
Scholars' Mine Scholars' Mine

Doctoral Dissertations Student Theses and Dissertations

Spring 2015

Enabling near-term prediction of status for intelligent Enabling near-term prediction of status for intelligent

transportation systems: Management techniques for data on transportation systems: Management techniques for data on

mobile objects mobile objects

Lasanthi Nilmini Heendaliya

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

 Part of the Computer Sciences Commons

Department: Computer Science Department: Computer Science

Recommended Citation Recommended Citation
Heendaliya, Lasanthi Nilmini, "Enabling near-term prediction of status for intelligent transportation
systems: Management techniques for data on mobile objects" (2015). Doctoral Dissertations. 2386.
https://scholarsmine.mst.edu/doctoral_dissertations/2386

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2386&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2386&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/2386?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2386&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

ENABLING NEAR-TERM PREDICTION OF STATUS FOR INTELLIGENT

TRANSPORTATION SYSTEMS: MANAGEMENT TECHNIQUES FOR DATA ON

MOBILE OBJECTS

by

LASANTHI NILMINI HEENDALIYA

A DISSERTATION

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

in Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

2015

Approved by

Dr. Ali Hurson, Advisor
Dr. Dan Lin, co-advisor

Dr. Bruce McMillin
Dr. Sanjay Madria

Dr. Sahra Sedighsarvestani

Copyright 2015
Lasanthi Nilmini Heendaliya

All Rights Reserved

iii

ABSTRACT

Location Dependent Queries (LDQs) benefit from the rapid advances in

communication and Global Positioning System (GPS) technologies to track moving

objects’ locations, and improve the quality-of-life by providing location relevant

services and information to end users. The enormity of the underlying data

maintained by LDQ applications – a large quantity of mobile objects and their

frequent mobility – is, however, a major obstacle in providing effective and

efficient services. Motivated by this obstacle, this thesis sets out in the quest to find

improved methods to efficiently index, access, retrieve, and update volatile LDQ

related mobile object data and information. Challenges and research issues are

discussed in detail, and solutions are presented and examined.

iv

ACKNOWLEDGEMENT

My first and foremost gratitude goes out to my advisor, Dr. Hurson, for
accepting me as his student, for giving me the opportunity to work with him,
for guiding and assisting me become better at learning. Thank you! for being
extremely patient and continuously encouraging me even when my productivity
was low during certain testing times of my life.

Next, I like to express my gratitude to my co-advisor, Dr. Lin. Her support,
guidance, and resources on my research have been priceless. You encouraged me
and lifted me up when I had little strength and spirit. I would also like to thank
my other committee members: Dr. Bruce McMillin, Dr. Sanjay Madria, and Dr.
Sahra Sedigh for serving as my committee members. Their feedback, comments,
and suggestions were always helpful.

This journey wouldn’t have been possible if not for all those who financially
supported me along the way. Missouri S&T CS department gave me the opportu-
nity to expand my experience as a teaching assistance. Drs. Hurson, Lin, McMillin,
and Sedigh graciously provided me with graduate assistantships. I was also
lucky to receive the Philanthropic Educational Organization (P.E.O.) International
Peace Scholarship, for most part due to Ms. Christena Sowers introducing me
to the opportunity and helping me with the application process. The scholarship
not only supported me financially, but also introduced me to family like friends:
Ms. Debbie Estey, Ms. Marge Pundman, Ms. Noel Berryman, and many more
unnamed P.E.O. members.

I was also fortunate to work with and have support from Mike, Michael
Wisely. His great talents and experience in programming made it easier to convert
my research ideas into implementations. I would also like express my appreciation
to the Missouri S&T Computer Science Department staff members for their kind
cooperation and excellent support every time I needed their assistance.

Above all, I am eternally gratefully to my family: my parents, my brothers,
my husband, and sons. My mother, for her unconditional, limitless love and
dedication to bring me to the position where I am now; My father, for his protection
and giving me the freedom to be me; My brothers for their love and countless
childhood memories; my husband for believing in me even when I myself, had no
confidence in me; and lastly my beloved sons - Evin and Javin - for unknowingly
agreeing to exchange their precious mommy time for “mommy’s Ph.D. time”.

v

TABLE OF CONTENTS

Page

ABSTRACT ... iii

ACKNOWLEDGEMENT .. iv

LIST OF ILLUSTRATIONS.. viii

LIST OF TABLES.. xi

ACRONYMS ... xii

SECTION

1 INTRODUCTION ... 1
1.1. QUERY PROCESSING UNDER ROAD NETWORK CONSTRAINTS. 2
1.2. MOTIVATION .. 2
1.3. OBJECTIVES .. 3

2 PRELIMINARIES .. 5
2.1. MOBILE OBJECT APPLICATIONS INFRASTRUCTURE 5
2.2. LOCATION DEPENDENT QUERY TAXONOMY 6
2.3. PERFORMANCE METRICS... 8

3 LITERATURE SURVEY .. 11
3.1. INDEXING MOVING OBJECTS ON EUCLIDEAN SPACE 11

3.1.1. R-tree-based Indexing Structures...................................... 11
3.1.2. B+-tree-based Indexing Structures 15
3.1.3. Quadtree-based Indexing Structures................................. 17
3.1.4. Hybrid Indexing Structures ... 18
3.1.5. Summary... 18

3.2. INDEXING MOVING OBJECTS ON ROAD NETWORK 20
3.2.1. Disk-based Indexing Structures.. 24
3.2.2. Memory-based Indexing Structures 26
3.2.3. Hybrid Indexing Structures ... 26
3.2.4. Summary... 27

3.3. QUERY PROCESSING UNDER ROAD NETWORK CONSTRAINTS. 29
3.3.1. Continuous Monitoring on Static Queries 30
3.3.2. Continuous Monitoring on Moving Queries...................... 33
3.3.3. Summary... 35

3.4. DENSITY QUERIES .. 37

vi

3.4.1. Summary... 39
3.5. SUMMARY .. 39

4 INDEXING UNDER ROAD NETWORK CONSTRAINTS 41
4.1. THE RD-TREE INDEX STRUCTURE... 41
4.2. INSERTION, DELETION, AND UPDATE IN RD-TREE 45

4.2.1. Insertion .. 45
4.2.2. Deletion... 45
4.2.3. Update .. 46

4.3. QUERYING RD-TREE ... 46
4.4. SUMMARY .. 47

5 PREDICTIVE LINE QUERIES : SNAPSHOT QUERY 48
5.1. DEFINITIONS .. 49
5.2. BASIC ALGORITHM .. 50
5.3. ENHANCED ALGORITHM .. 52
5.4. COMPREHENSIVE ALGORITHM ... 53
5.5. QUERY COST ANALYSIS.. 54
5.6. PERFORMANCE STUDY .. 56

5.6.1. Effect of the Number of Moving Objects 57
5.6.2. Effect of the Predictive Time Length 60
5.6.3. Effect of the Road Topology ... 62
5.6.4. Update Cost ... 64

5.7. SUMMARY .. 64

6 PREDICTIVE LINE QUERIES : CONTINUOUS QUERY 67
6.1. DEFINITIONS .. 69
6.2. TPRQ-TREE ... 70
6.3. CONTINUOUS PREDICTIVE LINE QUERY ALGORITHMS 76

6.3.1. Initial Phase ... 76
6.3.2. Maintenance Phase ... 77

6.3.2.1. Solo-update (SU) maintenance 78
6.3.2.2. Solo-object (SO) maintenance 80
6.3.2.3. Batch-object maintenance 83

6.4. QUERY COST ANALYSIS ... 86
6.4.1. Cost of Solo-Update (SU) Maintenance 86
6.4.2. Cost of Solo-Object (SO) Maintenance............................... 89
6.4.3. Cost of Batch-Object (BO) Maintenance 91

6.5. PERFORMANCE STUDY .. 93
6.5.1. Maintenance Phase ... 94

vii

6.5.1.1. Query performance over the query lifetime 94
6.5.1.2. Effect of the number of queries.......................... 96
6.5.1.3. Effect of buffer utilization 96
6.5.1.4. Effect of number of moving objects 98
6.5.1.5. Effect of predictive time length.......................... 99
6.5.1.6. Effect of road topology 100

6.5.2. Cost Model Evaluation.. 101
6.6. SUMMARY .. 102

7 PREDICTIVE DENSITY QUERIES .. 104
7.1. DEFINITIONS .. 106
7.2. DATA STRUCTURE .. 107
7.3. QUERY ALGORITHM .. 108

7.3.1. The Filtering Phase ... 108
7.3.2. The Refinement Phase ... 110
7.3.3. The Refreshing Phase .. 113

7.4. PERFORMANCE STUDY .. 115
7.4.1. Effect of Cell Density Threshold 118
7.4.2. Effect of Road Density Threshold 119
7.4.3. Effect of Grid Size .. 119
7.4.4. Effect of Number of Mobile Objects 120
7.4.5. Effect of Road Network Topology 122
7.4.6. Effect of Percentage of Vehicles Equipped 123

