into a smaller number of scalar optimization sub-problems and then 

optimize them concurrently (Zhang, & Li, 2007),  many researchers are using 

hypervolume indicator as a quality measure of the Pareto fronts (Bader & Zitzler, 2011) 

and besides there exist other performance metrics to compare Pareto fronts obtained by 

evolutionary algorithms (Yen & He, 2014).  
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2.6. AUTOMATED NEGOTIATIONS 

The importance of studying negotiation is realizable in electronic commerce, and 

artificial intelligence. Negotiations have two major components viz the number of 

parties who are negotiating and the issues on which they are negotiating.  Each party 

negotiates in its own interest to reach at least the same or a better outcome than the 

previous offer made to it (An, 2011). Cooperative negotiation has found uses in 

maintaining real time load of a mobile cellular network (Bigham & Du, 2003), modeling 

complex physiological phenomena (Gatti, & Amigoni, 2004, July ) and resolving air 

traffic conflicts efficiently (Wollkind, Valasek, & Ioerger, 2004).  A negotiation can 

occur between two individuals, or one individual negotiating with several individuals, 

and finally many individuals negotiating with many other individuals. These 

negotiations are called bilateral (Lin, Kraus, Wilkenfeld, & Barry, 2006), one-to-many 

(Rahwan, Kowalczyk, & Pham, 2002) and many-to-many (Nguyen, & Jennings, 2006) 

respectively.  

A detailed classification of automated negotiations can be accessed from Buttner (2006). 

Automated negotiation is an integral part of systems across all domains (Jennings et.al, 

2001).  Automated negotiation can be defined as an iterative process of settling on an 

issue or multiple issues between the negotiating parties (Fatima, Wooldridge, & 

Jennings, 2002) as shown in Figure 2.6. 

 

 

 

Figure 2.6.  Automated negotiations protocol categories 

 

 

Multi-System 
Negotiations 

One to Many  Bilateral 
Many to Many 
Negotiations 



 

 

20 

According to (Zheng et al., 2013; Guttman & Maes, 1998) negotiation in multi-

agents is a decision process for resolving multiple issues, which may or may not be 

mutually exclusive (refer to Figure 2.7.).  Most of the current research is focused on 

assigning utility functions encompassing all issues or a function for each issue and then 

combining the utilities to estimate the overall benefit of an offer (Ito et al., 2009).   

This assumption is usually with the utilities making the decision a linear 

problem, which is usually, not the case. The utility functions can be classified into linear 

and nonlinear.  Agents that utilize linear utility functions can aggregate the utilities of 

the issue-values by weighted linear summation. 

However, such an approach is considered naïve for modeling real world 

scenarios as aggregations are unrealistic. Multi-attribute utility theory (MAUT) (Dyer, 

2005) believes that each outcome issue or attribute is independent. MAUT proposes to 

have a separate utility function for each of the issues. Although there have been studies 

that model pairwise attributes to capture the dependence among the variables (Siebert, 

2010). 

Besides the systems can exhibit diverse behaviors which cannot be estimated as 

functions and it is hard to predict their ranking of preference for a particular issue 

(Marsá-Maestre et.al., 2014). Game theory postulates negotiation as a non-zero sum 

game along multi-dimensional issues (Binmore & Vulkan, 1999). Multiple issue 

negotiations can be broadly categorized as separate negotiations where each issue is 

dealt individually by the negotiators, in simultaneous negotiations all issues are taken up 

together, where in sequential negotiations, a set sequence is assigned to the total issues 

and each issues is then taken up in that order (Fatima, Wooldridge, & Jennings, 2006). 

The negotiation protocol describes the rules of encounter between the negotiation 

parties.  A negotiation protocol can handle a single issue or multiple issues. The 

negotiation strategy is a specification of the sequence of actions (usually offers or 

responses) that the agent plans to make during negotiation. The solution space of 

negotiation strategies is very large. Strategies are usually based on the nature of the 

behavior of the agent and its opponent or teammate. Negotiation strategy tries to model 

the function (or a set of rules) for proposing the values of multiple issues at each point in 
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time (refer to Figure 2.7.). The strategy used for a particular agent might turn out to be a 

poor choice for another. 

 

 

 

Figure 2.7.  Categories of attributes in automated negotiations  

 

 

A static approach can also decrease awards after a number of negotiations. 

Therefore, an agent can learn by adapting based on rewards, as opposed to trying to 

model the other agents.  

Agents are classified based on information possessed at the time of negotiation 

into complete or partial information states. If the agent has the complete information of 

the environment, which includes the opponent agent’s, negotiation strategy, the external 

factors that affect the negotiation and the effect of the agent’s strategy on the opponent it 

is said that that agent is in a complete information state. Otherwise, if any information is 

unclear or missing the agent is assumed to be in a partial information state.  Information 

in multi-agent systems are comprised of utility functions that the opponent agents use to 

evaluate various attributes, the reasoning models of opponent agents, and the constraints 

of opponent agents.  

The better approach would be to calculate the opponent’s behavior based on its 

previous offer, and then adapt the response accordingly (Chen & Weiss, 2013). Different 

adaptive strategies have been proposed earlier such as the ABiNeS: An Adaptive 

Bilateral Negotiating Strategy over Multiple Items for effectively handling different 

types of opponents (Hao & Leung, 2012). Other methods include game theoretic 
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analysis (Jordan, Kiekintveld, & Wellman, 2007), use of genetic algorithms (Jian, Li-

Chang, & Bo, 2008), differential evolution (Bi, & Xiao, 2012), Bayesian networks 

(Hindriks, & Tykhonov, 2008), neural networks (Carbonneau, Kersten, & Vahidov, 

2008) and fuzzy logic (Luo, et al., 2003). 

 

2.7. IDENTIFYING GAPS IN LITERATURE 

The overall aim of this work is to ensure that SoS architecting process is 

concentrated on enabling a methodological insight which is requisite to provision 

knowledge-based decision making, throughout the acquisition process. The objective is 

also to enlarge our horizon to not only DoD based acquisitions but commercial 

acquisitions by making use of the this methodology of evolutionary architecting.  

The methodology outlined in this research is a type of modeling approach to 

address various aspects of SoS acquisition environment: SoS architecture assessment, 

SoS architecture evolution, and SoS acquisition process dynamics including behavioral 

aspects of constituent systems. The major gaps are highlighted below and then further 

explained to elucidate the concepts: 

 There are no validated and tested quantitative models for SoS architecture 

development 

 The concept of meta-architecture has not been previously used in SoS 

architecture generation  

 Architecture assessment methods previously suggested do not effectively handle 

the preferences amongst the various key performance attributes. Although some 

papers have recommended methods using type I fuzzy logic (Pape & Dagli, 

2013) and computing with words (Singh, 2011). 

 An integrated model that combines meta-architecture generation and negotiations 

with the stakeholders is also missing from the literature  

 System behaviors have not been previously incorporated in SoS negotiation 

process 

 The SoS architecture problem is a many objectives optimization challenge with 

over more than 20 objectives 
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The SoS architecting model proposed employs mathematical models. Model 

based engineering is a fundamental part of the systems engineering process by 

supporting design, evaluating architectural solutions, and enabling the assessment of the 

system performance. By using meta- architecture generation techniques, architecture 

quality assessment techniques and implementation through negotiation all three points 

are addressed. All the techniques are integrated in this dissertation to form a model that 

acts as a decision aid to the SoS manager.  

There is a need within systems of systems, for making decisions to mold legacy 

systems, add new systems, and/or change the configuration of these systems and their 

interconnections (DeLaurentis, Crossley, & Mane, 2011). This requires both proper 

definition of the design problem and good analysis/synthesis (Yingchao, 2012). This 

need is addressed through the wave approach of architecture evolution that takes care of 

sequential decision making (Agarwal et al., 2015). This dissertation provides a series of 

quantitative techniques and pathways to add new capabilities and systems within a SoS. 

Besides the dissertation aims to provide an integrated model that can bring together the 

techniques to form a tool that aids in decision making.  

Meta-architecture is a set of systems and interfaces selected to form a SoS based 

the KPAs of the problem domain. The problem of selection is posed a many-objective 

optimization problem. The objectives are the KPAs and the decision variables are the set 

of systems and interfaces. This concept helps in conveying the SoS architecture idea to 

the stakeholders at a very high level. It can be combined with various other executable 

architecting techniques to evaluate the efficacy of SoS before it is finally implemented. 

Architecture assessment techniques previously proposed have not been able to 

capture the essence of non-linear tradeoffs existing amongst the various attributes. This 

problem is dealt by incorporating preferences in key performance parameters (KPP) for 

architecture assessment. The architectural issues can be converted to KPPs which later 

can be used as objectives for solving the architecting problem. The preferences among 

KPPs are accumulated through many stakeholders to counter any unforeseen 

circumstances. Also the fuzzy rules created through these preferences produce non-

linear surface to capture the decision space that may be highly non-linear (Agarwal, 

Pape, & Dagli, 2014).  
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The method of SoS architecture generation proposed here gives selects the best 

possible architecture by using the KPP or key performance attributes. The new rules or 

modified rules of the fuzzy inference engine can be changed any time during the 

architecting process thus making it easy and les computationally expensive to fix. 

Individual attributes may not have a clearly defined, mathematically precise, linear 

functional form from worst to best. The goodness of one attribute may or may not offset 

the badness of another attribute. Several moderately good attributes coupled with one 

very poor attribute may be better than an architecture with all marginally good attributes, 

or vice-versa. A fuzzy approach allows many of these considerations to be handled using 

a reasonably simple set of rules, as well as having the ability to include non-linear 

characteristics in the fitness measure. The simple rule set allows small adjustments to be 

made to the model to see how seemingly small changes affect the outcome. 

Another component has been to use the evolutionary algorithm based approach 

which helps in evaluating many architecture alternatives to achieve a near optimal 

architecture. Evaluation of architectures is another SoS challenge area as it lends itself to 

a fuzzy approach because the criteria are frequently non-quantitative, or subjective (Pape 

& Dagli, 2013), or based on difficult to define or even unpredictable future conditions, 

such as “robustness.” 

The proposed integrated model combines meta-architecture generation and 

negotiations with the stakeholders. Several projects have not been able to achieve 

enough progress due to integration problems related with the complexity of software 

interfacing. By doing so, this research makes a valuable contribution to the existing 

systems engineering body of knowledge (SEBOK) (Pyster, Olwell, Squires, Hutchison, 

Enck, Anthony, 2014). 

This work also addresses another gap by integrating software engineering with 

systems engineering principles (Agarwal, Pape, Ergin, & Dagli, 2014) as pointed out by 

Squires, Olwell, Roedler, & Ekstrom (2012). This is because a systems engineer should 

be able to comprehend the popular methods of software architecting and design patterns. 

By having the ability to incorporate multiple systems behaviors and achieving an 

architecture through negotiation we are able to capture the emergent phenomenon in 

forming a SoS. It is often hard select the properties that do not correspond one systems 
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or component alone but to the whole SoS. Thus by having multiple behaviors and 

negotiations we aim to create a SoS which can achieve the overarching capability 

through its emergent properties (Agarwal, Saferpour, & Dagli, 2014). 

SoS architecting is where problems are solved by first creating the meta- 

architectures that involves multiple key performance parameters (KPP) producing a non-

linear hypersurface. The optimization algorithm has to trace this hypersurface to find the 

global minima or maxima. This process is very computationally expensive and tedious. 

Fuzzy associate memories can be used as a way combining multiple objectives in to one 

non-linear surface with many dimensions (Agarwal, Pape, & Dagli, 2014). 

Too many KPPs can pose a challenge to SoS architecture generation mechanism. 

Since the relationship amongst the KPPs is non-linear, together they forma non-linear 

hypersurface which is hard for the optimization algorithm to trace. 

Resiliency can be termed as the capability to acclimatize in a dynamic 

environment (Schwind et al., 2013), and through self-organization can help the systems 

swiftly recuperate from any adversarial events and disturbances (Vaneman, 2014). 

Resilient SoS architectures have the ability to bounce back through major breakdowns in 

functional and physical architectures. They have a higher chance of recuperating and 

take less time to recover (Vaneman & Triantis, 2007) and (Vaneman, 2014).  

There have been different metrics used to measure resilience such as failure node 

analysis (Han, Marais, & DeLaurentis, 2012) in SoS. Another concept is to endure the 

loss of performance in one component system by reorganizing the tasks among the 

remaining systems (Uday & Marais, 2014). Therefore as one node undergoes 

breakdown, other nodes can modify their tasks to compensate for this loss. These 

metrics are not able to capture the overall capability of resilience for a SoS. 

By using key performance measures such as robustness and modularity we 

introduce new measures based on graph theory that can ensure that the SoS architecture 

is resilient. Lack of robust behavior in applications is one source of failures (Hagen, 

2007). Similarly modularity is very essential in design of complex engineering systems 

(Baldwin & Clark, 2006). It helps in making the SoS controllable, allows multiple 

passageways for working, and endows the system the strength to handle systemic 

failures. Thus it can be said both robustness and modularity are crucial components of 
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SoS resilience. Robustness metric used in the work ensures the SoS architecture has the 

capability to withstand any disruption and modularity metric ensures the capability 

recuperate based no high modularity of the SoS graphical model. 

Interoperability can be defined as the ability of systems, units, or forces to 

provide services to and accept services from other systems, units, or forces and to use 

the services so exchanged to enable them to operate effectively together (Tran, Douglas 

& Watson, 2005) & (Lane & Valredi, 2011).  

The proposed model is able to measure current level interoperability which is 

usually a major concern in SoS, to manage protocols and interfaces in general as 

systems come and go in SoSs, and measure communication across a given set of ground 

control systems. Therefore we not only measure interoperability within systems but also 

communication capability across a given set of communication systems. These systems 

are designed for an intermediate communication channel in case the systems are unable 

to communicate directly amongst themselves. 

The later sections give a detailed overview of various techniques mentioned to 

address the gaps identified in this section such as model validation and testing, meta-

architecture generation, architecture assessment, an integrated model approach, system 

behaviors incorporation and many objective optimization challenges. 
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3. THE INTEGRATED MODEL 

 As the world becomes more complex, the large scale systems exhibit properties 

such as decentralization in authority and geographical independence. Such systems are 

composed of diverse and autonomous elements (Samad & Parisini, 2011). Many such 

systems can be categorized as Acknowledged SoS due to similarities in the 

characteristics shared amongst them. Acknolwedged SoS usually have the SoS 

objectives, management, funding and authority provided to participating systems. 

Systems also maintain their own management, funding and authority autonomously. 

This dissertation focusses on Acknowledged SoS as they occur in many real life 

applications, some of which are discussed here. 

Smart Grids can be modeled as Acknowledged SoS due to their resemblance 

with its properties (Miller, Pogaru, & Mavris, 2013), supply chain management systems 

(Chan, H. K. (2011), a recent example has been the development of an internet 

architecture which reconfigures itself with change in its environment (Liu, Nishimura, & 

Umehara, 2012,) Guo (2009) suggests model-based techniques for automotive electronic 

system development which involve embedded systems. Department of Defense (DoD) 

has long been a proponent of Acknowledged SoS research and it utility in assessing 

security risks to critical missions (Dahmann, J., Rebovich, G., & Turner, G. (2014). 

Disaster resilience or disaster relief management response systems can also be modeled 

as Acknowledged SoS (Cavallo & Ireland, 2014).  

 

3.1. DEFINING THE SOS PROBLEM 

The model presented in this section is applicable to Acknowledged system of 

systems. The architecture of an SoS follows an evolutionary development cycle to 

achieve the overarching capability required by the SoS. Especially for the 

Acknowledged SoS this process is guided through a small fund allocation to create a 

larger capability which is operational over a finite cycle time. 

Furthermore the constituent systems do not need to either acquiesce to SoS 

requests or officially report to an SoS manager. Instead they can negotiate in their best 
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interests. The capabilities possessed by the legacy systems can be incorporated in the 

next evolution cycle depending on the requirements. 

The SoS domain manager must identify the decisive set of systems (with their 

respective capabilities) that will help SoS achieve an overall goal/purpose. An SoS can 

be achieved by combing individual systems and developing certain required interfaces 

among them. A detailed description of various SoS types is already given earlier in 

section 2.1.  

Some methods have been proposed to model the evolutionary development of 

SoS. This dissertation adapts the approaches suggested and the integrated model builds 

on one of these approaches. 

Dombkins (1996) has offered a novel approach which models complex projects 

as waves. Dombkins (2013) suggests and illustrates that there exists a major difference 

in managing and modeling traditional projects versus complex projects. Wave planning 

exhibits a linear trend on a time scale and on a spatial scale it tries to capture the non-

linearity and recursiveness of the processes.  

Wave model in general is a development approach similar to periodic waves. A 

period or multiple periods can span a strategic planning time and within the periods, 

there are instances that represent the process updates. Recently Dahmann proposed that 

SoS architecture development for the DoD acquisition process, can be anticipated to 

follow a Wave Model process (Dahman et al., 2011). According to Dahman DoD 5000.2 

may not be applicable to SoS acquisition process. This research builds on the approach 

of wave model for Acknowledged SoS architecting. The evolution of SoS over a period 

of time under various uncertainties is depicted in Figure 3.1.   

The Figure 3.2. explains the evolution of SoS from one wave to the next. The 

first wave or Wave 1 has N systems and M capabilities initially. As the SoS transitions 

to the next Wave 2 it has now T systems and K capabilities as some capabilities from 

Wave 1are added or rejected. Some systems such as S2 and capabilities such as C2 are 

retained in the next wave. Let us illustrate the wave model of SoS development through 

evolution of a big city to a smart city. 
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Figure 3.1.  SoS wave model adapted from a figure 

 

 

 

Figure 3.2.  SoS transition into the next wave  

 

 

Smart city can be described as a functioning large scale system where networked 
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operations cover a very broad domain: surfacing information to authorities, businesses, 

and citizens, optimizing energy and water pro (Celino, I., & Kotoulas, S. (2013). 

Smart cities are very similar to an Acknowledged SoS where is there is a 

conscious effort made to develop a SoS. Similarly the various systems within the 

domain of a smart city such as Smart Grid, Smart Transportation, Smart Academic 

systems and so on acknowledge the Smart city objectives, have funding and 

management. Although individual systems operate autonomously yet they have shared 

interests. These systems have the knowledge and scope regarding the project and are 

merely guided by the smart city stakeholders. Smart city stakeholders work towards a 

comprehensive framework and have different viewpoints on multiple issues. The key 

issues in this case can be termed as the KPPs. 

Just like the wave model of development Smart cities go through evolutionary 

phases. Based on the capabilities, current requirements, environmental changes, 

stakeholder views and performances the constituent systems are selected or left out in 

the next phase. To select the best set of systems and how they interface with each other 

to provide a network centric operation, optimization of resources is conducted at each 

step. The section below presents the general model for Acknowledged SoS architecting.  

 

3.2 INTEGRATED MODEL VARIABLES AND PARAMETERS  

The overall capability C (the overall goal) to be achieved by combining sub-

capabilities): 

𝑐𝑗:  j ∈ J, J= {1, 2,…, M}: Constituent system capabilities j required to achieve C 

𝑠𝑖: i ∈ I, I= {1, 2,…, N}: Candidate system i for the SoS  

𝑁:Total number of systems candidates 

𝑀:Total number of capabilities required 

Let 𝑨 be a 𝑁 x 𝑀 − 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑎𝑖𝑗 𝑤ℎ𝑒𝑟𝑒  

𝑎𝑖𝑗 = 1 𝑖𝑓 capability 𝑗 is possessed by system 𝑖 

𝑎𝑖𝑗 = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

𝑃𝑖: Performance of system 𝑖 for delivering all capabilities  

𝐹𝑖: Funding of system 𝑖 for delivering all capabilities  

𝐷𝑖: Deadline to participate in this round of mission development for system 𝑖 
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𝐼𝐹𝑖𝑘 𝑖𝑠 𝑡ℎ𝑒  interface between systems 𝑖 𝑎𝑛𝑑 𝑘 s.t. s≠ 𝑘, k ∈ I 

𝐼𝐶𝑖: The cost for development of interface for system 𝑖 

𝑂𝐶𝑖: The cost of operations for system 𝑖 

𝐾𝑃𝑟 : r ∈ R, R= {1, 2,…, Z}: The key performance attribute r of the SoS 

𝐹𝐴: Funding allocated to SoS Manager 

p= {1, 2,…, P}: number of negotiation parameters for bilateral negotiation 

𝑡𝑚𝑎𝑥: Total round of negotiations possible 

𝑡 : Current round of negotiation (epochs) 

𝑉𝑝𝑖
𝑆𝑜𝑆(𝑡): The value of the attribute 𝑝 for SoS manager at time 𝑡 for system 𝑖 

𝑉𝑝𝑖
𝑆 (𝑡): The value of the attribute 𝑝 for system 𝑖 owner at time t  

𝑇𝑄:  Threshold architecture quality 

 

3.2.1. Wave Model Processes. The wave model methodology provides for the 

evolution of the SoS needs, resources and environment over time while accounting for 

the differing approaches and motivations of the autonomous component system 

managers. The overall idea being to select a set of systems and interfaces based on the 

needs of the architecture in a full cycle called the wave.  

Processes involved in the wave model can be explained through the first stage of 

Initializing the SoS (Dahmann, Rebovich, Lowry, Lane, & Baldwin, 2011).  In terms of 

initializing, wave process requires SoS objectives and operational concept (CONOPS) 

and information on core systems to support desired capabilities. This basically starts 

with the overarching capability C desired by Acknowledged SoS manager and defining 

the 𝑐𝑗  or sub-capabilities required to produce capability C and FA, funding allocated to 

SoS Manager. These also form the input for the participating systems 𝑠𝑖. 

The second stage is called the Conduct SoS Analysis. For the wave process it 

represents starting an initial SoS baseline architecture for SoS engineering based on SoS 

requirements space, performance measures, and relevant planning elements.  

The next step is the Develop/ Evolve SoS. In this case in terms of the Wave 

process essential changes in contributing systems in terms of interfaces and functionality 

in order to implement the SoS architecture are identified.  
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The next phase is Plan SoS Update in Wave process. In this phase the architect 

plans for the next SoS upgrade cycle based on the changes in external environment, SoS 

priorities, options and backlogs. There is an external stimulus from the environment 

which affects the SoS architecture.  

 Finally, the last stage in Wave process is Implement SoS Architecture which 

establishes a new SoS baseline based on SoS level testing and system level 

implementation.  

The wave model has been implemented in Flexible and Intelligent Learning 

Architectures for SoS (FILA-SoS) version 1.0. This research hopes to improves certain 

models in version 1.0. This work aims to provide three independent models to be 

incorporated in version 2.0 that include, an alternative for meta-architecture generation 

based on swarm intelligence, a new architecture assessment technique based on type-II 

fuzzy logic systems, and a bilateral negotiation mechanism for SoS stakeholders based 

on clustering and machine learning techniques. Together the three models can help in 

designing an overall evolution strategy for complex adaptive SoS (CASoS).   

3.2.2. Flexible and Intelligent Learning Architectures. The proposed model 

forms a part of the larger project called the Flexible and Intelligent Learning 

Architectures for SoS (FILA-SoS). FILA-SoS follows the Dahmann’s proposed SoS 

Wave Model process for architecture development of the DoD acquisition process as 

depicted in Figure 3.1. FILA-SoS addresses the most important challenges of SoS 

architecting in regards to dealing with the uncertainty and variability of the capabilities 

and availability of potential component systems. The methodology also provides for the 

evolution of the system-of-system needs, resources and environment over time while 

accounting for the differing approaches and motivations of the autonomous component 

system managers. FILA-SoS assumes to have an uncertain and dynamic environment 

with fixed budget and resources for architecting SoS. The overall idea being to select a 

set of systems and interfaces based on the needs of the architecture in a full cycle called 

the wave. Within the wave there may be many negotiation rounds which are referred to 

as epochs. After each wave the systems selected during negotiation in the previous wave 

remain as part of the meta-architecture whilst new systems are given a chance to replace 
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those left out as a result.  The following paragraph explains the various stages in the 

wave model and how they are implemented in FILA-SoS. 

 The FILA-SoS has a number of independent modules that are integrated together 

for meta-architecture generation, architecture assessment, meta-architecture executable 

model, and meta-architecture implementation through negotiation (Figure 3.3.). The 

meta-architecture generation methods include fuzzy-genetic optimization (Pape, 

Agarwal, Giammarco & Dagli, 2014), multi-level optimization (Konur & Dagli, 2014), 

particle swarm optimization (Agarwal, Pape, & Dagli, 2014) and cuckoo search 

optimization (Agarwal, Wang, & Dagli, 2014). The architecture assessment method is 

based on type-1 fuzzy logic systems (FLS). 

 It is not possible to implement such meta-architecture without persuading the 

systems to participate, hence to address this issue a negotiation model is proposed based 

on game theory. The SoS negotiation protocol is based on game theory (Ergin, 2104). 

Individual systems providing required capabilities can use three kinds of negotiation 

models based on their negotiation strategies non-cooperative Linear Optimization 

model, cooperative fuzzy negotiation model, and Semi-cooperative Markov chain model 

(Dagli et al., 2013). Executable architectures are generated using a hybrid of Object 

Process Methodology (OPM) and Colored Petri Nets (CPN) (Agarwal, Wang, & Dagli, 

2014), (Wang, Agarwal, & Dagli, 2014), and (Wang & Dagli, 2011).  

