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ABSTRACT 

The core components (e.g. fuel assemblies, spacer grids, control rods) of the 

nuclear reactors encounter harsh environment due to high temperature, physical stress, 

and a tremendous level of radiation. The integrity of these elements is crucial for safe 

operation of the nuclear power plants. The Post Irradiation Examination (PIE) can reveal 

information about the integrity of the elements during normal operations and off‐normal 

events. Computed tomography (CT) is a tool for evaluating the structural integrity of 

elements non-destructively. CT requires many projections to be acquired from different 

view angles after which a mathematical algorithm is adopted for reconstruction. 

Obtaining many projections is laborious and expensive in nuclear industries. 

Reconstructions from a small number of projections are explored to achieve faster and 

cost-efficient PIE. Classical reconstruction algorithms (e.g. filtered back projection) 

cannot offer stable reconstructions from few projections and create severe streaking 

artifacts. In this thesis, conventional algorithms are reviewed, and new algorithms are 

developed for reconstructions of the nuclear fuel assemblies using few projections. CT 

reconstruction from few projections falls into two categories: the sparse-view CT and the 

limited-angle CT or tomosynthesis. Iterative reconstruction algorithms are developed for 

both cases in the field of compressed sensing (CS). The performance of the algorithms is 

assessed using simulated projections and validated through real projections. The thesis 

also describes the systematic strategy towards establishing the conditions of 

reconstructions and finds the optimal imaging parameters for reconstructions of the fuel 

assemblies from few projections. 
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1. INTRODUCTION 

The core components (e.g. fuel assemblies, spacer grids, control rods) of the 

nuclear reactors experience harsh environment due to high temperature, physical stress, 

and a tremendous level of radiation. The Post Irradiation Examination (PIE) assesses the 

integrity of the components released from the power plants. PIE of the irradiated 

components is performed in three ways, including underwater examination, non-

destructive and destructive evaluation inside the hot cells (see Figure 1.1). All data 

collected from these analyses contribute to the evaluation of in-core reactor performances 

as well as integrity of the reactor core components. 

 

 

 

 

Figure 1.1.  The overall PIE process of the irradiated nuclear fuels,  

as reproduced from [1]. 
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1.1. PROBLEM DESCRIPTION  

The National Nuclear Security Administration’s (NNSA) Global Threat 

Reduction Initiative (GTRI) program at the Idaho National Laboratory (INL) develops 

high-density nuclear fuels converting the high enriched uranium (HEU) fuel to low 

enriched uranium (LEU) fuel for high performance research and test reactors (HPRR), 

maintaining equal reactor performance while meeting all safety requirements. This is 

addressed by the Reduced Enrichment for Research and Test Reactors (RERTR) program 

[2]. There are five reactors in the United States fall under the HPRR category, including 

the Massachusetts Institute of Technology Reactor (MITR), the National Bureau of 

Standards Reactor (NBSR), the University of Missouri Research Reactor (UMRR), the 

Advanced Test Reactor (ATR), and the High Flux Isotope Reactor (HFIR). Two LEU 

fuel designs, a dispersion and monolithic type, are being developed (see Figure 1.2) that 

use a uranium molybdenum (U-Mo) alloy fuel phase.  

 

 

 

 

Figure 1.2.  Schematic of dispersion (left) and monolithic (right) fuel plate cross-section. 
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The ATR Full-size in center flux trap position (AFIP) fuel was designed to 

evaluate the performance a monolithic fuel assembly under irradiation. The fuel assembly 

has four monolithic foil type fuel plates (see Figure 1.3), composed of U-10 Mo at 19.75 

wt.% U-235 enrichment. Each fuel plate has a nominal dimension of 101.60 cm × 6.28 

cm × 0.13 cm with a monolithic fuel meat of 97.79 cm × 5.49 cm × 0.0333 cm. The 

curvature of each plate has a radius of 9.03 cm in the traverse direction. The plate-to-

plate coolant channel gap has a nominal spacing of 0.29 cm. The assembly was irradiated 

for two cycles in the ATR center flux trap between June and November 2011 and several 

PIEs were conducted. The channel gap was measured using coolant channel gap probe 

(CGP) to evaluate its structural integrity under irradiation. The AFIP-7 experiment at the 

INL seeks non-destructive tomographic approach to analyze the behavior of the curved 

plates under irradiation and to evaluate the second order buckling phenomenon. The 

tomographic analysis is expected to supersede the local gap measurements made using 

CGP.  

 

 

 

 

Figure 1.3.  Schematic of the AFIP-7 fuel assembly. 
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The purpose of this research is intended to provide additional strength to the non-

destructive PIE of the in-core components using computed tomography (CT). The need 

for supplemental non-destructive PIE methods is to analyze the structural integrity of 

irradiated core components and for the early detection of nuclear meltdowns. 

Additionally, CT may provide useful information to the spent fuel reprocessing facilities 

for reducing the likelihood of material diversion. If any fuel element is missing from an 

assembly, CT may provide a means of identifying the missing fuel element.  

CT requires an object to be exposed to radiation (e.g. X-rays, neutrons, and 

gamma rays) from different angular views and acquires projections or radiographs from 

each view. The contrast in projections depends on the changes in radiation intensity due 

to attenuation in the object. The attenuation coefficient is a quantity that measures how 

easily a radiation beam can absorb or scatter across the material it encounters on its 

passage. A mathematical reconstruction algorithm maps the attenuation coefficients and 

generates a cross-sectional image of the object from the acquired projections. The cross-

sectional reconstructions at multiple axial locations can generate a three-dimensional 

(3D) reconstruction of the object.  

Neutrons differ from X-rays in terms of attenuation. Analyzing irradiated objects 

with X-ray CT is impossible because the object itself is a strong emitter of X-rays and 

gamma rays. Neutron CT is useful for the imaging of irradiated objects due to the high 

attenuation of uranium to neutrons. Typically, digital acquisition systems are widely used 

for the acquisition of projections. However, it is prohibitive for acquiring images of 

irradiated samples because the image sensors are very sensitive to gammas.  

The INL Neutron Radiography (NRAD) facility utilizes an indirect foil-film 
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transfer technique for acquiring neutron projections. The technique involves the use of an 

intermediate detector that produces a projection image upon subsequent processing (see 

Figure 1.4). A transfer foil (e.g. dysprosium, indium, gold) serves as the intermediate 

detector and records a latent image through activation of the foil. The activated foil is 

placed in a dark room and kept in contact with a film for several hours. The decay of beta 

radiation exposes the film according to the activity pattern of the foil and subsequent 

chemical development of the film produces a neutron projection image. This technique is 

insensitive to gamma radiation but requires significant amount of time than the other 

digital techniques which is prohibitive for acquiring many projections needed for CT 

reconstruction.  

 

 

 

 

Figure 1.4.  Schematic of the indirect foil-film radiography. 
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projections. However, if the number of projections is reduced to 100 or less [3], while 

covering the complete 180˚ or 360° angular range, it refers to as the sparse-view CT. 

Conversely, if the projections are acquired to a limited angular range instead of covering 

the full 180˚, it denotes to as the limited-angle CT. The geometries of both modalities are 

shown in Figure 1.5.  

 

 

 

  

 

Figure 1.5.  Schematic of the sparse-view and limited angle data acquisition. 

 

 

Tomosynthesis a particular kind of limited-angle CT that reconstructs an image in 

a quasi-3D image volume [4]. Application of tomosynthesis is popular in many imaging 

modalities (e.g. dental CT [5], breast tomosynthesis [6] or straight line trajectory [7]) due 

to the large object size and restricted scanning. Although tomosynthesis reconstruction 

algorithms can be developed separately, however, all the conventional CT reconstruction 

algorithms are essentially applicable to tomosynthesis [5] with or without minor 

modifications. 
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Iterative reconstruction algorithms are developed for both sparse-view and 

limited-angle CT in the field of compressed sensing (CS) for the assessment of irradiated 

nuclear fuel assemblies. The developed CT reconstruction algorithms are evaluated with 

simulated data and validated through real projections. The thesis also describes the 

systematic strategy towards establishing the conditions of reconstructions and finds the 

optimal imaging parameters for reconstructions of the fuel assemblies from few 

projections. The results show that CT reconstruction from very few projections can be 

used to identify anomalies, such as missing or substituted elements, gross geometric 

defects or cracks in the fuel assembly. 

 

 

1.2. STRUTURE OF THE THESIS 

The leitmotif of this thesis is to investigate reconstructions from few projections 

to inspect the anomalies in the fuel structure, including gross geometric defects, bowing, 

twist, plate buckling, and cracks. Motivated by an increasing focus on low dose X-ray CT 

in medical imaging and the limitation of the number of projections in industrial imaging, 

the sparse-view and the limited-angle CT reconstruction algorithms are developed and 

evaluated for the inspection of fuel assemblies. The rest of the dissertation is organized as 

follows: Chapter 2 discusses the principles of radiation imaging, including the physics of 

X-ray and neutron imaging, and the fundamentals of computed tomography. Chapter 3 

discusses traditional CT reconstruction algorithms, including the analytical and the 

iterative reconstruction methods. The iterative reconstruction algorithm in the field of 

compressed sensing (CS) is also discussed in this chapter. For solving the CS problem, 
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particular interest is put on total variation regularization. Chapter 4 describes about the 

sparse-view CT reconstruction algorithm developed for the inspection of a spent nuclear 

fuel assembly. The reconstructions of the AFIP-7 fuel assembly for both the sparse-view 

and the limited-angle CT are described in chapter 5. The optimal imaging parameters to 

obtain accurate reconstructions from both modalities are also discussed. In chapter 6, the 

obtained results are discussed before concluding the thesis.  
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2. INTRODUCTION TO COMPUTED TOMOGRAPHY 

The invention of the X-rays by German scientist Wilhelm Röentgen in 1895 and 

the discovery of neutrons by British scientist Sir James Chadwick in 1932 created a new 

era of noninvasive radiation imaging. In 1917, Austrian mathematician Johann Radon 

proposed [6] the principle of reconstruction from a finite number of line integrals. Based 

on Radon’s principle, Allan Cormack and Godfrey Hounsfield [7] invented the first 

Computed Tomography (CT) scanner in 1972. Currently, CT is an important tool in 

medical imaging for diagnosing many different diseases. Besides, it has many 

applications in industrial imaging for detecting defective components and controlling the 

quality of a production line. The need for noninvasive determination of changes in 

interior structures of solid objects has supplanted many existing traditional techniques 

with CT technology.  

Although neutron imaging is complementary to X-ray imaging, the fundamental 

principle of reconstruction remains the same for both modalities. While X-ray CT has 

wide applications in both the medical and industrial fields, the neutron CT is limited to 

only the industrial arena. Significant improvements have made over the 42-years of the 

history of CT developments in terms of speed, slice counts, patient comfort, and 

resolution. However, it is still subject to active research to obtain an image of sufficiently 

high quality with minimal exposure and/or cost. 

 

 

2.1. BACKGROUND OF RADIATION IMAGING  

Radiation imaging is a non-invasive imaging technique which produces an image 
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due to the variation of the transmitted radiation intensity through the object. The radiation 

intensity varies due to attenuation caused by different structures in the object with 

varying thickness, density or atomic composition. The X-ray CT utilizes the 

electromagnetic X-rays while the neutron CT uses neutron particles for imaging. 

2.1.1. Fundamentals of X-ray Interactions. X-rays are electromagnetic waves 

having higher frequencies (ν) than ultraviolet rays, but lower frequency than that of 

gamma rays. The radiation is emitted in terms of quanta or photons. Each photon has a 

defined energy, hν, where h is the Plank constant. An X-ray of energy more than 100 eV 

can ionize an atom and penetrate through matters.  

X-rays are emitted by electrons and can be generated in different ways; such as 

from the vacuum tubes or the accelerators. Vacuum tubes use high voltage to accelerate 

electrons from a hot cathode filament. The high-velocity electrons collide with a target, 

called the anode, producing X-rays. However, X-rays can be produced in different forms: 

Bremsstrahlung X-rays or characteristic X-rays. If the high kinetic energy electrons travel 

very close to the nucleus in the target and is deviated by positively charged electrical 

field, the electrons lose kinetic energy and Bremsstrahlung (braking radiation) radiation 

emits in the form of X-rays.  

If high kinetic energy electrons cause an electron to liberate from the inner shell 

of an atom, an electron from the outer shell fills the vacancy of the inner shell. The 

transition of the high energy electron to low energy electron releases energy in the range 

of X-ray frequency that is characteristic to each element. However, if the energy is 

transferred to another electron instead of producing characteristic X-rays, then the 

electron ejects from the atom. The phenomenon is called the Auger effect, and the ejected 
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electron is called Auger electron. However, X-rays are generated by accelerating multiple 

electrons inside the vacuum tube at the same time, resulting in a continuous spectrum of 

energies as shown in Figure 2.1.  

X-ray photons interact with matter in the form of either absorption or scattering. If 

neither happens, transmit through the object. In the absorption interaction phenomenon, 

the X-ray photons are absorbed into the object and transfer all their energy to an electron 

located in one of the atomic shells. If the binding energy of the electron is less than the 

energy of the photon, the electron ejects from the atom with a kinetic energy of the 

photon energy minus the binding energy. This phenomenon is known as photoelectric 

 

Figure 2.1.  Distribution of photon energy created by an X-ray tube voltage of 50 

KVp. 
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(photon-electron) absorption.  

Two types of interactions, Compton scattering and Coherent scattering, take place 

when the X-ray photons interact in the form of scattering. Compton scattering occurs 

when the photons collide with the loosely bonded outer shell electrons of the atom. The 

photons transfer part of their energy to the collided electron in which both the energy and 

momentum is conserved. The incident photons are deflected at an angle due to collision 

and are scattered from the collision site with energy less than the incident photon energy. 

The struck electron gains some kinetic energy from the incident photons and recoils.  