7.5. SUMMARY .. 124

8 CONCLUSION ... 127
8.1. CONTRIBUTIONS .. 127
8.2. FUTURE WORK ... 128

BIBLIOGRAPHY.. 129

VITA... 135

viii

LIST OF ILLUSTRATIONS

Figure Page

2.1 Moving Object Infrastructure ... 5

2.2 Location Dependent Query Taxonomy.. 6

2.3 An Example of Location Dependency of an KNNQ Result 9

3.1 Issues in Time Parameterized MBRs ... 12

3.2 An Example of Space Filling Curve: Piano Curve................................. 16

3.3 An Example of PR-quadtree... 17

3.4 An Example of Composite Structure ... 22

4.1 Index Structure for the Road Network with Nd = 8 43

4.2 Object Traveling Direction Calculation .. 43

4.3 Two Examples for a Linked List Selection.. 45

5.1 An Example of a Predictive Line Query (PLQ) 48

5.2 The Initial Filtering with a Ring Query.. 50

5.3 Marginal Query Angle Selection in Basic Algorithm............................. 51

5.4 An Early-Destination-Pruning Heuristic Example 53

5.5 Two Examples for Two Linked List Selections...................................... 54

5.6 Query Performance of RDC-tree and R-TPR±-tree with Varying Num-
ber of Moving Objects ... 58

5.7 Query Performance of RD-tree Query Algorithms with Varying Num-
ber of Moving Objects ... 59

5.8 Query Performance of RDC-tree and R-TPR±-tree with Varying Pre-
dictive Time Length .. 61

5.9 Query Performance of RD-tree Query Algorithms with Varying Pre-
dictive Time Length .. 62

5.10 Query Performance of RDC-tree and R-TPR±-tree for Different Road
Topologies.. 63

5.11 Query Performance of RD-tree Query Algorithms for Different of Road
Topologies.. 65

ix

5.12 Update Cost ... 66

6.1 Dynamic Nature of Continuous Traffic Prediction Information.............. 68

6.2 Shrinking Influence Region at Time tc and t′c(> tc) 71

6.3 Shrinking Speeds of the Influence Region.. 71

6.4 The Structure of the Time-Parameterized Query R∗-tree (TPRQ-tree)...... 72

6.5 Shrinking Speeds of the Minimum Bounding Rectangle (MBR) 73

6.6 Description of the TPRQ-tree Insert Operation 74

6.7 Description of the ChooseSubTree Operation....................................... 75

6.8 Description of the TPRQ-tree Delete Operation 76

6.9 Influence Regions at told in a Leaf Node of the TPRQ-tree 79

6.10 Description of the Solo-Update Maintenance Algorithm 80

6.11 Description of the IsContainPoints() Algorithm 81

6.12 Description of the Solo-Object Maintenance Algorithm 82

6.13 Group Formation for a Set of Update Messages 84

6.14 Different Strategies for Searching the Message-MBRs 85

6.15 Message-MBRs Overlapping with MBRs in the TPRQ-tree 85

6.16 Description of the Batch-Object Maintenance Algorithm....................... 87

6.17 Example of the CPL Queries that may Contain the Object 89

6.18 Maximum Query Overlapping Area Corresponding to One Update
Message ... 90

6.19 Maximum Query-overlap Area .. 92

6.20 Query Performance Over the Query Life Time 95

6.21 Effect of Number of Queries... 97

6.22 Effect of Number of Objects ... 98

6.23 Effect of Predictive Time Length ... 100

6.24 Effect of Road Topology... 101

6.25 Cost Model Validation ... 102

x

7.1 Predicted Traffic Information on Different timestamps 105

7.2 Influence of Prior Dense Areas on Later Dense Areas 106

7.3 Filtering Phase of the Predictive Line Query Algorithm 109

7.4 Histogram and Candidate Dense cells... 109

7.5 Refinement Phase of the Predictive Line Query Algorithm.................... 110

7.6 Squared Shaped Ring Query in the Coarse-Grained Filtering Phase 111

7.7 Two Examples of Modified Hash Bucket Selection 112

7.8 Bucket Selection Mismatch between Vehicle’s Destination and Query-
ing Road Segment ... 113

7.9 Refreshing Phase of the Predictive Line Query Algorithm..................... 114

7.10 Example of the Continuous Predictive Line Queries (CPLQs) That May
Contain the Object .. 114

7.11 Queue Update in Refreshing Phase... 115

7.12 False Positives for Varying Grid Sizes, Cell Threshold and Worth
County Road Network .. 118

7.13 Dynamic Nature of Continuous Traffic Prediction Information.............. 119

7.14 Query Performance of PDQ with Varying Cell Density Threshold 120

7.15 Query Performance of PDQ with Varying Road Density Threshold 121

7.16 Query Performance of PDQ with Varying Grid Size 122

7.17 Query Performance of PDQ with Varying Number of Mobile Objects ... 123

7.18 Query Performance of PDQ with Varying Topology 124

7.19 Query Performance of PDQ with Varying the Percentage of Vehicles
Equipped with the System ... 125

xi

LIST OF TABLES

Table Page

3.1 A Comparison of Different Base Structures as Moving Object Indexing
Structures in Euclidean Space... 19

3.2 Indexing Schemes for Moving Objects in Euclidean Space 21

3.3 Indexing Schemes for Moving Objects Under Fixed Network................ 28

3.4 Continuous Monitoring on Queries Under Fixed Network 36

3.5 Density Queries .. 40

5.1 Terms and Their Descriptions... 55

5.2 Simulation Parameters and Their Values for Snapshot PLQ Algorithm .. 57

6.1 Simulation Parameters and Their Values for Continuous PLQ Algorithm 94

6.2 TPRQ-tree Structure’s Information .. 96

7.1 Statistics of the Data Generator’s Input Topologies............................... 116

7.2 Simulation Parameters and Their Values for PDQ Algorithm 116

7.3 Results from Regression Analysis for different model parameter 118

xii

ACRONYMS

ANR-tree Adaptive Network R-tree . 24

CPLQ Continuous Predictive Line Query . 4

CPS Cyber Physical System. 1

DIME Disposable Index for Moving objects . 27

GNNQ Grouped Nearest Neighbor Query . 7

GPS Global Positioning System . 5

GTR Group Update Time Parameter R-tree . 26

GTS Ground Transportation System . 2

IMORS Indexing Moving Objects on Road Sectors . 24

INOR-tree Intersection Oriented Network R-tree . 23

IR Influence Region . 70

KNNQ K-Nearest Neighbor Query . 6

LAQ Location Aware Query . 1

LDQ Location Dependent Query . 1

MBR Minimum Bounding Rectangle . 11

MOVNet MOVing Objects in Road Networks . 26

MQM Monitoring Query Management . 30

PDQ Predictive Density Query . 105

PLQ Predictive Line Query . 3

QI Query Indexing . 30

RGTR Robust Group Update Time Parameter R-tree . 26

RKNNQ Reverse K Nearest Neighbor Query . 6

RQ Range Query . 6

R0Q Ring Query . 49

RUM-tree R-tree with Update Memo . 15

SD-tree Shortest Distance-based Tree. .32

SPLQ Snapshot Predictive Line Query. .4

SQM Spatial Query Management . 30

STRIPES Scalable Trajectory Index for Predicted Positions in Moving Object Databases 17

TPR-tree Time Parameterized R-tree. .12

TPR∗-tree Time Parameterized R∗-tree . 13

TPRQ-tree Time-Parameterized Query R∗-tree . 67

1. INTRODUCTION

At least 35% of the working population in the United States currently
commutes more than 30 minutes each day [1]. Time wasted on the road affects
both individuals and society. For instance, individual who spends more time on
the road will spend more money on fuel. In 2013, Americans wasted $124 billion
due to traffic congestions. Without significant action to alleviate congestion, this
cost is expected to reach $186 billion by 2030 [2]. Higher commuter times also
increases the changes of encountering accidents.

Society demands information that helps optimize travel time and hence en-
hances the travel experience (e.g., real-time traffic information, shortest detoured
path, closest hospital, or nearest gas station). These services, which address both
individual’s and societal needs, have escalated through technological innovation.
According to the Statistics Portal, the estimated market size of stand-alone Global
Positioning Systems (GPSs) in 2015 will exceed 35 million units [3]. This estimate
did not include either GPS units embedded in vehicles or those available in mobile
devices (e.g., smart phones and iPads R©).

With the aid of this new technology, ground transportation is anticipated to
become a Cyber Physical System (CPS). This CPS will be comprised of both a
cyber infrastructure (computers, communication links, and sensors) and a physical
infrastructure (roads and vehicles). Cyber infrastructure monitors, provides
decision support to and controls the physical infrastructure. A significant fraction
of CPSs (the modern counterparts of traditional physical infrastructure systems)
includes components capable of both intelligent communication and effective
control. Added intelligence in the form of sensors, embedded systems (either
short- or long-range transceivers), and other computing and communication
resources promises invasive operation flow, more robust infrastructures, increased
autonomy, and improved safety.

Vehicles request information from a CPS through query requests. The queries
addressing position-related information (e.g., find the best 5 restaurants in Chicago
or find the 5 nearest restaurants to my current location) are known as Location
Aware Queries (LAQs). Location Dependent Queries (LDQs) are a subclass of LAQs.
There is a subtle yet fundamental difference between these two queries. The result
set of the first query is independent of the user’s location and will be the same for

2

any query issuer, regardless of his/her location. For the second query, however,
the result(s) will vary according to the user’s geographic position.

Because LDQs are highly dependent on geographical location, efficient
processing becomes quite challenging. It becomes even more challenging when
the queried objects are moving (e.g., find the 5 taxis closest to my current location).
This work is intended to address these challenges related to queries on objects
moving within the ground transportation infrastructure.

1.1. QUERY PROCESSING UNDER ROAD NETWORK CONSTRAINTS

1.2. MOTIVATION
The Ground Transportation System (GTS) is considerably more complex than

its counterpart in other CPS domains (e.g., power grids and water distribution
systems). Contributing factors to this increase complexity includes:

• both the size and volatility of the underlying databases;

• the number of entities involved; and

• the human entities taking part in the process.

These characteristics are manifested in solutions that address both the fre-
quent update of and the efficient access to large data repositories and technical
constraints of the cyber infrastructure. Efficient access to frequently updated data
is primarily addressed by means of efficient indexing and querying techniques.
Both the efficient adaptation of previous techniques (when possible) and/or
the introduction of new techniques is necessary to alleviate the GTS’s added
complexity.

Most work on mobile object indexing relax objects’ movement to the Eu-
clidean space [4–12]. Only a handful of work have considered road network
constraints [13, 14], which is the more realistic modeling and implementation
path to moving object-related applications; solutions available based on Euclidean
space are incapable of providing accurate query results under added road-network
constraints [15–17].

New query types could also possibly be introduced to address consumer
demand for location based services. One such important query type is the predictive
queries. By means of predictive queries, based on road conditions and route
redirection, commuters have the ability to take proactive steps to make their travel

3

time more efficient and safer. For example, commuters may occupy the time with
secondary tasks such as fueling and having lunch until a road condition, such
as a traffic congestion, gets alleviated. Existing LDQs, however, do not support
predictive queries under the road network constraints [18, 19]. This work intends
to develop a new indexing scheme supporting predictive as well as current queries
on objects moving under the road network constraints, and define and design
predictive query algorithms.

1.3. OBJECTIVES
The following objectives are assembled to address both the aforementioned

challenges as well as the foreseeable service requirements:

Develop a mobile data indexing structure under road-network constraints An in-
dexing structure is developed to manage the ever-growing data associated
with a transportation environment. The proposed indexing structure will
support LDQs – both current and predictive.

Design and implement on-demand-based predictive queries A predictive query
type – termed a Predictive Line Query (PLQ) is developed to exhibit the
performance of the proposed indexing structure. Two types of queries are
considered: snapshot query and continuous query.

Design and implement proactive-based predictive queries Research on PLQ is
extended to both develop and accommodate the density query. The query
algorithm will address issues that arise from considering road network
constraints for PLQs.

The work proposed here provides formal definitions for the aforementioned
query types under road network constrains. It is an attempt to bridge the gap
in converting the ground transportation system into a CPS, allowing users to
experience economically efficient and safe traveling.

The remainder of this thesis is organized as follows:

• Chapter 2 provides background information on the mobile object environ-
ment, Location Dependent Queries (LDQs) and some performance metrics
which are being used to compare different approaches.

