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Energy Approach for Liquefaction of Sandy and Clayey Silts 
Y.L. Cao 
Research Associate, Institute for Research in Construction, 
National Research Council of Canada 

K.T. Law 
Senior Research Officer, Institute for Research in Construction, 
National Research Council of Canada 

SYNOPSIS: The liquefaction potential of sandy and clayey silts is assessed in this paper using an energy approach original developed for sand. Three series of laboratory tests were conducted to examine the liquefaction resistance of clean silt, sandy silt and clayey silt. The test results have been analyzed to establish a liquefaction failure criterion for silty soils. Based on this criterion, the case records of a new database have been studied and the results suggest that a single criterion can be used for sand, silt, sandy silt and clayey silt. For sandy or silty soils without clay content, the criterion is expressed in terms of the earthquake magnitude, hypocentral distance and the corrected standard penetration resistance. For clayey silt, the same criterion and parameters can be used except the standard penetration resistance has to be modified in terms of the clay content. 

INTRODUCTION 

Soil liquefaction is a state of soil particle suspension caused by a 
complete loss of strength when the effective stress drops to zero. 
Hence liqLJefaction normally occurs in soils such as sand in which the 
strength is purely frictional. Indeed, serious study on soil liquefaction 
was started by the devastating damage due to sand liquefaction failure 
during the 1964 Niigata earthquake in Japan and the great Alaskan 
earthquake in the same year in the U.S.A. Since then, a number of 
investigations both in the laboratory and in the field has been con
ducted on liquefaction behaviour of clean sand. 

As the level of urbanization and energy resource exploration have 
increased in recent years, more and more sites featuring granular soils 
other than clean sand have been found to suffer from soil liquefaction 
failure. The 1976 Tangshan earthquake which claimed a quarter of 
million lives provided many examples of soil liquefaction failures in 
silty soils containing different contents of sand and clay (Zhou and 
Gou, 1985). Research on liquefaction potential of this type of deposit 
is inadequate in comparison with that on sand. 

The work reported in this paper is an attempt to combine laboratory 
and case record study to evaluate the liquefaction potential of sandy 
and clayey silt. A newly developed energy approach is used to 
establish a single criterion applicable for sand, silt, sandy silt and 
clayey silt. For sandy or silty soils without clay content, the criterion 
is expressed in terms of the earthquake magnitude, hypocentral 
distance and the corrected standard penetration resistance. For 
clayey silt, the same parameters are also used except an equivalent 
corrected standard penetration resistance is employed. 

THE ENERGY METHOD 

The essence of the energy method is to use a criterion in terms of 
energy dissipated in the soil for determining the occurrence of li
quefaction failure. Liquefaction failure is defined as the condition 
when the excess pore pressure is equal to the initial effective confining 
pressure ( a

0
' ). Based on laboratory studies on sand by Law et al 

(1990), the development of excess pore pressure under cyclic loading 
is closely related to the total energy dissipated in the soil. The total 
energy consists of two components: one from hysteretic damping and 
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the other from plastic deformation. The energy dissipated through 
hysteretic damping tor one load cycle can be represented by the area 
of the hysteretic loop of the soil as shown in Figure 1 (a). 
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The energy dissipated through plastic deformation is the energy 
causing permanent deformation in the soil after the loading stops. 
This kind of energy is significant near the failure state of the soil when 
plastic deformation develops rapidly. The total dissipation energy is 
the sum of two kinds of energy as shown in Fig. 1 (b). The relationship 
between the excess pore pressure ( ll u) and the energy dissipated 
in the soil is given by: 

~= awJ 
(J ' 0 

(1) 

where a and 13 are coefficients to be determined from the test results 
and WNiS the dimensionless energy term obtained by normalizing the 
dissipated energy per unit soil volume by the initial effective confining 
pressure, ratio of vertical to horizontal consolidation pressures, and 
relative density. 