Coherent scattering occurs when low energy photons collide with a loosely 

bounded outer shell electron. The incident photons cause the collided electron to vibrate 

with its frequency. Energy in the form of X-rays, releases due to the vibration of the same 

frequency and energy as the incident photons. The incident photons deviate during the 

process cause coherent scattering. However, the rest of the photons, those remaining after 

absorption and scattering, transmit through the object. The process of removing photons 

from the beam is called attenuation. In general, the attenuation behavior of a particular 

material at a given energy is measured by the linear attenuation coefficient or mass 

attenuation coefficient.  

2.1.2. Fundamentals of Neutron Interactions. The electrically neutral 

directional neutron beam can be generated either from a neutron generating isotope (e.g. 

neutrons from nuclear reaction) in a reactor facility or from a target in a proton 

accelerator (e.g. Spallation Neutron Source at ORNL). Similar to X-ray interactions, 

neutrons interact with matter in the form of absorption or scattering. However, neutron 

interactions with matter are entirely and ideally complementary to X-ray interactions. X-
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rays interact with the orbital electrons of an atom while neutrons interact with the atomic 

nuclei. X-rays have more interaction probability with increasing atomic number (Z) of 

matter, but there is no real periodic interaction regularity for neutrons. Isotopes of the 

same element may differ noticeably in their attenuation ability. Similar to the X-ray 

attenuation coefficient, the cross section describes the interaction probability of neutrons 

with matter. The higher cross section represents higher attenuation to neutrons. 

Depending on the energies, neutrons can be classified as cold, thermal, epithermal, and 

fast neutrons. Neutron imaging is typically performed in the cold, thermal and epithermal 

regions due to the large cross sections and detection ability in these energy ranges.  

2.1.3. Underlying Physics of X-ray and Neutron Imaging. The attenuation of 

X-rays or neutrons depends on the type of material and the energy of the incident 

particles (photons or neutrons). The number of particles removed from the primary 

radiation intensity is proportional to the number of incident particles (I0) and the 

thickness of the object (dx). Thus, 

 𝑑𝐼 = −𝜇 𝐼0𝑑𝑥 
(1) 

 

where 𝜇 is a proportional constant that is known as the linear attenuation coefficient for 

X-rays and analogous to the macroscopic cross-section for neutrons. It can be defined as 

the interaction probability of a particle at a particular energy per unit length through a 

medium. The interaction processes discussed in subsections 2.1.1 and 2.1.2 contribute to 

the total linear attenuation coefficient of X-rays and neutrons, respectively.  The solution 

of the differential equation (1) is well-known as the Beer-Lambert formula,  
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 𝐼 = 𝐼0𝑒−𝜇𝑥  (2) 

 
 

(2) shows the dependence of the final intensity (I) with an initial intensity (I0) of the 

incident radiation and two characteristics of the attenuating medium, the linear 

attenuation coefficient (μ) and the thickness (x). The exponential nature of attenuation 

characterizes the intensity of the uncollided particle after traversing through a medium. 

In general, the X-rays or neutrons are polychromatic in nature, and the linear 

attenuation coefficient depends on the energy of the particles. For an inhomogeneous 

object with different attenuating materials (2) then becomes,  

 𝐼 = ∫ 𝐼0(𝐸)𝑒− ∫ 𝜇(𝐸)𝑑𝑡
𝑇

0 𝑑𝐸
𝐸

0

  

 

(3) 

 

where T is the total thickness that the particles will travel through the object. The 

transmitted X-ray or neutron intensity that passes through an object can be recorded in a 

detector through direct or indirect process yielding a 2D projection image of a 3D object. 

The contrast of the projection image depends on the attenuation properties of different 

structures in the object. High contrast X-ray radiography is widely used in medical 

imaging for analyzing internal structures in the body such as analyzing bone fracture, 

while high contrast neutron radiography are widely used in industries for inspecting 

turbine blades, explosive detection, etc.  
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2.2. BACKGROUND OF COMPUTED TOMOGRAPHY (CT)  

Radiography is a useful technique that provides a two-dimensional image of a 

three-dimensional object. The limitation of radiography is that it cannot provide the cross 

sectional information of an object and the multiple structures superimpose on the 

radiograph. CT can generate a 2D cross-section of an object from multiple projections or 

radiographs. The mathematics to obtaining the cross sectional image is called the CT 

reconstruction. Starting from data acquisition, the entire process can be categorized into 

two major steps: one is the data acquisition and sampling, and the other is the data 

reconstruction. 

2.2.1. Data Acquisition and Sampling. Three scanning geometries can be 

considered for image acquisition, such as parallel beam, fan beam or cone beam 

geometry. Commercial X-ray CT systems are designed based on fan beam and cone beam 

geometry. The neutron source from the reactor is assumed to be nearly parallel beam 

geometry. The reconstructions from parallel beam or fan beam provide the 2D cross 

section of a slice. With the advent of 2D detectors and faster computers, 3D 

reconstruction is possible using cone beam geometry.  

Typically, CT requires the projection images to be acquired over 180° or 360° of 

arc acquiring one projection image at each degree. Acquiring many images has several 

disadvantages. In medical imaging, it increases the radiation dose to the patient. In 

industrial imaging, it is prohibitively time-consuming and expensive due to longer 

exposure time. Reducing the total number of projection images (undersampling) degrade 

the quality of reconstruction and increase reconstruction errors. This will be discussed in 

detail using sampling theorem in the following subsections. Tomographic sampling refers 
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to the number of rays per projection and the total number of projections. A brief 

description of Fourier transform is needed before describing the tomographic sampling.  

2.2.1.1 Fourier transform and Fourier slice theorem. The Fourier transform 

decomposes a function or signal into frequencies. For a 2D object function f(x,y), the 

Fourier transform F(u,v) is defined as,  

 

 𝐹(𝑢, 𝑣) =  ∫ ∫ 𝑓(𝑥, 𝑦)𝑒−𝑖2𝜋(𝑥𝑢+𝑦𝑣)𝑑𝑥𝑑𝑦
∞

−∞

∞

−∞

 
 

(4) 

 
 

During CT image acquisition, the detector and source are assumed to be rotated 

around the origin at an orientation angle θ, alternately, the object can be rotated with an 

angular increment θ. Considering a rotated version of the (x,y), the second coordinate 

system (s,t) can be given as,  

 [ 
𝑠
𝑡

 ] = [ 
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃

−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃
 ] [ 

𝑥
𝑦 ] 

 

(5) 

 

The projection p(s,θ) is generated by drawing a line across x-y plane, orthogonal to the 

detector and arriving at the detector location s at a particular angle θ. If the projection is 

defined using delta function, it is known as Radon transform which is formulated as,  

 

 𝑝(𝑠, 𝜃) =  ∫ ∫ 𝑓(𝑥, 𝑦)𝛿(𝑥 𝑐𝑜𝑠𝜃 + 𝑦 𝑠𝑖𝑛𝜃 − 𝑠)𝑑𝑥𝑑𝑦
∞

−∞

∞

−∞

 
 

(6) 

 

 

where 𝑠 = 𝑥 𝑐𝑜𝑠𝜃 + 𝑦 𝑠𝑖𝑛𝜃. However, the projection p(s,θ) can be expressed in terms of 
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(s,t) coordinate as,  

 𝑝(𝑠, 𝜃)  = ∫ 𝑓(𝑠, 𝑡)𝑑𝑡
∞

−∞

 

 

(7) 

 

1D Fourier transform of p(s,θ) gives,  

 

 𝑃(𝜌, 𝜃) =  ∫ 𝑝(𝑠, 𝜃)𝑒−𝑖2𝜋𝜌𝑠𝑑𝑠
∞

−∞

 
 

(8) 

 
 

Substituting (7) into (8) yields,  

 𝑃(𝜌, 𝜃) =  ∫ ∫ 𝑓(𝑠, 𝑡)𝑒−𝑖2𝜋𝜌𝑠𝑑𝑠𝑑𝑡
∞

−∞

∞

−∞

 

 

(9) 

 

Substituting (5) into (9), the coordinate system can be transformed to the (x,y) system as,  

 𝑃(𝜌, 𝜃) =  ∫ ∫ 𝑓(𝑥, 𝑦)𝑒−𝑖2𝜋𝜌(𝑥 𝑐𝑜𝑠𝜃+𝑦 𝑠𝑖𝑛𝜃)𝑑𝑥𝑑𝑦
∞

−∞

∞

−∞

 

 

(10) 

 

Comparing with (4), (10) equivalent to the Fourier transform along one radial line, 

therefore,  

 

 
𝑃(𝜌, 𝜃) =  𝐹(𝜌 𝑐𝑜𝑠𝜃, 𝜌 𝑠𝑖𝑛𝜃) 

where,        𝑢 = 𝜌 𝑐𝑜𝑠𝜃, 𝑣 = 𝜌 𝑠𝑖𝑛𝜃 

 

(11) 

 

 

This is known as Fourier slice theorem which states that the Fourier transform of a 

parallel projection at an angle θ represents the 2D Fourier transform of the object 
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function along a radial line (see Figure 2.2) at angle θ in Fourier space. 

2.2.1.2 Sampling for analytical reconstruction. In case of infinite number of 

projections, the 2D frequency space (see Figure 2.2) will be filled completely. A 2D 

inverse Fourier transform then yields a reconstructed image in the object space. In 

practice, infinite number of projections is impossible and only a finite number of 

projections are available, creating gaps in between two projections as shown in Figure 

2.2. However, Reconstruction errors can be caused either by undersampling of data or by 

the presence of random noise in the measurements. Aliasing artifacts appear in the 

reconstructed image due to undersampling. The undersampled grid for displaying the 

reconstructed image can also cause aliasing artifacts. The number of projection images 

needed for a good reconstruction has been answered by the Shannon sampling theorem. 

This theorem specifies that a unique reconstruction can be obtained without losing 

information if the sampling frequency of an object is greater than twice the highest 

frequency of the object details.  

 

u

`

v

 

Figure 2.2.  Illustration of sampling in Fourier space. 
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Each sampling point of a projection data represents the data obtained from one 

detector element, also called one ray. As mentioned earlier, each radial line (e.g. P1P
′
1   in 

Figure 2.3) represents one projection in the Fourier space. For sampling using ND number 

of detectors, we will have ND number of rays per projection line. If Np number of 

uniformly distributed projections over 180˚ is necessary toaccomplish the Shannon 

theorem in parallel beam tomography, then the angular increment Δθ between two 

successive radial lines in Fourier domain is, 

 

 ∆𝜃 =
𝜋

𝑁𝑝
 

 

(12) 

  

For a distance ∆𝑥𝐷 between two adjacent rows (detector pixel spacing), the highest 

spatial frequency (fN), namely, the sampling points of the outer periphery of the disc, in a 

projection line that the system can handle is given according to the Nyquist-Shannon 

theorem,  

 𝑓𝑚𝑎𝑥 =
1

2

1

∆𝑥𝐷
 

 

(13) 

 

The distance between any two consecutive rays measured on a radial line P1P
′
1   will be, 

 

 𝜀 =
2𝑓𝑁

𝑁𝐷
=

1

∆𝑥𝐷𝑁𝐷
 

 

(14) 

 
 

The distance (Δf) between two consecutive sampling points (P
′
1   P2

′
 ) on the periphery of 

the disc is the azimuth resolution which is given by, 
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 ∆𝑓 = 𝑓𝑁∆𝜃 =
1

2∆𝑥𝐷

𝜋

𝑁𝑃
 

 

(15) 
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Figure 2.3.  Fourier slice theorem pertinent to measured data [8]. 

 

 

A sufficient condition to obtain a good reconstruction is to ensure that, the worst azimuth 

resolution (Δf) in the frequency domain should be approximately same as the radial 

resolution (ε). Therefore, we must have Δf ≈ ε. Thus, 

 

 
1

2∆𝑥𝐷

𝜋

𝑁𝑃
≈  

1

∆𝑥𝐷𝑁𝐷
 

 

(16) 

 

 

which reduces to,  

 𝑁𝑃 ≈
𝜋

2
𝑁𝐷 

 

(17) 
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(17) implies that the number of projections needed for a good reconstruction is roughly 

equal to the number of rays in a projection, in other words, the number of columns in a 

detector. This statement is independent of any reconstruction algorithm. As a rule of 

thumb, a CT image should have about as many pixels in each dimension as there are 

detectors providing data for a view. Therefore, we must have Nviews = Nbin = Npixels. 

Undersampling violates the Nyquist sampling condition which causes the overlap of 

higher and lower frequency components, which is called aliasing. When an insufficient 

projection data is acquired, the azimuth spatial resolution becomes poor. However, the 

pixel resolution, ∆𝑥 of the reconstructed image derives from the detector pixel spacing 

∆𝑥𝐷 and the magnification (M). Thus,  

 ∆𝑥 =
∆𝑥𝐷

𝑀
 

 

(18) 

 

where magnification is given by the ratio of source detector distance (SDD) to the source 

object distance (SOD). However, the resolution can be reduced due to the finite size of 

the source. According to Fourier slice theorem, the complete sampling can be achieved 

for an 180˚ rotation (see Figure 2.2) of the line with any arbitrary angular interval. The 

sampling theorem tells us that the detector spacing has to be small enough to record 

maximum object frequency, in other words, to detect the smallest possible feature.  

There are two fundamental cases where limited view angle geometries take place, 

one is the 2D partial circular scan and the other is the 3D tomosynthesis. In 2D partial 

scan, the rotation is limited to an angular range of [Φ, -Φ] instead of full 180˚ rotation 

(see Figure 2.4) which is equivalent to a double wedge with opening angle equal to 2Φ in 
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2D Fourier space. In 3D tomosyntheis, the source and detector move in an arc along z-

axis and the data is represented in 3D Fourier space (see Figure 2.5).  

2.2.2. Data Reconstruction. The mathematical procedure of CT reconstruction 

methods fall into two categories: analytical and iterative reconstruction (see Figure 2.6). 

The analytical approach can be either using linear algebra or using frequency approach. 