• Chapter 3 discusses past research on mobile data indexing schemes and
querying techniques. The discussion on indexing schemes summarizes and

4

highlights strengths and drawbacks of existing approaches designed for
Euclidean space and road network. The discussion on querying techniques
focused on continuous query processing of LDQ and density queries.

• Chapter 4 first discusses the problem of mobile object indexing specific to the
road network constraints. Then it discusses the design issues and implemen-
tation of the proposed indexing structure followed by its maintenance and
query algorithms;

• Chapter 5 introduces a novel query type - the Snapshot Predictive Line Query
(SPLQ) with three efficient query algorithms. The performance of the
proposed algorithms is also presented in this chapter.

• Chapter 6 addresses the issues available with Snapshot Predictive Line
Query (SPLQ) by introducing the Continuous Predictive Line Query (CPLQ). It
also, accompanies with three query algorithms and an extensive performance
study.

• Chapter 7 redefines the density query to fit the needs of objects traveling
under the road network constraints. The chapter discussion then presents an
efficient query processing algorithm for the proposed query.

• Chapter 8 concludes the presented work and discusses future directions.

5

2. PRELIMINARIES

This chapter provides the preliminaries on both the mobile object envi-
ronment and Location Dependent Queries (LDQs). The background starts with
introducing the moving object infrastructure in Chapter 2.1. A short introduction
to LDQs supported in the moving object environment can be found in Chapter 2.2.
Chapter 2.3 discusses some common performance metrics, which allow comparing
similar approaches with each other.

2.1. MOBILE OBJECT APPLICATIONS INFRASTRUCTURE
The underlying infrastructure of moving object applications is composed of

several components: Moving Objects, Static Objects, Base Stations, and, in most cases,
the road network as shown in Figure 2.1 [20, 21].

Figure 2.1 Moving Object Infrastructure

Moving objects are objects with a mobility capability. They are often referred
to as either Mobile Hosts [22, 23] or Mobile Clients [4, 11]. Moving objects move
on a fixed network bound to velocity constraints. the Global Positioning System
(GPS) built-in to a moving vehicle or a cell phone carried by a person are tangible
examples of moving objects. These objects are equipped with some type of GPS
device to not only sense but also to measure both the speed and position of
the vehicles they track. The devices may utilize a cache to retain recently used
information for future use.

6

Static objects are geo-stationary objects with fixed position coordinates (e.g.,
buildings). Information about both moving objects and static objects are stored
at base stations in reference to the road network. These base stations fulfill the
clients requests based on the stored data. Most base stations maintain recently
queried information in a cache to reduce the response time and/or the server
side workload. Communication between base stations and moving objects occurs
through wireless communication medium. The information exchanged in the
communication includes query requests, query responses, and moving object
information sensed by either the moving objects’ GPS or road side sensors.

In a typical application, the user sends the query request to the base station,
the base station retrieves the relevant information from the collection of databases,
and the results are sent back to the user. Intermediate Message Support Stations
located between base stations and moving objects are used to improve the strength
of communication signals.

2.2. LOCATION DEPENDENT QUERY TAXONOMY
Location Dependent Queries (LDQs) are critical to the proper functionality

of the mobile object applications infrastructure. They can be classified into several
sub query types according to the information it provides (information based
taxonomy as shown in Figure 2.2(a)) or according to their response frequency
(frequency-based taxonomy as shown in Figure 2.2(b)).

(a) Information-based LDQ Taxonomy (b) Frequency-based LDQ Taxonomy

Figure 2.2 Location Dependent Query Taxonomy

Some common types of queries under the information based query taxonomy
include Range Query (RQ), K-Nearest Neighbor Query (KNNQ), Reverse K Nearest

7

Neighbor Query (RKNNQ), and Grouped Nearest Neighbor Query (GNNQ). The pro-
posed Predictive Line Queries (PLQs) (in Red in Figure 2.2(a)) are also categorized
under information-based LDQs.

RQs [5, 9, 24] search all objects within a user specified range (e.g., Show me
all taxis within a 10 miles range from my current location). KNNQs [10–12, 24, 25]
provides the K nearest neighboring objects to the issuer (e.g., Show me the 5 closest
taxis to my current location). The information provided by a RQ is similar to that
of a KNNQ. The difference comes from both the number of objects in the result set
and the area that the data is looked for. The RQ restricts the range but relaxes the
number of objects the issuer is interested in. The KNNQ is the opposite; it restricts
the number of objects but relaxes the range.

Similar to the KNNQ, the RKNNQ [26] also specifies the number of objects
it is looking for. However, the answers to KNNQ and RKNNQ are not necessarily
the same because KNNQ is from the issuers perspective while RKNNQ is from the
objects perspective (e.g., Show me 5 pedestrians whose nearest taxi driver is me).
In both the example for KNNQ and RKNNQ, the taxi driver wants to know about
five pedestrians. In the KNNQ example, those five pedestrians are the closest to
the issuer. No other pedestrians are closer, but these pedestrians might find some
other taxi driver closer to them. KNNQ does not consider the pedestrians view of
the taxi drivers. The RKNNQ, on the other hand, queries for pedestrians who find
the issuer within their five closest taxi drivers.

The GNNQ [27] provides a grouped answer to a set of KNNQs (e.g., the best
place for n people from different companies/organizations to meet). The GNNQ
provides an aggregated answer to a set of KNNQ. For example, consider people
in "n" companies/organizations who are trying to schedule a meeting. The best
place for everyone to meet would be at a site that reduces the total travel time. A
GNNQ would find a solution to this kind of situation. Thus, the GNNQ response
reduces the cost metric (the total travel time in the previous example) collectively
to provide an aggregated answer.

Each aforementioned query type can be associated with a time parameter.
In such cases, the queries aim to predict object positions at a specific future
timestamp, e.g., some RQ extensions include predictive time slice queries, window
queries, and moving queries. The predictive time slice query (also known as
either a future RQ or a predictive RQ) finds all of the moving objects that will be
inside the query range during the specified future time period between two given
timestamps.

8

The window query is a generalized form of the time-slice query whose
timestamps coincide. The moving query is a further generalization of a window
query. The moving query specifies two ranges at two different timestamps: the
initial time and the end time. These two ranges could be different in size and/or
location. The range at the initial time gradually evolves into the range at the end
time. In general, these two ranges can be considered to be one dynamically-shaped
moving range. The query answer contains all of the moving objects that cross the
moving range.

Categories of queries under the frequency-based query taxonomy include
both snapshot queries and continuous queries. If the query result is provided only
once per request then the query is identified as a snapshot query. This query expires
when a result is produced. As the name implies, a continuous query processes a
request continuously, informing the user of changes in the result set. Continuous
queries do not expire with the first response. Instead, requesters may revoke their
request when they are no longer interested in the service for that particular query.

The sub categories of these two taxonomies can be co-related as well, e.g.,
snapshot RQs, continuous RQs, snapshot KNNQs, continuous KNNQs and so on.
The most common and default frequency-based query category for information-
based query types discussed in literature is the snapshot query category.

2.3. PERFORMANCE METRICS
Relevancy, response time, and information privacy are the primary features a

user expects from an LDQ service provider. These are also the performance metrics
used to determine the overall effectiveness of a moving object infrastructure. This
research focuses on issues related to response time and accuracy; information
privacy is beyond the scope of this work.

As a precursor the discussion on query performance issues, consider the
scenario illustrated in Figure 2.3. Figures 2.3(a) and 2.3(b) show the results for
the same KNNQ but at two different timestamps – {t0 and t1}. The positions of the
issuer at t0 and t1 are A and B, respectively. The query requests the three objects
that are nearest to the query issuer. Filled circles represent the query results.

Consider the query issued at point A. Due to processing delay, the corre-
sponding response {O6, O1, and O4}, is received when the issuer is at point B.
At this point, the result is no longer relevant to the user as the current position is
not what the query was processed for. The service provider might be intelligent
enough to predict the user’s future position at time t1. In such a case, it might be

9

(a) Query Issued at Point A (b) Answer Received at Point B

Figure 2.3 An Example of Location Dependency of an KNNQ Result

able to generate the results for the issuer at Point B accordingly: {O5, O7, and O8}.
The result still may not be valid for the issuer if the road network constraints have
not been considered in the process. For instance, reaching the object O5 from point
B may not be practical under road network constraints such as one-way roads are
taken into the consideration.

The irrelevancy of a response is primarily due to the object’s mobility
characteristic; the information at the base station database, including both mobile
object locations and the moving speed, become outdated quickly and frequently
due to object’s mobility. Such outdated information about mobile objects will result
in obsolete and/or erroneous results. When accurate information is unavailable
just-in-time, the user will often resort to resending the query request to the server.
Both of these repetitive requests and their corresponding responses result in an
inefficient use of communication, computational resources, and power resources.
To provide the user with a relevant answer, the query execution should consider
up-to-date information from both the query issuer and all other mobile objects.

Each mobile object periodically sends messages to update its up-to-date
information. Assuming an update interval of 120 seconds, a system with 1 million
mobile objects generates 30 million update messages per hour [10]. Such enormous
amounts of messages can cause several additional performance issues to arise.
These issues include inability to handle update messages quickly to provide up-to-
date information for the next query request and to avoid communication overhead

10

from massive amounts of update request. In essence, such issues could disrupt
service availability for current and future query requesters.

Addressing these issues require the development of efficient and effective
update message handling techniques. Providing a fast response from up-to-date
information is a matter of retrieving relevant information efficiently. A sequential
search is an inefficient searching technique for a massive data collection. In a worst
case scenario, all of the items in the data collection are accessed. This type of search
is good for accessing data randomly. It is, however, inappropriate for spatially
related data (as in mobile object related services). Thus, the data collection should
be organized and stored in a manner that provides efficient access to relevant data.

Considering the aforementioned issues, the performance of a LDQ service
should be evaluated based on how efficiently the information can be updated,
relevant data items can be retrieved, and hardware can be utilized in providing
accurate query response. Thus, update costs, search costs, and storage costs have
become important performance metrics to analyze the different solutions and to
compare different indexing and query types.

11

3. LITERATURE SURVEY

This chapter surveys three areas related to mobile data: mobile objects index-
ing structures, continuous query processing, and density queries. The following
discussion emphasizes the strength and drawbacks of various approaches under
each area. Indexing techniques in moving object databases are reviewed under
two main categories based on how object movement is modeled. These are,
indexing objects moving on Euclidean space and indexing objects moving under
road network constraints. The discussion on continuous query processing is on
query processing techniques found in current literature. Lastly, issues related to
processing density queries are addressed.