Liquefaction failure will occur when 

tJ.u J -,=a W 2: 1.0 
cro 

(2) 

For an actual site, the energy dissipated in the soil is proportional to 
the seismic energy arriving at the site and characteristics of the soil. 
The seismic energy arriving at a site depends on the magnitude of the 
earthquake M, the hypocentral central distance R, and the energy 
attenuation of bedrock material characterized by the attenuation 
coefficient 8. Taking these factors into consideration, Law et al (1990) 
proposed the following criterion for liquefaction failure: 

T( M, R) > 1 O 
llt ( N1 ) - . (3) 

where 

llt < N1 ) =the liquefaction resistance function that characterizes the 
soil in terms of the corrected standard penetration resis
tance ( N1) 

T (M, R) =seismic energy function given by: 

101.5 M 
T( M, R) = --,:jl1 (4) 

As of this date, there is no direct measurement of the coefficient B. 
An assumption was made by Law et al (1990) that the energy 
attenuation is proportional to earthquake intensity attenuation for 
which some information is available. Thus a value of 8 = 4.3 has been 
taken, based on the work of Hasegawa et al (1981) for the American 
west coast, China and Japan, where highly fractured rock exists. 

There are a number of coefficients in T and in llt· They have been 

evaluated by means of a regression analysis of a database with 103 
sand sites and 31 silty soil sites in North America, South America, 
China and Japan. The resulting criterion for liquefaction failure in 
sand is given by: 

101.5 M 

2.28 N111.S X 10 10 f?1.3 2: 1.0 (5) 

A NEW DATABASE 

A new database was developed for the present study by adding 
information gathered by Liao and Whitman (1986). The new database 
now contains 354 different cases of which 244 are known to involve 
sandy soils (Table 1 ). All these sandy sites were analyzed on the 
basis of Expression (5) and the results are shown in Figure 2. The 
rate of success, i.e. correctly predicting if liquefaction occurred or not, 
is 82.4%. If only the liquefied sites were considered, the success rate 
is 97%. The results therefore suggest that Expression (5) has a larger 
applicability than for the original 103 cases. 
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Table 1. Summary of cases records involving clean sand in the new 
data base 

No. Earthquake Year Mag- No. of No. of 
nitude liquefied non-

M sites liquefied 
sites 

1 Niigata 1802 6.6 0 2 
2 Niigata 1887 6.1 0 2 
3 Mino-Owari 1891 8.4 6 0 
4 Tokyo 1894 7.5 2 2 
5 San Francisco 1906 8.3 5 1 
6 Go no 1909 6.9 0 2 
7 Kanto 1923 7.9 3 3 
8 Santa Barbara 1926 6.3 1 0 
9 Nishi-Saitama 1931 7.0 2 2 
10 EI Centro 1940 7.0 3 0 
11 Tonankai 1944 8.3 2 0 
12 Fukui 1948 7.2 5 1 
13 San Francisco 1955 5.4 0 1 
14 San Francisco 1957 5.3 1 31 
15 Chile 1960 8.4 2 3 
16 Alaska 1964 8.3 2 1 
17 Niigata 1964 7.5 5 6 
18 San Francisco 1965 4.9 0 1 
19 Caracus 1967 6.3 1 0 
20 Tokachi-Oki 1968 7.9 1 4 
21 Saitama 1968 6.1 0 5 
22 Santa Rosa 1969 5.7 0 2 
23 Gediz, Turkey 1970 7.1 0 1 
24 Haicheng, China 1975 7.3 3 2 
25 Guatemala 1976 7.5 1 3 
26 Tangshan, China 1976 7.8 37 28 
27 Argentina 1977 7.4 4 2 
28 Miyagiken-Oki 1978 6.7 1 20 
29 M iy_agiken-Oki 1978 7.4 13 8 
30 Guerrero 1979 7.6 1 1 
31 Montenegro 1979 6.9 1 0 
32 Imperial Valley 1979 6.6 1 3 
33 Westmoreland 1981 5.6 1 3 

Total 104 140 

It is also of interest to note in Figure 2 that liquefaction seldom occurs 
when the value of energy function T (M, R) drops below 500. For this 
low value, either the earthquake magnitude is small or the hypocentral 
distance of the site is large. If cases with T ( M, R) 2: 500 are 
considered, the success rate rises to 86.5%. 

TEST PROGRAM AND RESULTS 

The silt used in this study comes from near Armstrong, northern 
Ontario, Canada. It was obtained by screening out particles exceed
ing 0.075 mm in size. It is a non-plastic fine-grained soil with the grain 
size distribution as shown in Figure (3). This material is called clean 
silt in this paper. In real situations silt exists with different amounts of 
sand and/or clay. In this study, therefore, known amounts of sand or 
clay have been added to different samples for studying the influence 
of different soil contents. The sand used is a uniformly graded fine 
sand with grain size distribution also shown in Figure (3) while the clay 
is a highly plastic clay (P.I. = 40) from New Liskeard, Ontario. 