Two types of frequency approach can be used: Fourier central slice theorem and filtered 

back projection. Current CT scanner uses filtered back projection (FBP) methods for 

reconstruction but the quality of FBP reconstruction is highly dependent on the sufficient 

number of projection images, thus it requires high doses to the patient and significant cost 

for the industries.  
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(a) Object space                                     (b) Fourier space 

 

Figure 2.4.  Illustration of limited angle sampling (partial circular scan). 
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Moreover, FBP method assumes that the radiation source is monochromatic, but 

in real case, the radiation source produces polychromatic spectrum which undergoes 

beam hardening as it passes through the object. When the polychromatic radiation 

penetrates through material, low energy radiation attenuates, thus increases effective 

beam energy and reduces the probability of interaction and creates beam hardening. FBP 

assumes the attenuation is linear function of material thickness but due to beam 

hardening, the attenuation becomes a non-linear function. Several beam hardening 

correction algorithms [9-12] are developed to correct this problem. The corrections can 

be applied to the projection data prior to reconstruction [9, 10] or can be used after FBP 

reconstruction [12] as post processing. 
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                   (a) Object space                                   (b) Fourier space 

 

Figure 2.5.  Illustration of limited angle sampling (3D tomosynthesis). 

 

 

However, the radiation dose can be reduced by lowering the X-ray voltage (kVp) 

or current (mAs). Reducing the number of projection views also reduces the patient 
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radiation dose as well as cost in industries. In case of incomplete projection data, such as 

sparse-view CT or limited angle CT, FBP reconstruction often produces artifacts which 

significantly degrade reconstructed image quality. Compared to the FBP method, iterative 

methods maintain better image quality by reducing these artifacts while significantly 

reducing radiation dose and/or  cost [13]. Iterative methods are also capable of including 

physical and geometrical models to represent a more intuitive and natural way of image 

reconstruction [14].  

 

 

Reconstruction 

Methods

Analytical Iterative

Central slice 
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Filtered back 

projection
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Figure 2.6.  Classification of reconstruction methods. 
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3. CT RECONSTRUCTION METHODS 

In this chapter, a detail discussion about the analytical and iterative CT 

reconstruction methods will be provided. Common reconstruction algorithms, such as 

Fourier slice theorem, filtered back projection (FBP), simultaneous algebraic 

reconstruction technique (SART) and statistical maximum likelihood and penalized 

likelihood approach will be described. The theory of compressed sensing based CT is 

also described.  

 

 

3.1. ANALYTICAL IMAGE RECONSTRUCTION 

Reconstruction of an exact or approximate image based on analytical transform-

inversion is referred to as analytical reconstruction method. Generally, a continuous 

analytical model is approximated to a discrete model to obtain an approximate inverse of 

the continuous analytical model. Two types of analytical reconstruction algorithm are 

widely used for reconstruction: the Fourier slice theorem and the filtered back projection.  

3.1.1. Reconstruction Using Fourier Slice Theorem. In Fourier slice theorem, if 

p(s,θ) projection data are measured with equal spacing for N number of projections, the 

reconstruction strategy using Fourier slice theorem is as follows:   

 

- Calculate the 1D Fourier transform of the measured projections,  

 𝑃(𝜌, 𝜃) = ℱ[𝑝(𝑠, 𝜃)] 
 

(19) 
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- Arrange the Fourier transformed projection in 2D radial lines using,  

 F(𝜌 𝑐𝑜𝑠𝜃, 𝜌 𝑠𝑖𝑛𝜃) = 𝑃(𝜌, 𝜃) 

 

(20) 

 

- Resample the data points to a rectangular grid (u,v) using interpolation as 

illustrated in Figure 3.1.   

 

      

u

`

v

 

Figure 3.1.  Interpolation of Fourier samples into object space. 

 

 

Perform 2D inverse Fourier transform of 𝐹(𝑢, 𝑣) to recover the object function 

using,  

 𝑓(𝑥, 𝑦) =  ℱ−1𝐹(𝑢, 𝑣) 

 

(21) 

 

The major disadvantage of the Fourier slice theorem is that, the conversion from 
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polar grid to rectangular grid creates gridding error due to coarsely sampled data at higher 

frequencies, producing high frequency artifacts.  

3.1.2. Filtered Back Projection. Filtered back projection (FBP) is a 

reformulation of Fourier slice theorem, yielding a two-step reconstruction method 

consisting of projection data filtering in the frequency domain and back projection onto 

image domain. For a 2D object function f(x,y), the inverse Fourier transform F(u,v) is 

defined as,  

 𝑓(𝑥, 𝑦) =  ∫ ∫ 𝐹(𝑢, 𝑣)𝑒𝑖2𝜋(𝑥𝑢+𝑦𝑣)𝑑𝑢𝑑𝑣
∞

−∞

∞

−∞

 

 

(22) 

 

where,  

 

𝑢 = 𝜌 𝑐𝑜𝑠𝜃,  

𝑣 = 𝜌 𝑠𝑖𝑛𝜃,  

𝑑𝑢𝑑𝑣 = 𝜌 𝑑𝜌𝑑𝜃  

 

 

(23) 

 

This yields,  

 𝑓(𝑥, 𝑦) =  ∫ ∫ 𝑃(𝜌, 𝜃)𝑒𝑖2𝜋𝜌𝑠𝜌 𝑑𝜌𝑑𝜃
∞

0

2𝜋

0

 

 

(24) 

 

where 𝑠 = 𝑥 𝑐𝑜𝑠𝜃 + 𝑦 𝑠𝑖𝑛𝜃. The outer integral can be splitted into 𝜃 ∈ [0, 𝜋] and 

𝜃 ∈ [𝜋, 2𝜋] and using symmetry properties 𝐹(𝜌, 𝜃) = 𝐹(𝜃 + 𝜋, −𝜌) yields, 

 𝑓(𝑥, 𝑦) =  ∫ [∫ 𝑃(𝜌, 𝜃)|𝜌|𝑒𝑖2𝜋𝜌𝑠𝑑𝜌
∞

−∞

]
𝜋

0

𝑑𝜃 

 

(25) 
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According to Fourier slice theorem, the 2D Fourier transform of 𝐹(𝜌, 𝜃) along the radial 

line is given by the Fourier transform of the projection 𝐹(𝜌, 𝜃). This yields,  

 

 𝑓(𝑥, 𝑦) =  ∫ [∫ 𝑃(𝜌, 𝜃)|𝜌|𝑒𝑖2𝜋𝜌𝑠 𝑑𝜌
∞

−∞

]
𝜋

0

𝑑𝜃 
 

(26) 

 

 

 

 

 

Figure 3.2.  Frequency response of Ram-Lak (solid line) and apodization of Ram-

Lak filter (dashed line).  

 

 

In (26), the inner integral is the Fourier transform of the projection data with a projection 

filtering operation with a filtering kernel |𝜌|. This is a high pass filter which compensates 

inhomogeneous sampling. The filter is also termed as ramp filter or Ram-Lak filer and is 

implemented in discrete form with a cutoff frequency at the Nyquist frequency as shown 

in Figure 3.2. To avoid the over enhancement of high frequency noise and aliasing 

artifacts, often a smoothing apodization window function is used, such as Hamming 

window. The following steps are performed in FBP process:  

ρ 



 

 

29 

- Take 1D Fourier transform of the projection data.  

- Multiply Fourier transform 𝑃(𝜌, 𝜃) with a filter kernel |𝜌|.  

- Take inverse Fourier transform of the filtered projection data.  

- Backproject the filtered projections onto image domain.  

 

FBP method is widely used in CT reconstruction if a large number of projection 

images are acquired over a full angular range. Since corresponding spatial domain is well 

sampled, FBP produces good quality reconstruction with fewer artifacts. For the cone 

beam CT and tomosynthesis, the FeldKamp-Davis-Kress (FDK) algorithm, an 

approximation of the FBP algorithm is used.   

 

 

3.2. ITERATIVE IMAGE RECONSTRUCTION  

The major drawback of analytical algorithms is that, analytical methods are 

derived assuming continuum of rays. However, in real case, the projection data are finite. 

Iterative reconstruction (IR) methods model the system based on finite number of 

measured rays. Iterative methods were first implemented in single photon emission CT 

(SPECT) in the 1960s [15]. In the early 1970s, the efforts were carried out to 

transmission CT applications [16]. Other reasons for applying iterative method are that, 

FBP methods cannot model the physics of the system, including photon statistics, focal 

spot size, detector response, etc. Additionally, the FBP method assumes that the source is 

monochromatic; but in practice, the source is polychromatic in nature with different 

energies leading to beam hardening. Moreover, FBP produces severe streaking artifacts 
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in the case of few-view reconstruction problem. IR algorithms have been proposed to 

overcome the problems of FBP. Specially, IR methods can reduce image artifacts and 

noise in few-view reconstruction problem. Unlike analytical methods where projections 

are filtered and back projected, IR methods can provide a solution in an iterative manner 

where the initial reconstructed image is refined and modified iteratively until certain 

criteria are satisfied [17]. IR methods in CT fall into two categories. One is the algebraic 

image reconstruction (AIR) method that is based on solving a system of linear equations. 

The other approach is the statistical image reconstruction (SIR) method that utilizes the 

knowledge of the underlying physics. SIR methods can incorporate polychromatic 

sources thus accounting for the beam hardening problem in reconstruction.  

3.2.1. Sampling in Iterative CT Reconstruction. In subsection 2.2.1.2, the 

sampling requirements for analytical CT reconstruction are demonstrated. Sampling 

requirements for iterative CT reconstruction are different from those for analytical 

methods. In [18], it has been proven that, for an object containing in a circle of diameter 

D, if there are ND number of rays per projection line, then there are a total of π* ND
2 

/4 

unknown pixels inside the object containing the object and only π* ND
 
/4 projections are 

needed to determine the problem by solving a system of linear algebraic equations. The 

system will be overdetermined if more projections are taken and will be underdetermined 

if less projections are taken. However, in limited angle CT, the projection data are 

insufficient to reconstruct the object distribution accurately. Limited angle induces image 

artifacts and produce geometric distortions characterized by blurring and elongation 

perpendicular to the direction of the missing projections. 

3.2.2. Algebraic Image Reconstruction. Algebraic Image Reconstruction (AIR) 
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technique is a non-statistical image reconstruction technique. It can model the geometry 

of the acquisition process better than analytical reconstruction technique such as FBP, 

thus producing better reconstructions in the case of incomplete projections, such as 

sparse-view and limited-angle data.  

The AIR method solves a system of linear equation 𝐴𝜇 = 𝑦, where 𝜇 are the 

attenuation coefficients to be reconstructed, 𝑦 are the measured data or sinogram, and 𝐴 

is the system matrix that characterizes the contribution of each pixel in each line of 

projection. Typically, AIR methods can be classified into three categories: algebraic 

reconstruction technique (ART), simultaneous algebraic reconstruction technique 

(SART), and simultaneous iterative reconstruction technique (SIRT). The reconstruction 

of the first clinical CT utilized the ART algorithm [16, 19] and generally used the 

Kaczmarz method [20]. Mathematically, in order to reconstruct an 𝑁 × 𝑁 image from 𝑁 

number of pixels with 𝑀 number of projections, the line integral of attenuation 

coefficient is given by a set of linear equation as,  

 ∑ 𝑎𝑖,𝑗𝜇𝑗

𝑁

𝑗=1

= ln (
𝐼𝑖0

𝐼𝑖
) =  𝑦𝑖 

 

(27) 

 

where 𝐼𝑖0 and 𝐼𝑖  are the incident particles and detected particles by detector i, 

respectively. 𝑎𝑖,𝑗 is the contribution of pixel j on detector i, where 0 ≤ 𝑎𝑖,𝑗 ≤ 1 and 

∑ 𝑎𝑖,𝑗 = 1𝑁
𝑗=1 , 𝜇𝑗 is the attenuation coefficient of pixel j , and 𝑦𝑖 is the measured 

sinogram. where 𝑎𝑖𝑗 is the contribution of 𝜇𝑗 to 𝑦𝑖, and 𝑖 =< 1,2, … . , 𝑀 > is the index of 

the projection with 𝑀 total number of projections. (27) can be written in an expanded 

form as,  
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𝑎11𝜇1 + 𝑎12𝜇2 + ⋯ + 𝑎1𝑁𝜇𝑁 = 𝑦1 

𝑎11𝜇1 + 𝑎12𝜇2 + ⋯ + 𝑎1𝑁𝜇𝑁 = 𝑦1 

… … ..  … … … … … … … … … …  

𝑎𝑀1𝜇1 + 𝑎𝑀2𝜇2 + ⋯ + 𝑎𝑀𝑁𝜇𝑁 = 𝑦𝑀 

 

 

 

(28) 

 

 

The attenuation values to be reconstructed and the projections can be written in a column 

vector as:  

 

 

𝜇 = (𝜇1, 𝜇2, … … , 𝜇𝑁)𝑇 

and,                 𝑦 = (𝑦1, 𝑦2, … … , 𝑦𝑀)𝑇           

 

(29) 

 

(28) can be solved by simple linear algebra and is termed as ART [8]. The general 

equation becomes, 

 𝜇𝑛+1 = 𝜇𝑛 −
𝑎𝑖 𝜇

𝑛 − 𝑦𝑖

𝑎𝑖(𝑎𝑖)𝑇
(𝑎𝑖)

𝑇 

 

(30) 

 

(30) implies that ART updates the attenuation coefficient values in a ray-by-ray basis and 

estimates the voxel values from the difference between the detected and computed pixel 

value. The difference is then back projected along the ray and contributes to each voxel 

proportional to the path length of the ray inside the voxel. Since the simple ART is 

computationally expensive and it takes a single ray at a time, the convergence speed is 

very slow compared to FBP. Therefore, the SART method considers one projection at a 

time but a relaxation parameter 𝛽 is added to the update term to reduce the over-
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correction of noise and artifacts. This speeds up the convergence speed. The equation in 

(30) then becomes,  

 𝜇𝑛+1 = 𝜇𝑛 − 𝛽
𝑎𝑖 𝜇

𝑛 − 𝑦𝑖

𝑎𝑖(𝑎𝑖)𝑇
(𝑎𝑖)

𝑇 
 

(31) 

 

In SART, the attenuation coefficients will be estimated after all the rays in one 

projection are processed. This leads to much faster convergence towards a stable solution. 

