
Scholars' Mine Scholars' Mine

Doctoral Dissertations Student Theses and Dissertations

Summer 2015

Computational intelligence based complex adaptive system-of-Computational intelligence based complex adaptive system-of-

systems architecture evolution strategy systems architecture evolution strategy

Siddharth Agarwal

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

 Part of the Computer Sciences Commons, Statistics and Probability Commons, and the Systems

Engineering Commons

Department: Engineering Management and Systems Engineering Department: Engineering Management and Systems Engineering

Recommended Citation Recommended Citation
Agarwal, Siddharth, "Computational intelligence based complex adaptive system-of-systems architecture
evolution strategy" (2015). Doctoral Dissertations. 2401.
https://scholarsmine.mst.edu/doctoral_dissertations/2401

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2401&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2401&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/208?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2401&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/309?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2401&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/309?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2401&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/2401?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2401&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

COMPUTATIONAL INTELLIGENCE BASED COMPLEX ADAPTIVE SYSTEM-OF-

SYSTEMS ARCHITECTURE EVOLUTION STRATEGY

by

SIDDHARTH AGARWAL

A DISSERTATION

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

SYSTEMS ENGINEERING

2015

Approved

Cihan H. Dagli, Advisor

David Enke

Abhjit Gosavi

Ruwen Qin

Robert Paige

 2015

Siddhartha Agarwal

All Rights Reserved

iii

ABSTRACT

The dynamic planning for a system-of-systems (SoS) is a challenging endeavor.

Large scale organizations and operations constantly face challenges to incorporate new

systems and upgrade existing systems over a period of time under threats, constrained

budget and uncertainty. It is therefore necessary for the program managers to be able to

look at the future scenarios and critically assess the impact of technology and stakeholder

changes. Managers and engineers are always looking for options that signify affordable

acquisition selections and lessen the cycle time for early acquisition and new technology

addition. This research helps in analyzing sequential decisions in an evolving SoS

architecture based on the wave model through three key features namely; meta-

architecture generation, architecture assessment and architecture implementation. Meta-

architectures are generated using evolutionary algorithms and assessed using type II

fuzzy nets. The approach can accommodate diverse stakeholder views and convert them

to key performance parameters (KPP) and use them for architecture assessment. On the

other hand, it is not possible to implement such architecture without persuading the

systems to participate into the meta-architecture. To address this issue a negotiation

model is proposed which helps the SoS manger to adapt his strategy based on system

owners behavior. This work helps in capturing the varied differences in the resources

required by systems to prepare for participation. The viewpoints of multiple stakeholders

are aggregated to assess the overall mission effectiveness of the overarching objective. A

search and rescue mission (SAR) SoS example problem illustrates application of the

method. Also a dynamic programing approach can be used for generating meta-

architectures based on the wave model.

iv

ACKNOWLEDGMENTS

Foremost, I would like to express my gratitude to my advisor Dr. Cihan H. Dagli

for the continuous support of my Ph.D. study and research, for his patience and immense

knowledge. Besides my advisor, I would like to thank the rest of my thesis committee:

Dr. David Enke, Dr. Abhijit Gosavi, Dr. Ruwen Qin, and Dr. Robert Paige and Louie E.

Pape for their encouragement, insightful comments, and hard questions.

Most importantly, I would like to thank my wife Neha. Her friendship, care,

support, encouragement, patience and unwavering love were undeniably the bedrock

upon which the past four years of my life stand. Her immense devotion and love needs no

testimony. She has been my motivation and strength since I met her.

I am and will forever remain deeply indebted to my parents Mr. Niraj Agarwal

and Mrs. Annu Agarwal, for giving birth to me at the first place, for their immeasurable

sacrifices, supporting me spiritually and financially throughout my life. They have

inculcated in me the right set of values and helped me become a better human being in all

walks of life. No achievement for me whether big or small can ever be measured without

their greater share of contribution. I wish to thank, my brother-in-law Manjit and his wife

Priyanka, my in-laws Shri. Sunil Koolwal and Smt. Kalpana Koolwal, who have brought

great joy and satisfaction to my life.

Finally I would like to thank my maternal grandmother late Mrs. Usha Mittal for

always encouraging and believing in me against all odds. I believe my paternal

grandparents late Shri. Prem Chand Agarwal and Smt. Shanta Agarwal have always

loved me more than anyone else. Thanks and good wishes to all my SMART lab mates

for the stimulating discussions, sleepless nights, and the fun we had. At the same time I

would like to thank everyone who has touched me in some way, knowingly or

unknowingly, and assisted me reach this mark and I wish them all the best in their future

endeavors.

This material is based upon work supported, in whole or in part, by the U.S.

Department of Defense through the Systems Engineering Research Center (SERC) under

Contract H98230-08-D-0171. SERC is a federally funded University Affiliated Research

Center managed by Stevens Institute of Technology.

v

TABLE OF CONTENTS

Page

ABSTRACT ... iii

ACKNOWLEDGMENTS ... iv

LIST OF ILLUSTRATIONS ... viii

LIST OF TABLES ... xi

SECTION

1. INTRODUCTION .. 1

1.1 BACKGROUND & MOTIVATION ... 1

1.2. IMPACT OF THE RESEARCH ... 5

1.2.1. Contribution to the State of Systems Engineering Knowledge. 6

1.3. DISSERTATION ORGANIZATION .. 6

2. LITERATURE REVIEW ON SOS & AUTOMATED NEGOTIATION 8

2.1. SYSTEM-OF-SYSTEMS ... 8

2.1.1. Types of System-of-Systems. ... 10

2.2. LITERATURE REVIEW OF SOS PROJECTS ... 12

2.3. SOS ACQUISITION PROCESS .. 15

2.4. ASSESSING SYSTEMS ARCHITECTURE ... 16

2.5. HANDLING MANY OBJECTIVES .. 17

2.6. AUTOMATED NEGOTIATIONS ... 19

2.7. IDENTIFYING GAPS IN LITERATURE ... 22

3. THE INTEGRATED MODEL ... 27

3.1. DEFINING THE SOS PROBLEM ... 27

3.2. INTEGRATED MODEL VARIABLES AND PARAMETERS 30

3.2.1. Wave Model Processes ... 31

3.2.2. Flexible Intelligent & Learning Architectures. 32

3.3. META-ARCHITECTURE FORMULATION AND GENERATION 37

3.3.1. The Pareto-Box Problem. ... 37

3.4. META-ARCHITECTURE ASSESSMENT AND SELECTION 43

3.4.1. Introduction – Fuzzy Logic. 45

vi

3.4.1.1 Type-I fuzzy logic system. ..46

3.4.1.2 Type-2 fuzzy sets. ...51

3.5. SOS NEGOTIATION APPROACH... 55

3.5.1. General Negotiation Protocol ... 57

3.5.2. Modeling the Opponent .. 58

3.5.2.1 Hierarchical clustering. ...60

3.5.2.2 K-means clustering algorithm. ..62

3.5.2.3 Elbow method. ..63

3.5.2.4 Training a LVQ network. ..64

3.5.2.5 Radial basis function network. ..66

3.5.3. Making a Decision Based on Current Round of Negotiation 67

3.5.3.1 Ordered weighted averaging operator. ..69

3.5.4. Proposing an Offer. .. 71

3.5.4.1 Resource dependent tactics ...71

3.5.4.2 Behavior dependent tactics ...72

3.5.4.3 Time dependent tactics. ..72

3.6. OVERALL NEGOTIATION PROTOCOL ... 75

4. COMPUTATIONAL INTELLIGENCE MODEL IMPLEMENTATION 77

4.1. PROBLEM STATEMENT ... 78

4.2. META-ARCHITECTURE GENERATION .. 79

4.2.1. Genetic Algorithm. ... 80

4.2.2. Binary Particle Swarm Optimization ... 82

4.2.3. Fuzzy Evaluator .. 84

4.2.4. Fitness Evaluation of the Population .. 85

 4.2.4.1 Performance. .. 86

4.2.4.2 Net-centricity.. ..88

4.2.4.3 Affordability. ..90

4.2.4.4 Robustness. ...90

4.2.4.5 Modularity...91

4.3. META-ARCHITECTURE RESULTS .. 91

4.3.1. Genetic Algorithm Application .. 91

vii

4.3.2. BPSO Application .. 94

4.4. NEGOTIATION APPLICATION ... 97

4.4.1. Hierarchical Clustering ... 98

4.4.2. K-means Clustering .. 99

4.4.3. Network Architecture Based on Clustered Data 102

4.4.3.1 RBFN architecture for the problem ..103

4.4.3.2 LVQN architecture for the problem ..104

4.5. ESTIMATING UTILITY OF THE CURRENT OFFER. 106

4.6. ILLUSTRATION OF THE SECOND WAVE ... 109

4.7. ILLUSTRATION OF THE THIRD WAVE ... 113

4.8. WAVE MODEL RESULTS. .. 117

5. WHAT-IF ANALYSIS & DISCUSSION OF RESULTS 118

5.1. META-ARCHITECTURE GENERATION ANALYSIS 118

5.2. ARCHITECTURE ASSESSMENT ANALYSIS ... 120

5.3. ADAPTIVE NEGOTIATION ANALYSIS ... 122

5.4. VARIOUS DIFFERENT SCENARIOS ... 129

6. CONCLUSIONS AND FUTURE WORK... 147

BIBLIOGRAPHY ... 149

VITA ... 172

viii

LIST OF ILLUSTRATIONS

 Page

Figure 1.1. Relative location of periodic, chaotic, and “complex” transitions. 2

Figure 1.2. Types of SoS based on Degree of Control and Degree of Complexity 3

Figure 2.1. An Acknowledged Systems-of-Systems ... 8

Figure 2.2. Systems engineering architecture design... 9

Figure 2.3. Systems engineering logical architecture design ... 10

Figure 2.4. Properties of Acknowledged SoS .. 11

Figure 2.5. Different methods to handle multiple objectives in optimization 18

Figure 2.6. Automated negotiations protocol categories ... 19

Figure 2.7. Categories of attributes in automated negotiations 21

Figure 3.1. SoS wave model adapted from a figure ... 29

Figure 3.2. SoS transition into the next wave .. 29

Figure 3.3. Overview of Integrated Model FILA-SoS Version 1.0 34

Figure 3.4. Independent models used in FILA-SoS ... 35

Figure 3.5. A solution in the form of a string containing systems 41

Figure 3.6. A solution in the form of a string containing interfaces 41

Figure 3.7. A solution containing both systems and interfaces 41

Figure 3.8. SoS meta-architecture as an undirected graph... 43

Figure 3.9. Membership functions for reliability .. 46

Figure 3.10. Overview of type-1 FLS .. 47

Figure 3.11. The membership functions for reliability .. 48

Figure 3.12. The membership functions for cost ... 48

Figure 3.13. The membership function for architecture quality 48

Figure 3.14. Overview of type-2 FLS .. 52

Figure 3.15. Membership function for a type-2 FLS ... 52

Figure 3.16. General structure of architecture assessment function 55

Figure 3.17. Bilateral negotiation mechanism ... 56

Figure 3.18. Three Salient Features of Automated Negotiation 58

Figure 3.19. Three Salient Features of Automated Negotiation 61

ix

Figure 3.20. Structure of learning vector quantization network 65

Figure 3.21. A set of four linguistic terms with their semantics 70

Figure 3.22. Concession Curves for the Polynomial Time-dependent Family 74

Figure 3.23. Four styles of negotiation coordination .. 75

Figure 4.1. Operational View 1 for Search and Rescue scenario 77

Figure 4.2. The fuzzy nets to evaluate architecture’s quality .. 85

Figure 4.3. A Kiviat chart of Architecture Attributes for SoS Assessment 85

Figure 4.4. Fuzzy membership functions for Performance Attribute Assessment 87

Figure 4.5. Non-linear surface of tradeoffs between rescue time and lives saved. 87

Figure 4.6. Fuzzy membership functions for net-centricity Attribute Assessment 89

Figure 4.7. Non-linear tradeoffs surface between interoperability & communication 89

Figure 4.8. Fuzzy membership functions for Affordability Attribute Assessment 90

Figure 4.9. Systems selected in the SAR-22 SoS architecture through GA 93

Figure 4.10. SoS architectural quality over generations through GA 94

Figure 4.11. Systems selected in the SAR-22 SoS architecture through BPSO 95

Figure 4.12. SoS architectural quality over generations through PSO 96

Figure 4.13. A dendrogram by Ward method showing four major clusters 99

Figure 4.14. Four red boxes over the major clusters in the dendrogram 99

Figure 4.15. A plot of the within groups sum of squares by number of clusters 100

Figure 4.16. Silhouette plot based on the dissimilarity matrix of clustered data 101

Figure 4.17. Neural networks architecture for supervised classification 103

Figure 4.18. Confusion Matrix for both Training and Testing by RBFN 104

Figure 4.19. Confusion Matrix for both Training and Testing by LVQN 105

Figure 4.20. Fuzzy Network Architecture for decision making 107

Figure 4.21. A set of four linguistic terms with their semantics 107

Figure 4.22. SoS negotiated architecture for wave 1 through BPSO............................. 109

Figure 4.23. SoS meta-architecture for wave 2 through BPSO 111

Figure 4.24. SoS negotiated architecture for wave 2 through BPSO............................. 113

Figure 4.25. SoS meta-architecture for wave 3 through BPSO 115

Figure 4.26. SoS negotiated architecture for wave 3 through BPSO............................. 116

Figure 4.27. Architecture assessment results for three waves 117

x

Figure 5.1. Meta-architecture selected for evaluation .. 121

Figure 5.2. Meta-Architecture for scenario 1.. 130

Figure 5.3. SoS negotiated architecture for scenario 1 ... 132

Figure 5.4. Meta-Architecture for scenario 2.. 134

Figure 5.5. SoS negotiated architecture for scenario 2 ... 134

Figure 5.6. SoS Meta-Architecture for scenario 3 .. 136

Figure 5.7. Negotiated-Architecture for scenario 3 .. 137

Figure 5.8. SoS Meta-Architecture for scenario 4 .. 138

Figure 5.9. Negotiated-Architecture for scenario 4 .. 139

Figure 5.10. SoS Meta-Architecture for scenario 4 .. 140

Figure 5.11. SoS Architecture Quality for 50 generations .. 141

Figure 5.12. Architecture assessment results for Scenarios 1-3 142

Figure 5.13. Architecture assessment results for Scenarios 4-5 143

Figure 5.14. Transitioning in Dynamic Programming .. 145

xi

LIST OF TABLES

 Page

Table 3.1. Concession calculated by SoS manager for each system 60

Table 3.2. General 2-tuple Linguistic Problem ... 70

Table 4.1. Types of the systems and capabilities present in the SoS 79

Table 4.2. Input variables required for SAR meta-architecture generation 80

Table 4.3. The parameters used in GA .. 92

Table 4.4. Systems and capabilities selected in best architecture by GA 93

Table 4.5. The parameters used in BPSO .. 95

Table 4.6. Systems and the capabilities in the best architecture by the PSO 96

Table 4.7. Systems and capabilities selected in best architecture by PSO 106

Table 4.8. Decision by SoS manager for each system in meta-architecture 108

Table 4.9. Domain specific inputs for the second wave in SAR. 110

Table 4.10. Systems selected in wave 2 meta-architecture ... 111

Table 4.11. Decision by SoS manager for each system in meta-architecture 112

Table 4.12. Domain specific inputs for the third wave in SAR. 114

Table 4.13. Decision by SoS manager for wave 2 meta-architecture 114

Table 4.14. Decision by SoS for each system in meta-architecture 115

Table 5.1. Types of systems, capabilities and behaviors present in SoS 119

Table 5.2. Architecture quality of the SoS for GA .. 119

Table 5.3. Decision by SoS manager for each system in meta-architecture for BPSO .. 123

Table 5.4. Decision for all cooperative systems in meta-architecture 124

Table 5.5. Negotiated-Architecture of wave 1 under cooperative conditions 124

Table 5.6. Decision for all non-cooperative systems in meta-architecture 125

Table 5.7. Negotiated-Architecture of wave 1 under non-cooperative conditions 126

Table 5.8. Decision for all semi-cooperative systems in meta-architecture 127

Table 5.9. Negotiated-Architecture of wave 1 under semi-cooperative conditions 127

Table 5.10. Domain inputs for Scenario 1 .. 130

Table 5.11. Decision by SoS manager for each system in meta-architecture 131

Table 5.12. Systems and capabilities in Scenario 1 .. 131

xii

Table 5.13. Domain Inputs for Scenario 2 .. 132

Table 5.14. Decision by SoS manager for each system in meta-architecture 133

Table 5.15. Systems and capabilities in Scenario 2 .. 133

Table 5.16. Domain Inputs for Scenario 3 .. 135

Table 5.17. Systems and capabilities in Scenario 3 .. 135

Table 5.18. Decision by SoS manager for each system in meta-architecture 136

Table 5.19. Domain Inputs for Scenario 4 .. 137

Table 5.20. Systems and capabilities in Scenario 4 .. 138

Table 5.21. Decision by SoS manager for each system in meta-architecture 139

Table 5.22. Systems and capabilities in Scenario 5 .. 141

1. INTRODUCTION

In the real world, systems are complex, non-deterministic, evolving, and have

human centric behaviors. The connections of all complex systems are non-linear,

globally distributed, and evolve both in space and in time. Because of non-linear

properties, system connections create an emergent behavior. It is imperative to develop

an approach to deal with such complex large-scale systems. The approach and goal is

not to try and control the system, but design the system such that it controls and adapts

itself to the environment quickly, robustly, and dynamically. These complex entities

include both socioeconomic and physical systems, which undergo dynamic and rapid

changes. Some of the examples of complex systems include transportation systems

(Trentesaux, Knothe, Branger, & Fischer, 2015), health systems (Obal, & Lin, 2015),

internet of things (Maia, et al., 2014), smart cities development (Wang, 2015), energy

security systems (Hadian & Madani, 2015), defense frameworks (Marti et al., 2015), and

manufacturing infrastructures (Nahavandi, et al., 2015).

1.1 BACKGROUND AND MOTIVATION

A complex system is a system featuring a large number of interacting

components, whose capability is not a linear sum of its components. Besides this system

exhibits self-organization and emergent properties. Complex Adaptive Systems (CAS)

can be referred to as special cases of complex systems. CAS can adapt (through

learning) and evolve within a dynamic environment.

Langton's egg diagram (Langton, 1990) depicts three primary classes fixed

(Class I), periodic (Class II) and chaotic (Class III) as shown in Figure 1.1. Complexity

(Class IV) lies at the edge of periodicity and chaos. This figure can help us understand

that all these classes are continuous and have a thin margin of separation.

A number of definitions exist that define a system-of-systems (SoS). A

definition that relates SoS to complex systems is that “systems of systems are

large scale concurrent and distributed systems that are comprised of complex

systems” (Kotov, 1997).

2

Figure 1.1. Relative location of periodic, chaotic, and “complex” transitions

SoS can be designated as complex systems due to features such as:

• Emergent behavior that provides the creativity, diversity, and complexity

• Organized complexity allows system to achieve its goals

• Dynamic stability is maintained through constant self-adjustment

Another concept that has emerged recently has been the class of Cyber Physical

Systems (CPS) (Zhang, 2015). CPS is a SoS which integrates physical system with

cyber capability in order to improve the performance (Dong, P., Han, Y., Guo, X., &

Xie, F. (2015). Cyber capability includes a model of the process that can be utilized to

make decisions over the system.

Although classically Maier (1998) suggests categories of SoS development but

infinitely many SoS exist on the edges of the categories thus making it a continuum.

These SoS may vary based on their degree of managerial control over the participating

systems and their structural complexity. Figure 1.2. is an attempt to show the above

argument. The author claims many SoS with different configurations can fill this gap.

SoS achieves the required goal by introducing collaboration between existing

system capabilities that are required in creating a larger capability based on the meta-

architecture selected for SoS. The level of the degree of influence on individual systems

architecture through the guidance of SoS manager in implementing SoS meta-

architecture can be classified as directed, acknowledged, collaborative and virtual.

Acknowledged SoS have documented objectives, an elected manager and defined

resources for the SoS. Nonetheless, the constituent systems retain their independent

3

ownership, objectives, capital, development, and sustainment approaches.

Acknowledged SoS shares some similarities with directed SoS and collaborative SoS.

Figure 1.2. Types of SoS based on Degree of Control and Degree of Complexity

To model any system an approach is needed that specifies the underlying

properties and is able to successfully recreate the dynamics in the system. Systems

architecting can be defined as specifying the structure and behavior of an envisioned

system. Classical system architecting deals with static systems whereas the processes of

System of Systems (SoS) architecting has to be first done at a meta-level. The

architecture achieved at a meta-level is known as the meta-architecture. The meta-

architecture sets the tone of the architectural focus (Malan & Bredemeyer, 2001) and it

drives the process of architecting further. It narrows the scope of the fairly large domain

space and boundary. Meta-architecture helps in communicating the information to the

stakeholders at a very high level. Although the architecture is still not fixed but meta-

architecture provides multiple alternatives for the final architecture. Thus architecting

can be referred to as filtering the meta-architectures to finally arrive at the architecture.

The SoS architecting involves multiple systems architectures to be integrated to produce

Full Control Decreasing Degree of Control No Control

Complete Order Moving from Order to Complexity Disorder

Directed Collaborative Acknowledged Virtual

Moving from Complicated Systems to Chaotic Systems

4

an overall large scale system meta-architecture for a specifically designated mission

(Jamishidi, 2008).

Architecture simulation and modeling techniques for Acknowledged SoS are still

in their initial stages. The process includes producing a meta-architecture using multi-

objective evolutionary algorithms. Multiple objective decisions making (MODM)

increases in difficulty with growing number of objectives (Key performance

parameters). The probability of finding dominated solutions based on three or more

objectives is very low. To solve this problem the architectures assessment technique

uses a fuzzy type II modular rule base approach (fuzzy networks) that allows multiple

key performance parameters to be evaluated at the same time. The fuzzy rule base

defines the preference of the decision maker in our case the Acknowledged SoS

manager.

Furthermore, meta-architectures are often not fully realizable in real conditions.

It is often difficult to secure implementation of the generated meta-architectures for

System of Systems (SoS) in actual situations given the negotiation complexity and

individual systems behavior. In SoS where individual systems have their own self-

interests, negotiation becomes an important aspect of SoS acquisition. During a

negotiation, each party communicates its own desires and hence the problem of interest

is to find that point of mutually beneficial agreement. This major issue is resolved by

introducing negotiation modules between individual systems and SoS manager based on

domain specific information. The domain is defined by the set of issues being negotiated

over which include price (value for capability being acquired), performance (task

execution capacity) and deadline (delivery date). The meta-architecture generated is

negotiated for possible implementation by the acknowledged SoS manager through

machine learning based negotiation model. The negotiation is modeled as a bilateral

counteroffer, resembling one SoS manager and an individual system. The agreements

after each negotiation round are not an obligation on either party.

Additional motivation for pursuing this research is from an engineering research

viewpoint since no single method of automated negotiation that is applicable to all

situations. This research also aims to fill a gap by utilizing machine learning fuzzy logic

techniques to design a protocol applicable in large scale systems settings. Automated

5

tools can be used in conjunction with the human negotiator to aid in a negotiation task.

The negotiation strategies are needed to enhance the efforts of people during

negotiations. Furthermore, large-scale projects that involve different departments

(systems) are developed to bring sustainability and prosperity. The program managers

need to have a strategy for negotiating and implementing such projects in an ecological

and equally beneficial way. Additionally, negotiations involve conflicts over the

consumption of joint resources or task assignments and conflicts between a buyer and a

seller.

This research contributes to the state of the art in Acknowledged SoS-based

negotiations in two key areas. It presents the first attempt to combine multiple behaviors

of systems participating in a complex adaptive SoS operational scenario. Secondly,

research proposes the use of neural network (Agarwal & Ganguli, 2011) architectures as

techniques for SoS manager to adapt his negotiation strategy while dealing with multiple

constituent systems on multiple issues such as deadline, funding and performance This

is a very quick and effective approach to adapt communication strategies in SoS

environment. Our attempt is to present an integrated acknowledged SoS architecting

model whose capabilities include extensive SoS meta-architecture generation covering

the entire design space, flexible and robust architecture assessment, and final

architecture securement through simulated negotiations.

The major objectives of this reasearch are:

– To develop a simulation for acknowledged SoS architecture

selection and evolution.

– To have a structured, repeatable approach for planning and

modeling.

– To study and evaluate the impact of individual system behavior

on SoS capability and architecture evolution process.

1.2. IMPACT OF THE RESEARCH

This research has impacts on expanding the application of systems engineering

across a wide section of academic and industry domains.

6

1.2.1. Contribution to the State of Systems Engineering Knowledge. In the

subject of dynamical systems-of-systems (SoS), there has been a great deal of growth

developing theories that describe the behavior of individual systems. However,

comparatively less research establishes how various systems form coalitions and

negotiate with the SoS manager to establish an architecture over time. A stochastic

architecting technique using computational intelligence (particle swarm & fuzzy logic)

in an integrated environment is implemented. This allows the SoS managers to be able

to look at the future scenarios and critically assess the impact of technology and

stakeholder changes. This aids the manager in looking for options that signify affordable

acquisition selections and lessen the cycle time for early acquisition and new technology

addition. Furthermore, to include and discard system capabilities, a negotiation strategy

is required. A negotiation strategy usually consists of three main modules: modeling the

opponent behavior (clustering), decision-making criteria (fuzzy logic) and finally

generating a counter-offer (time based equations). This overall structure provides a

useful basis for developing SoS architecting technique that can evolve and adapt to

changes in its environment. For an SoS manager the challenging problem is to capture

the hidden objective function of the opponent or autonomous systems. This research

proposes a novel strategy based on hybrid clustering and neural networks that can be

used in a multi-issue negotiation setting. The experimental results show that the

proposed method is effective in a variety of application domains against the state-of-the-

art negotiating agents. The research focusses and improves some key areas in systems

engineering such as:

1) Systems Architecting,

2) Optimization,

3) Decision-making under ambiguity

4) Incorporating machine learning tools and;

5) Domain-specific modeling and simulation

1.3. DISSERTATION ORGANIZATION

This dissertation is organized as follows:

7

Section 1, introduction, briefly introduces the motivation of this research.

Section 2, literature review, discusses the application of evolutionary algorithms in

solving many objective problems. This section also gives a background on automated

negotiation. This section provides search-based architecture development framework,

presents the proposed architecture development framework along with the discussions of

some enabling technologies for each of its components.

Section 3, overview of integrated model developed to address the problem. It

provides review of some background knowledge needed to develop the approaches

proposed in this research such as evolutionary algorithms, fuzzy logic, and machine

learning algorithms.

Section 4 presents how the proposed approaches are implemented to design

search and rescue system-of-systems.

Section 5 encompasses discusses of results and what-if analysis. It also provides

some insights into possible future expansions of the current work. Section 6, conclusion

and future work, discusses strengths and limitations of the proposed approach. The next

chapter provides a review on SoS and its types, current and past SoS projects, SoS

acquisition, a review of techniques to handle many objective optimization problems, and

finally a background on automated negotiation concepts and importance.

8

2. LITERATURE REVIEW ON SOS & AUTOMATED NEGOTIATION

2.1. SYSTEM-OF-SYSTEMS

System-of- Systems (SoS) consists of multiple complex adaptive systems that

behave autonomously but cooperatively (Dahman, Lane, Rebovich, & Baldwin, 2008).

The continuous interaction between them and the interdependencies produces emergent

properties that cannot be fully accounted for by the “normal” systems engineering

practices and tools. System of Systems Engineering (SoSE), an emerging discipline in

systems engineering is attempting to form an original methodology for SoS problems

(Luzeaux, 2013). The first task that must be completed in a large scale problem is

identifying it as a SoS problem. A recent book highlights the case studies in the area of

SoS (Gorod, White, Ireland, Gandhi, & Sauser, 2014). Figure 2.1. (Agarwal et al.,

2015), describes the basic framework of system-of-systems (SoS).

Figure 2.1. An Acknowledged Systems-of-Systems

9

Three major elements include an SoS coordinator, environment variables and

individual systems. Each system carries a specific capability and many systems can have

the same capability. Together all systems participate to achieve a larger purpose under

the supervision of SoS coordinator.

Figure 2.2. illustrates the logical system architecture design process. This figure

is adapted from Kaplan (2006). The figure describes the relationships between

individual systems and overall SoS effectiveness. The figure also describes how

scenarios, operations, capabilities functions and systems are related to each other.

Figure 2.2. Systems engineering architecture design

Capabilities are decomposed into functions, which are further broken down into

requirements for individual systems. This figure synthesizes an architectural framework

for operational scenarios. This design allows for incremental flexibility in capabilities

10

and functions. It is appropriate to be executing only the functions that are necessary and

making additions as needs evolve. Figure 2.3. defines various concepts utilized in Figure

2.2.

Figure 2.3. Systems engineering logical architecture design

2.1.1. Types of System-of-Systems. Maier (1998) discussed both the applicable

conditions required to ascertain that a problem is indeed SoS. One of the SoS types of

immediate importance is the Acknowledged SoS, which has recognized objectives, a

designated manager with limited authority, and resources for the SoS (Ncube, Lim, &

Dogan, 2013). Acknowledged SoS shares several attributes with both Collaborative SoS

and Directed SoS (Bergey et al., 2009). Figure 2.4. illustrates this concept (Dahmann,

Baldwin & Rebovich, 2009). The other broad type of SoS, Virtual lacks a central

management and a centrally approved purpose for SoS, and has independent

Scenarios define operational location, enemy order of battle, and the
corresponding enemy startegy and tactics (Analysis of Alternatives,
2008).

 Operation: It is a military action or the carrying out of a strategic
operational, tactical, service, training, or administrative military mission
(Flynn & Richardson, 2013).

Capability is the ability to achieve a desired effect under specified
standards and conditions through combinations of ways and means to
perform a set of tasks (Bodner et al. ,2011).

Function is an intermediate concept between a capability and a
requirement. There may be many levels of functions as capabilities are
decomposed into functions, and then further into requirements (Bodner
et al., 2011).

System requirements delineate the functions which should fulfill to
satisfy the stakeholder needs, and are conveyed in a fitting combination
of textual statements and over views (OV1) (Bodner et al., 2011).

11

development processes (Dahman & Baldwin, 2008). Acknowledged system of systems

(SoS) accomplishes best when the contributing systems have no direct control over them

yet they deliver capabilities required to meet the purpose of the SoS operating in an

interdependent environment. Acknowledged SoS have political and economic

interdependence, the need to share resources and interconnect systems for global

partnerships.

Figure 2.4. Properties of Acknowledged SoS

The System of Systems (SoS) have been found to exhibit properties similar to

complex adaptive systems (Sage & Cuppan, 2001). Russell Ackoff (1971) offered a

systematic view on the concepts and terms related to the science of complex systems. He

recommended that a systems approach be used to analyze the system as a whole rather

than analyzing its parts individually. Ackoff classified systems into four major types

according to not only their behavior but also the outcome of the behavior itself: state

maintaining, goal seeking, multiple-goal-seeking and purposeful.

Whereas, four major types of SoS are usually defined as the following (Dahman

et al., 2011):

• Directed: Have SoS objectives, management, funding and authority; systems are

subordinated to SoS

12

• Acknowledged: Have SoS objectives, management, funding and authority;

however systems retain their own management, funding and authority in parallel

with the SoS

• Collaborative: No objectives, management, authority, responsibility, or funding

at the SoS level; Systems voluntarily work together to address shared or common

interest

• Virtual: Like collaborative, but systems don’t know about each other

2.2. LITERATURE REVIEW OF SOS PROJECTS

In this section a brief description of major SoS projects currently being pursued

in a variety of domains are discussed. This section will help the reader get an overview

of the scope of research being conducted. The descriptions do not necessarily follow any

order in which the projects came into inception. DANSE SoS stands for Designing for

Adaptation and Evolution in System of Systems (Arnold et al., 2013). DANSE project

addresses the challenging technical, management, and political problems within

organizations. The main features include combining the strengths of several

infrastructures and objects present because of advances in communications, sensors and

actuating competencies. DANSE is among several projects in SoS funded by the

European Commission as part of the Seventh Framework Program. The purpose of the

DYMASOS (Dynamic Management of Physically Coupled Systems of Systems) project

is to explore methods for the distributed management of large physically connected

systems along with distributed autonomous management and global coordination

(Paulen, & Engell, 2014). COMPASS stands for Comprehensive Modelling for

Advanced Systems of Systems and aims to develop collaborative research on model-

based techniques for developing and maintaining SoS (Coleman et al., 2012). For

example, a flexible and responsive SoS can be developed for emergency management,

given the fact that individual systems were not intended for collaboration. T-AREA-SoS

(Trans-Atlantic Research and Education Agenda on Systems of Systems) was developed

through cooperation between EU-US Systems of Systems (SoS) research (Siemieniuch

et al., 2013) T-AREA-SoS aims to achieve European competitiveness and improve the

societal impact through development and management of large complex systems.

13

The CYPHERS project aims at developing an integrated cyber-physical roadmap

and strategy for Europe (CPS20, 2014). Its ultimate goal is to combine and expand

Europe’s capability in embedded and mobile computing as well as in control of

networked embedded systems. Some projects that are closely related to CYPHERS are

Hycon2: highly-complex and networked control systems; EMSIG: embedded systems

special interest group; artist design: European network of excellence on embedded

systems design; and CPSoS: cyber-physical systems of systems. AMADEOS aims

critical systems certification for SoS (Montecchi, Lollini, & Bondavalli, 2014). Its

abbreviation stands for Architecture for Multi-criticality Agile Dependable Evolutionary

Open System of Systems. The AMADEOS project emphasizes on evolution, emergence,

dependability and security, taking into consideration-embedded devices and the cloud as

the projects execution platform. It has three significant objectives namely: to introduce a

concept of global time that can be accessed and recognized by all elements of the SoS,

ability to explain and formalize SoS evolvability and dynamicity, and handling emerging

properties in SoS. The CPSOS is a support action, to be completed in 30 months, that

aims at developing a roadmap on research and innovation in engineering and

management of cyber-physical systems of systems (Reniers & Engell, 2014). CPSOS

are cyber‐physical systems which exhibit the features of systems of systems. The aim of

CPSOS is to study and analyze computing and communication systems that interact with

large complex physical systems. Local4Global- project stands for Systems of Systems

that act locally for optimizing globally (Local4Global, 2013). One of its desired goal is

to develop, comprehensively test and evaluate in real-life Traffic Systems of Systems

(TSoS). In addition, the project needs to generate a generic, integrated and fully

functional methodology for TSoS. The optimization method developed so far is

demonstrated in two real scenarios: the climate control of a building and optimizing the

traffic on a test site in the North of Munich. A traffic prediction project involving SoS

techniques for smarter traffic predictions in collaboration with IBM for the city of

Cologne, Germany (IBM Smart Traffic, 2010) was able to predict traffic volume and

flow with over 90 percent accuracy up to 30 minutes in advance.

COBWEB - Citizens OBservatory WEB – is another project that is funded under

the European Union’s Seventh Framework Programme (FP 7) for developing

14

community-based environmental systems using innovative and novel earth observations

applications (Hodges, 2014). The projects major aim is to create a platform

environment enabling citizens living under the biosphere reserves designated by

UNESCO (United Nations Educational, Scientific and Cultural Organization) to collect

environmental data using their mobile devices. FP7 is a large collaboration of experts

from 13 partners and 5 countries. EU FP7 project, Road2SoS, has developed a roadmap

of multi-site manufacturing SoS in order to explore the potential pathways to a future

vision of a globally reconfigurable manufacturing SoS (Rauschecker, Ford, &

Athanssopoulou, 2014). The aim is to have a global network of interoperable factories,

permitting the dynamic allocation of manufacturing. GEOSS stands for global earth

observation system of systems, aims to provide solutions for a number of problems

around the world (Uhlir, Chen, Gabrynowicz, & Janssen, 2009). So far, it has been used

in forecasting meningitis outbreaks, guarding biodiversity, and helping in improving

climate observations in Africa and Central and South America. The environmental

protection agency (EPA) in USA along with Group on Earth Observations (GEO) helps

in advancement of GEOSS. GEOSS provides decision makers with correct and prompt

scientific information for advancement of social benefits. Integrated Mobile Security Kit

(IMSK) is used for assessing critical situations (Laudy, Petersson, & Sandkuhl, 2010). It

helps to provide quickly an effective deployment of information fused with intelligence

on mobile platforms for enhanced security. Some examples of its application are mass

events such as football games and terrorism attacks. Lastly, the ministry of economics

and technology in Germany sponsors Shared e-Fleet project (2013). It aims at higher

utilization of systems electric vehicles so that they can be used commonly and very

efficiently.

SoS has found applications in the field of emergency management response

systems as well. An excellent paper using fuzzy logic and genetic algorithms describes

the application of SoS methodology in post-disaster relief and recovery operation for an

earthquake situation (Chandana, & Leung, 2010). The effectiveness of the proposed

approach to disaster situation management is demonstrated using Chinese earthquake

site. Liu (2011) also propose principles and rules for the design of an Emergency

Management System of Systems (EMSoS) in China. A workshop entitled "Building a

15

Systems of Systems (SofS) for Disaster Management" was conducted in Australia by the

CSIRO (Fraser, & Hawkins, 2014). CSIRO is known as Commonwealth Scientific and

Industrial Research Organization. CSIRO is Australia's national science agency. The

workshop aimed to underline a plan that would help in achieving situational awareness

for natural disasters such as forest fires at a national extent.