 Finally the process moves on to the next acquisition wave. The evolution of SoS 

should take into account availability of legacy systems and the new systems willing to 

join, adapting to changes in mission and requirement, and sustainability of the overall 

operation.  
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Figure 3.3.  Overview of Integrated Model FILA-SoS Version 1.0 

 

 

  FILA-SoS is a novel method of making sequential decisions over a period for 

SoS development. FILA-SoS has a number of abilities that make it unique such as:  

 Aiding the SoS manager in future decision making 

 To assist in understanding the emergent behavior of systems in the acquisition 

environment and impact on SoS architecture quality 

 To facilitate the learning of dynamic behavior of different type of systems 

(cooperative, semi-cooperative , non-cooperative) 

 Identifying intra and interdependencies among SoS elements and the acquisition 

environment 

 Modeling and application to a wide variety of complex systems models such as 

logistics and cyber-physical systems.  
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 Acting as a Test-bed for decision makers to evaluate operational guidelines and 

principles for managing various acquisition environment scenarios 

 Appropriate to model SoS that evolve over a period of time under uncertainties by 

multiple wave simulation capability 

 

 The individual models presented in the previous paragraphs are part of the 

version 1.0 of FILA-SoS.  The models are currently undergoing upgrades to answer and 

analyze SoS properties. The upgraded and new models will be incorporated in version 

2.0 of FILA-SoS as shown in Figure 3.4.  

 

 

 

Figure 3.4.  Independent models used in FILA-SoS 
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FILA-SoS project spans 17 volumes (SERC, 2015). Each report describes the 

various aspects of the FILA-SoS integrated model.  

The project reports span Volume 1 is the Integrated Model Structure report for 

FILA-SoS Version 1.0. It provides a short description of all independent models that 

make up the FILA-SoS integrated model. Integrated FILA-SoS developed is tested in 

three notional System-of-Systems, namely; Aircraft Carrier Performance Assessment, 

ISR (intelligence surveillance and reconnaissance) and SAR (search and rescue). FILA-

SoS integrated model is currently being validated with a real life data from a medium 

sized SoS. The results of this validation are given in volume 17. 

 This dissertation aims to provide three independent models to be incorporated in 

version 2.0 that include, an alternative for meta-architecture generation based on swarm 

intelligence, a new architecture assessment technique based on type-II fuzzy logic 

systems, and bilateral negotiation mechanism for one SoS manager and many individual 

systems based on clustering and machine learning techniques. Together the three models 

can help in designing an overall evolution strategy for complex adaptive SoS (CASoS).   

 Firstly volume 2 describes Meta-Architecture Generation Multi-Level Model and 

volume 3 describes meta-architecture generation model known as the Fuzzy-Genetic 

optimization model. Both these models use a genetic algorithm to generate solutions. 

This dissertation proposes the use of a particle swarm optimization (PSO) algorithm. It 

has been recognized that GA is computationally expensive (Hassan, Cohanim, DeWeck, 

& Venter, 2005) and although PSO has the same efficiency as the GA but has a less 

computational cost attached to it.  

 Secondly for SoS architecture assessment, a type-1 fuzzy assessor has been used 

also described in Volume 4. This work extends the assessment technique by employing 

type-II fuzzy assessor. 

 Lastly, the SoS negotiation model is extended by incorporating a adaptive 

negotiation model. 

It is named the Complex Adaptive System-of-System Architecture Evolution 

Strategy Model and is incorporated in FILA-SoS Version 2.0. This volume describes a 

computational intelligence based strategy involving meta-architecture generation 
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through evolutionary algorithms, meta-architecture assessment through type-2 fuzzy 

nets and finally its implementation through an adaptive negotiation strategy.  

 The three models proposed in this research are described in the following section 

and are, Meta-Architecture formulation and generation, Meta-Architecture assessment 

and selection, and Meta-Architecture implementation through negotiation. 

 

3.3. META-ARCHITECTURE FORMULATION AND GENERATION 

Optimization algorithms can be categorized as gradient based and non-gradient 

based methods. Some of the non-gradient based methods include evolutionary 

algorithms (Horn, Nafpliotis, & Goldberg, 1994), swarm optimization (Engelbrecht, 

2006), grid search (Bergstra & Bengio, 2012) and nonlinear simplex such as Nelder-

Mead (Nelder & Mead, 1965). Evolutionary algorithm based techniques have proved to 

be useful for optimization problems with too many integer variables.  

Meta-architecture is a set of systems and interfaces selected to form a SoS based 

the KPAs of the problem domain. The problem of selection is posed a many-objective 

optimization problem. The objectives are the KPAs and the decision variables are the set 

of systems and interfaces. Usually in a more than one objective optimization problem 

there is no single optimum but a set of non-dominated solutions (as explained in Section 

2.5). solving such problems with more than three objectives turns it into a many-

objective optimization problem. This problem is analyzed as a Pareto-Box problem 

(Köppen, Vicente-Garcia, & Nickolay, 2005).  

3.3.1. The Pareto-Box Problem. A general approach for creating a Pareto 

solution can be expressed as follows: 

 Let’s assume there are 𝑧 objective functions to be optimized.  

 The decision variables are expressed as a decision vector 𝑥⃑ = (𝑥1, 𝑥2, … , 𝑥𝑛) in 

the decision space 𝑋. 

 A function 𝑓: 𝑋 → 𝑌 evaluates a specific solution expressed as a point in 

objective space 𝑌. 

 Assume the objective space to be a subset of the real numbers.  That is 𝑌 ⊆  𝑅 . 

 In a single-objective optimization problem, a solution vector 𝑥1 ∈ 𝑋  is better 

than 𝑥2 ∈ 𝑋  if 𝑓(𝑥1) > 𝑓(𝑥2). 
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 In case of a vector-valued evaluation function, the vector 𝑔: 𝑋 → 𝑌 and 𝑌 ⊆  𝑅𝑘 

where 𝑔 > 1, to compare two solutions 𝑥1 and 𝑥2, the Pareto dominance is applied. 

 An objective vector 𝑢, where 𝑢 = 𝑔(𝑥1) = [𝑓1(𝑥
1), 𝑓2(𝑥

1), … , 𝑓𝑧(𝑥
1)] dominates 

another vector 𝑣, where 𝑣 = 𝑔(𝑥2) = [𝑓1(𝑥
2), 𝑓2(𝑥

2), … , 𝑓𝑘(𝑥
2)] is expressed as 𝑢  𝑣 

if and only if ∀𝑖 ∈ {1, . . , 𝑧}, 𝑢𝑖 ≥ 𝑣𝑖 , ∧ ∃𝑖 ∈ {1, . . , 𝑧}: 𝑢𝑖 > 𝑣𝑖.  This is in a 

maximization problem.  In a minimization problem the signs of all the objective 

functions can be reversed and solved as a maximization problem. 

 Accordingly a solution x1 dominates x2  (𝑥1  𝑥2) if 𝑔(𝑥1)  𝑔(𝑥2). 

 The optimal solution in decision space can be expressed as 𝑥∗ ⊆ 𝑋.  Its image in 

objective space is 𝑔∗ ⊆ 𝑍. 

The Pareto set 𝑋𝐸  contains all optimal solutions also denoted efficient solutions. 

The Pareto front also denoted non-dominated frontier  is the image of the Pareto set in 

objective space. The Pareto Box problem is explained further. 

Given are 𝑥 uniformly randomly selected 𝑦-dimensional points in the 𝑦-

dimensional unit hypercube. If 𝑒𝑥(𝑦) denotes the expectation value for the size of the 

Pareto set of 𝑥 randomly selected points in the 𝑦 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 unit hypercube. Then, 

the following definitions hold (Köppen, Vicente-Garcia, & Nickolay, 2005): 

Theorem 1. Given are 𝑥 randomly selected points in the 𝑦-dimensional 

hypercube. For the expectation value of the size of the Pareto set of these 𝑥 points we 

have the recursive relation: 

 𝑒𝑥−1(𝑦) = 𝑒𝑥(𝑦) +
1

𝑥
𝑒𝑥(𝑦 − 1) (𝑥, 𝑦 ≥ 2)     

 (3.1) 

which implies, 

𝑒1(𝑦) = 1          

 (3.2) 

𝑒𝑥(1) =1         

 (3.3) 

Theorem 2. The expectation value for the size of the Pareto set of 𝑥 ≥ 1 

randomly selected points in the 𝑦 ≥ 1-dimensional hypercube is 
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𝑒𝑥(𝑦) = ∑
−1𝑣+1

𝑣𝑦−1
𝑥
𝑣=1 (

𝑥
𝑣
) ∀ 𝑣 ∈ 𝑽 = {1,2, … . ,𝑚}    

 (3.4) 

Theorem 1 and 2 will help prove the central theorem 3 relating to limiting nature 

of the expectation values when there is an increase in number of sample points and 

increase in dimensions. For proofs of theorem 1 and 2 please refer to appendix of the 

paper (Köppen, Vicente-Garcia, & Nickolay, 2005). 

 

Theorem 3. For fixed dimension 𝑦 >  1 and the number of points 𝑥 → ∞ the 

expectation value 𝑒𝑥(𝑦) → ∞, the ratio of the non-dominated points 
𝑒𝑥(𝑦)

𝑥⁄ → 0 and 

for fixed 𝑥 >  1  and dimension 𝑦 → ∞  the 𝑒𝑥(𝑦) → 𝑥 

Proof. 

𝑒𝑥(2) = ∑
1

v

𝑥
𝑣=1 = 1 +

1

2
+

1

3
+

1

4
+ ⋯ +

1

𝑚
     

 (3.5) 

Equation (3.5) is a harmonic series and has been proved divergent. Since the 

series is divergent meaning forever increasing it can be deduced from eq. (3.4) that for 

𝑛 >  2 the following condition will always remain true i.e. 𝑒𝑥(𝑦) ≥ 𝑒𝑥(𝑦 − 1). . ≥

𝑒𝑥(2). Hence, as 𝑥 → ∞ the expectation value 𝑒𝑥(𝑦) → ∞. Besides as 𝑥 → ∞ and taking 

limits over the expression, 
𝑒𝑥(𝑦)

𝑥⁄ → 0. Similarly for the second part of the theorem, if  

𝑥  is fixed and 𝑥 >  1 all terms in eq. (3.4) tend to zero as 𝑦 → ∞  except when 𝑣 = 1. 

Because when 𝑣 = 1, then since 1∞ = 1 the total term equals x or 𝑒𝑥(𝑦) → 𝑥.  

As the dimensionality of the solution space increases, the probability of finding 

any dominated solution will decrease exponentially. This means that the Pareto set of 𝑥 

points will contain nearly all 𝑥 points. This can also be expressed as for increasing 

number of sample points in the solution space, the number of non-dominated points will 

increase as well. 

In a SoS architecting problem, component systems have multiple intra and inter 

system trade-offs that cannot be fitted into the mold of a single objective. Secondly, the 

number of solutions required for approximation increases exponentially with the 
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dimensionality of the objective space (Shutze, Lara, & Coello, 2011). The SoS 

architect’s aim is to maximize or minimize all the objective functions𝐾𝑃𝑟, as the case 

may be.  

The SoS optimization problem can be formulated as follows: 

Optimize  𝑭 = {𝑓𝐾𝑃1
(𝒔, 𝑰𝑭),… , 𝑓𝐾𝑃𝑟

(𝒔, 𝑰𝑭), … 𝑓𝐾𝑃𝑍
(𝒔, 𝑰𝑭)  }   ∀ 𝑟 =  {1, 2, … , 𝑍} 

where 𝑓𝐾𝑃𝑟
(𝒔, 𝑰𝑭) is the value of the key performance attribute 𝑟 for decision 

variables 𝒔 and 𝑰𝑭. 

Subject to   ∑ 𝑠𝑖𝑖 𝑎𝑖𝑗 ≥ 1                  ∀ 𝑗 ∈ 𝑱     (3.6) 

𝐼𝐹𝑖𝑘 = {1}  ↔ { 𝑠𝑖 = 1 ∧ 𝑠𝑘 = 1}                  ∀ 𝑖, 𝑘 ∈ 𝑰    (3.7) 

𝑎𝑖𝑗 ∈ {0,1}                   ∀ 𝑖 ∈ 𝑰         (3.8) 

𝑠𝑖 ∈ {0,1}                    ∀ 𝑖 ∈ 𝑰         (3.9) 

𝐼𝐹𝑖𝑘 ∈ {0,1}                  ∀ 𝑖, 𝑘 ∈ 𝑰        (3.10) 

 

This is a 𝑍 dimensional muti-objective optimization problem. Constraints 

guarantees that at least one system for each capability is selected. Constraints also make 

sure that an interface between two systems selected if and only if the two systems are 

selected in the meta-architecture. Other constraints give the binary decision variables. 

Similar problem has been solved earlier as a multi-level bi-objective optimization 

(Konur & Dagli, 2014) using gradient based methods. The bi-objective model cannot 

handle many objectives of the general model described.  There are two basic issues that 

need to be addressed here, namely ambiguity in the definition of the KPA, number of 

objectives and NP completeness of the mathematical model formulated. In this research 

evolutionary algorithms (EA) that use non-gradient descent optimization procedures are 

selected to deal with the NP completeness issues, fuzzy logic is used to represent the 

ambiguity in KPA and fuzzy inference is used to accommodate many objectives in 

formulating the fitness function. Fuzzy logic also helps in helping in the search ability of 

EA since search ability decreases with increasing objectives (Ishibuchi, Tsukamoto, & 

Nojima, 2008). Hence the above model is converted to a form where any EA can be 

used. Each individual chromosome is coded as a finite length vector of variables. The 

possible values of the variables denote the size of the alphabet. In this case the size of 
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the alphabet is two because 𝑠𝑖 𝑎𝑛𝑑 𝐼𝐹𝑖𝑘 are the binary decision variables.  The details of 

the steps of chromosome representation are as follows. 

Chromosome Representation: The chromosome is made up of two parts 

combined together to form a long string. The length of the individual chromosome is 

𝐿𝑐ℎ = 𝐿𝑠 + 𝐿𝑖𝑓 . 𝐿𝑐ℎ is the length of the chromosome, 𝐿𝑠is the first part made by vector 

s as shown in Figure 3.5. The second part or 𝐿𝑖𝑓 is made by linearizing the matrix 𝑰𝑭 as 

shown in Figure 3.6. and the full chromosome is shown in Figure 3.7. The architecture 

can be described as an undirected graph shown in Figure 3.8. 

 

 

 

 

 

Figure 3.5.  A solution in the form of a string containing systems  

 

 

 

𝐼𝐹 1 with 2 𝐼𝐹 1 with 3 𝐼𝐹 1 with N 𝐼𝐹 2 with 3 … 𝐼𝐹 i with k … 𝐼𝐹 (N-1) with N 

Interfaces 𝐿𝐼𝑛𝑓 =  𝑁 ∗ (𝑁 − 1) ⁄ 2 

Figure 3.6.  A solution in the form of a string containing interfaces 

 

 

𝑠1 … 𝑠𝑖 … 𝑠𝑁 𝐼𝐹 i with k … 𝐼𝐹 (N-1) with N 

Systems and Interfaces 𝐿𝑠 + 𝐿𝐼𝑛𝑓 = 𝑁 +  𝑁 ∗ (𝑁 − 1) ⁄ 2 

Figure 3.7.  A solution containing both systems and interfaces 

 

 

With N participating systems the total number of variables become(𝑁 +  𝑁 ∗

(𝑁 − 1) ⁄ 2). The solution string is binary in nature wherein a one represents the 

presence and a zero means the absence of a system or interface. This representation can 

be used to solve this problem with evolutionary algorithms, evolutionary strategies 

𝑠1 𝑠2 𝑠𝑖 … 𝑠𝑁 

 Systems 𝐿𝑠=N 
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(Beyer & Schwefel, 2002), swarm optimization or differential evolution (Storn & Price, 

1997).  

The general outline of EA consists of these steps (Back & Schwefel, 1996):  

“ 𝑡 = 0;  

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛  𝑃(0) = {𝑎1(0), … . , 𝑎𝜇(0) } ,  ∈ 𝑰𝝁 

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛  𝑃(0) = {𝝓(𝑎
1
(0)), … . , 𝝓(𝑎

𝜇
(0)) }; 

 𝑊ℎ𝑖𝑙𝑒 (𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑃(𝑡) ≠ 𝑡𝑟𝑢𝑒) 𝑑𝑜 

  Recombination  𝑃′(𝑡) = 𝑟𝜽𝒓(𝑃(𝑡)); 

  Mutation   𝑃′′(𝑡) = 𝑚𝜽𝒎(𝑃′(𝑡)); 

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛   𝑃′′(𝑡) = {𝝓(𝑎′′1(0)), … . , 𝝓(𝑎′′𝜇(0)) };  

Selection 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑑𝑢𝑙𝑎𝑠 𝑃(𝑡 + 1) = 𝑠𝜽𝒔(𝑃
′′(𝑡) ∪ 𝑄); 

𝑡 = 𝑡 + 1; 

End do; ” 

Initially the generations are set to be zero. Then an initial population 𝑃(0) of size 

𝜇 is created with individuals represented by 𝑎. The solutions or individuals are referred 

to as the chromosomes.  Each individual in the population is evaluated by an objective 

function 𝝓 to calculate the fitness value.  Each of the consequent generations is created 

iteratively by applying operations, on the current population, that include recombination 

operator 𝑟𝜽𝒓, and mutation operator 𝑚𝜽𝒎.  This process is run until the termination 

criterion is met and the algorithm stops creating new generations. The new individuals in 

the next generation have a new size 𝛾. The new population 𝑃′′(𝑡) is evaluated using the 

objective function 𝝓. The selection process 𝑠𝜽𝒔 selects some individual of size 𝜇 to 

create the population for the next generation where 𝑡 = 𝑡 + 1.” 

With respect to the problem at hand the decision variables are 𝒔 and 𝑰𝑭. Recall 

that 𝑠𝑖 𝑎𝑛𝑑 𝐼𝐹𝑖𝑘 are the binary decision variables in SoS. Chromosome Initialization will 

involve generating random binary values in all bits to start the population. Fitness 

assessment for a meta-architecture is explained in the following section 3.3 where this 

population is evaluated for Z objectives. Termination criteria should be such that 

algorithm should not converge prematurely. Whereas the termination was based on a 

minimum number of generations until the best solution quality does not change. Other 

techniques for termination include a hitting a bound on the threshold quality of solution. 
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Figure 3.8.  SoS meta-architecture as an undirected graph 

 

 

3.4. META-ARCHITECTURE ASSESSMENT AND SELECTION 

In the previous section a methodology for generating the solution was explained. 

Now to determine the quality of the solution (SoS architecture) a technique is needed to 

assess it. The technique should be generic enough to be applied to many independent 

domains.  For this the objective function is converted to fitness functions for population 

based algorithms.  Architecture assessment is based on KPAs which are selected based 

on the domain of the problem. Multiple objectives produce a non-linear hypersurface. 

The optimization algorithm has to trace the surface to find the global minima or 

maxima. This process is very computationally expensive and tedious. Fuzzy associate 

memories can be used as a way combining multiple objectives in to one non-linear 

surface with many dimensions (Agarwal, Pape, & Dagli, 2014). 

The first problem is dealing with ambiguity in calculating the values of various 

objectives.  This situation is dealt by using type-1 fuzzy systems. 

Secondly, a method is needed to manage the preferences between KPAs in the 

fitness function. A tradeoff exists between the KPAs. This tradeoff is often non-linear 

and depends on a number of stakeholders of the architecture. Usually the tradeoffs are 

aggregated linearly through utility functions. For example, if two KPA’s are scalability 
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and reliability. The tradeoff could be higher reliability and low scalability. Besides the 

tradeoffs depend on a group of stakeholders which include system architect, project 

manager, customers and so on.  Some methods such as fuzzy Pareto dominance (He & 

Yen, 2014), ranking of alternatives (Wang & Yang, 2009), fuzzy goal programming 

(Hu, Teng, & Li, 2007), weighting the objectives (Marler & Arora, 2010) have been 

used previously to combine them in to a single objective. Fuzzy associative memory 

helps capture the non-linearity that exists between the KPAs and can accommodate the 

view of multiple decision makers at the same time.  

The third key factor is that the assessment techniques should be able to bring in 

performance attributes requirements from a lower level of abstraction. Often there is a 

difficulty in assigning actual numerical values to the KPA because the needs and 

requirements are expressed as words by the stakeholders. For example an attribute such 

as net-centricity can be broken down into interoperability and command & control 

communication support capability. Some of the prominent methods to assess the 

architectures include the use case maps (UCM) (Folmer, van Gurp, & Bosch, 2003), 

Architecture Tradeoff Analysis Method (ATAM) (Kazman et. al, 1998), and Scenario 

based Architecture Analysis Method (SAAM) (Kazman, Abowd, Bass, & Clements, 

1996). There have been comparisons of architecture evaluation methods to choose the 

correction option effectively (Babar, Zhu, & Jeffery, 2004)  

A beneficial approach would be to not only capture the tradeoffs points between 

as many possible KPAs in a nonlinear fashion, be able to compute with words, 

incorporate multiple views from stakeholders and help in value aggregation from 

different levels of abstraction of each KPA.  

None of the methods discussed above are able to address the issues described 

above. The domain independent method proposed here for a domain dependent 

architecture value aims to fill this gap in literature. The proposed assessment model is 

based type-II fuzzy inference engine. Please refer to section 3.4.1.2 for more discussion 

on importance of type-II fuzzy sets. The values provide more realistic assessment of the 

SoS architecture’s quality. The attributes will be domain adjusted and selectable, using 

guidance from subject matter experts. 
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As the reader may recall the architecture is described as a chromosome. The 

fuzzy assessor based assessment is used to evaluate the fitness of the chromosome 

during the meta-architecture generation process. This assessor can be also used to 

evaluate the architecture after the negotiation. The concepts of fuzzy logic systems 

(FLS) are explained below to understand the working of the assessor. 

3.4.1. Introduction – Fuzzy Logic. Crisp sets are those where an element is 

either a member of the set or not. Fuzzy logic (Zadeh, 1965) is an approach where a 

membership of the elements of a set is not true or false but is based on degrees of truth. 

A membership function (MF) is a curve that defines how each point in the input space is 

mapped to a membership value (or degree of membership) between 0 (not an element of 

the set) and 1(a member of the set). The input space is sometimes referred to as the 

universe of discourse. Let 𝑼 be the universe of discourse which contains all the possible 

elements of concern in each particular context. Defining a fuzzy set 𝑨 𝒊𝒏 𝑼: Fuzzy set 

𝑨 𝒊𝒏 𝑼 can be represented as a set of ordered pairs of a generic element 𝒙 and its 

membership value, 

𝐴 = {(𝑥, 𝜇𝐴(𝑥))|𝑥 ∈ 𝑈}such that 𝜇𝐴(𝑥) → {0,1}     (3.11) 

where 𝜇𝐴(𝑥) is a degree of membership function of x  in A and U is a universe of 

discourse. 

Definition 1: 

When 𝑈 is continuous, 𝐴 is commonly written as 

𝐴 = ∫ 𝜇𝐴(𝑥))|𝑥
𝑈

𝑥∈𝑈
         (3.12)

  

where the integral sign does not denote integration, it denotes the collection of all points 

𝑥 ∈ 𝑈 with the associated membership function 𝜇𝐴(𝑥). 

 

Definition 2: 

Support: the support of a fuzzy set A in the universe of  discourse U is a crisp set that 

contains all the elements of U that have nonzero membership values in A, that is, 

𝑆𝑢𝑝𝑝 (𝐴) = {𝑥 ∈ 𝑈|𝜇𝐴(𝑥) > 0}       (3.13) 

Definition 3: 
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An 𝛼 − 𝑐𝑢𝑡 of a fuzzy set A is a crisp set  𝐴𝛼 that contains all the elements in U that 

have membership values in A greater than or equal to 𝛼. 

 

Definition 4: 

Fuzzy sets A and B are equal if and only if   

  𝐴𝛼 = {𝑥 ∈ 𝑈|𝜇𝐴(𝑥) > 𝛼}   ∀ 𝜇𝐴(𝑥) = 𝜇𝐵(𝑥)       (3.14) 

 

Example 1 

Continuous Example: Let 𝑈 be the interval [0,100] representing the reliability of a 

system-of-systems. Then we may define fuzzy sets “Poor” and “Excellent” as 

membership functions shown in Figure 3.9. 

 

 

 

Figure 3.9. Membership functions for reliability 

 

 

Definition 5: 

The union of A and B is a fuzzy set in U, denoted by 𝐴 ∪ 𝐵 whose membership function 

is defined as 𝜇𝐴∪𝐵(𝑥) = max [𝜇𝐴(𝑥), 𝜇𝐵(𝑥)]      (3.15) 

Definition 6: 

The intersection of A and B is a fuzzy set  𝐴 ∩ 𝐵 in with membership function 

𝜇𝐴∩𝐵(𝑥) = max [𝜇𝐴(𝑥), 𝜇𝐵(𝑥)]        (3.16) 

 

3.4.1.1 Type-I fuzzy logic system. Type-1 fuzzy set (T1 FS) theory was 

originally introduced by Zadeh (1965). Some of the applications include control theory 
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(Tzafestas, 1994), artificial intelligence (Hüllermeier,2005), and forecasting (Song, & 

Chissom, 1993). A typical Type-1 FLS has a fuzzifier, a rule section, fuzzy inference 

engine (FIS) and a defuzzifier or output processor. Figure 3.10. depicts the illustration of 

a type 1-FLS. 

 

 

Figure 3.10.  Overview of type-1 FLS  

 

 

Fuzzy sets can be described as points in the unit hypercube 𝐼𝑛 = [0,1]𝑛 (Kosko, 

1992). A crisp value lies on the corner of the unit hypercube. A fuzzy system is a 

transformation S: 𝐼𝑛
 𝐼𝑚 that maps fuzzy sets in  𝐼𝑛 to fuzzy sets in 𝐼𝑚. These 

continuous fuzzy systems behave as associative memories. A fuzzy associative memory 

(FAM) contains a matrix of fuzzy values which can map an input fuzzy set into an 

output fuzzy set followed by an appropriate superimposition operator (Chung & lee, 

1996). The rules are able to express a non-linear relationship between the variables. The 

process is explained through a simple example.  

Example 3 

The problem is to calculate the architecture quality of a system. For the sake of 

ease two inputs, reliability and cost are considered. The linguistic values for reliability 

are ‘low’, ‘medium’ and ‘high’. The linguistic values for cost are ‘cheap and ‘expensive’. 