However, a relaxation parameter is needed for the SART method to keep the noise level 

low and to reduce streaking artifacts [14]. In SIRT, the update is performed after all the 

projections have been processed. Generally, a positivity constraint is imposed on the 

pixels because the linear attenuation coefficients are always positive. 

The convergence speed is further accelerated by using orders subsets (OS) [21-

23] that divide the projections into several groups or subsets and update an estimate for 

each group instead of updating for the complete dataset. The convergence speed increases 

with the smaller number of projections per subset. However, the over-correction leads to 

higher noise and artifacts due to increasing number of subsets. When each subset contains 

a single projection, the scheme becomes SART, and when one subset contains all the 

projections, the scheme becomes simultaneous iterative reconstruction technique (SIRT). 

Since SART contains large number of subsets, the convergence of SART will be much 

faster than SIRT, and a well-chosen relaxation parameter will keep the noise level and 

artifacts low and produce good reconstruction results [23]. Another variant of ART 

method is the multiplicative ART (MART) [24, 25] which multiplies the update with the 

current solution as opposed to other methods that are additive (or subtractive). A 
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relaxation parameter is also incorporated with the update term similar to SART. In the 

AIR methods, the initial reconstructed image is refined and modified until certain 

criterion is met. However, the AIR methods cannot incorporate the counting statistics of 

the detected photons; hence it is a non-statistical process.  

3.2.3. Statistical Image Reconstruction. Statistical image reconstruction (SIR) 

methods incorporate knowledge of underlying physics, such as system geometry, detector 

response, energy dependence and counting statistics of the detected photons into the 

reconstruction process, offering more accurate and artifact-free reconstruction. Although, 

SIR methods are widely used in emission tomography such as positron emission 

tomography (PET) and single photon emission computerized tomography (SPECT), the 

use of SIR methods in transmission CT are also well established [26-28] specially for 

few-view and limited angle CT and tomosynthesis. Since transmitted X-ray quanta or 

neutron particles follow Beer-Lambert’s law and the line integral of attenuation 

coefficient becomes, 

 

 ∑ 𝑎𝑖,𝑗𝜇𝑗

𝑁

𝑗=1

= ln (
𝐼𝑖0

𝐼𝑖
) =  𝑦𝑖 

 

(32) 

 

 

where 𝐼𝑖0 and 𝐼𝑖  are the incident particles and detected particles by detector i 

respectively. 𝑎𝑖,𝑗 is the contribution of pixel j on detector i, where 0 ≤ 𝑎𝑖,𝑗 ≤ 1 and 

∑ 𝑎𝑖,𝑗 = 1𝑁
𝑗=1 , 𝜇𝑗 is the attenuation coefficient of pixel j, and 𝑦𝑖 is the measured 

sinogram. However, number of particles counted by a given detector with a given time 

interval is assumed to be independent and identically distributed (i.i.d.) and the detected 



 

 

35 

particles follow Poisson distribution. Per Beer-Lambert law, then 

 

 
∑ 𝑎𝑖,𝑗𝜇𝑗

∗

𝑁

𝑗=1

= ln (
𝐼𝑖0

𝐼𝑖
∗) =  𝑦𝑖

∗ 

 

(33) 

 

 

where 𝐼𝑖
∗ and 𝜇𝑗

∗ are the expected value of the detected particles and attenuation 

coefficient, respectively, and 𝑦𝑖
∗ is the expected sinogram . Therefore, for transmission 

CT, the probability of receiving 𝐼𝑖, at the expectation value 𝐼𝑖
∗ particles at detector i is 

given by,  

 𝑃(𝐼𝑖|𝐼𝑖
∗) =  

𝑒−𝐼𝑖
∗ (𝐼𝑖

∗) 𝐼𝑖

𝐼𝑖!
 

 

(34) 

 

 

Therefore, 𝐼𝑖 corresponds to a Poisson random variable with an expectation value 

of 𝐼𝑖
∗. For all i.i.d. variables, plugging (33) into (34), the probability of receiving all I 

from M number of detectors becomes,  

 

 

𝑃(𝐼|𝐼∗) = ∏ 𝑃(𝐼𝑖|𝐼𝑖
∗)

𝑀

𝑖=1

=  ∏
𝑒−𝐼𝑖

∗ (𝐼𝑖
∗) 𝐼𝑖

𝐼𝑖!

𝑀

𝑖=1

  

                                                

=  ∏
𝑒−𝐼𝑖0e

− ∑ 𝑎𝑖,𝑗𝜇𝑗
∗𝑁

𝑗=1  (𝐼𝑖0e− ∑ 𝑎𝑖,𝑗𝜇𝑗
∗𝑁

𝑗=1 )
𝐼𝑖

𝐼𝑖!

𝑀

𝑖=1

= 𝑃(𝐼|𝜇∗) 

 

(35) 
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Natural logarithm of (35) yields,  

 

 log 𝑃(𝐼|𝜇∗) = ∑ [−𝐼𝑖0e− ∑ 𝑎𝑖,𝑗𝜇𝑗
∗𝑁

𝑗=1 + 𝐼𝑖 ln( 𝐼𝑖0) − 𝐼𝑖 ∑ 𝑎𝑖,𝑗𝜇𝑗
∗

𝑁

𝑗=1

− ln (𝐼𝑖!)]

𝑀

𝑖=1

 
 

(36) 

 

 

log 𝑃(𝐼|𝜇∗) is the log likelihood function for transmission CT. In classical log-likelihood 

estimation technique [29], the optimization is obtained by maximizing the log-likelihood 

of observing 𝐼 under 𝜇∗, i.e.  

𝜇∗
𝐿𝐿

= 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 (log 𝑃(𝐼|𝜇∗) 

 

(37) 

 

Various iterative algorithms have been investigated to maximize the log-

likelihood function, such as the expectation maximization [30], gradient algorithm [31], 

etc. The algorithm for iteratively maximizing (37) is called expectation maximization 

(EM) algorithm. However, CT is a high dimensional inverse problem and sometimes the 

direct inversion is not possible, therefore, the reconstruction becomes an ill-posed and 

unstable problem. In order to handle the ill-posed inverse problem, regularization is 

generally introduced to obtain a modified problem with a unique and stable solution. The 

statistical regularization technique follows Bayesian model which yields a-posterior 

probability distribution of  𝜇∗ for a given value 𝐼. Therefore, 

𝑃(𝜇∗|𝐼) =
𝑃(𝐼|𝜇∗)𝑃(𝜇∗)

𝑃(𝐼)
   

 

(38) 

 

𝑃(𝐼|𝜇∗) denotes as a-posteriori probability density function, which depends on  𝜇∗  only. 
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𝑃(𝜇∗)  denotes as a prior probability distribution function, which is the probability 

density function of the original image. 𝑃(𝐼) denotes the prior probability distribution of  

𝐼, which is a constant. Similar to log-likelihood estimation, maximizing log-likelihood 

of 𝑃(𝜇∗|𝐼) estimates the maximum a posteriori probability (MAP), 

 

𝜇∗
𝑀𝐴𝑃

=  𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 (𝑙𝑜𝑔 𝑃(𝜇∗|𝐼)) = 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒(log 𝑃(𝐼|𝜇∗) + log 𝑃(𝜇∗)) (39) 

 

 

Therefore, the logarithm of the prior probability density acts as a penalty or regularization 

functional, which penalizes non-smooth functions in addition to the logarithmic 

likelihood [29]. Gibbs functions are most frequently used for a-priori probability 

distribution 𝑃(𝜇∗) in the form of,  

𝑃(𝜇∗)~𝑒−𝛽𝑅(𝜇∗) 

 

(40) 

 

where 𝛽 denotes a positive parameter and 𝑅(𝜇∗) is a regularization term. Therefore, the 

maximization becomes, 

𝜇∗
𝑀𝐴𝑃

=  𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒(log 𝑃(𝐼|𝜇) − 𝛽𝑅(𝜇∗)) 

 

(41) 

 

Several regularization, including the Tikhonov regularization and the Markov 

random field regularization are used as the regularization term. However, EM or MAP 

algorithms are restricted to emission tomography with Poisson distributed data. The M 

step of EM or MAP algorithm does not produce any close form in case of transmission 
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tomography [32]. Several modifications [33, 34] are proposed to overcome this problem 

but the algorithm may still be divergent.  

 

 

3.3. CT RECONSTRUCTION IN CS FRAMEWORK  

As discussed earlier, various analytical and iterative CT reconstruction algorithms 

are popularly used for image reconstruction from projection data. Candès et al [35] and 

Donoho [36] published the principle of compressed sensing in 2006 which addresses that 

a large signal or an image can be recovered exactly from much few number of linear 

measurements through optimization if the signal or the image itself is sparse and 

noiseless. This integrates the acquisition and compression steps into a single step thus 

named as compressed sensing.  

3.3.1. Background of CS.  The conventional sampling theorem states that, one 

can recover a signal or an image without view aliasing artifacts if the sampling rate is 

equal or greater to the Nyquist rate. Therefore, it seems that the compressed sensing 

principle can beat the Nyquist principle. However, the claim is misleading as mentioned 

in [37] that the CS and Nyquist sampling work under two different assumptions. The 

Nyquist sampling mentions that a continuous signal can be exactly reconstructed if that is 

band-limited. The CS reconstruction can only recover a signal completely that is known 

to be sparse. Although the target images in CT are generally not sparse but if any 

mathematical transform can make the image sparse then it is possible to reconstruct the 

image using CS theory. These mathematical transforms are generally called as 

sparsifying transform which can be used to obtain the sparse image. Generally, the 
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discrete gradient transform and the wavelet transforms are frequently used as the 

sparsifying transform [35, 36] to increase image sparsity.  

The basic idea of CS image reconstruction process is that if one can reconstruct a 

sparsified version of the target image from the undersampled data, then an inverse 

sparsifying transform can be used to transform the sparsified image back to the target 

image. Since the sparsified image contains fewer image pixels that have significant image 

values, thus it is possible to reconstruct the sparsified image accurately from the 

undersampled measurements without any streak artifacts. However, generally the inverse 

sparsifying transform is not necessary, only the sparsifying transform is needed for 

reconstruction. An iterative non-linear optimization procedure can be performed instead 

of inverse sparsifying transform during the reconstruction process. Therefore, the image 

reconstruction process in CS is the combination of sparsifying transform and the iterative 

reconstruction algorithm.  

The basic idea of CS reconstruction is to solve a constrained ℓ0-minimization 

problem as follows,  

 min
𝑥

‖Ψ𝑥‖0         𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 A𝑥 = 𝑦 

 

(42) 

 

where Ψ is the sparsifying transform, ‖ˑ‖0 is the ℓ0-norm of the non-zero components of 

a vector. However, ℓ0-norm minimization is a combinatorial, NP-hard problem [38] in 

general and the recovery is not stable in presence of noise [39].  

Solving the ℓ0-optimization problem falls into two basic categories. First is the 

relaxation of the ℓ0-optimization via ℓ1-optimization which is also called Basis Pursuit. 
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Second is the iterative greedy algorithm such as (Orthogonal) Matching Pursuit [40] and 

iterative hard thresholding (IHT) [41]. The advantage of Basis Pursuit is that it guarantees 

uniform recovery i.e. it will not fail for any sparse signals while the greedy algorithms 

only guarantee non-uniform recovery [42]. Additionally, Basis Pursuit provides stability, 

computationally tractable and relies on linear programming. The greedy algorithms are 

much faster than Basis Pursuit but cannot provide same guarantees as Basis Pursuit. 

Several approaches such as, Regularized Orthogonal Matching Pursuit (ROMP) [43] and 

Compressive Sampling Matching Pursuit (CoSaMP) [44] have been studied by 

combining both Basis and Matching Pursuit to guarantee the stability as well as speed. 

For CT reconstruction, total variation minimization instead of ℓ1-optimization provides 

the sharper image by preserving jumps in the reconstruction as well as geometry of the 

boundaries. However, TV minimization can only recover the target image exactly if the 

gradient of the underlying target image is sparse and it obeys the ℓ1-optimization.  

3.3.2. Mathematical Formulation of CS for CT. The purpose of CT 

reconstruction is to recover 𝜇 which contain the attenuation values of each pixel. CS 

attracts the image reconstruction community due to its powerful ability to reconstruct 

target image from fewer measurements or undersampled data. Several approaches [3, 45-

50] of CS methods have been studied in CT and MRI. The ℓ1-optimization problem of 

(42) can be expressed by, 

 min
𝑥

‖Ψ𝜇‖1         𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 A𝜇 = 𝑦 

 

(43) 

 

where the ℓ1-norm ‖ˑ‖1 is the sum of the absolute value of a vector which is also called 

the Manhattan norm. 𝜇 is the target attenuation coefficients of the reconstructed image. 
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For an N-dimensional vector𝜇, the ℓ1-norm is defined as, 

 

 ‖𝜇‖1 = ∑|𝜇𝑖|

𝑁

𝑖=1

 

 

(44) 

 

 

In most practical situations, the acquired data is not perfect and the signals and 

measurements are corrupted by noise. The drawback of (43) is that the noise is not 

modeled. Therefore, the optimization problem is modified to allow perturbation and can 

be reformulated by incorporating error vector in ℓ2-norm with ‖ε‖2 ≤ δ as, 

 min
𝑥

‖Ψ𝜇‖1         𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ‖A𝜇 − 𝑦‖2
2 ≤ δ 

 

(45) 

 

where δ is the parameter which controls data fidelity. The constrained minimization 

problem can be converted into unconstrained minimization problem using Lagrangian 

approach. Thus, we get, 

 min
𝑥

𝜆‖Ψ𝜇‖1 + ‖A𝜇 − 𝑦‖2
2 

 

(46) 

 

 
where λ is a Lagrange multiplier which is also called as regularization parameter. 