2.3. SOS ACQUISITION PROCESS

The DoD 5000.2 is currently used as the acquisition process for complex

systems. Schwartz (2010) described this process as an extremely complex systemic

process that cannot always constantly produce systems with expected either cost or

performance potentials. The acquisition in DoD is an SoS problem that involves

architecting, placement, evolution, sustainment, and discarding of systems obtained

from a supplier or producer.

Numerous attempts undertaken to modify and reform the acquisition process

have found this problem difficult to tackle because the models have failed to keep pace

with actual operational scenarios. Dombkins (1996) offered a novel approach to model

complex projects as waves. He suggested that there exists a major difference in

managing and modeling traditional projects versus complex projects. He further

illustrated his idea through a wave planning model that exhibits a linear trend on a time

scale; on a spatial scale, it tries to capture the non-linearity and recursiveness of the

processes. In general the wave model is a developmental approach that is similar to

periodic waves. A period, or multiple periods, can span a strategic planning time. The

instances within the periods represent the process updates.

 A recently proposed idea (Dahman, Lane, Rebovich, & Baldwin, 2008) that

SoS architecture development for the DoD acquisition process can be anticipated to

follow a wave model process. According to Dahman DoD 5000.2 may not be applicable

to the SoS acquisition process. Acheson (2013) proposed that Acknowledged SoS be

modeled with an Object-Oriented Systems Approach (OOSA). Acheson also proposes

that for the development of SoS, the objects should be expressed in the form of a agent

based model.

16

The environment and the systems are continuously changing. Let there be an

initial environmental model which represents the SoS acquisition environment. As the

SoS acquisition progresses through, these variables are updated by the SoS Acquisition

Manager to reflect current acquisition environment. Thus, the new environment model at

a new time has different demands. To fulfill the demands of the mission a methodology

is needed to assess the overall performance of the SoS in this dynamic situation. The

motivation of evolution is changes in the SoS environment (Chattopadhyay, Ross, &

Rhodes, 2008). The environmental changes consist of:

• SoS Stakeholder Preferences for key performance attributes

• Interoperability conditions between new and legacy systems

• Additional mission responsibilities to be accommodated

• Evolution of individual systems within the SoS

• Capabilities of individual systems

The methodology for architectural evolution in SoS should be such that it

addresses all the changes in the environment stated above.

2.4. ASSESSING SYSTEMS ARCHITECTURE

In principle, systems engineering may be thought of as a decision-making

activity. The architecting process involves the hierarchical reduction of ambiguity where

a set of alternatives is evaluated so that the most suitable alternatives are selected. SoS

design problems are based on multi- objective functions for binary variables (Singh,

2011). The design is judged based on a number of key performance parameters that

together form a highly non-linear hyper surface. These techniques were employed in this

study. The multi-objective approach combines multiple objectives into the following

single objective [13]:

Max fk (x)
T
 ∀ k; gi (x)

T
 ≤ bi ∀ I; xT

 = { x1 x2 … xn } ϵ X ; x
T≥ 0

x: vector of the variables; f: objective function(s); g: inequality constraints;

A solution to the multi-objective problem includes compromise that is acceptable

to the decision maker with respect to all of the objectives pursued (Schutze, Lara, &

Coello Coello, 2011).

17

2.5. HANDLING MANY OBJECTIVES

Multi-objective optimization algorithms are well known and fully developed for

situations with two or three objectives. Coello (1999) gives a list of references on

evolutionary multiobjective optimization. Some popular and established ways (Figure

2.5.) to solve such problems are weighted approach (Marler & Arora, 2010), goal

programming (Deb, 1999), Pareto dominance (Horn, Nafpliotis, & Goldberg, 1994), ε–

Pareto Dominance Optimization is applied to workflow grid scheduling (Garg & Singh,

2011), and ranking of objectives (Garza-Fabre, Pulido, & Coello, 2009).

Many objective optimization refers to conditions which more have than three

objectives. Solving many objective optimization problems with the above listed methods

can be difficult because nearly all solutions in a population grow into non-dominated,

with increasing number of objectives. Secondly, the number of solutions required for

approximation increases exponentially with the increase in dimensionality of the

objective space (Schutze, Lara, & Coello Coello, 2011). As the number of objectives

goes beyond five or more, the number of non-dominated solutions in a randomly

generated population is more than 90% (He & Yen, 2014). The effectiveness of the

recombination operators usually used in evolutionary algorithms is reduced (Deb & Jain,

2014).

Besides it is hard to visualize solutions in higher dimensional spaces, weakening

in search ability of Pareto dominance based algorithms and a very high computational

cost (Ishibuchi, Tsukamoto, & Nojima, 2008). Stochastic heuristic techniques such as

evolutionary algorithms are often used to generate solutions and fuzzy logic may be

used for assessing the fitness of these solutions (Agarwal, Pape, & Dagli, 2014). These

techniques were employed in this study (Coello Coello, 2002).

Some methods to deal with many objective problems include using reference-

point-based nondominated sorting approach (Deb & Jain, 2014), Pareto corner search

evolutionary algorithm and dimensionality reduction (Singh, Issacs, & Ray, 2011).

18

Figure 2.5. Different methods to handle multiple objectives in optimization

Other methods as listed in Figure 2.5. are objective reduction using linear and

nonlinear algorithms (Saxena, Duro,Tiwari, Deb, & Zhang, 2013), designing a grid

based evolutionary algorithm (Yang, Li, Liu & Zheng, 2013), fuzzy-based Pareto

optimality (He & Yen, 2014), Borg multi-objective evolutionary algorithm (MOEA)

proposes to combine all techniques such as ε-dominance, convergence speed measuring

process called progress, random initialization, and auto-adaptive multi-operator

recombination (Hadka & Reed, 2013), multiobjective optimization problem can be

decomposed into a smaller number of scalar optimization sub-problems and then

optimize them concurrently (Zhang, & Li, 2007), many researchers are using

hypervolume indicator as a quality measure of the Pareto fronts (Bader & Zitzler, 2011)

and besides there exist other performance metrics to compare Pareto fronts obtained by

evolutionary algorithms (Yen & He, 2014).

H
a

n
d

li
n

g
 M

u
lt

ip
le

O

b
je

ct
iv

es

Weighted Approach

Reduction of
Objectives

Modified Pareto
Dominance

Preference
Methods

Indicator Functions

Ranking Methods

Fuzzy Associative
Memory

19

2.6. AUTOMATED NEGOTIATIONS

The importance of studying negotiation is realizable in electronic commerce, and

artificial intelligence. Negotiations have two major components viz the number of

parties who are negotiating and the issues on which they are negotiating. Each party

negotiates in its own interest to reach at least the same or a better outcome than the

previous offer made to it (An, 2011). Cooperative negotiation has found uses in

maintaining real time load of a mobile cellular network (Bigham & Du, 2003), modeling

complex physiological phenomena (Gatti, & Amigoni, 2004, July) and resolving air

traffic conflicts efficiently (Wollkind, Valasek, & Ioerger, 2004). A negotiation can

occur between two individuals, or one individual negotiating with several individuals,

and finally many individuals negotiating with many other individuals. These

negotiations are called bilateral (Lin, Kraus, Wilkenfeld, & Barry, 2006), one-to-many

(Rahwan, Kowalczyk, & Pham, 2002) and many-to-many (Nguyen, & Jennings, 2006)

respectively.

A detailed classification of automated negotiations can be accessed from Buttner (2006).

Automated negotiation is an integral part of systems across all domains (Jennings et.al,

2001). Automated negotiation can be defined as an iterative process of settling on an

issue or multiple issues between the negotiating parties (Fatima, Wooldridge, &

Jennings, 2002) as shown in Figure 2.6.

Figure 2.6. Automated negotiations protocol categories

Multi-System
Negotiations

One to Many Bilateral
Many to Many
Negotiations

20

According to (Zheng et al., 2013; Guttman & Maes, 1998) negotiation in multi-

agents is a decision process for resolving multiple issues, which may or may not be

mutually exclusive (refer to Figure 2.7.). Most of the current research is focused on

assigning utility functions encompassing all issues or a function for each issue and then

combining the utilities to estimate the overall benefit of an offer (Ito et al., 2009).

This assumption is usually with the utilities making the decision a linear

problem, which is usually, not the case. The utility functions can be classified into linear

and nonlinear. Agents that utilize linear utility functions can aggregate the utilities of

the issue-values by weighted linear summation.

However, such an approach is considered naïve for modeling real world

scenarios as aggregations are unrealistic. Multi-attribute utility theory (MAUT) (Dyer,

2005) believes that each outcome issue or attribute is independent. MAUT proposes to

have a separate utility function for each of the issues. Although there have been studies

that model pairwise attributes to capture the dependence among the variables (Siebert,

2010).

Besides the systems can exhibit diverse behaviors which cannot be estimated as

functions and it is hard to predict their ranking of preference for a particular issue

(Marsá-Maestre et.al., 2014). Game theory postulates negotiation as a non-zero sum

game along multi-dimensional issues (Binmore & Vulkan, 1999). Multiple issue

negotiations can be broadly categorized as separate negotiations where each issue is

dealt individually by the negotiators, in simultaneous negotiations all issues are taken up

together, where in sequential negotiations, a set sequence is assigned to the total issues

and each issues is then taken up in that order (Fatima, Wooldridge, & Jennings, 2006).

The negotiation protocol describes the rules of encounter between the negotiation

parties. A negotiation protocol can handle a single issue or multiple issues. The

negotiation strategy is a specification of the sequence of actions (usually offers or

responses) that the agent plans to make during negotiation. The solution space of

negotiation strategies is very large. Strategies are usually based on the nature of the

behavior of the agent and its opponent or teammate. Negotiation strategy tries to model

the function (or a set of rules) for proposing the values of multiple issues at each point in

21

time (refer to Figure 2.7.). The strategy used for a particular agent might turn out to be a

poor choice for another.

Figure 2.7. Categories of attributes in automated negotiations

A static approach can also decrease awards after a number of negotiations.

Therefore, an agent can learn by adapting based on rewards, as opposed to trying to

model the other agents.

Agents are classified based on information possessed at the time of negotiation

into complete or partial information states. If the agent has the complete information of

the environment, which includes the opponent agent’s, negotiation strategy, the external

factors that affect the negotiation and the effect of the agent’s strategy on the opponent it

is said that that agent is in a complete information state. Otherwise, if any information is

unclear or missing the agent is assumed to be in a partial information state. Information

in multi-agent systems are comprised of utility functions that the opponent agents use to

evaluate various attributes, the reasoning models of opponent agents, and the constraints

of opponent agents.

The better approach would be to calculate the opponent’s behavior based on its

previous offer, and then adapt the response accordingly (Chen & Weiss, 2013). Different

adaptive strategies have been proposed earlier such as the ABiNeS: An Adaptive

Bilateral Negotiating Strategy over Multiple Items for effectively handling different

types of opponents (Hao & Leung, 2012). Other methods include game theoretic

Multiple Issue

Separate Simultaneous Sequential

Single Issue

22

analysis (Jordan, Kiekintveld, & Wellman, 2007), use of genetic algorithms (Jian, Li-

Chang, & Bo, 2008), differential evolution (Bi, & Xiao, 2012), Bayesian networks

(Hindriks, & Tykhonov, 2008), neural networks (Carbonneau, Kersten, & Vahidov,

2008) and fuzzy logic (Luo, et al., 2003).

2.7. IDENTIFYING GAPS IN LITERATURE

The overall aim of this work is to ensure that SoS architecting process is

concentrated on enabling a methodological insight which is requisite to provision

knowledge-based decision making, throughout the acquisition process. The objective is

also to enlarge our horizon to not only DoD based acquisitions but commercial

acquisitions by making use of the this methodology of evolutionary architecting.

The methodology outlined in this research is a type of modeling approach to

address various aspects of SoS acquisition environment: SoS architecture assessment,

SoS architecture evolution, and SoS acquisition process dynamics including behavioral

aspects of constituent systems. The major gaps are highlighted below and then further

explained to elucidate the concepts:

 There are no validated and tested quantitative models for SoS architecture

development

 The concept of meta-architecture has not been previously used in SoS

architecture generation

 Architecture assessment methods previously suggested do not effectively handle

the preferences amongst the various key performance attributes. Although some

papers have recommended methods using type I fuzzy logic (Pape & Dagli,

2013) and computing with words (Singh, 2011).

 An integrated model that combines meta-architecture generation and negotiations

with the stakeholders is also missing from the literature

 System behaviors have not been previously incorporated in SoS negotiation

process

 The SoS architecture problem is a many objectives optimization challenge with

over more than 20 objectives

23

The SoS architecting model proposed employs mathematical models. Model

based engineering is a fundamental part of the systems engineering process by

supporting design, evaluating architectural solutions, and enabling the assessment of the

system performance. By using meta- architecture generation techniques, architecture

quality assessment techniques and implementation through negotiation all three points

are addressed. All the techniques are integrated in this dissertation to form a model that

acts as a decision aid to the SoS manager.

There is a need within systems of systems, for making decisions to mold legacy

systems, add new systems, and/or change the configuration of these systems and their

interconnections (DeLaurentis, Crossley, & Mane, 2011). This requires both proper

definition of the design problem and good analysis/synthesis (Yingchao, 2012). This

need is addressed through the wave approach of architecture evolution that takes care of

sequential decision making (Agarwal et al., 2015). This dissertation provides a series of

quantitative techniques and pathways to add new capabilities and systems within a SoS.

Besides the dissertation aims to provide an integrated model that can bring together the

techniques to form a tool that aids in decision making.

Meta-architecture is a set of systems and interfaces selected to form a SoS based

the KPAs of the problem domain. The problem of selection is posed a many-objective

optimization problem. The objectives are the KPAs and the decision variables are the set

of systems and interfaces. This concept helps in conveying the SoS architecture idea to

the stakeholders at a very high level. It can be combined with various other executable

architecting techniques to evaluate the efficacy of SoS before it is finally implemented.

Architecture assessment techniques previously proposed have not been able to

capture the essence of non-linear tradeoffs existing amongst the various attributes. This

problem is dealt by incorporating preferences in key performance parameters (KPP) for

architecture assessment. The architectural issues can be converted to KPPs which later

can be used as objectives for solving the architecting problem. The preferences among

KPPs are accumulated through many stakeholders to counter any unforeseen

circumstances. Also the fuzzy rules created through these preferences produce non-

linear surface to capture the decision space that may be highly non-linear (Agarwal,

Pape, & Dagli, 2014).

24

The method of SoS architecture generation proposed here gives selects the best

possible architecture by using the KPP or key performance attributes. The new rules or

modified rules of the fuzzy inference engine can be changed any time during the

architecting process thus making it easy and les computationally expensive to fix.

Individual attributes may not have a clearly defined, mathematically precise, linear

functional form from worst to best. The goodness of one attribute may or may not offset

the badness of another attribute. Several moderately good attributes coupled with one

very poor attribute may be better than an architecture with all marginally good attributes,

or vice-versa. A fuzzy approach allows many of these considerations to be handled using

a reasonably simple set of rules, as well as having the ability to include non-linear

characteristics in the fitness measure. The simple rule set allows small adjustments to be

made to the model to see how seemingly small changes affect the outcome.

Another component has been to use the evolutionary algorithm based approach

which helps in evaluating many architecture alternatives to achieve a near optimal

architecture. Evaluation of architectures is another SoS challenge area as it lends itself to

a fuzzy approach because the criteria are frequently non-quantitative, or subjective (Pape

& Dagli, 2013), or based on difficult to define or even unpredictable future conditions,

such as “robustness.”

The proposed integrated model combines meta-architecture generation and

negotiations with the stakeholders. Several projects have not been able to achieve

enough progress due to integration problems related with the complexity of software

interfacing. By doing so, this research makes a valuable contribution to the existing

systems engineering body of knowledge (SEBOK) (Pyster, Olwell, Squires, Hutchison,

Enck, Anthony, 2014).

This work also addresses another gap by integrating software engineering with

systems engineering principles (Agarwal, Pape, Ergin, & Dagli, 2014) as pointed out by

Squires, Olwell, Roedler, & Ekstrom (2012). This is because a systems engineer should

be able to comprehend the popular methods of software architecting and design patterns.

By having the ability to incorporate multiple systems behaviors and achieving an

architecture through negotiation we are able to capture the emergent phenomenon in

forming a SoS. It is often hard select the properties that do not correspond one systems

25

or component alone but to the whole SoS. Thus by having multiple behaviors and

negotiations we aim to create a SoS which can achieve the overarching capability

through its emergent properties (Agarwal, Saferpour, & Dagli, 2014).

SoS architecting is where problems are solved by first creating the meta-

architectures that involves multiple key performance parameters (KPP) producing a non-

linear hypersurface. The optimization algorithm has to trace this hypersurface to find the

global minima or maxima. This process is very computationally expensive and tedious.

Fuzzy associate memories can be used as a way combining multiple objectives in to one

non-linear surface with many dimensions (Agarwal, Pape, & Dagli, 2014).

Too many KPPs can pose a challenge to SoS architecture generation mechanism.

Since the relationship amongst the KPPs is non-linear, together they forma non-linear

hypersurface which is hard for the optimization algorithm to trace.

Resiliency can be termed as the capability to acclimatize in a dynamic

environment (Schwind et al., 2013), and through self-organization can help the systems

swiftly recuperate from any adversarial events and disturbances (Vaneman, 2014).

Resilient SoS architectures have the ability to bounce back through major breakdowns in

functional and physical architectures. They have a higher chance of recuperating and

take less time to recover (Vaneman & Triantis, 2007) and (Vaneman, 2014).

There have been different metrics used to measure resilience such as failure node

analysis (Han, Marais, & DeLaurentis, 2012) in SoS. Another concept is to endure the

loss of performance in one component system by reorganizing the tasks among the

remaining systems (Uday & Marais, 2014). Therefore as one node undergoes

breakdown, other nodes can modify their tasks to compensate for this loss. These

metrics are not able to capture the overall capability of resilience for a SoS.

By using key performance measures such as robustness and modularity we

introduce new measures based on graph theory that can ensure that the SoS architecture

is resilient. Lack of robust behavior in applications is one source of failures (Hagen,

2007). Similarly modularity is very essential in design of complex engineering systems

(Baldwin & Clark, 2006). It helps in making the SoS controllable, allows multiple

passageways for working, and endows the system the strength to handle systemic

failures. Thus it can be said both robustness and modularity are crucial components of

26

SoS resilience. Robustness metric used in the work ensures the SoS architecture has the

capability to withstand any disruption and modularity metric ensures the capability

recuperate based no high modularity of the SoS graphical model.

Interoperability can be defined as the ability of systems, units, or forces to

provide services to and accept services from other systems, units, or forces and to use

the services so exchanged to enable them to operate effectively together (Tran, Douglas

& Watson, 2005) & (Lane & Valredi, 2011).

The proposed model is able to measure current level interoperability which is

usually a major concern in SoS, to manage protocols and interfaces in general as

systems come and go in SoSs, and measure communication across a given set of ground

control systems. Therefore we not only measure interoperability within systems but also

communication capability across a given set of communication systems. These systems

are designed for an intermediate communication channel in case the systems are unable

to communicate directly amongst themselves.

The later sections give a detailed overview of various techniques mentioned to

address the gaps identified in this section such as model validation and testing, meta-

architecture generation, architecture assessment, an integrated model approach, system

behaviors incorporation and many objective optimization challenges.

27

3. THE INTEGRATED MODEL

 As the world becomes more complex, the large scale systems exhibit properties

such as decentralization in authority and geographical independence. Such systems are

composed of diverse and autonomous elements (Samad & Parisini, 2011). Many such

systems can be categorized as Acknowledged SoS due to similarities in the

characteristics shared amongst them. Acknolwedged SoS usually have the SoS

objectives, management, funding and authority provided to participating systems.

Systems also maintain their own management, funding and authority autonomously.

This dissertation focusses on Acknowledged SoS as they occur in many real life

applications, some of which are discussed here.

Smart Grids can be modeled as Acknowledged SoS due to their resemblance

with its properties (Miller, Pogaru, & Mavris, 2013), supply chain management systems

(Chan, H. K. (2011), a recent example has been the development of an internet

architecture which reconfigures itself with change in its environment (Liu, Nishimura, &

Umehara, 2012,) Guo (2009) suggests model-based techniques for automotive electronic

system development which involve embedded systems. Department of Defense (DoD)

has long been a proponent of Acknowledged SoS research and it utility in assessing

security risks to critical missions (Dahmann, J., Rebovich, G., & Turner, G. (2014).

Disaster resilience or disaster relief management response systems can also be modeled

as Acknowledged SoS (Cavallo & Ireland, 2014).

3.1. DEFINING THE SOS PROBLEM

The model presented in this section is applicable to Acknowledged system of

systems. The architecture of an SoS follows an evolutionary development cycle to

achieve the overarching capability required by the SoS. Especially for the

Acknowledged SoS this process is guided through a small fund allocation to create a

larger capability which is operational over a finite cycle time.

Furthermore the constituent systems do not need to either acquiesce to SoS

requests or officially report to an SoS manager. Instead they can negotiate in their best

28

interests. The capabilities possessed by the legacy systems can be incorporated in the

next evolution cycle depending on the requirements.

The SoS domain manager must identify the decisive set of systems (with their

respective capabilities) that will help SoS achieve an overall goal/purpose. An SoS can

be achieved by combing individual systems and developing certain required interfaces

among them. A detailed description of various SoS types is already given earlier in

section 2.1.

Some methods have been proposed to model the evolutionary development of

SoS. This dissertation adapts the approaches suggested and the integrated model builds

on one of these approaches.

Dombkins (1996) has offered a novel approach which models complex projects

as waves. Dombkins (2013) suggests and illustrates that there exists a major difference

in managing and modeling traditional projects versus complex projects. Wave planning

exhibits a linear trend on a time scale and on a spatial scale it tries to capture the non-

linearity and recursiveness of the processes.

Wave model in general is a development approach similar to periodic waves. A

period or multiple periods can span a strategic planning time and within the periods,

there are instances that represent the process updates. Recently Dahmann proposed that

SoS architecture development for the DoD acquisition process, can be anticipated to

follow a Wave Model process (Dahman et al., 2011). According to Dahman DoD 5000.2

may not be applicable to SoS acquisition process. This research builds on the approach

of wave model for Acknowledged SoS architecting. The evolution of SoS over a period

of time under various uncertainties is depicted in Figure 3.1.

The Figure 3.2. explains the evolution of SoS from one wave to the next. The

first wave or Wave 1 has N systems and M capabilities initially. As the SoS transitions

to the next Wave 2 it has now T systems and K capabilities as some capabilities from

Wave 1are added or rejected. Some systems such as S2 and capabilities such as C2 are

retained in the next wave. Let us illustrate the wave model of SoS development through

evolution of a big city to a smart city.

29

Figure 3.1. SoS wave model adapted from a figure

Figure 3.2. SoS transition into the next wave

Smart city can be described as a functioning large scale system where networked

information is used to improve the living and day to day operations within city. Such

The spine of ongoing

analysis

Architecture Evolution

Several overlying

iterations of SoS

evolution

30

operations cover a very broad domain: surfacing information to authorities, businesses,

and citizens, optimizing energy and water pro (Celino, I., & Kotoulas, S. (2013).

Smart cities are very similar to an Acknowledged SoS where is there is a

conscious effort made to develop a SoS. Similarly the various systems within the

domain of a smart city such as Smart Grid, Smart Transportation, Smart Academic

systems and so on acknowledge the Smart city objectives, have funding and

management. Although individual systems operate autonomously yet they have shared

interests. These systems have the knowledge and scope regarding the project and are

merely guided by the smart city stakeholders. Smart city stakeholders work towards a

comprehensive framework and have different viewpoints on multiple issues. The key

issues in this case can be termed as the KPPs.

Just like the wave model of development Smart cities go through evolutionary

phases. Based on the capabilities, current requirements, environmental changes,

stakeholder views and performances the constituent systems are selected or left out in

the next phase. To select the best set of systems and how they interface with each other

to provide a network centric operation, optimization of resources is conducted at each

step. The section below presents the general model for Acknowledged SoS architecting.

3.2 INTEGRATED MODEL VARIABLES AND PARAMETERS

The overall capability C (the overall goal) to be achieved by combining sub-

capabilities):

𝑐𝑗: j ∈ J, J= {1, 2,…, M}: Constituent system capabilities j required to achieve C

𝑠𝑖: i ∈ I, I= {1, 2,…, N}: Candidate system i for the SoS

𝑁:Total number of systems candidates

𝑀:Total number of capabilities required

Let 𝑨 be a 𝑁 x 𝑀 − 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑎𝑖𝑗 𝑤ℎ𝑒𝑟𝑒

𝑎𝑖𝑗 = 1 𝑖𝑓 capability 𝑗 is possessed by system 𝑖

𝑎𝑖𝑗 = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑃𝑖: Performance of system 𝑖 for delivering all capabilities

𝐹𝑖: Funding of system 𝑖 for delivering all capabilities

𝐷𝑖: Deadline to participate in this round of mission development for system 𝑖

31

𝐼𝐹𝑖𝑘 𝑖𝑠 𝑡ℎ𝑒 interface between systems 𝑖 𝑎𝑛𝑑 𝑘 s.t. s≠ 𝑘, k ∈ I

𝐼𝐶𝑖: The cost for development of interface for system 𝑖

𝑂𝐶𝑖: The cost of operations for system 𝑖

𝐾𝑃𝑟 : r ∈ R, R= {1, 2,…, Z}: The key performance attribute r of the SoS

𝐹𝐴: Funding allocated to SoS Manager

p= {1, 2,…, P}: number of negotiation parameters for bilateral negotiation

𝑡𝑚𝑎𝑥: Total round of negotiations possible

𝑡 : Current round of negotiation (epochs)

𝑉𝑝𝑖
𝑆𝑜𝑆(𝑡): The value of the attribute 𝑝 for SoS manager at time 𝑡 for system 𝑖

𝑉𝑝𝑖
𝑆 (𝑡): The value of the attribute 𝑝 for system 𝑖 owner at time t

𝑇𝑄: Threshold architecture quality

3.2.1. Wave Model Processes. The wave model methodology provides for the

evolution of the SoS needs, resources and environment over time while accounting for

the differing approaches and motivations of the autonomous component system

managers. The overall idea being to select a set of systems and interfaces based on the

needs of the architecture in a full cycle called the wave.

Processes involved in the wave model can be explained through the first stage of

Initializing the SoS (Dahmann, Rebovich, Lowry, Lane, & Baldwin, 2011). In terms of

initializing, wave process requires SoS objectives and operational concept (CONOPS)

and information on core systems to support desired capabilities. This basically starts

with the overarching capability C desired by Acknowledged SoS manager and defining

the 𝑐𝑗 or sub-capabilities required to produce capability C and FA, funding allocated to

SoS Manager. These also form the input for the participating systems 𝑠𝑖.

The second stage is called the Conduct SoS Analysis. For the wave process it

represents starting an initial SoS baseline architecture for SoS engineering based on SoS

requirements space, performance measures, and relevant planning elements.

The next step is the Develop/ Evolve SoS. In this case in terms of the Wave

process essential changes in contributing systems in terms of interfaces and functionality

in order to implement the SoS architecture are identified.

32

The next phase is Plan SoS Update in Wave process. In this phase the architect

plans for the next SoS upgrade cycle based on the changes in external environment, SoS

priorities, options and backlogs. There is an external stimulus from the environment

which affects the SoS architecture.

 Finally, the last stage in Wave process is Implement SoS Architecture which

establishes a new SoS baseline based on SoS level testing and system level

implementation.

The wave model has been implemented in Flexible and Intelligent Learning

Architectures for SoS (FILA-SoS) version 1.0. This research hopes to improves certain

models in version 1.0. This work aims to provide three independent models to be

incorporated in version 2.0 that include, an alternative for meta-architecture generation

based on swarm intelligence, a new architecture assessment technique based on type-II

fuzzy logic systems, and a bilateral negotiation mechanism for SoS stakeholders based

on clustering and machine learning techniques. Together the three models can help in

designing an overall evolution strategy for complex adaptive SoS (CASoS).

3.2.2. Flexible and Intelligent Learning Architectures. The proposed model

forms a part of the larger project called the Flexible and Intelligent Learning

Architectures for SoS (FILA-SoS). FILA-SoS follows the Dahmann’s proposed SoS

Wave Model process for architecture development of the DoD acquisition process as

depicted in Figure 3.1. FILA-SoS addresses the most important challenges of SoS

architecting in regards to dealing with the uncertainty and variability of the capabilities

and availability of potential component systems. The methodology also provides for the

evolution of the system-of-system needs, resources and environment over time while

accounting for the differing approaches and motivations of the autonomous component

system managers. FILA-SoS assumes to have an uncertain and dynamic environment

with fixed budget and resources for architecting SoS. The overall idea being to select a

set of systems and interfaces based on the needs of the architecture in a full cycle called

the wave. Within the wave there may be many negotiation rounds which are referred to

as epochs. After each wave the systems selected during negotiation in the previous wave

remain as part of the meta-architecture whilst new systems are given a chance to replace

33

those left out as a result. The following paragraph explains the various stages in the

wave model and how they are implemented in FILA-SoS.

 The FILA-SoS has a number of independent modules that are integrated together

for meta-architecture generation, architecture assessment, meta-architecture executable

model, and meta-architecture implementation through negotiation (Figure 3.3.). The

meta-architecture generation methods include fuzzy-genetic optimization (Pape,

Agarwal, Giammarco & Dagli, 2014), multi-level optimization (Konur & Dagli, 2014),

particle swarm optimization (Agarwal, Pape, & Dagli, 2014) and cuckoo search

optimization (Agarwal, Wang, & Dagli, 2014). The architecture assessment method is

based on type-1 fuzzy logic systems (FLS).

 It is not possible to implement such meta-architecture without persuading the

systems to participate, hence to address this issue a negotiation model is proposed based

on game theory. The SoS negotiation protocol is based on game theory (Ergin, 2104).

Individual systems providing required capabilities can use three kinds of negotiation

models based on their negotiation strategies non-cooperative Linear Optimization

model, cooperative fuzzy negotiation model, and Semi-cooperative Markov chain model

(Dagli et al., 2013). Executable architectures are generated using a hybrid of Object

Process Methodology (OPM) and Colored Petri Nets (CPN) (Agarwal, Wang, & Dagli,

2014), (Wang, Agarwal, & Dagli, 2014), and (Wang & Dagli, 2011).

 Finally the process moves on to the next acquisition wave. The evolution of SoS

should take into account availability of legacy systems and the new systems willing to

join, adapting to changes in mission and requirement, and sustainability of the overall

operation.

34

Figure 3.3. Overview of Integrated Model FILA-SoS Version 1.0

 FILA-SoS is a novel method of making sequential decisions over a period for

SoS development. FILA-SoS has a number of abilities that make it unique such as:

 Aiding the SoS manager in future decision making

 To assist in understanding the emergent behavior of systems in the acquisition

environment and impact on SoS architecture quality

 To facilitate the learning of dynamic behavior of different type of systems

(cooperative, semi-cooperative , non-cooperative)

 Identifying intra and interdependencies among SoS elements and the acquisition

environment

 Modeling and application to a wide variety of complex systems models such as

logistics and cyber-physical systems.

35

 Acting as a Test-bed for decision makers to evaluate operational guidelines and

principles for managing various acquisition environment scenarios

 Appropriate to model SoS that evolve over a period of time under uncertainties by

multiple wave simulation capability

 The individual models presented in the previous paragraphs are part of the

version 1.0 of FILA-SoS. The models are currently undergoing upgrades to answer and

analyze SoS properties. The upgraded and new models will be incorporated in version

2.0 of FILA-SoS as shown in Figure 3.4.

Figure 3.4. Independent models used in FILA-SoS

36

FILA-SoS project spans 17 volumes (SERC, 2015). Each report describes the

various aspects of the FILA-SoS integrated model.

The project reports span Volume 1 is the Integrated Model Structure report for

FILA-SoS Version 1.0. It provides a short description of all independent models that

make up the FILA-SoS integrated model. Integrated FILA-SoS developed is tested in

three notional System-of-Systems, namely; Aircraft Carrier Performance Assessment,

ISR (intelligence surveillance and reconnaissance) and SAR (search and rescue). FILA-

SoS integrated model is currently being validated with a real life data from a medium

sized SoS. The results of this validation are given in volume 17.

 This dissertation aims to provide three independent models to be incorporated in

version 2.0 that include, an alternative for meta-architecture generation based on swarm

intelligence, a new architecture assessment technique based on type-II fuzzy logic

systems, and bilateral negotiation mechanism for one SoS manager and many individual

systems based on clustering and machine learning techniques. Together the three models

can help in designing an overall evolution strategy for complex adaptive SoS (CASoS).

 Firstly volume 2 describes Meta-Architecture Generation Multi-Level Model and

volume 3 describes meta-architecture generation model known as the Fuzzy-Genetic

optimization model. Both these models use a genetic algorithm to generate solutions.

This dissertation proposes the use of a particle swarm optimization (PSO) algorithm. It

has been recognized that GA is computationally expensive (Hassan, Cohanim, DeWeck,

& Venter, 2005) and although PSO has the same efficiency as the GA but has a less

computational cost attached to it.

 Secondly for SoS architecture assessment, a type-1 fuzzy assessor has been used

also described in Volume 4. This work extends the assessment technique by employing

type-II fuzzy assessor.

 Lastly, the SoS negotiation model is extended by incorporating a adaptive

negotiation model.

It is named the Complex Adaptive System-of-System Architecture Evolution

Strategy Model and is incorporated in FILA-SoS Version 2.0. This volume describes a

computational intelligence based strategy involving meta-architecture generation

37

through evolutionary algorithms, meta-architecture assessment through type-2 fuzzy

nets and finally its implementation through an adaptive negotiation strategy.

 The three models proposed in this research are described in the following section

and are, Meta-Architecture formulation and generation, Meta-Architecture assessment

and selection, and Meta-Architecture implementation through negotiation.

3.3. META-ARCHITECTURE FORMULATION AND GENERATION

Optimization algorithms can be categorized as gradient based and non-gradient

based methods. Some of the non-gradient based methods include evolutionary

algorithms (Horn, Nafpliotis, & Goldberg, 1994), swarm optimization (Engelbrecht,

2006), grid search (Bergstra & Bengio, 2012) and nonlinear simplex such as Nelder-

Mead (Nelder & Mead, 1965). Evolutionary algorithm based techniques have proved to

be useful for optimization problems with too many integer variables.

Meta-architecture is a set of systems and interfaces selected to form a SoS based

the KPAs of the problem domain. The problem of selection is posed a many-objective

optimization problem. The objectives are the KPAs and the decision variables are the set

of systems and interfaces. Usually in a more than one objective optimization problem

there is no single optimum but a set of non-dominated solutions (as explained in Section

2.5). solving such problems with more than three objectives turns it into a many-

objective optimization problem. This problem is analyzed as a Pareto-Box problem

(Köppen, Vicente-Garcia, & Nickolay, 2005).

3.3.1. The Pareto-Box Problem. A general approach for creating a Pareto

solution can be expressed as follows:

 Let’s assume there are 𝑧 objective functions to be optimized.

 The decision variables are expressed as a decision vector 𝑥⃑ = (𝑥1, 𝑥2, … , 𝑥𝑛) in

the decision space 𝑋.

 A function 𝑓: 𝑋 → 𝑌 evaluates a specific solution expressed as a point in

objective space 𝑌.

 Assume the objective space to be a subset of the real numbers. That is 𝑌 ⊆ 𝑅 .

 In a single-objective optimization problem, a solution vector 𝑥1 ∈ 𝑋 is better

than 𝑥2 ∈ 𝑋 if 𝑓(𝑥1) > 𝑓(𝑥2).

38

 In case of a vector-valued evaluation function, the vector 𝑔: 𝑋 → 𝑌 and 𝑌 ⊆ 𝑅𝑘

where 𝑔 > 1, to compare two solutions 𝑥1 and 𝑥2, the Pareto dominance is applied.

 An objective vector 𝑢, where 𝑢 = 𝑔(𝑥1) = [𝑓1(𝑥
1), 𝑓2(𝑥

1), … , 𝑓𝑧(𝑥
1)] dominates

another vector 𝑣, where 𝑣 = 𝑔(𝑥2) = [𝑓1(𝑥
2), 𝑓2(𝑥

2), … , 𝑓𝑘(𝑥
2)] is expressed as 𝑢 𝑣

if and only if ∀𝑖 ∈ {1, . . , 𝑧}, 𝑢𝑖 ≥ 𝑣𝑖 , ∧ ∃𝑖 ∈ {1, . . , 𝑧}: 𝑢𝑖 > 𝑣𝑖. This is in a

maximization problem. In a minimization problem the signs of all the objective

functions can be reversed and solved as a maximization problem.

 Accordingly a solution x1 dominates x2 (𝑥1 𝑥2) if 𝑔(𝑥1) 𝑔(𝑥2).

 The optimal solution in decision space can be expressed as 𝑥∗ ⊆ 𝑋. Its image in

objective space is 𝑔∗ ⊆ 𝑍.