The choice of membership function is up to the user based on the domain of the 

problem, experience and computational difficulty. The membership function for 
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reliability and cost in the universe of discourse, 𝑈, is given below in Figure 3.11. and 

3.12.  

 

 

Figure 3.11.  The membership functions for reliability 

 

 

 

Figure 3.12.  The membership functions for cost 

 

 

The linguistic values for architecture quality are ‘risky, ‘modest’, and ‘excellent’. 

The membership function for architecture quality in the universe of discourse, 𝑈, is 

shown below in Figure 3.13. 

 

 

 

Figure 3.13.  The membership function for architecture quality 
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Step 1 

The first process involves converting the crisp inputs into fuzzy sets. This is 

called the fuzzification process. The inputs are reliability = 35 and cost = 80. The fuzzy 

values for these crisp values by using the membership functions of reliability as shown 

in the figure by dotted lines are:  

𝜇reliability=low(35) = 0.3 

𝜇reliability=medium(35) = 0.2 

𝜇reliability=high(35) = 0 

The fuzzy values for crisp values of cost are obtained by membership functions 

of cost in Figure 3.10 as 

𝜇cost=cheap(80) = 0.1 

𝜇cost=expensive(80) = 0.8 

Step 2 

After obtaining the fuzzy values from crisp inputs rules are needed to arrive at 

the final fuzzy output value. This is called the rules evaluation process. The rules for this 

problem are as follows: 

"If the reliability is low or cost is expensive, then the quality is risky."  

"If the reliability is medium and cost is cheap, then the quality is modest."  

"If the reliability is high or cost is cheap, then the quality is excellent."  

Definitions 5 and 6 are used in the rules containing disjunctions, OR and AND using the 

max and min operator. Each rule is evaluated below for explanation of the concept: 

Rule 1 

𝜇𝑞𝑢𝑎𝑙𝑖𝑡𝑦=𝑟𝑖𝑠𝑘𝑦(𝑦) = max [𝜇𝑙𝑜𝑤(35), 𝜇𝑒𝑥𝑝𝑒𝑛𝑠𝑖𝑣𝑒(80)] 

𝜇𝑞𝑢𝑎𝑙𝑖𝑡𝑦=𝑟𝑖𝑠𝑘𝑦(𝑦) = max[0.3,0.8] = 0.8 

 



 

 

50 

Rule 2 

𝜇𝑞𝑢𝑎𝑙𝑖𝑡𝑦=𝑚𝑜𝑑𝑒𝑠𝑡(𝑦) = min [𝜇𝑚𝑒𝑑𝑖𝑢𝑚(35), 𝜇𝑐ℎ𝑒𝑎𝑝(80)] 

𝜇𝑞𝑢𝑎𝑙𝑖𝑡𝑦=𝑚𝑜𝑑𝑒𝑠𝑡(𝑦) = max[0.1,0.2] = 0.1 

Rule 3 

𝜇𝑞𝑢𝑎𝑙𝑖𝑡𝑦=𝑒𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡(𝑦) = max [𝜇ℎ𝑖𝑔ℎ(35), 𝜇𝑐ℎ𝑒𝑎𝑝(80)] 

𝜇𝑞𝑢𝑎𝑙𝑖𝑡𝑦=𝑒𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡(𝑦) = max[0,0.1] = 0.1 

 

To get the fuzzy values of the outputs, the FLS has to use fuzzy inference engine. 

Mamdani (1977) presented a method to synthesize the rules in fuzzy logic control. The 

Mamdani operator can be expressed as: 

𝜑(𝜇𝐴(𝑥), 𝜇𝐵(𝑦)) = 𝜇𝐴(𝑥)𝐴𝑁𝐷 𝜇𝐵(𝑦)=min[0.8, 𝜇𝑞𝑢𝑎𝑙𝑖𝑡𝑦=𝑟𝑖𝑠𝑘𝑦(𝑦)] 

 

To defuzzify the outputs we use the center of gravity method. This process is 

called the defiuzzification. The center of gravity of the areas defined by the rules is the 

final defuzzified answer. There are many other methods such as BOA (bisector of area), 

CDD (constraint decision defuzzification), COA (center of area) and so on. In center of 

gravity method we take the output from each contributing rule, and then we add them. 

The centroid of the region is calculated as: 

𝐶𝑂𝐺 =
∑ 𝜇𝐴(𝑥) ∗ 𝑥𝑏

𝑥=𝑎

∑ 𝜇𝐴(𝑥)𝑏
𝑥=𝑎

 

The calculation for COG is shown as follows: 

(0 + 10 + 20) ∗ 0.8 + (30 + 40 + 50 + 60) ∗ 0.2 + (70 + 80 + 90 + 100) ∗ 0.5

0.8 ∗ 3 + 0.1 ∗ 4 + 0.1 ∗ 4

= 71.8 

It means there is 71.8 % of chance of systems quality. 

In relation to this model architecture evaluation methods have been developed 

(Pape & Dagli, 2013) to assess robustness of SoS architectures. In addition, type-1 fuzzy 

associative memory has been developed to evaluate SoS architectures (Pape et al., 

2013). The attributes used for evaluation were Performance, Affordability, 
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Developmental Flexibility, and Operational Robustness. Type-1 fuzzy sets are able to 

model the ambiguity in the input and output variables. But type-1 fuzzy sets are 

insufficient in characterizing the uncertainty present in the data. Type-2 fuzzy sets 

proposed by Zadeh can model uncertainty and minimize its effects in FLS (Mendel & 

John, 2002). The next section gives a brief overview of type-2 and interval type-2 fuzzy 

sets. 

3.4.1.2 Type-2 fuzzy sets. The cause of uncertainties in type-1 FLS includes the 

following: 

1. Different people might interpret different meanings to the same words being 

used in antecedent and consequent rules 

2. There is often uncertainty present in the input data which is not a single crisp 

value but has a given distribution if a group of decision makers are involved 

3. Similarly  the outputs may not have a singleton value but a distribution over 

which the outputs range due to multiple experts 

These gaps are not addressed by type-1 fuzzy because their membership 

functions are totally crisp. Whereas, type-2 fuzzy sets are able to model such 

uncertainties due to the fact that their membership function are fuzzy themselves and are 

three-dimensional in nature. The structure of rules in a type-1 FLS and a type-2 FLS is 

the same, but in type-II the antecedents and the consequents are represented by type-2 

fuzzy sets. A type-2 FLS contains a fuzzifier, a rule base, a fuzzy inference engine, and 

an output processor. The output processor includes type-reducer and defuzzifier. The 

type reducer reduces the type-2 FS to a type-1 FS whereas the defuzzifier converts the 

type-1 FS to a crisp number. The structure of the type-2 fuzzy associative memory maps 

inputs to type-2 fuzzy terms. Rules are made to describe the relationship between inputs 

and output using the linguistic terms of each input’s membership functions.  

Type-2 FLSs are computationally demanding because of type-reduction. Interval 

type-2 (IT2) FSs (Liang & Mendel, 2000) are a special case of type-2 FSs extensively 

used for their less computational cost. IT2 FSs are often useful when there is an 

uncertainty involved in determining the exact membership functions, or when there are 

multiple stakeholders’ opinions on the same fuzzy variable (Wu, 2013). A general 

procedure for IT2FS is illustrated in the Figure 3.14. It is similar to type-1 FS, except 
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fuzzifier converts the crisp inputs to IT2 FS, the outputs of the inference engine are IT2 

FSs, there is another element called the type-reducer which converts the IT2FS values to 

type-1 FS before passing them to the defuzzifier.  

An example of an IT2 FS, 𝑌̃, is shown in Figure 3.15. A type-2 FS has two 

membership functions hence for each value of the linguistic variable the membership 

degree is not a number but an interval. This is because a straight line parallel to 

membership axis will cut the membership functions at two places. One of them will be 

lower forming the lower interval and the other one will form the higher interval of the 

degree. The two membership functions are denoted by 𝑌̅ (upper MF) and 𝑌 (lower MF). 

The area between them is the footprint of uncertainty (FOU). 

 

 

 

Figure 3.14.  Overview of type-2 FLS 

 

 

 

 

Figure 3.15.  Membership function for a type-2 FLS  

Type-reduced outputs 

(Interval based) 
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Given 𝑌̃1
𝑛 are IT2 FSs antecedents or inputs, and 𝑍𝑛 = [𝑧𝑛, 𝑧

𝑛
] interval of a 

consequent output where  𝑛 = 1,2, … , 𝑁 and 𝑘 = 1,2, … , 𝐾 

The steps in an IT2 FLS are demonstrated as follows: 

1.  Consider the rule base of an IT2 FLS comprising of N rules assuming that the 

nth rule is : 

a. IF 𝑦1 is 𝑌̃1
𝑛 and….. and 𝑦𝐾 is 𝑌̃𝐾

𝑛, THEN 𝑧 is 𝑍𝑛 

2. Calculate the membership of all inputs in the vector 𝒚′ = (𝑦′
1
, 𝑦′

2
, … 𝑦′

𝐾
) on 

each 𝑌̃1
𝑛  for   𝑛 = 1,2, … ,𝑁 and 𝑘 = 1,2, … , 𝐾 

a. Membership is [𝜇𝑌𝑘
𝑛(𝑦′

𝑘
), 𝜇𝑌̅𝑘

𝑛(𝑦′
𝑘
)] 

 

3. When the nth rule 𝐻𝑛(𝒚′) for the input vector, fires the output interval can be 

computed as: 

 [ℎ𝑛, ℎ
𝑛
 ] =  [𝜇𝑌1

𝑛(𝑦′
1
) × …× 𝜇𝑌𝐾

𝑛(𝑦′
𝐾
), 𝜇𝑌̅1

𝑛(𝑦′
1
) × … .× 𝜇𝑌̅𝐾

𝑛(𝑦′
𝐾
)] 

There are methods other than taking the product (Liang & Mendel, 2000) 

Center-of-sets (CoS) method for acting as a type-reducer (Mendel & John, 2002) has 

been used here for type-reduction from type-2 to type-1 fuzzy sets (Mendel & Wu, 

2010). 

 

𝑍𝐶𝑜𝑆(𝑦
′) = ⋃

∑ ℎ𝑛𝑧𝑛𝑁
𝑛=1

∑ ℎ𝑛𝑁
𝑛=1

ℎ𝑛∈𝐻𝑛(𝒚′) 

𝑧𝑛∈𝑍𝑛

= [𝑧𝑙, 𝑧𝑟] 

The lower 𝑧𝑙  and upper limits 𝑧𝑟 of the outputs can be calculated as follows.  

4.  𝑧𝑙 =
𝑚𝑖𝑛

𝑥 ∈ [1, 𝑁 − 1]
 
∑  ℎ

𝑛
𝑧𝑛+∑  𝑧𝑛ℎ𝑛 𝑁

𝑛=𝑥+1  𝑥
𝑛=1

∑  ℎ
𝑛
+∑  ℎ𝑛 𝑁

𝑛=𝑥+1  𝑥
𝑛=1

≡
∑  ℎ

𝑛
𝑧𝑛+∑  𝑧𝑛ℎ𝑛 𝑁

𝑛=𝐿+1  𝐿
𝑛=1

∑  ℎ
𝑛
+∑  ℎ𝑛 𝑁

𝑛=𝐿+1  𝐿
𝑛=1

 

 

 

5. 𝑧𝑟 =
𝑚𝑎𝑥

𝑥 ∈ [1, 𝑁 − 1] 
∑  ℎ𝑛𝑧

𝑛
+∑  𝑧

𝑛
ℎ

𝑛
 𝑁

𝑛=𝑥+1  𝑥
𝑛=1

∑  ℎ𝑛+∑  ℎ
𝑛
 𝑁

𝑛=𝑥+1  𝑥
𝑛=1

≡
∑  ℎ𝑛𝑧

𝑛
+∑  𝑧

𝑛
ℎ

𝑛
 𝑁

𝑛=𝑅+1  𝑅
𝑛=1

∑  ℎ𝑛+∑  ℎ
𝑛
 𝑁

𝑛=𝑅+1  𝑅
𝑛=1

 

 

 

given that {𝑧𝑛}  and 𝑧
𝑛

 are first sorted in an ascending order respectively. Then points 

𝐿 and 𝑅 are determined by  

𝑧𝐿 ≤ 𝑧𝑙 ≤ 𝑧𝐿+1 
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𝑧
𝑅

≤ 𝑧𝑟 ≤ 𝑧
𝑅+1

 

Wheras 𝑧𝑙 and 𝑧𝑟 are computed using the Karnik-Mendel (KM) algorithms (Mendel & 

John, 2002). 

6. Finally the defuzzified output is computed as 𝑧 =
[𝑧𝑙+𝑧𝑟]

2
 

 

Although many ways exist for type-reduction and defuzzification in type-2 fuzzy 

sets but the KM method is the most extensively used approach. 

The assessment of an architecture is based on the key performance attributes 

(KPA) selected by the stakeholders. Each KPA (𝐾𝑃𝑟) of SoS has a certain range of 

values within which it is considered meaningful. This range is derived from the 

stakeholder’s needs and interviews with all component systems owners. The KPA’s act 

as objective functions in the multi-objective meta-architecture generation problem. The 

KPA properties as shown in Figure 3.16. include: 

1. Range of Values of KPA for evaluating SoS capability C can be provided with 

different levels of linguistic granularization as shown in the example above. 

2. Depending on the problem the type of member ship function is required the 

represent the ambiguity in each KPA. 

3. The crisp value of each KPA is hard to determine. Hence they are aggregated 

using the parts that account for each KPA. For example it is difficult to find an 

absolute value of net-centricity of a SoS. Since it can be viewed as a composition 

of interoperability and communication with ground control system, both these 

values are computed and aggregated using type-1 fuzzy inference.  

4. Later all KPAs are aggregated using type-II inference since there is more 

inherent ambiguity amongst them that can be taken into account. 

5. This way the crisp values are first fuzzified and fed into fuzzy inference system 

for type-1. This is later defuzzified to obtain values for each KPA. This is fain 

fuzzified using type-2 inference and later defuzzified to obtain SoS architecture 

quality. Based on the assessment scheme of the architecture a compromised 

solution is selected. The implementation of a meta-architecture through a 

negotiation process is explained in the next section 3.5. 
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Figure 3.16.  General structure of architecture assessment function  

 

 

3.5. SOS NEGOTIATION APPROACH 

The Acknowledged SoS manager negotiates with systems that are selected as 

part of the meta-architecture during the meta-architecture generation process. A 

negotiation procedure is necessary for the actualization or implementation of the meta-

architecture generated. Since the SoS manager cannot force his demands on participating 

systems, negotiation helps in achieving an architecture that is implementable. The SoS 

manager negotiation mechanism consist of three phases of  

i. modeling the opponent 

ii. making a decision based on the previous offer  

iii. Finally generating a counteroffer.  

 

A bilateral counteroffer based negotiation mechanism is chosen between an SoS 

manager and an individual system under multiple attributes as depicted in Figure 3.17. 

The attributes or issues are assumed to be independent of each other and are bargained 

simultaneously. Modeling the opponent involves characterizing the opponent’s 

negotiation behavior; which could be considered cooperative, semi-cooperative or non-
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cooperative etc. A decision mechanism is needed to reject the offer for no further 

negotiation, or accept the offer as it is currently or negotiate for another round to bargain 

further. In case of further negotiation rounds a counter-offer generation mechanism is 

needed. Counter offers in automated negotiation are classified on the bases of 

constraints used to bargain such as time taken to negotiate, value of the overall utility 

achieved by a party over a set of issues, or constraints based on available resources. 

Section 3.5.1 gives an overview of the negotiation mechanism and variables used to 

explain the problem. Section 3.5.2 describes the strategy to model the opponent. Section 

3.5.3 illustrates the strategy for making a decision on the negotiation offer of the 

opponent. Finally, in Section 3.5.4 several utility based concession curves are proposed 

for the SoS manager to make counteroffer. Figure 3.18.  gives an overview of the three 

salient features of automated negotiation used in this work. 

 

 

 

Figure 3.17.  Bilateral negotiation mechanism  
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3.5.1. General Negotiation Protocol. In this section the variables used in the 

describing the protocol are listed for the user. The negotiation strategy is designed for a 

one to many participants and is not mediated by any coordinator. The structure consists 

of a SoS manager and multiple systems selected as part of the solution in the meta-

architecture. Let us define: 

𝑉𝑝 : p= {1, 2,…, P}: Attributes for bilateral negotiation 

𝑡𝑚𝑎𝑥: Total round of negotiations possible 

𝑡 = {0,1, … 𝑡𝑚𝑎𝑥} 

𝑉𝑝
𝑆𝑜𝑆(𝑡): The value of the attribute 𝑉𝑝 for SoS manager at time 𝑡 

𝑉𝑝
𝑆(𝑡): The value of the attribute 𝑉𝑝 for system owner at time t 

 

A number of negotiation rounds with different system types and SoS coordinator 

are conducted. Negotiation offers made by systems reveal incomplete information about 

their preference of issues and their strategy.  

The following figure describes the methodology of modeling the opponents 

behavior through clustering, making a decision on the negotiation offer based on fuzzy 

2-tuple linguistic multi-criteria decision making and finally generating a counteroffer 

based on utility concession curves.  

The figure explains the processes involved in succession such as the hierarchical 

clustering followed by the k-means clustering. The labeled data obtained after clustering 

is then trained using a supervised learning algorithm. Two techniques such as learning 

vector quantization and radial basis function network were tried. Following which the 

trained network is able to predict the class of the incoming new offer. The SoS can make 

a final decision on the offer using linguistic fuzzy terms. This method is also known as 

the computing with words. Finally if the SoS feels that it needs to negotiate more it can 

use time dependent equations to make a counteroffer to the individual systems. 

 

 

 

 



 

 

58 

 

Figure 3.18.  Three Salient Features of Automated Negotiation 

 

 

3.5.2 Modeling the Opponent. Information regarding the opponent is extremely 

important to improve automated negotiation strategies for multi-issue multi-party 

negotiation (Hindriks, Jonker, & Tykhonov, 2009) and (Hindriks & Tykhonov, 2008). 

To have a better negotiation strategy each party requires information regarding the 

preferences of issues of the opponent. This information can be used to negotiate 

effectively. In other words it is imperative to model the behavior of the opponent by his 

previous offers or some other method. This helps in increasing the efficiency of 
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agreements and is a superior method than concession-based negotiation strategy of 

(Baarslag, Hindriks, & Jonker, 2011).  

In a concession-based negotiation size of next concession is mainly decided on 

the basis of the utility gap between the preceding bids of the opponent and the party. 

Another method of using fuzzy similarity to estimate the preference structure of the 

opponent and then uses a hill-climbing technique to explore the space of possible trade-

offs has also been successfully implemented (Faratin, Sierra, & Jennings, 2002). In this 

work single round of negotiations are used to model the opponent’s behavior. This is 

because it has been observed that usually opponent avoids any chance of revealing their 

preferences over issues to be exploited.  

An SoS coordinator uses initial estimates of the problem’s complexity and size, 

combined with the amount of resources currently possessed to propose a first offer to 

individual systems. These systems then respond to the first offer according to their 

negotiation behaviors. The SoS coordinator was not informed of a participating system’s 

behavioral strategies and desires to adapt its negotiation policy accordingly. The 

following paragraphs outline the process of analyzing the negotiation data.  

The SoS coordinator records both the offer and the counteroffer for each system.  

It calculates the amount of concession in each issue for each system. Concessions in all 

issues are calculated for each system 𝑖 (see Table 2). After recording this data it is used 

for clustering which can reveal any behavioral groupings in counter-offers. For example, 

a cooperative system would agree to work for less money than a non-cooperating system 

would. Similarly, a non-cooperating system would ask for more money in lieu of time 

taken to prepare for participation. The clustering is done in multi-dimensional space of 

the number of negotiation attributes P. The following notation describes the clustering 

operation: 

𝑜𝑔: g ∈ G, G= {1, 2,…, NoB}: - the number of observations made 

𝑃 - the number of issues or attributes of negotiation present 

𝐿- the number of clusters the user either predicted or defined 

𝐶ℎ - the ℎ𝑡ℎ cluster, a subset of h = {1, 2, . . . , 𝐿} 

The values in the Table 3.1. form a 𝑃 dimensional data that can be clustered to 

model the opponent behavior.  
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Table 3.1. Concession calculated by SoS manager for each system 

System j 𝑁𝐴1 𝑁𝐴2 𝑁𝐴𝑝 

 ∆1= 𝑁𝐴1SoS- 𝑁𝐴1S      ∆2= 𝑁𝐴2SoS- 𝑁𝐴2S      ∆p= 𝑁𝐴𝑝SoS- 𝑁𝐴𝑝S 

    

 

3.5.2.1 Hierarchical clustering. Hierarchical clustering is a type of 

agglomerative clustering (Freeman, 1994). It builds a hierarchy of clusters such that 

clusters at one level are combined as clusters at the next level. It does not require the 

number of clusters in advance to proceed with. This process creates a cluster tree which 

is known as the dendogram. Hierarchical clustering algorithms require very little a priori 

knowledge of the data and are a non-parametric method of auto-classification (Johnson, 

1967). Multi-level clustering assists the user in deciding at how many clusters are 

appropriate for his problem. It is often used as precursor to many other clustering 

algorithms to give an overview of how many clusters might be present in the data. The 

basic methodology of this clustering method is explained as follows: 

1. Given N data points are to be clustered.  

2. Assign a cluster based on each data appoint, which results in N clusters 

3. A similarity metric (distance) is chosen to quantify the separation between the 

clusters. Similarity metric parameter defines how the distance between clusters is 

calculated. Some common options are: 

a. Average Linkage: The distance between any two clusters is estimated as 

the average of the distances between all the points in those clusters. 

b. Complete Linkage: The distance between any two clusters is the distance 

between the farthest points in those clusters. 

c. Single Linkage: The distance between two clusters is the shortest distance 

between any member of one cluster to anyone in the other cluster. 

4. Calculate all pair-wise distances between clusters making a 𝑁 𝑋 𝑁 matrix 

5. The most similar pair of clusters is merged into a single cluster and then all 

distances from this new cluster to all other clusters are evaluated to update the 

matrix. Each time two closest data points are merged until there is a single large 
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cluster containing all the original data points. 

The dendogram helps in visualizing clustering of the data at different levels. To 

determine the best level for a given set of data is based on experience and type of 

problem being modeled. The Figure 3.19.  shows three different levels represented by 

Line 1, Line 2 and Line 3 respectively. Each horizontal line cuts the dendogram at a 

number of places which is equal to the number of clusters present at that level. The y-

axis is a measure of closeness of either individual data points or clusters. The data points 

are listed along the x-axis to see they belong to which cluster structure.   

The decision maker can choose an appropriate level by looking at the 

dendrogram and hence arrive at the number of clusters that can be used as input for the 

clustering algorithms. Clustering through k-means is explained in the next section. 

 

 

Figure 3.19.  Three Salient Features of Automated Negotiation 

 

 

Algorithms for hierarchical clustering are generally either agglomerative, in 

which one starts at the leaves and successively merges clusters together; or divisive, in 

which one starts at the root and recursively splits the clusters. Agglomerative algorithms 

begin with each element as a separate cluster and merge them into successively larger 

clusters. Divisive algorithms begin with the whole set and proceed to divide it into 

successively smaller clusters. It depends on the problem to use either an Agglomerative 

or Divisive approach.  



 

 

62 

In my work since we are trying to model the behavior of the opponent which is 

unknown, we expect to have many behaviors. The numbers of behaviors will increase 

with the number of issues involved in negotiation. It would make more sense to start 

with assuming each data point (or offer) obtained from the systems is a different 

behavior. Therefore we used the Agglomerative approach. Although even if we start 

with the divisive approach I think we should arrive at the same number of optimal 

clusters. 

3.5.2.2 K-means clustering algorithm. K-means clustering is one of the many 

unsupervised learning techniques (Grira, Crucianu, & Boujemaa, 2004) currently used to 

mine the underlying features of a dataset. Some of the popular techniques include 

partition around mediods (Kaufman, & Rousseeuw, 1990) where the major difference 

between k-means is that the algorithm uses mediods instead of centroids and the cluster 

centers may or may not be necessarily one of the data points, Fuzzy c-means (Pal & 

Bezdek, 1995) is based on k-means and on the concept that each data point has degree of 

being a member of a particular cluster, Expectation-Maximization (EM) algorithm 

(Moon, 1996), and Grid-Based Methods (Ilango & Mohan, 2010).  

K-Means is useful in the cases where the user can gauge the count of clusters 

actually present. It is also computationally very less expensive as compared to other 

algorithms. K-means attempts to divide the data set into a predefined number of clusters 

such that the total distance between the members of each cluster and its respective 

centroid is minimized. Let us explain the major tenets of the algorithm. 

Suppose there are 𝑁 sample feature vectors 𝑜1, 𝑜2, ..., 𝑜𝑁  and it is known they can be 

divided in 𝐿 clusters where 𝐿 <  𝑁. Let 𝑚𝑘 be the mean of the vectors in cluster 𝑘. This 

suggests the following procedure for finding the k means: 

 Make initial guesses for the means 𝒄𝟏, 𝒄𝟐, . . . ,  𝒄𝑳 

 Until the means do not change 

1. Use the estimated means to classify the samples into clusters by 

allocating each data point to the group that has the closest mean. 

2. For i from 1 to L 

 Replace 𝒄𝒊 with the mean of all of the samples for cluster i 
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3. End for 

 End until 

The similarity metric often chosen for k-means is the distance measure 

 ‖𝑥𝑎
(𝑗)

− 𝑐𝑗‖between a data point 𝑥𝑎
(𝑗)

 and the cluster center 𝑐𝑗.  

K-means minimizes the sum of distances from each object to its cluster centroid, 

over all clusters which is represented as a cost function  𝐽. 