3.1. INDEXING MOVING OBJECTS ON EUCLIDEAN SPACE
Much work has been done on indexing moving objects on Euclidean space

[5–8]. Most of these approaches model the mobility of objects as a linear function
of time, where the position at any given time t, denoted as x(t), is defined as in
Equation (1).

x(t) = xre f + v(t− tre f) (1)

Here, xre f represents a reference position at time tre f (tre f < t). The velocity
vector is represented by v. The linear representation of moving objects makes
predicting the object’s future position simple and calculating it in constant time.
Hence, fewer update messages are needed from mobile objects. Fewer update
messages, while reduces the update cost, results in reduced accuracy in objects’
actual location.

The indexing structures that utilize linear representation can be classified into
several classes depending on their base indexing structure. Some commonly used
base structures include the R-tree, the B+-tree, and the quadtree. In addition to
these structures, some hybrid approaches can also be found in the literature [28].

3.1.1. R-tree-based Indexing Structures. R-tree is a height balance tree
structure. Each R-tree leaf node maintains mobile objects’ attributes. Each object
is represented by a tuple (id, MBR). The id is the identifier for the object, and the
Minimum Bounding Rectangle (MBR) is a rectangle which tightly bounds the object.

12

A non-leaf node of the R-tree maintains all of its children nodes’ MBR along with
a pointer to each child node.

The Time Parameterized R-tree (TPR-tree) [5] extends an R*-tree by maintaning
mobile objects’ velocity information. Each side of the MBR is embedded with
a velocity component. The MBR’s dimensions are updated according to these
velocities and the mobile objects remain in the updated MBR. The velocities
attached to opposite sides of the MBR represent the minimum and the maximum
velocities along the two-dimensional Cartesian space along the object’s moving
direction; one pair of sides represents the x direction while the other pair represents
the y direction.

This velocity information propagates to every MBR up to the tree root. For
example, consider the time parameterized MBR depicted in Figure 3.1. The gray-
colored rectangles in Figure 3.1(a) represent the leaf-node MBRs (a, b, c, and d)
and the white-colored rectangles represent their parent MBRs (g and h). Leaf node
and Parent MBRs’ directions are shown by the filled-arrow attached to each MBR
side and bt the hollow-arrow heads, respectively. The velocity magnitudes of each
leaf-node’s MBR side is 1. Depending on these leaf-nodes’ velocities (+1s and -1s)
and their parent MBR’s, each side’s speed becomes 1 as well. Figures 3.1(a) and
3.1(b) show the MBRs at time t0 (construction time) and time t1, respectively.

(a) MBR Orientation at Time t0: Tight
and No Overlap

(b) MBR Orientation at Time t1 > t0:
Loose and Overlapped

Figure 3.1 Issues in Time Parameterized MBRs

A primary drawback of this approach is the unconditional expansion of
MBRs as time elapses. As a result, the bounding rectangle may no longer be

13

“minimum”. Additionally, an extensive amount of overlapping MBRs can also
appear. Consider Figure 3.1(a) that shows both leaf node MBRs and parent
MBRs at construction time. As time evolves, these non-overlapping MBR start
to extensively expand and overlap, as shown in Figure 3.1(b). Consequently, such
overlapped MBRs increase the search cost [5, 6].

Another TPR-tree specific drawback stems from its maintenance function
(e.g. insertion and deletion) design. These functions are a direct, simple
modification of an R*-tree developed for storing static data. For this reason, they
maybe unable to render expected performances for dynamic data indexing in a
Time Parameterized R-tree. The aforementioned behavior mismatch between the
indexed objects (mobile) and the supported functions (static) is addressed in the
Time Parameterized R∗-tree (TPR∗-tree) [6]. To overcome the mismatch, the TPR∗-tree
improves the insertion and the deletion functions of theTPR-tree.

As for the TPR-tree insertion function, when a new node is inserted into
the TPR∗-tree, the tree is traversed from the root to the best leaf node that can
facilitate the new entry. The sub-tree is selected according to the lowest value of
the predefined penalty metrics (e.g., both the perimeter and the overlapping area).
When two or more sub-trees produce the same penalty value, each such sub-tree
is explored further, until one selection becomes dominant1. This expanded search
within a TPR-tree, however, can result in additional search costs. Research has
shown that the overall overhead associated with obtaining the complete access
path (using the proposed approach) is very minor [6].

If the selected node is already full, some of its entries, those that contribute
to form MBR margins, will be removed. After these entries are removed, the
node’s MBR shrinks which produces a tighter MBR; but tree structure will remain
unchanged. Once the MBR is tighten, reinserting a once removed entry into the
same node might produce higher penalty than some other node. As a result of
this higher penalty, new tree paths can emerge that lead to a different node than
the one that the entry was originally placed. Any overflowed nodes found in the
reinsertion process will be split. Each of these optimizations has lead the TPR∗-tree
to outperform the TPR-tree in the query performance [6] and to offset the search
cost overhead mentioned in the previous paragraph.

However, both the TPR-tree and the TPR∗-tree suffer from the unconditional
expansion of MBRs. This issue has been addressed in several past studies [7, 8].
In 2002, Papadopoulos et al. [7] proposed handling moving objects separately

1In tiebreaker situations, every tied sub-tree is further explored until the best node is reached

14

according to their speeds. The approach proposed in [7] reduces the possibility
of having large MBRs by handling moving objects in separate structures according
to their speed. Furthermore, their work handled each dimension of the moving
space separately; a separate R-tree was maintained for each dimension-speed cat-
egory. As a result, this indexing structure must maintain several R-tree structures
resulting in poor space utilization. More specifically, the space consumption of this
approach was almost twice as that of a TPR-tree [7]. Determining the proper speed
limit was also challenging in this approach.

Saltenis and Jensen [8] introduced an expiration time for the function param-
eters. The indexing technique they proposed is known as the REXP-tree. This tree
embeds an expiration time for the function parameters. Thus, the MBR construc-
tion considers the object’s life up to the expiration time. The corresponding MBR
construction considers this short-term life result in four possible implementations:
always-minimum, conservative, static, and update-minimum.

The always minimum-strategy ensures that the MBRs are always, i.e., not
only at the construction time, but also during the object’s entire life-time, tightly
bound to enclosed objects. This way, the REXP-tree ensures to consider new
information (e.g., a changes in both speed and direction) when updating the MBRs,
each time that the object’s information deviates from the reported information.
Considering all of these changes during the object’s lifetime is both difficult and
impractical to implement; the entire future trajectories of each object for must be
considered.

In conservative MBR construction, a perfect MBR is guaranteed only at
construction time; it is not guaranteed subsequently. Static MBR construction
defines MBR boundaries by considering both the lower and the upper position
limits of the objects for the specified time. An update-minimum MBR is an
improved version of the conservative MBR approach. At each update, the
update-minimum approach reconstructed MBR in such a way that velocities of
the bounding rectangle covers higher speed objects up to their expiration time.
Regardless of the adoption method, all four MBR construction methods exhibit
nearly the same performance characteristics [8].

None of the aforementioned MBR construction approaches remove objects as
soon as they expire. This is because the removal requires the tree to be restructured,
causing tree maintenance overhead. Instead, expired objects are removed each
time this information is written back from the memory to the secondary disk. This
could result in nodes being underutilized, as the node capacity is shared by both

15

expired and live entries. Delayed data removal lowers the tree maintenance cost
(as the tree does not need to be restructured for each update), at the expense of
lower space utilization.

The R-tree with Update Memo (RUM-tree) [4] also addresses the restructuring
overhead of a tree structure. It handles the update message as an insertion
followed by a deletion. The insertion is performed promptly upon receiving
the update message. Deletion, however, is delayed, which results in multiple
versions of one particular object. These unnecessary, older versions are removed
by a process known as garbage cleaning. Garbage cleaning is activated when
the RUM-tree’s memory usage is going to overflow. One advantage of these
approaches is the transparency of the expired object removal.

In another approach to reduce tree restructuring overhead, Dongseop et
al. [25] proposed an LUR-tree that reviews the possibility of accommodating the
new position of a moving object within the current MBR. It does so without
following the typical update technique (deletion followed by an insertion), which
can create unnecessary partitioning, Additionally, this method does not require
any restructuring of the MBR if the object’s new position falls within the current
MBR.

If the new object’s position falls outside the current MBR, one of the three
following methods is proposed: traditional deletion and insertion, extension of
the MBR, or reinsertion into the parent node. The first method (traditional deletion
and insertion) is trivial. The second method (the extension of the MBR) maintains
a slightly larger MBR. This expansion is more appropriate for situations in which
objects move along the boundary roads in a zig-zag motion. In the reinsertion
method, the updated object is inserted into the parent node. If the immediate
parent node is full, the process propagates up to the root until a suitable candidate
is found.

3.1.2. B+-tree-based Indexing Structures. In general, B+-tree based index-
ing structures convert an object’s two-dimensional position to a one-dimensional
position. The conversion is performed by means of a space filling curve (e.g. either
the Hilbert or the Piano Curve). In this conversion process, the given space is
considered as a two-dimensional grid. Every cell in the grid is visited only once.
Each cell is then assigned a sequence value. This sequence value is the key used
when indexing the objects in a cell in the B+-tree.

16

Figure 3.2 illustrates the assignment of sequence values based on the Piano
space filling curve. The number in each cell represents the sequence number of
that particular cell. The indexing structures proposed in [10–12] have employed
both B+-trees and the aforementioned space filling concept. Technically, these
structures are comprised of several B+-trees. One tree is used to maintain the
object information within one update interval, while another B+-tree is used for
the subsequent update interval. Maintaining separate B+-trees provides the index
structure with adequate time to clean up all of the object information at the first
update interval. The second tree allows for handling the messages within a
succeeding update interval. These B+-trees are then used interchangeably.

Figure 3.2 An Example of Space Filling Curve: Piano Curve

The Bx-tree [10] considers the global maximum speed when handling the
objects’ speeds. This global speed consideration demotes the performance of the
Bx-tree, as query results would contain many false positives. The Bdual -tree [12]
addresses this issue, by considering both an object’s location and speed using a
four-dimensional space-filling curve.

Both the Bx-tree and the Bdual-tree consider a normal distribution of objects
on the Euclidean space. They are unable to perform well on skewed data distri-
bution. Later studies tried to overcome the drawback of Bx-tree sensitiveness on
skewed data. The ST2B-tree improves the Bx-tree index to support skewed object

17

distribution [11]. Another study [29] kept the index unchanged and improved the
query algorithm.

3.1.3. Quadtree-based Indexing Structures. Different version of quadtrees
are available depending on the type of data supported by the data structure. Some
commonly used quadtree types include the PR-quadtree (also known as PR bucket
quadtree) and the PMR-quadtree [30, 31]. An example of a PR-quadtree space
partition and tree construction is illustrated in Figure 3.3.