Tests were conducted by means of a cyclic traixial apparatus. 
Samples were prepared using the moist tamping method in ap-
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Figure 3. Grain Size Distribution of the Silt and Sand 
used in the Tests 

propriate moulds. The saturation process consisted of passing carb
on dioxide, followed by distilled water, through the sample. The initial 
effective confining pressure was applied in an isotropical manner. The 
cyclic loading was applied by an electro-pneumatic system operating 
at 1 Hz. During the undrained cyclic loading stage, readings were 
taken with an IBM PC AT compatible data acquisition system. The 
system uses an integrated circuit board which provides up to 8 
analogue-to-digital channels. The computer was programmed to take 
100 readings per second for each of the channels monitoring the axial 
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loading, excess pore pressure and axial deformation. This large 
number of readings enable the precise calculation of the area of the 
hysteretic loop and other data analysis. Typical time response curves 
of cyclic stress, strain, excess pore pressure and dissipation energy 
are shown in Figure 4. 
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Figure 4. Typical Time Response Curves of Cyclic Stress (t.ad), 
Strain (t.EQ)'. Pore Pressure (t.u), and Dissipation 
Energy (l:W) 

Results of tests on clean silt at the same void ratio of 0.72 and same 
consolidation pressure are shown in Figure 5. Figure 5(a) shows the 
conventional way of expressing liquefaction strength ('tt) in terms of 

stress ratio ( ~ J as a function of the number of cycles to failure. As 
0'0 

usual the higher t e stress ratio, the fewer number of cycles would be 
required to reach liquefaction failure. On the other hand, if the test 
results are expressed in terms of excess pore pressure and the 
dissipation energy, a functional relationship appears to exist as shown 
in Figure 5(b). Similar relationships have also been observed for sand 
(Law et al., 1990) and for clay (Cao and Law, 1990). 

A second series of tests have been conducted on silt samples mixed 
with different amounts of sand. These samples were cohesion less as 
no clay particles were added. They were all prepared at the same 
void ratio of 0.72. Consequently these samples were at different 
relative densities. No attempt was made to determine the relative 
density because such determination is not possible when the sand 
content is low and the silt content is high. The test results are shown 
in Figure 6. in Figure 6(a), the liquefaction resistance at 30-35 load 
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Figure 5. Results of Tests on Clean Silt 

cycles to failure is plotted against sand content. There is a definite 

relationship between sand content and liquefaction resistance. A 

minimum strength is observed when the sand content is around 30 to 

40%. Figure 6(b) shows the relationship between the pore pressure 

response~:~ J and dissipation energy. At : ~ below 80%, the 
0 0 

experimen al scatter is relatively small and the pore pressure 

response is not dependent on the sand content. At d. ~ > 80%, the 
Co 

sample rapidly approaches failure with a sharp increase in energy as 

shown in Figure 4. Hence the experimental scatter is large at this 

stage, yet the pore pressure is again not dependent on the sand 

content. Combining the observations from Figures 6(a) and 6(b), one 

may note that while the sand content affects the liquefaction strength 

it has no effect on the amount of energy needed to reach failure. This 

is because when the sample is stronger in strength, it is also higher 

in rigidity with smaller deformation upon loading. The energy dis

sipated in the sample is proportional to the stress applied and inver

sely proportional to the resulting deformation. When a sample is 

stronger, therefore, it does not necessarily require more energy to 

reach failure. 

A third test series was conducted on silt samples mixed with different 

quantities of clay material. Again the samples were prepared at the 

same void ratio of 0.72. They are designated clayey silt samples here, 

to distinguish them from the cohesionless silt sample in the second 

test series. The results of this test series, summarized in Figure 7, 

shows that clayey silt behaves differently from cohesion less silt. The 

liquefaction strength increases fairly linearly with clay content (Figure 
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Figure 6. Results of Tests on Silt with Different Sand Contents 

?(a)) and the pore pressure response is significantly influenced by the 

clay content. In fact as clay content increases, the conditions of failure 

change. At low clay content, failure fits the conventional definition of 

liquefaction failure with the excess pore Jressure equal to the initial 

effective confining pressure (d.~ = 1.0 . At higher clay contents 
Co 

(20% or more), failure is dominated by a shear failure with d.~ < 1.0. 
Co 

The energy dissipated in the soil to reach failure, WF, is plotted against 

clay contents ( Rc) in Figure 8. For liquefaction type of failure, the 

relationship can be approximated by a straight line: 

(6) 

where 

WFc, Wm =dissipation energy to failure for clay content= Rc and 
0, respectively; 

~ =slope of the straight line(= 0.4 for this test series). 