𝐽 = ∑ ∑‖𝑥𝑎
(𝑗)

− 𝑐𝑗‖
2

𝑛

𝑎=1

𝐿

𝑗=1

 

𝐽 is the sum of all distances of n data points from their corresponding clusters. 

Hierarchical clustering alone might not be enough to determine the number of clusters 

required to give as input to the clustering algorithms. A number of inputs are used as 

clusters for k-means. Then as a method of validation a naive procedure called the elbow 

method is used to finally verify the approach. 

3.5.2.3 Elbow method. To further confirm the enquiry on number of possible 

clusters present in the data a popular method known as the ‘elbow method’ "(Ketchen & 

Shook, 1996) is used based on results of k-means. The sum of squared error (SSE) is 

computed for some possible values of number of clusters values of 𝒌 (for example 2, 3, 

4, 5etc.). The SSE is calculated as the sum of the squared distance between each member 

of the cluster and its centroid.  

𝑆𝑆𝐸 = ∑ ∑‖𝑥𝑎
(𝑗)

− 𝑚𝑗‖
2

𝑛

𝑎=1

𝐿

𝑗=1

 

SSE aims to represent the global error in clustering. With SSE on the vertical 

axis and the number of clusters on x-axis are plotted to help visualize the drop in SSE 

with change in number of clusters.  Although with increasing number of clusters the 

SSE begins to drop yet there usually exists a point where there is not much change in 

SSE as clusters increase (Salvador & Chan, 2004). This point looks like an elbow and 

the number of clusters at that point is usually the best choice.  

However, it may be said that the best value for number of clusters is a 

combination of human judgment and algorithm outputs.  After clustering the data is now 
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labeled with a mapping of inputs or the data points and the target or classes of the 

cluster. This labeled data can further be used for training a supervised learning algorithm 

for future prediction. Thus the behavior of new systems initially not present in the 

negotiation can be ascertained based on the through an incoming offer. The next section 

highlights two supervised learning algorithms called the learning vector quantization and 

radial basis function networks for training and prediction of classified data.   

3.5.2.4 Training a LVQ network. Idea is to create an efficient mapping using 

supervised learning techniques between the data points and their centers. This will help 

us center of predicting the next incoming sample.  Usually, supervised learning has 

inputs and preferred outputs provided by the user. Ensuing a period of training, the 

algorithm is capable of generalizing from the provided set of data to new sets of data. 

One such technique is called the learning vector quantization (LVQ) (Sato & Yamada, 

1996). It is a precursor to self-organizing maps (SOM) (Somervuo & Kohonen, 1999) 

and supervised version of vector quantization (VQ). Sato & Yamada (1998) also provide 

an analysis of convergence in generalized LVQ. In other words LVQ is a neural net that 

combines competitive and supervised learning. It is useful for training classified data 

and prediction. It does not have any topological structure unlike its unsupervised 

counterpart SOM.  

The LVQ Algorithm starts with a training set consisting of a training vector 

𝒙 = {𝑥1, 𝑥2, 𝑥3, . . 𝑥𝑛} and target output pairs are assumed to be given. The inputs form 

the input layer of the LVQ network. The numbers of neurons in the network are same as 

the number of classes present in the data. Let there be J classes present in the data where 

𝑘 = {1,2, . . , 𝐽}. So there are 𝐽 neurons in the output layer. All input vectors are 

connected to all the neurons in the network as shown in the Figure 3.20. The weights are 

also called the codebook vectors. The weight vector joining the inputs to the neuron k 

can be expressed as 𝒘𝒌 = {𝑤1𝑘, 𝑥2𝑘, 𝑥3𝑘, . . 𝑥𝑛𝑘}. Basically the codebook vectors act as 

piece wise linear functions to classify the data.  
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Figure 3.20.  Structure of learning vector quantization network  

 

 

The training process can be explained using the following rules: 

 

Rule 1:  

Initialize first 𝐽 inputs as 𝐽 weight vectors, given 𝐽 classes are present in the data. 

Other techniques include randomly selecting 𝐽 inputs from the data for initializing 

weights.  

Rule 2: 

While termination criterion ≠ true  

      For each input vector 

  Calculate the distance metric 𝐷(𝑘) from the all the weight vectors. 

𝐷(𝑘) = ∑‖x𝑖 − 𝑤𝑖𝑘‖
2

𝑛

𝑖=1

 

Choose the 𝑘 that makes 𝐷(𝑘) minimum since that is to minimized. Check 

whether 𝑘 or predicted class of the input vector is same as the target class. If the input 𝒙 

and the associated weight vector  𝒘𝒌 have the identical class tag, then update the weight 

vector by the attraction rule (bring it closer to the input) 
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 𝒘𝒌(𝑛𝑒𝑤) =  𝒘𝒌(𝒐𝒍𝒅) + 𝜼 (𝒙 −  𝒘𝒌(𝒐𝒍𝒅))  

If the input 𝒙 and the associated weight vector  𝒘𝒌 have different class tags, then 

move them apart by repulsion rule: 

 𝒘𝒌(𝑛𝑒𝑤) =  𝒘𝒌(𝒐𝒍𝒅) − 𝜼 (𝒙 −  𝒘𝒌(𝒐𝒍𝒅))  

    End For 

Reduce the learning rate parameter  

End While 

Termination of training may depend upon a fixed number of iterations or setting the 

minimum threshold of the learning rate. 

3.5.2.5 Radial basis function network. The clustered data then can be viewed 

as a mapping of inputs to target (classes) and is used to train a radial basis function 

network (RBFN) (Buhmann, 2003) for prediction. The RBF network is a substitute to 

multilayer perceptron (MLP). The two differences between a MLP and a RBFN are that 

a RBFN trains a single layer of weights unlike MLP where all layers are trained.  Also 

the usual activation function used in RBFN is a Gaussian as a replacement for a sigmoid. 

The training phase can be done using gradient descend of the error loss function, 

so it is relatively simple to implement. The RBFN is three layered feed-forward neural 

network. The first layer is called the input layer, the second layer is called the hidden 

layer, and finally the last later is called the output later.   

Different kernel functions such as Gaussian, polynomial, and exponential can be 

used for hidden layer transfer functions.   The network training is divided into two 

stages: first determine the weights from the input to hidden layer and subsequently 

calculate the weights from the hidden to output layer (Schwenker, Kestler, & Palm, 

2001). Weights between the hidden layer and the output layer are adapted during 

training. 

The cluster centers become the centers of the RBF units. The number of clusters 

𝐿, is a design parameter and also determines the number of nodes in the hidden layer. 

The centers (acquired by k-means algorithm) are used to compute the centers and widths 
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for each basis function in the hidden neurons (Haykin, 2009).  RBFN centers for hidden 

nodes activation functions is same a k-means centers. Now the width of each RBF unit 

can be calculated using the K-nearest neighbor’s algorithm. A suitable number 𝑘 is 

chosen, and the root-mean squared distance between the current cluster center and its 𝑘 

nearest neighbors is calculated, and this is the value chosen for kernel width 𝜎 .The 

formula used to fix kernel width is  

𝜎 = √
∑ (𝑚𝑗 − 𝑚𝑖)2𝑘

𝑖=1

𝑘
 

  

 

Other methods include choosing the width as a ratio of  dmax  the maximum 

distance between the chosen centers, and m the number of centers (Deshmukh & 

Gholap, 2012). A training algorithm developed (Chen, Hong, Luk, & Harris, 2009) uses 

evolutionary algorithms to construct tunable radial basis function networks and decide 

the optimal center points along with the width for each kernel in the hidden neuron. 

 

3.5.3. Making a Decision Based on Current Round of Negotiation. It is 

important to make a decision on an offer in every negotiation. To decide this point of 

break-off (Baarslag Hindriks, & Jonker, 2014) the SoS manager must decide the 

conditions under which an offer will be accepted or rejected. The decision has to be 

made to overcome the dilemma of making a sub-optimal offer. Some of the most 

effective strategies applied in literature are Bayesian learning agent (Hindriks & 

Tykhonov, 2008), agent architecture for multi-attribute negotiation (Jonker, Robu, & 

Treur, 2007).  Some of the methods in the past that employ fuzzy logic for making 

acceptance decisions in negotiations include a fuzzy e-negotiation agents system 

(FeNAs) (Kowalczyk & Bui, 2000), and fuzzy logic based intelligent negotiation agent 

(fina) in eCommerce (Wang, Shen, & Georganas, 2006).  

The decision on a particular offer is based on the cooperativeness of the systems 

measured (Baarslag, Hindriks, & Jonker, 2013), system’s willingness to collaborate, and 

the SoS’s preference for acquiring that capability. After identifying the class of behavior 

the SoS coordinator can use a fuzzy inference engine to decide whether he wishes to 
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accept the systems offer, reject the offer or further negotiate (See Figure 10).  The model 

used is Multi criteria decision making (MCDM) Dodgson, Spackman, Pearman, & 

Phillips, 2009) with 2-tuple fuzzy linguistics (Carlsson & Fullér, 1996). 

The decision to accept, reject or negotiate further with a system is based on the 

cooperative behavior of the system, willingness to collaborate, and the SoS’s preference 

for acquiring that capability. After identifying the class of behavior the SoS coordinator 

can use a fuzzy inference engine to decide whether he wishes to accept the systems 

offer, reject the offer or further negotiate. Since all the three parameters are difficult to 

compute numerically the SoS coordinator has fuzzy linguistic model to aid in decision 

making.  

The problem is handled as multi-criteria decision making using 2-tuple fuzzy 

linguistic model. The fuzzy linguistic approach represents qualitative variables as 

linguistic values by use of linguistic variables (Herrera & Martínez, 2000). The 2-tuple 

fuzzy linguistic representation model represents the linguistic information by means of a 

2-tuple (𝑠, 𝛼) where 𝑠 is a linguistic label and 𝛼 is a numerical value that represents the 

value of the symbolic translation.  

If a variable can take words in natural languages as its values, it is called a 

linguistic variable, where the words are characterized by fuzzy sets defined in the 

universe of discourse in which the variables are defined.  The linguistic variable is 

represented by a set of membership functions. 

 

Definition 1. Let 𝛽 be the result of aggregation of the indexes of a set of labels 

assessed in a linguistic term set S. Then,  𝛽 ∈ [0, 𝑔], where 𝑔 + 1 is the cardinality of 

the set S. 

Let 𝑖 = 𝑟𝑜𝑢𝑛𝑑(𝛽) and 𝛼 =  𝛽 − 𝑖 are two values such that, 𝑖 ∈ [0, 𝑔], and 

𝛼 ∈ [−0.5,0.5], 𝛼 is then called the symbolic translation. 

Definition 2. The aggregation of the indexes 𝛽 can be converted to 𝑠𝑖 the closest 

index label to 𝛽 and 𝛼 the symbolic translation. 

∆(𝛽) = (𝑠𝑖, 𝛼)          (3.17) 
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3.5.3.1 Ordered weighted averaging operator. Ronald R. Yager (1997) 

introduced an aggregation technique called the Ordered Weighted Averaging (OWA) 

operators, which are capable of modeling a wide range of aggregation preferences. A 

modified version of OWA called the Linguistic Ordered Weighted Averaging Operator 

(LOWA) is used here. Let S be a set of 2-tuples, {(𝒔𝟏, 𝜶𝟏),… . , (𝒔𝟏, 𝜶𝒏)} and 𝑾 =

(𝒘𝟏, … . ,𝒘𝒏) be an associated ordered weighting vector that satisfies 𝒘𝒊 ∈ [𝟎, 𝟏] and 

∑𝒘𝒊 = 𝟏. Then LOWA for such a set S can be defined as: 

∆(∑𝑤𝑖 . 𝛽𝑖 

𝑛

𝑖=1

) 

The values in the vector  𝜷 are first ordered such that 𝛽1 ≤ ⋯ ≤ 𝛽𝑖 … ≤ 𝛽𝑛  

such that 𝑤1 is always linked to the lowest value in the vector 𝜷 and the 𝑤𝑛 is always 

linked to the highest.  𝛽 for a linguistic 2 tuple set is previously defined as ∆(𝛽) =

(𝑠𝑖, 𝛼). The process of arriving at the rank of alternatives is done using two processes, 

aggregation and comparison. A wide range of 2-tuple aggregation operators have been 

developed such as the weighted average operator, the ordered weighted average (OWA) 

operator (Wei, 2010). After aggregation a new value of 𝛽 is obtained. This value of 𝛽 is 

converted to its 2-tuple representation as explained in the example below. 

Example: Let us suppose a symbolic aggregation operation over labels assessed 

in S= {𝑠0,𝑠1, 𝑠2, 𝑠3} is such that 𝛽1 = 2.1. The 2-tuple representation of value is: 

𝑖 = 𝑟𝑜𝑢𝑛𝑑(2.1) = 2;  𝛼 = 𝛽 − 𝑖 = 0.1; ∆(2.1) = (𝑠2, 0.1)  

For comparing or ranking the alternatives is done using the 2-Tuple Comparison 

Operators. The comparison of linguistic information represented by 2-tuples is carried 

out according to an ordinary lexicographic order. Let (𝑠𝑥, 𝛼1) and  (𝑠𝑦, 𝛼1)be two 2-

tuples, then they are compared using the following rules: 

• if 𝑥 < 𝑦 then (𝑠𝑥, 𝛼1) is smaller than (𝑠𝑦, 𝛼1) 

• if 𝑥 = 𝑦 then 

1. if 𝛼1 = 𝛼2 then , (𝑠𝑥, 𝛼1) are (𝑠𝑦, 𝛼1) same 

2. if 𝛼1 < 𝛼2 then , (𝑠𝑥, 𝛼1) is smaller than (𝑠𝑦, 𝛼1)  

3. if 𝛼1 > 𝛼2 then , (𝑠𝑥, 𝛼1) is greater than (𝑠𝑦, 𝛼1)  
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For example a set S composed of four terms could be where S= {𝑠0 = 𝑉𝐿, 𝑠1 =

𝐿, 𝑠2 = 𝑀, 𝑠3 = 𝐻}shown in Figure 3.21. The first step is to assign a 2-tuple value for 

each alternative based on each attribute by the SoS manager as shown in Table 3.2.  

Subsequently calculate an aggregated value for each alternative over all attributes using 

2-tuple Linguistic Aggregation. Finally all the alternatives are ranked based on this 

output.  Some definitions and concepts are presented below to clarify the approach. 

 

 

 

 

 

 

 

Figure 3.21.  A set of four linguistic terms with their semantics 

 

 

Table 3.2. General 2-tuple Linguistic Problem 

 

 

 

 

 

 

 

 

For the sake of ease we assume all 𝛼 the symbolic translation as zero. Then 

alternative A1 has an aggregated value for all attributes (P1, P2, P3) as 

 ∆ 𝛽11 = (𝑀, 0) => (𝑖 + 𝛼1) = 1, 𝛽11 = 1. 

∆ 𝛽12 = (𝐻, 0) => (𝑖 + 𝛼2) = 2, 𝛽11 = 2. 

∆ 𝛽13 = (𝐿, 0) => (𝑖 + 𝛼5) = 0, 𝛽11 = 0. 

Attributes/Alternatives            A1             A2 

P1 (𝑠1, 𝛼1) (𝑠3, 𝛼4) 

P2 (𝑠2, 𝛼2) (𝑠1, 𝛼1) 

P3 (𝑠0, 𝛼5) (𝑠3, 𝛼3) 

2-tuple Linguistic Aggregation 𝛽𝐴1 = (𝑠3, 𝛼12) 𝛽𝐴2 = (𝑠2, 𝛼6) 
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𝛽𝐴1 =
1 + 2 + 0

3
= 1; 𝑖 = 𝑟𝑜𝑢𝑛𝑑(1) = 1;  𝛼 = 0; ℎ𝑒𝑛𝑐𝑒 (𝑠𝐴1, 𝛼𝐴1) = (𝑀, 0)  

∆ 𝛽21 = (𝑉𝐻, 0) => (𝑖 + 𝛼1) = 3, 𝛽11 = 3. 

∆ 𝛽11 = (𝑀, 0) => (𝑖 + 𝛼1) = 1, 𝛽11 = 1. 

∆ 𝛽11 = (𝑉𝐻, 0) => (𝑖 + 𝛼1) = 3, 𝛽11 = 3. 

𝛽𝐴2 =
3 + 1 + 3

3
= 3.33; 𝑖 = 𝑟𝑜𝑢𝑛𝑑(3.33) = 3;  𝛼 = 0.33; ℎ𝑒𝑛𝑐𝑒 (𝑠𝐴1, 𝛼𝐴1)

= (𝑉𝐻, 0.33)  

The aggregation is based on LOWA for a set of 2-tuples. Comparing or ranking 

the alternatives is done using the 2-Tuple Comparison Operators and alternative A2 is 

higher w.r.t to the rules given. The decision maker would choose alternative A2 over 

A1. 

On the same note when this approach is applied to the SoS manager it can divide 

linguistic terms in classes for making a decision on choosing the alternatives. For 

example if the aggregated value of the alternative lies within the set of {𝑠0 = 𝑉𝐿, 𝑠1 = 𝐿 

} the alternative is rejected. The SoS manager has a choice of making 3 kinds of 

decisions based on the aggregated linguistic terms of the alternatives namely: Decision 

of SoS{ Negotiate, Accept, or Reject}. 

3.5.4. Proposing an offer. A counteroffer is made to move closer to an 

agreement in the multi-attribute offer space. It involves deciding the amount of 

concession to be made, taking into account effect of time elapsed so far and the behavior 

both the offer proposer and the opponent party. In all this makes quite a challenge to 

design offer generating strategy. An SoS coordinator can employ different time 

dependent and behavior dependent strategies to generate the next offer once he/she has 

arrived at a decision to negotiate further. An alternating protocol of offers and 

counteroffers is employed to reach a final decision agreeable to both parties. The 

convergence of a negotiation strategy (Yu, Ren, & Zhang, 2013) indicates that the 

negotiating agents are certain to come to an agreement if the space of available solutions 

within the problem is not an empty set. The following sections give an outline for three 

kinds of tactics based on resources, behavior and time (Matos, Sierra & Jennings, 1998). 

3.5.4.1 Resource dependent tactics. Resource dependent tactics depend on the 

quantity of resource available (Faratin, Sierra, and Jennings, 1998). The tactic aims to 
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become conciliatory with reduction in amount of resources. Resources could be time, 

number of systems interested in a particular negotiation or funding availability. 

 𝑼(𝒕) = 𝝆 + (𝟏 − 𝝆)𝒆−𝒓𝒆𝒔𝒐𝒖𝒓𝒄𝒆(𝒕)  

where 𝒓𝒆𝒔𝒐𝒖𝒓𝒄𝒆(𝒕) is the resource available at time 𝒕. 

3.5.4.2 Behavior dependent tactics. Behavior dependent tactics are induced 

from the actions of the negotiation opponent (Axelrod, 1984).  The tactics include 

Relative Tit-For-Tat (Relative-TFT) which accounts for in percentage the behavior 

exhibited by the opponent over a certain time period. On the contrary, Random 

Absolute Tit-For-Tat (Random-TFT) accounts for the behavior in absolute terms. These 

tactics work well under no time restrictions or deadlines. 

3.5.4.3 Time dependent tactics. These tactics model the fact that the agent is 

likely to concede more rapidly as the negotiation deadline approaches. Two functions 

are generally employed for this purpose: the polynomial function and the exponential 

function (Faratin, Sierra, & Jennings, 1998). These functions represent an infinite 

number of possible tactics, one for each value of 𝜷 (Coehoon and Jennings, 2004). The 

parameter 𝜷 needs to be selected to ensure the convexity (or concavity) of the utility 

curve. The 𝜷 however must be classified into one of the following three forms to 

change the behavior of the equations (Faratin, Sierra, and Jennings, 1998): 

𝛽 >> 1 : This choice is made if the opponent is Conceder (reluctant) (SoS starts losing 

ground fairly quickly) and function is concave 

𝛽 = 1 : This choice is made if the opponent is Linear (SoS concedes equal amount in 

each round of negotiation) 

0 < 𝛽 < 1 ∶ This choice is made if the opponent is Boulware (SoS concedes slowly till 

the deadline is nearly up) and function is convex 

For the exact same value (big) of strategy parameter 𝛽 the polynomial function is 

supposed to concede quicker at the start than the exponential one after which they 

behave similarly (Sierra, Faratin, & Jennings, 1999). 𝛽 can be used in both the equations 

listed below to generate the new offer by the SoS coordinator. According to the assigned 

class of the systems offer the SoS coordinator can choose to have different values for the 

strategy parameter 𝛽.  For non-cooperative systems the value of 𝛽 is high and for a very 

cooperative system its value should be kept low. Faratin has suggested exponential 
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functions besides with the polynomial function shown below in equations. The common 

characteristic among the two functions is that both exhibit convexity w.r.t. t, and their 

degree of convexity is determined through the parameter 𝛽. 

 

Polynomial: 𝑉𝑝
𝑆𝑜𝑆(𝑡 + 1) = 𝑉𝑝

𝑆𝑜𝑆(𝑡) + |𝑉𝑝
𝑆𝑜𝑆(𝑡) − 𝑉𝑝

𝑠(𝑡)| ∗  (
𝑡

𝑡𝑚𝑎𝑥
)

1

𝛽𝑠    

 

Exponential: 𝑉𝑝
𝑆𝑜𝑆(𝑡 + 1) = 𝑉𝑝

𝑆𝑜𝑆(𝑡) + 𝑒
((1+ 

𝑡

𝑡𝑚𝑎𝑥
)

1
𝛽𝑠)∗ln (|𝑉𝑝

𝑆𝑜𝑆(𝑡)−𝑉𝑝
𝑠(𝑡)|)

   

 

Here 0 ≤ β𝑆 ≤ 1 is the system’s strategy parameter and t is current round of 

negotiation s.t. 𝑡 > 1,  𝑉𝑖
𝑆𝑜𝑆(𝑡) is the SoS’s offer to the system at current negotiation 

round t, 𝑉𝑖
𝑠(𝑡) is the system’s offer to the SoS at time t, 𝑉𝑖

𝑆𝑜𝑆(𝑡 + 1) is the SoS’s new 

offer to the system (using the equations) and 𝑡𝑚𝑎𝑥 is the maximum number of 

negotiations possible (Bahrammirzaee, Chohra, & Madani, 2013). 

It is expected that by the use of these equation based offer generations the SoS 

manger can respond to a system on each issue. Figure 3.22. gives examples of 

concession curves for the polynomial time-dependent family of tactics. The concession 

curves assume that the offers range between 5 units and 100 units. So the SoS 

coordinator can choose amongst a family of curves to cover the difference. The 

boulware curve occurs at 𝛽 = 5, the linerar curve is at 𝛽 = 1 and conceder curve 

corresponds to 𝛽 = 0.1. 

Nevertheless a negotiator might not just respond aggressively to an aggressive 

opponent or quickly conceding to as conceding opponent. There are can be number of 

behaviors theta are possible as shown in Figure 3.23. based on the negotiator’s attitude 

(Baarslag, 2014). 
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Figure 3.22.  Concession Curves for the Polynomial Time-dependent Family  

 

 

For example, the first tactic can be described as matching the exact style of 

negotiation of the opponent. Where a negotiator may cooperate (or conceding) when up 

against a cooperative opponent, on the other hand negotiator may behave competitively 

(not yielding easily) with a competing system (aggressive). This negotiator can be 

termed as a matcher. 

The other contrary tactic is for a negotiator to behave in complete contrast to the 

opponent.  In this tactic negotiator is cooperative towards a non-cooperative (competing) 

opponent. The negotiator also adopts non-yielding strategy (aggressive) to its 

cooperative opponents. Such a negotiator can also be called an inverter. In literature four 

types of behaviors are considered prominent, namely, Inverter, Conceder, Competitor, 

and Matcher.  
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Figure 3.23. Four styles of negotiation coordination  

 

 

3.6. OVERALL NEGOTIATION PROTOCOL 

The overall negotiation protocol can be illustrated as a set of statements as 

follows: 

1) Send an offer to all systems simultaneously 

2) Receive a counter-offer from all systems 

3) Model the opponent behaviour-(clustering) 

4) First make decision on set of systems with capability 𝑖 𝑤ℎ𝑒𝑟𝑒 𝑖 =  1 𝑡𝑜 𝑀 

5) Need to select at least one system from each capability 𝑖 

a. Select a system with the best offer amongst them for the same capability 

if no system within a particular capability class is accepted 

b. Do so for each capability 𝑖 to be acquired 

c. Form the architecture using the selecting systems and the interfaces 
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6) Evaluate the overall architecture quality based on the systems selected in one 

epoch  

7) If the architecture is not of a predefined quality then go for a second epoch for 

systems not yet selected 

 

The model described here is a decision making aid for the SoS manager.  It does 

not so much find the best solution to designing a SoS, as help the manager explore the 

influence of the various constraints on the shape of a reasonable solution.  The models 

described can be used in conjunction with others to explore the SoS context and goals.  

This will help in developing SoS architectures including the full range of 

candidate systems and their interfaces.  Our attempt has been to produce a holistic 

architecting methodology that is reconfigurable and has models that are adaptive to the 

environment. 

The next sections describe the implementation of the model on search and rescue 

(SAR) SoS scenario. 
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4. COMPUTATIONAL INTELLIGENCE MODEL IMPLEMENTATION 

To implement the architecture a Coast Guard Search and Rescue (SAR) problem 

serving the Alaskan coast region was selected.  A brief introduction of SAR is given in 

section 4.1. For further details please refer to the integrated model structure report in 

volume 1 and 2 of FILA-SoS version 1.0.  

In a SAR scenario a whenever a vessel in distress, the regulation of the sea 

requires mariners to reach out for help. This help comes in the form of a large number of 

disparate systems joining in an ad hoc congregation thus forming a SoS. The concept 

graphic or OV-1 is shown in Figure 4.1. 