The Pareto set 𝑋𝐸 contains all optimal solutions also denoted efficient solutions.

The Pareto front also denoted non-dominated frontier is the image of the Pareto set in

objective space. The Pareto Box problem is explained further.

Given are 𝑥 uniformly randomly selected 𝑦-dimensional points in the 𝑦-

dimensional unit hypercube. If 𝑒𝑥(𝑦) denotes the expectation value for the size of the

Pareto set of 𝑥 randomly selected points in the 𝑦 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 unit hypercube. Then,

the following definitions hold (Köppen, Vicente-Garcia, & Nickolay, 2005):

Theorem 1. Given are 𝑥 randomly selected points in the 𝑦-dimensional

hypercube. For the expectation value of the size of the Pareto set of these 𝑥 points we

have the recursive relation:

 𝑒𝑥−1(𝑦) = 𝑒𝑥(𝑦) +
1

𝑥
𝑒𝑥(𝑦 − 1) (𝑥, 𝑦 ≥ 2)

 (3.1)

which implies,

𝑒1(𝑦) = 1

 (3.2)

𝑒𝑥(1) =1

 (3.3)

Theorem 2. The expectation value for the size of the Pareto set of 𝑥 ≥ 1

randomly selected points in the 𝑦 ≥ 1-dimensional hypercube is

39

𝑒𝑥(𝑦) = ∑
−1𝑣+1

𝑣𝑦−1
𝑥
𝑣=1 (

𝑥
𝑣
) ∀ 𝑣 ∈ 𝑽 = {1,2, … . ,𝑚}

 (3.4)

Theorem 1 and 2 will help prove the central theorem 3 relating to limiting nature

of the expectation values when there is an increase in number of sample points and

increase in dimensions. For proofs of theorem 1 and 2 please refer to appendix of the

paper (Köppen, Vicente-Garcia, & Nickolay, 2005).

Theorem 3. For fixed dimension 𝑦 > 1 and the number of points 𝑥 → ∞ the

expectation value 𝑒𝑥(𝑦) → ∞, the ratio of the non-dominated points
𝑒𝑥(𝑦)

𝑥⁄ → 0 and

for fixed 𝑥 > 1 and dimension 𝑦 → ∞ the 𝑒𝑥(𝑦) → 𝑥

Proof.

𝑒𝑥(2) = ∑
1

v

𝑥
𝑣=1 = 1 +

1

2
+

1

3
+

1

4
+ ⋯ +

1

𝑚

 (3.5)

Equation (3.5) is a harmonic series and has been proved divergent. Since the

series is divergent meaning forever increasing it can be deduced from eq. (3.4) that for

𝑛 > 2 the following condition will always remain true i.e. 𝑒𝑥(𝑦) ≥ 𝑒𝑥(𝑦 − 1). . ≥

𝑒𝑥(2). Hence, as 𝑥 → ∞ the expectation value 𝑒𝑥(𝑦) → ∞. Besides as 𝑥 → ∞ and taking

limits over the expression,
𝑒𝑥(𝑦)

𝑥⁄ → 0. Similarly for the second part of the theorem, if

𝑥 is fixed and 𝑥 > 1 all terms in eq. (3.4) tend to zero as 𝑦 → ∞ except when 𝑣 = 1.

Because when 𝑣 = 1, then since 1∞ = 1 the total term equals x or 𝑒𝑥(𝑦) → 𝑥.

As the dimensionality of the solution space increases, the probability of finding

any dominated solution will decrease exponentially. This means that the Pareto set of 𝑥

points will contain nearly all 𝑥 points. This can also be expressed as for increasing

number of sample points in the solution space, the number of non-dominated points will

increase as well.

In a SoS architecting problem, component systems have multiple intra and inter

system trade-offs that cannot be fitted into the mold of a single objective. Secondly, the

number of solutions required for approximation increases exponentially with the

40

dimensionality of the objective space (Shutze, Lara, & Coello, 2011). The SoS

architect’s aim is to maximize or minimize all the objective functions𝐾𝑃𝑟, as the case

may be.

The SoS optimization problem can be formulated as follows:

Optimize 𝑭 = {𝑓𝐾𝑃1
(𝒔, 𝑰𝑭),… , 𝑓𝐾𝑃𝑟

(𝒔, 𝑰𝑭), … 𝑓𝐾𝑃𝑍
(𝒔, 𝑰𝑭) } ∀ 𝑟 = {1, 2, … , 𝑍}

where 𝑓𝐾𝑃𝑟
(𝒔, 𝑰𝑭) is the value of the key performance attribute 𝑟 for decision

variables 𝒔 and 𝑰𝑭.

Subject to ∑ 𝑠𝑖𝑖 𝑎𝑖𝑗 ≥ 1 ∀ 𝑗 ∈ 𝑱 (3.6)

𝐼𝐹𝑖𝑘 = {1} ↔ { 𝑠𝑖 = 1 ∧ 𝑠𝑘 = 1} ∀ 𝑖, 𝑘 ∈ 𝑰 (3.7)

𝑎𝑖𝑗 ∈ {0,1} ∀ 𝑖 ∈ 𝑰 (3.8)

𝑠𝑖 ∈ {0,1} ∀ 𝑖 ∈ 𝑰 (3.9)

𝐼𝐹𝑖𝑘 ∈ {0,1} ∀ 𝑖, 𝑘 ∈ 𝑰 (3.10)

This is a 𝑍 dimensional muti-objective optimization problem. Constraints

guarantees that at least one system for each capability is selected. Constraints also make

sure that an interface between two systems selected if and only if the two systems are

selected in the meta-architecture. Other constraints give the binary decision variables.

Similar problem has been solved earlier as a multi-level bi-objective optimization

(Konur & Dagli, 2014) using gradient based methods. The bi-objective model cannot

handle many objectives of the general model described. There are two basic issues that

need to be addressed here, namely ambiguity in the definition of the KPA, number of

objectives and NP completeness of the mathematical model formulated. In this research

evolutionary algorithms (EA) that use non-gradient descent optimization procedures are

selected to deal with the NP completeness issues, fuzzy logic is used to represent the

ambiguity in KPA and fuzzy inference is used to accommodate many objectives in

formulating the fitness function. Fuzzy logic also helps in helping in the search ability of

EA since search ability decreases with increasing objectives (Ishibuchi, Tsukamoto, &

Nojima, 2008). Hence the above model is converted to a form where any EA can be

used. Each individual chromosome is coded as a finite length vector of variables. The

possible values of the variables denote the size of the alphabet. In this case the size of

41

the alphabet is two because 𝑠𝑖 𝑎𝑛𝑑 𝐼𝐹𝑖𝑘 are the binary decision variables. The details of

the steps of chromosome representation are as follows.

Chromosome Representation: The chromosome is made up of two parts

combined together to form a long string. The length of the individual chromosome is

𝐿𝑐ℎ = 𝐿𝑠 + 𝐿𝑖𝑓 . 𝐿𝑐ℎ is the length of the chromosome, 𝐿𝑠is the first part made by vector

s as shown in Figure 3.5. The second part or 𝐿𝑖𝑓 is made by linearizing the matrix 𝑰𝑭 as

shown in Figure 3.6. and the full chromosome is shown in Figure 3.7. The architecture

can be described as an undirected graph shown in Figure 3.8.

Figure 3.5. A solution in the form of a string containing systems

𝐼𝐹 1 with 2 𝐼𝐹 1 with 3 𝐼𝐹 1 with N 𝐼𝐹 2 with 3 … 𝐼𝐹 i with k … 𝐼𝐹 (N-1) with N

Interfaces 𝐿𝐼𝑛𝑓 = 𝑁 ∗ (𝑁 − 1) ⁄ 2

Figure 3.6. A solution in the form of a string containing interfaces

𝑠1 … 𝑠𝑖 … 𝑠𝑁 𝐼𝐹 i with k … 𝐼𝐹 (N-1) with N

Systems and Interfaces 𝐿𝑠 + 𝐿𝐼𝑛𝑓 = 𝑁 + 𝑁 ∗ (𝑁 − 1) ⁄ 2

Figure 3.7. A solution containing both systems and interfaces

With N participating systems the total number of variables become(𝑁 + 𝑁 ∗

(𝑁 − 1) ⁄ 2). The solution string is binary in nature wherein a one represents the

presence and a zero means the absence of a system or interface. This representation can

be used to solve this problem with evolutionary algorithms, evolutionary strategies

𝑠1 𝑠2 𝑠𝑖 … 𝑠𝑁

 Systems 𝐿𝑠=N

42

(Beyer & Schwefel, 2002), swarm optimization or differential evolution (Storn & Price,

1997).

The general outline of EA consists of these steps (Back & Schwefel, 1996):

“ 𝑡 = 0;

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑃(0) = {𝑎1(0), … . , 𝑎𝜇(0) } , ∈ 𝑰𝝁

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑃(0) = {𝝓(𝑎
1
(0)), … . , 𝝓(𝑎

𝜇
(0)) };

 𝑊ℎ𝑖𝑙𝑒 (𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑃(𝑡) ≠ 𝑡𝑟𝑢𝑒) 𝑑𝑜

 Recombination 𝑃′(𝑡) = 𝑟𝜽𝒓(𝑃(𝑡));

 Mutation 𝑃′′(𝑡) = 𝑚𝜽𝒎(𝑃′(𝑡));

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑃′′(𝑡) = {𝝓(𝑎′′1(0)), … . , 𝝓(𝑎′′𝜇(0)) };

Selection 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑑𝑢𝑙𝑎𝑠 𝑃(𝑡 + 1) = 𝑠𝜽𝒔(𝑃
′′(𝑡) ∪ 𝑄);

𝑡 = 𝑡 + 1;

End do; ”

Initially the generations are set to be zero. Then an initial population 𝑃(0) of size

𝜇 is created with individuals represented by 𝑎. The solutions or individuals are referred

to as the chromosomes. Each individual in the population is evaluated by an objective

function 𝝓 to calculate the fitness value. Each of the consequent generations is created

iteratively by applying operations, on the current population, that include recombination

operator 𝑟𝜽𝒓, and mutation operator 𝑚𝜽𝒎. This process is run until the termination

criterion is met and the algorithm stops creating new generations. The new individuals in

the next generation have a new size 𝛾. The new population 𝑃′′(𝑡) is evaluated using the

objective function 𝝓. The selection process 𝑠𝜽𝒔 selects some individual of size 𝜇 to

create the population for the next generation where 𝑡 = 𝑡 + 1.”

With respect to the problem at hand the decision variables are 𝒔 and 𝑰𝑭. Recall

that 𝑠𝑖 𝑎𝑛𝑑 𝐼𝐹𝑖𝑘 are the binary decision variables in SoS. Chromosome Initialization will

involve generating random binary values in all bits to start the population. Fitness

assessment for a meta-architecture is explained in the following section 3.3 where this

population is evaluated for Z objectives. Termination criteria should be such that

algorithm should not converge prematurely. Whereas the termination was based on a

minimum number of generations until the best solution quality does not change. Other

techniques for termination include a hitting a bound on the threshold quality of solution.

43

Figure 3.8. SoS meta-architecture as an undirected graph

3.4. META-ARCHITECTURE ASSESSMENT AND SELECTION

In the previous section a methodology for generating the solution was explained.

Now to determine the quality of the solution (SoS architecture) a technique is needed to

assess it. The technique should be generic enough to be applied to many independent

domains. For this the objective function is converted to fitness functions for population

based algorithms. Architecture assessment is based on KPAs which are selected based

on the domain of the problem. Multiple objectives produce a non-linear hypersurface.

The optimization algorithm has to trace the surface to find the global minima or

maxima. This process is very computationally expensive and tedious. Fuzzy associate

memories can be used as a way combining multiple objectives in to one non-linear

surface with many dimensions (Agarwal, Pape, & Dagli, 2014).

The first problem is dealing with ambiguity in calculating the values of various

objectives. This situation is dealt by using type-1 fuzzy systems.

Secondly, a method is needed to manage the preferences between KPAs in the

fitness function. A tradeoff exists between the KPAs. This tradeoff is often non-linear

and depends on a number of stakeholders of the architecture. Usually the tradeoffs are

aggregated linearly through utility functions. For example, if two KPA’s are scalability

44

and reliability. The tradeoff could be higher reliability and low scalability. Besides the

tradeoffs depend on a group of stakeholders which include system architect, project

manager, customers and so on. Some methods such as fuzzy Pareto dominance (He &

Yen, 2014), ranking of alternatives (Wang & Yang, 2009), fuzzy goal programming

(Hu, Teng, & Li, 2007), weighting the objectives (Marler & Arora, 2010) have been

used previously to combine them in to a single objective. Fuzzy associative memory

helps capture the non-linearity that exists between the KPAs and can accommodate the

view of multiple decision makers at the same time.

The third key factor is that the assessment techniques should be able to bring in

performance attributes requirements from a lower level of abstraction. Often there is a

difficulty in assigning actual numerical values to the KPA because the needs and

requirements are expressed as words by the stakeholders. For example an attribute such

as net-centricity can be broken down into interoperability and command & control

communication support capability. Some of the prominent methods to assess the

architectures include the use case maps (UCM) (Folmer, van Gurp, & Bosch, 2003),

Architecture Tradeoff Analysis Method (ATAM) (Kazman et. al, 1998), and Scenario

based Architecture Analysis Method (SAAM) (Kazman, Abowd, Bass, & Clements,

1996). There have been comparisons of architecture evaluation methods to choose the

correction option effectively (Babar, Zhu, & Jeffery, 2004)

A beneficial approach would be to not only capture the tradeoffs points between

as many possible KPAs in a nonlinear fashion, be able to compute with words,

incorporate multiple views from stakeholders and help in value aggregation from

different levels of abstraction of each KPA.

None of the methods discussed above are able to address the issues described

above. The domain independent method proposed here for a domain dependent

architecture value aims to fill this gap in literature. The proposed assessment model is

based type-II fuzzy inference engine. Please refer to section 3.4.1.2 for more discussion

on importance of type-II fuzzy sets. The values provide more realistic assessment of the

SoS architecture’s quality. The attributes will be domain adjusted and selectable, using

guidance from subject matter experts.

45

As the reader may recall the architecture is described as a chromosome. The

fuzzy assessor based assessment is used to evaluate the fitness of the chromosome

during the meta-architecture generation process. This assessor can be also used to

evaluate the architecture after the negotiation. The concepts of fuzzy logic systems

(FLS) are explained below to understand the working of the assessor.

3.4.1. Introduction – Fuzzy Logic. Crisp sets are those where an element is

either a member of the set or not. Fuzzy logic (Zadeh, 1965) is an approach where a

membership of the elements of a set is not true or false but is based on degrees of truth.

A membership function (MF) is a curve that defines how each point in the input space is

mapped to a membership value (or degree of membership) between 0 (not an element of

the set) and 1(a member of the set). The input space is sometimes referred to as the

universe of discourse. Let 𝑼 be the universe of discourse which contains all the possible

elements of concern in each particular context. Defining a fuzzy set 𝑨 𝒊𝒏 𝑼: Fuzzy set

𝑨 𝒊𝒏 𝑼 can be represented as a set of ordered pairs of a generic element 𝒙 and its

membership value,

𝐴 = {(𝑥, 𝜇𝐴(𝑥))|𝑥 ∈ 𝑈}such that 𝜇𝐴(𝑥) → {0,1} (3.11)

where 𝜇𝐴(𝑥) is a degree of membership function of x in A and U is a universe of

discourse.

Definition 1:

When 𝑈 is continuous, 𝐴 is commonly written as

𝐴 = ∫ 𝜇𝐴(𝑥))|𝑥
𝑈

𝑥∈𝑈
 (3.12)

where the integral sign does not denote integration, it denotes the collection of all points

𝑥 ∈ 𝑈 with the associated membership function 𝜇𝐴(𝑥).

Definition 2:

Support: the support of a fuzzy set A in the universe of discourse U is a crisp set that

contains all the elements of U that have nonzero membership values in A, that is,

𝑆𝑢𝑝𝑝 (𝐴) = {𝑥 ∈ 𝑈|𝜇𝐴(𝑥) > 0} (3.13)

Definition 3:

46

An 𝛼 − 𝑐𝑢𝑡 of a fuzzy set A is a crisp set 𝐴𝛼 that contains all the elements in U that

have membership values in A greater than or equal to 𝛼.

Definition 4:

Fuzzy sets A and B are equal if and only if

 𝐴𝛼 = {𝑥 ∈ 𝑈|𝜇𝐴(𝑥) > 𝛼} ∀ 𝜇𝐴(𝑥) = 𝜇𝐵(𝑥) (3.14)

Example 1

Continuous Example: Let 𝑈 be the interval [0,100] representing the reliability of a

system-of-systems. Then we may define fuzzy sets “Poor” and “Excellent” as

membership functions shown in Figure 3.9.

Figure 3.9. Membership functions for reliability

Definition 5:

The union of A and B is a fuzzy set in U, denoted by 𝐴 ∪ 𝐵 whose membership function

is defined as 𝜇𝐴∪𝐵(𝑥) = max [𝜇𝐴(𝑥), 𝜇𝐵(𝑥)] (3.15)

Definition 6:

The intersection of A and B is a fuzzy set 𝐴 ∩ 𝐵 in with membership function

𝜇𝐴∩𝐵(𝑥) = max [𝜇𝐴(𝑥), 𝜇𝐵(𝑥)] (3.16)

3.4.1.1 Type-I fuzzy logic system. Type-1 fuzzy set (T1 FS) theory was

originally introduced by Zadeh (1965). Some of the applications include control theory

47

(Tzafestas, 1994), artificial intelligence (Hüllermeier,2005), and forecasting (Song, &

Chissom, 1993). A typical Type-1 FLS has a fuzzifier, a rule section, fuzzy inference

engine (FIS) and a defuzzifier or output processor. Figure 3.10. depicts the illustration of

a type 1-FLS.

Figure 3.10. Overview of type-1 FLS

Fuzzy sets can be described as points in the unit hypercube 𝐼𝑛 = [0,1]𝑛 (Kosko,

1992). A crisp value lies on the corner of the unit hypercube. A fuzzy system is a

transformation S: 𝐼𝑛
 𝐼𝑚 that maps fuzzy sets in 𝐼𝑛 to fuzzy sets in 𝐼𝑚. These

continuous fuzzy systems behave as associative memories. A fuzzy associative memory

(FAM) contains a matrix of fuzzy values which can map an input fuzzy set into an

output fuzzy set followed by an appropriate superimposition operator (Chung & lee,

1996). The rules are able to express a non-linear relationship between the variables. The

process is explained through a simple example.

Example 3

The problem is to calculate the architecture quality of a system. For the sake of

ease two inputs, reliability and cost are considered. The linguistic values for reliability

are ‘low’, ‘medium’ and ‘high’. The linguistic values for cost are ‘cheap and ‘expensive’.

The choice of membership function is up to the user based on the domain of the

problem, experience and computational difficulty. The membership function for

48

reliability and cost in the universe of discourse, 𝑈, is given below in Figure 3.11. and

3.12.

Figure 3.11. The membership functions for reliability

Figure 3.12. The membership functions for cost

The linguistic values for architecture quality are ‘risky, ‘modest’, and ‘excellent’.

The membership function for architecture quality in the universe of discourse, 𝑈, is

shown below in Figure 3.13.

Figure 3.13. The membership function for architecture quality

49

Step 1

The first process involves converting the crisp inputs into fuzzy sets. This is

called the fuzzification process. The inputs are reliability = 35 and cost = 80. The fuzzy

values for these crisp values by using the membership functions of reliability as shown

in the figure by dotted lines are:

𝜇reliability=low(35) = 0.3

𝜇reliability=medium(35) = 0.2

𝜇reliability=high(35) = 0

The fuzzy values for crisp values of cost are obtained by membership functions

of cost in Figure 3.10 as

𝜇cost=cheap(80) = 0.1

𝜇cost=expensive(80) = 0.8

Step 2

After obtaining the fuzzy values from crisp inputs rules are needed to arrive at

the final fuzzy output value. This is called the rules evaluation process. The rules for this

problem are as follows:

"If the reliability is low or cost is expensive, then the quality is risky."

"If the reliability is medium and cost is cheap, then the quality is modest."

"If the reliability is high or cost is cheap, then the quality is excellent."

Definitions 5 and 6 are used in the rules containing disjunctions, OR and AND using the

max and min operator. Each rule is evaluated below for explanation of the concept:

Rule 1

𝜇𝑞𝑢𝑎𝑙𝑖𝑡𝑦=𝑟𝑖𝑠𝑘𝑦(𝑦) = max [𝜇𝑙𝑜𝑤(35), 𝜇𝑒𝑥𝑝𝑒𝑛𝑠𝑖𝑣𝑒(80)]

𝜇𝑞𝑢𝑎𝑙𝑖𝑡𝑦=𝑟𝑖𝑠𝑘𝑦(𝑦) = max[0.3,0.8] = 0.8

50

Rule 2

𝜇𝑞𝑢𝑎𝑙𝑖𝑡𝑦=𝑚𝑜𝑑𝑒𝑠𝑡(𝑦) = min [𝜇𝑚𝑒𝑑𝑖𝑢𝑚(35), 𝜇𝑐ℎ𝑒𝑎𝑝(80)]

𝜇𝑞𝑢𝑎𝑙𝑖𝑡𝑦=𝑚𝑜𝑑𝑒𝑠𝑡(𝑦) = max[0.1,0.2] = 0.1

Rule 3

𝜇𝑞𝑢𝑎𝑙𝑖𝑡𝑦=𝑒𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡(𝑦) = max [𝜇ℎ𝑖𝑔ℎ(35), 𝜇𝑐ℎ𝑒𝑎𝑝(80)]

𝜇𝑞𝑢𝑎𝑙𝑖𝑡𝑦=𝑒𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡(𝑦) = max[0,0.1] = 0.1

To get the fuzzy values of the outputs, the FLS has to use fuzzy inference engine.

Mamdani (1977) presented a method to synthesize the rules in fuzzy logic control. The

Mamdani operator can be expressed as:

𝜑(𝜇𝐴(𝑥), 𝜇𝐵(𝑦)) = 𝜇𝐴(𝑥)𝐴𝑁𝐷 𝜇𝐵(𝑦)=min[0.8, 𝜇𝑞𝑢𝑎𝑙𝑖𝑡𝑦=𝑟𝑖𝑠𝑘𝑦(𝑦)]

To defuzzify the outputs we use the center of gravity method. This process is

called the defiuzzification. The center of gravity of the areas defined by the rules is the

final defuzzified answer. There are many other methods such as BOA (bisector of area),

CDD (constraint decision defuzzification), COA (center of area) and so on. In center of

gravity method we take the output from each contributing rule, and then we add them.

The centroid of the region is calculated as:

𝐶𝑂𝐺 =
∑ 𝜇𝐴(𝑥) ∗ 𝑥𝑏

𝑥=𝑎

∑ 𝜇𝐴(𝑥)𝑏
𝑥=𝑎

The calculation for COG is shown as follows:

(0 + 10 + 20) ∗ 0.8 + (30 + 40 + 50 + 60) ∗ 0.2 + (70 + 80 + 90 + 100) ∗ 0.5

0.8 ∗ 3 + 0.1 ∗ 4 + 0.1 ∗ 4

= 71.8

It means there is 71.8 % of chance of systems quality.

In relation to this model architecture evaluation methods have been developed

(Pape & Dagli, 2013) to assess robustness of SoS architectures. In addition, type-1 fuzzy

associative memory has been developed to evaluate SoS architectures (Pape et al.,

2013). The attributes used for evaluation were Performance, Affordability,

51

Developmental Flexibility, and Operational Robustness. Type-1 fuzzy sets are able to

model the ambiguity in the input and output variables. But type-1 fuzzy sets are

insufficient in characterizing the uncertainty present in the data. Type-2 fuzzy sets

proposed by Zadeh can model uncertainty and minimize its effects in FLS (Mendel &

John, 2002). The next section gives a brief overview of type-2 and interval type-2 fuzzy

sets.

3.4.1.2 Type-2 fuzzy sets. The cause of uncertainties in type-1 FLS includes the

following:

1. Different people might interpret different meanings to the same words being

used in antecedent and consequent rules

2. There is often uncertainty present in the input data which is not a single crisp

value but has a given distribution if a group of decision makers are involved

3. Similarly the outputs may not have a singleton value but a distribution over

which the outputs range due to multiple experts

These gaps are not addressed by type-1 fuzzy because their membership

functions are totally crisp. Whereas, type-2 fuzzy sets are able to model such

uncertainties due to the fact that their membership function are fuzzy themselves and are

three-dimensional in nature. The structure of rules in a type-1 FLS and a type-2 FLS is

the same, but in type-II the antecedents and the consequents are represented by type-2

fuzzy sets. A type-2 FLS contains a fuzzifier, a rule base, a fuzzy inference engine, and

an output processor. The output processor includes type-reducer and defuzzifier. The

type reducer reduces the type-2 FS to a type-1 FS whereas the defuzzifier converts the

type-1 FS to a crisp number. The structure of the type-2 fuzzy associative memory maps

inputs to type-2 fuzzy terms. Rules are made to describe the relationship between inputs

and output using the linguistic terms of each input’s membership functions.

Type-2 FLSs are computationally demanding because of type-reduction. Interval

type-2 (IT2) FSs (Liang & Mendel, 2000) are a special case of type-2 FSs extensively

used for their less computational cost. IT2 FSs are often useful when there is an

uncertainty involved in determining the exact membership functions, or when there are

multiple stakeholders’ opinions on the same fuzzy variable (Wu, 2013). A general

procedure for IT2FS is illustrated in the Figure 3.14. It is similar to type-1 FS, except

52

fuzzifier converts the crisp inputs to IT2 FS, the outputs of the inference engine are IT2

FSs, there is another element called the type-reducer which converts the IT2FS values to

type-1 FS before passing them to the defuzzifier.

An example of an IT2 FS, 𝑌̃, is shown in Figure 3.15. A type-2 FS has two

membership functions hence for each value of the linguistic variable the membership

degree is not a number but an interval. This is because a straight line parallel to

membership axis will cut the membership functions at two places. One of them will be

lower forming the lower interval and the other one will form the higher interval of the

degree. The two membership functions are denoted by 𝑌̅ (upper MF) and 𝑌 (lower MF).

The area between them is the footprint of uncertainty (FOU).

Figure 3.14. Overview of type-2 FLS

Figure 3.15. Membership function for a type-2 FLS

Type-reduced outputs

(Interval based)

53

Given 𝑌̃1
𝑛 are IT2 FSs antecedents or inputs, and 𝑍𝑛 = [𝑧𝑛, 𝑧

𝑛
] interval of a

consequent output where 𝑛 = 1,2, … , 𝑁 and 𝑘 = 1,2, … , 𝐾

The steps in an IT2 FLS are demonstrated as follows:

1. Consider the rule base of an IT2 FLS comprising of N rules assuming that the

nth rule is :

a. IF 𝑦1 is 𝑌̃1
𝑛 and….. and 𝑦𝐾 is 𝑌̃𝐾

𝑛, THEN 𝑧 is 𝑍𝑛

2. Calculate the membership of all inputs in the vector 𝒚′ = (𝑦′
1
, 𝑦′

2
, … 𝑦′

𝐾
) on

each 𝑌̃1
𝑛 for 𝑛 = 1,2, … ,𝑁 and 𝑘 = 1,2, … , 𝐾

a. Membership is [𝜇𝑌𝑘
𝑛(𝑦′

𝑘
), 𝜇𝑌̅𝑘

𝑛(𝑦′
𝑘
)]

3. When the nth rule 𝐻𝑛(𝒚′) for the input vector, fires the output interval can be

computed as:

 [ℎ𝑛, ℎ
𝑛
] = [𝜇𝑌1

𝑛(𝑦′
1
) × …× 𝜇𝑌𝐾

𝑛(𝑦′
𝐾
), 𝜇𝑌̅1

𝑛(𝑦′
1
) × … .× 𝜇𝑌̅𝐾

𝑛(𝑦′
𝐾
)]

There are methods other than taking the product (Liang & Mendel, 2000)

Center-of-sets (CoS) method for acting as a type-reducer (Mendel & John, 2002) has

been used here for type-reduction from type-2 to type-1 fuzzy sets (Mendel & Wu,

2010).

𝑍𝐶𝑜𝑆(𝑦
′) = ⋃

∑ ℎ𝑛𝑧𝑛𝑁
𝑛=1

∑ ℎ𝑛𝑁
𝑛=1

ℎ𝑛∈𝐻𝑛(𝒚′)

𝑧𝑛∈𝑍𝑛

= [𝑧𝑙, 𝑧𝑟]

The lower 𝑧𝑙 and upper limits 𝑧𝑟 of the outputs can be calculated as follows.

4. 𝑧𝑙 =
𝑚𝑖𝑛

𝑥 ∈ [1, 𝑁 − 1]

∑ ℎ

𝑛
𝑧𝑛+∑ 𝑧𝑛ℎ𝑛 𝑁

𝑛=𝑥+1 𝑥
𝑛=1

∑ ℎ
𝑛
+∑ ℎ𝑛 𝑁

𝑛=𝑥+1 𝑥
𝑛=1

≡
∑ ℎ

𝑛
𝑧𝑛+∑ 𝑧𝑛ℎ𝑛 𝑁

𝑛=𝐿+1 𝐿
𝑛=1

∑ ℎ
𝑛
+∑ ℎ𝑛 𝑁

𝑛=𝐿+1 𝐿
𝑛=1

5. 𝑧𝑟 =
𝑚𝑎𝑥

𝑥 ∈ [1, 𝑁 − 1]
∑ ℎ𝑛𝑧

𝑛
+∑ 𝑧

𝑛
ℎ

𝑛
 𝑁

𝑛=𝑥+1 𝑥
𝑛=1

∑ ℎ𝑛+∑ ℎ
𝑛
 𝑁

𝑛=𝑥+1 𝑥
𝑛=1

≡
∑ ℎ𝑛𝑧

𝑛
+∑ 𝑧

𝑛
ℎ

𝑛
 𝑁

𝑛=𝑅+1 𝑅
𝑛=1

∑ ℎ𝑛+∑ ℎ
𝑛
 𝑁

𝑛=𝑅+1 𝑅
𝑛=1

given that {𝑧𝑛} and 𝑧
𝑛

 are first sorted in an ascending order respectively. Then points

𝐿 and 𝑅 are determined by

𝑧𝐿 ≤ 𝑧𝑙 ≤ 𝑧𝐿+1

54

𝑧
𝑅

≤ 𝑧𝑟 ≤ 𝑧
𝑅+1

Wheras 𝑧𝑙 and 𝑧𝑟 are computed using the Karnik-Mendel (KM) algorithms (Mendel &

John, 2002).

6. Finally the defuzzified output is computed as 𝑧 =
[𝑧𝑙+𝑧𝑟]

2

Although many ways exist for type-reduction and defuzzification in type-2 fuzzy

sets but the KM method is the most extensively used approach.

The assessment of an architecture is based on the key performance attributes

(KPA) selected by the stakeholders. Each KPA (𝐾𝑃𝑟) of SoS has a certain range of

values within which it is considered meaningful. This range is derived from the

stakeholder’s needs and interviews with all component systems owners. The KPA’s act

as objective functions in the multi-objective meta-architecture generation problem. The

KPA properties as shown in Figure 3.16. include:

1. Range of Values of KPA for evaluating SoS capability C can be provided with

different levels of linguistic granularization as shown in the example above.

2. Depending on the problem the type of member ship function is required the

represent the ambiguity in each KPA.

3. The crisp value of each KPA is hard to determine. Hence they are aggregated

using the parts that account for each KPA. For example it is difficult to find an

absolute value of net-centricity of a SoS. Since it can be viewed as a composition

of interoperability and communication with ground control system, both these

values are computed and aggregated using type-1 fuzzy inference.

4. Later all KPAs are aggregated using type-II inference since there is more

inherent ambiguity amongst them that can be taken into account.

5. This way the crisp values are first fuzzified and fed into fuzzy inference system

for type-1. This is later defuzzified to obtain values for each KPA. This is fain

fuzzified using type-2 inference and later defuzzified to obtain SoS architecture

quality. Based on the assessment scheme of the architecture a compromised

solution is selected. The implementation of a meta-architecture through a

negotiation process is explained in the next section 3.5.

55

Figure 3.16. General structure of architecture assessment function

3.5. SOS NEGOTIATION APPROACH

The Acknowledged SoS manager negotiates with systems that are selected as

part of the meta-architecture during the meta-architecture generation process. A

negotiation procedure is necessary for the actualization or implementation of the meta-

architecture generated. Since the SoS manager cannot force his demands on participating

systems, negotiation helps in achieving an architecture that is implementable. The SoS

manager negotiation mechanism consist of three phases of

i. modeling the opponent

ii. making a decision based on the previous offer

iii. Finally generating a counteroffer.

A bilateral counteroffer based negotiation mechanism is chosen between an SoS

manager and an individual system under multiple attributes as depicted in Figure 3.17.

The attributes or issues are assumed to be independent of each other and are bargained

simultaneously. Modeling the opponent involves characterizing the opponent’s

negotiation behavior; which could be considered cooperative, semi-cooperative or non-

56

cooperative etc. A decision mechanism is needed to reject the offer for no further

negotiation, or accept the offer as it is currently or negotiate for another round to bargain

further. In case of further negotiation rounds a counter-offer generation mechanism is

needed. Counter offers in automated negotiation are classified on the bases of

constraints used to bargain such as time taken to negotiate, value of the overall utility

achieved by a party over a set of issues, or constraints based on available resources.

Section 3.5.1 gives an overview of the negotiation mechanism and variables used to

explain the problem. Section 3.5.2 describes the strategy to model the opponent. Section

3.5.3 illustrates the strategy for making a decision on the negotiation offer of the

opponent. Finally, in Section 3.5.4 several utility based concession curves are proposed

for the SoS manager to make counteroffer. Figure 3.18. gives an overview of the three

salient features of automated negotiation used in this work.

Figure 3.17. Bilateral negotiation mechanism

57

3.5.1. General Negotiation Protocol. In this section the variables used in the

describing the protocol are listed for the user. The negotiation strategy is designed for a

one to many participants and is not mediated by any coordinator. The structure consists

of a SoS manager and multiple systems selected as part of the solution in the meta-

architecture. Let us define:

𝑉𝑝 : p= {1, 2,…, P}: Attributes for bilateral negotiation

𝑡𝑚𝑎𝑥: Total round of negotiations possible

𝑡 = {0,1, … 𝑡𝑚𝑎𝑥}

𝑉𝑝
𝑆𝑜𝑆(𝑡): The value of the attribute 𝑉𝑝 for SoS manager at time 𝑡

𝑉𝑝
𝑆(𝑡): The value of the attribute 𝑉𝑝 for system owner at time t

A number of negotiation rounds with different system types and SoS coordinator

are conducted. Negotiation offers made by systems reveal incomplete information about

their preference of issues and their strategy.

The following figure describes the methodology of modeling the opponents

behavior through clustering, making a decision on the negotiation offer based on fuzzy

2-tuple linguistic multi-criteria decision making and finally generating a counteroffer

based on utility concession curves.

The figure explains the processes involved in succession such as the hierarchical

clustering followed by the k-means clustering. The labeled data obtained after clustering

is then trained using a supervised learning algorithm. Two techniques such as learning

vector quantization and radial basis function network were tried. Following which the

trained network is able to predict the class of the incoming new offer. The SoS can make

a final decision on the offer using linguistic fuzzy terms. This method is also known as

the computing with words. Finally if the SoS feels that it needs to negotiate more it can

use time dependent equations to make a counteroffer to the individual systems.

58

Figure 3.18. Three Salient Features of Automated Negotiation

3.5.2 Modeling the Opponent. Information regarding the opponent is extremely

important to improve automated negotiation strategies for multi-issue multi-party

negotiation (Hindriks, Jonker, & Tykhonov, 2009) and (Hindriks & Tykhonov, 2008).

To have a better negotiation strategy each party requires information regarding the

preferences of issues of the opponent. This information can be used to negotiate

effectively. In other words it is imperative to model the behavior of the opponent by his

previous offers or some other method. This helps in increasing the efficiency of

59

agreements and is a superior method than concession-based negotiation strategy of

(Baarslag, Hindriks, & Jonker, 2011).

In a concession-based negotiation size of next concession is mainly decided on

the basis of the utility gap between the preceding bids of the opponent and the party.

Another method of using fuzzy similarity to estimate the preference structure of the

opponent and then uses a hill-climbing technique to explore the space of possible trade-

offs has also been successfully implemented (Faratin, Sierra, & Jennings, 2002). In this

work single round of negotiations are used to model the opponent’s behavior. This is

because it has been observed that usually opponent avoids any chance of revealing their

preferences over issues to be exploited.

An SoS coordinator uses initial estimates of the problem’s complexity and size,

combined with the amount of resources currently possessed to propose a first offer to

individual systems. These systems then respond to the first offer according to their

negotiation behaviors. The SoS coordinator was not informed of a participating system’s

behavioral strategies and desires to adapt its negotiation policy accordingly. The

following paragraphs outline the process of analyzing the negotiation data.

The SoS coordinator records both the offer and the counteroffer for each system.