‖A𝜇 − 𝑦‖2
2 and ‖Ψ𝜇‖1 in (46) are also called data fidelity term and regularizer term 

respectively. The data fidelity measures the deviation between the measured data and the 

forward projected expected data. The regularizer incorporates any prior information 

about the solution similar to the Bayesian approach. λ controls the trade-off between the 

regularizer and the data fidelity term. ‖ˑ‖2 denotes the ℓ2-norm or the Euclidean norm of 
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a vector. For an N-dimensional vector 𝜇, this is defined as, 

 

 ‖𝜇‖2 = √∑ 𝜇𝑖
2

𝑁

𝑖=1

 

 

(47) 

 

 

(46) can be considered as a posteriori criterion from Bayesian perspective which 

estimates 𝜇 from the measurements 𝑦 = 𝐴𝜇 + 𝜂 where η is the noise vector with i.i.d. 

elements.  Typical CS assumes the data is subjected to additive Gaussian white noise, but 

in realistic CT, logarithm-transformed Poisson distributed projection data are obtained 

from each detector.  

3.3.3. Total Variation Minimization.  The popular type of sparsifying transform, 

𝛹 used in CT is the total variation [46]. The unconstrained optimization problem in (46) 

can be expressed in terms of TV as, 

 min
𝑥

𝜆‖𝜇‖𝑇𝑉 + ‖A𝜇 − 𝑦‖2
2 

 

(48) 

 

Total variation (TV) minimization was first introduced by Rudin, Osher, and Fatemi [51] 

in 1992. TV-minimization is widely used in classical image processing in the field of 

denoising, deblurring, and inpainting [51-53].  The goal of TV-regularization is to 

recover original noise-free signal from additive Gaussian noisy signal. TV-regularization 

is successful in many applications for suppressing noise from piecewise constant signal 

having steep jumps. The ℓ1-norm of the TV term in the discrete version can be expressed 

as, 
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 ‖𝜇‖𝑇𝑉 = ∑|∇𝜇|

𝑖,𝑗

 (49) 

 

where,  

 

 
|∇𝜇| = [

∇𝜇𝑥(𝑖, 𝑗)
∇𝜇𝑦(𝑖, 𝑗)

] 
 

(50) 

 

 

 

and,  

 

 
∇𝜇𝑥(𝑖, 𝑗) =  𝜇(𝑖 + 1, 𝑗) − 𝜇(𝑖, 𝑗)

∇𝜇𝑦(𝑖, 𝑗) =  𝜇(𝑖, 𝑗 + 1) − 𝜇(𝑖, 𝑗)
 

 

(51) 

 

 

(49) is also called anisotropic total variation. However, it is suggested in [35] that, for 

CT, the norm applied to the gradient image is the TV semi-norm and can be written as, 

 

 ‖𝜇‖𝑇𝑉 = √|∇𝜇𝑥(𝑖, 𝑗)|2 + |∇𝜇𝑦(𝑖, 𝑗)|
2
 

 

(52) 

 

(52) is called the isotropic total variation. However, the TV semi-norm is not 

differentiable from the numerical point of view. Regularization is needed to avoid the 

discontinuities. The minimization of TV with the regularization term is known as 

smoothed total variation regularization [54] and the TV semi-norm becomes, 

 ‖𝜇‖𝑇𝑉 = √|∇𝜇𝑥(𝑖, 𝑗)|2 + |∇𝜇𝑦(𝑖, 𝑗)|
2

+ ϵ 

 

(53) 

 

However, in the application of CT, the image is not a piecewise constant signal, thus 
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significant staircasing or blocky artifacts appears in the reconstruction. Therefore, the 

reconstructed image is subjected to loose contrast due to over-smoothing [55].  Several 

TV based methods and their variants have been proposed in the CS framework [56-60]. 

The problems in (45) and (46) are equivalent but generally it is easier to select δ than 𝜆, 

because it corresponds to the combined effect of noise and model inaccuracy [61]. 

However, regularized problems are strongly dependent on regularization parameter,𝜆. 

Selecting 𝜆 manually sometimes provide unsatisfactory solution. Several techniques have 

been studied [62] to automate 𝜆, including generalized cross validation (GCV), 

Morozov’s discrepancy principle (DP) and unbiased predictive risk estimate (UPRE).   

3.3.4. Optimization Algorithms.  As mentioned earlier, CT reconstruction in CS 

can be achieved in two forms, either a constrained minimization problem that minimizes 

TV objective function within small and fixed data fidelity, or an unconstrained 

minimization problem that minimizes the data fidelity error until a certain tolerance is 

achieved in the TV minimization process. The numerical solution of the constrained and 

unconstrained minimization is an optimization problem. There are a huge number of 

algorithms available in the literature but there is no unique optimization algorithm 

available for CT reconstruction. It depends on the accuracy needed in that particular 

application. However, the reconstruction is obtained by solving the optimization 

algorithm iteratively. The optimization algorithms include first order method and their 

variants, such as steepest-descent or gradient method [63] and accelerated first order 

method proposed by Nesterov [64]. These optimization algorithms are designed for 

smoothed TV-functional as mentioned in (53). The subgradient methods are developed 

for non-smooth TV-functional [65]. Several methods including primal dual methods [66],  
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homotopy methods [67], dual formulation [52], second order cone programming [68], 

Bregman distance method [69], graph cut methods [70], and alternating direction method 

of multipliers [71] are also popular optimization algorithms.  

 

 

3.4. EVALUATION OF CT RECONSTRUCTION  

The image quality in CT depends on several factors, including image contrast, 

spatial resolution, image noise, and artifacts. These factors determine the sensitivity, 

which is the ability to perceive low-contrast structures, and the visibility of image details. 

However, image quality measure has two effects: fidelity and intelligibility. Fidelity 

describes how the reconstructed image differs from the original image, with root mean-

square-error (RMSE). Intelligibility refers the ability through which the image can offer 

accurate information.  

The fidelity of the image reconstruction algorithm is evaluated using RMSE 

which quantifies the reconstruction error mathematically. RMSE is defines as,  

 

 𝑅𝑀𝑆𝐸 = √
∑(𝐼𝑟𝑒𝑐 − 𝐼𝑟𝑒𝑓)2

(𝐼𝑟𝑒𝑓)2
 

 

(54) 

 

where 𝐼𝑟𝑒𝑐 is the reconstructed image, 𝐼𝑟𝑒𝑓 is a reference image, and N is the total number 

of pixel in the image. RMSE evaluates the accuracy of the reconstruction algorithms and 

measures reconstruction quality. As mentioned earlier, streaking artifact increases due to 

undersampling in the sparse-view and the limited angle CT. Streaking indicator (SI) is a 

metric introduced in [72] to quantify the streaking artifacts based on total variation 
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values. Higher SI value indicates more streaking artifacts, while lower SI value indicates 

reduced streaking artifacts. We define the SI as, 

 

 𝑆𝐼 =
𝑇𝑉(𝐼𝑟𝑒𝑐 − 𝐼𝑟𝑒𝑓)

𝑇𝑉(𝐼𝑟𝑒𝑓)
 

 

(55) 

 
 

where TV is calculated using (52).  

The structural similarity (SSIM) index [73] is an effective method of measuring 

structural similarity between two images.  It evaluates the perpetual quality based on the 

similarity of luminance, similarity of contrasts, and similarity of structures from the two 

patches of the same spatial window of the two images. Mathematically, the SSIM is 

defined as, 

 𝑆𝑆𝐼𝑀 = (
2𝜇𝑥𝜇𝑦 + 𝐶1

𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1
) (

2𝜎𝑥𝜎𝑦 + 𝐶2

𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2
) (

2𝜎𝑥𝑦 + 𝐶3

𝜎𝑥𝜎𝑦 + 𝐶3
) 

 

(56) 

 

The spatial resolution is a metric for describing the linear and shift invariant 

system’s ability to measure high contrast object of increasingly smaller sizes in the 

Fourier domain. The spatial resolution is affected by the focal spot size of the source, 

width of the detector, pixel size, and the properties of the reconstruction filter. Generally, 

the spatial resolution is measured by modular transfer function (MTF) curve in term of 

line pair per millimeter using edge method [74].    



 

 

47 

4.  SPARSE-VIEW RECONSTRUCTION OF SPENT FUEL ASSEMBLY 

The backgrounds of the classical and CS based reconstruction methods are 

discussed in Chapter 3. In this chapter, a novel CS based reconstruction strategy is 

proposed for the sparse-view CT reconstruction of a spent nuclear fuel assembly and 

compared the results with the classical reconstruction algorithms.  

 

 

4.1. INTRODUCTION  

The advent of compressed sensing (CS) has shown potential over conventional 

algorithms to generate high-quality reconstruction from the undersampled measurements. 

It is the most popular method of handling the sparse data. The major significance of the 

CS theory is that it addresses the sampling condition for exact reconstruction. 

Mathematically, the CS theory states that an object can be accurately reconstructed from 

~SlnN number of samples to reconstruct an N × N image from S number of significant 

image pixels [75]. Conversely, the conventional reconstruction methods rely on 

Shannon/Nyquist sampling theorem, stating that the number of required samples should 

be greater than twice the Nyquist frequency of the object.  

The statistical image reconstruction (SIR) algorithms provide better 

reconstructions compared to the analytical and algebraic reconstruction algorithms. The 

SIR methods model the statistical distribution of the interaction process and estimate the 

best image from the measured projections. Additionally, prior information can be 

incorporated to penalize the noise-induced unphysical intensity fluctuations to the 

neighborhood voxels. For example, the Markov Random Field (MRF) prior based 
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regularizations, including the quadratic [76] and Gaussian MRF [77], are well-established 

methods for solving penalized based SIR. However, such regularizations penalize the 

image irrespective to the information of the underlying structures; hence low contrast 

information (i.e. fine details) are lost near the edge regions due to over-regularizing [78]. 

Thibault et al. [79] proposed q-generalized Gaussian MRF (q-GGMRF) prior as 

regularization to overcome the problem, as well as for faster convergence. However, 

there is still no agreement on a particular SIR method for CT image reconstruction. 

Although the statistical methods can provide better image quality than the analytical and 

algebraic methods, these methods are very difficult to converge to a correct solution. 

Moreover, the data fidelity term of the regularized SIR method (also called penalized 

weighted least square, PWLS) is approximated by Gaussian distribution [80] using 

Taylor approximation.  

CS-based image reconstruction from few views is extensively studied in the field 

of medical imaging to reduce the potential radiation dose delivered to the patients [37, 45, 

46, 48-50, 56-59, 75, 80-83]. In the literatures, high-quality reconstructions were 

produced from few projections using CS strategy. The underlying assumptions to 

accurately reconstruct an object using CS principle are that the projections should be 

noiseless, and the reconstructed object should be piecewise constant. However, realistic 

data are far complicated than the high contrast phantom and contain low contrast 

information and noisy fluctuations.  

In general, the CS algorithms are implemented in the iterative reconstruction 

framework. The first CS-based CT approach was based on projection onto convex sets 

(POCS) using constrained total variation (TV) semi-norm minimization. The method 
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accurately reconstructed piecewise constant object from ~20 view angles [75]. Since the 

experimental objects are not piecewise constant and often contain low contrast 

information, therefore, generally more view angles are needed for accurate 

reconstruction. It is difficult to find an optimal number of projections needed to yield an 

acceptable reconstruction [84] for a specific object.  

TV semi-norm is useful for edge-preserving regularization [85]. The performance 

of TV-POCS was improved using adaptive steepest descent based POCS (ASD-POCS) 

algorithm [72, 86]. Several TV based methods and their variants, including anisotropic 

TV [87, 88], edge preserving TV [83], directional TV [56], and weighted TV [60, 89] 

were proposed to improve the performance of the algorithm. Prior image constrained 

compressed sensing (PICCS) [46, 47] and their variants [90, 91] were introduced for 

dynamic and perfusion CT where a prior high-quality reconstruction is utilized as a 

constraint in the reconstruction process. The difference between the prior high-quality 

image and the current estimate serves an additional sparsified transform that enabled 

significant improvements in the undersampling factors. However, the potential drawback 

of these algorithms is that they cannot model the noise present in the data [80]. 

In this work, a new reconstruction technique from few projections is introduced 

based on CS principle, aiming to reconstruct the spent fuel assembly.  The proposed 

method utilizes simultaneous algebraic reconstruction technique (SART) with total 

variation (TV) minimization and a dual approach [52] for optimization assuming the 

projection data are corrupted by Poisson noise. The dual approach avoids smoothing of 

sharp edges, preserving detail information in the reconstruction as well as suppressing the 

streaking artifacts. Simulations are conducted to validate and characterize the proposed 
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method. The qualitative and quantitative studies are performed to evaluate the accuracy 

of the proposed algorithm. The implementation of the proposed method in real 

projections demonstrates that it provides reconstruction with improved image quality 

compared to the reconstruction yielded by FBP and SART reconstruction. 

 

 

4.2. MATERIALS AND METHODS 

Neutron projections of the spent nuclear fuel assembly were acquired at the INL 

NRAD facility for a series of experiments conducted in the 1980’s to evaluate the use of 

computed tomography as a standard technique for post-test analysis of fuel meltdowns in 

the TREAT reactor. The fuel assembly consists of 7 fuel rods supported by hexagonal 

grid spacers at different positions (see Figure 4.1). The assembly was installed in a 

flowing sodium loop with stainless steel flow tube. The fuel pins were made of MOX fuel 

with a diameter of ~5mm. The image acquisition geometry was assumed to be nearly 

parallel with an L/D ratio of 185. The assembly was rotated precisely with 2.4° 

increments covering 180˚ angular range, with a radiograph acquired at each angle (see 

Figure 4.2) using the transfer technique [92]. The activity, A(t),  of the foil is given by, 

 

 𝐴(𝑡) = Σ𝑎 𝜑(𝑥, 𝑦)(1 − 𝑒−𝜆𝑡𝑖𝑟𝑟) 

 

(57) 

 

 

where, 

 
𝜑(𝑥, 𝑦) = 𝜑0𝑒−𝛴𝑡Δ𝑥 

 

(58) 
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 and where 𝛴𝑎 is the macroscopic absorption cross-section of the specimen, 𝛴𝑡 is the total 

macroscopic cross-section of the specimen, 𝜑0(𝑥, 𝑦) is the unattenuated neutron beam 

flux, 𝜑(𝑥, 𝑦) is the neutron beam flux over (𝑥, 𝑦) at the activation foil after passing 

through the specimen, 𝜆 is the decay constant of the activated foil, 𝑡𝑖𝑟𝑟 is the time the 

foils were exposed to the neutron beam, and 𝑥 is the thickness of the specimen. 