 

 

 

 

Figure 4.1. Operational View 1 for Search and Rescue scenario 
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4.1. PROBLEM STATEMENT 

The overarching purpose of SoS in this case is a Coast Guard SAR capability 

within the Sea of Alaska was selected as the problem. The Coast Guard SoS has 

numerous systems with multiple capabilities such as cutters, aircraft, helicopters, 

communication systems, and control centers each different form the other and available 

from a number of stations in the area. In addition, the SoS comprises of systems such as 

fishing vessels, unmanned aerial vehicles (UAVs), civilian craft, and commercial to 

provide support in the event of a disaster strike (Breivik, Allen, Maisondieu, & Olagnon, 

2013). The communication systems enable coordination of the sensing and rescuing 

capabilities of each vehicle.  

The data and contextual information was collected from various Coast Guard 

documents and news stories about maritime rescues (Ullman, O'Donnell, Edwards, Fake, 

& Morschauser, 2003).  A sample SAR SoS with 22 systems, with 5 capabilities is 

formed as shown in Table 4.1 and Figure 4.1. 

This section explains the variables defined in context of the mission. Information 

required for architecture generation of a Search and Rescue (SAR) operation used to 

solve the Acknowledged SoS architectural evolution problem involves the overarching 

capability C: A Coast Guard SAR capability within the Sea of Alaska. The five sub-

capabilities of the systems selected include 𝑐𝑗:  j ∈ J, J= {1, 2,…, 5}. For details refer to 

Table 4.1 for constituent system capabilities. The systems selected to participate in the 

SoS, 𝑠𝑖: i ∈ I, I= {1, 2,…, 22} can be referred to in Table 4.1. and Table 4.2. The 

information for variables such as performance of each system 𝑃𝑖, funding allocated to 

each system 𝐹𝑖, deadline for preparation 𝐷𝑖, interface cost 𝐼𝐶𝑖, and operations cost 𝑂𝐶𝑖 

can be referred from Table 4.2. There are five key performance attributes selected for 

the SoS such as 𝐾𝑃𝑟 : r ∈ R, R= {1, 2,…, 5} which are listed as : 

 𝐾𝑃1 = 𝑃𝑆𝑜𝑆 : Performance of SoS 

 𝐾𝑃2 = 𝐴𝑆𝑜𝑆 : Affordability of SoS  

 𝐾𝑃3 = 𝑅𝑆𝑜𝑆 : Robustness of SoS 

 𝐾𝑃4 = 𝑀𝑆𝑜𝑆 : Modularity of SoS 

 𝐾𝑃5 = 𝑁𝐶𝑆𝑜𝑆 : Net-Centricity of SoS 
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Other related information required for SoS architecture generation is 𝐿𝑉𝑖: the 

systems performance among participating systems based on ability to search and provide 

assistance and 𝑆𝑃𝑖: the systems’ speeds in air or water can also be inferred form Table 

4.2. The three negotiation attributes p= {1, 2, 3} for bilateral negotiation are: 

𝑁𝐴1 =Funding, 𝑁𝐴2 =Deadline, and 𝑁𝐴3 =Performance. 

The following sections describe the implementation of the meta-architecture 

generation, architecture assessment and implementation. The Figure 3.4. describes the 

other modules used in conjunction. The individual models presented in the next sections 

are part of the version 1.0 of FILA-SoS.   

 

4.2. META-ARCHITECTURE GENERATION  

This section describes the meta-architecture generation problem in terms of key 

performance attributes: 

Optimize  𝑭 = {𝑓𝐾𝑃1
(𝒔, 𝑰𝑭), 𝑓𝐾𝑃2

(𝒔, 𝑰𝑭), 𝑓𝐾𝑃3
(𝒔, 𝑰𝑭), 𝑓𝐾𝑃4

(𝒔, 𝑰𝑭), 𝑓𝐾𝑃5
(𝒔, 𝑰𝑭)  }     

where 𝑓𝐾𝑃𝑟
(𝒔, 𝑰𝑭) is the value of the key performance attribute 𝑟 for decision variables 

𝒔 and 𝑰𝑭. A meta-architecture has to be selected from the systems in Table 4.1. The 

table gives the name of participating systems and the capabilities possessed by them. 

 

 

Table 4.1.  Types of the systems and capabilities present in the SoS 

SysNo Type No of cap No Capability Name 

𝑠1 and 𝑠2 Cutter 2,5 𝑐2 High Speed 

𝑠3 and 𝑠4 Helicopter 2,5 𝑐2 High Speed 

𝑠5 and 𝑠6 Aircraft 2,5 𝑐2 High Speed 

𝑠7 to 𝑠12 UAV 1,5 𝑐1 IR & Night Vision 

𝑠13 to 𝑠16 Ship or Vessel 3,5 𝑐3 Deliver Medical Aid 

𝑠17 and 𝑠18 Coordination 
Control 4,5 𝑐4 RF Direction Finding 

𝑠19 and 𝑠22 Communication 5 𝑐5 Communication Systems 
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Table 4.2.  Input variables required for SAR meta-architecture generation  

 

 

 

In this work, two evolutionary algorithms were used, genetic algorithm and binary 

particle swarm optimization. 

4.2.1. Genetic Algorithm. A genetic algorithm (GA) mimics the biological 

evolution process to solve constrained optimization problems. The GA is a good 

optimizer for large scale optimization problems with many decision variables. The basic 

idea is to improve the solution based on the objective function at each iteration through 

crossover and mutation of parent solutions. Over successive generations, the population 

converges toward a near optimal solution. 

The important parameters of GA include crossover type (recombination operator 

𝑟𝜽𝒓), crossover rate, mutation type (mutation operator 𝑚𝜽𝒎), mutation rate and method 

to choose (selection process 𝑠𝜽𝒔) parents to crossover. Crossover rate defines how often 

will be crossover performed. In case of no crossover, offspring is an exact copy of its 

SysNo Type Capability

1 Cutter 2 0.03 0.2 12 1 8.3 6

2 Cutter 2 0.03 0.2 12 1 8.3 6

3 Helicopter 2 0.1 0.2 20 1 10.0 8

4 Helicopter 2 0.1 0.2 20 1 10.0 8

5 Aircraft 2 0.1 0.5 10 1 10.0 10

6 Aircraft 2 0.1 0.5 10 1 10.0 10

7 UAV 1 0.1 0.1 7 1 1.7 2

8 UAV 1 0.1 0.1 7 1 1.7 2

9 UAV 1 0.1 0.1 7 1 1.7 2

10 UAV 1 0.1 0.1 7 1 1.7 2

11 UAV 1 0.1 0.1 7 1 1.7 2

12 UAV 1 0.1 0.1 7 1 1.7 2

13 Fish Vessel 3 0.03 0.5 10 1 5.0 4

14 Fish Vessel 3 0.03 0.5 10 1 5.0 4

15 Fish Vessel 3 0.03 0.5 10 1 5.0 4

16 Civ Ship 3 0.05 2 8 1 6.7 4

17 Coord Ctr 4 0.05 0.5 5 1 0.5 0

18 Coord Ctr 4 0.05 0.5 5 1 0.5 0

19 Comm 5 0.02 0.03 1 0 0.5 0

20 Comm 5 0.02 0.03 1 0 0.5 0

21 Comm 5 0.02 0.03 1 0 0.5 0

22 Comm 5 0.02 0.03 1 0 0.5 0

𝐼𝐶𝑖 𝑂𝐶𝑖 𝑃𝑖 𝐷𝑖 𝐿𝑉𝑖 𝑆𝑃𝑖
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parents. The crossover type used in this work is two-point crossover. Crossover occurs 

between two individuals or chromosomes.  Here two crossover points are selected on a 

binary chromosome. 

 Mutation rate defines the frequency of bits of chromosome to be mutated. 

Mutation type used here is bit flip. Crossover can be thought of as a global search 

parameter whereas mutation can be referred to as a local search parameter. The parents 

are selected using the elitism method. There are many selection procedures (Sivaraj & 

Ravichandran, 2011); the one used here is elitism. In elitism method, a predefined 

percentage (usually 50%) of new population is constructed using the best chromosomes 

ranked by fitness value. This prevents loss of any good solutions, which might have 

been lost due to crossover and mutation. Rest of the population is generated by mutating 

the parent chromosomes of the current population. 

The pseudo code of the genetic algorithm as applied to the SAR is illustrated 

below: 

Step 1: Generate a random population 𝑃(0) of size 𝜇 individuals (chromosomes) with a 

chromosome size of 𝑁 + 𝑁 ∗ (𝑁 − 1)/2 where 𝑁 = 29 

Step 2: Evaluate the fitness of each chromosome in the population through a fitness 

function 𝝓 to calculate the fitness value.   

Step 3: Create a new population 𝑃(𝑡) by iterating following steps until the new 

population is complete 

Selection: Select two parent chromosomes from a population according to their fitness 

(selection process𝜽𝒔 = 𝑒𝑙𝑖𝑡𝑖𝑠𝑚) 

Crossover: With a crossover probability cross over the parents to form a new offspring 

(𝑃′(𝑡) = 𝑟𝜽𝒓(𝑃(𝑡))) 

Mutation: With a mutation probability mutate new offspring at each position in 

chromosome (𝑃′′(𝑡) = 𝑚𝜽𝒎(𝑃′(𝑡)) 

Accepting: Place new offspring in a new population 𝑃′′(𝑡) 

Replace: Use new generated population for a further run of algorithm 

Test: If the best fitness value does not change after certain iterations, stop, and return the 

best solution (highest fitness valued chromosome) in current population 

𝑃′′(𝑡) = {𝝓(𝑎′′1(0)),… . , 𝝓(𝑎′′𝜇(0)) };  
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Loop Go to step 2 

4.2.2. Binary Particle Swarm Optimization. In the original particle swarm 

optimization (PSO) the solutions are represented as a swarm of particles moving through 

the search space. A PSO algorithm preserves a swarm of individuals (called particles). 

Each individual (particle) represents an architecture solution. Particles try to follow the 

path of neighboring particles. Each particle is initialized with certain coordinates in 

problem space and a velocity. Each particle records its coordinates associated with the 

best solution (fitness) it has achieved so far. This value is called “pbest”. Another “best” 

value that is tracked by a particle is the best value, obtained so far by any particle. 

The parameters 𝑐1 and 𝑐2 are coefficients that regulate the relative velocity 

toward global and local best. Parameters 𝑟1 and 𝑟2 are two random numbers uniformly 

distributed in [0, 1]. The velocity vector 𝑉𝑚𝑎𝑥. is a bound on the velocities of particles on 

each dimension. In case of exceeding the velocity the particle is assigned the velocity of 

𝑉𝑚𝑎𝑥. In a D-dimensional search space the position of 𝑖𝑡ℎ , where 𝑖 = {1, . . , 𝑁},  

particle of the swarm can be represented by a D-dimensional vector, 

𝑥𝑖 = (𝑥𝑖1 ,…, 𝑥𝑖𝑑 ,…, 𝑥𝑖𝐷 ). Similarly the velocity can be expressed as 

𝑣𝑖 = (𝑣𝑖1 ,…, 𝑣𝑖𝑑 ,…, 𝑣𝑖𝐷 ). The variables used in PSO are defined as follows: 

𝑐1 : Self learning Factor 

𝑐2 : Swarm learning Factor or social factor (It is suggested to maintain 𝑐1 + 𝑐2 =

4) 

𝑟1,   𝑟2 : Random Number between 0 and 1used to maintain the diversity of the 

population 

𝑝𝑖𝑑 :Personal Best Position of the 𝑖𝑡ℎ particle in 𝑑𝑡ℎdimension 

𝑝𝑔𝑑 :Global Best Position of the 𝑔𝑡ℎ particle in 𝑑𝑡ℎdimension 

𝑣𝑖𝑑 (𝑡):  The current velocity of the 𝑖𝑡ℎ particle in 𝑑𝑡ℎdimension at time 𝑡 

𝑣𝑖𝑑 (𝑡 + 1):  The new velocity of the 𝑖𝑡ℎ particle in 𝑑𝑡ℎdimension at time 𝑡 + 1 

𝑥𝑖𝑑 (𝑡): The current position of the 𝑖𝑡ℎ particle in 𝑑𝑡ℎdimension at time 𝑡 

𝑥𝑖𝑑 (𝑡 + 1): The new or updated position of the 𝑖𝑡ℎ particle in 𝑑𝑡ℎdimension at 

time 𝑡 + 1 

𝑤 : Inertia Weight (The Inertia Weight determines the contribution rate of a 

particle’s previous velocity to its velocity at the current time step) 
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𝑉𝑚𝑎𝑥=-𝑉𝑚𝑖𝑛=4 

Particle position and velocity is updated using the equations given below: 

𝑣𝑖𝑑 (𝑡 + 1) = 𝑣𝑖𝑑 (𝑡) + 𝑐1𝑟1  (𝑝𝑖𝑑 -𝑥𝑖𝑑 (𝑡) ) + 𝑐2𝑟2  (𝑝𝑔𝑑 -𝑥𝑖𝑑 (𝑡) )   

  

𝑥𝑖𝑑 (𝑡 + 1) = 𝑥𝑖𝑑 (𝑡) + 𝑣𝑖𝑑 (𝑡 + 1)       

The number of particles ranges from 20 - 100. Binary particle swarm 

optimization (BPSO) algorithm is a variant of the original PSO where the decision 

variables are binary in nature. For each particle, a binary value of 0 or 1 is allocated with 

a probability of 0.5 for all dimensions. The initial velocity of the particles in all 

dimensions is allocated using  

𝑣𝑖𝑑 =𝑉𝑚𝑖𝑛 + (𝑉𝑚𝑎𝑥-𝑉𝑚𝑖𝑛) ∗  𝑟𝑎𝑛𝑑()      

  

A sigmoid function is used to scale the velocities between 0 and 1. These 

velocities are then used to update the position of the particles as a binary number. The 

concept is explained in the equations. 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑣𝑖𝑑 ) =
1

1+𝑒−𝑣𝑖𝑑 
 ;𝑥𝑖𝑑 = 1 𝑖𝑓 𝑈(0,1) < 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑣𝑖𝑑 ) ; 𝑥𝑖𝑑 =

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ; 

The pseudo code of the BPSO is illustrated below: 

  I) for each generation: 

        Initialize particles in the population with a velocity and position 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛  𝑃(0) = {𝑎1(0), … . , 𝑎𝜇(0) } ,  ∈ 𝑰𝝁 

  II) For each particle in swarm: 

1.   Calculate fitness value (𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝝓) 

2.   If the fitness of particle is better than the best fitness value (pBest) in its history, 

set the current value as the new pBest to 𝑝𝑖𝑑  

3.  Also set global best value as the new gBest to 𝑝𝑔𝑑 for all particles or a 

neighborhood 

4. Calculate particle velocity according to the velocity equation  

5. Apply the velocity constriction 

6. Update particle position according to the position equation  
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End While maximum iterations or minimum error criteria is not attained. 

4.2.3. Fuzzy Evaluator. The fitness calculation is explained in this section. 

Figure 4.2. illustrates the modular fuzzy net process. It is used for to assessing the fitness 

of the of individual architecture instances (chromosomes). First, we calculate the values 

of inputs that are required for each KPA (e.g., affordability, performance, and net-

centricity). Crisp values for the KPAs are then calculated using Type I fuzzy rules. 

These rules are based on the stakeholder’s views. For example, a rule can be written that 

states the following: “If operations cost is high and the interfacing cost is high, then 

affordability is low”. These fuzzy rules can be used to assign a crisp number to the 

affordability of the overall architecture. Each of the KPAs are then modeled as interval 

type II fuzzy sets (IT2FS) so that a crisp value can be obtained for the architectures 

overall quality. 

 IT2FSs have been shown to be more capable of modeling uncertainties than are 

T1 FSs. Each KPA with its inputs is referred to as a module. Type I FSs are used in 

modules to reduce computational time. The rules of the fuzzy evaluator are adjustable to 

allow for differences between the stakeholders’ views. This adjustability makes fuzzy 

net usable for a larger section of perspectives that share the same domain problem. This 

approach can also be applied to model many other domains. The fuzzy network helps 

bring in uncertainties at lower levels of the KPA. KPAs of the SoS can be provided with 

different levels of linguistic granularization such as: 

 Affordability: very costly, costly, cheap 

 Modularity: little, average, good 

 Performance: very low, mediocre, great 

 Robustness: less, ordinary, excellent 

 Net Centricity: low, medium, high 

Triangular type-2 membership functions were used for all attributes. Twenty-five 

rules were created to link these five objectives to four fuzzy attributes. These statements 

help clarify stakeholders perspectives. Figure 4.3. represents the kiviat chart (visually 

displays a set of metrics) for the second rule to illustrate the concept. It explains 

architecture is too risky if it fails to meet more than 70% of key performance parameters.  
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Figure 4.2.  The fuzzy nets to evaluate architecture’s quality  

 

 

 

Figure 4.3. A Kiviat chart of Architecture Attributes for SoS Assessment  

 

 

4.2.4. Fitness Evaluation of the Population. A fuzzy fitness evaluation is 

proposed, which uses a fuzzy estimator that is parallel in structure, simple in operations, 

and thus less in computation time to evaluate the fitness of individuals and reduces the 

computation time to solve a real problem. The fuzzy estimator can be adaptively trained 

to approximate the fitness function more accurately. The SoS manager may not want all 

systems to be present simultaneously when s/he is designing a mission. The correct set 
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Net Centricity

RobustnessModularity
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Architecture Attributes Assessment 
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Architecture 
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of systems should be chosen such that all ten capabilities are acquired, while trying to 

maximize overall performance and minimize the cost of acquisition.  

The architectures are assessed according to a fitness function. The fitness 

function is a multi-objective problem. A number of independent functions need to be 

simultaneously addressed, to make up the fitness function. Five KPAs are the 

independent functions that will be used in this example for assessing the overall SoS 

architecture (Hilliard, Kurland, & Litvintchouk, 1997). The following sections explain 

each KPA in detail and how it will be calculated for each architecture. 

4.2.4.1 Performance. The architecture’s performance is calculated as fuzzy 

aggregate of  𝑷𝑨𝒊 , 𝑳𝑽𝒊, and 𝑺𝑷𝒊. This method helps in obtaining a comprehensive view 

of the SoS performance in the areas that count in finding and rescuing people in 

distress. E.g., aircraft may be able to search more area faster, but cannot stop and render 

assistance; cutters are slower, but better at rendering assistance, and helicopters are 

good at both, but with a shorter range. 

The membership functions used are Gaussian to aggregate the inputs for 

calculating the performance as depicted in Figure 4.4. The output is represented by 

triangular membership functions. The figure is generated through MATLAB. Nine rules 

were created to map the inputs to outputs. A rule used is written as: "If the Area covered 

is less and lives saved is little, and Rescue time is small then the Performance is low."  

These rules are able to generate a non-linear surface when combined as shown in 

Figure 4.5. The tradeoffs between various inputs are captured through this surface. 

Using the Surface Viewer in MATLAB it presents with a three-dimensional curve.  Only 

two inputs can be selected at a time whereas the third input remains constant. In the 

figure performance in terms of area covered is constant whereas rescue time and lives 

saved is variable. 
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Figure 4.4. Fuzzy membership functions for Performance Attribute Assessment 

 

 

 

 

Figure 4.5. Non-linear surface of tradeoffs between rescue time and lives saved  
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4.2.4.2 Net-centricity.  Net-centricity is a property of SoS that relates to the 

availability ability to share of information; it is central to network-centric operations 

(Fry & DeLaurentis, 2011). The degree of net-centricity is a measure of the influence of 

net-centricity toward achieving the SoS objectives. The net-centricity of an architecture 

is based on interoperability of participating systems and centralized common 

communication for sharing information. Interoperability is defined as sharing an 

interface with other constituent component systems. Communication measures whether 

or not these systems are coordinating among themselves through a common control 

station or communication channel. In this problem, communications systems channels 

are numbered systems from 19 to 22. 

Interoperability = ∑ ∑ 𝑠𝑖 ∗ 𝑠𝑘 ∗ 𝐼𝐹𝑖𝑘
𝑵
𝒌=𝟏

𝑵
𝒊=𝟏       (4.1)

       

Communication = ∑ ∑ ∅ ∗ 𝐼𝐹𝑖𝑘
𝟐𝟗
𝒌=𝟐𝟔

𝑵
𝒊=𝟏 ∗ 𝐼𝐹𝑘𝑘′                                                 (4.2) 

 

𝐼𝐹𝑖𝑘 and 𝐼𝐹𝑘𝑘′ aid in determining whether or not an interface exists between 

either systems i and k or systems k’ and k, respectively. The metric used tries to capture 

the number of channels present that can transfer information within the SoS. If either of 

the two systems is not present, the metric is zero. If an interface exists between the two 

systems the net-centricity of SoS increases. Net-centricity increases further if the any 

two systems communicate through systems numbered 26 to 29. This is shown in 

Equation 4.2 where by multiplying (1≤ ∅ ≤ ∞) enhances the communication capability.  

Finally, if both systems are present but neither of them interface either among 

themselves or through the communication systems, the net-centricity is zero. The 

concept of interoperability presented here is simplistic. Interoperability can be viewed as 

having multiple dimensions from sharing and interface, to sharing data in the same 

format, to operational compatibility, exchanging useful information, systems’ having 

trained together, and so on. Figure 4.6. explains a method to calculate net-centricity 

form the two metrics communication and interoperability. 

After calculating interoperability and communication individually, they are 

fuzzified using Gaussian membership functions. Later, triangular membership functions 

are used to calculate the overall net-centricity.  A rule used is written below to explain 
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the idea "If the communication is more and interoperability is high, then the net-

centricity is excellent." Figure 4.7. depicts the non-linear surface created by such rules. 

 

 

 

Figure 4.6. Fuzzy membership functions for net-centricity Attribute Assessment 

 

 

 

Figure 4.7. Non-linear tradeoffs surface between interoperability & communication 

 

 



 

 

90 

4.2.4.3 Affordability. Affordability is dependent on the sum of operation costs  

of the systems present times the number of capabilities possessed by that system. In 

addition, the interface development cost is systems present times the number of 

interfaces that specific system makes with other systems also present (Figure 4.8.).  

 

Operations cost= ∑ 𝑂𝐶𝑖 ∗ 𝑠𝑖 ∗ ∑ 𝑎𝑖𝑗
𝑀
𝑗=1

𝑁
𝑖=1       (4.3) 

Interfaces cost= ∑ 𝐼𝐶𝑖 ∗ 𝑠𝑖 ∗ ∑ 𝐼𝐹𝑖𝑘
𝑁
𝑖=1,𝑘≠𝑖

𝑁
𝑠=1                  (4.4) 

 

 

 

Figure 4.8. Fuzzy membership functions for Affordability Attribute Assessment 

 

 

The operations cost and the interfaces cost are the two inputs and the total cost is the 

output. Inputs are represented by Gaussian membership functions whereas the output is 

a triangular membership function.  A rule used is written as: "If the operation cost is 

cheap and interface cost is more, then the Affordability is good."  

4.2.4.4 Robustness. One of the matrices within spectral measures of a graph is 

known as Laplacian (an SoS can be described as a graph that has vertices as systems and 

interfaces as edges.) The Laplacian (L) is calculated as the difference between the degree 

matrix (denoted by ∆) and the adjacency matrix (denoted by A). The second smallest 

eigenvalue λ2 of the Laplacian is known as algebraic connectivity (Jamakovic & Uhlig, 

2007). This value is used to assess the robustness of the graphs structure to external 
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perturbations. The algebraic connectivity is equal to zero if and only if the graph is 

unconnected. (Fiedler, 1973) proved that the range of the value of λ2 is 𝟎 ≤ 𝛌𝟐 ≤

 
𝑵

𝑵−𝟏
 𝑫𝒎𝒊𝒏 , where N is the number of vertices and 𝑫𝒎𝒊𝒏 is the minimum degree of the 

graph. A MATLAB toolbox was used to calculate the metrics (Bounova & de Weck, 

2012). 

4.2.4.5 Modularity. Modularity measures the structure of networks and graphs. 

It is used to compute the maximum possible indivisible graphs (either groups, clusters or 

communities) within a network. Here, Q (modularity metric) = the number of edges 

within groups subtracted from expected number of edges within group for a random 

graph with same node degree distribution as the given network. The Newman Girvan 

algorithm (Newman, 2006) is used to calculate it. The value of modularity is between '-

1' and '1’. The networks modularity increases as this value increases. 

 

4.3. META-ARCHITECTURE RESULTS 

This study generated two models: a binary genetic algorithm (GA) that was 

combined with a fuzzy modular net fitness evaluator (Huang & Xie, 1998) and a binary 

particle swarm optimization (BPSO) (Kennedy & Eberhart, 1997) that was combined 

with the same fitness evaluator. These models were compared to one another in an 

attempt to generate better architectures. A fuzzy assessor to evaluate the fitness of 

individual architectures as compared to other techniques is flexible and reduces the 

computational time. 

4.3.1. Genetic Algorithm Application. The process of natural selection inspired 

the creation of GA. The GA employed here utilizes a roulette wheel-type of selection to 

generate offspring’s and an elitist approach for forming the new population (Konak, 

Coit, & Smith, 2006). The parameters used are described in Table 4.3. 

Each model was run for 100 generations and 50 times to obtain a better assessment of 

the stochastic techniques used. The model with the highest architecture value in 50 

iterations is presented here in each case. Increasing the generations to 300 did not affect 

the maximum architecture quality. Hence, it was reasonable to keep the same 

architecture’s quality that was obtained in smaller simulation time. The population size 

was kept as 50, probability of mutation is 0.1, size of dormant selection for next 
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population is kept as 2, and lastly the population fraction maintained at the end of each 

epoch was 0.5.  

The results presented in Figure 4.9. are architecture values over 100 generations 

using the GA. The results did not improve with increasing the generations to 200. The 

set of systems selected and the interfaces is presented as circular graph in Figure 4.9.  

The systems not selected are marked as red asterisks. The paramters used in GA are 

listed in Table 4.3. Systems selected are named in Table 4.4.  