It calculates the amount of concession in each issue for each system. Concessions in all

issues are calculated for each system 𝑖 (see Table 2). After recording this data it is used

for clustering which can reveal any behavioral groupings in counter-offers. For example,

a cooperative system would agree to work for less money than a non-cooperating system

would. Similarly, a non-cooperating system would ask for more money in lieu of time

taken to prepare for participation. The clustering is done in multi-dimensional space of

the number of negotiation attributes P. The following notation describes the clustering

operation:

𝑜𝑔: g ∈ G, G= {1, 2,…, NoB}: - the number of observations made

𝑃 - the number of issues or attributes of negotiation present

𝐿- the number of clusters the user either predicted or defined

𝐶ℎ - the ℎ𝑡ℎ cluster, a subset of h = {1, 2, . . . , 𝐿}

The values in the Table 3.1. form a 𝑃 dimensional data that can be clustered to

model the opponent behavior.

60

Table 3.1. Concession calculated by SoS manager for each system

System j 𝑁𝐴1 𝑁𝐴2 𝑁𝐴𝑝

 ∆1= 𝑁𝐴1SoS- 𝑁𝐴1S ∆2= 𝑁𝐴2SoS- 𝑁𝐴2S ∆p= 𝑁𝐴𝑝SoS- 𝑁𝐴𝑝S

3.5.2.1 Hierarchical clustering. Hierarchical clustering is a type of

agglomerative clustering (Freeman, 1994). It builds a hierarchy of clusters such that

clusters at one level are combined as clusters at the next level. It does not require the

number of clusters in advance to proceed with. This process creates a cluster tree which

is known as the dendogram. Hierarchical clustering algorithms require very little a priori

knowledge of the data and are a non-parametric method of auto-classification (Johnson,

1967). Multi-level clustering assists the user in deciding at how many clusters are

appropriate for his problem. It is often used as precursor to many other clustering

algorithms to give an overview of how many clusters might be present in the data. The

basic methodology of this clustering method is explained as follows:

1. Given N data points are to be clustered.

2. Assign a cluster based on each data appoint, which results in N clusters

3. A similarity metric (distance) is chosen to quantify the separation between the

clusters. Similarity metric parameter defines how the distance between clusters is

calculated. Some common options are:

a. Average Linkage: The distance between any two clusters is estimated as

the average of the distances between all the points in those clusters.

b. Complete Linkage: The distance between any two clusters is the distance

between the farthest points in those clusters.

c. Single Linkage: The distance between two clusters is the shortest distance

between any member of one cluster to anyone in the other cluster.

4. Calculate all pair-wise distances between clusters making a 𝑁 𝑋 𝑁 matrix

5. The most similar pair of clusters is merged into a single cluster and then all

distances from this new cluster to all other clusters are evaluated to update the

matrix. Each time two closest data points are merged until there is a single large

61

cluster containing all the original data points.

The dendogram helps in visualizing clustering of the data at different levels. To

determine the best level for a given set of data is based on experience and type of

problem being modeled. The Figure 3.19. shows three different levels represented by

Line 1, Line 2 and Line 3 respectively. Each horizontal line cuts the dendogram at a

number of places which is equal to the number of clusters present at that level. The y-

axis is a measure of closeness of either individual data points or clusters. The data points

are listed along the x-axis to see they belong to which cluster structure.

The decision maker can choose an appropriate level by looking at the

dendrogram and hence arrive at the number of clusters that can be used as input for the

clustering algorithms. Clustering through k-means is explained in the next section.

Figure 3.19. Three Salient Features of Automated Negotiation

Algorithms for hierarchical clustering are generally either agglomerative, in

which one starts at the leaves and successively merges clusters together; or divisive, in

which one starts at the root and recursively splits the clusters. Agglomerative algorithms

begin with each element as a separate cluster and merge them into successively larger

clusters. Divisive algorithms begin with the whole set and proceed to divide it into

successively smaller clusters. It depends on the problem to use either an Agglomerative

or Divisive approach.

62

In my work since we are trying to model the behavior of the opponent which is

unknown, we expect to have many behaviors. The numbers of behaviors will increase

with the number of issues involved in negotiation. It would make more sense to start

with assuming each data point (or offer) obtained from the systems is a different

behavior. Therefore we used the Agglomerative approach. Although even if we start

with the divisive approach I think we should arrive at the same number of optimal

clusters.

3.5.2.2 K-means clustering algorithm. K-means clustering is one of the many

unsupervised learning techniques (Grira, Crucianu, & Boujemaa, 2004) currently used to

mine the underlying features of a dataset. Some of the popular techniques include

partition around mediods (Kaufman, & Rousseeuw, 1990) where the major difference

between k-means is that the algorithm uses mediods instead of centroids and the cluster

centers may or may not be necessarily one of the data points, Fuzzy c-means (Pal &

Bezdek, 1995) is based on k-means and on the concept that each data point has degree of

being a member of a particular cluster, Expectation-Maximization (EM) algorithm

(Moon, 1996), and Grid-Based Methods (Ilango & Mohan, 2010).

K-Means is useful in the cases where the user can gauge the count of clusters

actually present. It is also computationally very less expensive as compared to other

algorithms. K-means attempts to divide the data set into a predefined number of clusters

such that the total distance between the members of each cluster and its respective

centroid is minimized. Let us explain the major tenets of the algorithm.

Suppose there are 𝑁 sample feature vectors 𝑜1, 𝑜2, ..., 𝑜𝑁 and it is known they can be

divided in 𝐿 clusters where 𝐿 < 𝑁. Let 𝑚𝑘 be the mean of the vectors in cluster 𝑘. This

suggests the following procedure for finding the k means:

 Make initial guesses for the means 𝒄𝟏, 𝒄𝟐, . . . , 𝒄𝑳

 Until the means do not change

1. Use the estimated means to classify the samples into clusters by

allocating each data point to the group that has the closest mean.

2. For i from 1 to L

 Replace 𝒄𝒊 with the mean of all of the samples for cluster i

63

3. End for

 End until

The similarity metric often chosen for k-means is the distance measure

 ‖𝑥𝑎
(𝑗)

− 𝑐𝑗‖between a data point 𝑥𝑎
(𝑗)

 and the cluster center 𝑐𝑗.

K-means minimizes the sum of distances from each object to its cluster centroid,

over all clusters which is represented as a cost function 𝐽.

𝐽 = ∑ ∑‖𝑥𝑎
(𝑗)

− 𝑐𝑗‖
2

𝑛

𝑎=1

𝐿

𝑗=1

𝐽 is the sum of all distances of n data points from their corresponding clusters.

Hierarchical clustering alone might not be enough to determine the number of clusters

required to give as input to the clustering algorithms. A number of inputs are used as

clusters for k-means. Then as a method of validation a naive procedure called the elbow

method is used to finally verify the approach.

3.5.2.3 Elbow method. To further confirm the enquiry on number of possible

clusters present in the data a popular method known as the ‘elbow method’ "(Ketchen &

Shook, 1996) is used based on results of k-means. The sum of squared error (SSE) is

computed for some possible values of number of clusters values of 𝒌 (for example 2, 3,

4, 5etc.). The SSE is calculated as the sum of the squared distance between each member

of the cluster and its centroid.

𝑆𝑆𝐸 = ∑ ∑‖𝑥𝑎
(𝑗)

− 𝑚𝑗‖
2

𝑛

𝑎=1

𝐿

𝑗=1

SSE aims to represent the global error in clustering. With SSE on the vertical

axis and the number of clusters on x-axis are plotted to help visualize the drop in SSE

with change in number of clusters. Although with increasing number of clusters the

SSE begins to drop yet there usually exists a point where there is not much change in

SSE as clusters increase (Salvador & Chan, 2004). This point looks like an elbow and

the number of clusters at that point is usually the best choice.

However, it may be said that the best value for number of clusters is a

combination of human judgment and algorithm outputs. After clustering the data is now

64

labeled with a mapping of inputs or the data points and the target or classes of the

cluster. This labeled data can further be used for training a supervised learning algorithm

for future prediction. Thus the behavior of new systems initially not present in the

negotiation can be ascertained based on the through an incoming offer. The next section

highlights two supervised learning algorithms called the learning vector quantization and

radial basis function networks for training and prediction of classified data.

3.5.2.4 Training a LVQ network. Idea is to create an efficient mapping using

supervised learning techniques between the data points and their centers. This will help

us center of predicting the next incoming sample. Usually, supervised learning has

inputs and preferred outputs provided by the user. Ensuing a period of training, the

algorithm is capable of generalizing from the provided set of data to new sets of data.

One such technique is called the learning vector quantization (LVQ) (Sato & Yamada,

1996). It is a precursor to self-organizing maps (SOM) (Somervuo & Kohonen, 1999)

and supervised version of vector quantization (VQ). Sato & Yamada (1998) also provide

an analysis of convergence in generalized LVQ. In other words LVQ is a neural net that

combines competitive and supervised learning. It is useful for training classified data

and prediction. It does not have any topological structure unlike its unsupervised

counterpart SOM.

The LVQ Algorithm starts with a training set consisting of a training vector

𝒙 = {𝑥1, 𝑥2, 𝑥3, . . 𝑥𝑛} and target output pairs are assumed to be given. The inputs form

the input layer of the LVQ network. The numbers of neurons in the network are same as

the number of classes present in the data. Let there be J classes present in the data where

𝑘 = {1,2, . . , 𝐽}. So there are 𝐽 neurons in the output layer. All input vectors are

connected to all the neurons in the network as shown in the Figure 3.20. The weights are

also called the codebook vectors. The weight vector joining the inputs to the neuron k

can be expressed as 𝒘𝒌 = {𝑤1𝑘, 𝑥2𝑘, 𝑥3𝑘, . . 𝑥𝑛𝑘}. Basically the codebook vectors act as

piece wise linear functions to classify the data.

65

Figure 3.20. Structure of learning vector quantization network

The training process can be explained using the following rules:

Rule 1:

Initialize first 𝐽 inputs as 𝐽 weight vectors, given 𝐽 classes are present in the data.

Other techniques include randomly selecting 𝐽 inputs from the data for initializing

weights.

Rule 2:

While termination criterion ≠ true

 For each input vector

 Calculate the distance metric 𝐷(𝑘) from the all the weight vectors.

𝐷(𝑘) = ∑‖x𝑖 − 𝑤𝑖𝑘‖
2

𝑛

𝑖=1

Choose the 𝑘 that makes 𝐷(𝑘) minimum since that is to minimized. Check

whether 𝑘 or predicted class of the input vector is same as the target class. If the input 𝒙

and the associated weight vector 𝒘𝒌 have the identical class tag, then update the weight

vector by the attraction rule (bring it closer to the input)

66

 𝒘𝒌(𝑛𝑒𝑤) = 𝒘𝒌(𝒐𝒍𝒅) + 𝜼 (𝒙 − 𝒘𝒌(𝒐𝒍𝒅))

If the input 𝒙 and the associated weight vector 𝒘𝒌 have different class tags, then

move them apart by repulsion rule:

 𝒘𝒌(𝑛𝑒𝑤) = 𝒘𝒌(𝒐𝒍𝒅) − 𝜼 (𝒙 − 𝒘𝒌(𝒐𝒍𝒅))

 End For

Reduce the learning rate parameter

End While

Termination of training may depend upon a fixed number of iterations or setting the

minimum threshold of the learning rate.

3.5.2.5 Radial basis function network. The clustered data then can be viewed

as a mapping of inputs to target (classes) and is used to train a radial basis function

network (RBFN) (Buhmann, 2003) for prediction. The RBF network is a substitute to

multilayer perceptron (MLP). The two differences between a MLP and a RBFN are that

a RBFN trains a single layer of weights unlike MLP where all layers are trained. Also

the usual activation function used in RBFN is a Gaussian as a replacement for a sigmoid.

The training phase can be done using gradient descend of the error loss function,

so it is relatively simple to implement. The RBFN is three layered feed-forward neural

network. The first layer is called the input layer, the second layer is called the hidden

layer, and finally the last later is called the output later.

Different kernel functions such as Gaussian, polynomial, and exponential can be

used for hidden layer transfer functions. The network training is divided into two

stages: first determine the weights from the input to hidden layer and subsequently

calculate the weights from the hidden to output layer (Schwenker, Kestler, & Palm,

2001). Weights between the hidden layer and the output layer are adapted during

training.

The cluster centers become the centers of the RBF units. The number of clusters

𝐿, is a design parameter and also determines the number of nodes in the hidden layer.

The centers (acquired by k-means algorithm) are used to compute the centers and widths

67

for each basis function in the hidden neurons (Haykin, 2009). RBFN centers for hidden

nodes activation functions is same a k-means centers. Now the width of each RBF unit

can be calculated using the K-nearest neighbor’s algorithm. A suitable number 𝑘 is

chosen, and the root-mean squared distance between the current cluster center and its 𝑘

nearest neighbors is calculated, and this is the value chosen for kernel width 𝜎 .The

formula used to fix kernel width is

𝜎 = √
∑ (𝑚𝑗 − 𝑚𝑖)2𝑘

𝑖=1

𝑘

Other methods include choosing the width as a ratio of dmax the maximum

distance between the chosen centers, and m the number of centers (Deshmukh &

Gholap, 2012). A training algorithm developed (Chen, Hong, Luk, & Harris, 2009) uses

evolutionary algorithms to construct tunable radial basis function networks and decide

the optimal center points along with the width for each kernel in the hidden neuron.

3.5.3. Making a Decision Based on Current Round of Negotiation. It is

important to make a decision on an offer in every negotiation. To decide this point of

break-off (Baarslag Hindriks, & Jonker, 2014) the SoS manager must decide the

conditions under which an offer will be accepted or rejected. The decision has to be

made to overcome the dilemma of making a sub-optimal offer. Some of the most

effective strategies applied in literature are Bayesian learning agent (Hindriks &

Tykhonov, 2008), agent architecture for multi-attribute negotiation (Jonker, Robu, &

Treur, 2007). Some of the methods in the past that employ fuzzy logic for making

acceptance decisions in negotiations include a fuzzy e-negotiation agents system

(FeNAs) (Kowalczyk & Bui, 2000), and fuzzy logic based intelligent negotiation agent

(fina) in eCommerce (Wang, Shen, & Georganas, 2006).

The decision on a particular offer is based on the cooperativeness of the systems

measured (Baarslag, Hindriks, & Jonker, 2013), system’s willingness to collaborate, and

the SoS’s preference for acquiring that capability. After identifying the class of behavior

the SoS coordinator can use a fuzzy inference engine to decide whether he wishes to

68

accept the systems offer, reject the offer or further negotiate (See Figure 10). The model

used is Multi criteria decision making (MCDM) Dodgson, Spackman, Pearman, &

Phillips, 2009) with 2-tuple fuzzy linguistics (Carlsson & Fullér, 1996).

The decision to accept, reject or negotiate further with a system is based on the

cooperative behavior of the system, willingness to collaborate, and the SoS’s preference

for acquiring that capability. After identifying the class of behavior the SoS coordinator

can use a fuzzy inference engine to decide whether he wishes to accept the systems

offer, reject the offer or further negotiate. Since all the three parameters are difficult to

compute numerically the SoS coordinator has fuzzy linguistic model to aid in decision

making.

The problem is handled as multi-criteria decision making using 2-tuple fuzzy

linguistic model. The fuzzy linguistic approach represents qualitative variables as

linguistic values by use of linguistic variables (Herrera & Martínez, 2000). The 2-tuple

fuzzy linguistic representation model represents the linguistic information by means of a

2-tuple (𝑠, 𝛼) where 𝑠 is a linguistic label and 𝛼 is a numerical value that represents the

value of the symbolic translation.

If a variable can take words in natural languages as its values, it is called a

linguistic variable, where the words are characterized by fuzzy sets defined in the

universe of discourse in which the variables are defined. The linguistic variable is

represented by a set of membership functions.

Definition 1. Let 𝛽 be the result of aggregation of the indexes of a set of labels

assessed in a linguistic term set S. Then, 𝛽 ∈ [0, 𝑔], where 𝑔 + 1 is the cardinality of

the set S.

Let 𝑖 = 𝑟𝑜𝑢𝑛𝑑(𝛽) and 𝛼 = 𝛽 − 𝑖 are two values such that, 𝑖 ∈ [0, 𝑔], and

𝛼 ∈ [−0.5,0.5], 𝛼 is then called the symbolic translation.

Definition 2. The aggregation of the indexes 𝛽 can be converted to 𝑠𝑖 the closest

index label to 𝛽 and 𝛼 the symbolic translation.

∆(𝛽) = (𝑠𝑖, 𝛼) (3.17)

69

3.5.3.1 Ordered weighted averaging operator. Ronald R. Yager (1997)

introduced an aggregation technique called the Ordered Weighted Averaging (OWA)

operators, which are capable of modeling a wide range of aggregation preferences. A

modified version of OWA called the Linguistic Ordered Weighted Averaging Operator

(LOWA) is used here. Let S be a set of 2-tuples, {(𝒔𝟏, 𝜶𝟏),… . , (𝒔𝟏, 𝜶𝒏)} and 𝑾 =

(𝒘𝟏, … . ,𝒘𝒏) be an associated ordered weighting vector that satisfies 𝒘𝒊 ∈ [𝟎, 𝟏] and

∑𝒘𝒊 = 𝟏. Then LOWA for such a set S can be defined as:

∆(∑𝑤𝑖 . 𝛽𝑖

𝑛

𝑖=1

)

The values in the vector 𝜷 are first ordered such that 𝛽1 ≤ ⋯ ≤ 𝛽𝑖 … ≤ 𝛽𝑛

such that 𝑤1 is always linked to the lowest value in the vector 𝜷 and the 𝑤𝑛 is always

linked to the highest. 𝛽 for a linguistic 2 tuple set is previously defined as ∆(𝛽) =

(𝑠𝑖, 𝛼). The process of arriving at the rank of alternatives is done using two processes,

aggregation and comparison. A wide range of 2-tuple aggregation operators have been

developed such as the weighted average operator, the ordered weighted average (OWA)

operator (Wei, 2010). After aggregation a new value of 𝛽 is obtained. This value of 𝛽 is

converted to its 2-tuple representation as explained in the example below.

Example: Let us suppose a symbolic aggregation operation over labels assessed

in S= {𝑠0,𝑠1, 𝑠2, 𝑠3} is such that 𝛽1 = 2.1. The 2-tuple representation of value is:

𝑖 = 𝑟𝑜𝑢𝑛𝑑(2.1) = 2; 𝛼 = 𝛽 − 𝑖 = 0.1; ∆(2.1) = (𝑠2, 0.1)

For comparing or ranking the alternatives is done using the 2-Tuple Comparison

Operators. The comparison of linguistic information represented by 2-tuples is carried

out according to an ordinary lexicographic order. Let (𝑠𝑥, 𝛼1) and (𝑠𝑦, 𝛼1)be two 2-

tuples, then they are compared using the following rules:

• if 𝑥 < 𝑦 then (𝑠𝑥, 𝛼1) is smaller than (𝑠𝑦, 𝛼1)

• if 𝑥 = 𝑦 then

1. if 𝛼1 = 𝛼2 then , (𝑠𝑥, 𝛼1) are (𝑠𝑦, 𝛼1) same

2. if 𝛼1 < 𝛼2 then , (𝑠𝑥, 𝛼1) is smaller than (𝑠𝑦, 𝛼1)

3. if 𝛼1 > 𝛼2 then , (𝑠𝑥, 𝛼1) is greater than (𝑠𝑦, 𝛼1)

70

For example a set S composed of four terms could be where S= {𝑠0 = 𝑉𝐿, 𝑠1 =

𝐿, 𝑠2 = 𝑀, 𝑠3 = 𝐻}shown in Figure 3.21. The first step is to assign a 2-tuple value for

each alternative based on each attribute by the SoS manager as shown in Table 3.2.

Subsequently calculate an aggregated value for each alternative over all attributes using

2-tuple Linguistic Aggregation. Finally all the alternatives are ranked based on this

output. Some definitions and concepts are presented below to clarify the approach.

Figure 3.21. A set of four linguistic terms with their semantics

Table 3.2. General 2-tuple Linguistic Problem

For the sake of ease we assume all 𝛼 the symbolic translation as zero. Then

alternative A1 has an aggregated value for all attributes (P1, P2, P3) as

 ∆ 𝛽11 = (𝑀, 0) => (𝑖 + 𝛼1) = 1, 𝛽11 = 1.

∆ 𝛽12 = (𝐻, 0) => (𝑖 + 𝛼2) = 2, 𝛽11 = 2.

∆ 𝛽13 = (𝐿, 0) => (𝑖 + 𝛼5) = 0, 𝛽11 = 0.

Attributes/Alternatives A1 A2

P1 (𝑠1, 𝛼1) (𝑠3, 𝛼4)

P2 (𝑠2, 𝛼2) (𝑠1, 𝛼1)

P3 (𝑠0, 𝛼5) (𝑠3, 𝛼3)

2-tuple Linguistic Aggregation 𝛽𝐴1 = (𝑠3, 𝛼12) 𝛽𝐴2 = (𝑠2, 𝛼6)

71

𝛽𝐴1 =
1 + 2 + 0

3
= 1; 𝑖 = 𝑟𝑜𝑢𝑛𝑑(1) = 1; 𝛼 = 0; ℎ𝑒𝑛𝑐𝑒 (𝑠𝐴1, 𝛼𝐴1) = (𝑀, 0)

∆ 𝛽21 = (𝑉𝐻, 0) => (𝑖 + 𝛼1) = 3, 𝛽11 = 3.

∆ 𝛽11 = (𝑀, 0) => (𝑖 + 𝛼1) = 1, 𝛽11 = 1.

∆ 𝛽11 = (𝑉𝐻, 0) => (𝑖 + 𝛼1) = 3, 𝛽11 = 3.

𝛽𝐴2 =
3 + 1 + 3

3
= 3.33; 𝑖 = 𝑟𝑜𝑢𝑛𝑑(3.33) = 3; 𝛼 = 0.33; ℎ𝑒𝑛𝑐𝑒 (𝑠𝐴1, 𝛼𝐴1)

= (𝑉𝐻, 0.33)

The aggregation is based on LOWA for a set of 2-tuples. Comparing or ranking

the alternatives is done using the 2-Tuple Comparison Operators and alternative A2 is

higher w.r.t to the rules given. The decision maker would choose alternative A2 over

A1.

On the same note when this approach is applied to the SoS manager it can divide

linguistic terms in classes for making a decision on choosing the alternatives. For

example if the aggregated value of the alternative lies within the set of {𝑠0 = 𝑉𝐿, 𝑠1 = 𝐿

} the alternative is rejected. The SoS manager has a choice of making 3 kinds of

decisions based on the aggregated linguistic terms of the alternatives namely: Decision

of SoS{ Negotiate, Accept, or Reject}.

3.5.4. Proposing an offer. A counteroffer is made to move closer to an

agreement in the multi-attribute offer space. It involves deciding the amount of

concession to be made, taking into account effect of time elapsed so far and the behavior

both the offer proposer and the opponent party. In all this makes quite a challenge to

design offer generating strategy. An SoS coordinator can employ different time

dependent and behavior dependent strategies to generate the next offer once he/she has

arrived at a decision to negotiate further. An alternating protocol of offers and

counteroffers is employed to reach a final decision agreeable to both parties. The

convergence of a negotiation strategy (Yu, Ren, & Zhang, 2013) indicates that the

negotiating agents are certain to come to an agreement if the space of available solutions

within the problem is not an empty set. The following sections give an outline for three

kinds of tactics based on resources, behavior and time (Matos, Sierra & Jennings, 1998).

3.5.4.1 Resource dependent tactics. Resource dependent tactics depend on the

quantity of resource available (Faratin, Sierra, and Jennings, 1998). The tactic aims to

72

become conciliatory with reduction in amount of resources. Resources could be time,

number of systems interested in a particular negotiation or funding availability.

 𝑼(𝒕) = 𝝆 + (𝟏 − 𝝆)𝒆−𝒓𝒆𝒔𝒐𝒖𝒓𝒄𝒆(𝒕)

where 𝒓𝒆𝒔𝒐𝒖𝒓𝒄𝒆(𝒕) is the resource available at time 𝒕.

3.5.4.2 Behavior dependent tactics. Behavior dependent tactics are induced

from the actions of the negotiation opponent (Axelrod, 1984). The tactics include

Relative Tit-For-Tat (Relative-TFT) which accounts for in percentage the behavior

exhibited by the opponent over a certain time period. On the contrary, Random

Absolute Tit-For-Tat (Random-TFT) accounts for the behavior in absolute terms. These

tactics work well under no time restrictions or deadlines.

3.5.4.3 Time dependent tactics. These tactics model the fact that the agent is

likely to concede more rapidly as the negotiation deadline approaches. Two functions

are generally employed for this purpose: the polynomial function and the exponential

function (Faratin, Sierra, & Jennings, 1998). These functions represent an infinite

number of possible tactics, one for each value of 𝜷 (Coehoon and Jennings, 2004). The

parameter 𝜷 needs to be selected to ensure the convexity (or concavity) of the utility

curve. The 𝜷 however must be classified into one of the following three forms to

change the behavior of the equations (Faratin, Sierra, and Jennings, 1998):

𝛽 >> 1 : This choice is made if the opponent is Conceder (reluctant) (SoS starts losing

ground fairly quickly) and function is concave

𝛽 = 1 : This choice is made if the opponent is Linear (SoS concedes equal amount in

each round of negotiation)

0 < 𝛽 < 1 ∶ This choice is made if the opponent is Boulware (SoS concedes slowly till

the deadline is nearly up) and function is convex

For the exact same value (big) of strategy parameter 𝛽 the polynomial function is

supposed to concede quicker at the start than the exponential one after which they

behave similarly (Sierra, Faratin, & Jennings, 1999). 𝛽 can be used in both the equations

listed below to generate the new offer by the SoS coordinator. According to the assigned

class of the systems offer the SoS coordinator can choose to have different values for the

strategy parameter 𝛽. For non-cooperative systems the value of 𝛽 is high and for a very

cooperative system its value should be kept low. Faratin has suggested exponential

73

functions besides with the polynomial function shown below in equations. The common

characteristic among the two functions is that both exhibit convexity w.r.t. t, and their

degree of convexity is determined through the parameter 𝛽.

Polynomial: 𝑉𝑝
𝑆𝑜𝑆(𝑡 + 1) = 𝑉𝑝

𝑆𝑜𝑆(𝑡) + |𝑉𝑝
𝑆𝑜𝑆(𝑡) − 𝑉𝑝

𝑠(𝑡)| ∗ (
𝑡

𝑡𝑚𝑎𝑥
)

1

𝛽𝑠

Exponential: 𝑉𝑝
𝑆𝑜𝑆(𝑡 + 1) = 𝑉𝑝

𝑆𝑜𝑆(𝑡) + 𝑒
((1+

𝑡

𝑡𝑚𝑎𝑥
)

1
𝛽𝑠)∗ln (|𝑉𝑝

𝑆𝑜𝑆(𝑡)−𝑉𝑝
𝑠(𝑡)|)

Here 0 ≤ β𝑆 ≤ 1 is the system’s strategy parameter and t is current round of

negotiation s.t. 𝑡 > 1, 𝑉𝑖
𝑆𝑜𝑆(𝑡) is the SoS’s offer to the system at current negotiation

round t, 𝑉𝑖
𝑠(𝑡) is the system’s offer to the SoS at time t, 𝑉𝑖

𝑆𝑜𝑆(𝑡 + 1) is the SoS’s new

offer to the system (using the equations) and 𝑡𝑚𝑎𝑥 is the maximum number of

negotiations possible (Bahrammirzaee, Chohra, & Madani, 2013).

It is expected that by the use of these equation based offer generations the SoS

manger can respond to a system on each issue. Figure 3.22. gives examples of

concession curves for the polynomial time-dependent family of tactics. The concession

curves assume that the offers range between 5 units and 100 units. So the SoS

coordinator can choose amongst a family of curves to cover the difference. The

boulware curve occurs at 𝛽 = 5, the linerar curve is at 𝛽 = 1 and conceder curve

corresponds to 𝛽 = 0.1.

Nevertheless a negotiator might not just respond aggressively to an aggressive

opponent or quickly conceding to as conceding opponent. There are can be number of

behaviors theta are possible as shown in Figure 3.23. based on the negotiator’s attitude

(Baarslag, 2014).

74

Figure 3.22. Concession Curves for the Polynomial Time-dependent Family

For example, the first tactic can be described as matching the exact style of

negotiation of the opponent. Where a negotiator may cooperate (or conceding) when up

against a cooperative opponent, on the other hand negotiator may behave competitively

(not yielding easily) with a competing system (aggressive). This negotiator can be

termed as a matcher.

The other contrary tactic is for a negotiator to behave in complete contrast to the

opponent. In this tactic negotiator is cooperative towards a non-cooperative (competing)

opponent. The negotiator also adopts non-yielding strategy (aggressive) to its

cooperative opponents. Such a negotiator can also be called an inverter. In literature four

types of behaviors are considered prominent, namely, Inverter, Conceder, Competitor,

and Matcher.

0

20

40

60

80

100

120

0 5 10 15

SoS Coordinator
offer

Time taken to Negotiate

Boulware β =5

Conceder β =0.1

Linear β =1

75

Figure 3.23. Four styles of negotiation coordination

3.6. OVERALL NEGOTIATION PROTOCOL

The overall negotiation protocol can be illustrated as a set of statements as

follows:

1) Send an offer to all systems simultaneously

2) Receive a counter-offer from all systems

3) Model the opponent behaviour-(clustering)

4) First make decision on set of systems with capability 𝑖 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1 𝑡𝑜 𝑀

5) Need to select at least one system from each capability 𝑖

a. Select a system with the best offer amongst them for the same capability

if no system within a particular capability class is accepted

b. Do so for each capability 𝑖 to be acquired

c. Form the architecture using the selecting systems and the interfaces

Competitor/

Competitor

MATCHER

Conceder/

Conceder

MATCHER

Competitor/

Conceder

INVERTER

Conceder/

Competitor

INVERTER

OPPONENT

N
E

G
O

T
IA

T
O

R

76

6) Evaluate the overall architecture quality based on the systems selected in one

epoch

7) If the architecture is not of a predefined quality then go for a second epoch for

systems not yet selected

The model described here is a decision making aid for the SoS manager. It does

not so much find the best solution to designing a SoS, as help the manager explore the

influence of the various constraints on the shape of a reasonable solution. The models

described can be used in conjunction with others to explore the SoS context and goals.

This will help in developing SoS architectures including the full range of

candidate systems and their interfaces. Our attempt has been to produce a holistic

architecting methodology that is reconfigurable and has models that are adaptive to the

environment.

The next sections describe the implementation of the model on search and rescue

(SAR) SoS scenario.

77

4. COMPUTATIONAL INTELLIGENCE MODEL IMPLEMENTATION

To implement the architecture a Coast Guard Search and Rescue (SAR) problem

serving the Alaskan coast region was selected. A brief introduction of SAR is given in

section 4.1. For further details please refer to the integrated model structure report in

volume 1 and 2 of FILA-SoS version 1.0.

In a SAR scenario a whenever a vessel in distress, the regulation of the sea

requires mariners to reach out for help. This help comes in the form of a large number of

disparate systems joining in an ad hoc congregation thus forming a SoS. The concept

graphic or OV-1 is shown in Figure 4.1.

Figure 4.1. Operational View 1 for Search and Rescue scenario

78

4.1. PROBLEM STATEMENT

The overarching purpose of SoS in this case is a Coast Guard SAR capability

within the Sea of Alaska was selected as the problem. The Coast Guard SoS has

numerous systems with multiple capabilities such as cutters, aircraft, helicopters,

communication systems, and control centers each different form the other and available

from a number of stations in the area. In addition, the SoS comprises of systems such as

fishing vessels, unmanned aerial vehicles (UAVs), civilian craft, and commercial to

provide support in the event of a disaster strike (Breivik, Allen, Maisondieu, & Olagnon,

2013). The communication systems enable coordination of the sensing and rescuing

capabilities of each vehicle.

The data and contextual information was collected from various Coast Guard

documents and news stories about maritime rescues (Ullman, O'Donnell, Edwards, Fake,

& Morschauser, 2003). A sample SAR SoS with 22 systems, with 5 capabilities is

formed as shown in Table 4.1 and Figure 4.1.

This section explains the variables defined in context of the mission. Information

required for architecture generation of a Search and Rescue (SAR) operation used to

solve the Acknowledged SoS architectural evolution problem involves the overarching

capability C: A Coast Guard SAR capability within the Sea of Alaska. The five sub-

capabilities of the systems selected include 𝑐𝑗: j ∈ J, J= {1, 2,…, 5}. For details refer to

Table 4.1 for constituent system capabilities. The systems selected to participate in the

SoS, 𝑠𝑖: i ∈ I, I= {1, 2,…, 22} can be referred to in Table 4.1. and Table 4.2. The

information for variables such as performance of each system 𝑃𝑖, funding allocated to

each system 𝐹𝑖, deadline for preparation 𝐷𝑖, interface cost 𝐼𝐶𝑖, and operations cost 𝑂𝐶𝑖

can be referred from Table 4.2. There are five key performance attributes selected for

the SoS such as 𝐾𝑃𝑟 : r ∈ R, R= {1, 2,…, 5} which are listed as :

 𝐾𝑃1 = 𝑃𝑆𝑜𝑆 : Performance of SoS

 𝐾𝑃2 = 𝐴𝑆𝑜𝑆 : Affordability of SoS

 𝐾𝑃3 = 𝑅𝑆𝑜𝑆 : Robustness of SoS

 𝐾𝑃4 = 𝑀𝑆𝑜𝑆 : Modularity of SoS

 𝐾𝑃5 = 𝑁𝐶𝑆𝑜𝑆 : Net-Centricity of SoS

79

Other related information required for SoS architecture generation is 𝐿𝑉𝑖: the

systems performance among participating systems based on ability to search and provide

assistance and 𝑆𝑃𝑖: the systems’ speeds in air or water can also be inferred form Table

4.2. The three negotiation attributes p= {1, 2, 3} for bilateral negotiation are:

𝑁𝐴1 =Funding, 𝑁𝐴2 =Deadline, and 𝑁𝐴3 =Performance.

The following sections describe the implementation of the meta-architecture

generation, architecture assessment and implementation. The Figure 3.4. describes the

other modules used in conjunction. The individual models presented in the next sections

are part of the version 1.0 of FILA-SoS.

4.2. META-ARCHITECTURE GENERATION

This section describes the meta-architecture generation problem in terms of key

performance attributes:

Optimize 𝑭 = {𝑓𝐾𝑃1
(𝒔, 𝑰𝑭), 𝑓𝐾𝑃2

(𝒔, 𝑰𝑭), 𝑓𝐾𝑃3
(𝒔, 𝑰𝑭), 𝑓𝐾𝑃4

(𝒔, 𝑰𝑭), 𝑓𝐾𝑃5
(𝒔, 𝑰𝑭) }

where 𝑓𝐾𝑃𝑟
(𝒔, 𝑰𝑭) is the value of the key performance attribute 𝑟 for decision variables

𝒔 and 𝑰𝑭. A meta-architecture has to be selected from the systems in Table 4.1. The

table gives the name of participating systems and the capabilities possessed by them.

Table 4.1. Types of the systems and capabilities present in the SoS

SysNo Type No of cap No Capability Name

𝑠1 and 𝑠2 Cutter 2,5 𝑐2 High Speed

𝑠3 and 𝑠4 Helicopter 2,5 𝑐2 High Speed

𝑠5 and 𝑠6 Aircraft 2,5 𝑐2 High Speed

𝑠7 to 𝑠12 UAV 1,5 𝑐1 IR & Night Vision

𝑠13 to 𝑠16 Ship or Vessel 3,5 𝑐3 Deliver Medical Aid

𝑠17 and 𝑠18 Coordination
Control 4,5 𝑐4 RF Direction Finding

𝑠19 and 𝑠22 Communication 5 𝑐5 Communication Systems

80

Table 4.2. Input variables required for SAR meta-architecture generation

In this work, two evolutionary algorithms were used, genetic algorithm and binary

particle swarm optimization.

4.2.1. Genetic Algorithm. A genetic algorithm (GA) mimics the biological

evolution process to solve constrained optimization problems. The GA is a good

optimizer for large scale optimization problems with many decision variables. The basic

idea is to improve the solution based on the objective function at each iteration through

crossover and mutation of parent solutions. Over successive generations, the population

converges toward a near optimal solution.