A total of 75 radiographs were obtained using the transfer technique at the hot cell 

facility. The radiographs are digitized using Genesis NEO S60 film digitizer to a size of 

8401 × 10801 pixels and registered spatially along its center of rotation. The digitizer 

uses cold cathode lamp as light source that can measure a maximum optical density of 4.7  

 

 

 

Figure 4.1.  Schematic of a cross-section of the spent fuel assembly. 
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with a spatial resolution of 600 dpi. The scan rate of the scanner is 1.5 milliseconds per 

line and the total scan time is 55s for a 14 inch × 17 inch film. The size of the neutron 

radiographs are 25 cm (~10 in.) × 45 cm (~17 in.) but since the scanner software has 

limited option to select the film size, the scans are performed at 14 inch ×17 inch in size. 

The digitized projection images were horizontally cropped to 1024× 10801 pixels to 

remove blank background pixels prior to reconstruction. Several pre-processing steps 

were performed to spatially co-register the radiographs [92]. When neutrons are captured 

by the activation foil as discussed in subsection 1.1, the number of beta particles that 

activates the film is assumed to follow compound Poisson process. Some of the 

properties and the image acquisition parameters of the fuel assembly are given in  

Table 4.1. 

 

 

Figure 4.2.  Digitized neutron projection images of the spent fuel assembly from three 

different angular views.  
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Table 4.1. Properties of the spent fuel assembly and neutron  

image acquisition parameters 

 

Parameters  Value 

Fuel composition   UO2+PuO2 

Fuel diameter (mm) 4.95-5.00 

Fuel pellet theoretical density (g/cm
3
) 11.05 

Irradiated fuel density (g/cm
3
)  10.2 

Fuel pellet geometry Annular 

L/D ratio 185 

Time of exposure (min) 22 

 

 

The aim of this work is to develop an efficient scheme in the context of CS to 

accurately reconstruct the spent fuel assembly from 75 projection images with minimal 

artifacts and noise. In the following subsections, the proposed algorithm is discussed in 

detail.  

4.2.1. Mathematical Formulation. The variational problem for Poisson 

denoising is given in [53] which is utilized and implemented this into the iterative CT 

reconstruction framework as, 

 min
𝑥

𝜆‖𝑢‖𝑇𝑉 + ∫ ( 𝑢 − 𝑓𝑙𝑜𝑔 𝑢) 
Ω

  

 

(59) 

 

where 𝑢 is the image to be reconstructed, 𝑓 is the measured projection data, ‖𝑢‖𝑇𝑉 is the 

TV-semi norm as mentioned in (52). Further approximation of (59) using Taylor 
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expansion gives the weighted quadratic data fidelity for the Poisson noise as,  

 min
𝑥

𝜆‖𝑢‖𝑇𝑉 +
1

2
 ∫

(𝑢 − 𝑓)2

𝑓Ω

 

 

(60) 

 

The numerical solution of (60) is given in [93] as,  

 min
𝑥

𝜆‖𝑢‖𝑇𝑉 +
1

2
 ∫

(𝑢 − 𝑓)2

𝑤Ω

 

 

(61) 

 

where w provides the weighted modification of the data fidelity term. A variety of 

algorithms is used to solve an optimization problem, including projected gradient method 

[63], homotopy methods [67], dual formulation [52], first order primal-dual methods 

[66], second order cone programming [68], Bregman distance method [69], accelerated 

first-order methods developed by Nesterov’s algorithm [64], etc. In this work, 

Chambolle’s non-linear semi-implicit gradient descent method [52] is utilized to solve 

the TV minimization problem, considering an isotropic discretization of the total 

variation. The advantage of using Chambolle’s projection method is that it solves the 

nonsmooth TV-functional and provides the exact solution with proof of convergence [54] 

instead of solving the approximation similar to (53). However, Chambolle proposed the 

optimization algorithm based on standard noise model, considering the image is 

corrupted by Gaussian white noise. Chambolle’s method for the Poisson statistics is 

reformulated in [93] as, 
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where ,      

𝑢 = 𝑓 − 𝜆𝑤𝑑𝑖𝑣𝑔̃ 

𝑔̃ = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝜆𝑤𝑑𝑖𝑣𝑔 − 𝑓)2 

(62) 

 

and,           𝑔𝑛+1 =
𝑔𝑛 + 𝜏∇(𝜆𝑤𝑑𝑖𝑣𝑔𝑛 − 𝑓)

1 + 𝜏|∇(𝜆𝑤𝑑𝑖𝑣𝑔𝑛 − 𝑓)|
,         0 < 𝜏 <

1

4𝜆𝑤
 

 

(63) 

 

(62) shows that, the primal variable, 𝑓 of the image data is explicitly expressed with a 

dual variable 𝑔̃  and the dual variable is iteratively computed using (63) to obtain the 

primal variable.  

4.2.2. Proposed Algorithm. The optimization problem in (61) is solved using 

(62) and (63). The overall process is implemented in a two-step process by combining 

SART reconstruction into the TV minimization problem. The initial guess for the SART 

step is assumed to be zero for all pixels. The SART updates the estimated image using 

(31) by forward projecting the initial image into the sinogram space. Then the difference 

between the estimated sinogram and the given sinogram is backprojected into the image 

domain to update the estimated image. This difference is then subtracted from the initial 

image to obtain a corrected image. A relaxation parameter, β is multiplied with the 

estimated image at each iteration to suppress the over enhancement of noise and artifacts. 

In this experiment, a constant β value of 1.5 is chosen. The iterations proceed until a 

certain stopping criterion is met. A positivity constraint is imposed on the SART step to 

enforce data consistency and positivity because the negative values do not have any 

physical significance [75]. The TV step utilizes the result obtained from the SART step 

as the initial guess for the TV step. The SART step and the TV step runs iteratively in an 
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alternating manner. The SART is used instead of ART to speed up the convergence. The 

overall process can be realized as a nested two-step process, 

 

 SART step:  

 TV step:  

                      𝑢𝑗 = 𝑢𝑗−1 − 𝛽
𝐴𝑖 𝑢𝑗−1−𝑓𝑖

𝐴𝑖(𝐴𝑖)𝑇 (𝐴𝑖)
𝑇 

𝑢𝑘+1 = 𝑢𝑆𝐴𝑅𝑇 − 𝜆𝑤𝑑𝑖𝑣𝑔̃ 

 

(64) 

 

 

The first order optimality condition guarantees the equivalence of the minimization step 

with the TV step [94]. The overall reconstruction algorithm can be realized by solving the 

following variational problem as: 

 

𝑢𝑘+1 = min
𝜇

{
1

2
∫

(𝑢 − 𝑢𝑆𝐴𝑅𝑇)2

𝑢𝑘
+ 𝜆‖𝑢‖𝑇𝑉

Ω

} 
 

(65) 

 

 

(65) is equivalent to the Rudin-Osher-Fatemi (ROF) model [51] but with a weight of 

1/𝑢𝑘 in the data fidelity term. The weight depends on the reconstructed image and serves 

as a local regularization parameter [53]. The second guess of the SART step is the result 

obtained from the previous TV update. The implementation steps are shown in Table 4.2.  

4.2.3. Regularization Parameter Selection. The selection of regularization 

parameter, 𝜆 is very important to obtain a satisfactory reconstruction from the 

optimization algorithm. A large parameter cannot provide good convergence while a 

small parameter will increase the computational time. As mentioned in subsection 3.3.2 

that, there are several methods to select regularization parameter. In the proposed 
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method, 𝜆 is chosen according to discrepancy principle (DP) because it is an effective 

regularization parameter selection method for Poisson statistics [62] compared with the 

GCV and UPRE. It provides sensible values of 𝜆 for the Poisson corrupted data [95]. 

Discrepancy principle states that the reconstruction should have a mean squared 

difference from the noisy data that is equal to the variance of the noise. The value of 𝜆 is 

chosen from the initial guess and it changes in every iteration according to DP. The 

SART step stops when the difference between the RMSE value of the currently estimated 

image and estimated image of the previous step has a small difference in the order of 10
-

5
. The TV step stops when the difference between the TV value of the current estimate 

and the TV value of the previous estimate has a small difference in the order of 10
-5

.  

 

4.3. RESULTS 

The performance of the proposed method is evaluated from simulations by 

obtaining reconstructions from different number of projections with uniformly spaced 

view angles extracted from 180 views to reveal how the degree of sampling influences 

the reconstruction. The simulation studies are conducted using 45, 60, and 75 projections 

and reconstructions are generated using the proposed technique. The qualitative and 

quantitative studies are conducted to assess the effectiveness of the proposed algorithm. 

Then the algorithm is applied to reconstruct the spent fuel assembly. The fuel assembly is 

reconstructed using 75 projections. The reconstructions are compared with the classical 

BP, FBP and SART method. 
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Table 4.2. Implementation of SART-TV reconstruction 

 

Proposed Algorithm  

Input: 𝜏, 𝛽 ; Initialization:  𝑢0 = 0 

while (stopping criteria not satisfied)  

     //SART step  

      while  |𝑅𝑀𝑆𝐸𝑗 − 𝑅𝑀𝑆𝐸𝑗−1| <  10−5 

            𝑢𝑗 =  𝑆𝐴𝑅𝑇 (𝑢𝑗−1) 

      end     𝑢𝑆𝐴𝑅𝑇 = 𝑢𝑗  

      //positivity constraint 

          if                

                 𝑢𝑆𝐴𝑅𝑇 < 0  

                 𝑢𝑆𝐴𝑅𝑇 = 0 

          end 

      // TV step  

       while |𝑇𝑉𝑘 − 𝑇𝑉𝑘−1| <  10−5 

            𝑔𝑘 =
𝑔𝑘−1+𝜏∇(𝜆𝑤𝑑𝑖𝑣𝑔𝑘−1−𝑢𝑆𝐴𝑅𝑇)

1+𝜏|∇(𝜆𝑤𝑑𝑖𝑣𝑔𝑘−1−𝑢𝑆𝐴𝑅𝑇)|
 

       end     𝑢𝑘 = 𝑢𝑆𝐴𝑅𝑇 − 𝜆𝑤𝑑𝑖𝑣𝑔̃ 

        𝑢𝑗−1 = 𝑢𝑘          

end 

 

4.3.1. Simulation Study. The phantom study provides a theoretical understanding 

of how well the proposed method performs with few projections. The performance of the 
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proposed algorithm is evaluated on a piecewise constant fuel assembly phantom that 

contains 512 × 512 pixels (see Figure 4.3a). The fuel assembly phantom is simulated 

based on the geometry of a nuclear fuel assembly. Simulations were first conducted under 

ideal condition, which means that the sinogram was generated without any presence of 

noise. Then, the projection data were modeled as a compound Poisson process assuming 

the particles per pixel is 5 × 10
6
.   

4.3.1.1 Noise-free case. The gradient magnitude image (GMI) of the fuel 

assembly phantom (see Figure 4.3b) contains 14,818 pixels, which is about 7.17% of the 

206,637 non-zero pixels of the original phantom of 512×512 size. According to the CS 

exact reconstruction principle (ERP), the optimization technique will provide a unique 

solution if the number of Fourier samples is greater than or twice the number of the non- 

zero pixels in the GMI. Therefore, the minimum of 2×14,818= 29,636 projection data 

points are needed to achieve an exact reconstruction. If the projection data points are less 

 

 

 

 

Figure 4.3. Illustration of (a) the simulated phantom of a nuclear fuel assembly, (b) 

the GMI of the phantom which has greater sparsity than the original phantom, and (c) 

the reference truth image reconstructed using 180 projections with an angular 

increment of 1°. 
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than 29,636 then the system will be underdetermined. For example, with 45 projections, 

the total number of projection data points is 512×45= 23,040 which is less than the 

required minimum number of non-zero data points (i.e. 29,636) needed for 

reconstruction; therefore, exact reconstruction cannot be achieved according to the ERP 

principle. If we consider 60 projections, the total number of data points is 30,720, which 

is greater than the minimum data points required. Thus, the fuel assembly phantom can 

be reconstructed exactly if more than 60 projections are available.  

To demonstrate the performance of the proposed method, the phantom was 

uniformly sampled with 45, 60, and 75 views over 180° range assuming the detector has 

512 bins The proposed method is compared to the results obtained from conventional 

FBP and SART algorithm with equal sampling rate. A reference image is reconstructed 

using 180 projections (see Figure 4.3c) with an equal spacing of 1°. The qualitative 

comparison among the reconstructions of the fuel assembly phantom without noise is 

shown in Figure 4.4. From the visual comparison, it is observed that the FBP method 

generates severe streaking artifacts in the reconstructed image. The detail structures of 

the assembly are barely identifiable due to the appearance of these artifacts. SART 

improves the result, eliminating these artifacts to a certain extent but there are still 

artifacts present in the reconstructed image. Increasing the number of iteration can reduce 

some artifacts, but after a certain number of iterations, the reconstruction becomes blurry 

and generates blocky artifacts. The proposed TV based method effectively suppresses the 

artifacts and improves the quality of reconstruction compared to the FBP and SART as 

shown in Figure 4.4.  
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A vertical line profile is drawn across the 256
th

 column of each reconstructed 

images and compared with the line profile of the original phantom as shown Figure 4.5. 

The profiles demonstrate that the proposed TV based method closely matches with the 

line profile of the original phantom. Compared with the line profile of the reference 

 

Figure 4.4.  Reconstruction of noise-free phantom using the FBP (first row), SART 

(second row), and TV based CS algorithms (third row) at three different view angle 

sampling rates: 45 (first column), 60 (second column) and 75 (third column). 