 

 

Table 4.3.  The parameters used in GA 

Generations 100,200 

Population Size 50 

Probability of Mutation 0.1 

Tournament Selection Size 2 

Population fraction kept for next generation 0.5 

 

 

 

The best architecture obtained by GA is illustrated in Figure 4.9. A total number 

of 11 systems were selected and edges show the interfaces that exist amongst them. 

Each system and its capabilities are listed for comparison in Table 4.4. The architecture 

quality history obver many generations is shown in Figure 4.10. 
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Table 4.4.  Systems and capabilities selected in best architecture by GA 

 

 

 

 

 

Figure 4.9.  Systems selected in the SAR-22 SoS architecture through GA 

Sys1

Sys2

Sys3

Sys4

Sys5
Sys6Sys7

Sys8

Sys9

Sys10

Sys11

Sys12

Sys13

Sys14

Sys15

Sys16
Sys17 Sys18

Sys19

Sys20

Sys21

Sys22

Systems Selected by GA Capabilities Provided 

Systems 1,2 -Cutter 2 

Systems 3-Helicopter 2 

Systems 5-Aircraft 2 

Systems 7,8,9,11,12-UAV 1 

Systems 15-Fish Vessel 4 

Systems 17 –Coordination 
Control 4 

Systems 22-Communication 5 
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Figure 4.10.  SoS architectural quality over generations through GA 

 

 

4.3.2. BPSO Application. PSO was inspired by the social behavior of bird 

flocks and fish schools (Coello, 1999). PSO algorithms start with a group of a randomly 

generated population (particles in PSO). Population individuals are evaluated by a 

fitness function. Both update the population and search based on the best value 

achieved. PSO does not have genetic operators (e.g., crossover and mutation). Particles 

update is based on individual position, velocity and on the best position and velocity of 

the swarm leader. All the above procedures are valid for PSO and BPSO.  

The major difference between BPSO with real-valued version is that velocities of 

the particles are defined in terms of probabilities that a bit will change to one or zero. 

Usually a sigmoid function is used to map all real valued velocities to the range of [0, 1]. 

The number of iterations was usually 100, population size was kept at 50, cognitive and 

social parameters were both equal to 2, and constriction factor was 1.  

The maximum and minimum velocity was maintained between -4 and 4, and 

inertia weight decreased linearly based on number of iterations. These are all standard 

parameters in PSO. The parameters used for BPSO are listed in Table 4.5. The best 

architecture obtained is depicted in Figures 4.11. and 4.12. Each system and its 

capabilities are listed for comparison in Table 4.6. 
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Table 4.5.  The parameters used in BPSO 

Iterations 100,200 

Population Size 40 

Cognitive Parameter 2 

Social Parameter 2 

Constriction Factor 1 

[velocity min, velocity max] [-4, 4] 

Inertia Weight (Maximum iterations-Current iteration)/ 
Maximum iterations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11.  Systems selected in the SAR-22 SoS architecture through BPSO 
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Figure 4.12.  SoS architectural quality over generations through PSO 

 

 

Table 4.6.  Systems and the capabilities in the best architecture by the PSO   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results from the BPSO can be considered as the first wave of meta-architecture. The 

following sections will be based on the results obtained from the BPSO. 

Systems Selected by BPSO Capabilities Provided 

Systems 1,2-Cutter 2 

4-Helicopter 2 

5,6-Aircraft 2 

Systems 8, 9,12-UAV 1 

Systems 13,15,16 -Fish Vessel 3 

Systems 17 –Coordination 
Control 4 

Systems 20, 21-Communication 5 
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4.4. NEGOTIATION APPLICATION 

This section describes the techniques used by SoS manager to model the 

opponent for negotiations. A database of previous offers and counteroffers is required to 

implement the techniques utilized. In the current settings this approach does not involve 

collecting of data and the model structure is not universal. Based on the data involved 

the techniques might need to be modified to adapt to the scenarios. 

Three system negotiation models namely; cooperative system negotiation model, 

non-cooperative system negotiation model, and semi-cooperative system negotiation 

model, have been previously used to generate the first round of negotiations. Volumes 5, 

6, and 7 SERC describe the systems negotiation models.  

The Cooperative System Negotiation Model is described in Volume 5 of the 

SERC report. The systems following this model behave cooperatively while negotiating 

with the SoS manager. The model of cooperative behavior is based on agent preferences 

and the negotiation length. Each system agent has two inherent behaviors of 

cooperativeness: Purposive (normal behavior) and Contingent (behavior driven by 

unforeseen circumstances). The approach models the tradeoff between the two 

behaviors for the systems. A fuzzy weighted average approach is used to arrive at the 

final proposed value.  

  Non-Cooperative System Negotiation Model is illustrated in Volume 6 of SERC 

report. In this model systems behave in their self-interest while negotiating with the SoS 

coordinator. A mathematical model of individual system’s participation capability and 

self-interest negotiation behavior is created. This methodology is an optimization-based 

generator of alternatives for strategically negotiating multiple items with multiple 

criteria. Besides, a conflict evaluation function that estimates prospective outcome for 

identified alternative is proposed. 

The third and last system negotiation model is described in Volume 7, which 

illustrates the Semi-Cooperative System Negotiation Model. It exhibits the capability of 

being flexible or opportunistic: i.e., extremely cooperative or uncooperative based on 

different parameter values settings. A Markov-chain based model designed for handling 

uncertainty in negotiation modeling in an SoS. A model based on Markov chains is used 

for estimating the outputs. The work assigned by the SoS to the system is assumed to be 
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a ``project’’ that takes a random amount of time and a random amount of resources 

(funding) to complete.   

4.4.1. Hierarchical Clustering. The scale function in R was used to both 

compute and standardize the difference between the offer made by the SoS and the 

counteroffers of the systems. This standardized data is then used for unsupervised 

clustering operations. Hierarchical clustering (Langfelder, Zhang, & Horvath, 2008) was 

conducted on the data to clarify the number of clusters that may be present. Algorithms 

for hierarchical clustering are generally either agglomerative, in which one starts at the 

leaves and successively merges clusters together; or divisive, in which one starts at the 

root and recursively splits the clusters. Agglomerative algorithms begin with each 

element as a separate cluster and merge them into successively larger clusters. Divisive 

algorithms begin with the whole set and proceed to divide it into successively smaller 

clusters. It depends on the problem to use either an Agglomerative or Divisive approach.  

In my work since we are trying to model the behavior of the opponent which is 

unknown, we expect to have many behaviors. The numbers of behaviors will increase 

with the number of issues involved in negotiation. It would make more sense to start 

with assuming each data point (or offer) obtained from the systems is a different 

behavior. Therefore we used the Agglomerative approach. Although even if we start 

with the divisive approach I think we should arrive at the same number of optimal 

clusters. 

 The method used here Ward's method began with n clusters of size 1 and iterated 

until all of the observations were incorporated into one of the clusters. Ward’s method 

uses variance as a substitute of distance metrics or measures of association. 

Figures 4.13. list all of the samples in the clustering dataset. It also indicates at 

what level of similarity any two clusters were joined. Horizontal lines indicate the 

distance at which clusters were joined. The first option would be a line just above a 

height of thirty, creating four clusters. Other options include any horizontal line below 

that level will increase the cluster size to more than seven. Seven negotiation behaviors 

are not expected to be present in the data. Therefore, the first option is chosen. 

R command  cutree(fit, k=5) can draw red borders around the k clusters in the 

dendrogram displayed in Figure 4.14. 
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Figure 4.13.  A dendrogram by Ward method showing four major clusters 

 

 

 

Figure 4.14.  Four red boxes over the major clusters in the dendrogram 

 

 

4.4.2. K-means clustering. All K-means clustering (MacQueen, 1967) required 

was the number of clusters (k) to be given as input. The results gathered from the 
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dendrogram indicated to attempt k-means clustering with an input of 4 clusters in R. 

Another confirmation comes from Figure 4.15. which plots the within groups sum of 

squares by number of clusters extracted (Elbow method). It helped determine the 

appropriate number of clusters for k means by looking for a bend in the plot, which in 

this case seems to fall around the mark of 4 clusters (Everrit & Hothorn, 2009). 

The number of points used in k means was 110, the number of dimensions was 3, 

and the number of expected classes is 4. The result had 41 points in class 1, 19 in class 

2, 40 in class 3 and finally 11 in class 4. All of the pairwise dissimilarities (distances) 

between observations in the data set were computed to generate a silhouette plot. A 

silhouette represents each cluster. The entire clustering was displayed by combining the 

silhouettes into a single plot (Figure 4.16.). This technique assisted in selecting the 

number of clusters that maximized the silhouette coefficient. 

 

 

Figure 4.15.  A plot of the within groups sum of squares by number of clusters 
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Figure 4.16.  Silhouette plot based on the dissimilarity matrix of clustered data 

 

 

The silhouette width is measured how close each point was from other points in 

the same cluster as compared to points in other clusters. If one point was closer to points 

in neighboring clusters than it was to points in its own cluster, then the clustering was 

inefficient and the value of the average silhouette width decreases (Kaufman & 

Rousseeuw, 2009). Figure 4.16. illustrates the following characteristics for each cluster: 

 the number of plots per cluster is equal to the number of horizontal lines 

 the number of points in each cluster, and their average silhouette width 

 plots with an average silhouette width (0.6 in this case) value indicate stronger 

clustering 

The average silhouette width value can be interpreted as follows: 

1. 0.71-1.0—Good clustering has been achieved 

2. 0.51-0.70--A reasonable clustering has been achieved 

3. 0.26-0.50—clustering formed is a poor fit to the data 

4. < 0.25--No clustering was identified 

The systems’ behaviors as reflected in the four clusters can be expressed as follows: 

 Class 1-ready for participation in lesser time, asks for less funding and provides a 

stronger performance 
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 Class 2- Request for more time to participate, asks for less funding, provides a 

stronger performance 

 Class 3- ready for participation in lesser time, asks for less funding and provides 

a weaker performance than any of the other clusters 

 Class 4- Request for more time to participate, asks for more funding, provides a 

stronger performance 

Systems in Class 1 can be referred to very cooperative. Class 2 and 3 systems can be 

referred to as are semi-cooperative. Class 4 can be referred to as selfish. 

The coordinates of the four centers are given below as: 

   V1   V2  V3 

      1         0.11403324          -0.3300645        -0.8465794 

      2        -1.39725071          -0.3527665        -1.5071888 

       3         1.32306041           2.7686001         0.4945384 

4        0.03577032          -0.3396422         0.7059110 

 

4.4.3. Network Architecture Based on Clustered Data. The clustered data then 

can be viewed as a mapping of inputs (3 variables) to target (classes) and is used to train 

a supervised learning network for prediction. The networks presented here are radial 

basis function network (RBFN) and linear vector quantization network (LVQN). RBFN 

and LVQN are utilized as a supervised method for prediction the class of the new 

incoming sample in this study. The labelled data is used to determine a set of prototype 

vectors that best represent each class. Further, these prototype vectors can be used to 

predict the class of a new incoming sample data as it is depicted in Figure 4.17. 
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Figure 4.17.  Neural networks architecture for supervised classification 

 

 

4.4.3.1. RBFN architecture for the problem. The major difference between 

RBF networks and multi-layer perceptron is that the hidden units in RBF networks have 

a basis kernel function. Each hidden unit computes a value for the similarity between the 

input vector and its connection weights or centers. Based on these values the weights are 

updated.  

RBFN has three layers: Step 1: Input layer – There is one neuron in the input 

layer for each predictor variable. There are three neurons in this case. The input neurons 

then feed the values to each of the neurons in the hidden layer. Step 2: Hidden layer – 

This layer has a variable number of neurons that starts with four neurons based on four 

centers. Each neuron consists of a radial basis function centered on a point with three 

dimensions. The resultant value from each neuron then is multiplied by the weight 

connection from hidden to the output layer and summed. Step 3: Output layer – The 

output layer has one output. The center and width for each basis function is computed 

using the centers obtained by k-means.  

In performing this experiment, a separate data set for training containing 80 

samples, and another separate data set for testing containing 31 samples was used. The 

samples were in randomly sampled order. The process repeated 20 times from the start 

to end at the best possible network. The network achieved a performance of 0.023 after 

adding neurons on each step to 40 neurons. The performance on prediction was good. 

Figure 4.18. displays the confusion matrix of RBFN. 
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1 
41 0 0 0 100% 

36.9% 0.0% 0.0% 0.0% 0.0% 

2 
0 19 0 0 100% 

0.0% 17.1% 0.0% 0.0% 0.0% 

3 
0 5 35 0 88% 

0.0% 4.5% 31.5% 0.0% 12.5% 

4 
0 1 0 10 91% 

0.0% 0.9% 0.0% 9.0% 9.1% 

 
100% 76% 100% 100% 95% 

 
0.0% 24.0% 0.0% 0.0% 5.4% 

 
1 2 3 4 

 

Figure 4.18. Confusion Matrix for both Training and Testing by RBFN  

 

 

4.4.3.2 LVQN Architecture for the problem. This is a supervised version of 

vector quantization. The labelled data is utilized to determine a set of prototype vectors 

that best represent each class. Further, these prototype vectors can be used of predict the 

class of a new incoming sample data.  Learning Vector Quantization (LVQ) neural 

networks suggests abundant amount of robustness in clustering complex datasets.   

An LVQ consists of two layers, the first is competitive layer and the second is 

linear layer. The competitive layer learns to classify input vectors. The linear layer 

converts the competitive layer's classes into target classifications identified by the user. 

The classes learned by the competitive layer are denoted as subclasses and the classes of 

the linear layer as target classes. Both the competitive and linear layers have one neuron 

per (sub or target) class.  

 In conducting this experiment the same data set which was exploited for RBFN 

is utilized for training and testing. The samples were in randomly sampled order. We use 

the classes obtained by k-means as the primary prototypes to start LVQ. In LVQ, the 

learning rate ε = 0.1is considered. The network is trained to determine the weights given 

to connections between the hidden neurons and the output neuron. This network 

incorporates a random order incremental training algorithm for training the weights. 

 The network achieved a MSE of zero after adding neurons on each step to 110 

neurons. The performance on prediction for classification was very robust. This is a 
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supervised version of vector quantization. The labelled data is utilized to determine a set 

of prototype vectors that best represent each class.  

Further, these prototype vectors can be used of predict the class of a new 

incoming sample data. We use the classes obtained by k-means as the primary 

prototypes to start LVQ. In LVQ, set the learning rate ε = 0.1.   

Figure 4.17 depicts the confusion matrix of LVQN for both training and testing. 

The result shows that the performance of LVQN is way better than RBFN. The number 

of misclassification for RBFN is 6 out of 111 sample inputs; however, the 

misclassification for LVQN is zero which is shown in Figures 4.18. and 4.19. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19. Confusion Matrix for both Training and Testing by LVQN 

 

 

Based on the network the classes (behavior type) of the system selected in the 

meta-architecture were predicted using the values of the respective systems first offers. 

Tables 4.7. and Table 4.8. provide a list of all systems selected in the meta-architecture 

through GA and BPSO and their corresponding behavior types. 
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1 
41 0 0 0 100% 

36.9% 0.0% 0.0% 0.0% 0.0% 

2 
0 19 0 0 100% 

0.0% 17.1% 0.0% 0.0% 0.0% 

3 
0 0 40 0 100% 

0.0% 0.0% 36.0% 0.0% 0.0% 

4 
0 0 0 11 100% 

0.0% 0.0% 0.0% 9.9% 0.0% 

 

100% 100% 100% 100% 100% 

 

0.0% 0.0% 0.0% 0.0% 0.0% 

 
1 2 3 4 
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Table 4.7.  Systems and capabilities selected in best architecture by PSO   

 

 

 

4.5. ESTIMATING UTILITY OF THE CURRENT OFFER 

In a multi-attribute negotiation the solution space is n-dimensional (n>1) rather 

than a single dimensional line as in a single-attribute negotiation. This makes the 

negotiation strategy in multi-attribute negotiations complex: because the space is n-

dimensional, every time an agent plans to concede, she needs to first decide the direction 

of concession.  

 Apparently there are many choices on the concession direction she can take: to 

concede on issue 1, …, n or different combinations of the issues. Specifically, the 

decision on the concession direction may also depend on the opponent’s preference 

because conceding on the issue more important to the opponent can make the offer more 

acceptable. Finally, to decide how much to concede is now more complicated because 

the direction can impact the amount as well. So the burden of computation and 

reasoning for the negotiation strategy is higher in a multi-attribute negotiation than in a 

single-attribute negotiation. The decision about how much concession has to be made in 

a particular issue is based on the negotiation strategy for the next round (Baarslag, 

Systems Selected by BPSO Behavior Predicted Capabilities Provided 

Systems 1, 2-Cutter Class2, Class4 2 

Systems 4-Helicopter Class 1 2 

Systems 5, 6-Aircraft Class 2, Class 1  

Systems 8, 9,12-UAV Class3, Class 1, Class 4 1 

Systems 13,15,16-Fish 

Vessel 
Class 3 , Class 4, Class 2 3 

Systems 17 –Coordination 

Control 
Class 1 4 

Systems 20, 21-

Communication 
Class 3, Class 2 5 
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Hindriks, & Jonker, 2013), willingness to collaborate, and the SoS’s preference for 

acquiring that capability. After identifying the class of behavior the SoS coordinator can 

use a fuzzy inference engine to decide whether he wishes to accept the systems offer, 

reject the offer or further negotiate (Figure 4.20.).  The model used is shown here as 

 

 

 

 

 

 

 

 

 

Figure 4.20.  Fuzzy Network Architecture for decision making 

 

 

This decision making problem is dealt as computing with words (CWW) whose 

linguistic term set is {low, medium, high, very high} as shown in Figure 4.21. If the 

aggregation is a tuple with terms low it is rejected, medium are negotiated further 

whereas, very high and high aggregation values are accepted immediately.The results 

with all systems selected from each class are shown in the Table 4.8.  

 

 

 

Figure 4.21.  A set of four linguistic terms with their semantics 
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These results of meta-architecture generated by the BPSO indicate that the SoS 

manager after making a decision on the offers has been able to acquire capabilities 1, 2, 

3, 4, and 5 (Table 4.8.). The SoS manager now needs to negotiate with systems to 

acquire more systems with the capabilities. The capabilities need to be acquired to 

complete the quorum of full 5 capabilities as shown in Figure 4.22.  

System 17 is the only system selected in the meta-architecture that has capability 

4. Hence although the estimated utility of the offer is low still it would be beneficial for 

the SoS manager to accept the system.  System 5, 8 and 13 were rejected for further 

negotiation due its low aggregated value. The SoS manager has to negotiate with System 

2, 12 and 16 to acquire an extra set of capabilities. The results of further negotiation with 

these systems still led to system 16 being accepted and systems 2 and 12 being rejected. 

The preference to acquire the capability was reduced hence the aggregate values using 

CWW for selection were lower and affected systems 2 and 12 more than system 16.  

 

 

Table 4.8. Decision by SoS manager for each system in meta-architecture  

Sys No 
Cooperativeness Willingness 

Preference 

Capability 
Aggregated Value Selection 

1 
H H VH 2.33 or(H,+0.33) Yes 

2 L H M 1 or (M)  Neg 

4 
VH L VH 2 or (H) Yes 

5 H L L 0.66 or (M,-0.33)  No 

6 VH H VH 2.66 or (VH,-

0.34) 

 Yes 

8 M M M 1 or (M) No 

9 
VH VH M 2.33 or (H, 0.34)  Yes 

12 
L H M 1 or (M)  Neg 

13 
M L L 0.33 or (L,0.34)  No 

15 
L VH VH 2 or (H)  Yes 

16 
H M H 1.66 or (H,-0.33) Neg 

17 
VH L H 1.66 or (H,-0.33) Accepted 

20 
M VH VH 2.33 or (H, 0.34) Yes 

21 
H M VH 2 or (H)  Yes 
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Figure 4.22.  SoS negotiated architecture for wave 1 through BPSO 

 

 

4.6. ILLUSTRATION OF THE SECOND WAVE  

This section presents the second wave in SAR through FILA-SoS. The systems 

highlighted in yellow were selected at the end of negotiation process in the previous 

wave as shown in Table 4.9. Hence, they are preserved or maintained in the next wave 

meta-architecture. New systems replace the other systems with different values for the 

key attributes. To make things simple, we have not changed the order of the systems 

from one wave to the next, although this is possible. 

 Figure 4.23. gives the meta-architecture based on the domain inputs. Table 4.10. 

gives the list of system selected in the second wave. Table 4.11. gives the decision by 

SoS manager for each system in meta-architecture for wave 2. Table 4.12. gives the 

domain inputs for the generation of meta-architecture for the third wave. Table 4.13. 

gives a list of systems selected in wave 3 of the meta-architecture. 

 

 

 

 

Sys1

Sys2

Sys3

Sys4

Sys5
Sys6Sys7

Sys8

Sys9

Sys10

Sys11

Sys12

Sys13

Sys14

Sys15

Sys16
Sys17 Sys18

Sys19

Sys20

Sys21

Sys22
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Table 4.9. Domain specific inputs for the second wave in SAR 

 

 

 

SysNo Type Capability

1 Cutter 2 0.03 0.2 12 1 8.3 6

2 Cutter 2 0.03 0.2 12 1 8.3 6

3 Helicopter 2 0.5 0.6 10 0 10.0 8

4 Helicopter 2 0.1 0.2 20 1 10.0 8

5 Aircraft 2 0.6 1 15 1 10.0 10

6 Aircraft 2 0.1 0.5 10 1 10.0 10

7 UAV 1 0.3 0.3 5 2 1.7 2

8 UAV 1 0.1 0.1 7 1 1.7 2

9 UAV 1 0.1 0.1 7 1 1.7 2

10 UAV 1 0.3 0.3 5 1 1.7 2

11 UAV 1 0.3 0.3 5 1 1.7 2

12 UAV 1 0.3 0.3 5 1 1.7 2

13 Fish Vessel 3 0.02 1.5 20 1 5.0 4

14 Fish Vessel 3 0.02 1.5 20 1 5.0 4

15 Fish Vessel 3 0.03 0.5 10 1 5.0 4

16 Civ Ship 3 0.05 2 8 1 6.7 4

17 Coord Ctr 4 0.05 0.5 5 1 0.5 0

18 Coord Ctr 4 0.04 0.2 7 1 0.5 0

19 Comm 5 0.04 0.02 2 0 0.5 0

20 Comm 5 0.02 0.03 1 0 0.5 0

21 Comm 5 0.02 0.03 1 0 0.5 0

22 Comm 5 0.02 0.03 1 0 0.5 0

𝐼𝐶𝑖 𝑂𝐶𝑖 𝑃𝑖 𝐷𝑖 𝐿𝑉𝑖 𝑆𝑃𝑖
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Figure 4.23.  SoS meta-architecture for wave 2 through BPSO 

 

 

Table 4.10. Systems selected in wave 2 meta-architecture  

 

 

 

Sys1

Sys2

Sys3

Sys4

Sys5
Sys6Sys7

Sys8

Sys9

Sys10

Sys11

Sys12

Sys13

Sys14

Sys15

Sys16
Sys17 Sys18

Sys19

Sys20

Sys21

Sys22

Systems Selected by PSO Behavior Predicted Capabilities Provided 

Systems 1, 2-Cutter Class 2, Class1 2 

Systems 3, 4-Helicopter Class 4, Class 1 2 

Systems  6-Aircraft Class 1  

Systems 7, 8, 9,12-UAV 
Class 2, Class 3, Class 1, 

Class 2 
1 

Systems 14,15,16-Fish 

Vessel 
Class 1 , Class 4, Class 2 3 

Systems 17,18 –

Coordination Control 
Class 1, Class 3 4 

Systems 20, 21,22-

Communication 
Class 3, Class 2, Class 4 5 
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The behavior of new systems may be different or same depending on their 

negotiation tactic. Whereas the older systems have the same behavior since they are 

preserved in the architecture form previous wave. The yellow highlighted classes of 

behavior belong to systems that were not pre-selected for this meta-architecture. 

These results of meta-architecture indicate that the SoS manager after making a 

decision on the offers has been able to select the systems such that all capabilities 

required are bagged. Figure 4.23. shows the systems selected in the meta-architecture 

during wave 2 of SoS evolution and Figure 4.24. shows the negotiated architecture. 

 

 

Table 4.11. Decision by SoS manager for each system in meta-architecture  

Sys No 
Cooperativeness Willingness 

Preference 

Capability 
Aggregated Value Selection 

1 
H H VH 2.33 or(H,+0.33) Yes 

2 VH H M 2 or (H)  Yes 

3 L L M 0.33 or (L,0.33) No 

4 
VH L VH 2 or (H) Yes 

6 VH H VH 2.66 or (VH,-.34)  Yes 

7 H VH H 2.33 or(H,+0.33) Yes 

8 M M M 1 or (M) No 

9 
VH VH M 2.33 or (H, 0.34)  Yes 

12 
H L M 1 or (M)  No 

14 
M L L 0.33 or (L,0.34)  No 

15 
L VH VH 2 or (H)  Yes 

16 
H M H 1.66 or (H,-0.33) Neg 

17 
VH L H 1.66 or (H,-0.33) Neg 

18 
M H VH 2 or (H)  Yes 

20 
M VH VH 2.33 or (H, 0.34) Yes 

21 
H M VH 2 or (H)  Yes 

22 L L VH 1 or (M) No 
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Figure 4.24.  SoS negotiated architecture for wave 2 through BPSO 

 

 

Figure 4.24. shows the final architecture that is agreeable between the SoS 

manager and the systems after negotiation during wave 2. Systems selected after 

negotiation are 1, 2, 4, 6, 7, 9, 15, 18, 20, and 21. System 3, 8, 12, 14 and 22 were 

rejected for further negotiation due its low aggregated value. The SoS manager has to 

negotiate with System 16 and 17 to acquire an extra set of capabilities. The results of 

further negotiation with these systems still led to system 16 and 17 being rejected. The 

preference to acquire the capability was reduced hence the aggregate values using CWW 

for selection were lower. 