The application of the above test results is shown in the following. 

LIQUEFACTION POTENTIAL 

Cohesjonless silty soil 

There is one important implication from the observation that the 
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Figure 8. Total Dissipation Energy to Failure vs Clay Content for 
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dissipation energy required to reach liquefaction failure tor cohesion
less silt is not significantly affected by the sand content. The implica
tion is, since the soil is tree of clay material, that the same liquefaction 
criterion (Expression (5)) can be used irrespective of the relative 
content of sand or silt. In other words, the liquefaction potential of 
sand, silty sand, sandy silt or silt can be examined by this single 
expression. Consequently, for the same seismic energy, i.e. constant 
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M and R, sand or silt without clay content will have the same liquefav 
tion potential if they have the same Nt. This finding is in apparent 
contrast to the observations of many researchers (e.g. Robertson and 
Campanella 1985, Seed and DeAlba 1986 and Shabita and Teparak
sa 1988). Close examination of these observations show that most 
of the silty soils reported by these researchers actually contain clay 
material. As discussed later, this clay content enhances the liquefac
tion resistance of the soil and thus the silty soil with the same Nt as 
sand will have a lower potential to liquefy. 

In order to support the finding of the present study, the new database 
is consulted. There are 123 silty sites recorded in the database, but 
only 11 of them involve clean silt or cohesionless silty sand. The 
occurrence or non-occurrence of liquefaction failure of these 11 
records was assessed based on Expression (5) and the results are 
summarized in Table 2. The success rate of this exercise is 81.8%, 
showing that Expression (5) originally developped tor sand is also 
acceptable tor cohesionless silty soil. 

Table 2. Summary of case records involving cohesionless silty soils 

No. Earthauake Year M R 050 N1 Liauetied? 
1 Alaska 1964 8.3 99 .35 9.4 Yes 
2 99 .35 5.8 Yes 
3 Argentina 1977 7.4 80.6 .11 14.7 Yes 
4 80.6 .10 5.2 Yes 
5 lzu-Oshima 1978 7.0 40.3 .25 1.2 Yes 
6 Miyagiken-Oki 1978 6.7 129.7 .25 19.0 No 
7 M iyagiken-Oki 1978 7.4 118.8 .15 19.0 No 
8 Imperial Valley 1979 6.6 14.1 .06 39.2 No 
9 51.0 .03 8.0 No 
10 Westmoreland 1981 5.6 8.6 .10 8.0 Yes 
11 50.5 39.2 No 

Clayey Silt 

The linear relationship (Equation (6)) between dissipation energy to 
reach liquefaction failure and clay contents can be applied directly to 
Expression (5) as follows: 

T(M, R) :?: 
1 

( 1 + [3 • Rc) TlL ( N1 ) (7) 

T (M, R} in Expression (7) is the earthquake energy intensity for a 
given site. Expression (7) states that more energy, proportional to 
( 1 + 13 • Rc ), is required to liquefy a clayey soil with clay content Rc. 

At Rc: 0, Expression (7) is reduced to Expression (5) tor application 
to cohesionless silty soil. Expression (7) can also be interpreted as 
for the same energy arriving at a site, a clayey soil with N1 will be 
stronger than a cohesion less silty soil with the same N1. 

Expression (7) can be rewritten as 

101.5 M 

2.28 X 10 10 X ( 1 + 0.4 Rc) x N
1

11.5 x fi!3 :?: 1 (8) 

One can use an equivalent standard penetration resistance N1 c in 
order to reduce Expression (8) into the same form as Expression (5). 
Nt c can be defined by: 

N1c = (1 + 0.4 Rc) 11115 N1 

Hence Expression (8) becomes: 

101.5 M 

2.28 X 10 10 X N1C11.5 fi!.3 :?: 

(9) 

(10) 



which is the same form as Expression (5) for use with cohesion less 
sandy or silty soils. Typical values of N1e expressed in terms of Nt 
are shown in Table (3). 