(a) Space Partition for PR-quadtree (b) Tree structure of the PR-quadtree

Figure 3.3 An Example of PR-quadtree

The PR bucket quadtree is often chosen over an R-tree to avoid the object’s
MBR representation. The quadtree is not required to define MBRs explicitly;
Instead, the regions covered by each non-leaf node is found by repeatedly dividing
the space into four quads until each cell’s capacity is less than the tree node
capacity. Thus, no overlapping would be found among the tree nodes. The leaves
of the tree contain points (i.e., the object’s position). This point-wise representation
is easier to handle than MBR.

The Scalable Trajectory Index for Predicted Positions in Moving Object Databases
(STRIPES) [9] extends the PR bucket quadtree to index mobile objects. STRIPES
considers each moving dimension separately, applying the dual transformation
for each dimension. The object’s mobility representation is then altered from a line
to a point (v, xre f); where v and xre f represent the object’s velocity vector and the
reference position at time tre f (tre f < t), receptively. These points are stored in a
PR bucket quadtree. STRIPES maintains two similar PR bucket quadtree structures

18

for two consecutive time periods. These structures are used interchangeably in the
following time periods, providing enough time for the previously used structure
to flush old information while preparing for the next time period. Consequently,
the updating object information is completely isolated from the query processing.
As a result, maintenance cost can be neglected, as it is offline.

3.1.4. Hybrid Indexing Structures. The Q+R-tree [28] is a hybrid structure
that combines a quadtree with the R*-tree. Each tree is built separately. The
quadtree stores fast mobile objects while the R-tree maintains slow objects. The
definitions of both fast and slow objects were based, primarily, on the sub-space
they move on. For example, parking lots and the areas around homes and offices
are considered slow movement regions. These areas can be identified according to
either a map or historical data.

In contrast to the traditional R*-tree, Q+R-tree maintains neither a lower nor
an upper bound for a leaf node. Instead, it stores all of the objects in one region
in one MBR. This is done to reduce both the insertion and the update cost, as
two MBRs will not overlap one another. Because the R*-tree is not used in the
traditional manner, the purpose of using an R*-tree in this approach has not been
explained clearly in the literature [28]. The index, however, performed better than
did either individual quad-tree or the R*-tree.

The Q+R-tree is different from the other aforementioned approaches as it
does not rely on the linear representation of a moving object. Instead, it expects
update messages to maintain up-to-date position information.

3.1.5. Summary. This chapter addressed some of the recent indexing
structures used for mobile objects in Euclidean space. A summary of the those
approaches is presented in Table 3.1. The summary includes the types of queries,
advantages, and drawbacks of each indexing structure discussed above. The
approaches were categorized according to their base structure. The most common
base structures included the R-tree, the B+-tree, and the quadtree. In addition
to those indexing structures, some hybrid versions of the common base were
presented. Their key features and impact of the key features on indexing (within
parenthesis) are compared with one another in Table 3.2.

A comparative analysis of these approaches is difficult due to the inconsis-
tency of the experimental environment and the lack of a common benchmark.
The experimental study conducted by Chen et al. [32], however, compared

19

Table 3.1 A Comparison of Different Base Structures as Moving Object Indexing Structures in Euclidean Space

Feature R-tree B+-tree Quadtree
Space partition Dynamic (handling space

upgrades/degrades are easy),
possible overlapped subspaces
(high search cost), height balance
tree (high restructuring cost)

Static (handling space
upgrades/degrades needs
redesign), no overlaps (less
search cost)

Dynamic (handling space
upgrades/degrades are
easy), no overlaps (less
search cost)

Tree Structure Dynamic, height balance tree (high
restructuring cost)

Static, height balance tree (less
restructuring cost)

Dynamic, height balance tree
(high restructuring cost)

Moving Object
Representation Velocities and attached to MBRs

(unconditional MBR expansion,
but easy to simulate the mobility)

Objects’ 2D position converted
to a 1D sequence number (add
extra processing overhead for
updates and query execution)

Dynamic (handling update
messages usually demands
tree restructuring)

20

several of the aforementioned index structures to one another. This study includes
the TPR-tree, the TPR∗-tree, the RUM-tree, the STRIPES, the Bx-tree, and the
Bdual . Among these, the B+-tree based indexes (i.e., the Bx- and the Bdual-tree)
demonstrated the best update performance with a reasonable query cost. Both the
TPR-trees and the TPR∗-trees gave the best query performances at the expense of
the worst update performance. With regard to storage, both the TPR-tree and the
TPR∗-tree consumed the least amount of storage. Both the Bx-tree and the Bdual-
tree consumed storage close to that of the TPR-tree and TPR∗-tree.

Chen et al. [32] also concluded that the TPR-tree is better for an environment
that requires a greater number of queries with fewer updates. This conclusion was
further extended to include two more environments: environments that require
both fewer queries and higher updates and environments whose behavior is
unknown. It was shown that the Bx-tree is better in the former environment, while
STRIPES is superior for an unknown environment [32].

The Euclidean space mobility representation is mostly suitable when the
objects have random movement behavior (e.g., animals and sensors). This random
movement, however, is not practical for all types of objects. For example, vehicles
are confined to the underlying road networks. Thus, these indexes might not be
able to effectively support mobile object indexing under road network constraints.

3.2. INDEXING MOVING OBJECTS ON ROAD NETWORK
Knowing the fact that mobile objects move constraint to the underlying

infrastructure allows the server to provide more precise information to mobile
users [15–17]. The constraint, however, makes both the mobility patterns assumed
in the Euclidean space and their approaches invalid.

Research based on Euclidean space mobility patterns is mainly based on two
primary assumptions: the linear movements and the constant/random speeds of
the objects. The linear movement can no longer be accepted, as the roads cannot
be assumed to be straight lines. Instead, these mobile objects move along a path
through the road network where more direction changes can exist. At the same
time, the speed may not be either steady or random. Rather, the mobile objects
might be forced to change speeds depending on road speeds, weather condition,
road condition, and so forth.

The mobile object indexing under the road network has been addressed
under two categories: historical positions of moving objects [33–35] and real-time

21

Table 3.2 Indexing Schemes for Moving Objects in Euclidean Space

Indexing Name Base Indexing Struc-
ture

Supported Queries Query Cost Update Cost

TPR-tree [5] R-tree Time slice, window,
moving

Better than R*-tree [5] Better than R*-tree [5]

Good [32]

TPR∗-tree[6]
R-tree Window Better than TPR-tree [6] Better than TPR-tree [6]

Good [32]

Dual Space [7] R-tree window better than TPR-tree [7] better than TPR-tree [7]

REXP-tree[8] R-tree Time slice, window,
moving

Better than TPR-tree [8] Worse than TPR-tree [8]

LUR-tree[25] R-tree Range and kNN Slightly worse than
R*-tree[25]

Better than R*-tree[25]

RUM-tree[4] R-tree Range Worse than R*-tree [4] Better than R*-tree [4]

Bx-tree[10] B+-tree Range, kNN, Better than TPR-tree
[10]

Better than TPR-tree
[10]

Continuous range,
continuous kNN

Reasonable [32]2 Good [32]2

ST2B-tree[11] B+-tree Range and kNN Better than TPR∗-tree
[11]

Better than TPR∗-tree
and almost similar to
Bx-tree [11]

Bdual-tree[12] B+-tree Range and kNN Better than TPR∗-tree,
STRIPES, Bx-tree [12]

Better than TPR∗-tree,
worse than STRIPES
and Bx-tree[12]

Reasonable [32]2 Good [32]2

STRIPES[9] PR Quad-tree Time slice, window,
moving

Better than TPR∗-tree [9] Better than TPR∗-tree [9]

Q+R-tree[28] PR Quad-tree +R-tree Range Better than Quad and
R-tree [28]

Better than Quad and
R-tree [28]

22

positions of moving objects [21, 36, 37]. The latter category will be discussed in
detail in the following sections as the other category is out of this article’s scope.

The real-time handling of moving objects under road-network constraints
involves indexing the objects’ information with respect to the road network
(known as composite structures) [21, 36, 37]. Composite structures use spatial
indexing methods (i.e., an R-tree, an R*-tree and a PMR quadtree), grids, tables,
and/or hash tables with reference to the corresponding road segments to store the
road network and the moving objects, respectively. The general idea of a composite
structure is illustrated in Figure 3.4. As the figure depicts, the triangle represents
the road network indexing structure.

Figure 3.4 An Example of Composite Structure

This structure is usually arranged as a hierarchical tree structure. The leaf-
level of the tree points to the road segments. The mobile object information is
stored under these road segments.

When the road network is indexed in the R-tree family indexes (e.g., either
R-tree or R*-tree), each leaf-node MBR represents the box that fully covers the
corresponding road segment. The objects moving on a particular road segment
are stored under that road segment. When an object reaches the end of the road
segment, it is removed from the current road segment and stored under the new
road segment. There are two main drawbacks to this indexing. First, a significant
amount of dead space exists in a road segment’s MBR. The dead space is the
redundant space within the MBR but outside the road segment. This redundancy

23

can lead to false overlaps of MBRs which, in turn, increase the search cost. This
drawback, however, does not exist in quadtree based indexing structures [21, 37],
because the quadtrees, by nature, divide the space into non-overlapping quads.

The second drawback is due to the mandatory search cost involved in
maintaining update messages. MBRs do not capture road segment connectivity.
Thus, to locate the next road segment that the object is going to move to, the tree
is required to be searched. To resolve this issue, Bok et al. [18] and Feng et al.
[19] proposed two separate (but similar) techniques. Bok et al. [18] proposed the
Intersection Oriented Network R-tree (INOR-tree). The premise is to store multiple
edges connected to the same intersection in the same MBR. By doing so, some
object updates can be done within the same MBR when the objects travel from one
edge to another.

Feng et al. [19] suggested storing a fraction of each contributing edge to form
a junction in the MBR. This indexing structure is known as a cross region (CR)-tree.
The primary difference between the INOR-tree and the CR-tree is that the CR-tree
maintains the fraction of the edge, whereas the INOR-tree defines new junctions
where the edge is split by the MBR margin. However, because the CR-tree stores
both the edge and its corresponding fraction, edges are duplicated if they are
covered by multiple MBRs. This duplication leads to reduced space utilization.

Nevertheless, for a particular road map with the exact same MBR, both
methods consume approximately the same amount of storage. The INOR-tree
stores an edge several times; the CR-tree splits an edge into a number of sub-edges
and stores them separately. If the number of repeated edges and the number of
splits are the same, the amount of space required in both methods is approximately
the same.