 

4.7. ILLUSTRATION OF THE THIRD WAVE 

This section further extends the process of wave model through the third wave 

for SAR scenario. The behavior of new systems may be different or same depending on 

their negotiation tactic. Whereas the older systems have the same behavior since they are 

preserved in the architecture form previous wave. Figure 4.25. and Figure 4.26. show the 

meta-architecture and the negotiated architecture for wave 3 respectively. 
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Sys5
Sys6Sys7
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Sys20

Sys21

Sys22



 

 

114 

Table 4.12. Domain specific inputs for the third wave in SAR. 

 

 

 

Table 4.13. Systems selected in wave 3 meta-architecture 

 

SysNo Type Capability

1 Cutter 2 0.03 0.2 12 1 8.3 6

2 Cutter 2 0.03 0.2 12 1 8.3 6

3 Helicopter 2 0.02 0.9 10 0 10.0 8

4 Helicopter 2 0.1 0.2 20 1 10.0 8

5 Aircraft 2 0.5 1 15 0 10.0 10

6 Aircraft 2 0.1 0.5 10 1 10.0 10

7 UAV 1 0.3 0.3 5 2 1.7 2

8 UAV 1 0.4 0.1 5 1 1.7 2

9 UAV 1 0.1 0.1 7 1 1.7 2

10 UAV 1 0.4 0.1 5 1 1.7 2

11 UAV 1 0.4 0.1 7 1 1.7 2

12 UAV 1 0.3 0.3 7 1 1.7 2

13 Fish Vessel 3 0.02 1.5 20 1 5.0 4

14 Fish Vessel 3 0.02 1.5 20 1 5.0 4

15 Fish Vessel 3 0.03 0.5 10 1 5.0 4

16 Civ Ship 3 0.05 1 12 0 6.7 4

17 Coord Ctr 4 0.03 0.4 5 1 0.5 0

18 Coord Ctr 4 0.04 0.2 7 1 0.5 0

19 Comm 5 0.03 0.05 2 0 0.5 0

20 Comm 5 0.02 0.03 1 0 0.5 0

21 Comm 5 0.02 0.03 1 0 0.5 0

22 Comm 5 0.04 0.05 2 0 0.5 0

𝐼𝐶𝑖 𝑂𝐶𝑖 𝑃𝑖 𝐷𝑖 𝐿𝑉𝑖 𝑆𝑃𝑖

Systems Selected by BPSO Behavior Predicted Capabilities Provided 

Systems 1, 2-Cutter Class 2, Class1 2 

Systems 4-Helicopter Class 1 2 

Systems  5, 6-Aircraft Class 1, Class 1  

Systems 7, 9,11-UAV Class 2, Class 1, Class 3 1 

Systems 13, 14,15-Fish 

Vessel 
Class 3, Class 1 , Class 4,  3 

Systems 17,18 –

Coordination Control 
Class 1, Class 3 4 

Systems 19, 20, 21,22-

Communication 

Class 1, Class 3, Class 2, 

Class 4 
5 
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Figure 4.25.  SoS meta-architecture for wave 3 through BPSO 

 

 

These results of meta-architecture indicate that the SoS manager after making a 

decision on the offers has been able to select the systems such that all capabilities 

required are bagged. Table 4.14. gives the decision by SoS manager on systems. 

 

 

Table 4.14. Decision by SoS for each system in meta-architecture  

Sys No 
Cooperativeness Willingness 

Preference 

Capability 
Aggregated Value Selection 

1 
H H VH 2.33 or(H,+0.33) Yes 

2 VH H M 2 or (H)  Yes 

4 
VH L L 1 or (M) No 

5 VH M VH 2.33 or(H,+0.33) Yes 

6 VH H VH 2.66 or (VH,-.34)  Yes 

7 H VH H 2.33 or(H,+0.33) Yes 

9 
VH VH M 2.33 or (H, 0.34)  Yes 

11 
M L M .66 or (M,-0.33)  No 

Sys1

Sys2

Sys3

Sys4

Sys5
Sys6Sys7

Sys8

Sys9

Sys10

Sys11

Sys12

Sys13

Sys14

Sys15

Sys16
Sys17 Sys18

Sys19

Sys20

Sys21

Sys22
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Table 4.14. Decision by SoS for each system in meta-architecture (cont.) 

13 
M M H 1.33 or (M, 0.33) No 

14 
VH L L 1 or (M)  No 

15 
L VH VH 2 or (H)  Yes 

17 
VH L H 1.66 or (H,-0.33) Neg 

18 
M H VH 2 or (H)  Yes 

19 
VH H VH 2.66 or (VH,-.34)  Yes 

20 
M VH VH 2.33 or (H, 0.34) Yes 

21 
H M VH 2 or (H)  Yes 

22 L VH H 1.66 or (H,-0.33) Neg 

 

 

Systems selected after negotiation are 1, 2, 5, 6, 7, 9, 15, 18, 19, 20, and 21. 

Systems 4, 11, 12, 13, were rejected for further negotiation due its low aggregated value 

as shown in Figure 4.26. The SoS manager has to negotiate with System 22 and 17 to 

acquire an extra set of capabilities. 

 

 

 

Figure 4.26.  SoS negotiated architecture for wave 3 through BPSO 
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4.8. WAVE MODEL RESULTS 

The architecture quality and values of various key performance attributes on 

scale of 1 to 4, of various SoS architectures is listed below in Figure 4.27. The 

discussion of the results obtained by the approach is presented in the forthcoming 

sections. A number of scenarios are developed to illustrate the meta-architecture 

generation and negotiation models.  

 

 

 Meta-Architecture wave 1   Negotiated-Architecture wave 1 

 

 

 

 

 

 

Meta-Architecture wave 2   Negotiated-Architecture wave 2 

 

 

 

 

 

 

Meta-Architecture wave 3    Negotiated-Architecture wave 3 

 

 

 

 

 

 

Figure 4.27.  Architecture assessment results for three waves 

Quality 3.11 

Performance 3.36 

Affordability 3.01 

Net-Centricity 2.55 

Robustness 2.74 

Quality 1.75 

Performance 2.8 

Affordability 3.7 

Net-Centricity 1.55 

Robustness 1.74 

Quality 3.29 

Performance 3.21 

Affordability 2.98 

Net-Centricity 3.64 

Robustness 3.74 

Quality 2.12 

Performance 1.8 

Affordability 2.58 

Net-Centricity 2.07 

Robustness 1.33 

Quality 3.21 

Performance 3.09 

Affordability 3.78 

Net-Centricity 3 

Robustness 2.79 

Quality 1.82 

Performance 2.8 

Affordability 3.7 

Net-Centricity 1.55 

Robustness 1.74 
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5. WHAT-IF ANALYSIS & DISCUSSION OF RESULTS 

The model answers the research question “What is the impact of different 

constituent system perspectives regarding participating in the SoS on the overall mission 

effectiveness of the SoS?”with what-if analysis to assist the decision maker in preparing 

different alternatives and testing various scenarios. In this chapter the alternatives are 

generated from the implementation of the model to the SAR. 

 

5.1. META-ARCHITECTURE GENERATION ANALYSIS 

In this section we have developed what-if analysis based on the fact that different 

algorithms can be used to assess the impact of changes in system parameters, 

constitution, and configuration of the overall functionality and capability of the SoS. 

Each algorithm searches the solution space differently and can help in attaining better 

solutions. 

This analysis will assist the SoS manager in future decision making by providing 

flexibility of technique. The meta-architecture generation technique helps in capturing 

the varied differences in the resources required by systems to prepare for participation. 

An architectural search methodology was applied to a generic SAR problem, and a set of 

architectures each with a high fitness, was obtained. The architectures generated via 

computational intelligence reduced both complexity and time. The architectures 

generated were the best combinations possible for the given domain problem. The 

stochastic heuristic techniques can assist in the systems architecting process by 

providing the systems architects with a set of feasible designs that can be developed into 

a near optimal architecture.  

Although the best architecture obtained by the two techniques is slightly 

different for the same set of constraints, it means much good architecture exist in the 

modeled design space as shown in Table 5.1. Both GA and BPSO try to model the 

fitness function surface to reach the global maxima. The architecture value obtained by 

BPSO is higher than GA as shown in Table 5.2. This signifies the PSO was better able 

to map the surface of the fitness function generated by the fuzzy rules. 
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Each solution is architecture and has a fitness value. The higher the fitness value 

the higher the quality of the architecture. Solutions with higher fitness values are 

preserved over many generations in an evolutionary algorithm and finally the algorithm 

is terminated if the fitness value does not change over many generations. In the last 

generation the solution which has the highest architecture quality or fitness value is the 

best solution. 

 

 

Table 5.1.  Types of systems, capabilities and behaviors present in SoS  

 

 

 

Table 5.2.  Architecture Quality of the SoS for GA 

 

 

 

 

 

 

 

 

Systems Selected by GA Capabilities Provided Behavior Predicted 

Systems 1,2 -Cutter 2 Class 2, Class 4 

Systems 3-Helicopter 2 Class 1 

Systems 5-Aircraft 2 Class 3 

Systems 7,8,9,11,12-UAV 1 Class 3, Class 1,Class 2, 
Class 3,Class 4 

Systems 15-Fish Vessel 4 Class 1 

Systems 17 –Coordination 
Control 4 Class 3 

Systems 22-
Communication 5 Class 4 

Quality 2.98 

Performance 3.16 

Affordability 3.53 

Net-Centricity 2.18 

Robustness 2.39 
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The results of the selected systems in the meta-architected and the architecture 

quality are different from architecture generated by BPSO. Although the initial inputs 

are the same yet we may see different solutions. The quality of this meta-architecture by 

GA is slightly lower than that of BPSO. It is possible that a different algorithm might 

improve the architecture equality or on a different set of inputs the GA performs better 

than the BPSO. 

 

5.2. ARCHITECTURE ASSESSMENT ANALYSIS 

The architecture assessment model can be adjusted for different domains and 

stakeholders, changes in the environment, and relative priorities of the attributes can also 

be accommodated by ordering assessment rules. A what-if analysis based on the above 

criterion is presented to highlight its effects. This analysis displays the non-linearity in 

key performance attribute (KPA) tradeoffs, is able to accommodate any number of 

attributes for a selected SoS capability, and incorporate multiple stakeholder’s 

understanding of KPA’s.  

Architecture assessment is completed through rules based on fuzzy assessor 

(Pape et al., 2013). These rules capture non-linearity in key performance parameters 

tradeoffs. Furthermore, fuzzy rules are able to comprehend multiple stakeholders’ 

understanding of key performance attributes. Comparative significances of the attributes 

can also be accommodated by prioritizing assessment rules. The output is the value of a 

given architecture based on the assessment of the attributes. The architecture quality of 

the negotiated architecture is always less than or equal to the meta-architecture 

(Agarwal, Wang, & Dagli, 2015).  

The solutions are initially represented as a vector of random numbers and using a 

sigmoid function is converted to binary value (Agarwal, Wang, & Dagli, 2015). Each 

solution is assessed by a fuzzy assessor which helps in reducing the complexity and 

computational time. Out of 20, some rules created to define the trade-offs between the 

many objectives are stated: 

 If (Performance is high) and (Affordability is low) and Net-Centricity  is high) 

and (Robustness is low) then (SoS_Arch_Fitness is medium) 

 If (Performance is medium) and (Affordability is high) and Net-Centricity  is 
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high) and (Robustness is high) then (SoS_Arch_Fitness is high) 

 If (Performance is low) and (Affordability is medium) and Net-Centricity  is 

high) and (Robustness is high) then (SoS_Arch_Fitness is high) 

 If (Performance is medium) and (Affordability is medium) and Net-Centricity  is 

low) and (Robustness is low) then (SoS_Arch_Fitness is low) 

 

The rules are created in the fuzzy assessor to evaluate architectures in Section 4 

seem to support affordability and performance as compared to robustness and net-

centricity. Different set of rules for the same assessor may give different values of 

attributes and hence might also result different set of architectures. The rules above 

might represent different stakeholders in the SoS. Changing the rules might give a 

different assessment to the same architecture. This phenomenon is presented below 

where a SoS architecture is chosen in Figure 5.1. and then evaluated by two different 

fuzzy assessors. 

 

 

 

Figure 5.1. Meta-architecture selected for evaluation  
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For the same value of the performance as 3.16, affordability as 2.5, net-centricity as 2.12 

and robustness as 3.27 different architecture qualities are reached. The fuzzy assessor 

with no change in rules gives an architecture quality of 3.24 whereas the new fuzzy 

assessor gives a value of 2.98.    

Since only two systems 19 and 21 were selected provided the inter-

communication capability and net-centricity was more dominant in providing a higher 

architecture quality hence the second quality is a little lower than the first (Hassan et al., 

2005). Besides affordability affects the architecture quality as it is low in this 

architecture. This analysis can enable the decision-maker to choose the architecture that 

suits best based on stakeholder views. 

 

5.3. ADAPTIVE NEGOTIATION ANALYSIS 

  Similarly, the behavioral aspect of systems is tackled through an adaptive SoS 

negotiation strategy. Different behaviors of the systems for the same architecture can 

help us generate possible negotiated architecture qualities. This is a very quick and 

effective approach to adapt communication strategies in SoS environment. This section 

entails what-if analysis based on simulating rules of engagement & behavior settings 

such as: all systems are selfish, all systems are opportunistic, and all systems are 

cooperative or a combination. It provides answers to questions such as whether an 

individual system can be impacted by negotiation strategies of the SoS and how so. 

This includes an examination of architecture quality obtained under different 

behavioral settings including such as when does non-cooperative behavior dominates the 

acquisition environment or when does semi-cooperative behavior dominate or when 

does cooperative behavior dominate. Various incentive mechanisms can be analyzed 

when there is uncertainty in individual system performance outcomes. Table 5.3. gives 

the setting of negotiation decision making in case of random behavior of systems where 

‘VH’ corresponds to extremely coo-operative, ‘H’ and  ‘M’ relate to semi-cooperative, 

and ‘L’ denotes the non-cooperative behavior. 
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Table 5.3. Decision by SoS manager for each system in meta-architecture for BPSO 

Sys No 
Cooperativeness Willingness 

Preference 

Capability 
Aggregated Value Selection 

1 
H H VH 2.33 or(H,+0.33) Yes 

2 L H M 1 or (M)  Neg 

4 
VH L VH 2 or (H) Yes 

5 H L L 0.66 or (M,-0.33)  No 

6 VH H VH 2.66 or (VH,-0.34)  Yes 

8 M M M 1 or (M) No 

9 
VH VH M 2.33 or (H, 0.34)  Yes 

12 
L H M 1 or (M)  Neg 

13 
M L L 0.33 or (L,0.34)  No 

15 
L VH VH 2 or (H)  Yes 

16 
H M H 1.66 or (H,-0.33) Neg 

17 
VH L H 1.66 or (H,-0.33) Accepted 

20 
M VH VH 2.33 or (H, 0.34) Yes 

21 
H M VH 2 or (H)  Yes 

 

 

 

Scenario 1. To visualize a condition if all selected systems in the meta-

architecture at any stage behaved cooperatively, the wave 1 meta-architecture was 

selected. The behavior of systems 1, 2, 5, 8, 12, 13, 15, 16, 20, and 21 were updated to 

‘VH’ as represented in Table 5.4. Rests of the selected systems were already 

cooperative. Table 5.3. can be compared with Table 5.4. for easier understanding. This 

resulted in the following changes: 

1.  Systems 2, 12, 16,  which were earlier in the negotiated category were now 

accepted  

2. Systems 8  which was earlier in rejected category was now being negotiated 

Besides the architecture quality had a small improvement due to more systems with 

capabilities added. This reinforced the robustness and the net-centricity of the 

systems. The attributes of negotiated architecture are given in Table 5.5. 
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Table 5.4. Decision for all cooperative systems in meta-architecture  

Sys No 

Cooperativeness Willingness 
Preference 

Capability 

Aggregated 

Value 
Selection 

1 
VH H VH 

2.66 

or(H,+0.66) 
Yes 

2 
VH H M 2 or (M)  Yes 

4 
VH L VH 2 or (H) Yes 

5 
VH L L 1 or (M)  No 

6 
VH H VH 

2.66 or (VH,-

0.34) 

 Yes 

8 
VH M M 

1.66 or (H,-

0.33) 

Neg 

9 
VH VH M 2.33 or (H, 0.34)  Yes 

12 
VH H M 

2 or (M)  Yes 

13 
VH L L 1 or (M)  No 

15 
VH VH VH 3 or (VH)  Yes 

16 
VH M H 

2 or (M)  Yes 

17 
VH L H 

1.66 or (H,-

0.33) 
Accepted 

20 
VH VH VH 3 or (VH)  Yes 

21 
VH M VH 2.33 or (H, 0.34)  Yes 

 

 

 

Table 5.5. Negotiated-Architecture of wave 1 under cooperative conditions 

Negotiated-

Architecture 

Quality Performance Affordability Net-Centricity Robustness 

Random 

behavior 

1.75 2.8 3.7 1.55 1.74 

All 

Cooperative 

2.83 3 3.25 2.67 2.98 
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Based on the analysis of CWW different set of systems are finally selected for 

implementation of the SoS architecture. The quality and values of attributes of this 

negotiated architecture are given for comparison in Table 5.5. The architecture quality is 

higher than before as more systems are selected. The negotiated architecture can be only 

as good as the meta-architecture itself. 

Scenario 2. In the second scenario all selected systems in the meta-architecture 

are designed with a behavior of non-cooperativeness. This condition will help realize the 

effect of behavior in such a setting. The behavior of systems is represented in Table 5.6.  

 

 

Table 5.6. Decision for all non-cooperative systems in meta-architecture  

Sys No 
Cooperativeness Willingness 

Preference 

Capability 

Aggregated 

Value 
Selection 

1 
L H VH 

1.66 or (H,-

0.33) 
Neg 

2 L H M 2 or (M)  Yes 

4 
L L VH 1 or (M)  No 

5 L L L L  No 

6 L H VH 1.66 or (H,-

0.33) 
Neg 

8 
L M M 

0.6 or (M, 

0.3) 

No 

9 
L VH M 

1.33 or (M, 

0.34) 
 No 

12 L H M 1 or (M)  No 

13 
L L L 0 or (L)  No 

15 L VH VH 2 or (H)  Yes 

16 L M H 1 or (M)  No 

17 L L H 
0.66 or (M,-

0.33) 

No 

20 
L VH VH 2 or (H)  Yes 

21 
L M VH 

1.33 or (M, 

0.34) 
 No 
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This resulted in the following changes: 

1. Systems 8, 4, 9, 12 , 17, and 21 which was earlier in accepted category are now 

as rejected systems 

2.  Systems whose configuration remains the same after the change in behaviours 

are 2,5,8,13,15, and 20 

3. Systems that were accepted earlier were now being negotiated are Systems 1 and 

16 

 

Besides the architecture quality decreased due to less systems selected due to 

non-cooperative behavior, other attributes value remaining the same. The results are 

listed in Table 5.7. 

 

 

Table 5.7. Negotiated-Architecture of wave 1 under non-cooperative conditions 

Negotiated-

Architecture 

Quality Performance Affordability Net-

Centricity 

Robustness 

Random 

behavior 

1.75 2.8 3.7 1.55 1.74 

All Non-

Cooperative 

1.22 1.2 3.89 2 1.34 

 

 

 

Scenario 3. In the final scenario all selected systems in the meta-architecture are 

designated with a behavior of semi-cooperativeness. This condition will help realize the 

effect of behavior in such a setting. The behavior of systems is represented in Table 5.8.  

Negotiated-Architecture of wave 1 under semi-cooperative conditions results are 

listed in Table 5.9. 
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Table 5.8. Decision for all semi-cooperative systems in meta-architecture 

 

 

 

Table 5.9. Negotiated-Architecture of wave 1 under semi-cooperative conditions 

Negotiated-

Architecture 

Quality Performance Affordability Net-Centricity Robustness 

Random 

behavior 

1.75 2.8 3.7 1.55 1.74 

All Non-

Cooperative 

2.01 1.2 3.89 2 1.34 

Sys No 
Cooperativeness Willingness 

Preference 

Capability 

Aggregated 

Value 
Selection 

1 
M H VH 

1.66 or (H,-

0.33) 
Neg 

2 M H M 2 or (M)  Yes 

4 
M L VH 2 or (H) Yes 

5 
M L L 1 or (M)  No 

6 
M H VH 2.66 or (VH,-

0.34) 

 Yes 

8 M M M 1.66 or (H,-

0.33) 

Neg 

9 
M VH M 

2.33 or (H, 

0.34) 
 Yes 

12 
M H M 

2 or (M)  Yes 

13 
M L L 1 or (M)  No 

15 M VH VH 3 or (VH)  Yes 

16 
M M H 

2 or (M)  Yes 

17 
M L H 

1.66 or (H,-

0.33) 
Accepted 

20 
M VH VH 3 or (VH)  Yes 

21 M M VH 
2.33 or (H, 

0.34) 
 Yes 
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This resulted in the following changes: 

1. Systems 8  which was earlier in accepted category was now being rejected 

systems 4, 9, 12 , 17, and 21 

2. Systems whose configuration remains the same after the change in behaviors are 

2,5,8,13,15, and 20 

3. Systems that were accepted earlier were now being negotiated are Systems 1 and 

16 

Besides the architecture quality decreased due to less systems selected due to 

non-cooperative behavior, other attributes value remaining the same. The results are 

listed in Table 5.9. 

These scenarios explain how after arriving at the meta-architecture, SoS manger 

may obtain different architecture qualities based on system behaviors. There could be 

three scenarios each for each wave in the SoS. Each scenario is divided in domination of 

cooperative, semi-cooperative and non-cooperative behaviors. Such scenarios are able to 

answer thw question that in the same wave if all systems were cooperative, all semi-

cooperative how it will affect the architecture quality. The inferences drawn from this 

analysis are as follows: 

1. It is quite predictable to have cooperative and semi-cooperative systems selected 

more often than non-cooperative systems  

2. Final systems behaviour configuration changes in the architecture based on 

number of waves 

3. The negotiated architecture quality is lower than the meta-architecture quality 

4. Simulating rules of engagement & behaviour settings: all systems are selfish, all 

systems are opportunistic, all systems are cooperative or a combination can be 

beneficial for future analysis 

5. The architecture quality improves with increase in cooperativeness of systems 

 

The next section gives some scenarios to further show this approach which 

involves meta-architecture generation and SoS negotiation models to implement our 

ideas. 
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5.4. VARIOUS DIFFERENT SCENARIOS 

This section explains different scenarios to judge how well decision-makers can 

instrument mentioned strategies to manage uncertainty in complex adaptive SoS.  

The first scenario has the settings such that capabilities are given preferences of 

each other as compare to previous waves. Previously the preference of capability could 

be changed during the wave transition by the SoS manager. Here it is demonstrated how 

different inputs and preference produce different architectures. 

The conditions that affect the architecture quality of SoS are also due to changes 

in costs for developing the interfaces are assigned to each system, as well as a cost for 

operating the system. The deadline for development of an interface which may be 

different in each wave of acquisition  assigned out  of three values 0 – ready now, 1 – 

will be ready by the end of this wave, or  2 – won’t be ready this wave can affect the 

value of key performance attributes. Variables such as SoS funding and capability 

priority can be changed as the acquisition progresses though wave cycles causing 

different architectures to be selected. 

The costs for development were rough estimates of official and informal 

budgetary evaluations for interfacing with communications systems and integrating the 

mission systems to be able to interoperate. The costs to operate aircraft or other systems 

were also determined in a similar fashion. The numbers usually kept small to 

accommodate the sensitivity in the analysis. They were within 0.1 to 20.  This scenario 

is about giving a pre-defined preference to each capability by the SoS manager. This 

preference can be continued to subsequent waves or changed in each wave.  