Table 3. Typical Nt c I Nc values with clay contents 

Assessment of relevant case records in the new database has been 
conducted with Expression (1 0). There are 66 sites with clayey silt 
as shown in Table 4 and the results are illustrated in Figure 9. The 
success rate of the assessment is 90.9%, indicating the high ap
plicability of Expression (1 0). 
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Equivalent Corrected SPT Resistance, Nw for Clayey Silt 
Sites 

SUMMARY AND CONCLUSIONS 

An energy approach originally developed for sandy soil~ (Law et al. 
1990) has been extended to silt with or without clay material. The 
original data have been expanded with the addition of new cases from 
the work of Liao and Whitman (1986). Three series of tests were 
carried out to examine the effects of sand content and clay content in 
the silt. The analysis of the test results in light of the information in 
the new database leads to the following conclusions: 

(1) The information in the new database strongly supports the 
criterion for liquefaction failure of sandy soils originally 
developed by Law et al (1990) and represented by Expression 
(5) in this paper. 
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(2) For a cohesionless soil, i.e. one without clay content, Expres
sion (5) can be applied as is irrespective of the sand or silt 
contents. 

(3) The clay content in silt has a beneficial effect on the liquefaction 
resistance. The higher the clay content, the stronger is the 
liquefaction resistance or the higher is the energy required to 
reach failure. 

(4) A new formula for assessing liquefaction potential for clayey silt 
(Expression (1 0)) is suggested. This formula is strongly sup
ported by the information in the new database. 
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Table 4. Summary of case records involving granular soils with known clay content 

No. Earthquake Year Magnitude Hypocentral N, Liquefied? Clay content 
M Distance % 

km 
1 Kanto 1923 7.9 82.4 2.0 Yes 9 

2 Tonankai 1944 8.3 60.8 1.6 Yes 10 

3 60.8 1.6 Yes 12 

4 60.8 2.9 Yes 4 

5 Niigata 1964 7.5 61.9 6.3 Yes 4 

6 Tokachi-Oki 1968 7.9 211.0 7.4 Yes 6 
7 Mivaoiken-Oki 1978 6.7 96.0 10.6 No 7 

8 96.0 12.3 No 8 

9 96.0 17.1 No 4 
10 96.0 7.7 No 4 
11 129.7 5.3 No 5 
12 129.7 17.4 No 3 
13 Mivaoiken-Oki 1978 7.4 90.1 12.3 No 8 
14 90.1 17.1 No 4 
15 90.1 17.4 No 3 
16 36.1 10.6 Yes 7 

17 67.1 5.3 Yes 5 
18 36.1 7.7 Yes 4 

19 Imperial Vallev 1979 6.6 14.1 17.2 No 1 

20 55.9 19.5 No 1 

21 60.8 3.9 No 12 

22 60.8 4.3 No 9 

23 60.8 9.4 No 9 
24 46.1 17.6 No 1 

25 10.1 1.2 Yes 5 
26 10.6 16.4 Yes 4 

27 11.2 2.8 Yes 5 

28 10.4 12.2 Yes 10 

29 Westmoreland 1981 5.6 50.5 1.2 No 5 

30 50.5 17.2 No 1 

31 16.6 16.4 No 4 

32 9.9 19.5 No 1 

33 15.7 17.6 No 1 

34 28.9 12.2 No 10 

35 7.6 3.9 Yes 12 

36 7.6 4.3 Yes 9 

37 7.6 9.4 _J Yes 9 

38 13.9 2.8 Yes 5 

39 Tanoshan 1976 7.8 82.7 16.9 No 10. 

40 81.9 15 No 10. 

41 84.0 20.9 No 10. 

42 50.2 18.9 No 10. 

43 43.3 13.6 No 10. 

44 115.5 15.4 No 10. 

45 117.5 23.5 No 10. 

46 21.1 48.9 No 10. 

47 20.9 20.5 No 10. 

48 70.9 3.5 Yes 10. 

49 84.0 11.2 Yes 10. 

50 79.4 7.4 Yes 10. 

51 82.9 11.0 Yes 10. 

52 81.9 6.7 Yes 10. 

53 103.6 10.5 Yes 10. 

54 117.5 10.4 Yes 10. 

55 66.2 5.7 Yes 10. 

56 45.4 11.6 Yes 10. 

57 41.5 12.9 Yes 10. 

58 32.9 11.7 Yes 10. 

59 45.4 1.5 Yes 10. 

60 16.3 11.3 Yes 10. 

61 18.6 12.4 Yes 10. 

62 16.7 12.1 Yes 10. 

63 16.7 18.9 Yes 10. 

64 17.0 6.9 Yes 10. 

65 14.2 6.3 Yes 10. 

• Estimated based on Zhao and Guo (1985) and from information by J.G. Wang (personal communication, 1990) 
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