One disadvantage of the CR-tree and the INOR-tree is that modifying the
road network adversely impacts the index structure. Both methods are also equally
complex when compared to single road segment-based indexing (i.e., determining
the proper road segment units, finding the MBR, and so forth). This complexity
might be one reason that these novel indexing schemes have not been explored
extensively.

The single edge storage unit, however, has been used in many composite
structures. These structures can be classified into several categories depending
on their storage method: disk-based, memory-based, and hybrid-based indexing
schemes.

24

The disk-based indexing schemes consider both network and vehicle infor-
mation stored in a secondary disk. Thus, their primary performance metric is
the number of disk pages accessed. One primary advantage of disk-based index
structures is higher scalability. These index structures, however, might not handle
updates efficiently due to the communication delays associated with access to the
secondary storage.

The memory-based indexing structures store information in memory. Their
common performance metric is CPU time since memory access is faster than the
disk access query processing and vehicle update handling methods are faster with
CPU technology than with disk-based approaches. However, they typically show
low scalability as the memory space is limited.

The hybrid-based indexing structures utilize both secondary disk and mem-
ory to store information; hence, both page accesses and CPU time can be employed
to report performance. Most of the time, secondary storage maintains road
network information while memory maintains vehicle information. Hence, these
approaches might be scalable at a network size but not with the amount of vehicles
in the network.

3.2.1. Disk-based Indexing Structures. Some of the disk-based composite
structures include Indexing Moving Objects on Road Sectors (IMORS) [15], the
Adaptive Network R-tree (ANR-tree) [17], the R-TPR±-tree [36], and the TPR-uv
[38]. Each of these structures uses an R-tree-like structure whose leaf nodes point
to road segments. Each indexing scheme has demonstrated the ability to support
different queries: range [15], predictive range [17], predictive traffic flow [36], and
continuous queries [38].

IMORS [15] stores road information using an R*-tree. A leaf node of the tree
points to a list of mobile objects that are moving on a road segment (the road
sector block). IMORS uses a separate data block to maintain the mobile objects’
information (e.g. both the position coordinates and the velocity). Each entry in
the data block is bidirectionally connected to the corresponding object information
in the road sector block. This allows the user to locate the corresponding road
segment information from the object information and vice versa. A search is
initiated at the data block, and followed by the pointer to the road sector block,
to find the old road sector block that corresponds to the object in an update. The
R*-tree is searched and the bi-directional connection is updated to find the new
road sector block for both an update and an insertion.

25

The Adaptive Network R-tree (ANR-tree) [17] is comprised of both an R-tree and
an in-memory direct access table. The R-tree stores segments of the road network.
Leaf nodes in an ANR-tree, similar to IMORS, also maintain the information for
moving objects on the corresponding road segment. Additionally, the ANR-tree
introduces a grouping concept, known as adaptive units, for the objects within
a road segment. An adaptive unit groups those objects with similar moving
patterns. This similarity is defined according to both the moving direction along
the road segment and two threshold values (the speed threshold and the distance
threshold). One road segment could have several adaptive units, depending on the
presence of different moving patterns. Each adaptive unit maintains both the entry
time to and the predicted exit time from (the trajectory bounds) the segment. These
times will be used during the query process. The direct access table of a segment
contains the number of objects stored, the trajectory bounds, and the pointer to
each adaptive unit disk page.

The R-TPR±-tree [36] has also applied concepts similar to the ANR-tree. For
example, the R-TPR±-tree selects the R-tree for storage. It also considers similar
mobility patterns of objects. The similar patterns in the R-TPR±-tree, however, are
defined only by the direction in which they are moving along the road segment.

In addition to the R-tree, the R-TPR±-tree [36] maintains a set of TPR±-trees.
These TPR±-trees are attached to the leaf nodes of the R-tree. Each tree maintains
the objects moving on the corresponding road segment. The root of the TPR±-tree
points to two children TPR-trees; Each represents the objects moving in the same
direction. In doing so, the R-TPR±-tree [36] tries to reduce the expansion of MBRs
by separating the objects according to their moving direction. Thus, the expansion
of the MBR boundaries is not as severe as it was with the TPR-tree. A considerable
number of mobile objects must be present on the road segment, however, to realize
the advantage of TPR-tree adoption over other list-based structures (e.g. the direct
access table in the ANR-tree). Furthermore, it might not perform well for the road
networks with shorter road segments.

The TPRuv-tree [38] is comprised of an R-tree, a direct access table, and
adjacent lists. Similar to the indexes previously discussed, the R-tree indexes road
network information. A direct access table is connected to each leaf node in an R-
tree. Each entry in this table maintains information regarding that particular road
segment. This information includes the road ID, the speed limit, adjacent lists for
each end node, and a pointer to the mobile objects. The indexing structure handles

26

the update messages through the adjacent lists. The TPRuv-tree provides an almost
constant time update cost [38].

The Group Update Time Parameter R-tree (GTR) [39] and the robust Robust
Group Update Time Parameter R-tree (RGTR) [40] are index structures that support
efficient updates through group-wise execution. Both insertion and deletion
messages are buffered and performed in groups. They neglect the updates sent
by vehicles with constant velocities. The user, however, is required to send the
previous velocity information in the update messages to determine the velocity’s
steadiness. Thus, these models increase the communication cost when compared
to a traditional update message environment. The difference between GTR and
RGTR appears in their data structures. The RGTR discards the buffer which was
keeping track of update messages in the GTR. Instead, updates are performed
instantly, as an insertion followed by a deletion. The additional cost is traded off by
introducing compressed object representation, making it possible to accommodate
more objects in one tree node.

3.2.2. Memory-based Indexing Structures. One common approach to
improve update costs includes memory-employed indexes: fully memory-based
[21, 37, 41, 42] and hybrid [24, 43] (will be covered in Chapter 3.2.3). The memory-
employed indexes, usually, employ lists [21, 41] or tables [37, 42] to maintain the
mobile objects’ information. The road network could be indexed as either an R-
tree [42] or a PMR quadtree [21, 37]

Implementation of the R-tree family index in memory is similar to that of
disk-based indexes. The PMR quadtree, however, organizes the entire space into
a PMR quadtree. A leaf of the tree contains the covered edge IDs. Connectivity
among the edges is maintained in a table.

3.2.3. Hybrid Indexing Structures. Hybrid approaches typically store the
network information on the secondary disk, while mobile objects are maintained in
memory (e.g., MOVNet [24]). The MOVing Objects in Road Networks (MOVNet)
employ both an R*-tree to store static road network information and an in-memory
grid structure to store object positions. The grid structure divides the entire mobile
area into cells. Each cell maintains a list of mobile objects whose current location
falls into that cell. Mobile object updates are directly handled in the grid cells.
The R*-tree is accessed whenever road network distance is required. For example,
in a query process, the corresponding Euclidean space query is performed on the

27

grid first. The R*-tree is then searched to obtain the corresponding road segments.
Finally, a partial map is constructed in the memory to consider the network’s
distance.

Disposable Index for Moving objects (DIME) [43] focuses on reducing update
costs. DIME manages several indexing structures, both in secondary disk and in
memory, to maintain an object’s position. When the objects on secondary disks
must be updated, a new in-memory index is created. This index maintains only the
objects whose positions were updated. Entries on the initial on-disk tree structures
are not updated with the new location information. Instead, they are flagged as
obsolete. When the in-memory entries receive position-updates another new index
is created to maintain them. Essentially, no indexing structure is modified for an
update message; a new index is created instead and the old indexes are deleted.

There are several drawbacks to this method. One is that all objects’ positions
may eventually be placed in memory, although DIME begins with a secondary
disk index structure. A lower update cost will be penalized at query processing as
both the obsolete and valid entries are filtered out at that time.

3.2.4. Summary. The previous section discussed the primary indexing
approaches of moving objects on road networks indexing Table 3.3 summarize
these approaches. The summarization considered the following key features:
the storage (e.g, disk based, memory based and hybrid), the structures used in
indexing the road network information (e.g., R-tree, R*-tree, and table), structures
used to handle road mobile object information (e.g., list and table), supported
query type(s) (e.g., Range, KNNQ, and RKNNQ), the query response frequency
(snapshot or continuous), and support for the predictive information (predictive
or non predictive).

From Table 3.3, we can observe the following: First, R-tree family indexes are
common structures that have been employed to store road network information.
Secondly, the mobile objects are indexes with reference to the corresponding edge
they move on. Thirdly, the common types of queries supported include the range
and the KNNQ. Additionally, most of the queries are snapshot queries and non-
predictive.

28

Table 3.3 Indexing Schemes for Moving Objects Under Fixed Network

Indexing Name Storage Road network Mobile objects Supported
Queries

Continuity Predictivity

IMORS [15] Disk R*-tree Data Blocks for each R-tree leaf Range Snapshot Current

ANR Tree [20] Disk R-tree Adaptive Unit(s)a for each
R-tree leaf.

Range Snapshot predictive

R-TPR±-tree [36] Disk R-tree TPR±-treeb for each R-tree leaf Navigation Snapshot predictive

TPRuv [38] Disk R-tree and a adjacent
list for each edge

direct access table KNN Continuous Current

GTRc [39] Disk R-tree Object list for each leaf node of
R-tree

Range Snapshot Current

RGTRd [40] Disk R-tree Object list for each leaf node of
R-tree

Range Snapshot Current

SR∗-tree [41] Memory R*-tree and
a network
connectivity table

Object list Range Continuous Current

DLM [21] Memory PMR Quad List Reverse KNN Continuous Current

Prediction
Distance Table
[42]

Memory B+-tree Hash, on destination Range Snapshot Predictive

SI and ET [37] Memory PMR-Quad tree and
an hash table on
edge id (ET)

ET NN Continuous Current

MOVNet [24] Hybrid R*-tree (disk) Array of objects (memory), ob-
jects are grouped into grid cells

KNN and
Range

Snapshot, con-
tinuouse

Current

DLME [43] Hybrid - R*-tree and B+-tree Range Continuous Current

asimilar to a one-dimensional MBR in the TPR-tree
ba modification of TPR-tree that handle each direction separately
cAddition to the Road network and moving objects, contains a list of obsolete information while table is maintained.
dthe difference of RGTR from GTR is that the additional obsolete information table of GTR has been discarded.
eA query algorithm for the continuous versions using the same index structure as presented in [44]

29

3.3. QUERY PROCESSING UNDER ROAD NETWORK CONSTRAINTS
This section focuses on continuous queries on mobile objects. The term

continuous refers to the continuous monitoring of an issued query. This continuity,
however, can come in two forms: continuous monitoring of static query and
continuous monitoring of dynamic queries (more often called moving queries).
The former types of query are queries whose parameters do not change over the
time (e.g., the value of K and the issuer’s position in KNNQs and the value of the
range and the issuer’s position in RQs), but the query result might be changed due
to the movement of querying objects. The later category is referred to the queries
whose parameters also might changed over time (e.g., most commonly, the issuer’s
position). In either case, frequent and large amounts of update messages should
be handled in an efficient manner for up-to-date query results.