Table 5.10. starts with domain inputs for scenario1, Figure 5.2. shows the meta-

architecture for scenario 1 and  Figure 5.3. shows the negotiated architecture for scenario 

1. Figures 5.4. and 5.5. show the meta-architecture and the negotiated architecture for 

scenario 2 respectively. Similarly for scenario 3 Figures 5.6. and Figure 5.7. show the 

meta-architecture and negotiated architecture whereas scenario 4 is depicted in Figure 

5.8. and Figure 5.9. Table 5.11. and Table 5.12. give the decision matrix and systems 

selected for meta-architecture. Tables 5.13. , 5.16. , 5.19. give the new domain inputs, 

Tables 5.14., 5.18., and 5.21. the decision matrix and Tables 5.15., 5.17., 5.20. the 

systems selected for scenario 2, 3 and 4 respectively. 
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Table 5.10. Domain Inputs for Scenario 1 

 

 

 

 

Figure 5.2. Meta-Architecture for scenario 1 

SysNo Type Capability I/FDevCostOpsCost/hrPerf DevTime

1 Cutter 2 0.03 0.2 12 1

2 Cutter 2 0.03 0.2 12 1

3 Helicopter 2 0.1 0.2 20 1

4 Helicopter 2 0.1 0.2 20 1

5 Aircraft 2 0.1 0.5 10 1

6 Aircraft 2 0.1 0.5 10 1

7 UAV 1 0.2 0.2 5 1

8 UAV 1 0.2 0.2 5 1

9 UAV 1 0.2 0.2 5 1

10 UAV 1 0.1 0.1 7 1

11 UAV 1 0.1 0.1 7 1

12 UAV 1 0.1 0.1 7 1

13 Fish Vessel 3 0.03 0.5 10 1

14 Fish Vessel 3 0.03 0.5 10 1

15 Fish Vessel 3 0.03 0.5 10 1

16 Civ Ship 3 0.05 2 8 1

17 Coord Ctr 4 0.05 0.5 5 1

18 Coord Ctr 4 0.05 0.5 5 1

19 Comm 5 0.07 0.01 1 0

20 Comm 5 0.07 0.01 1 0

21 Comm 5 0.07 0.01 1 0

22 Comm 5 0.02 0.03 1 0
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Table 5.11. Decision by SoS manager for each system in meta-architecture  

Sys No 
Cooperativeness 

Willingness of 

Collaboration 

Preference 

Capability 
Aggregated Value Selection 

1 H H L 1.33 or(M,+0.33) Neg 

2 L H L 0.66 or (M,-0.33)  No 

3 L L H 0.66 or (M,-0.33)  No 

4 VH M H 2 or (H)  Yes 

5 H M VH 2 or (H)  Yes 

6 VH H VH 2.66 or (VH,-0.34)  Yes 

7 M M M 1 or (M) No 

9 VH VH M 2.33 or (H, 0.34)  Yes 

10 VH M M 1.66 or (H,-0.33) Neg 

11 VH H M 2 or (H)  Yes 

12 L H M 1 or (M)  Neg 

14 M L H 1 or (M)  Neg 

15 H VH H 2.33 or (H, 0.34)  Yes 

17 H M VH 2 or (H)  Yes 

18 VH L VH 2 or (H)  Yes 

19 M VH VH 2.33 or (H, 0.34) Yes 

22 H M VH 2 or (H)  Yes 

 

 

 

Table 5.12. Systems and capabilities in Scenario 1 

Systems Selected in 
Meta-Architecture 

Capabilities 
Provided 

Systems Selected 
in Negotiated 
Architecture 

Capabilities 
Provided 

Systems 1,2-Cutter 2 None 2 

3,4-Helicopter 2 4-Helicopter 2 

5,6-Aircraft 2 5,6-Aircraft 2 

Systems 7, 9,10, 11, 12-
UAV 

1 Systems 9, 11 UAV 1 

Systems 14,15-Fish 
Vessel 3 Systems 15-Fish 

Vessel 3 

Systems 17, 18 –
Coordination Control 4 Systems 17, 18 –

Coordination Control 4 

Systems 19, 22-
Communication 

5 Systems 19, 22-
Communication 

5 
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Figure 5.3. SoS negotiated architecture for scenario 1 

 

 

Table 5.13. Domain Inputs for Scenario 2  

 

 

Sys1

Sys2

Sys3

Sys4

Sys5
Sys6Sys7
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Sys11

Sys12

Sys13

Sys14

Sys15

Sys16
Sys17 Sys18

Sys19

Sys20

Sys21

Sys22

SysNo Type Capability I/FDevCostOpsCost/hrPerf DevTime

1 Cutter 2 0.04 0.5 10 1

2 Cutter 2 0.04 0.5 10 1

3 Helicopter 2 0.2 0.4 15 1

4 Helicopter 2 0.1 0.2 20 1

5 Aircraft 2 0.1 0.5 10 1

6 Aircraft 2 0.1 0.5 10 1

7 UAV 1 0.1 0.1 8 1

8 UAV 1 0.1 0.1 8 1

9 UAV 1 0.2 0.2 5 1

10 UAV 1 0.1 0.1 7 1

11 UAV 1 0.1 0.1 7 1

12 UAV 1 0.1 0.1 7 1

13 Fish Vessel 3 0.03 0.5 12 1

14 Fish Vessel 3 0.03 0.5 12 1

15 Fish Vessel 3 0.03 0.5 10 1

16 Civ Ship 3 0.05 2.5 8 1

17 Coord Ctr 4 0.05 0.5 5 1

18 Coord Ctr 4 0.05 0.5 5 1

19 Comm 5 0.07 0.01 1 0

20 Comm 5 0.09 0.1 1 0

21 Comm 5 0.09 0.1 1 0

22 Comm 5 0.02 0.03 1 0
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Table 5.14. Decision by SoS manager for each system in meta-architecture  

Sys No 
Cooperativeness 

Willingness of 

Collaboration 

Preference 

Capability 
Aggregated Value Selection 

1 VH VH L 2 or (H)  Yes 

3 L L H 0.66 or (M,-0.33)  No 

4 VH M H 2 or (H)  Yes 

5 H M VH 2 or (H)  Yes 

6 VH H VH 2.66 or (VH,-0.34)  Yes 

9 VH VH M 2.33 or (H, 0.34)  Yes 

11 VH H M 2 or (H)  Yes 

12 L H M 1 or (M)  Neg 

13 M L H 1 or (M)  Neg 

15 H VH H 2.33 or (H, 0.34)  Yes 

17 H M VH 2 or (H)  Yes 

18 VH L VH 2 or (H)  Yes 

19 M VH VH 2.33 or (H, 0.34) Yes 

21 VH M VH 2.33 or (H, 0.34) Yes 

22 H M VH 2 or (H)  Yes 

 

 

 

Table 5.15. Systems and capabilities in Scenario 2 

 

 

Systems Selected in 
Meta-Architecture 

Capabilities 
Provided 

Systems Selected 
in Negotiated 
Architecture 

Capabilities 
Provided 

Systems 1-Cutter 2 Systems 1-Cutter 2 

3,4-Helicopter 2 4-Helicopter 2 

5,6-Aircraft 2 5,6-Aircraft 2 

Systems 9,11, 12-UAV 1 Systems 9, 11 UAV 1 

Systems 13,15-Fish 
Vessel 

3 Systems 15-Fish 
Vessel 

3 

Systems 17, 18 –
Coordination Control 4 Systems 17, 18 –

Coordination Control 4 

Systems 19, 21, 22-
Communication 5 Systems 19, 21, 22-

Communication 5 
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Figure 5.4. Meta-Architecture for scenario 2 

 

 

 

Figure 5.5. SoS negotiated architecture for scenario 2 
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Table 5.16. Domain Inputs for Scenario 3  

 

 

 

Table 5.17. Systems and capabilities in Scenario 3 

 

SysNo Type Capability I/FDevCostOpsCost/hrPerf DevTime

1 Cutter 2 0.04 0.5 10 1

2 Cutter 2 0.04 0.5 10 1

3 Helicopter 2 0.2 0.4 15 1

4 Helicopter 2 0.2 0.4 20 1

5 Aircraft 2 0.1 0.5 10 1

6 Aircraft 2 0.1 0.5 10 1

7 UAV 1 0.4 0.1 8 1

8 UAV 1 0.4 0.1 8 1

9 UAV 1 0.4 0.1 5 1

10 UAV 1 0.4 0.1 7 1

11 UAV 1 0.4 0.1 7 1

12 UAV 1 0.4 0.1 7 1

13 Fish Vessel 3 0.03 0.5 12 1

14 Fish Vessel 3 0.03 0.5 12 1

15 Fish Vessel 3 0.03 0.5 10 1

16 Civ Ship 3 0.05 2.5 8 1

17 Coord Ctr 4 0.05 0.5 5 1

18 Coord Ctr 4 0.05 0.5 5 1

19 Comm 5 0.09 0.1 1 0

20 Comm 5 0.09 0.1 1 0

21 Comm 5 0.09 0.1 1 0

22 Comm 5 0.09 0.1 1 0

Systems Selected in 
Meta-Architecture 

Capabilities 
Provided 

Systems Selected 
in Negotiated 
Architecture 

Capabilities 
Provided 

Systems 2-Cutter 2 Systems 2-Cutter 2 

3,4-Helicopter 2 4-Helicopter 2 

5,6-Aircraft 2 None 2 

Systems 8, 9,11, 12-UAV 1 Systems 9 UAV 1 

Systems 13,14, 16-Fish 
Vessel 

3 Systems 14-Fish 
Vessel 

3 

Systems 18 –Coordination 
Control 

4 Systems 18 –
Coordination Control 

4 

Systems 19, 20, 21, 22-
Communication 

5 Systems 19, 20-
Communication 

5 
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Table 5.18. Decision by SoS manager for each system in meta-architecture  

Sys No 
Cooperativeness 

Willingness of 

Collaboration 

Preference 

Capability 
Aggregated Value Selection 

2 
VH VH L 2 or (H)  Yes 

3 L VH H 1.66 or (H,-0.33)  Neg 

4 
M VH H 2 or (H)  Yes 

5 M L VH 1.33 or (M,0.33)  Neg 

6 H L VH 1.66 or (H,-0.33)  Neg 

8 H H M 1.66 or (H,-0.33)  Neg 

9 
VH H M 2 or (H)  Yes 

11 
H H M 1.66 or (H,-0.33)  Neg 

12 
H H M 1.66 or (H,-0.33)  Neg 

13 
L M H 1 or (M)  No 

14 
VH M H 2 or (H)  Yes 

16 
M M VH 1.66 or (H,-0.33)  Neg 

18 
L VH VH 2 or (H)  Yes 

19 
VH L VH 2 or (H)  Yes 

20 
VH L VH 2 or (H)  Yes 

21 M L VH 1.66 or (H,-0.33)  Neg 

22 
M L VH 1.66 or (H,-0.33)  Neg 

 

 

 

 

Figure 5.6. SoS Meta-Architecture for scenario 3 
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Figure 5.7. Negotiated-Architecture for scenario 3 

 

 

Table 5.19. Domain Inputs for Scenario 4 

 

 

Sys1

Sys2

Sys3

Sys4

Sys5
Sys6Sys7

Sys8

Sys9

Sys10

Sys11

Sys12

Sys13

Sys14

Sys15

Sys16
Sys17 Sys18

Sys19

Sys20

Sys21

Sys22

SysNo Type Capability I/FDevCostOpsCost/hrPerf DevTime

1 Cutter 2 0.1 0.05 12 1

2 Cutter 2 0.04 0.5 10 1

3 Helicopter 2 0.3 0.5 10 1

4 Helicopter 2 0.2 0.4 20 1

5 Aircraft 2 0.3 0.6 15 1

6 Aircraft 2 0.3 0.6 15 1

7 UAV 1 0.7 0.1 8 1

8 UAV 1 0.7 0.1 8 1

9 UAV 1 0.4 0.1 5 1

10 UAV 1 0.7 0.1 7 1

11 UAV 1 0.7 0.1 7 1

12 UAV 1 0.7 0.1 7 1

13 Fish Vessel 3 0.03 0.4 10 1

14 Fish Vessel 3 0.03 0.5 12 1

15 Fish Vessel 3 0.03 0.4 12 0

16 Civ Ship 3 0.05 2.5 8 0

17 Coord Ctr 4 0.05 0.2 7 0

18 Coord Ctr 4 0.05 0.5 5 1

19 Comm 5 0.09 0.1 1 0

20 Comm 5 0.09 0.1 1 0

21 Comm 5 0.09 0.1 2 1

22 Comm 5 0.09 0.1 2 1
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Figure 5.8. SoS Meta-Architecture for scenario 4 

 

 

Table 5.20. Systems and capabilities in Scenario 4 

 

 

 

 

 

 

Sys1

Sys2

Sys3

Sys4

Sys5
Sys6Sys7

Sys8

Sys9

Sys10

Sys11

Sys12

Sys13

Sys14

Sys15

Sys16
Sys17 Sys18

Sys19

Sys20

Sys21

Sys22

Systems Selected in 
Meta-Architecture 

Capabilities 
Provided 

Systems Selected 
in Negotiated 
Architecture 

Capabilities 
Provided 

Systems 1, 2-Cutter 2 None 2 

3,4-Helicopter 2 4-Helicopter 2 

5,6-Aircraft 2 None 2 

Systems 7, 9,10,12-UAV 1 Systems 7,9,12 UAV 1 

Systems 13,14,15,16-Fish 
Vessel 

3 Systems 14,15-Fish 
Vessel 

3 

Systems 18 –Coordination 
Control 

4 Systems 18 –
Coordination Control 

4 

Systems 19, 20-
Communication 5 Systems 19, 20-

Communication 5 
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Table 5.21. Decision by SoS manager for each system in meta-architecture  

Sys No 
Cooperativeness 

Willingness of 

Collaboration 

Preference 

Capability 
Aggregated Value Selection 

1 M L L 0.33 or (L,0.33)  No 

2 VH L L 1 or (M)  No 

3 L VH H 1.66 or (H,-0.33)  Neg 

4 M VH H 2 or (H)  Yes 

7 H H VH 2.33 or (H,0.33)  Yes 

8 H H M 1.66 or (H,-0.33)  Neg 

9 VH H M 2 or (H)  Yes 

10 H H M 1.66 or (H,-0.33)  Neg 

12 VH H M 2 or (H)  Yes 

13 L M H 1 or (M)  No 

14 VH M H 2 or (H)  Yes 

15 VH M H 2 or (H)  Yes 

16 M M VH 1.66 or (H,-0.33)  Neg 

18 L VH VH 2 or (H)  Yes 

19 VH L VH 2 or (H)  Yes 

20 VH L VH 2 or (H)  Yes 

 

 

 

 

Figure 5.9. Negotiated-Architecture for scenario 4 
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The distribution of monetary benefits was changed at the start of a new wave 

when new systems were incorporated for selection in the domain specific inputs. This is 

because a system may spend funds on an interface that will not be ready until the next 

epoch, but they will get no performance increment from that interface until it is 

complete. Similarly a different overall ‘relative’ performance value was assigned to each 

system based on its key capability at the start of new wave.  

In Scenario 5 some rules were created to define the trade-offs between the many 

objectives as stated to result in Figures 5.10. and Figures 5.11. The rules are: 

 If (Performance is medium) and (Affordability is medium) and Net-Centricity  is 

high) and (Robustness is low) then (SoS_Arch_Fitness is low) 

 If (Performance is high) and (Affordability is medium) and Net-Centricity  is 

medium) and (Robustness is medium) then (SoS_Arch_Fitness is medium) 

 If (Performance is high) and (Affordability is medium) and Net-Centricity  is 

high) and (Robustness is high) then (SoS_Arch_Fitness is high) 

 If (Performance is medium) and (Affordability is medium) and Net-Centricity  is 

medium) and (Robustness is medium) then (SoS_Arch_Fitness is medium) 

 

 

 

Figure 5.10. SoS Meta-Architecture for scenario 5 
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Figure 5.11. SoS architecture quality for 50 generations 

 

 

Table 5.22. lists the systems and capabilities selected in scenario 5. 

 

 

Table 5.22. Systems and capabilities in Scenario 5 

 

 

0 5 10 15 20 25 30 35 40 45 50
2

3

4

5

6

7

8

9

generation

c
o
s
t

best

population average

Systems Selected in 
Meta-Architecture 

Capabilities 
Provided 

Systems Selected 
in Negotiated 
Architecture 

Capabilities 
Provided 

Systems 1, 2-Cutter 2 None 2 

3,4-Helicopter 2 4-Helicopter 2 

5,6-Aircraft 2 None 2 

Systems 7, 11,12-UAV 1 Systems 7,9,12 UAV 1 

Systems 13,14,16-Fish 
Vessel 3 Systems 14,15-Fish 

Vessel 3 

Systems 17, 18 –
Coordination Control 4 Systems 18 –

Coordination Control 4 

Systems 19, 20, 22-
Communication 

5 Systems 19, 20-
Communication 

5 
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The architecture quality and values of various key performance attributes on 

scale of 1 to 4, of various scenarios is listed below in Figures 5.12. and 5.13.  

 

 

Meta-Architecture Scenario 1   Negotiated-Architecture Scenario 1 

 

 

 

 

 

 

Meta-Architecture Scenario 2   Negotiated-Architecture Scenario 2 

 

 

 

 

 

 

Meta-Architecture Scenario 3   Negotiated-Architecture Scenario 3 

 

 

 

 

 

 

 

Figure 5.12.  Architecture assessment results for Scenarios 1-3 

 

 

 

 

Quality 3.67 

Performance 3.66 

Affordability 2.43 

Net-Centricity 3 

Robustness 3.74 

Quality 1.45 

Performance 2.8 

Affordability 3.76 

Net-Centricity 2.55 

Robustness 1.74 

Quality 3.49 

Performance 3.21 

Affordability 2.68 

Net-Centricity 3.84 

Robustness 3.24 

Quality 2.38 

Performance 2.8 

Affordability 2.58 

Net-Centricity 2.87 

Robustness 2.33 

Quality 1.37 

Performance 1.81 

Affordability 3.82 

Net-Centricity 2.95 

Robustness 1.74 

Quality 3.72 

Performance 3.59 

Affordability 2.41 

Net-Centricity 3.55 

Robustness 3.36 
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Meta-Architecture Scenario 4   Negotiated-Architecture Scenario 4 

 

 

 

 

 

 

Meta-Architecture Scenario 5    

 

 

 

 

 

 

 

Figure 5.13. Architecture assessment results for Scenarios 4-5 

 

 

Scenario 2 highlights preference of capability analysis such as the conditions 

when an individual system is more/less capable than the SoS expects. Scenario 3 

highlights changes in willingness to collaborate and new set of domain inputs. This 

research proposes a different look at generating numerous underlying structures and 

dynamics of SoS. The inputs and rules in Scenario 5 are easily changed based on 

domain. 

Incorporating these analyses helps the SoS decision maker to get an higher level 

overview of the situation. For further in-depth analysis in future, other techniques can be 

used to solve such problems. The next section highlights some methods that can enhance 

the existing model in future.  

The model is a decision making aid for the SoS manager. It does not so much 

find the best solution to designing a SoS, as help the manager explore the influence of 

the various constraints on the shape of a reasonable solution. The models described can 

Quality 3.19 

Performance 3.01 

Affordability 2.49 

Net-Centricity 3.64 

Robustness 3.24 

Quality 1.12 

Performance 1.18 

Affordability 3.5 

Net-Centricity 1.1 

Robustness 1.13 

Quality 3.21 

Performance 3.09 

Affordability 3.08 

Net-Centricity 3.8 

Robustness 2.79 
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be used in conjunction with others to explore the SoS context and goals. This will help 

in developing SoS architectures including the full range of candidate systems and their 

interfaces. Our attempt has been to produce a holistic architecting methodology that is 

reconfigurable and has models that are adaptive to the environment. 

FILA-SoS provides a capability to Acknowledged SoS manager to evaluate the 

impact of his sequence architecture selection and implementation decisions throughout 

the waves. It has been suggested by Maier (2005) to use Dynamic programming for 

formulating the SoS management problem. Neuro-Dynamic Programming (NDP) uses 

the concepts of neural networks for approximation of value functions, which are hard to 

calculate (Bertsekas & Tsitsiklis, 1995). Another approach for future work is to use 

approximate dynamic programming (Powell, 2207)
 
which is based on post-decision state 

variables that avoid computing the expectation of uncertainties. 

Sequential decision making by dynamic programming has been previously 

implemented (Dai Pra, Runggaldier, & Rudari, 1997). This structure wishes to provide 

SoS manager a sequence of architecture alternatives at different stages given the 

individual system capabilities and resource constraints.  

 Dynamic programming algorithms can be used to generate optimal sequence of 

decisions in enhancing this capability of FILA-SoS.  A mathematical model formulation 

is provided to illustrate the concept. 

Classical dynamic programming recursively computes the Bellman equation 

which is the essence of dynamic programming as following: 

𝑉𝑡(𝑆𝑡) = max𝑥𝑡∈𝑋𝑡
(𝐶𝑡(𝑆𝑡, 𝑥𝑡) + 𝛾𝐸{𝑉𝑡+1(𝑆𝑡+1)|𝑆𝑡})    

    where 
tS  represents state variables, 

tx  represents decision variables, 
tC  means 

current contribution,   is discount factor and 
1 1( )t tV S 

 means expected value of being in 

state 
1tS 
. 

Bitran (1970) developed theory and algorithms for multiple-criteria linear 

programs with binary variables. The algorithms were based on enumerative schemes and 

solving some auxiliary multiple objective programs. Multiple criteria integer linear 

programs were studied by several authors. Klein and Hannan (1982) developed an 

algorithm for generating the complete efficient set of such problems. This is a sequential 

procedure in which one of the criterion functions is optimized subject to progressively 
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more constrained feasible sets determined by the other criteria and previously found 

efficient solutions.   

The problem can be defined in simpler terms as: 

1. States are equal to number of waves 𝑊 where 𝑗, 𝑘 ∈ {1,2, … ,𝑊]   

2. Actions ∈ {𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑, 𝑛𝑜𝑡 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑]   

3. Transitioning to a state  𝑺𝒋 = [𝑠𝟏
𝒋
, … , 𝑠𝒊

𝒋
, … , 𝑠𝑵

𝒋
] with an action 𝑎 ∈ 𝐴 and receive 

a discounted award 𝒓𝒋 

4. Probability of transitioning of system 𝑠𝑖
𝑗
 (system i in state j) to 𝑠𝑖

𝑘 (system i in 

state k) is 𝑷𝒋𝒌
𝒊  

 

The idea is depicted in the Figure 5.14. The cost function ca be thought of as 

architecture quality that can be expressed as linear combination of key performance 

parameters or can be solved as a multi-objective optimization problem.  The quality can 

also be assessed through a fuzzy assessor. 

 

 

 

 

 

 

Figure 5.14. Transitioning in Dynamic Programming 

 

 

First the SoS managers needs to start with a feasible solution state. Constraints 

are incorporated within actions taken to reach the new state. The expected discounted 

sum of future rewards when a system is starting in state j is given by 𝐽∗(𝑺𝒋) = 𝒓𝒋 +

𝜸{[∏ 𝑷𝒋𝟏
𝒊𝑵

𝒊=𝟏 ]. 𝐽∗(𝑺𝟏) + [∏ 𝑷𝒋𝟐
𝒊𝑵

𝒊=𝟏 ]. 𝐽∗(𝑺𝟐)+. . . +[∏ 𝑷𝒋𝑾
𝒊𝑵

𝒊=𝟏 ]. 𝐽∗(𝑺𝑾)}. 

Similarly, expected discounted sum of future rewards for a system in each possible 

staring state can be given as the matrix J, reward as R and probability as P. 

𝑺𝒋, 𝒓𝒋, 𝒋 𝑺𝒌, 𝒓𝒌, 𝒌 

𝑎 ∈ 𝐴 
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𝐽 = (

𝐽∗(𝑺𝟏)

𝐽∗(𝑺𝟐)
.

𝐽∗(𝑺𝑾)

) 

 

𝑅 = (

𝒓𝟏

𝒓𝟐

.
𝒓𝑾

) 

 

𝑃 =

[
 
 
 
 
 
∏𝑷𝟏𝟏

𝒊

𝑵

𝒊=𝟏

. .

. . .

∏𝑷𝑾𝟏
𝒊

𝑵

𝒊=𝟏

. ∏𝑷𝑾𝑾
𝒊

𝑵

𝒊=𝟏 ]
 
 
 
 
 

 

 

 

If you have a lot of states let’s say a 100, then a 100X100 system of equations 

needs to be solved. This is computationally expensive hence neuro-dynamic 

programming can be used to solve such problems. This approach can further help the 

SoS manager in solving the problems at a lower level. 
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6. CONCLUSIONS AND FUTURE WORK 

The goal of this research is to model the evolution of the architecture of an 

acknowledged Systems of Systems (SoS) that accounts for the ability and willingness of 

constituent systems to support the SoS capability development.  The Wave Process 

Model provides a framework for modeling methodology, and this research provides 

different sets of modules to be integrated with the rest of them. The research is 

successfully able to achiev the objectives that are to develop a simulation for 

acknowledged SoS architecture selection and evolution, have a structured, repeatable 

approach for planning and modeling and study and evaluate the impact of individual 

system behavior on SoS capability and architecture evolution process. Results have been 

satisfactory and proved the model as a prototype. 

In this dissertation research question “What is the impact of different constituent 

system perspectives regarding participating in the SoS on the overall mission 

effectiveness of the SoS?”is answered through the integrated model. This work helps in 

examining the impact of development approaches of different participating systems in a 

SoS to achieve the overarching capability. This approach involves meta-architecture 

generation and SoS negotiation models to implement our ideas. The meta-architecture 

generation technique helps in capturing the varied differences in the resources required 

by systems to prepare for participation. Similarly, the behavioral aspect of systems is 

tackled through an adaptive SoS negotiation strategy. The overall mission effectiveness 

is measured by effectively meeting the overarching objective 

This thesis represents a first step towards addressing the tenacious problems in 

Acknowledged SoS such as cost estimates and cost overruns (Schwartz,  2010), which 

have overwhelmed the DoD. Future research on the ideas presented in this thesis could 

benefit the systems engineering community as demonstrated in this thesis. 

This research has some limitation such as it has the data used for clustering has 

needs to be updated as time goes along. Besides the multiple waves depend on scenario 

for simulation and hence different domains may lead to different results. Other 

limitations include a more detailed way of defining the membership functions. This may 
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affect the architecture quality results. Better ways to visualize this information may be 

helpful in the future. 

When making decision on offers made by SoS stakeholders the goals of the 

individual decision-makers may differ on the alternatives based on attributes. This is due 

to the fact each individual processes the information differently to base their decision. 

Therefore, we need a group decision-making ability. The theory of intuitionistic fuzzy 

(Rodríguez, Martínez, Torra, Xu, & Herrera, 2014) sets further extend both concepts by 

allowing the assessment of the elements by two functions: 𝜇 for membership and 𝜐 for 

non-membership, which belong to the real unit interval [0, 1] and whose sum belongs to 

the same interval, as well.  

Other metrics such as entropy can be added to evaluate the architectures quality 

(Cloutier, Verma, Bone & Sommer, 2009). The work done so far tries to investigate the 

impact of entropy on other attributes of systems architectures, the effect of low or high 

entropy on systems physical architecture and finally what steps can be adopted to 

improve the architecture quality through its entropy value (Bone et al., 2010). 

Novel approaches also propose to assess the approach of joint programs that 

appear to cost more than disjoint programs (Dwyer & Szajnfarber, 2014). A Framework 

is proposed by the authors that can help the stakeholders reconfigure their policy and 

identify risks to develop approaches. These strategies will help maintain the cost-

effectiveness (Dwyer et al., 2014).  

Numerous systems have dissimilar goals, therefore integration and assimilation 

of information is needed to guide them to larger missions in the face of uncertainty and 

attacks. This research takes a step towards achieving that capability by introducing a 

new analysis framework that uses modeling tools to expose foreseeable SoS level 

impacts for decision makers early in the lifecycle, when such impacts can be managed 

less expensively and more solutions to possible problems can be put on the table.  
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