The important parameters of GA include crossover type (recombination operator

𝑟𝜽𝒓), crossover rate, mutation type (mutation operator 𝑚𝜽𝒎), mutation rate and method

to choose (selection process 𝑠𝜽𝒔) parents to crossover. Crossover rate defines how often

will be crossover performed. In case of no crossover, offspring is an exact copy of its

SysNo Type Capability

1 Cutter 2 0.03 0.2 12 1 8.3 6

2 Cutter 2 0.03 0.2 12 1 8.3 6

3 Helicopter 2 0.1 0.2 20 1 10.0 8

4 Helicopter 2 0.1 0.2 20 1 10.0 8

5 Aircraft 2 0.1 0.5 10 1 10.0 10

6 Aircraft 2 0.1 0.5 10 1 10.0 10

7 UAV 1 0.1 0.1 7 1 1.7 2

8 UAV 1 0.1 0.1 7 1 1.7 2

9 UAV 1 0.1 0.1 7 1 1.7 2

10 UAV 1 0.1 0.1 7 1 1.7 2

11 UAV 1 0.1 0.1 7 1 1.7 2

12 UAV 1 0.1 0.1 7 1 1.7 2

13 Fish Vessel 3 0.03 0.5 10 1 5.0 4

14 Fish Vessel 3 0.03 0.5 10 1 5.0 4

15 Fish Vessel 3 0.03 0.5 10 1 5.0 4

16 Civ Ship 3 0.05 2 8 1 6.7 4

17 Coord Ctr 4 0.05 0.5 5 1 0.5 0

18 Coord Ctr 4 0.05 0.5 5 1 0.5 0

19 Comm 5 0.02 0.03 1 0 0.5 0

20 Comm 5 0.02 0.03 1 0 0.5 0

21 Comm 5 0.02 0.03 1 0 0.5 0

22 Comm 5 0.02 0.03 1 0 0.5 0

𝐼𝐶𝑖 𝑂𝐶𝑖 𝑃𝑖 𝐷𝑖 𝐿𝑉𝑖 𝑆𝑃𝑖

81

parents. The crossover type used in this work is two-point crossover. Crossover occurs

between two individuals or chromosomes. Here two crossover points are selected on a

binary chromosome.

 Mutation rate defines the frequency of bits of chromosome to be mutated.

Mutation type used here is bit flip. Crossover can be thought of as a global search

parameter whereas mutation can be referred to as a local search parameter. The parents

are selected using the elitism method. There are many selection procedures (Sivaraj &

Ravichandran, 2011); the one used here is elitism. In elitism method, a predefined

percentage (usually 50%) of new population is constructed using the best chromosomes

ranked by fitness value. This prevents loss of any good solutions, which might have

been lost due to crossover and mutation. Rest of the population is generated by mutating

the parent chromosomes of the current population.

The pseudo code of the genetic algorithm as applied to the SAR is illustrated

below:

Step 1: Generate a random population 𝑃(0) of size 𝜇 individuals (chromosomes) with a

chromosome size of 𝑁 + 𝑁 ∗ (𝑁 − 1)/2 where 𝑁 = 29

Step 2: Evaluate the fitness of each chromosome in the population through a fitness

function 𝝓 to calculate the fitness value.

Step 3: Create a new population 𝑃(𝑡) by iterating following steps until the new

population is complete

Selection: Select two parent chromosomes from a population according to their fitness

(selection process𝜽𝒔 = 𝑒𝑙𝑖𝑡𝑖𝑠𝑚)

Crossover: With a crossover probability cross over the parents to form a new offspring

(𝑃′(𝑡) = 𝑟𝜽𝒓(𝑃(𝑡)))

Mutation: With a mutation probability mutate new offspring at each position in

chromosome (𝑃′′(𝑡) = 𝑚𝜽𝒎(𝑃′(𝑡))

Accepting: Place new offspring in a new population 𝑃′′(𝑡)

Replace: Use new generated population for a further run of algorithm

Test: If the best fitness value does not change after certain iterations, stop, and return the

best solution (highest fitness valued chromosome) in current population

𝑃′′(𝑡) = {𝝓(𝑎′′1(0)),… . , 𝝓(𝑎′′𝜇(0)) };

82

Loop Go to step 2

4.2.2. Binary Particle Swarm Optimization. In the original particle swarm

optimization (PSO) the solutions are represented as a swarm of particles moving through

the search space. A PSO algorithm preserves a swarm of individuals (called particles).

Each individual (particle) represents an architecture solution. Particles try to follow the

path of neighboring particles. Each particle is initialized with certain coordinates in

problem space and a velocity. Each particle records its coordinates associated with the

best solution (fitness) it has achieved so far. This value is called “pbest”. Another “best”

value that is tracked by a particle is the best value, obtained so far by any particle.

The parameters 𝑐1 and 𝑐2 are coefficients that regulate the relative velocity

toward global and local best. Parameters 𝑟1 and 𝑟2 are two random numbers uniformly

distributed in [0, 1]. The velocity vector 𝑉𝑚𝑎𝑥. is a bound on the velocities of particles on

each dimension. In case of exceeding the velocity the particle is assigned the velocity of

𝑉𝑚𝑎𝑥. In a D-dimensional search space the position of 𝑖𝑡ℎ , where 𝑖 = {1, . . , 𝑁},

particle of the swarm can be represented by a D-dimensional vector,

𝑥𝑖 = (𝑥𝑖1 ,…, 𝑥𝑖𝑑 ,…, 𝑥𝑖𝐷). Similarly the velocity can be expressed as

𝑣𝑖 = (𝑣𝑖1 ,…, 𝑣𝑖𝑑 ,…, 𝑣𝑖𝐷). The variables used in PSO are defined as follows:

𝑐1 : Self learning Factor

𝑐2 : Swarm learning Factor or social factor (It is suggested to maintain 𝑐1 + 𝑐2 =

4)

𝑟1, 𝑟2 : Random Number between 0 and 1used to maintain the diversity of the

population

𝑝𝑖𝑑 :Personal Best Position of the 𝑖𝑡ℎ particle in 𝑑𝑡ℎdimension

𝑝𝑔𝑑 :Global Best Position of the 𝑔𝑡ℎ particle in 𝑑𝑡ℎdimension

𝑣𝑖𝑑 (𝑡): The current velocity of the 𝑖𝑡ℎ particle in 𝑑𝑡ℎdimension at time 𝑡

𝑣𝑖𝑑 (𝑡 + 1): The new velocity of the 𝑖𝑡ℎ particle in 𝑑𝑡ℎdimension at time 𝑡 + 1

𝑥𝑖𝑑 (𝑡): The current position of the 𝑖𝑡ℎ particle in 𝑑𝑡ℎdimension at time 𝑡

𝑥𝑖𝑑 (𝑡 + 1): The new or updated position of the 𝑖𝑡ℎ particle in 𝑑𝑡ℎdimension at

time 𝑡 + 1

𝑤 : Inertia Weight (The Inertia Weight determines the contribution rate of a

particle’s previous velocity to its velocity at the current time step)

83

𝑉𝑚𝑎𝑥=-𝑉𝑚𝑖𝑛=4

Particle position and velocity is updated using the equations given below:

𝑣𝑖𝑑 (𝑡 + 1) = 𝑣𝑖𝑑 (𝑡) + 𝑐1𝑟1 (𝑝𝑖𝑑 -𝑥𝑖𝑑 (𝑡)) + 𝑐2𝑟2 (𝑝𝑔𝑑 -𝑥𝑖𝑑 (𝑡))

𝑥𝑖𝑑 (𝑡 + 1) = 𝑥𝑖𝑑 (𝑡) + 𝑣𝑖𝑑 (𝑡 + 1)

The number of particles ranges from 20 - 100. Binary particle swarm

optimization (BPSO) algorithm is a variant of the original PSO where the decision

variables are binary in nature. For each particle, a binary value of 0 or 1 is allocated with

a probability of 0.5 for all dimensions. The initial velocity of the particles in all

dimensions is allocated using

𝑣𝑖𝑑 =𝑉𝑚𝑖𝑛 + (𝑉𝑚𝑎𝑥-𝑉𝑚𝑖𝑛) ∗ 𝑟𝑎𝑛𝑑()

A sigmoid function is used to scale the velocities between 0 and 1. These

velocities are then used to update the position of the particles as a binary number. The

concept is explained in the equations.

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑣𝑖𝑑) =
1

1+𝑒−𝑣𝑖𝑑
 ;𝑥𝑖𝑑 = 1 𝑖𝑓 𝑈(0,1) < 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑣𝑖𝑑) ; 𝑥𝑖𝑑 =

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ;

The pseudo code of the BPSO is illustrated below:

 I) for each generation:

 Initialize particles in the population with a velocity and position

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑃(0) = {𝑎1(0), … . , 𝑎𝜇(0) } , ∈ 𝑰𝝁

 II) For each particle in swarm:

1. Calculate fitness value (𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝝓)

2. If the fitness of particle is better than the best fitness value (pBest) in its history,

set the current value as the new pBest to 𝑝𝑖𝑑

3. Also set global best value as the new gBest to 𝑝𝑔𝑑 for all particles or a

neighborhood

4. Calculate particle velocity according to the velocity equation

5. Apply the velocity constriction

6. Update particle position according to the position equation

84

End While maximum iterations or minimum error criteria is not attained.

4.2.3. Fuzzy Evaluator. The fitness calculation is explained in this section.

Figure 4.2. illustrates the modular fuzzy net process. It is used for to assessing the fitness

of the of individual architecture instances (chromosomes). First, we calculate the values

of inputs that are required for each KPA (e.g., affordability, performance, and net-

centricity). Crisp values for the KPAs are then calculated using Type I fuzzy rules.

These rules are based on the stakeholder’s views. For example, a rule can be written that

states the following: “If operations cost is high and the interfacing cost is high, then

affordability is low”. These fuzzy rules can be used to assign a crisp number to the

affordability of the overall architecture. Each of the KPAs are then modeled as interval

type II fuzzy sets (IT2FS) so that a crisp value can be obtained for the architectures

overall quality.

 IT2FSs have been shown to be more capable of modeling uncertainties than are

T1 FSs. Each KPA with its inputs is referred to as a module. Type I FSs are used in

modules to reduce computational time. The rules of the fuzzy evaluator are adjustable to

allow for differences between the stakeholders’ views. This adjustability makes fuzzy

net usable for a larger section of perspectives that share the same domain problem. This

approach can also be applied to model many other domains. The fuzzy network helps

bring in uncertainties at lower levels of the KPA. KPAs of the SoS can be provided with

different levels of linguistic granularization such as:

 Affordability: very costly, costly, cheap

 Modularity: little, average, good

 Performance: very low, mediocre, great

 Robustness: less, ordinary, excellent

 Net Centricity: low, medium, high

Triangular type-2 membership functions were used for all attributes. Twenty-five

rules were created to link these five objectives to four fuzzy attributes. These statements

help clarify stakeholders perspectives. Figure 4.3. represents the kiviat chart (visually

displays a set of metrics) for the second rule to illustrate the concept. It explains

architecture is too risky if it fails to meet more than 70% of key performance parameters.

85

Figure 4.2. The fuzzy nets to evaluate architecture’s quality

Figure 4.3. A Kiviat chart of Architecture Attributes for SoS Assessment

4.2.4. Fitness Evaluation of the Population. A fuzzy fitness evaluation is

proposed, which uses a fuzzy estimator that is parallel in structure, simple in operations,

and thus less in computation time to evaluate the fitness of individuals and reduces the

computation time to solve a real problem. The fuzzy estimator can be adaptively trained

to approximate the fitness function more accurately. The SoS manager may not want all

systems to be present simultaneously when s/he is designing a mission. The correct set

Performance

Net Centricity

RobustnessModularity

Affordability

Architecture Attributes Assessment

Too Risky

Architecture

86

of systems should be chosen such that all ten capabilities are acquired, while trying to

maximize overall performance and minimize the cost of acquisition.

The architectures are assessed according to a fitness function. The fitness

function is a multi-objective problem. A number of independent functions need to be

simultaneously addressed, to make up the fitness function. Five KPAs are the

independent functions that will be used in this example for assessing the overall SoS

architecture (Hilliard, Kurland, & Litvintchouk, 1997). The following sections explain

each KPA in detail and how it will be calculated for each architecture.

4.2.4.1 Performance. The architecture’s performance is calculated as fuzzy

aggregate of 𝑷𝑨𝒊 , 𝑳𝑽𝒊, and 𝑺𝑷𝒊. This method helps in obtaining a comprehensive view

of the SoS performance in the areas that count in finding and rescuing people in

distress. E.g., aircraft may be able to search more area faster, but cannot stop and render

assistance; cutters are slower, but better at rendering assistance, and helicopters are

good at both, but with a shorter range.

The membership functions used are Gaussian to aggregate the inputs for

calculating the performance as depicted in Figure 4.4. The output is represented by

triangular membership functions. The figure is generated through MATLAB. Nine rules

were created to map the inputs to outputs. A rule used is written as: "If the Area covered

is less and lives saved is little, and Rescue time is small then the Performance is low."

These rules are able to generate a non-linear surface when combined as shown in

Figure 4.5. The tradeoffs between various inputs are captured through this surface.

Using the Surface Viewer in MATLAB it presents with a three-dimensional curve. Only

two inputs can be selected at a time whereas the third input remains constant. In the

figure performance in terms of area covered is constant whereas rescue time and lives

saved is variable.

87

Figure 4.4. Fuzzy membership functions for Performance Attribute Assessment

Figure 4.5. Non-linear surface of tradeoffs between rescue time and lives saved

88

4.2.4.2 Net-centricity. Net-centricity is a property of SoS that relates to the

availability ability to share of information; it is central to network-centric operations

(Fry & DeLaurentis, 2011). The degree of net-centricity is a measure of the influence of

net-centricity toward achieving the SoS objectives. The net-centricity of an architecture

is based on interoperability of participating systems and centralized common

communication for sharing information. Interoperability is defined as sharing an

interface with other constituent component systems. Communication measures whether

or not these systems are coordinating among themselves through a common control

station or communication channel. In this problem, communications systems channels

are numbered systems from 19 to 22.

Interoperability = ∑ ∑ 𝑠𝑖 ∗ 𝑠𝑘 ∗ 𝐼𝐹𝑖𝑘
𝑵
𝒌=𝟏

𝑵
𝒊=𝟏 (4.1)

Communication = ∑ ∑ ∅ ∗ 𝐼𝐹𝑖𝑘
𝟐𝟗
𝒌=𝟐𝟔

𝑵
𝒊=𝟏 ∗ 𝐼𝐹𝑘𝑘′ (4.2)

𝐼𝐹𝑖𝑘 and 𝐼𝐹𝑘𝑘′ aid in determining whether or not an interface exists between

either systems i and k or systems k’ and k, respectively. The metric used tries to capture

the number of channels present that can transfer information within the SoS. If either of

the two systems is not present, the metric is zero. If an interface exists between the two

systems the net-centricity of SoS increases. Net-centricity increases further if the any

two systems communicate through systems numbered 26 to 29. This is shown in

Equation 4.2 where by multiplying (1≤ ∅ ≤ ∞) enhances the communication capability.

Finally, if both systems are present but neither of them interface either among

themselves or through the communication systems, the net-centricity is zero. The

concept of interoperability presented here is simplistic. Interoperability can be viewed as

having multiple dimensions from sharing and interface, to sharing data in the same

format, to operational compatibility, exchanging useful information, systems’ having

trained together, and so on. Figure 4.6. explains a method to calculate net-centricity

form the two metrics communication and interoperability.

After calculating interoperability and communication individually, they are

fuzzified using Gaussian membership functions. Later, triangular membership functions

are used to calculate the overall net-centricity. A rule used is written below to explain

89

the idea "If the communication is more and interoperability is high, then the net-

centricity is excellent." Figure 4.7. depicts the non-linear surface created by such rules.

Figure 4.6. Fuzzy membership functions for net-centricity Attribute Assessment

Figure 4.7. Non-linear tradeoffs surface between interoperability & communication

90

4.2.4.3 Affordability. Affordability is dependent on the sum of operation costs

of the systems present times the number of capabilities possessed by that system. In

addition, the interface development cost is systems present times the number of

interfaces that specific system makes with other systems also present (Figure 4.8.).

Operations cost= ∑ 𝑂𝐶𝑖 ∗ 𝑠𝑖 ∗ ∑ 𝑎𝑖𝑗
𝑀
𝑗=1

𝑁
𝑖=1 (4.3)

Interfaces cost= ∑ 𝐼𝐶𝑖 ∗ 𝑠𝑖 ∗ ∑ 𝐼𝐹𝑖𝑘
𝑁
𝑖=1,𝑘≠𝑖

𝑁
𝑠=1 (4.4)

Figure 4.8. Fuzzy membership functions for Affordability Attribute Assessment

The operations cost and the interfaces cost are the two inputs and the total cost is the

output. Inputs are represented by Gaussian membership functions whereas the output is

a triangular membership function. A rule used is written as: "If the operation cost is

cheap and interface cost is more, then the Affordability is good."

4.2.4.4 Robustness. One of the matrices within spectral measures of a graph is

known as Laplacian (an SoS can be described as a graph that has vertices as systems and

interfaces as edges.) The Laplacian (L) is calculated as the difference between the degree

matrix (denoted by ∆) and the adjacency matrix (denoted by A). The second smallest

eigenvalue λ2 of the Laplacian is known as algebraic connectivity (Jamakovic & Uhlig,

2007). This value is used to assess the robustness of the graphs structure to external

91

perturbations. The algebraic connectivity is equal to zero if and only if the graph is

unconnected. (Fiedler, 1973) proved that the range of the value of λ2 is 𝟎 ≤ 𝛌𝟐 ≤

𝑵

𝑵−𝟏
 𝑫𝒎𝒊𝒏 , where N is the number of vertices and 𝑫𝒎𝒊𝒏 is the minimum degree of the

graph. A MATLAB toolbox was used to calculate the metrics (Bounova & de Weck,

2012).

4.2.4.5 Modularity. Modularity measures the structure of networks and graphs.

It is used to compute the maximum possible indivisible graphs (either groups, clusters or

communities) within a network. Here, Q (modularity metric) = the number of edges

within groups subtracted from expected number of edges within group for a random

graph with same node degree distribution as the given network. The Newman Girvan

algorithm (Newman, 2006) is used to calculate it. The value of modularity is between '-

1' and '1’. The networks modularity increases as this value increases.

4.3. META-ARCHITECTURE RESULTS

This study generated two models: a binary genetic algorithm (GA) that was

combined with a fuzzy modular net fitness evaluator (Huang & Xie, 1998) and a binary

particle swarm optimization (BPSO) (Kennedy & Eberhart, 1997) that was combined

with the same fitness evaluator. These models were compared to one another in an

attempt to generate better architectures. A fuzzy assessor to evaluate the fitness of

individual architectures as compared to other techniques is flexible and reduces the

computational time.

4.3.1. Genetic Algorithm Application. The process of natural selection inspired

the creation of GA. The GA employed here utilizes a roulette wheel-type of selection to

generate offspring’s and an elitist approach for forming the new population (Konak,

Coit, & Smith, 2006). The parameters used are described in Table 4.3.

Each model was run for 100 generations and 50 times to obtain a better assessment of

the stochastic techniques used. The model with the highest architecture value in 50

iterations is presented here in each case. Increasing the generations to 300 did not affect

the maximum architecture quality. Hence, it was reasonable to keep the same

architecture’s quality that was obtained in smaller simulation time. The population size

was kept as 50, probability of mutation is 0.1, size of dormant selection for next

92

population is kept as 2, and lastly the population fraction maintained at the end of each

epoch was 0.5.

The results presented in Figure 4.9. are architecture values over 100 generations

using the GA. The results did not improve with increasing the generations to 200. The

set of systems selected and the interfaces is presented as circular graph in Figure 4.9.

The systems not selected are marked as red asterisks. The paramters used in GA are

listed in Table 4.3. Systems selected are named in Table 4.4.

Table 4.3. The parameters used in GA

Generations 100,200

Population Size 50

Probability of Mutation 0.1

Tournament Selection Size 2

Population fraction kept for next generation 0.5

The best architecture obtained by GA is illustrated in Figure 4.9. A total number

of 11 systems were selected and edges show the interfaces that exist amongst them.

Each system and its capabilities are listed for comparison in Table 4.4. The architecture

quality history obver many generations is shown in Figure 4.10.

93

Table 4.4. Systems and capabilities selected in best architecture by GA

Figure 4.9. Systems selected in the SAR-22 SoS architecture through GA

Sys1

Sys2

Sys3

Sys4

Sys5
Sys6Sys7

Sys8

Sys9

Sys10

Sys11

Sys12

Sys13

Sys14

Sys15

Sys16
Sys17 Sys18

Sys19

Sys20

Sys21

Sys22

Systems Selected by GA Capabilities Provided

Systems 1,2 -Cutter 2

Systems 3-Helicopter 2

Systems 5-Aircraft 2

Systems 7,8,9,11,12-UAV 1

Systems 15-Fish Vessel 4

Systems 17 –Coordination
Control 4

Systems 22-Communication 5

94

Figure 4.10. SoS architectural quality over generations through GA

4.3.2. BPSO Application. PSO was inspired by the social behavior of bird

flocks and fish schools (Coello, 1999). PSO algorithms start with a group of a randomly

generated population (particles in PSO). Population individuals are evaluated by a

fitness function. Both update the population and search based on the best value

achieved. PSO does not have genetic operators (e.g., crossover and mutation). Particles

update is based on individual position, velocity and on the best position and velocity of

the swarm leader. All the above procedures are valid for PSO and BPSO.

The major difference between BPSO with real-valued version is that velocities of

the particles are defined in terms of probabilities that a bit will change to one or zero.

Usually a sigmoid function is used to map all real valued velocities to the range of [0, 1].

The number of iterations was usually 100, population size was kept at 50, cognitive and

social parameters were both equal to 2, and constriction factor was 1.

The maximum and minimum velocity was maintained between -4 and 4, and

inertia weight decreased linearly based on number of iterations. These are all standard

parameters in PSO. The parameters used for BPSO are listed in Table 4.5. The best

architecture obtained is depicted in Figures 4.11. and 4.12. Each system and its

capabilities are listed for comparison in Table 4.6.

0 20 40 60 80 100
3.5

4

4.5

5

5.5

6

6.5
SoS SAR Archietcture Value Solution History

number of Generations

va
lu

es
 o

f t
he

 q
ua

lit
y

of
 o

ve
ra

ll
ch

ro
so

m
e

max

mean

best

95

Table 4.5. The parameters used in BPSO

Iterations 100,200

Population Size 40

Cognitive Parameter 2

Social Parameter 2

Constriction Factor 1

[velocity min, velocity max] [-4, 4]

Inertia Weight (Maximum iterations-Current iteration)/
Maximum iterations

Figure 4.11. Systems selected in the SAR-22 SoS architecture through BPSO

Sys1

Sys2

Sys3

Sys4

Sys5
Sys6Sys7

Sys8

Sys9

Sys10

Sys11

Sys12

Sys13

Sys14

Sys15

Sys16
Sys17 Sys18

Sys19

Sys20

Sys21

Sys22

96

Figure 4.12. SoS architectural quality over generations through PSO

Table 4.6. Systems and the capabilities in the best architecture by the PSO

The results from the BPSO can be considered as the first wave of meta-architecture. The

following sections will be based on the results obtained from the BPSO.

Systems Selected by BPSO Capabilities Provided

Systems 1,2-Cutter 2

4-Helicopter 2

5,6-Aircraft 2

Systems 8, 9,12-UAV 1

Systems 13,15,16 -Fish Vessel 3

Systems 17 –Coordination
Control 4

Systems 20, 21-Communication 5

0 20 40 60 80 100
3.5

4

4.5

5

5.5

6

6.5

7
SoS SAR Archietcture Value Solution History

number of Generations

v
a
lu

e
s

o
f

th
e

 q
u

a
lit

y
 o

f
o

v
e
ra

ll
ch

ro
s
o

m
e

max

mean

best

97

4.4. NEGOTIATION APPLICATION

This section describes the techniques used by SoS manager to model the

opponent for negotiations. A database of previous offers and counteroffers is required to

implement the techniques utilized. In the current settings this approach does not involve

collecting of data and the model structure is not universal. Based on the data involved

the techniques might need to be modified to adapt to the scenarios.

Three system negotiation models namely; cooperative system negotiation model,

non-cooperative system negotiation model, and semi-cooperative system negotiation

model, have been previously used to generate the first round of negotiations. Volumes 5,

6, and 7 SERC describe the systems negotiation models.

The Cooperative System Negotiation Model is described in Volume 5 of the

SERC report. The systems following this model behave cooperatively while negotiating

with the SoS manager. The model of cooperative behavior is based on agent preferences

and the negotiation length. Each system agent has two inherent behaviors of

cooperativeness: Purposive (normal behavior) and Contingent (behavior driven by

unforeseen circumstances). The approach models the tradeoff between the two

behaviors for the systems. A fuzzy weighted average approach is used to arrive at the

final proposed value.

 Non-Cooperative System Negotiation Model is illustrated in Volume 6 of SERC

report. In this model systems behave in their self-interest while negotiating with the SoS

coordinator. A mathematical model of individual system’s participation capability and

self-interest negotiation behavior is created. This methodology is an optimization-based

generator of alternatives for strategically negotiating multiple items with multiple

criteria. Besides, a conflict evaluation function that estimates prospective outcome for

identified alternative is proposed.

The third and last system negotiation model is described in Volume 7, which

illustrates the Semi-Cooperative System Negotiation Model. It exhibits the capability of

being flexible or opportunistic: i.e., extremely cooperative or uncooperative based on

different parameter values settings. A Markov-chain based model designed for handling

uncertainty in negotiation modeling in an SoS. A model based on Markov chains is used

for estimating the outputs. The work assigned by the SoS to the system is assumed to be

98

a ``project’’ that takes a random amount of time and a random amount of resources

(funding) to complete.

4.4.1. Hierarchical Clustering. The scale function in R was used to both

compute and standardize the difference between the offer made by the SoS and the

counteroffers of the systems. This standardized data is then used for unsupervised

clustering operations. Hierarchical clustering (Langfelder, Zhang, & Horvath, 2008) was

conducted on the data to clarify the number of clusters that may be present. Algorithms

for hierarchical clustering are generally either agglomerative, in which one starts at the

leaves and successively merges clusters together; or divisive, in which one starts at the

root and recursively splits the clusters. Agglomerative algorithms begin with each

element as a separate cluster and merge them into successively larger clusters. Divisive

algorithms begin with the whole set and proceed to divide it into successively smaller

clusters. It depends on the problem to use either an Agglomerative or Divisive approach.

In my work since we are trying to model the behavior of the opponent which is

unknown, we expect to have many behaviors. The numbers of behaviors will increase

with the number of issues involved in negotiation. It would make more sense to start

with assuming each data point (or offer) obtained from the systems is a different

behavior. Therefore we used the Agglomerative approach. Although even if we start

with the divisive approach I think we should arrive at the same number of optimal

clusters.

 The method used here Ward's method began with n clusters of size 1 and iterated

until all of the observations were incorporated into one of the clusters. Ward’s method

uses variance as a substitute of distance metrics or measures of association.

Figures 4.13. list all of the samples in the clustering dataset. It also indicates at

what level of similarity any two clusters were joined. Horizontal lines indicate the

distance at which clusters were joined. The first option would be a line just above a

height of thirty, creating four clusters. Other options include any horizontal line below

that level will increase the cluster size to more than seven. Seven negotiation behaviors

are not expected to be present in the data. Therefore, the first option is chosen.

R command cutree(fit, k=5) can draw red borders around the k clusters in the

dendrogram displayed in Figure 4.14.

99

Figure 4.13. A dendrogram by Ward method showing four major clusters

Figure 4.14. Four red boxes over the major clusters in the dendrogram

4.4.2. K-means clustering. All K-means clustering (MacQueen, 1967) required

was the number of clusters (k) to be given as input. The results gathered from the

100

dendrogram indicated to attempt k-means clustering with an input of 4 clusters in R.

Another confirmation comes from Figure 4.15. which plots the within groups sum of

squares by number of clusters extracted (Elbow method). It helped determine the

appropriate number of clusters for k means by looking for a bend in the plot, which in

this case seems to fall around the mark of 4 clusters (Everrit & Hothorn, 2009).

The number of points used in k means was 110, the number of dimensions was 3,

and the number of expected classes is 4. The result had 41 points in class 1, 19 in class

2, 40 in class 3 and finally 11 in class 4. All of the pairwise dissimilarities (distances)

between observations in the data set were computed to generate a silhouette plot. A

silhouette represents each cluster. The entire clustering was displayed by combining the

silhouettes into a single plot (Figure 4.16.). This technique assisted in selecting the

number of clusters that maximized the silhouette coefficient.

Figure 4.15. A plot of the within groups sum of squares by number of clusters

101

Figure 4.16. Silhouette plot based on the dissimilarity matrix of clustered data

The silhouette width is measured how close each point was from other points in

the same cluster as compared to points in other clusters. If one point was closer to points

in neighboring clusters than it was to points in its own cluster, then the clustering was

inefficient and the value of the average silhouette width decreases (Kaufman &

Rousseeuw, 2009). Figure 4.16. illustrates the following characteristics for each cluster:

 the number of plots per cluster is equal to the number of horizontal lines

 the number of points in each cluster, and their average silhouette width

 plots with an average silhouette width (0.6 in this case) value indicate stronger

clustering

The average silhouette width value can be interpreted as follows:

1. 0.71-1.0—Good clustering has been achieved

2. 0.51-0.70--A reasonable clustering has been achieved

3. 0.26-0.50—clustering formed is a poor fit to the data

4. < 0.25--No clustering was identified

The systems’ behaviors as reflected in the four clusters can be expressed as follows:

 Class 1-ready for participation in lesser time, asks for less funding and provides a

stronger performance

102

 Class 2- Request for more time to participate, asks for less funding, provides a

stronger performance

 Class 3- ready for participation in lesser time, asks for less funding and provides

a weaker performance than any of the other clusters

 Class 4- Request for more time to participate, asks for more funding, provides a

stronger performance

Systems in Class 1 can be referred to very cooperative. Class 2 and 3 systems can be

referred to as are semi-cooperative. Class 4 can be referred to as selfish.

The coordinates of the four centers are given below as:

 V1 V2 V3

 1 0.11403324 -0.3300645 -0.8465794

 2 -1.39725071 -0.3527665 -1.5071888

 3 1.32306041 2.7686001 0.4945384

4 0.03577032 -0.3396422 0.7059110

4.4.3. Network Architecture Based on Clustered Data. The clustered data then

can be viewed as a mapping of inputs (3 variables) to target (classes) and is used to train

a supervised learning network for prediction. The networks presented here are radial

basis function network (RBFN) and linear vector quantization network (LVQN). RBFN

and LVQN are utilized as a supervised method for prediction the class of the new

incoming sample in this study. The labelled data is used to determine a set of prototype

vectors that best represent each class. Further, these prototype vectors can be used to

predict the class of a new incoming sample data as it is depicted in Figure 4.17.

103

Figure 4.17. Neural networks architecture for supervised classification

4.4.3.1. RBFN architecture for the problem. The major difference between

RBF networks and multi-layer perceptron is that the hidden units in RBF networks have

a basis kernel function. Each hidden unit computes a value for the similarity between the

input vector and its connection weights or centers. Based on these values the weights are

updated.

RBFN has three layers: Step 1: Input layer – There is one neuron in the input

layer for each predictor variable. There are three neurons in this case. The input neurons

then feed the values to each of the neurons in the hidden layer. Step 2: Hidden layer –

This layer has a variable number of neurons that starts with four neurons based on four

centers. Each neuron consists of a radial basis function centered on a point with three

dimensions. The resultant value from each neuron then is multiplied by the weight

connection from hidden to the output layer and summed. Step 3: Output layer – The

output layer has one output. The center and width for each basis function is computed

using the centers obtained by k-means.

In performing this experiment, a separate data set for training containing 80

samples, and another separate data set for testing containing 31 samples was used. The

samples were in randomly sampled order. The process repeated 20 times from the start

to end at the best possible network. The network achieved a performance of 0.023 after

adding neurons on each step to 40 neurons. The performance on prediction was good.

Figure 4.18. displays the confusion matrix of RBFN.

104

1
41 0 0 0 100%

36.9% 0.0% 0.0% 0.0% 0.0%

2
0 19 0 0 100%

0.0% 17.1% 0.0% 0.0% 0.0%

3
0 5 35 0 88%

0.0% 4.5% 31.5% 0.0% 12.5%

4
0 1 0 10 91%

0.0% 0.9% 0.0% 9.0% 9.1%

100% 76% 100% 100% 95%

0.0% 24.0% 0.0% 0.0% 5.4%

1 2 3 4

Figure 4.18. Confusion Matrix for both Training and Testing by RBFN

4.4.3.2 LVQN Architecture for the problem. This is a supervised version of

vector quantization. The labelled data is utilized to determine a set of prototype vectors

that best represent each class. Further, these prototype vectors can be used of predict the

class of a new incoming sample data. Learning Vector Quantization (LVQ) neural

networks suggests abundant amount of robustness in clustering complex datasets.

An LVQ consists of two layers, the first is competitive layer and the second is

linear layer. The competitive layer learns to classify input vectors. The linear layer

converts the competitive layer's classes into target classifications identified by the user.

The classes learned by the competitive layer are denoted as subclasses and the classes of

the linear layer as target classes. Both the competitive and linear layers have one neuron

per (sub or target) class.

 In conducting this experiment the same data set which was exploited for RBFN

is utilized for training and testing. The samples were in randomly sampled order. We use

the classes obtained by k-means as the primary prototypes to start LVQ. In LVQ, the

learning rate ε = 0.1is considered. The network is trained to determine the weights given

to connections between the hidden neurons and the output neuron. This network

incorporates a random order incremental training algorithm for training the weights.

 The network achieved a MSE of zero after adding neurons on each step to 110

neurons. The performance on prediction for classification was very robust. This is a

105

supervised version of vector quantization. The labelled data is utilized to determine a set

of prototype vectors that best represent each class.

Further, these prototype vectors can be used of predict the class of a new

incoming sample data. We use the classes obtained by k-means as the primary

prototypes to start LVQ. In LVQ, set the learning rate ε = 0.1.

Figure 4.17 depicts the confusion matrix of LVQN for both training and testing.

The result shows that the performance of LVQN is way better than RBFN. The number

of misclassification for RBFN is 6 out of 111 sample inputs; however, the

misclassification for LVQN is zero which is shown in Figures 4.18. and 4.19.

Figure 4.19. Confusion Matrix for both Training and Testing by LVQN

Based on the network the classes (behavior type) of the system selected in the

meta-architecture were predicted using the values of the respective systems first offers.

Tables 4.7. and Table 4.8. provide a list of all systems selected in the meta-architecture

through GA and BPSO and their corresponding behavior types.

O
u

tp
u
t

cl
as

s

1
41 0 0 0 100%

36.9% 0.0% 0.0% 0.0% 0.0%

2
0 19 0 0 100%

0.0% 17.1% 0.0% 0.0% 0.0%

3
0 0 40 0 100%

0.0% 0.0% 36.0% 0.0% 0.0%

4
0 0 0 11 100%

0.0% 0.0% 0.0% 9.9% 0.0%

100% 100% 100% 100% 100%

0.0% 0.0% 0.0% 0.0% 0.0%

1 2 3 4

106

Table 4.7. Systems and capabilities selected in best architecture by PSO

4.5. ESTIMATING UTILITY OF THE CURRENT OFFER

In a multi-attribute negotiation the solution space is n-dimensional (n>1) rather

than a single dimensional line as in a single-attribute negotiation. This makes the

negotiation strategy in multi-attribute negotiations complex: because the space is n-

dimensional, every time an agent plans to concede, she needs to first decide the direction

of concession.

 Apparently there are many choices on the concession direction she can take: to

concede on issue 1, …, n or different combinations of the issues. Specifically, the

decision on the concession direction may also depend on the opponent’s preference

because conceding on the issue more important to the opponent can make the offer more

acceptable. Finally, to decide how much to concede is now more complicated because

the direction can impact the amount as well. So the burden of computation and

reasoning for the negotiation strategy is higher in a multi-attribute negotiation than in a

single-attribute negotiation. The decision about how much concession has to be made in

a particular issue is based on the negotiation strategy for the next round (Baarslag,

Systems Selected by BPSO Behavior Predicted Capabilities Provided

Systems 1, 2-Cutter Class2, Class4 2

Systems 4-Helicopter Class 1 2

Systems 5, 6-Aircraft Class 2, Class 1

Systems 8, 9,12-UAV Class3, Class 1, Class 4 1

Systems 13,15,16-Fish

Vessel
Class 3 , Class 4, Class 2 3

Systems 17 –Coordination

Control
Class 1 4

Systems 20, 21-

Communication
Class 3, Class 2 5

107

Hindriks, & Jonker, 2013), willingness to collaborate, and the SoS’s preference for

acquiring that capability. After identifying the class of behavior the SoS coordinator can

use a fuzzy inference engine to decide whether he wishes to accept the systems offer,

reject the offer or further negotiate (Figure 4.20.). The model used is shown here as

Figure 4.20. Fuzzy Network Architecture for decision making

This decision making problem is dealt as computing with words (CWW) whose

linguistic term set is {low, medium, high, very high} as shown in Figure 4.21. If the

aggregation is a tuple with terms low it is rejected, medium are negotiated further

whereas, very high and high aggregation values are accepted immediately.The results

with all systems selected from each class are shown in the Table 4.8.

Figure 4.21. A set of four linguistic terms with their semantics

108

These results of meta-architecture generated by the BPSO indicate that the SoS

manager after making a decision on the offers has been able to acquire capabilities 1, 2,

3, 4, and 5 (Table 4.8.). The SoS manager now needs to negotiate with systems to

acquire more systems with the capabilities. The capabilities need to be acquired to

complete the quorum of full 5 capabilities as shown in Figure 4.22.

System 17 is the only system selected in the meta-architecture that has capability

4. Hence although the estimated utility of the offer is low still it would be beneficial for

the SoS manager to accept the system. System 5, 8 and 13 were rejected for further

negotiation due its low aggregated value. The SoS manager has to negotiate with System

2, 12 and 16 to acquire an extra set of capabilities. The results of further negotiation with

these systems still led to system 16 being accepted and systems 2 and 12 being rejected.