Regardless of the category of the query, a naive approach for answering
a continuous query is to re-conduct the same query every timestamp till the
expiration of the life time of the continuous query. This may involve lots of
unnecessary efforts if there is no change of the query results at consecutive
timestamps. Upon closer examination, there is a need to update the query results
only when an object in the current result becomes invalid or a new object joins
the result due to the change of previously considered information in the query
processing.

Taking this observation into the consideration, most approaches on continu-
ous queries have been developed to process queries in two main phases: the initial
and the maintenance phase. The initial step generates results for new queries. The
maintenance step maintains the result obtained in the initial phase. It considers
the influence of the objects’ mobility on the query answer.

The simplest method to find out the influenced mobile objects would be to
evaluate each update message received from all objects. However, this could
directly affect the performance in two ways: a higher processing cost (in terms
of both time and resources) and an increased communication cost. Thus, past
research has focused on efficient query processing techniques to reduce these costs.

A common technique for handling high frequent update messages is defining
safe regions for moving objects in which the movement of objects within the safe
region does not alter the result. The safe region could be calculated by either the
object itself or the server. The calculated safe regions can then be managed by
the object [45, 46] and server [47]. If the safe regions are known to the object, the
object initiate an update message when the object crosses the safe region. In some

30

situations the objects update message itself cannot confirm the alteration of query
result(s). In such situations, the server probes object information selectively.

The details of the aforementioned techniques could be different in static and
dynamic queries. Thus the details of continuous query processing techniques
in the literature will be addressed separately. These techniques are specifically
addressed when handling the updates of the mobile objects and the data structures
used to maintain both queries and query results.

3.3.1. Continuous Monitoring on Static Queries. Prabhakar et al. [48]
proposed an approach that supports static range queries on mobile objects whose
movements are relaxed for the Euclidean space. They considered query indexing
opposed to object indexing. As a result, every query is indexed in an R-tree based
structure called Query Indexing (QI).

The initial query response is obtained by searching overlapped queries
against each object position. Once the initial result is obtained, the maintaining
phase compares only the update messages from the users against the QI. This
approach might scale up with the number of queries as the queries are indexed
considering their spatial closeness. However, the approach might not scale up
with the number of objects. Specially, the initial phase would yield a higher search
cost when there is a higher number of objects because the algorithms compares
each object against the QI.

In order to reduce the number of update messages, an individual object
maintains its own safe region calculated by the server. The safe region is
calculated as the shortest distance between an object and a query boundary. This
calculation increases the overall computational cost at the server side. Moreover,
the advantage of the safe region might lessen, as the distance between query and
object is diminished. Another disadvantage of this safe region concept is the
requirement of recalculating the safe regions upon both receiving a new query and
expiring a query.

Cai et al. [45, 46] also addressed the same continuous query type, the
static continuous range query. Two methods are proposed named Spatial Query
Management (SQM) [45] and Monitoring Query Management (MQM) [46]. The
difference between SQM and MQM comes in the differences of the mobile objects’
computational capability. In fact, MQM considered heterogeneous mobile objects
where SQM does not.

31

In both of these approaches, the entire space is divided into disjoint spaces
called subdomains. The safe regions in both SQM and MQM are defined in terms
of these subdomains. Safe region of objects in the MQM are comprised of one or
more subdomains depending on their computational capability. Safe regions in
the SQM, on the other hand, have one subdomain for each object. This safe region
calculation is significantly simple compared that of in QI [48].

The partial areas of a query region overlapped on each safe region (called
monitoring regions) are maintained in a binary partition tree (BP-tree). Mapping
between the monitoring region and the query is maintained in the relevance table.

The initial phase of the continuous query is performed on this BP-tree. It
compares the query region of the newly issued query in the BP-tree and calculates
the monitoring regions. The objects in the relevant subdomains are then informed
with these monitoring regions.

The maintaining phase is mainly handled by the query candidates. They
report their influence on the query results and the server updates the query issuer
based on those reports. Thus, the work load at the server is much less than the
work load handled by [48]. As the computational work-load is distributed among
the mobile objects, this method is more apt to be scaled up based on the number
of queries and the number of moving objects.

The approach proposed by Hu et al. in [47] also considers the safe region
in order to reduce the communication cost. The main difference of this approach
is that the object’s actual positions are not being indexed, but the safe regions for
each object are. In addition to object’s safe region index structure, an in-memory
query-index is also maintained, which keeps track of query information and their
results.

The query-index is constructed in a similar manner as that in the BP-tree [45,
46]. In fact, for the query-index also the entire space is partitioned into disjoint
areas (into a grid). The cells are indexed in the query index. Each cell points to the
information about query regions (partially) overlapped with the cell (similar to the
monitoring region in [45,46]), also known as the quarantine area. These quarantine
areas are indexed in the query-index.

The safe region of an object for one particular query is the quarantine area
or its complement. The decision is made based on whether the object is in the
quarantine area or not, respectively. The overall safe region of an object is the
intersection of individual query-safe regions.

32

Objects update the server when it crosses these safe regions. In some
situations, these messages themselves are unable to decide the changes to the
query result. If that happens, the server probes some selected object’s exact
location information to resolve the uncertainty.

The experimental results [47] shows that the scalability of the execution time
against the number of registered queries. This scalability has been achieved as the
pointer in a grid cell points to all the queries whose quarantine area overlaps with
the cell. In this manner, unnecessary query consideration can diminished. As a
result, the overall execution time is also reduced.

Wang and Zimmermann proposed algorithms [44] for continuous range
query by extending the indexing structure that they proposed for MOVNet [24].
Additional information maintained in MOVNet, shows how each cell in the grid
maintains a list of vertices which are connected to other cells. The distance between
each connected node pair within the cell is also maintained.

Once a range query is issued, edges relevant to the cell of the issuer are
retrieved from the secondary disk. Their previous approach[24] retrieved edges
overlapped by every cell within the query range. From the retrieved edges, a tree,
Shortest Distance-based Tree (SD-tree), can be created making the query point the
root of the tree. Paths between nodes in the tree gives the shortest distance among
them and the distance to any of the nodes does not exceed the query range. When
the query issuer is moved, the tree is rotated, which requires expanding the tree
along the subtree that the query pointer moved. Moving the query issuer also
requires trimming in the other subtrees. In cases of other vehicle’s movements,
their new position is checked with the SD-tree and added or removed from the old
result accordingly.

The main drawback of this approach is the amount of data managed in the
memory. Only the road network is stored in the secondary disk in the R-tree
structure. The information about the vehicles, connectivity and the SD-tree are
stored in the main memory. This becomes severer when the number of queries
in one cell gets increased. At that point, each query needs to maintain an SD-tree
which consumes more memory.

Mouratidis et al. proposed a method to process continuous queries in [49]
for nearest neighbors. In this method, the safe region is a circle whose radius
is the distance to the nearest neighbor. They considered the service area to be a
grid. The process starts from the cell which contains the query point. Then the cell
with the query point accesses the cells closest to by iterating through its neighbors

33

clockwise, starting with the left. This process repeats until it finds K objects. The
main difference in this approach is the safe region is considered per query; not
for mobile objects. Thus, in this method, mobile objects do not pay a penalty for
keeping track of safe regions. However, the safe region is bigger compared to safe
regions maintained by mobile objects. The larger the safe region is, the higher the
update consideration chances are.

In addition to the two most common query types, KNNQ and Range (dis-
cussed above) and some other query types have also been considered under the
continuous static query monitoring. For example top K queries [37], RKNNQ
[50], and Detour queries built to find the shortest detoured route [51]. All work
together to reduce the communication cost by reducing the update messages from
the mobile objects.

In static query monitoring, the most common approach is to define a safe
region for each object. In most approaches the safe region is calculated by
the server, which preserves the confidentiality of the query issuer. The object
is responsible for sending an update message whenever that object crosses the
boundary. In this way, it tries to reduce the communication cost and unnecessary
update processes.

3.3.2. Continuous Monitoring on Moving Queries. When the moving
queries are monitored, the query itself also moves along with the querying objects.
Thus, most approaches proposed under the static query do not fit well, e.g., safe
region calculations. The following discusses the approaches on moving query
monitoring techniques.

Stojanovic et al. proposed an algorithm for processing dynamic continuous
range queries [52]. The algorithm was based on three steps: filter step, pre-
refinement step and refinement step. The filter step and the pre-refinement step
produced the initial query response. The refinement phase explorers possible
overlaps of the query range along the path of each object. The detailed information
on these overlaps (e.g., time period(s) and location(s)) are stored in two tables:
Continuous Range Query Table (CRQT) and Mobile Object Table (MOT). The
refinement step periodically ensures the validity of the entries in these tables.

One main drawback of this algorithm is the huge amount of duplicated data
managed in memory. Hence, this method might not scale up well with the number
of objects.

34

In contrast to the approach proposed in [52], Gedik and Liu proposed a
distributed approach for spatial queries to reduce the work load at the server [53].
The server broadcasts query information upon receiving a new query. Each object
then decides whether it is in the monitoring region of the query by examining
the query information. If the object determines that the query is in its monitoring
region, the mobile object will maintain the query information. The information
will be maintained until the query leaves the monitoring region, or vice versa.

The mobile object estimates the query issuer’s position depending on the
query information such as velocity, time and position. If this estimated position
difference suggests a possible change in the query result, the latest information is
passed over to the server. Since the updates are sent only when an object identifies
a potential query result change, the communication cost is reduced. However,
the main drawback of this approach is that it violates the confidentiality of query
issuers.

Both SEA-CNN: Shared Execution Algorithm [54] and SCUBA: Scalable
Cluster-Based Algorithm [55] present scalable approaches to the KNN and range
queries, respectively. SEA-CNN groups queries based on their searching regions
and locations. The SCUBA, on the other hand, groups not only queries but also
mobile objects into groups according to their common spatial relationship. In
this approach, when compared to SEA-CNN, both objects and queries could be
included in a group.

The performance of these approaches is better when steady clusters are
present. The relative speed of objects is within the clusters influence for having
steady clusters. When the relative speeds are significantly high, the objects which
were in the same group might not fall into the same group in the next update. In
this case, not only do unsteady clusters increase the cluster maintenance cost, but
also it increases the query execution cost as the number of merged clusters is high.