 

 



 

 

62 

image and the line profile obtained from the proposed method, it is observed that the 

reconstruction from proposed method using 60 projections even provides more accurate 

line profile than that of the reference image reconstructed with 180 projections. This is 

because the reference image contains streaking artifacts even if it is reconstructed using 

180 projections.  

In order to quantify the reconstruction accuracy of reconstruction and to evaluate 

the structural similarity between the reference image and the reconstructed image, the 

RMSE and SSIM values are calculated using (54) and (56) respectively for each of the 

reconstructions. The reconstruction from 180 projections is used as the reference image 

for the calculation. The SI values are also calculated using (55) to quantify the streaking 

artifacts present in the reconstruction. The original phantom is used as the reference 

image for calculating the SI because the reference reconstruction from 180 projections 

also contains streaking artifacts. The numerical values are given in Table 4.3 and a 

comparison among the values is presented in Figure 4.6 to evaluate the performance of 

the proposed algorithm. From visual inspection as shown in Figure 4.4 it can be decided 

that the streaking artifacts are insignificant for the normalized SI values lower than 0.6. 

From the qualitative comparison in Figure 4.4, the line profiles in Figure 4.5, and the plot 

of the quantitative values in Figure 4.6, it can be concluded that the proposed method can 

achieve improved results with quality reconstruction while more than 60 views are 

available.  
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Figure 4.5.  Line profile comparison of the noise-free  phantom corresponding to the 

images in Figure 4.3 and Figure 4.4 along a line in the midplane of the fuel assembly 

phantom. 
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Table 4.3. Quantitative values of the reconstructions from noiseless projections 

 

Views Methods RMSE SI SSIM 

45 FBP 0.2203 3.1056 0.4739 

 SART 0.1677 2.8704 0.7465 

 Proposed Method 0.1663 2.4847 0.8064 

60 FBP 0.1996 2.9381 0.5202 

 SART 0.1659 1.9725 0.7526 

 Proposed Method 0.1620 1.5887 0.8012 

75 FBP 0.1809 2.6142 0.5855 

 SART 0.1598 1.9604 0.7617 

 Proposed Method 0.1574 1.5079 0.8070 

 

 

4.3.1.2 Noisy-case. The principle of CS recovery is based on the assumptions that 

the signals are piecewise constant and noiseless. Thus, for the noisy measurements, exact 

recovery is not possible with the same number projections as the noiseless case. 

Experiments are conducted with Poisson noise added to the projections to validate the 

robustness of the proposed method. The images are reconstructed using the same number 

of projections and evaluated qualitatively and quantitatively similar to the noiseless case. 

The qualities of the reconstructed images are degraded due to the presence of noise as 

shown in Figure 4.7. The numerical values of the RMSE, SI, and SSIM values are given 

in Table 4.4. 
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Figure 4.6.  Plot of the quantitative values of the noise-free phantom with number of view 

angle and different algorithms.  
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Figure 4.7.  Reconstruction of noisy phantom using the FBP (first row), SART (second 

row), and TV based CS algorithms (third row) at three different view angles: 45 (first 

column), 60 (second column) and 75 (third column). 

 

 

 

It is evident that, due to the presence of noise, the reconstruction accuracies are reduced, 

the streaking artifacts are increased, and the structural similarities are decreased. 

However, the proposed method provides better reconstruction than the FBP and the 

SART algorithm and the reconstruction quality and accuracy improves with the 
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increasing the number of projections. The line profiles in Figure 4.8 also validate that the 

line profile obtained from the proposed method is closer to the line profile of the original 

phantom. 

 

 

Table 4.4. Quantitative values of the reconstructions from noisy projections 

 

Views Methods RMSE SI SSIM 

45 FBP 0.2217 3.1654 0.4674 

 SART 0.1682 2.9415 0.7413 

 Proposed Method 0.1676 2.5520 0.7981 

60 FBP 0.2009 2.9922 0.5133 

 SART 0.1715 2.0498 0.7464 

 Proposed Method 0.1627 1.6143 0.7983 

75 FBP 0.1819 2.6607 0.5790 

 SART 0.1624 2.0408 0.7549 

 Proposed Method 0.1605 1.6268 0.7981 

 

 

4.3.2. Experimental Study. The proposed algorithm is validated through the 

reconstruction of the spent fuel assembly. The first, second, third, and fourth rows in 

Figure 4.9 shows the images reconstructed at four different axial location of the fuel 
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Figure 4.8.  Line profile comparison corresponding to the images in  

Figure 4.3 and Figure 4.7 along a line in the midplane of the fuel assembly phantom 

at three different view angles: 45 (first row), 60 (second row) and 75 (third row). 
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assembly respectively. The reconstructions using FBP, SART, and proposed algorithm 

are shown in the first, second, and third column respectively. From the reconstructions, it 

is observed that severe artifacts exist in the FBP due to the limitation of the number of 

projections. SART provides better reconstruction compared to FBP, but the streak 

artifacts are still present. The proposed algorithm outperforms both methods yielding 

superior image quality in terms of artifact reduction and maintaining detail structures. It 

preserves most structural information without overshooting noise or any physical 

deformation. Since there is no reference image available, the reconstruction accuracy 

cannot be compared with the reference reconstruction.  

To better understand the convergence speed of the proposed algorithms the 

regularization parameter λ, RMSE, and the SI values are plotted against the number of 

iterations. The regularization parameter is chosen automatically in each iteration 

according to the DP. The plots in Figure 4.12 show that the λ value decreases drastically 

within 4 iterations. The RMSE and the SI values also decrease dramatically that indicates 

the high convergence of the proposed algorithm. From the plots it is obvious that after 

about 50 iterations the convergence rate is almost stable, therefore 50 iterations are 

sufficient for this experiment.  

The reconstruction of the spent fuel assembly was performed from all axial 

positions using the proposed algorithm. A 3-dimensional representation of several series 

of slices is shown in Figure 4.11. The AVIZO software is used to generate the 3D 

representation.  
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Figure 4.9.  Plot of the quantitative values of the noisy phantom with number of view 

angle and different algorithms. 
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Figure 4.10.  Reconstruction of the spent fuel assembly from 75 projections at four axial 

locations.  
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Figure 4.11.  The three-dimensional reconstruction of the spent fuel assembly from two 

views.  

 

 

4.4. DISCUSSION  

CS inspired CT has been widely reviewed for the reconstruction of X-ray 

projection data on noisy and/or sparse-view measurements. In most cases, the underlying 

mathematics was formed based on additive white Gaussian noise. We implemented CS-

based CT reconstruction method for neutron projection images assuming the projection 

images are contaminated by Poisson noise. The simulation and the experiments both 

indicate the usefulness of the TV based algorithm using few projection images in terms of 

reducing streaking artifacts and preserving fine structures. To the best our knowledge, no 

TV based method utilizing the ERP has been proposed for the tomographic 

reconstruction from the Poisson corrupted neutron projection images. We propose to use 

the Chambolle’s dual approach for Poisson noise instead of using gradient descent 

proposed by Sidky et al [75] because it guarantees the convergence and solves the 
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Figure 4.12.  Plot of regularization parameter, RMSE, and SI for the experimental 

data. 
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minimization problem as a unconstrained minimization reconstruction to exactly solve it 

instead of approximation. 

The simulation and experimental studies demonstrate that the proposed method 

provides better results than the classical reconstruction methods, resulting better image 

quality. The simulation study is evaluated with quantitative analysis to illustrate its 

accuracy and then applied to the neutron projection images for reconstruction. In both 

simulation and experimental study, the reconstructions display improved image quality.   

Although TV methods proved to be superior in terms of reconstructing high-

quality images, the major disadvantage of this method is that, the regularization of TV 

functional penalizes the image gradient irrespective to the information of the underlying 

structures, hence the loss of low contrast information (i.e. fine details) due to over-

smoothing [83]. The number of iteration in the minimization is very important to generate 

a good quality reconstruction without over-smoothing.  

The proposed method takes longer time than the conventional method, but the 

main purpose of this study is to achieve better reconstruction using few projections. The 

run time analysis was beyond the scope of this work. We implemented our proposed 

method in MATLAB R2013b. The computational time was longer than usual, but this 

can be handled by writing the code in visual C++ and using graphics processing unit 

(GPU). 
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5. RECONSTRUCTION OF AFIP-7 MOCKUP ASSEMBLY 

5.1. INTRODUCTION  

As mentioned earlier, the neutron tomography setup at the INL uses an indirect 

foil-film transfer technique for the irradiated object imaging. Therefore, it requires longer 

acquisition time, which prohibits acquiring a large number of projection images over 

360˚ or 180˚. The AFIP-7 experiment seeks accurate reconstruction from very few 

projections to assess geometric stability of the U-Mo monolithic fuel assembly. The 

research presented here offers reconstruction strategies for the PIE of the AFIP-7 fuel 

assembly, based upon the recent established mathematical theory, compressed sensing 

(CS) that provides accurate reconstruction from highly undersampled data.  

Image reconstructions from sparse projections are broadly discussed in Chapter 4. 

CS-based reconstruction algorithm was developed for reconstructing the spent fuel 

assembly with sparse projections. In this chapter, CS-based approach is used to 

reconstruct the AFIP-7 fuel assembly for both sparse and limited angle scan modalities. 

The reconstructions are obtained from a simulation and a mockup study to determine 

which procedure will provide superior reconstruction for the future AFIP-7 experiment. 

The use of limited angle CT or tomosynthesis is common in many applications 

(e.g. dental CT [96], breast tomosynthesis [97] or straight line trajectory [98].) due to the 

large object size and restricted scanning In tomosynthesis, the projection images are 

acquired over a limited angular range instead of covering full 180˚ range (see Figure 1.5) 

and reconstructions are obtained using reconstruction algorithms. However, image 

quality from limited angle reconstruction for a specific number of views is different 

compared with the reconstruction from sparse-views because the spatial resolution in the 
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limited angle reconstructed image is highly anisotropic [4]. Decreasing the angular range 

of acquisition improves the resolution of the in-plane objects, but the spatial resolution of 

the out-of-plane structures decreases significantly [99]. From  

Figure 5.1, it can be seen that the limited angular scan cannot cover the out-of-

plane object from all three views, thus the out-of-plane structure cannot the reconstructed 

accurately. The extent of the angular range is also an important factor for the limited 

angle reconstruction. Wider angular range coves more voxel inside the object compared 

with the narrow angular range (see Figure 5.2). With the narrower angular range, the 

reconstruction will provide high-quality image near to the center of rotation but the 

length of the in-plane range will be reduced.   

 

 

 

 

Figure 5.1. Illustration of the limited angle CT. It shows that the out-of-plane structure 

loses resolution. 
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Figure 5.2.  Backprojected rays shows that the wide angle covers more voxels than the 

narrow angle. The narrow angle reduces the length of the in-plane range.  

 

 

Existing reconstruction algorithms for tomosynthesis are coarsely divided into 

four categories: simple backprojection, transfer algorithm such as filtered backprojection, 

algebraic reconstruction and the statistical image reconstruction method. In early 

tomosynthesis, the reconstruction process involved simply shifting and adding (SAA) the 

projections that was taken over the limited angular range. A certain plane inside the 

object of interest is focused and reconstructed while the out of focal planes were blurred. 

This method is also termed as simple backprojection. However, simple or filtered 

backprojection (FBP) algorithms generate out-of-plane artifacts during reconstruction, 

creating blurred versions of the in-plane objects. Several reconstruction methods are 

proposed to suppress or reduce the amplitude of out-of-plane artifacts [100-102].  

However, CS-based methods are extensively studied for sparse-view CT 

reconstruction[3, 37, 45, 46, 48, 56-58, 80, 82]. Recently, CS- based reconstruction 

efforts have been made for the limited angle reconstruction. [96] [103]. In this work, 

several algorithms are selected and applied to the sparse-view and limited angle 

Voxels 
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representative data to investigate which method will provide accurate and artifact free 

reconstruction for the AFIP-7 experiment. The selected algorithms in this study include 

SAA or the simple backprojection (BP), FBP, and SART algorithm. A novel CS-based 

reconstruction algorithm is also proposed.   

 

 

5.2. MATERIALS AND METHODS 

As mentioned earlier, experiments using irradiated nuclear fuel have limited 

access and very expensive to conduct, therefore, it is impractical to perform any 

experiments without conducting simulations. A computer generated AFIP-7 fuel 

assembly phantom with actual geometries is generated and a mockup of the AFIP-7 fuel 

assembly made of aluminum is also fabricated at the INL and projection images are taken 

using X-rays. This study will justify the effectiveness of the sparse-view and limited 

angle CT to measure channel gaps accurately, providing accurate reconstruction. This 

study will also determine the optimal imaging parameters (i.e. the number of projections, 

angular range, and angular increment) for the actual AFIP-7 neutron tomography 

experiment. However, in order to find the accurate measurements using few number of 

projection images, reconstruction algorithms needs to be developed that will provide 

accurate reconstruction using few views.  

The BP, FBP, and SART methods are already described in chapter 3. The 

proposed CS method will be described here. In the context of tomosynthesis, an 

anisotropic TV based image reconstruction algorithm is proposed. We solve the sparse-

view problem using isotropic TV minimization as describe in Chapter 4. We implement 
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anisotropic TV minimization algorithm for the limited angle reconstruction problem. The 

anisotropic TV minimization algorithm solves the following optimization problem, 

𝜇𝑘+1
∗ = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝜇
{
1

2
∫

(𝜇∗ − 𝜇
𝑘+1

2

∗ )2

𝜇𝑘
∗ + 𝜆‖𝜇∗‖𝐴𝑇𝑉

Ω

+ ‖𝜇∗‖𝑈𝑆𝑀} 

 

(66) 

 

The motivation of using anisotropic TV is that it gives the privilege to reconstruct 

images in a particular edge direction [104]. As shown in Figure 2.5, in case of limited 

angle problem, there are limited sampling points in the Fourier space along v-axis. 

Therefore, the projections cannot record any edge information in that direction. Thus, the 

energy vacancy in that direction would be filled by artifacts. The reconstructed image 

contain different resolution along each axis, thus weighing the TV term can produce 

better reconstruction compared to isotropic reconstruction [87]. Using ATV, the TV term 

will be weighted and the artifacts and blurring would be suppressed by assigning more 

energy in the horizontal axis compared to the vertical axis.  