The preference to acquire the capability was reduced hence the aggregate values using

CWW for selection were lower and affected systems 2 and 12 more than system 16.

Table 4.8. Decision by SoS manager for each system in meta-architecture

Sys No
Cooperativeness Willingness

Preference

Capability
Aggregated Value Selection

1
H H VH 2.33 or(H,+0.33) Yes

2 L H M 1 or (M) Neg

4
VH L VH 2 or (H) Yes

5 H L L 0.66 or (M,-0.33) No

6 VH H VH 2.66 or (VH,-

0.34)

 Yes

8 M M M 1 or (M) No

9
VH VH M 2.33 or (H, 0.34) Yes

12
L H M 1 or (M) Neg

13
M L L 0.33 or (L,0.34) No

15
L VH VH 2 or (H) Yes

16
H M H 1.66 or (H,-0.33) Neg

17
VH L H 1.66 or (H,-0.33) Accepted

20
M VH VH 2.33 or (H, 0.34) Yes

21
H M VH 2 or (H) Yes

109

Figure 4.22. SoS negotiated architecture for wave 1 through BPSO

4.6. ILLUSTRATION OF THE SECOND WAVE

This section presents the second wave in SAR through FILA-SoS. The systems

highlighted in yellow were selected at the end of negotiation process in the previous

wave as shown in Table 4.9. Hence, they are preserved or maintained in the next wave

meta-architecture. New systems replace the other systems with different values for the

key attributes. To make things simple, we have not changed the order of the systems

from one wave to the next, although this is possible.

 Figure 4.23. gives the meta-architecture based on the domain inputs. Table 4.10.

gives the list of system selected in the second wave. Table 4.11. gives the decision by

SoS manager for each system in meta-architecture for wave 2. Table 4.12. gives the

domain inputs for the generation of meta-architecture for the third wave. Table 4.13.

gives a list of systems selected in wave 3 of the meta-architecture.

Sys1

Sys2

Sys3

Sys4

Sys5
Sys6Sys7

Sys8

Sys9

Sys10

Sys11

Sys12

Sys13

Sys14

Sys15

Sys16
Sys17 Sys18

Sys19

Sys20

Sys21

Sys22

110

Table 4.9. Domain specific inputs for the second wave in SAR

SysNo Type Capability

1 Cutter 2 0.03 0.2 12 1 8.3 6

2 Cutter 2 0.03 0.2 12 1 8.3 6

3 Helicopter 2 0.5 0.6 10 0 10.0 8

4 Helicopter 2 0.1 0.2 20 1 10.0 8

5 Aircraft 2 0.6 1 15 1 10.0 10

6 Aircraft 2 0.1 0.5 10 1 10.0 10

7 UAV 1 0.3 0.3 5 2 1.7 2

8 UAV 1 0.1 0.1 7 1 1.7 2

9 UAV 1 0.1 0.1 7 1 1.7 2

10 UAV 1 0.3 0.3 5 1 1.7 2

11 UAV 1 0.3 0.3 5 1 1.7 2

12 UAV 1 0.3 0.3 5 1 1.7 2

13 Fish Vessel 3 0.02 1.5 20 1 5.0 4

14 Fish Vessel 3 0.02 1.5 20 1 5.0 4

15 Fish Vessel 3 0.03 0.5 10 1 5.0 4

16 Civ Ship 3 0.05 2 8 1 6.7 4

17 Coord Ctr 4 0.05 0.5 5 1 0.5 0

18 Coord Ctr 4 0.04 0.2 7 1 0.5 0

19 Comm 5 0.04 0.02 2 0 0.5 0

20 Comm 5 0.02 0.03 1 0 0.5 0

21 Comm 5 0.02 0.03 1 0 0.5 0

22 Comm 5 0.02 0.03 1 0 0.5 0

𝐼𝐶𝑖 𝑂𝐶𝑖 𝑃𝑖 𝐷𝑖 𝐿𝑉𝑖 𝑆𝑃𝑖

111

Figure 4.23. SoS meta-architecture for wave 2 through BPSO

Table 4.10. Systems selected in wave 2 meta-architecture

Sys1

Sys2

Sys3

Sys4

Sys5
Sys6Sys7

Sys8

Sys9

Sys10

Sys11

Sys12

Sys13

Sys14

Sys15

Sys16
Sys17 Sys18

Sys19

Sys20

Sys21

Sys22

Systems Selected by PSO Behavior Predicted Capabilities Provided

Systems 1, 2-Cutter Class 2, Class1 2

Systems 3, 4-Helicopter Class 4, Class 1 2

Systems 6-Aircraft Class 1

Systems 7, 8, 9,12-UAV
Class 2, Class 3, Class 1,

Class 2
1

Systems 14,15,16-Fish

Vessel
Class 1 , Class 4, Class 2 3

Systems 17,18 –

Coordination Control
Class 1, Class 3 4

Systems 20, 21,22-

Communication
Class 3, Class 2, Class 4 5

112

The behavior of new systems may be different or same depending on their

negotiation tactic. Whereas the older systems have the same behavior since they are

preserved in the architecture form previous wave. The yellow highlighted classes of

behavior belong to systems that were not pre-selected for this meta-architecture.

These results of meta-architecture indicate that the SoS manager after making a

decision on the offers has been able to select the systems such that all capabilities

required are bagged. Figure 4.23. shows the systems selected in the meta-architecture

during wave 2 of SoS evolution and Figure 4.24. shows the negotiated architecture.

Table 4.11. Decision by SoS manager for each system in meta-architecture

Sys No
Cooperativeness Willingness

Preference

Capability
Aggregated Value Selection

1
H H VH 2.33 or(H,+0.33) Yes

2 VH H M 2 or (H) Yes

3 L L M 0.33 or (L,0.33) No

4
VH L VH 2 or (H) Yes

6 VH H VH 2.66 or (VH,-.34) Yes

7 H VH H 2.33 or(H,+0.33) Yes

8 M M M 1 or (M) No

9
VH VH M 2.33 or (H, 0.34) Yes

12
H L M 1 or (M) No

14
M L L 0.33 or (L,0.34) No

15
L VH VH 2 or (H) Yes

16
H M H 1.66 or (H,-0.33) Neg

17
VH L H 1.66 or (H,-0.33) Neg

18
M H VH 2 or (H) Yes

20
M VH VH 2.33 or (H, 0.34) Yes

21
H M VH 2 or (H) Yes

22 L L VH 1 or (M) No

113

Figure 4.24. SoS negotiated architecture for wave 2 through BPSO

Figure 4.24. shows the final architecture that is agreeable between the SoS

manager and the systems after negotiation during wave 2. Systems selected after

negotiation are 1, 2, 4, 6, 7, 9, 15, 18, 20, and 21. System 3, 8, 12, 14 and 22 were

rejected for further negotiation due its low aggregated value. The SoS manager has to

negotiate with System 16 and 17 to acquire an extra set of capabilities. The results of

further negotiation with these systems still led to system 16 and 17 being rejected. The

preference to acquire the capability was reduced hence the aggregate values using CWW

for selection were lower.

4.7. ILLUSTRATION OF THE THIRD WAVE

This section further extends the process of wave model through the third wave

for SAR scenario. The behavior of new systems may be different or same depending on

their negotiation tactic. Whereas the older systems have the same behavior since they are

preserved in the architecture form previous wave. Figure 4.25. and Figure 4.26. show the

meta-architecture and the negotiated architecture for wave 3 respectively.

Sys1

Sys2

Sys3

Sys4

Sys5
Sys6Sys7

Sys8

Sys9

Sys10

Sys11

Sys12

Sys13

Sys14

Sys15

Sys16
Sys17 Sys18

Sys19

Sys20

Sys21

Sys22

114

Table 4.12. Domain specific inputs for the third wave in SAR.

Table 4.13. Systems selected in wave 3 meta-architecture

SysNo Type Capability

1 Cutter 2 0.03 0.2 12 1 8.3 6

2 Cutter 2 0.03 0.2 12 1 8.3 6

3 Helicopter 2 0.02 0.9 10 0 10.0 8

4 Helicopter 2 0.1 0.2 20 1 10.0 8

5 Aircraft 2 0.5 1 15 0 10.0 10

6 Aircraft 2 0.1 0.5 10 1 10.0 10

7 UAV 1 0.3 0.3 5 2 1.7 2

8 UAV 1 0.4 0.1 5 1 1.7 2

9 UAV 1 0.1 0.1 7 1 1.7 2

10 UAV 1 0.4 0.1 5 1 1.7 2

11 UAV 1 0.4 0.1 7 1 1.7 2

12 UAV 1 0.3 0.3 7 1 1.7 2

13 Fish Vessel 3 0.02 1.5 20 1 5.0 4

14 Fish Vessel 3 0.02 1.5 20 1 5.0 4

15 Fish Vessel 3 0.03 0.5 10 1 5.0 4

16 Civ Ship 3 0.05 1 12 0 6.7 4

17 Coord Ctr 4 0.03 0.4 5 1 0.5 0

18 Coord Ctr 4 0.04 0.2 7 1 0.5 0

19 Comm 5 0.03 0.05 2 0 0.5 0

20 Comm 5 0.02 0.03 1 0 0.5 0

21 Comm 5 0.02 0.03 1 0 0.5 0

22 Comm 5 0.04 0.05 2 0 0.5 0

𝐼𝐶𝑖 𝑂𝐶𝑖 𝑃𝑖 𝐷𝑖 𝐿𝑉𝑖 𝑆𝑃𝑖

Systems Selected by BPSO Behavior Predicted Capabilities Provided

Systems 1, 2-Cutter Class 2, Class1 2

Systems 4-Helicopter Class 1 2

Systems 5, 6-Aircraft Class 1, Class 1

Systems 7, 9,11-UAV Class 2, Class 1, Class 3 1

Systems 13, 14,15-Fish

Vessel
Class 3, Class 1 , Class 4, 3

Systems 17,18 –

Coordination Control
Class 1, Class 3 4

Systems 19, 20, 21,22-

Communication

Class 1, Class 3, Class 2,

Class 4
5

115

Figure 4.25. SoS meta-architecture for wave 3 through BPSO

These results of meta-architecture indicate that the SoS manager after making a

decision on the offers has been able to select the systems such that all capabilities

required are bagged. Table 4.14. gives the decision by SoS manager on systems.

Table 4.14. Decision by SoS for each system in meta-architecture

Sys No
Cooperativeness Willingness

Preference

Capability
Aggregated Value Selection

1
H H VH 2.33 or(H,+0.33) Yes

2 VH H M 2 or (H) Yes

4
VH L L 1 or (M) No

5 VH M VH 2.33 or(H,+0.33) Yes

6 VH H VH 2.66 or (VH,-.34) Yes

7 H VH H 2.33 or(H,+0.33) Yes

9
VH VH M 2.33 or (H, 0.34) Yes

11
M L M .66 or (M,-0.33) No

Sys1

Sys2

Sys3

Sys4

Sys5
Sys6Sys7

Sys8

Sys9

Sys10

Sys11

Sys12

Sys13

Sys14

Sys15

Sys16
Sys17 Sys18

Sys19

Sys20

Sys21

Sys22

116

Table 4.14. Decision by SoS for each system in meta-architecture (cont.)

13
M M H 1.33 or (M, 0.33) No

14
VH L L 1 or (M) No

15
L VH VH 2 or (H) Yes

17
VH L H 1.66 or (H,-0.33) Neg

18
M H VH 2 or (H) Yes

19
VH H VH 2.66 or (VH,-.34) Yes

20
M VH VH 2.33 or (H, 0.34) Yes

21
H M VH 2 or (H) Yes

22 L VH H 1.66 or (H,-0.33) Neg

Systems selected after negotiation are 1, 2, 5, 6, 7, 9, 15, 18, 19, 20, and 21.

Systems 4, 11, 12, 13, were rejected for further negotiation due its low aggregated value

as shown in Figure 4.26. The SoS manager has to negotiate with System 22 and 17 to

acquire an extra set of capabilities.

Figure 4.26. SoS negotiated architecture for wave 3 through BPSO

Sys1

Sys2

Sys3

Sys4

Sys5
Sys6Sys7

Sys8

Sys9

Sys10

Sys11

Sys12

Sys13

Sys14

Sys15

Sys16
Sys17 Sys18

Sys19

Sys20

Sys21

Sys22

117

4.8. WAVE MODEL RESULTS

The architecture quality and values of various key performance attributes on

scale of 1 to 4, of various SoS architectures is listed below in Figure 4.27. The

discussion of the results obtained by the approach is presented in the forthcoming

sections. A number of scenarios are developed to illustrate the meta-architecture

generation and negotiation models.

 Meta-Architecture wave 1 Negotiated-Architecture wave 1

Meta-Architecture wave 2 Negotiated-Architecture wave 2

Meta-Architecture wave 3 Negotiated-Architecture wave 3

Figure 4.27. Architecture assessment results for three waves

Quality 3.11

Performance 3.36

Affordability 3.01

Net-Centricity 2.55

Robustness 2.74

Quality 1.75

Performance 2.8

Affordability 3.7

Net-Centricity 1.55

Robustness 1.74

Quality 3.29

Performance 3.21

Affordability 2.98

Net-Centricity 3.64

Robustness 3.74

Quality 2.12

Performance 1.8

Affordability 2.58

Net-Centricity 2.07

Robustness 1.33

Quality 3.21

Performance 3.09

Affordability 3.78

Net-Centricity 3

Robustness 2.79

Quality 1.82

Performance 2.8

Affordability 3.7

Net-Centricity 1.55

Robustness 1.74

118

5. WHAT-IF ANALYSIS & DISCUSSION OF RESULTS

The model answers the research question “What is the impact of different

constituent system perspectives regarding participating in the SoS on the overall mission

effectiveness of the SoS?”with what-if analysis to assist the decision maker in preparing

different alternatives and testing various scenarios. In this chapter the alternatives are

generated from the implementation of the model to the SAR.

5.1. META-ARCHITECTURE GENERATION ANALYSIS

In this section we have developed what-if analysis based on the fact that different

algorithms can be used to assess the impact of changes in system parameters,

constitution, and configuration of the overall functionality and capability of the SoS.

Each algorithm searches the solution space differently and can help in attaining better

solutions.

This analysis will assist the SoS manager in future decision making by providing

flexibility of technique. The meta-architecture generation technique helps in capturing

the varied differences in the resources required by systems to prepare for participation.

An architectural search methodology was applied to a generic SAR problem, and a set of

architectures each with a high fitness, was obtained. The architectures generated via

computational intelligence reduced both complexity and time. The architectures

generated were the best combinations possible for the given domain problem. The

stochastic heuristic techniques can assist in the systems architecting process by

providing the systems architects with a set of feasible designs that can be developed into

a near optimal architecture.

Although the best architecture obtained by the two techniques is slightly

different for the same set of constraints, it means much good architecture exist in the

modeled design space as shown in Table 5.1. Both GA and BPSO try to model the

fitness function surface to reach the global maxima. The architecture value obtained by

BPSO is higher than GA as shown in Table 5.2. This signifies the PSO was better able

to map the surface of the fitness function generated by the fuzzy rules.

119

Each solution is architecture and has a fitness value. The higher the fitness value

the higher the quality of the architecture. Solutions with higher fitness values are

preserved over many generations in an evolutionary algorithm and finally the algorithm

is terminated if the fitness value does not change over many generations. In the last

generation the solution which has the highest architecture quality or fitness value is the

best solution.

Table 5.1. Types of systems, capabilities and behaviors present in SoS

Table 5.2. Architecture Quality of the SoS for GA

Systems Selected by GA Capabilities Provided Behavior Predicted

Systems 1,2 -Cutter 2 Class 2, Class 4

Systems 3-Helicopter 2 Class 1

Systems 5-Aircraft 2 Class 3

Systems 7,8,9,11,12-UAV 1 Class 3, Class 1,Class 2,
Class 3,Class 4

Systems 15-Fish Vessel 4 Class 1

Systems 17 –Coordination
Control 4 Class 3

Systems 22-
Communication 5 Class 4

Quality 2.98

Performance 3.16

Affordability 3.53

Net-Centricity 2.18

Robustness 2.39

120

The results of the selected systems in the meta-architected and the architecture

quality are different from architecture generated by BPSO. Although the initial inputs

are the same yet we may see different solutions. The quality of this meta-architecture by

GA is slightly lower than that of BPSO. It is possible that a different algorithm might

improve the architecture equality or on a different set of inputs the GA performs better

than the BPSO.

5.2. ARCHITECTURE ASSESSMENT ANALYSIS

The architecture assessment model can be adjusted for different domains and

stakeholders, changes in the environment, and relative priorities of the attributes can also

be accommodated by ordering assessment rules. A what-if analysis based on the above

criterion is presented to highlight its effects. This analysis displays the non-linearity in

key performance attribute (KPA) tradeoffs, is able to accommodate any number of

attributes for a selected SoS capability, and incorporate multiple stakeholder’s

understanding of KPA’s.

Architecture assessment is completed through rules based on fuzzy assessor

(Pape et al., 2013). These rules capture non-linearity in key performance parameters

tradeoffs. Furthermore, fuzzy rules are able to comprehend multiple stakeholders’

understanding of key performance attributes. Comparative significances of the attributes

can also be accommodated by prioritizing assessment rules. The output is the value of a

given architecture based on the assessment of the attributes. The architecture quality of

the negotiated architecture is always less than or equal to the meta-architecture

(Agarwal, Wang, & Dagli, 2015).

The solutions are initially represented as a vector of random numbers and using a

sigmoid function is converted to binary value (Agarwal, Wang, & Dagli, 2015). Each

solution is assessed by a fuzzy assessor which helps in reducing the complexity and

computational time. Out of 20, some rules created to define the trade-offs between the

many objectives are stated:

 If (Performance is high) and (Affordability is low) and Net-Centricity is high)

and (Robustness is low) then (SoS_Arch_Fitness is medium)

 If (Performance is medium) and (Affordability is high) and Net-Centricity is

121

high) and (Robustness is high) then (SoS_Arch_Fitness is high)

 If (Performance is low) and (Affordability is medium) and Net-Centricity is

high) and (Robustness is high) then (SoS_Arch_Fitness is high)

 If (Performance is medium) and (Affordability is medium) and Net-Centricity is

low) and (Robustness is low) then (SoS_Arch_Fitness is low)

The rules are created in the fuzzy assessor to evaluate architectures in Section 4

seem to support affordability and performance as compared to robustness and net-

centricity. Different set of rules for the same assessor may give different values of

attributes and hence might also result different set of architectures. The rules above

might represent different stakeholders in the SoS. Changing the rules might give a

different assessment to the same architecture. This phenomenon is presented below

where a SoS architecture is chosen in Figure 5.1. and then evaluated by two different

fuzzy assessors.

Figure 5.1. Meta-architecture selected for evaluation

Sys1

Sys2

Sys3

Sys4

Sys5
Sys6Sys7

Sys8

Sys9

Sys10

Sys11

Sys12

Sys13

Sys14

Sys15

Sys16
Sys17 Sys18

Sys19

Sys20

Sys21

Sys22

122

For the same value of the performance as 3.16, affordability as 2.5, net-centricity as 2.12

and robustness as 3.27 different architecture qualities are reached. The fuzzy assessor

with no change in rules gives an architecture quality of 3.24 whereas the new fuzzy

assessor gives a value of 2.98.

Since only two systems 19 and 21 were selected provided the inter-

communication capability and net-centricity was more dominant in providing a higher

architecture quality hence the second quality is a little lower than the first (Hassan et al.,

2005). Besides affordability affects the architecture quality as it is low in this

architecture. This analysis can enable the decision-maker to choose the architecture that

suits best based on stakeholder views.

5.3. ADAPTIVE NEGOTIATION ANALYSIS

 Similarly, the behavioral aspect of systems is tackled through an adaptive SoS

negotiation strategy. Different behaviors of the systems for the same architecture can

help us generate possible negotiated architecture qualities. This is a very quick and

effective approach to adapt communication strategies in SoS environment. This section

entails what-if analysis based on simulating rules of engagement & behavior settings

such as: all systems are selfish, all systems are opportunistic, and all systems are

cooperative or a combination. It provides answers to questions such as whether an

individual system can be impacted by negotiation strategies of the SoS and how so.

This includes an examination of architecture quality obtained under different

behavioral settings including such as when does non-cooperative behavior dominates the

acquisition environment or when does semi-cooperative behavior dominate or when

does cooperative behavior dominate. Various incentive mechanisms can be analyzed

when there is uncertainty in individual system performance outcomes. Table 5.3. gives

the setting of negotiation decision making in case of random behavior of systems where

‘VH’ corresponds to extremely coo-operative, ‘H’ and ‘M’ relate to semi-cooperative,

and ‘L’ denotes the non-cooperative behavior.

123

Table 5.3. Decision by SoS manager for each system in meta-architecture for BPSO

Sys No
Cooperativeness Willingness

Preference

Capability
Aggregated Value Selection

1
H H VH 2.33 or(H,+0.33) Yes

2 L H M 1 or (M) Neg

4
VH L VH 2 or (H) Yes

5 H L L 0.66 or (M,-0.33) No

6 VH H VH 2.66 or (VH,-0.34) Yes

8 M M M 1 or (M) No

9
VH VH M 2.33 or (H, 0.34) Yes

12
L H M 1 or (M) Neg

13
M L L 0.33 or (L,0.34) No

15
L VH VH 2 or (H) Yes

16
H M H 1.66 or (H,-0.33) Neg

17
VH L H 1.66 or (H,-0.33) Accepted

20
M VH VH 2.33 or (H, 0.34) Yes

21
H M VH 2 or (H) Yes

Scenario 1. To visualize a condition if all selected systems in the meta-

architecture at any stage behaved cooperatively, the wave 1 meta-architecture was

selected. The behavior of systems 1, 2, 5, 8, 12, 13, 15, 16, 20, and 21 were updated to

‘VH’ as represented in Table 5.4. Rests of the selected systems were already

cooperative. Table 5.3. can be compared with Table 5.4. for easier understanding. This

resulted in the following changes:

1. Systems 2, 12, 16, which were earlier in the negotiated category were now

accepted

2. Systems 8 which was earlier in rejected category was now being negotiated

Besides the architecture quality had a small improvement due to more systems with

capabilities added. This reinforced the robustness and the net-centricity of the

systems. The attributes of negotiated architecture are given in Table 5.5.

124

Table 5.4. Decision for all cooperative systems in meta-architecture

Sys No

Cooperativeness Willingness
Preference

Capability

Aggregated

Value
Selection

1
VH H VH

2.66

or(H,+0.66)
Yes

2
VH H M 2 or (M) Yes

4
VH L VH 2 or (H) Yes

5
VH L L 1 or (M) No

6
VH H VH

2.66 or (VH,-

0.34)

 Yes

8
VH M M

1.66 or (H,-

0.33)

Neg

9
VH VH M 2.33 or (H, 0.34) Yes

12
VH H M

2 or (M) Yes

13
VH L L 1 or (M) No

15
VH VH VH 3 or (VH) Yes

16
VH M H

2 or (M) Yes

17
VH L H

1.66 or (H,-

0.33)
Accepted

20
VH VH VH 3 or (VH) Yes

21
VH M VH 2.33 or (H, 0.34) Yes

Table 5.5. Negotiated-Architecture of wave 1 under cooperative conditions

Negotiated-

Architecture

Quality Performance Affordability Net-Centricity Robustness

Random

behavior

1.75 2.8 3.7 1.55 1.74

All

Cooperative

2.83 3 3.25 2.67 2.98

125

Based on the analysis of CWW different set of systems are finally selected for

implementation of the SoS architecture. The quality and values of attributes of this

negotiated architecture are given for comparison in Table 5.5. The architecture quality is

higher than before as more systems are selected. The negotiated architecture can be only

as good as the meta-architecture itself.

Scenario 2. In the second scenario all selected systems in the meta-architecture

are designed with a behavior of non-cooperativeness. This condition will help realize the

effect of behavior in such a setting. The behavior of systems is represented in Table 5.6.

Table 5.6. Decision for all non-cooperative systems in meta-architecture

Sys No
Cooperativeness Willingness

Preference

Capability

Aggregated

Value
Selection

1
L H VH

1.66 or (H,-

0.33)
Neg

2 L H M 2 or (M) Yes

4
L L VH 1 or (M) No

5 L L L L No

6 L H VH 1.66 or (H,-

0.33)
Neg

8
L M M

0.6 or (M,

0.3)

No

9
L VH M

1.33 or (M,

0.34)
 No

12 L H M 1 or (M) No

13
L L L 0 or (L) No

15 L VH VH 2 or (H) Yes

16 L M H 1 or (M) No

17 L L H
0.66 or (M,-

0.33)

No

20
L VH VH 2 or (H) Yes

21
L M VH

1.33 or (M,

0.34)
 No

126

This resulted in the following changes:

1. Systems 8, 4, 9, 12 , 17, and 21 which was earlier in accepted category are now

as rejected systems

2. Systems whose configuration remains the same after the change in behaviours

are 2,5,8,13,15, and 20

3. Systems that were accepted earlier were now being negotiated are Systems 1 and

16

Besides the architecture quality decreased due to less systems selected due to

non-cooperative behavior, other attributes value remaining the same. The results are

listed in Table 5.7.

Table 5.7. Negotiated-Architecture of wave 1 under non-cooperative conditions

Negotiated-

Architecture

Quality Performance Affordability Net-

Centricity

Robustness

Random

behavior

1.75 2.8 3.7 1.55 1.74

All Non-

Cooperative

1.22 1.2 3.89 2 1.34

Scenario 3. In the final scenario all selected systems in the meta-architecture are

designated with a behavior of semi-cooperativeness. This condition will help realize the

effect of behavior in such a setting. The behavior of systems is represented in Table 5.8.

Negotiated-Architecture of wave 1 under semi-cooperative conditions results are

listed in Table 5.9.

127

Table 5.8. Decision for all semi-cooperative systems in meta-architecture

Table 5.9. Negotiated-Architecture of wave 1 under semi-cooperative conditions

Negotiated-

Architecture

Quality Performance Affordability Net-Centricity Robustness

Random

behavior

1.75 2.8 3.7 1.55 1.74

All Non-

Cooperative

2.01 1.2 3.89 2 1.34

Sys No
Cooperativeness Willingness

Preference

Capability

Aggregated

Value
Selection

1
M H VH

1.66 or (H,-

0.33)
Neg

2 M H M 2 or (M) Yes

4
M L VH 2 or (H) Yes

5
M L L 1 or (M) No

6
M H VH 2.66 or (VH,-

0.34)

 Yes

8 M M M 1.66 or (H,-

0.33)

Neg

9
M VH M

2.33 or (H,

0.34)
 Yes

12
M H M

2 or (M) Yes

13
M L L 1 or (M) No

15 M VH VH 3 or (VH) Yes

16
M M H

2 or (M) Yes

17
M L H

1.66 or (H,-

0.33)
Accepted

20
M VH VH 3 or (VH) Yes

21 M M VH
2.33 or (H,

0.34)
 Yes

128

This resulted in the following changes:

1. Systems 8 which was earlier in accepted category was now being rejected

systems 4, 9, 12 , 17, and 21

2. Systems whose configuration remains the same after the change in behaviors are

2,5,8,13,15, and 20

3. Systems that were accepted earlier were now being negotiated are Systems 1 and

16

Besides the architecture quality decreased due to less systems selected due to

non-cooperative behavior, other attributes value remaining the same. The results are

listed in Table 5.9.

These scenarios explain how after arriving at the meta-architecture, SoS manger

may obtain different architecture qualities based on system behaviors. There could be

three scenarios each for each wave in the SoS. Each scenario is divided in domination of

cooperative, semi-cooperative and non-cooperative behaviors. Such scenarios are able to

answer thw question that in the same wave if all systems were cooperative, all semi-

cooperative how it will affect the architecture quality. The inferences drawn from this

analysis are as follows:

1. It is quite predictable to have cooperative and semi-cooperative systems selected

more often than non-cooperative systems

2. Final systems behaviour configuration changes in the architecture based on

number of waves

3. The negotiated architecture quality is lower than the meta-architecture quality

4. Simulating rules of engagement & behaviour settings: all systems are selfish, all

systems are opportunistic, all systems are cooperative or a combination can be

beneficial for future analysis

5. The architecture quality improves with increase in cooperativeness of systems

The next section gives some scenarios to further show this approach which

involves meta-architecture generation and SoS negotiation models to implement our

ideas.

129

5.4. VARIOUS DIFFERENT SCENARIOS

This section explains different scenarios to judge how well decision-makers can

instrument mentioned strategies to manage uncertainty in complex adaptive SoS.

The first scenario has the settings such that capabilities are given preferences of

each other as compare to previous waves. Previously the preference of capability could

be changed during the wave transition by the SoS manager. Here it is demonstrated how

different inputs and preference produce different architectures.

The conditions that affect the architecture quality of SoS are also due to changes

in costs for developing the interfaces are assigned to each system, as well as a cost for

operating the system. The deadline for development of an interface which may be

different in each wave of acquisition assigned out of three values 0 – ready now, 1 –

will be ready by the end of this wave, or 2 – won’t be ready this wave can affect the

value of key performance attributes. Variables such as SoS funding and capability

priority can be changed as the acquisition progresses though wave cycles causing

different architectures to be selected.

The costs for development were rough estimates of official and informal

budgetary evaluations for interfacing with communications systems and integrating the

mission systems to be able to interoperate. The costs to operate aircraft or other systems

were also determined in a similar fashion. The numbers usually kept small to

accommodate the sensitivity in the analysis. They were within 0.1 to 20. This scenario

is about giving a pre-defined preference to each capability by the SoS manager. This

preference can be continued to subsequent waves or changed in each wave.

Table 5.10. starts with domain inputs for scenario1, Figure 5.2. shows the meta-

architecture for scenario 1 and Figure 5.3. shows the negotiated architecture for scenario

1. Figures 5.4. and 5.5. show the meta-architecture and the negotiated architecture for

scenario 2 respectively. Similarly for scenario 3 Figures 5.6. and Figure 5.7. show the

meta-architecture and negotiated architecture whereas scenario 4 is depicted in Figure

5.8. and Figure 5.9. Table 5.11. and Table 5.12. give the decision matrix and systems

selected for meta-architecture. Tables 5.13. , 5.16. , 5.19. give the new domain inputs,

Tables 5.14., 5.18., and 5.21. the decision matrix and Tables 5.15., 5.17., 5.20. the

systems selected for scenario 2, 3 and 4 respectively.

130

Table 5.10. Domain Inputs for Scenario 1

Figure 5.2. Meta-Architecture for scenario 1

SysNo Type Capability I/FDevCostOpsCost/hrPerf DevTime

1 Cutter 2 0.03 0.2 12 1

2 Cutter 2 0.03 0.2 12 1

3 Helicopter 2 0.1 0.2 20 1

4 Helicopter 2 0.1 0.2 20 1

5 Aircraft 2 0.1 0.5 10 1

6 Aircraft 2 0.1 0.5 10 1

7 UAV 1 0.2 0.2 5 1

8 UAV 1 0.2 0.2 5 1

9 UAV 1 0.2 0.2 5 1

10 UAV 1 0.1 0.1 7 1

11 UAV 1 0.1 0.1 7 1

12 UAV 1 0.1 0.1 7 1

13 Fish Vessel 3 0.03 0.5 10 1

14 Fish Vessel 3 0.03 0.5 10 1

15 Fish Vessel 3 0.03 0.5 10 1

16 Civ Ship 3 0.05 2 8 1

17 Coord Ctr 4 0.05 0.5 5 1

18 Coord Ctr 4 0.05 0.5 5 1

19 Comm 5 0.07 0.01 1 0

20 Comm 5 0.07 0.01 1 0

21 Comm 5 0.07 0.01 1 0

22 Comm 5 0.02 0.03 1 0

Sys1

Sys2

Sys3

Sys4

Sys5
Sys6Sys7

Sys8

Sys9

Sys10

Sys11

Sys12

Sys13

Sys14

Sys15

Sys16
Sys17 Sys18

Sys19

Sys20

Sys21

Sys22

131

Table 5.11. Decision by SoS manager for each system in meta-architecture

Sys No
Cooperativeness

Willingness of

Collaboration

Preference

Capability
Aggregated Value Selection

1 H H L 1.33 or(M,+0.33) Neg

2 L H L 0.66 or (M,-0.33) No

3 L L H 0.66 or (M,-0.33) No

4 VH M H 2 or (H) Yes

5 H M VH 2 or (H) Yes

6 VH H VH 2.66 or (VH,-0.34) Yes

7 M M M 1 or (M) No

9 VH VH M 2.33 or (H, 0.34) Yes

10 VH M M 1.66 or (H,-0.33) Neg

11 VH H M 2 or (H) Yes

12 L H M 1 or (M) Neg

14 M L H 1 or (M) Neg

15 H VH H 2.33 or (H, 0.34) Yes

17 H M VH 2 or (H) Yes

18 VH L VH 2 or (H) Yes

19 M VH VH 2.33 or (H, 0.34) Yes

22 H M VH 2 or (H) Yes

Table 5.12. Systems and capabilities in Scenario 1

Systems Selected in
Meta-Architecture

Capabilities
Provided

Systems Selected
in Negotiated
Architecture

Capabilities
Provided

Systems 1,2-Cutter 2 None 2

3,4-Helicopter 2 4-Helicopter 2

5,6-Aircraft 2 5,6-Aircraft 2

Systems 7, 9,10, 11, 12-
UAV

1 Systems 9, 11 UAV 1

Systems 14,15-Fish
Vessel 3 Systems 15-Fish

Vessel 3

Systems 17, 18 –
Coordination Control 4 Systems 17, 18 –

Coordination Control 4

Systems 19, 22-
Communication

5 Systems 19, 22-
Communication

5

132

Figure 5.3. SoS negotiated architecture for scenario 1

Table 5.13. Domain Inputs for Scenario 2

Sys1

Sys2

Sys3

Sys4

Sys5
Sys6Sys7

Sys8

Sys9

Sys10

Sys11

Sys12

Sys13

Sys14

Sys15

Sys16
Sys17 Sys18

Sys19

Sys20

Sys21

Sys22

SysNo Type Capability I/FDevCostOpsCost/hrPerf DevTime

1 Cutter 2 0.04 0.5 10 1

2 Cutter 2 0.04 0.5 10 1

3 Helicopter 2 0.2 0.4 15 1

4 Helicopter 2 0.1 0.2 20 1

5 Aircraft 2 0.1 0.5 10 1

6 Aircraft 2 0.1 0.5 10 1

7 UAV 1 0.1 0.1 8 1

8 UAV 1 0.1 0.1 8 1

9 UAV 1 0.2 0.2 5 1

10 UAV 1 0.1 0.1 7 1

11 UAV 1 0.1 0.1 7 1

12 UAV 1 0.1 0.1 7 1

13 Fish Vessel 3 0.03 0.5 12 1

14 Fish Vessel 3 0.03 0.5 12 1

15 Fish Vessel 3 0.03 0.5 10 1

16 Civ Ship 3 0.05 2.5 8 1

17 Coord Ctr 4 0.05 0.5 5 1

18 Coord Ctr 4 0.05 0.5 5 1

19 Comm 5 0.07 0.01 1 0

20 Comm 5 0.09 0.1 1 0

21 Comm 5 0.09 0.1 1 0

22 Comm 5 0.02 0.03 1 0

133

Table 5.14. Decision by SoS manager for each system in meta-architecture

Sys No
Cooperativeness

Willingness of

Collaboration

Preference

Capability
Aggregated Value Selection

1 VH VH L 2 or (H) Yes

3 L L H 0.66 or (M,-0.33) No

4 VH M H 2 or (H) Yes

5 H M VH 2 or (H) Yes

6 VH H VH 2.66 or (VH,-0.34) Yes

9 VH VH M 2.33 or (H, 0.34) Yes

11 VH H M 2 or (H) Yes

12 L H M 1 or (M) Neg

13 M L H 1 or (M) Neg

15 H VH H 2.33 or (H, 0.34) Yes

17 H M VH 2 or (H) Yes

18 VH L VH 2 or (H) Yes

19 M VH VH 2.33 or (H, 0.34) Yes

21 VH M VH 2.33 or (H, 0.34) Yes

22 H M VH 2 or (H) Yes

Table 5.15. Systems and capabilities in Scenario 2

Systems Selected in
Meta-Architecture

Capabilities
Provided

Systems Selected
in Negotiated
Architecture

Capabilities
Provided

Systems 1-Cutter 2 Systems 1-Cutter 2

3,4-Helicopter 2 4-Helicopter 2

5,6-Aircraft 2 5,6-Aircraft 2

Systems 9,11, 12-UAV 1 Systems 9, 11 UAV 1

Systems 13,15-Fish
Vessel

3 Systems 15-Fish
Vessel

3

Systems 17, 18 –
Coordination Control 4 Systems 17, 18 –

Coordination Control 4

Systems 19, 21, 22-
Communication 5 Systems 19, 21, 22-

Communication 5

134

Figure 5.4. Meta-Architecture for scenario 2

Figure 5.5. SoS negotiated architecture for scenario 2

Sys1

Sys2

Sys3

Sys4

Sys5
Sys6Sys7

Sys8

Sys9

Sys10

Sys11

Sys12

Sys13

Sys14

Sys15

Sys16
Sys17 Sys18

Sys19

Sys20

Sys21

Sys22

Sys1

Sys2

Sys3

Sys4

Sys5
Sys6Sys7

Sys8

Sys9

Sys10

Sys11

Sys12

Sys13

Sys14

Sys15

Sys16
Sys17 Sys18

Sys19

Sys20

Sys21

Sys22

135

Table 5.16. Domain Inputs for Scenario 3

Table 5.17. Systems and capabilities in Scenario 3

SysNo Type Capability I/FDevCostOpsCost/hrPerf DevTime

1 Cutter 2 0.04 0.5 10 1

2 Cutter 2 0.04 0.5 10 1

3 Helicopter 2 0.2 0.4 15 1

4 Helicopter 2 0.2 0.4 20 1

5 Aircraft 2 0.1 0.5 10 1

6 Aircraft 2 0.1 0.5 10 1

7 UAV 1 0.4 0.1 8 1

8 UAV 1 0.4 0.1 8 1

9 UAV 1 0.4 0.1 5 1

10 UAV 1 0.4 0.1 7 1

11 UAV 1 0.4 0.1 7 1

12 UAV 1 0.4 0.1 7 1

13 Fish Vessel 3 0.03 0.5 12 1

14 Fish Vessel 3 0.03 0.5 12 1

15 Fish Vessel 3 0.03 0.5 10 1

16 Civ Ship 3 0.05 2.5 8 1

17 Coord Ctr 4 0.05 0.5 5 1

18 Coord Ctr 4 0.05 0.5 5 1

19 Comm 5 0.09 0.1 1 0

20 Comm 5 0.09 0.1 1 0

21 Comm 5 0.09 0.1 1 0

22 Comm 5 0.09 0.1 1 0

Systems Selected in
Meta-Architecture

Capabilities
Provided

Systems Selected
in Negotiated
Architecture

Capabilities
Provided

Systems 2-Cutter 2 Systems 2-Cutter 2

3,4-Helicopter 2 4-Helicopter 2

5,6-Aircraft 2 None 2

Systems 8, 9,11, 12-UAV 1 Systems 9 UAV 1

Systems 13,14, 16-Fish
Vessel

3 Systems 14-Fish
Vessel

3

Systems 18 –Coordination
Control

4 Systems 18 –
Coordination Control

4

Systems 19, 20, 21, 22-
Communication

5 Systems 19, 20-
Communication

5

136

Table 5.18. Decision by SoS manager for each system in meta-architecture

Sys No
Cooperativeness

Willingness of

Collaboration

Preference

Capability
Aggregated Value Selection

2
VH VH L 2 or (H) Yes

3 L VH H 1.66 or (H,-0.33) Neg

4
M VH H 2 or (H) Yes

5 M L VH 1.33 or (M,0.33) Neg

6 H L VH 1.66 or (H,-0.33) Neg

8 H H M 1.66 or (H,-0.33) Neg

9
VH H M 2 or (H) Yes

11
H H M 1.66 or (H,-0.33) Neg

12
H H M 1.66 or (H,-0.33) Neg

13
L M H 1 or (M) No

14
VH M H 2 or (H) Yes

16
M M VH 1.66 or (H,-0.33) Neg

18
L VH VH 2 or (H) Yes

19
VH L VH 2 or (H) Yes

20
VH L VH 2 or (H) Yes

21 M L VH 1.66 or (H,-0.33) Neg

22
M L VH 1.66 or (H,-0.33) Neg

Figure 5.6. SoS Meta-Architecture for scenario 3

Sys1

Sys2

Sys3

Sys4

Sys5
Sys6Sys7

Sys8

Sys9

Sys10

Sys11

Sys12

Sys13

Sys14

Sys15

Sys16
Sys17 Sys18

Sys19

Sys20

Sys21

Sys22

137

Figure 5.7. Negotiated-Architecture for scenario 3

Table 5.19. Domain Inputs for Scenario 4

Sys1

Sys2

Sys3

Sys4

Sys5
Sys6Sys7

Sys8

Sys9

Sys10

Sys11

Sys12

Sys13

Sys14

Sys15

Sys16
Sys17 Sys18

Sys19

Sys20

Sys21

Sys22

SysNo Type Capability I/FDevCostOpsCost/hrPerf DevTime

1 Cutter 2 0.1 0.05 12 1

2 Cutter 2 0.04 0.5 10 1

3 Helicopter 2 0.3 0.5 10 1

4 Helicopter 2 0.2 0.4 20 1

5 Aircraft 2 0.3 0.6 15 1

6 Aircraft 2 0.3 0.6 15 1

7 UAV 1 0.7 0.1 8 1

8 UAV 1 0.7 0.1 8 1

9 UAV 1 0.4 0.1 5 1

10 UAV 1 0.7 0.1 7 1

11 UAV 1 0.7 0.1 7 1

12 UAV 1 0.7 0.1 7 1

13 Fish Vessel 3 0.03 0.4 10 1

14 Fish Vessel 3 0.03 0.5 12 1

15 Fish Vessel 3 0.03 0.4 12 0

16 Civ Ship 3 0.05 2.5 8 0

17 Coord Ctr 4 0.05 0.2 7 0

18 Coord Ctr 4 0.05 0.5 5 1

19 Comm 5 0.09 0.1 1 0

20 Comm 5 0.09 0.1 1 0

21 Comm 5 0.09 0.1 2 1

22 Comm 5 0.09 0.1 2 1

138

Figure 5.8. SoS Meta-Architecture for scenario 4

Table 5.20. Systems and capabilities in Scenario 4

Sys1

Sys2

Sys3

Sys4

Sys5
Sys6Sys7

Sys8

Sys9

Sys10

Sys11

Sys12

Sys13

Sys14

Sys15

Sys16
Sys17 Sys18

Sys19

Sys20

Sys21

Sys22

Systems Selected in
Meta-Architecture

Capabilities
Provided

Systems Selected
in Negotiated
Architecture

Capabilities
Provided

Systems 1, 2-Cutter 2 None 2

3,4-Helicopter 2 4-Helicopter 2

5,6-Aircraft 2 None 2

Systems 7, 9,10,12-UAV 1 Systems 7,9,12 UAV 1

Systems 13,14,15,16-Fish
Vessel

3 Systems 14,15-Fish
Vessel

3

Systems 18 –Coordination
Control

4 Systems 18 –
Coordination Control

4

Systems 19, 20-
Communication 5 Systems 19, 20-

Communication 5

139

Table 5.21. Decision by SoS manager for each system in meta-architecture

Sys No
Cooperativeness

Willingness of

Collaboration

Preference

Capability
Aggregated Value Selection

1 M L L 0.33 or (L,0.33) No

2 VH L L 1 or (M) No

3 L VH H 1.66 or (H,-0.33) Neg

4 M VH H 2 or (H) Yes

7 H H VH 2.33 or (H,0.33) Yes

8 H H M 1.66 or (H,-0.33) Neg

9 VH H M 2 or (H) Yes

10 H H M 1.66 or (H,-0.33) Neg

12 VH H M 2 or (H) Yes

13 L M H 1 or (M) No

14 VH M H 2 or (H) Yes

15 VH M H 2 or (H) Yes

16 M M VH 1.66 or (H,-0.33) Neg

18 L VH VH 2 or (H) Yes

19 VH L VH 2 or (H) Yes

20 VH L VH 2 or (H) Yes

Figure 5.9. Negotiated-Architecture for scenario 4

Sys1

Sys2

Sys3

Sys4

Sys5
Sys6Sys7

Sys8

Sys9

Sys10

Sys11

Sys12

Sys13

Sys14

Sys15

Sys16
Sys17 Sys18

Sys19

Sys20

Sys21

Sys22

140

The distribution of monetary benefits was changed at the start of a new wave

when new systems were incorporated for selection in the domain specific inputs. This is

because a system may spend funds on an interface that will not be ready until the next

epoch, but they will get no performance increment from that interface until it is

complete. Similarly a different overall ‘relative’ performance value was assigned to each

system based on its key capability at the start of new wave.

In Scenario 5 some rules were created to define the trade-offs between the many

objectives as stated to result in Figures 5.10. and Figures 5.11. The rules are:

 If (Performance is medium) and (Affordability is medium) and Net-Centricity is

high) and (Robustness is low) then (SoS_Arch_Fitness is low)

 If (Performance is high) and (Affordability is medium) and Net-Centricity is

medium) and (Robustness is medium) then (SoS_Arch_Fitness is medium)

 If (Performance is high) and (Affordability is medium) and Net-Centricity is

high) and (Robustness is high) then (SoS_Arch_Fitness is high)

 If (Performance is medium) and (Affordability is medium) and Net-Centricity is

medium) and (Robustness is medium) then (SoS_Arch_Fitness is medium)

Figure 5.10. SoS Meta-Architecture for scenario 5

Sys1

Sys2

Sys3

Sys4

Sys5
Sys6Sys7

Sys8

Sys9

Sys10

Sys11

Sys12

Sys13

Sys14

Sys15

Sys16
Sys17 Sys18

Sys19

Sys20

Sys21

Sys22

141

Figure 5.11. SoS architecture quality for 50 generations

Table 5.22. lists the systems and capabilities selected in scenario 5.

Table 5.22. Systems and capabilities in Scenario 5

0 5 10 15 20 25 30 35 40 45 50
2

3

4

5

6

7

8

9

generation

c
o
s
t

best

population average

Systems Selected in
Meta-Architecture

Capabilities
Provided

Systems Selected
in Negotiated
Architecture

Capabilities
Provided

Systems 1, 2-Cutter 2 None 2

3,4-Helicopter 2 4-Helicopter 2

5,6-Aircraft 2 None 2

Systems 7, 11,12-UAV 1 Systems 7,9,12 UAV 1

Systems 13,14,16-Fish
Vessel 3 Systems 14,15-Fish

Vessel 3

Systems 17, 18 –
Coordination Control 4 Systems 18 –

Coordination Control 4

Systems 19, 20, 22-
Communication

5 Systems 19, 20-
Communication

5

142

The architecture quality and values of various key performance attributes on

scale of 1 to 4, of various scenarios is listed below in Figures 5.12. and 5.13.

Meta-Architecture Scenario 1 Negotiated-Architecture Scenario 1

Meta-Architecture Scenario 2 Negotiated-Architecture Scenario 2

Meta-Architecture Scenario 3 Negotiated-Architecture Scenario 3

Figure 5.12. Architecture assessment results for Scenarios 1-3

Quality 3.67

Performance 3.66

Affordability 2.43

Net-Centricity 3

Robustness 3.74

Quality 1.45

Performance 2.8

Affordability 3.76

Net-Centricity 2.55

Robustness 1.74

Quality 3.49

Performance 3.21

Affordability 2.68

Net-Centricity 3.84

Robustness 3.24

Quality 2.38

Performance 2.8

Affordability 2.58

Net-Centricity 2.87

Robustness 2.33

Quality 1.37

Performance 1.81

Affordability 3.82

Net-Centricity 2.95

Robustness 1.74

Quality 3.72

Performance 3.59

Affordability 2.41

Net-Centricity 3.55

Robustness 3.36

143

Meta-Architecture Scenario 4 Negotiated-Architecture Scenario 4

Meta-Architecture Scenario 5

Figure 5.13. Architecture assessment results for Scenarios 4-5

Scenario 2 highlights preference of capability analysis such as the conditions

when an individual system is more/less capable than the SoS expects. Scenario 3

highlights changes in willingness to collaborate and new set of domain inputs. This

research proposes a different look at generating numerous underlying structures and

dynamics of SoS. The inputs and rules in Scenario 5 are easily changed based on

domain.

Incorporating these analyses helps the SoS decision maker to get an higher level

overview of the situation. For further in-depth analysis in future, other techniques can be

used to solve such problems. The next section highlights some methods that can enhance

the existing model in future.

The model is a decision making aid for the SoS manager. It does not so much

find the best solution to designing a SoS, as help the manager explore the influence of

the various constraints on the shape of a reasonable solution. The models described can

Quality 3.19

Performance 3.01

Affordability 2.49

Net-Centricity 3.64

Robustness 3.24

Quality 1.12

Performance 1.18

Affordability 3.5

Net-Centricity 1.1

Robustness 1.13

Quality 3.21

Performance 3.09

Affordability 3.08

Net-Centricity 3.8

Robustness 2.79

144

be used in conjunction with others to explore the SoS context and goals. This will help

in developing SoS architectures including the full range of candidate systems and their

interfaces. Our attempt has been to produce a holistic architecting methodology that is

reconfigurable and has models that are adaptive to the environment.

FILA-SoS provides a capability to Acknowledged SoS manager to evaluate the

impact of his sequence architecture selection and implementation decisions throughout

the waves. It has been suggested by Maier (2005) to use Dynamic programming for

formulating the SoS management problem. Neuro-Dynamic Programming (NDP) uses

the concepts of neural networks for approximation of value functions, which are hard to

calculate (Bertsekas & Tsitsiklis, 1995). Another approach for future work is to use

approximate dynamic programming (Powell, 2207)

which is based on post-decision state

variables that avoid computing the expectation of uncertainties.

Sequential decision making by dynamic programming has been previously

implemented (Dai Pra, Runggaldier, & Rudari, 1997). This structure wishes to provide

SoS manager a sequence of architecture alternatives at different stages given the

individual system capabilities and resource constraints.

 Dynamic programming algorithms can be used to generate optimal sequence of

decisions in enhancing this capability of FILA-SoS. A mathematical model formulation

is provided to illustrate the concept.

Classical dynamic programming recursively computes the Bellman equation

which is the essence of dynamic programming as following:

𝑉𝑡(𝑆𝑡) = max𝑥𝑡∈𝑋𝑡
(𝐶𝑡(𝑆𝑡, 𝑥𝑡) + 𝛾𝐸{𝑉𝑡+1(𝑆𝑡+1)|𝑆𝑡})

 where
tS represents state variables,

tx represents decision variables,
tC means

current contribution,  is discount factor and
1 1()t tV S 

 means expected value of being in

state
1tS 
.

Bitran (1970) developed theory and algorithms for multiple-criteria linear

programs with binary variables. The algorithms were based on enumerative schemes and

solving some auxiliary multiple objective programs. Multiple criteria integer linear

programs were studied by several authors. Klein and Hannan (1982) developed an

algorithm for generating the complete efficient set of such problems. This is a sequential

procedure in which one of the criterion functions is optimized subject to progressively

145

more constrained feasible sets determined by the other criteria and previously found

efficient solutions.

The problem can be defined in simpler terms as:

1. States are equal to number of waves 𝑊 where 𝑗, 𝑘 ∈ {1,2, … ,𝑊]

2. Actions ∈ {𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑, 𝑛𝑜𝑡 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑]

3. Transitioning to a state 𝑺𝒋 = [𝑠𝟏
𝒋
, … , 𝑠𝒊

𝒋
, … , 𝑠𝑵

𝒋
] with an action 𝑎 ∈ 𝐴 and receive

a discounted award 𝒓𝒋

4. Probability of transitioning of system 𝑠𝑖
𝑗
 (system i in state j) to 𝑠𝑖

𝑘 (system i in

state k) is 𝑷𝒋𝒌
𝒊

The idea is depicted in the Figure 5.14. The cost function ca be thought of as

architecture quality that can be expressed as linear combination of key performance

parameters or can be solved as a multi-objective optimization problem. The quality can

also be assessed through a fuzzy assessor.

Figure 5.14. Transitioning in Dynamic Programming

First the SoS managers needs to start with a feasible solution state. Constraints

are incorporated within actions taken to reach the new state. The expected discounted

sum of future rewards when a system is starting in state j is given by 𝐽∗(𝑺𝒋) = 𝒓𝒋 +

𝜸{[∏ 𝑷𝒋𝟏
𝒊𝑵

𝒊=𝟏]. 𝐽∗(𝑺𝟏) + [∏ 𝑷𝒋𝟐
𝒊𝑵

𝒊=𝟏]. 𝐽∗(𝑺𝟐)+. . . +[∏ 𝑷𝒋𝑾
𝒊𝑵

𝒊=𝟏]. 𝐽∗(𝑺𝑾)}.

Similarly, expected discounted sum of future rewards for a system in each possible

staring state can be given as the matrix J, reward as R and probability as P.

𝑺𝒋, 𝒓𝒋, 𝒋 𝑺𝒌, 𝒓𝒌, 𝒌

𝑎 ∈ 𝐴

146

𝐽 = (

𝐽∗(𝑺𝟏)

𝐽∗(𝑺𝟐)
.

𝐽∗(𝑺𝑾)

)

𝑅 = (

𝒓𝟏

𝒓𝟐

.
𝒓𝑾

)

𝑃 =

[

∏𝑷𝟏𝟏

𝒊

𝑵

𝒊=𝟏

. .

. . .

∏𝑷𝑾𝟏
𝒊

𝑵

𝒊=𝟏

. ∏𝑷𝑾𝑾
𝒊

𝑵

𝒊=𝟏]

If you have a lot of states let’s say a 100, then a 100X100 system of equations

needs to be solved. This is computationally expensive hence neuro-dynamic

programming can be used to solve such problems. This approach can further help the

SoS manager in solving the problems at a lower level.

147

6. CONCLUSIONS AND FUTURE WORK

The goal of this research is to model the evolution of the architecture of an

acknowledged Systems of Systems (SoS) that accounts for the ability and willingness of

constituent systems to support the SoS capability development. The Wave Process

Model provides a framework for modeling methodology, and this research provides

different sets of modules to be integrated with the rest of them. The research is

successfully able to achiev the objectives that are to develop a simulation for

acknowledged SoS architecture selection and evolution, have a structured, repeatable

approach for planning and modeling and study and evaluate the impact of individual

system behavior on SoS capability and architecture evolution process. Results have been

satisfactory and proved the model as a prototype.

In this dissertation research question “What is the impact of different constituent

system perspectives regarding participating in the SoS on the overall mission

effectiveness of the SoS?”is answered through the integrated model. This work helps in

examining the impact of development approaches of different participating systems in a

SoS to achieve the overarching capability. This approach involves meta-architecture

generation and SoS negotiation models to implement our ideas. The meta-architecture

generation technique helps in capturing the varied differences in the resources required

by systems to prepare for participation. Similarly, the behavioral aspect of systems is

tackled through an adaptive SoS negotiation strategy. The overall mission effectiveness

is measured by effectively meeting the overarching objective

This thesis represents a first step towards addressing the tenacious problems in

Acknowledged SoS such as cost estimates and cost overruns (Schwartz, 2010), which

have overwhelmed the DoD. Future research on the ideas presented in this thesis could

benefit the systems engineering community as demonstrated in this thesis.

This research has some limitation such as it has the data used for clustering has

needs to be updated as time goes along. Besides the multiple waves depend on scenario

for simulation and hence different domains may lead to different results. Other

limitations include a more detailed way of defining the membership functions. This may

148

affect the architecture quality results. Better ways to visualize this information may be

helpful in the future.

When making decision on offers made by SoS stakeholders the goals of the

individual decision-makers may differ on the alternatives based on attributes. This is due

to the fact each individual processes the information differently to base their decision.

Therefore, we need a group decision-making ability. The theory of intuitionistic fuzzy

(Rodríguez, Martínez, Torra, Xu, & Herrera, 2014) sets further extend both concepts by

allowing the assessment of the elements by two functions: 𝜇 for membership and 𝜐 for

non-membership, which belong to the real unit interval [0, 1] and whose sum belongs to

the same interval, as well.

Other metrics such as entropy can be added to evaluate the architectures quality

(Cloutier, Verma, Bone & Sommer, 2009). The work done so far tries to investigate the

impact of entropy on other attributes of systems architectures, the effect of low or high

entropy on systems physical architecture and finally what steps can be adopted to

improve the architecture quality through its entropy value (Bone et al., 2010).

Novel approaches also propose to assess the approach of joint programs that

appear to cost more than disjoint programs (Dwyer & Szajnfarber, 2014). A Framework

is proposed by the authors that can help the stakeholders reconfigure their policy and

identify risks to develop approaches. These strategies will help maintain the cost-

effectiveness (Dwyer et al., 2014).

Numerous systems have dissimilar goals, therefore integration and assimilation

of information is needed to guide them to larger missions in the face of uncertainty and

attacks. This research takes a step towards achieving that capability by introducing a

new analysis framework that uses modeling tools to expose foreseeable SoS level

impacts for decision makers early in the lifecycle, when such impacts can be managed

less expensively and more solutions to possible problems can be put on the table.

149

BIBLIOGRAPHY

Ackoff, R. L. (1971). Towards a system of systems concepts. Management science, 17(11),

661-671.

Acheson, P., Dagli, C., & Kilicay-Ergin, N. (2013). Model Based Systems Engineering

for System of Systems Using Agent-based Modeling. Procedia Computer

Science, 16, 11-19.

Adra, S. F., & Fleming, P. J. (2011). Diversity management in evolutionary many-

objective optimization. Evolutionary Computation, IEEE Transactions on, 15(2),

183-195.

Agarwal, S., & Ganguli, R. (2011). Refining automated modeling of operational data by

identifying the most important input factors. Mining Engineering, 63(12), 52-54.

Agarwal, S., & Gangull, R. (2011). Automating modeling of operational data to identify

the most important factors. Paper presented at the SME Annual Meeting and

Exhibit and CMA 113th National Western Mining Conference 2011, 142-143.

Agarwal,S., Wang, R., & Dagli, C., (2015) FILA-SoS, Executable Architectures using

Cuckoo Search Optimization coupled with OPM and CPN-A module: A new

Meta-Architecture Model for FILA-SoS, France, Complex Systems Design &

Management (CSD&M) editor, Boulanger, Frédéric, Krob, Daniel, Morel,

Gérard, Roussel, Jean-Claude, P 175-192 . Springer International Publishing.

Agarwal, S., Pape, L. E., & Dagli, C. H. (2014). A Hybrid Genetic Algorithm and

Particle Swarm Optimization with Type-2 Fuzzy Sets for Generating Systems of

Systems Architectures. Procedia Computer Science, 36, 57-64.

Agarwal, S., Saferpour, H. R., & Dagli, C. H. (2014). Adaptive Learning Model for

Predicting Negotiation Behaviors through Hybrid K-means Clustering, Linear

Vector Quantization and 2-Tuple Fuzzy Linguistic Model. Procedia Computer

Science, 36, 285-292.

Agarwal, S., Pape, L. E., Kilicay-Ergin, N., & Dagli, C. H. (2014). Multi-agent Based

Architecture for Acknowledged System of Systems. Procedia Computer Science,

28, 1-10.

Agarwal, S., Pape, L. E., Dagli, C. H., Ergin, N. K., Enke, D., Gosavi, A., ... & Gottapu,

R. D. (2015). Flexible and Intelligent Learning Architectures for SoS (FILA-

SoS): Architectural Evolution in Systems-of-Systems. Procedia Computer

Science, 44, 76-85.

150

Ahn, J. H., Ryu, Y., & Baik, D. K. (2012). An Archietcture Description method for

Acknowledged System of Systems based on Federated Architeture. Advanced

Science and Technology Letters, 5.

An, B., Lesser, V., & Sim, K. M. (2011). Strategic agents for multi-resource negotiation.

Autonomous Agents and Multi-Agent Systems, 23(1), 114-153.

Analysis of Alternatives (AoA) Handbook A Practical Guide to Analyses of Alternatives

July 2008 Office of Aerospace Studies Air Force Materiel Command (AFMC)

OAS/A9

Arnold, A., Boyer, B., & Legay, A. (2013). Contracts and Behavioral Patterns for SoS:

The EU IP DANSE approach. arXiv preprint arXiv:1311.3631.

Axelrod, R. M. (2006). The evolution of cooperation. Basic books, Inc., Publishers, New

York, USA.

Baarslag, T. (2014). What to Bid and When to Stop (Doctoral dissertation, TU Delft,

Delft University of Technology).

Baarslag, T., Hindriks, K., & Jonker, C. (2011). Towards a quantitative concession-

based classification method of negotiation strategies. In Agents in Principle,

Agents in Practice (pp. 143-158). Springer Berlin Heidelberg.

Baarslag, T., Hindriks, K., & Jonker, C. (2013). Acceptance conditions in automated

negotiation. In Complex Automated Negotiations: Theories, Models, and

Software Competitions (pp. 95-111). Springer Berlin Heidelberg.

Baarslag, T., Hindriks, K., & Jonker, C. (2014). Effective acceptance conditions in real-

time automated negotiation. Decision Support Systems, 60, 68-77.

Babar, M. A., Zhu, L., & Jeffery, R. (2004). A framework for classifying and comparing

software architecture evaluation methods. In Software Engineering Conference,

2004. Proceedings. 2004 Australian (pp. 309-318). IEEE.

Back, T., & Schwefel, H. P. (1996, May). Evolutionary computation: An overview. In

Evolutionary Computation, 1996., Proceedings of IEEE International

Conference on (pp. 20-29). IEEE.

Bader, J., & Zitzler, E. (2011). HypE: An algorithm for fast hypervolume-based many-

objective optimization. Evolutionary Computation, 19(1), 45-76.

Bahrammirzaee, A., Chohra, A., & Madani, K. (2013). An adaptive approach for

decision making tactics in automated negotiation. Applied intelligence, 39(3),

583-606.

151

Baldwin, C. Y., & Clark, K. B. (2006). Modularity in the design of complex engineering

systems (pp. 175-205). Springer Berlin Heidelberg.

Batista, L. S., Campelo, F., Guimaraes, F. G., & Ramírez, J. A. (2011, June). A

comparison of dominance criteria in many-objective optimization problems. In

Evolutionary Computation (CEC), 2011 IEEE Congress on (pp. 2359-2366).

IEEE.

Bergey, J. K., Blanchette Jr, S., Clements, P. C., Gagliardi, M. J., Klein, J., Wojcik, R.,

& Wood, W. (2009). US Army Workshop on Exploring Enterprise, System of

Systems, System, and Software Architectures.

Bertsekas, D. P., & Tsitsiklis, J. N. (1995, December). Neuro-dynamic programming: an

overview. In Decision and Control, 1995., Proceedings of the 34th IEEE

Conference on (Vol. 1, pp. 560-564). IEEE.

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. The

Journal of Machine Learning Research, 13(1), 281-305.

Bertsekas, D. P. (1999). Nonlinear programming (2nd ed.). Athena Scientific. ISBN 1-

886529-00-0.

Beyer, H. G., & Schwefel, H. P. (2002). Evolution strategies–A comprehensive

introduction. Natural computing, 1(1), 3-52.

Bi, X., & Xiao, J. (2012). Classification-based self-adaptive differential evolution and its

application in multi-lateral multi-issue negotiation. Frontiers of Computer

Science, 6(4), 442-461.

Bigham, J., & Du, L. (2003, July). Cooperative negotiation in a multi-agent system for

real-time load balancing of a mobile cellular network. In Proceedings of the

second international joint conference on Autonomous agents and multiagent

systems (pp. 568-575). ACM.

Binmore, K., & Vulkan, N. (1999). Applying game theory to automated negotiation.

Netnomics, 1(1), 1-9.

BKCASE Editorial Board. 2014. The Guide to the Systems Engineering Body of

Knowledge (SEBoK), v. 1.3. R.D. Adcock (EIC). Hoboken, NJ: The Trustees of

the Stevens Institute of Technology. Accessed DATE. www.sebokwiki.org.

Bodner, D A; Medvidovic, N ; Lane, J ; Boehm, B; Kessler, W ; Rouse, W ; Edwards, G

; Kirkland, K ; Krka, I ; Podar, A ; Popescu, D. 2011. Requirements Management

for Net-Centric Enterprises. Phase 2. Accession Number : ADA589806

Bondy, J.A.; Murty, U.S.R. (2008), Graph Theory, Springer, ISBN 978-1-84628-969-9

http://www.sebokwiki.org/
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/International_Standard_Book_Number

152

Bone, M. A., Cloutier, R., Korfiatis, P., & Carrigy, A. (2010, June). System architecture:

Complexities role in architecture entropy. In System of Systems Engineering

(SoSE), 2010 5th International Conference on (pp. 1-6). IEEE.

Bounova, G., de Weck, O.L. (2012). Overview of metrics and their correlation patterns

for multiple-metric topology analysis on heterogeneous graph ensembles, Phys.

Rev. E 85, 016117.

Newman, M. E. (2006). Modularity and community structure in networks. Proceedings

of the National Academy of Sciences, 103(23), 8577-8582.

Bouwens, c. L. (2013). Systems geometry: a methodology for analyzing emergent system

of systems behaviors (Doctoral dissertation, University of Central Florida

Orlando, Florida).

Breivik, Ø., Allen, A. A., Maisondieu, C., & Olagnon, M. (2013). Advances in search

and rescue at sea. Ocean Dynamics, 63(1), 83-88.

Brucker, P., Drexl, A., Möhring, R., Neumann, K., & Pesch, E. (1999). Resource-

constrained project scheduling: Notation, classification, models, and methods.

European journal of operational research, 112(1), 3-41.

Buhmann, Martin D. (2003), Radial Basis Functions: Theory and Implementations,

Cambridge University Press, ISBN 978-0-521-63338-3.

Bustince, H., Herrera, F., & Montero, J. (Eds.). (2008). Fuzzy sets and their extensions:

Representation, aggregation and models. Springer-Verlag Berlin Heidelberg.

Buttner, R. (2006, December). A classification structure for automated negotiations. In

Web Intelligence and Intelligent Agent Technology Workshops, 2006. WI-IAT

2006 Workshops. 2006 IEEE/WIC/ACM International Conference on (pp. 523-

530). IEEE.

Callanan, B., & Weiler, D. (2008, May).War Budgeting Strategies: Case Studies of The

Gulf War and The Iraq War.

Cara, Ana Belén, Christian Wagner, Hani Hagras, Héctor Pomares, and Ignacio Rojas.

"Multi-objective Optimization and Comparison of Non-Singleton Type-1 and

Singleton Interval Type-2 Fuzzy Logic Systems." (2013): 1-1.

Carbonneau, R., Kersten, G. E., & Vahidov, R. (2008). Predicting opponent’s moves in

electronic negotiations using neural networks. Expert Systems with

Applications, 34(2), 1266-1273.

Carlsson, C., & Fullér, R. (1996). Fuzzy multiple criteria decision making: Recent

developments. Fuzzy sets and systems, 78(2), 139-153.

153

Cavallo, A., & Ireland, V. (2014). Preparing for complex interdependent risks: A system

of systems approach to building disaster resilience. International Journal of

Disaster Risk Reduction, 9, 181-193.

Celino, I., & Kotoulas, S. (2013). Smart Cities [Guest editors' introduction].IEEE

Internet Computing, 17(6), 8-11.

Celino, I., Contessa, S., Corubolo, M., Dell’Aglio, D., Della Valle, E., Fumeo, S., &

Krüger, T. (2012). Linking smart cities datasets with human computation–the

case of urbanmatch. In The Semantic Web–ISWC 2012 (pp. 34-49). Springer

Berlin Heidelberg.

Chan, H. K. (2011). Supply chain systems—Recent trend in research and applications.

Systems Journal, IEEE, 5(1), 2-5.

Chandana, S., & Leung, H. (2010). A system of systems approach to disaster

management. Communications Magazine, IEEE, 48(3), 138-145.

Chattopadhyay, D., Ross, A. M., & Rhodes, D. H. (2008, April). A framework for

tradespace exploration of systems of systems. In 6th Conference on Systems

Engineering Research, Los Angeles, CA.

Chen, S., Hong, X., Luk, B. L., & Harris, C. J. (2009). Construction of tunable radial

basis function networks using orthogonal forward selection. Systems, Man, and

Cybernetics, Part B: Cybernetics, IEEE Transactions on, 39(2), 457-466.

Chen, S., & Weiss, G. (2013). An efficient automated negotiation strategy for complex

environments. Engineering Applications of Artificial Intelligence,26(10), 2613-

2623.

Chiong, R. (Ed.). (2009). Nature-inspired algorithms for optimization (Vol. 193).

Springer.

Chung, F. L., & Lee, T. (1996). On fuzzy associative memory with multiple-rule storage

capacity. Fuzzy Systems, IEEE Transactions on, 4(3), 375-384.

Cloutier, R., Verma, D., Bone, M., & Sommer, K. (2009, July). 4.1. 3 System

Architecture Entropy. In INCOSE International Symposium (Vol. 19, No. 1, pp.

622-636).

Coehoorn, R. M., & Jennings, N. R. (2004, March). Learning on opponent's preferences

to make effective multi-issue negotiation trade-offs. In Proceedings of the 6th

international conference on Electronic commerce (pp. 59-68). ACM.

Coello, C. A. C. (1999). List of references on evolutionary multiobjective optimization.

Laboratorio Nacional de Informática Avanzada, México.

154

Coello, C. A. C. (1999). An updated survey of evolutionary multiobjective optimization

techniques: State of the art and future trends. In Evolutionary Computation,

1999. CEC 99. Proceedings of the 1999 Congress on (Vol. 1). IEEE.

Coello Coello, C. A. (2002). Theoretical and numerical constraint-handling techniques

used with evolutionary algorithms: a survey of the state of the art.Computer

methods in applied mechanics and engineering, 191(11), 1245-1287.

Coleman, J. W., Malmos, A. K., Larsen, P. G., Peleska, J., & Hains, R. (2012).

COMPASS tool vision for a system of systems Collaborative Development

Environment. In International Conference on System of Systems

Engineering,.2012 7th International Conference on , vol., no., pp.451,456, 16-19

CPS20: CPS 20 years from now - visions and challenges, a CPSWeek workshop, in

Berlin, Germany, April 14 2014, http://www.cyphers.eu/.

Creel, R., & Ellison, B. (2008). System-of-systems influences on acquisition strategy

development. Software Engineering Institute.

Dagli, C. H., & Kilicay‐Ergin, N. (2008). System of Systems Architecting. System of

Systems Engineering, 77-100.

Dagli, C. H., Singh, A., Dauby, J. P., & Wang, R. (2009, December). Smart systems

architecting: computational intelligence applied to trade space exploration and

system design. In Systems Research Forum (Vol. 3, No. 02, pp. 101-119). World

Scientific Publishing Company.

Dagli, C.H. (2013). An Advanced Computational Approach to System of Systems

Analysis & Architecting Using Agent-Based Behavioral Model (Systems

Engineering Research Center Final Technical Report SERC-2013-TR-021-3).

Dagli, C., Ergin, N., Enke, D., Gosavi, A., Qin, R., Colombi, J., Rebovich, G., & Pape,

L. (2013). An Advanced Computational Approach to System of Systems

Analysis & Architecting Using Agent-Based Behavioral Model (No. SERC-

2013-TR-021-2). Missouri University of Science and Technology Rolla.

Dahmann, J,. Lane, J., G. Rebovich, and K. Baldwin. "A model of systems engineering

in a system of systems context." In Proceedings of the Conference on Systems

Engineering Research, Los Angeles, CA, USA (April 2008). 2008.

Dahmann, J., Baldwin, K. J., & Rebovich Jr, G. (2009, April). Systems of Systems and

Net-Centric Enterprise Systems. In 7th Annual Conference on Systems

Engineering Research, Loughborough.

http://www.cyphers.eu/

155

Dahmann, J., Rebovich, G., Lowry, R., Lane, J., & Baldwin, K. (2011, April). An

implementers' view of systems engineering for systems of systems. In Systems

Conference (SysCon), 2011 IEEE International (pp. 212-217). IEEE.

Dahmann, J. S., & Baldwin, K. J. (2008, April). Understanding the current state of US

defense systems of systems and the implications for systems engineering. In

Systems Conference, 2008 2nd Annual IEEE (pp. 1-7). IEEE.

Dahmann, J., Rebovich, G., & Turner, G. (2014, March). An actionable framework for

system of systems and mission area security engineering. In Systems Conference

(SysCon), 2014 8th Annual IEEE (pp. 12-17). IEEE.

Dai Pra, P., Runggaldier, W. J., & Rudari, C. (1997). On dynamic programming for

sequential decision problems under a general form of uncertainty.Mathematical

methods of operations research, 45(1), 81-107.

Darabi, H. R., & Mansouri, M. (2013). The Role of Competition and Collaboration in

Influencing the Level of Autonomy and Belonging in System of Systems.

Davendralingam, N., DeLaurentis, D., Fang, Z., Guariniello, C., Han, S. Y., Marais, K.,

Mour, A., & Uday, P. (2014). An Analytic Workbench Perspective to Evolution

of System of Systems Architectures. Procedia Computer Science,28, 702-710.

Deb, K. (1999). Solving goal programming problems using multi-objective genetic

algorithms. In Evolutionary Computation, 1999. CEC 99. Proceedings of the

1999 Congress on (Vol. 1). IEEE.

Deb, K.; Jain, H., "An Evolutionary Many-Objective Optimization Algorithm Using

Reference-Point-Based Nondominated Sorting Approach, Part I: Solving

Problems With Box Constraints," Evolutionary Computation, IEEE Transactions

on , vol.18, no.4, pp.577,601, Aug. 2014

DeLaurentis, D. A., Crossley, W. A., & Mane, M. (2011). Taxonomy to guide systems-

of-systems decision-making in air transportation problems. Journal of Aircraft,

48(3), 760-770.

Deshmukh, P. K., & Gholap, Y. (2012, December). Dept. of Post Grad. Comput. Eng.,

JSPM'S Rajarshi Shahu Coll. of Eng., Pune, India. In Hybrid Intelligent Systems

(HIS), 2012 12th International Conference on (pp. 52-56). IEEE.