Iterative reconstruction using TV minimization can significantly reduce noise and 

streak artifacts in CT images compared to the classical reconstruction algorithms, 

however, TV minimization process is prone to over-smoothing sharp anatomical 

structures. Therefore, we incorporate a sharpening tool with the TV minimization process 

to retain sharp boundaries. The sharpening process is performed to the TV minimized 

image using unsharp masking. The unsharp masking process simultaneously enhance 

contrast and sharpness as well as reduces halo effect that is generated by means of edge-

preserving TV minimization [105].   
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Table 5.1. Implementation steps of the proposed method 

 

Proposed Algorithm  

Input: 𝛽 ; Initialization:  𝑢0 = 0 

     //SART step  

      while  |𝑅𝑀𝑆𝐸𝑗 − 𝑅𝑀𝑆𝐸𝑗−1| <  10−5 

            𝑢𝑗 =  𝑆𝐴𝑅𝑇 (𝑢𝑗−1) 

      end     𝑢𝑆𝐴𝑅𝑇 = 𝑢𝑗  

      //positivity constraint 

          if                

                 𝑢𝑆𝐴𝑅𝑇 < 0  

                 𝑢𝑆𝐴𝑅𝑇 = 0 

          end 

      // ATV minimization   

     𝑣0 = 𝑢𝑆𝐴𝑅𝑇, 𝑏0 = 𝑑0 = 0, 𝜆 > 0, 𝜇 > 0, 𝜀, 𝑡𝑜𝑙 

       while 𝜀 > 𝑡𝑜𝑙 

            𝑣𝑘+1 = (𝐶𝐺)𝑘  

            𝑑𝑘+1 = shrink(∇𝑣𝑘+1 + 𝑏𝑘, 𝜇/𝜆) 

            𝑏𝑘+1 = shrink(∇𝑣𝑘+1 − 𝑑𝑘+1, 𝜇/𝜆) 

       end      

        𝑢𝑂𝑝𝑡 = 𝑣𝑘+1          

        𝑢𝑂𝑢𝑡 = 𝑈𝑆𝑀(𝑢𝑂𝑝𝑡) 
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5.3. RESULTS  

This section presents the numerical results from simulated and the experimented 

data to validate and evaluate the reconstruction algorithms. The study includes the 

influence of different angular ranges and angular spacing in both sparse-view CT and 

tomosynthesis. The quantitative analysis of the reconstruction methods is assessed to 

evaluate the reconstruction methods.  

5.3.1. Simulation Study. The phantom study was assumed to be parallel beam 

geometry since neutron imaging also assumes parallel beam configuration. The simulated 

phantom consists of AFIP-7 fuel foil sandwiched in aluminum clad as seen in Figure 5.3. 

Since aluminum is almost transparent to neutron, it cannot produce visible contrast while 

projection images are taken. Therefore, the projection images of AFIP-7 fuel assembly 

will contain the information about the fuel foil only. Figure 5.4 shows three projection 

images of the fuel assembly from three different angular positions.  

From visual inspection, it is prominent that the proposed CS based ATV 

minimization method provides significant image quality compared to the classical 

reconstruction methods in both sparse-view and limited angle reconstruction. The edges 

are sharpened and the results are very close to the original phantom in contrast to the 

other methods as well as the streak artifacts is significantly reduced. The most 

determinative factor of the limited angle problem is the angular range. In this experiment, 

±18°, ±22°, ±30°, ±45°, and ±90° angular ranges are taken with an increment of 1° 

considering 0° position parallel to the plates as shown in Figure 5.3. The ±90° angular 

range also refers as the conventional CT acquisition process. Since many factors affect 

the image reconstruction in real experiment, such as beam-hardening, scattering, focal-
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spot size, etc., Poisson noise is added to simulate realistic measurement and evaluate the 

stability of the proposed algorithm. For the sparse view problem, we consider the same 

number of projection images as limited angular case considering 1°, 2°, 3°, 4°, and 5° 

increment covering 180° angular range. 

 

 

 

 

 

 

Figure 5.3.  Diagram showing the projection acquisition direction for AFIP-7 

fuel assembly.  

 

 

 

 

 

Figure 5.4.  Example of projection images simulated at three different angular 

positions. 
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The reconstruction of the phantom using different reconstruction methods for both 

limited angle and sparse-view case are shown in Figure 5.6 and Figure 5.7 respectively. 

In each figure, results on first, second, third, and fourth row are reconstructed by BP, 

FBP, SART, and proposed method accordingly. To make the results visually comparable, 

each column shows the reconstruction of different angular views. Comparing the 

reconstructed image quality visually and by quantitative analysis, it can be seen that, the 

reconstruction using limited angle provides better reconstruction with geometric stability 

and less artifacts.    

5.3.2. Experimental Study.  The experimental mockup study uses cone beam 

geometry and the projection images were obtained at the INL imaging facility using a 

Varian PaxScan CP2-Lite X-ray imager with detector resolution of .127mm×.127mm in 

size. The source to detector distance was set as 466.725mm and source to object distance 

was 225.425mm. The projection images obtained had 1536×1920 pixels in size. 1441 

projection images were obtained covering 360˚ with an angular increment of 0.25˚. The 

raw images are normalized using a simple mathematical process to clean up the data due 

to imperfection of the incident beam. The normalization is performed using an open beam  

image and a dark image. In order to match the intensity of the open beam with the raw 

projection image, several regions of interest are chosen from the background regions and 

average intensities are calculated from both open beam data and the raw data. The 

average of the ratio of the intensities provides the correction factor to apply to the 

projection images. The dark image was also acquired while the beam is turned off. It 

corrects the electronic noise. The mathematical formula for normalization is, 
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𝑁𝐷 =  
𝑅𝑎𝑤 𝑑𝑎𝑡𝑎 − 𝐷𝑎𝑟𝑘 𝑖𝑚𝑎𝑔𝑒

𝑂𝑝𝑒𝑛 𝑏𝑒𝑎𝑚 − 𝐷𝑎𝑟𝑘 𝑖𝑚𝑎𝑔𝑒
 

(67) 

 

 

The raw projection images were also pre-processed using alpha trimmed mean filter 

[106] to correct defective pixels. The data are reduced by equally skipping the full data 

set. The angular range and angular increment of the projection images are same as chosen 

for phantom study and the acquisition geometry is also similar to Figure 5.3. 

 For the limited angle case (see Figure 5.8), the reconstruction using BP, FBP, and 

SART shows sequential improvement compared to each other. Among them, the FBP 

reconstruction shows high spatial frequency noise over the entire area due to limited 

sampling rate. Reconstruction using BP enhances low frequency information, thus 

produces blurred reconstruction. The SART reconstruction improves the reconstruction 

by reducing the streak artifacts and noise, but the residual artifacts can still be seen. 

Besides, SART suffers from edge blurring artifacts and low contrast features are lost. The 

reconstruction from the proposed method produces better reconstruction than the BP, 

FBP and SART reconstruction. Streak artifacts are less visible than the other methods and 

the edges are much cleaner and sharper. The reconstruction accuracy is further justified 

with the quantitative analysis of the reconstruction methods. The quantitative evaluation 

parameters include the RMSE, SI, and SSIM as described in Section 3.4. The results 

indicate that the proposed method can achieve the highest reconstruction accuracy 

compared to the classical methods. The low SI value indicates that the proposed method 

can significantly suppress the streaking artifacts and noise which leads to an image of 

acceptable quality in the limited angular case.  
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Figure 5.5.  The top left image shows the AFIP-7 fuel assembly mockup, the top right 

image shows the setup of the image acquisition process, the middle and bottom left 

images are two raw projection images at two different angular views, the middle and 

bottom right images are the pre-processed images. 
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 Compared to the sparse-view reconstruction (see  Figure 5.10) of the fuel mockup 

assembly, the limited angle reconstruction provides better image quality, even with the 

isotropic/anisotropic TV minimization method. This is because the increasing angular 

spacing among the projection images creates strong artifacts due to the nature of the fuel 

assembly. The fuel assembly doesn’t have a closed circular boundary, hence, the limited 

angle reconstruction can provide better reconstruction compared to the sparse-view 

reconstruction since it has the minimum angular spacing of 1°. For example, the spent 

fuel assembly in chapter 4 has closed circular boundary, thus reconstructing using limited 

angle will be very challenging for them. The resulting sparse-view reconstruction 

provides over-smoothing of the artifacts and the reconstructed image contains some 

blocky effects, especially when the number of projections images is less than 60. The 

reconstructed results from BP, FBP, SART, and the proposed method for both limited 

angle and sparse-view case are shown in Figure 5.8 and Figure 5.10 respectively to 

compare the reconstructed methods. The BP and FBP suffer from serious streak artifacts 

due to the limitation of the number of projections even with more projection views. 

SART improves the reconstructed result but still contains artifacts. The proposed method 

reduces the artifacts significantly specially with 45 or more projection images. Although 

the artifacts are reduced in the reconstructed image but due to the lack of sufficient 

projection images, the artifacts cause geometric instability, produces blocky artifacts and 

detail features become blurred.  
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Figure 5.6.  Limited angle reconstruction of the AFIP-7 fuel assembly phantom with 

180,  90, 45, 36, and 25 projections with uniform sampling of 1° increment using (a) 

BP, (b) FBP, (c) SART, and (d) proposed method.  
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Figure 5.7.  Sparse-view reconstruction of the AFIP-7 fuel assembly phantom 

with181,  91, 61, 45, and 37 projections with uniform sampling of 180° angular range 

using (a) BP, (b) FBP, (c) SART, and (d) proposed method. 
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Figure 5.8.  Limited angle reconstruction of the AFIP-7 fuel assembly mockup 

with181,  91, 61, 45, 37, and 25 projections with uniform sampling of 1° increment 

using (a) BP, (b) FBP, (c) SART, and (d) proposed method.  
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Figure 5.9.  Quantitative evaluation of the limited angle reconstruction of AFIP-7 fuel 

assembly mockup. 
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Figure 5.10.  Sparse-view reconstruction of the AFIP-7 fuel assembly mockup 

with180,  90, 60, 45, 36, and 25 projections with uniform sampling of 180° angular 

range using (a) BP, (b) FBP, (c) SART, and (d) proposed method.  
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Figure 5.11.  Quantitative evaluation of the sparse-view reconstruction of AFIP-7 fuel 

assembly mockup. 
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5.4. DISCUSSION  

The reconstruction results of both sparse-view and limited angle reconstruction 

suggest that the limited angle geometry is more suitable for the accurate reconstruction of 

the AFIP-7 fuel assembly experiment. Reconstruction results suggest that accurate 

reconstruction can be obtained using limited angle geometry if 36 or more projection can 

be acquired with an angular spacing of 1°. However, as seen from the reconstructed 

images, the limited angle reconstruction cannot provide accurate reconstruction of the 

end fittings in the limited angular case. Since the purpose of the AFIP-7 experiment is to 

find the coolant channel gap accurately; reconstruction of the end fittings is not the main 

purpose of this experiment.  

Limited angle reconstruction can reconstruct the coolant channel gap accurately. 

Sparse-view reconstruction can provide the channel gaps together with the end fittings 

but the overall image quality degrades while the number of projection images fall below 

60. However, several factors should be taken into account for the actual AFIP-7 

experiment, such as the geometric distortion of the AFIP-7 fuel under irradiation can 

change the gross structure of the fuel foil, thus changes the actual shape of the fuel foil 

assembly. Another important factor is the spatial resolution of the film. The experiment 

will use the film based acquisition, therefore the resolution and contrast of the film based 

projection image will be different compared to the X-ray projection images. These factors 

will also affect the reconstruction quality which can be improved by increasing the 

number of projection images.   
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6. SUMMARY AND CONCLUSION 

The research presented here focuses on the capability spent or irradiated nuclear 

fuel assembly inspection using neutron tomography. The scientific goal is to achieve 

quality reconstruction possible from very few neutron projection images. The 

reconstruction assesses geometric integrity of the nuclear fuel assemblies. The purpose 

centers on providing supplemental cost-efficient non-destructive post-irradiation 

examination of the nuclear fuel assemblies and safeguards improvements affiliated with 

nuclear fuel storage and processing.  

Due to potential high costs and difficulties with experiments involving computed 

tomography research using actual neutron projection images, simulations as well as 

previous measurements are utilized to establish confidence before conducting 

experiments. Simulations are useful to evaluate the proposed reconstruction strategies 

because it doesn’t contain any unknown factors. The simulations include detailed 

representation of the physical configurations of the assembly components. Statistical 

distributions added to simulations provide ideas about the real measurements.   

The experimental measurements with the spent fuel assembly serve as a 

benchmark for the safety improvements of nuclear power plants and reprocessing 

facilities. Reconstruction results confirm that neutron computed tomography can be used 

to examine the spent fuel assembly for identifying anomalies, such as any missing 

components or channel blockage due to fuel damage. The ability to identify anomalies in 

the assemblies permits early detection of fuel meltdowns as well as improves 

reprocessing facility operations.   

The need for supplemental methods for the non-destructive PIE of the AFIP-7 
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experiment also drives to inspect the irradiated fuel assemblies using neutron 

tomography. Although experiments are yet to be conducted, the mockup study through 

simulations as well as experimental measurements through X-ray provides a good 

agreement for the future neutron PIE of the AFIP-7 assembly. The reconstruction results 

and analyses show that limited angle tomography is suitable for the AFIP-7 experiment 

compared with the sparse angle tomography. The optimal image acquisition parameters 

(angular range and the angular spacing) for obtaining neutron projection images of the 

AFIP-7 fuel assembly are recommended for best reconstruction and analysis using both 

modalities. However, there are several parameters that could shift the optimal parameters, 

such as the quality of neutron projection images. The amount of blurring and image 

artifact are also important factor for optimal image quality. However, the proposed 

reconstruction strategies improve image quality, reducing the amount of blurring and 

artifacts.    
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