De Weck, O. L., Neufville, R. D., & Chaize, M. (2004). Staged deployment of

communications satellite constellations in low earth orbit. Journal of Aerospace

Computing, Information, and Communication, 1(3), 119-136.

156

Dodgson, J. S., Spackman, M., Pearman, A., & Phillips, L. D. (2009). Multi-criteria

analysis: a manual. Department for Communities and Local Government:

London.

Dombkins, D. H. Project Managed Change: the Application of Project Management

Techniques to strategic change program. Centre for Corporate Change working

paper no, 062 (1996). Australian Graduate School of Management, The

University of New South Wales, 1996.

Dombkins, D. H. (2013).Realizing Complex Policy: Using a Systems-of-Systems

Approach to Develop and Implement Policy. Editor’s Introduction, Volume II,

Issue 5, 22.

Dong, P., Han, Y., Guo, X., & Xie, F. (2015). A Systematic Review of Studies on Cyber

Physical System Security. International Journal of Security and Its Applications,

9(1), 155-164.

Dwyer, M. M., & Szajnfarber, Z. (2014). A Framework to Assess the Impacts of

Jointness. In 4th International Engineering Systems Symposium.

Dwyer, M., Szajnfarber, Z., Cameron, B., Selva, D., & Crawley, E. (2014). The Cost of

Jointness and How to Manage It. In AIAA SPACE.

Dyer, J. S. (2005). MAUT—multiattribute utility theory. In Multiple criteria decision

analysis: state of the art surveys (pp. 265-292). Springer New York.

Engelbrecht, A. P. (2006). Fundamentals of computational swarm intelligence. John

Wiley & Sons.

Ergin, N. K.,(2014), Improving Collaboration in Search and Rescue System of Systems,

Procedia Computer Science, Volume 36, Pages 13-20.

Fang, Z., & DeLaurentis, D. (2014). Dynamic Planning of System of Systems

Architecture Evolution. Procedia Computer Science, 28, 449-456.

Faratin, P., Sierra, C., & Jennings, N. R. (1998). Negotiation decision functions for

autonomous agents. Robotics and Autonomous Systems, 24(3), 159-182.

Faratin, P., Sierra, C., & Jennings, N. R. (2002). Using similarity criteria to make issue

trade-offs in automated negotiations. Artificial Intelligence, 142(2), 205-237

Farmani, R., & Wright, J. A. (2003). Self-adaptive fitness formulation for constrained

optimization. Evolutionary Computation, IEEE Transactions on,7(5), 445-455.

157

Fatima, S. S., Wooldridge, M., & Jennings, N. R. (2002, July). Multi-issue negotiation

under time constraints. In Proceedings of the first international joint conference

on Autonomous agents and multiagent systems: part 1 (pp. 143-150). ACM.

Fatima, S. S., Wooldridge, M., & Jennings, N. R. (2006). Multi-issue negotiation with

deadlines. Journal Artificial Intelligence Research.(JAIR), 27, 381-417.

Fiedler, M. (1973). Algebraic connectivity of graphs. Czechoslovak Mathematical

Journal, 23(2), 298-305.

Flynn, C., & Richardson, J. (2013). Joint Operational Access and the Global Response

Force: Redefining Readiness. Military Review, 93(4), 38.

Folmer, E., van Gurp, J., & Bosch, J. (2003, May). Scenario-based Assessment of

Software Architecture Usability. In ICSE Workshop on SE-HCI (pp. 61-68).

Fraser, R., & Hawkins, C. (2014). Building a System of Systems For Disaster

Management Workshop: Joint Issues Statement.

Freeman, L. (1994). Displaying Hierarchical Clusters. INSNA Connections, 17(2), 46-

52.

Fry, D. N., & DeLaurentis, D. A. (2011, June). Measuring net-centricity. InSystem of

Systems Engineering (SoSE), 2011 6th International Conference on(pp. 264-

269). IEEE.

Gagliardi, M., & Wood, B. (October 2013) Identifying Architectural Challenges in

System of Systems NDIA Systems Engineering Conference.

Garg, R., & Singh, D. (2011). ε–Pareto Dominance Based Multi-objective Optimization

to Workflow Grid Scheduling. In Contemporary Computing (pp. 29-40).

Springer Berlin Heidelberg.

Gatti, N., & Amigoni, F. (2004, July). A cooperative negotiation protocol for

physiological model combination. In Proceedings of the Third International

Joint Conference on Autonomous Agents and Multiagent Systems-Volume 2 (pp.

655-662). IEEE Computer Society.

Garza-Fabre, M., Pulido, G. T., & Coello, C. A. C. (2009). Ranking methods for many-

objective optimization. In MICAI 2009: Advances in Artificial Intelligence (pp.

633-645). Springer Berlin Heidelberg.

Gorod, A., White E. B., Ireland, V., Gandhi, J. S., & Sauser, B., (Eds.). (2014). Case

Studies in System of Systems, Enterprise Systems, and Complex Systems

Engineering. CRC Press.

158

Grira, N., Crucianu, M., & Boujemaa, N. (2004). Unsupervised and semi-supervised

clustering: a brief survey. A review of machine learning techniques for

processing multimedia content, Report of the MUSCLE European Network of

Excellence (FP6).

Guo, X., Wang, X., Wang, M., & Wang, Y. (2012, November). A new objective

reduction algorithm for many-objective problems: employing mutual information

and clustering algorithm. In Computational Intelligence and Security (CIS), 2012

Eighth International Conference on (pp. 11-16). IEEE.

Guo, Y. (2009). An investigation of model-based techniques for automotive electronic

system development (Doctoral dissertation, University of Warwick).

Guttman, R. H., & Maes, P. (1998). Cooperative vs. competitive multi-agent

negotiations in retail electronic commerce. In Cooperative Information Agents II

Learning, Mobility and Electronic Commerce for Information Discovery on the

Internet (pp. 135-147). Springer Berlin Heidelberg.

Hadka, D., & Reed, P. (2013). Borg: An auto-adaptive many-objective evolutionary

computing framework. Evolutionary computation, 21(2), 231-259.

Hadian, S., & Madani, K. (2015). A system of systems approach to energy sustainability

assessment: Are all renewables really green?. Ecological Indicators, 52, 194-

206.

Hagen, T. E. (2007). An Architectural Process for Achieving Robustness.

Hajela, P., & Lee, J. (1996). Constrained genetic search via schema adaptation: an

immune network solution. Structural optimization, 12(1), 11-15.

Han, S. Y., & DeLaurentis, D. (2013). Development Interdependency Modeling for

System-of-Systems (SoS) using Bayesian Networks: SoS Management Strategy

Planning. Procedia Computer Science, 16, 698-707.

Han, S. Y., Marais, K., & DeLaurentis, D. (2012, October). Evaluating system of

systems resilience using interdependency analysis. In Systems, Man, and

Cybernetics (SMC), 2012 IEEE International Conference on (pp. 1251-1256).

IEEE.

Hassan, R., Cohanim, B., De Weck, O., & Venter, G. (2005, April). A comparison of

particle swarm optimization and the genetic algorithm. In Proceedings of the 1st

AIAA multidisciplinary design optimization specialist conference (pp. 18-21).

Haykin, S. S.(2009). Neural networks and learning machines (Vol. 3). Upper Saddle

River: Pearson Education.

159

He, Z., Yen, G. G., & Zhang, J. (2014). Fuzzy-Based Pareto Optimality for Many-

Objective Evolutionary Algorithms. Evolutionary Computation, IEEE

Transactions on, 18(2), 269-285.

Herrera, F., & Martínez, L. (2000). A 2-tuple fuzzy linguistic representation model for

computing with words. Fuzzy Systems, IEEE Transactions on, 8(6), 746-752.

Hilliard, R., Kurland, M. J., & Litvintchouk, S. D. (1997, April). MITRE’s Architecture

Quality Assessment. In 1997 MITRE Software Engineering and Economics

Conference (pp. 2-3).

Hindriks, K., & Tykhonov, D. (2008, May). Opponent modelling in automated multi-

issue negotiation using bayesian learning. In Proceedings of the 7th international

joint conference on Autonomous agents and multiagent systems-Volume 1 (pp.

331-338). International Foundation for Autonomous Agents and Multiagent

Systems.

Hindriks, K., Jonker, C. M., & Tykhonov, D. (2009, September). The benefits of

opponent models in negotiation. In Web Intelligence and Intelligent Agent

Technologies, 2009. WI-IAT'09. IEEE/WIC/ACM International Joint

Conferences on (Vol. 2, pp. 439-444). IET.

Hodges, C. 2014. COBWEB – Citizen Observatories Web: Ecology meets the crowd. In

GIS and Remote Sensing: the End of Fieldwork? Remote sensing and its role in

ecological assessment, Chartered Institute of Ecology and Environmental

Management (CIEEM) Welsh Section Conference and AGM, Aberystwyth, 21st

February 2014.

Holland, J. H.; (2006). "Studying Complex Adaptive Systems."Journal of Systems

Science and Complexity 19 (1): 1-8.

Horn, J., Nafpliotis, N., & Goldberg, D. E. (1994, June). A niched Pareto genetic

algorithm for multiobjective optimization. In Evolutionary Computation, 1994.

IEEE World Congress on Computational Intelligence., Proceedings of the First

IEEE Conference on (pp. 82-87). Ieee.

Hothorn, T., & Everitt, B. S. (2009). A handbook of statistical analyses using R. CRC

Press.

Hu, C. F., Teng, C. J., & Li, S. Y. (2007). A fuzzy goal programming approach to multi-

objective optimization problem with priorities. European Journal of Operational

Research, 176(3), 1319-1333.

Huang, J., & Xie, W. (1998). Genetic algorithm with fuzzy fitness evaluation. Journal of

Electronics (China), 15(3), 254-258.

160

Hüllermeier, E. (2005). Fuzzy methods in machine learning and data mining: Status and

prospects. Fuzzy Sets and Systems, 156(3), 387-406.

IBM Smart Traffic 2010. http://www.ibm.com/smarterplanet/us/en/traffic_congestion/

ideas. Accessed May 2014

Ilango, M. R., & Mohan, V. (2010). A survey of grid based clustering algorithms.

International Journal of Engineering Science and Technology, 2(8), 3441-3446.

Ishibuchi, H., Tsukamoto, N., & Nojima, Y. (2008, June). Evolutionary many-objective

optimization: A short review. In IEEE Congress on Evolutionary Computation

(pp. 2419-2426).

Ito, T., Zhang, M., Robu, V., Fatima, S., & Matsuo, T. (Eds.). (2009). Advances in

agent-based complex automated negotiations (Vol. 233). Springer.

Ito, T., Zhang, M., Robu, V., Fatima, S., & Matsuo, T. (2012). New trends in agent-

based complex automated negotiations. Springer.

Jamakovic, A., & Uhlig, S. (2007, May). On the relationship between the algebraic

connectivity and graph's robustness to node and link failures. In Next Generation

Internet Networks, 3rd EuroNGI Conference on (pp. 96-102). IEEE.

Janishidi, M. (2008, December). System of Systems-Innovations for 21st Century. In

Industrial and Information Systems, 2008. ICIIS 2008. IEEE Region 10 and the

Third international Conference on (pp. 6-7). IEEE.

Jennings, N. R., Faratin, P., Lomuscio, A. R., Parsons, S., Wooldridge, M. J., & Sierra,

C. (2001). Automated negotiation: prospects, methods and challenges. Group

Decision and Negotiation, 10(2), 199-215.

Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 32(3), 241-254.

Jonker, C. M., Robu, V., & Treur, J. (2007). An agent architecture for multi-attribute

negotiation using incomplete preference information. Autonomous Agents and

Multi-Agent Systems, 15(2), 221-252.

Jordan, P. R., Kiekintveld, C., & Wellman, M. P. (2007, May). Empirical game-theoretic

analysis of the TAC supply chain game. In Proceedings of the 6th international

joint conference on Autonomous agents and multiagent systems (p. 193). ACM.

Kaplan, J. M. (2006). A new conceptual framework for net-centric, enterprise-wide,

system-of-systems engineering. National Defense University Washington Dc

Center for Technology and National Security Policy.

161

Kaufman, L., & Rousseeuw, P. J. (1990). Partitioning around medoids (program pam).

Finding groups in data: an introduction to cluster analysis, 68-125.

Kaufman, L., & Rousseeuw, P. J. (2009). Finding groups in data: an introduction to

cluster analysis (Vol. 344). John Wiley & Sons.

Kazman, R., Abowd, G., Bass, L., & Clements, P. (1996). Scenario-based analysis of

software architecture. Software, IEEE, 13(6), 47-55.

Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., & Carriere, J. (1998,

August). The architecture tradeoff analysis method. In Engineering of Complex

Computer Systems, 1998. ICECCS'98. Proceedings. Fourth IEEE International

Conference on (pp. 68-78). IEEE.

Kennedy, J., & Eberhart, R. C. (1997, October). A discrete binary version of the particle

swarm algorithm. In Systems, Man, and Cybernetics, 1997. Computational

Cybernetics and Simulation., 1997 IEEE International Conference on (Vol. 5,

pp. 4104-4108). IEEE.

Ketchen, D. J., & Shook, C. L. (1996). The application of cluster analysis in strategic

management research: an analysis and critique. Strategic management journal,

17(6), 441-458.

Kilgour, D. M., Chen, Y., & Hipel, K. W. (2010). Multiple criteria approaches to group

decision and negotiation. In Trends in Multiple Criteria Decision Analysis (pp.

317-338). Springer US.

Kilicay-Ergin, N., & Dagli, C. (2008, April). Executable modeling for system of systems

architecting: An artificial life framework. In Systems Conference, 2008 2nd

Annual IEEE (pp. 1-5). IEEE.

Kilicay-Ergin, N. (2014). Improving Collaboration in Search and Rescue System of

Systems. Procedia Computer Science, 36, 13-20.

Klein, D., & Hannan, E. (1982). An algorithm for the multiple objective integer linear

programming problem. European Journal of Operational Research, 9(4), 378-

385.

Kohonen, T. (1997). Learning vector quantization. In Self-Organizing Maps (pp. 203-

217). Springer Berlin Heidelberg.

Konak, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective optimization using

genetic algorithms: A tutorial. Reliability Engineering & System Safety, 91(9),

992-1007.

162

Konur, D., & Dagli, C. (2014). Military system of systems architecting with individual

system contracts. Optimization Letters, 1-19.

Köppen, M., Vicente-Garcia, R., & Nickolay, B. (2005, January). Fuzzy-pareto-

dominance and its application in evolutionary multi-objective optimization. In

Evolutionary Multi-Criterion Optimization (pp. 399-412). Springer Berlin

Heidelberg.

Kosko, B. (1992). Neural Networks and Fuzzy Systems: A Dynamical Systems

Approach to Machine Intelligence/Book and Disk (Vol. 1). Prentice hall.

Kotov, V. (1997). "System of Systems as Communicating Structures." Hewlett Packard

Computer Systems Laboratory, 1-14.

Kowalczyk, R., & Bui, V. (2000). On Fuzzy e-Negotiation Agents: Autonomous

negotiation with incomplete and imprecise information. In Database and Expert

Systems Applications, 2000. Proceedings. 11th International Workshop on (pp.

1034-1038). IEEE.

Kraus, S. (2001). Automated negotiation and decision making in multiagent

environments. In Multi-agent systems and applications (pp. 150-172). Springer

Berlin Heidelberg.

Krothapalli, N. K. C., & Deshmukh, A. V. (1999). Design of negotiation protocols for

multi-agent manufacturing systems. International Journal of Production

Research, 37(7), 1601-1624.

Langfelder, P., Zhang, B., & Horvath, S. (2008). Defining clusters from a hierarchical

cluster tree: the Dynamic Tree Cut package for R. Bioinformatics, 24(5), 719-

720.

Langton, C. G. (1990). Computation at the edge of chaos: phase transitions and

emergent computation. Physica D: Nonlinear Phenomena, 42(1), 12-37.

Laudy, C., Petersson, H., & Sandkuhl, K. (2010, July). Architecture of knowledge fusion

within an Integrated Mobile Security Kit. In Information Fusion (FUSION),

2010 13th Conference on (pp. 1-8). IEEE.

Liang, Q., & Mendel, J. M. (2000). Interval type-2 fuzzy logic systems: theory and

design. Fuzzy Systems, IEEE Transactions on, 8(5), 535-550.

Lin, R., Kraus, S., Wilkenfeld, J., & Barry, J. (2006). An automated agent for bilateral

negotiation with bounded rational agents with incomplete information. Frontiers

in Artificial Intelligence and Applications, 141, 270.

163

Liu, S. (2011). Employing system of systems engineering in China's emergency

management. Systems Journal, IEEE, 5(2), 298-308.

Liu, J. Q., Nishimura, H., & Umehara, H. (2012, March). On applying the method of

“system of systems” in robustness analysis and autonomous control of dynamics-

aware internet architecture. In Systems Conference (SysCon), 2012 IEEE

International (pp. 1-6). IEEE.

Local4Global: "SYSTEM-OF-SYSTEMS THAT ACT LOCALLY FOR OPTIMIZING

GLOBALLY", Project Number: 61153, Project Start Date: 01/10/2013.

http://local4global-fp7.eu/.

Luo, X., Jennings, N. R., Shadbolt, N., Leung, H. F., & Lee, J. H. M. (2003). A fuzzy

constraint based model for bilateral, multi-issue negotiations in semi-competitive

environments. Artificial Intelligence, 148(1), 53-102.

Luzeaux, D., System-of-Systems (and Large-Scale Complex Systems) Engineering,

presentation at CSDM conference, 2013. [2] Maier, M. W. (1998). Architecting

principles for systems-of-systems. Systems Engineering, 1(4), 267-284.

MacQueen, J. (1967, June). Some methods for classification and analysis of multivariate

observations. In Proceedings of the fifth Berkeley symposium on mathematical

statistics and probability (Vol. 1, No. 14, pp. 281-297).

Maia, P., Cavalcante, E., Gomes, P., Batista, T., Delicato, F. C., & Pires, P. F. (2014,

August). On the Development of Systems-of-Systems based on the Internet of

Things: A Systematic Mapping. In Proceedings of the 2014 European

Conference on Software Architecture Workshops (p. 23). ACM.

Maier, M. W. (1998). Architecting principles for systems-of-systems. Systems

Engineering, 1(4), 267-284.

Malan, R., & Bredemeyer, D. (2001). Architecture Resources. Defining Non-Functional

Requirements.

Mamdani, E. H. (1977). Application of fuzzy logic to approximate reasoning using

linguistic synthesis, IEEE Transactions on Computers 26(12): 1182–1191.

Marler, R. T., & Arora, J. S. (2010). The weighted sum method for multi-objective

optimization: new insights. Structural and multidisciplinary optimization, 41(6),

853-862.

Marsa‐Maestre, I., Lopez‐Carmona, M. A., Klein, M., Ito, T., & Fujita, K. (2012).

Addressing Utility Space Complexity In Negotiations Involving Highly

Uncorrelated, Constraint‐Based Utility Spaces. Computational Intelligence.

http://local4global-fp7.eu/

164

Marsa-Maestre, I., Lopez-Carmona, M. A., Ito, T., Zhang, M., Bai, Q., & Fujita, K.

(2014). Novel Insights in Agent-based Complex Automated Negotiation. Imprint:

Springer.

Martí, J., Ventura, C., Hollman, J., Srivastava, K., & Juarez, H. (2015). I2Sim modelling

and simulation framework for scenario development, training, and real-time

decision support of multiple interdependent critical infrastructures during large

emergencies. In NATO (OTAN) MSG-060 Symposium on" How is Modelling and

Simulation Meeting the Defence Challenges out to.

Mashor, M. Y. (2000). Hybrid training algorithm for RBF network. International

Journal of the computer, the Internet and Management, 8(2), 50-65.

Matos, N., Sierra, C., & Jennings, N. R. (1998, July). Determining successful

negotiation strategies: An evolutionary approach. In Multi Agent Systems, 1998.

Proceedings. International Conference on (pp. 182-189). IEEE.

Mendel, J. M., & John, R. B. (2002). Type-2 fuzzy sets made simple. Fuzzy Systems,

IEEE Transactions on, 10(2), 117-127.

Mendel, J., & Wu, D. (2010). Perceptual computing: aiding people in making subjective

judgments (Vol. 13). John Wiley & Sons.

Merson, P. (2002) Architecture Assessment. Process Documentation – version 1.0.

Mezura-Montes, E., & Coello Coello, C. A. (2011). Constraint-handling in nature-

inspired numerical optimization: past, present and future. Swarm and

Evolutionary Computation, 1(4), 173-194.

Michalewicz, Z., & Janikow, C. Z. (1991, July). Handling Constraints in Genetic

Algorithms. In ICGA (pp. 151-157).

Miller, M. Z., Pogaru, S. S., & Mavris, D. N. (2013). Smart Grid: Constructing a System

of Systems Model Using Both Qualitative and Quantitative Assessments.

In Complex Systems Design & Management (pp. 177-192). Springer Berlin

Heidelberg.

Moon, T. K. (1996). The expectation-maximization algorithm. Signal processing

magazine, IEEE, 13(6), 47-60.

Montecchi, L., Lollini, P., & Bondavalli, A. (2014, May). A DSL-Supported Workflow

for the Automated Assembly of Large Stochastic Models. In Dependable

Computing Conference (EDCC), 2014 Tenth European (pp. 82-93). IEEE.

165

Nahavandi, S., Creighton, D., Le, V. T., Johnstone, M., & Zhang, J. (2015). Future

Integrated Factories: A System of Systems Engineering Perspective. In

Integrated Systems: Innovations and Applications (pp. 147-161). Springer

International Publishing.

Ncube, C., Lim, S. L., & Dogan, H. (2013, July). Identifying top challenges for

international research on requirements engineering for systems of systems

engineering. In Requirements Engineering Conference (RE), 2013 21st IEEE

International (pp. 342-344). IEEE.

Nejad, H. T. N., Sugimura, N., Iwamura, K., & Tanimizu, Y. (2008). Agent-based

dynamic process planning and scheduling in flexible manufacturing system. In

Manufacturing Systems and Technologies for the New Frontier (pp. 269-274).

Springer London.

Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The

computer journal, 7(4), 308-313.

Nguyen, T. D., & Jennings, N. R. (2006). Managing commitments in multiple

concurrent negotiations. Electronic Commerce Research and Applications, 4(4),

362-376.

Obal, L., & Lin, F. (2015). A Framework for Healthcare Information Systems:

Exploring a Large System of Systems using System Dynamics. Communications

of the IIMA, 5(3), 4.

Pal, N. R., & Bezdek, J. C. (1995). On cluster validity for the fuzzy c-means model.

Fuzzy Systems, IEEE Transactions on, 3(3), 370-379.

Pape, L., Agarwal, S., Giammarco, K., & Dagli, C. (2014). Fuzzy Optimization of

Acknowledged System of Systems Meta-architectures for Agent based Modeling

of Development. Procedia Computer Science, 28, 404-411.

Pape, L., & Dagli, C. (2013). Assessing robustness in systems of systems meta-

architectures. Procedia Computer Science, 20, 262-269.

Pape, L., Giammarco, K., Colombi, J., Dagli, C., Kilicay-Ergin, N., & Rebovich, G.

(2013). A fuzzy evaluation method for system of systems meta-

architectures. Procedia Computer Science, 16, 245-254.

Paulen, R., & Engell, S. (February 2014). DYMASOS – Dynamic Management of

Physically Coupled Systems of Systems, published on ERCIM News 97, April

2014, Special theme: Cyber-Physical Systems, February 25, 2014.

166

Powell, W. B. (2007). Approximate Dynamic Programming: Solving the curses of

dimensionality (Vol. 703). John Wiley & Sons.

Pyster, A., Olwell, D., Squires, A., Hutchison, N., Enck, S., & Anthony, J. (2014). A

Guide to the Systems Engineering Body of Knowledge (SEBoK).Version 1.3.

Hoboken, NJ (US): Stevens Institute of Technology.

http://sebokwiki.org/w/downloads/SEBoKv1.3_full.pdf

Qi, Y., Ma, X., Liu, F., Jiao, L., Sun, J., & Wu, J. (2014). Moea/d with adaptive weight

adjustment. Evolutionary computation, 22(2), 231-264.

Rahwan, I., Kowalczyk, R., & Pham, H. H. (2002, January). Intelligent agents for

automated one-to-many e-commerce negotiation. In Australian Computer

Science Communications (Vol. 24, No. 1, pp. 197-204). Australian Computer

Society, Inc..

Rauschecker, U., Ford, S. J., & Athanssopoulou, N. (2014). Developing a Vision for

Multi-site Manufacturing System of Systems. In Enabling Manufacturing

Competitiveness and Economic Sustainability (pp. 79-84). Springer International

Publishing.

Reniers M. A., & Engell, S. 2014A European Roadmap on Cyber-Physical Systems of

Systems. ERCIM News 2014(97).

Rhodes, D. H., Ross, A. M., & Nightingale, D. J. (2009, March). Architecting the

system of systems enterprise: Enabling constructs and methods from the field of

engineering systems. In Systems Conference, 2009 3rd Annual IEEE(pp. 190-

195). IEEE.

Rodríguez, R. M., Martínez, L., Torra, V., Xu, Z. S., & Herrera, F. (2014). Hesitant

fuzzy sets: State of the art and future directions. International Journal of

Intelligent Systems, 29(6), 495-524.

Ross, A. M., Rhodes, D. H., & Hastings, D. E. (2008). Defining changeability:

Reconciling flexibility, adaptability, scalability, modifiability, and robustness for

maintaining system lifecycle value. Systems Engineering, 11(3), 246-262.

Sage, A. P., & Cuppan, C. D. (2001). On the systems engineering and management of

systems of systems and federations of systems. Information, Knowledge, Systems

Management, 2(4), 325-345.

Salvador, S., & Chan, P. (2004, November). Determining the number of

clusters/segments in hierarchical clustering/segmentation algorithms. In Tools

with Artificial Intelligence, 2004. ICTAI 2004. 16th IEEE International

Conference on (pp. 576-584). IEEE.

167

Samad, T., & Parisini, T. (2011). Systems of systems. The Impact of Control

Technology, 175-183.

Sato, A., & Yamada, K. (1996). Generalized learning vector quantization. Advances in

neural information processing systems, 423-429.

Sato, A., & Yamada, K. (1998). An analysis of convergence in generalized LVQ. In

ICANN 98 (pp. 171-176). Springer London.

Saxena, D. K., Duro, J. A., Tiwari, A., Deb, K., & Zhang, Q. (2013). Objective

reduction in many-objective optimization: Linear and nonlinear algorithms.

Evolutionary Computation, IEEE Transactions on, 17(1), 77-99.

Schutze, O., Lara, A., & Coello Coello, C. A. (2011). On the influence of the number of

objectives on the hardness of a multiobjective optimization problem.

Evolutionary Computation, IEEE Transactions on, 15(4), 444-455.

Schwartz, M. (2010, April). Defense acquisitions: How DoD acquires weapon systems

and recent efforts to reform the process. Library of Congress Washington Dc

Congressional Research Service.

Schwenker, F., Kestler, H. A., & Palm, G. (2001). Three learning phases for radial-

basis-function networks. Neural networks, 14(4), 439-458.

Schwind, N., Okimoto, T., Inoue, K., Chan, H., Ribeiro, T., Minami, K., & Maruyama,

H. (2013, May). Systems resilience: a challenge problem for dynamic constraint-

based agent systems. In Proceedings of the 2013 international conference on

Autonomous agents and multi-agent systems (pp. 785-788). International

Foundation for Autonomous Agents and Multiagent Systems.

Siebert, J. (2010). Aggregate Utility Factor Model: A Concept for Modeling Pair-wise

Dependent Attributes in Multiattribute Utility Theory.

Siemieniuch, C., Sinclair, M., Lim, S. L., Henson, M. S., Jamshidi, M., & DeLaurentis,

D. (2013). Project Title Trans-Atlantic Research and Education Agenda in

Systems of Systems (T-AREA-SoS).

Sierra, C., Faratin, P., & Jennings, N. R. (1999). A service-oriented negotiation model

between autonomous agents. In Collaboration between Human and Artificial

Societies (pp. 201-219). Springer Berlin Heidelberg.

Simon, H. A. (1991). The architecture of complexity (pp. 457-476). Springer US.

Singh, A. (2011). Architecture value mapping: using fuzzy cognitive maps as a

reasoning mechanism for multi-criteria conceptual design evaluation.

168

Sing, J. K., Basu, D. K., Nasipuri, M., & Kundu, M. (2003, October). Improved k-means

algorithm in the design of RBF neural networks. In TENCON 2003. Conference

on Convergent Technologies for the Asia-Pacific Region (Vol. 2, pp. 841-845).

IEEE.

Singh, H. K., Isaacs, A., & Ray, T. (2011). A Pareto corner search evolutionary

algorithm and dimensionality reduction in many-objective optimization

problems. Evolutionary Computation, IEEE Transactions on, 15(4), 539-556.

Sivaraj, R., & Ravichandran, T. (2011). A review of selection methods in genetic

algorithm. International journal of engineering science and technology, 3(5),

3792-3797.

Somervuo, P., & Kohonen, T. (1999). Self-organizing maps and learning vector

quantization for feature sequences. Neural Processing Letters, 10(2), 151-159.

Song, Q., & Chissom, B. S. (1993). Fuzzy time series and its models. Fuzzy sets and

systems, 54(3), 269-277.

Squires, A., Olwell, D., Roedler, G., & Ekstrom, J. J. (2012, July). Gaps in the Body of

Knowledge of Systems Engineering. In INCOSE International Symposium (Vol.

22, No. 1, pp. 1967-1976).

Storn, R., & Price, K. (1997). Differential evolution–a simple and efficient heuristic for

global optimization over continuous spaces. Journal of global optimization,

11(4), 341-359.

Systems Engineering Research Center (SERC), 2015. Enterprise Systems and Systems

of Systems (ESOS). http://www.sercuarc.org/technical-reports/enterprise-

systems-and-systems-of-systems/

Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the number of clusters in a

data set via the gap statistic. Journal of the Royal Statistical Society: Series B

(Statistical Methodology), 63(2), 411-423.

Tran, P., Douglas, G., & Watson, C. Joint Interoperability Certification. Joint

Interoperability Test Command. 2005, 11.

Trebi-Ollennu, A., & White, B. A. (1997). Multiobjective fuzzy genetic algorithm

optimisation approach to nonlinear control system design. IEE Proceedings-

Control Theory and Applications, 144(2), 137-142.

Trentesaux, D., Knothe, T., Branger, G., & Fischer, K. (2015). Planning and Control of

Maintenance, Repair and Overhaul Operations of a Fleet of Complex

Transportation Systems (pp. 175-186). Springer International Publishing.

169

Tzafestas, S. G. (1994). Fuzzy systems and fuzzy expert control: an overview. The

Knowledge Engineering Review, 9(03), 229-268.

Uday, P., & Marais, K. B. (2014). Resilience-based System Importance Measures for

System-of-Systems. Procedia Computer Science, 28, 257-264.

Uhlir, P. F., Chen, R. S., Gabrynowicz, J. I., & Janssen, K. (2009). Toward

Implementation of the Global Earth Observation System of Systems Data

Sharing Principles. Data Science Journal, 8, GEO1-GEO91.

Ullman, D., O'Donnell, J., Edwards, C., Fake, T., & Morschauser, D. (2003). Use of

coastal ocean dynamics application radar (CODAR) technology in US coast

guard search and rescue planning (No. CG-D-09-03). Coast Guard Research and

Development Center Groton Ct.

Vaneman, W. K., & Triantis, K. (2007). Evaluating the productive efficiency of

dynamical systems. Engineering Management, IEEE Transactions on, 54(3),

600-612.

Vaneman, W. K., & Triantis, K. (2014, 2nd Dec). Designing Resiliency into a System of

Systems. System of Systems Engineering Community Information Exchange

(SoSECIE). Accessed on 15th January, 2105.

http://www.acq.osd.mil/se/webinars/2014_12_02_SoSECIE_Vaneman-brief.pdf

Vetschera, R., Filzmoser, M., & Mitterhofer, R. (2014). An analytical approach to offer

generation in concession-based negotiation processes. Group Decision and

Negotiation, 23(1), 71-99.

Wang, M. (2015). Editorial: Smart cities of the future: Creating tomorrow’s education

toward effective skills and career development today. Knowledge Management

& E-Learning: An International Journal (KM&EL), 6(4), 344-355.

Wang, R., & Dagli, C. H. (2011). Executable system architecting using systems

modeling language in conjunction with colored Petri nets in a model‐driven

systems development process. Systems Engineering, 14(4), 383-409.

Wang, R., Agarwal,S., & Dagli, C. (2014). Executable System of Systems Architecture

Using OPM in Conjunction with Colored Petri Net: A Module for Flexible

Intelligent & Learning Architectures for System of Systems, In Europe Middle

East & Africa Systems Engineering Conference (EMEASEC).

Wang, X., Shen, X., & Georganas, N. D. (2006, May). A fuzzy logic based intelligent

negotiation agent (fina) in eCommerce. In Electrical and Computer Engineering,

2006. CCECE'06. Canadian Conference on (pp. 276-279). IEEE.

http://www.acq.osd.mil/se/webinars/2014_12_02_SoSECIE_Vaneman-brief.pdf

170

Wang, Y., & Yang, Y. (2009). Particle swarm optimization with preference order

ranking for multi-objective optimization. Information Sciences, 179(12), 1944-

1959.

Wanyama, T., & Homayoun Far, B. (2007). A protocol for multi-agent negotiation in a

group-choice decision making process. Journal of Network and Computer

Applications, 30(3), 1173-1195.

Wei, G. W. (2010). A method for multiple attribute group decision making based on the

ET-WG and ET-OWG operators with 2-tuple linguistic information. Expert

Systems with Applications, 37(12), 7895-7900.

Wollkind, S., Valasek, J., & Ioerger, T. R. (2004, August). Automated conflict

resolution for air traffic management using cooperative multiagent negotiation.

In AIAA guidance, navigation, and control conference (pp. 16-19).

Wooldridge, M., & Parsons, S. (2000, May). On the use of logic in negotiation.

In Proceedings of the Workshop on Agent Communication Languages,

Barcelona, Spain.

Wu. D., (2013) A Brief Tutorial on Interval Type-2 Fuzzy Sets and Systems.

Xu, R., & Wunsch, D. (2005). Survey of clustering algorithms. Neural Networks, IEEE

Transactions on, 16(3), 645-678.

Yang, S., Li, M., Liu, X., & Zheng, J. (2013). A Grid-Based Evolutionary Algorithm for

Many-Objective Optimization. IEEE Trans. Evolutionary Computation, 17(5),

721-736.

Yingchao, Z. (2012, July). Sci. & Technol. on Complex Syst. Simulation Lab., Beijing

Inst. of Syst. Eng., Beijing,China. In System of Systems Engineering (SoSE),

2012 7th International Conference on (pp. 509-513). IEEE.

Yen, G.G.; Zhenan He, "Performance Metric Ensemble for Multiobjective Evolutionary

Algorithms," Evolutionary Computation, IEEE Transactions on , vol.18, no.1,

pp.131,144, Feb. 2014

Yu, C., Ren, F., & Zhang, M. (2013). An adaptive bilateral negotiation model based on

Bayesian learning. In Complex Automated Negotiations: Theories, Models, and

Software Competitions (pp. 75-93). Springer Berlin Heidelberg.

Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.

Zhang, L. (2015). Applying System of Systems Engineering Approach to Build

Complex Cyber Physical Systems. In Progress in Systems Engineering (pp. 621-

628). Springer International Publishing.

171

Zheng, R., Chakraborty, N., Dai, T., & Sycara, K. (2013, May). Multiagent negotiation

on multiple issues with incomplete information. In Proceedings of the 2013

international conference on Autonomous agents and multi-agent systems (pp.

1279-1280). International Foundation for Autonomous Agents and Multiagent

Systems.

172

VITA

In August, 2015 Siddhartha Agarwal received his Ph.D. in Systems Engineering

from Missouri University of Science and Technology. He was researching in

formulation of a domain independent framework for generating meta-architectures for

System of Systems. His research interests included optimization, modeling &

simulation, machine learning, and computational intelligence.

He received his M.S. degree in Mining Engineering from University of Alaska

Fairbanks, U.S.A. in 2010 and the Bachelor of Technology in Mining Engineering from

the Indian Institute of Technology-Banaras Hindu University, India in 2006. His work

experiences included Iron & Steel industry, Alaska Department of Natural Resources

and mining software engineer role.

Siddhartha Agarwal has been a member of the International Council on Systems

Engineering (INCOSE), and Institute for Operations Research and the Management

Sciences (INFORMS). His research on the system architecture generation and

implementation using computational intelligence won the INCOSE Foundation/Stevens

Institute Doctoral Award for Promising Research in Systems Engineering and

Integration for 2014. He also won the Outstanding Ph.D. Research Award (Systems

Engineering & Overall) in the department of Engineering Management & Systems

Engineering at Missouri University of Science & Technology for 2013.

173

	Computational intelligence based complex adaptive system-of-systems architecture evolution strategy
	Recommended Citation

	tmp.1442264406.pdf.BRadw