Liu and Hua [56] proposed algorithms to process dynamic RQ and KNNQ
under the network consideration. The supported information for algorithms are
maintained in-memory at the server. Such information includes query issuers’
details, query information, and the road segments that overlap with each query.

The process of range query begins with obtaining its snapshot query answer.
The objects in the snapshot query answer keep track of the query position and
the query range. With this information, the objects update the server when the
object itself moves out of the query range or vice versa. Upon receiving the
update message from the object, the server updates its query result accordingly.

35

Additionally, the server updates object’s new query list and their information to
maintained.

The KNNQ processing follows a similar method as that of RQ. The KNNQ
is handled as a range query where the range is the distance to the furthest vehicle
from the query issuer. If a new object has the potential to be in a query result,
current positions of all objects in the previous result are considered and insert the
new vehicle in the appropriate position in the list. This approach shows better
performance when the range is higher as the number of messages to be sent is
less. However, similar to the approach proposed by Stojanovic et al. [52], this
approach also maintains a considerable amount of data on memory. These data
include duplicates of object information. For example, each query maintains the
list of all the moving objects in the response and each such moving object maintains
all the queries which were affected.

3.3.3. Summary. The previous sections discussed the approaches to
continuous monitoring of LDQs (both static and dynamic). The most common
types of queries developed for continuous monitoring queries include RQ and
KNNQ. Table 3.4 summarizes these approaches.

In static query monitoring, the most common approach is to define a safe
region for object. In most approaches the safe region is calculated by the server,
which preserves the confidentiality of the query issuer. The object is responsible
for sending update message whenever that object crosses the boundary. This way
it tries to reduce the communication cost and unnecessary update processes.

Despite, in moving query monitoring some approaches broadcast the query
information and each mobile object decides its effect on the query and safe regions
are maintain accordingly. However this violates the privacy of query issuers
compared to the approaches in static query monitoring.

36

Table 3.4 Continuous Monitoring on Queries Under Fixed Network

Query Algorithm Continuity Query Types Advantages & Disadvantages

Prabhakar et al. [48] Static Range Introduces the indexing queries instead of objects; safe regions reduces the
update cost:

Cai et al. [46] Static Range Distributed workload among clients gives scale up at server level; sup-
ports heterogeneity of clients; clients work load is not uniform; more
dynamic environment creates higher communication cost

Hu et al. [47] Static Range and KNNQ Safe region reduces communication cost; higher client privacy preserving;
grouping queries on cell basis reduces the unnecessary query considera-
tion and hence provides the scalability.

Mouratidis et al. [57] Static KNNQ Safe regions reduces communication cost; work load at the clients is high;
confidentiality violation

Wang and Zimmermann
[44]

Static Range Less execution cost; Higher storage cost due to duplicates

Mouratidis et al. [49] Static KNNQ Less work load for the clients

Stojanovic et al. [52] Moving Range Distributed approach reduces server work load; Carry significant false
positives for individual comparison step, privacy violation of query is-
suer’s

Xiong et al. [54] Moving Grouping information on spatial relationship gives the scaling up

Nehme and
Rundensteiner [55]

Moving Grouping information on spatial relationship gives the scaling up; group
maintenance cost is high on dynamic environments

Liu and Hua [56] Moving Range and KNNQ Higher storage cost due to duplicates; need processing capability at the
client to decides its effect on queries and send update messages

37

3.4. DENSITY QUERIES
A density query is issued by a user to discover dense regions on the global

space. Denseness is determined according to mobile object concentration per area.
If the concentration exceeds a particular threshold, then that area is defined as a
dense area. The threshold could be specified by the system or the query issuer.

One can interpret density queries as a variation of other common types of
queries (e.g., an aggregated range query, which provides the number of objects in
the range but not necessarily details of individual objects). However, significant
differences can be noticed in a density query compared to a range or KNNQ. One
main difference would be the RQ and KNNQ allows the reference point to be
specified by the issuer, which does not happen in density queries. Thus, to query
dense areas using either a RQ or a KNNQ, one is required to know possible dense
areas to issue the query a priori.

The density query process is also greatly different than RQ and KNNQs. In
these queries, since the reference point is provided the search space can easily be
pruned. In the dense queries, on the other hand, the entire space is required to
be monitored in order to identify dense regions. Additionally, depending on the
objects’ distribution among the space, it could be possible to have more than one
dense regions. These features makes the density query different than the other
types of queries.

Several research projects have been conducted to address the aforementioned
issues. The first work on processing a density query was proposed by Hadjieleft-
heriou et al.[58]. They proposed two versions of density queries: Snapshot Density
Queries (SDQ) and Period Density Queries (PDQ). The SDQ provides the density
information for a specific time instance in future, where PDQ provides the validity
period of the response addition to the density information.

In these approaches, the entire space is divided into a grid and density
regions are reported in terms of cells (i.e., whether a cell is dense or not). However,
the cell based density definition is unable to captures all possible dense areas
within the global area. For example, consider a dense area distributed among
couple of cells. If these cells are considered individually, each cell could be below
the threshold. Thus, no dense area would be identified, even though a dense area
is present globally.

The aforementioned problem, the answer loss problem [29], has been re-
solved by Jensen et al. [29]. They have given a new definition for the density query,
named effective density query (EDQ). The EDQ also divides the moving space into

38

a grid. However, they have relaxed the rigid, cell based density identification (as
it was in [58]). Instead, the density areas occur at any place, in any shape, and size
can be identified.

Another approach for addressing density queries is presented by Ni and
Ravishankar [59]. Their definition of density query is named pointwise dense
regions (PDR). In their definition also, the dense region could be in any shape and
any size. The searching area, however, is always assumed to be greater or equal to
twice the cell width of the cell. Since this assumption guarantees that a 4-cell block
is searched, the PDR query is also able to avoid the answer loss problem.

To obtain a PDR query result, Ni and Ravishankar [59] proposed two
algorithms: an exact method and an approximate method. In the exact method,
each cell maintains the objects information for each query time in a histogram.
The histogram information is used in the first phase of filtering. Then each
candidate cell is applied on a range query. In the approximate method, the
density distribution is approximated using a polynomial function, where an exact
algorithm is not used. As expected, the approximated method performs faster
compared to the exact method, despite the reduced accuracy.

All the aforementioned query algorithms consider the snapshot version of
the query. Due to the violation of assumptions on the objects’ path, speeds and
so on, results can get changed as the time advances. The methods proposed in
[60, 61] have considered these features and proposed continuous density query
algorithms.

Similar to the snapshot queries, these query definitions are also associated
with two thresholds: a density threshold and an area threshold. The definition
of these thresholds, however, are different than that of snapshot queries. The
continuous density query definition considers these thresholds global to the entire
space, but not per query. The entire space is divided repeatedly into quadrants
until the area is less than the given area threshold. Each area can then be labeled
as either dense or non-dense - not both.

The main drawback of this approach is the less flexibility because different
users might be interested in different degrees of density. At the same time, in
practice, these threshold values are spatially and temporally not uniform. For these
reasons, this method might not be able to provide a better service to the users.

In addition to the aforementioned density query algorithms, to which move-
ments are considered on the Euclidean space, only a couple of works have been
conducted on density queries restricting the movements to road network [62].

39

The density definition has been modified and now takes road topology into
consideration. Thus, density is given per road segment where it was per area in
the Euclidean space density definitions. In fact, Lai et al. [62] propose Effective
Road-Network Density Query (e-RNDQ). The e-RNDQ also considers the density
and road segment length threshold. Furthermore, the distance between any two
neighboring objects in a dense road segment should not exceed the given distance
threshold. This condition prevents having skewed object distribution in a query
result.

Given the aforementioned conditions, [62] have proposed a cluster based
algorithm in obtaining the query result. However, these clusters are on the current
position of the objects. Thus, the proposed query definition and algorithm can
identify current dense road segments, but not future density.

3.4.1. Summary. The previous section discussed the approaches on density
queries. Few works have addressed density queries. Table 3.5 summarizes the
characteristics, and pros and cons of each approach.

3.5. SUMMARY
This chapter summarized, compared, and contrasted past work on mobile

data indexing and querying. The discussion showed that the most existing
indexing schemes relax the objects mobility to Euclidean space which is not
practical with objects such as vehicles. Some other, but recent, works have
developed indexing schemes supporting objects moving on road network.

Nevertheless, the discussion on querying mobile data showed that only a
handful of query types have been developed to service road network based mobile
data inquiries using the aforementioned road network considered mobile indexing
scheme. Furthermore, the discussion discloses the shortfall of future/predictive
information delivering services for mobile users.

40

Table 3.5 Density Queries

Query Algorithm Query Types Moving
Space

Advantages Disadvantages

Hadjieleftheriou et al.
[58]

Snapshot Euclidean Supports two types of queries:
dense regions for a period of time
and dense regions for a point in
time; provides future densities

Size and the shape of the query area is
not flexible, but is fixed to the grid cell
size; answer loss problem: some dense
areas are unable to be captured. Object
distribution is not interpreted from the
result (evenly, skewed, etc.)

Jensen et al. [29] Snapshot Euclidean Support dense regions for a point
in time , provides possible future
densities, addresses answer loss
problem, size of the query area is
flexible

Shape of the query area is fixed; object
distribution is not interpreted from the
result (evenly, skewed, etc); answer is
not complete as overlapped density ar-
eas are not provided

Ni and Ravishankar [59] Snapshot Euclidean Addresses answer loss problem;
provides density distribution in-
formation, provide future densi-
ties

The query area threshold must be grater
than the two units of the grid cell size

Hao et al. [60] and
Wen et al. [61]

Continuous Euclidean Issuers are up to date with the
current density

The issuer has no control over the den-
sity threshold, thus less flexible.

Lai et al. [62] Snapshot Road
Network

Reported dense areas are evenly
distributed according to the user
provided distance threshold

Provides the current density information
not future

41

4. INDEXING UNDER ROAD NETWORK CONSTRAINTS

When objects’ mobility is constrained to the road network, storing mobility
information corresponding to the road network provides intelligence to both the
data and the overall system. The added information, however, increases the
amount of data that needs to be managed in order to support queries efficiently.
This facet prompts for further challenges in traditional indexing structures utiliza-
tion.

The utilization becomes even more challenging when the mobility informa-
tion is required to support predictive queries. The main reason for this is that most
moving object management techniques [4–6, 25] deal with model objects moving
freely in Euclidean space but not under road-network constraints. One type of
Euclidean space based approaches relies on a snapshot of the object’s position at
each timestamp [4,25], while the other type relies on object’s position using a linear
function [5,6,8–12]. Approaches in the first category are not capable of supporting
predictive queries. Approaches in the second category, however, are capable of
predicting future positions by assuming that the object moves along a straight line
at the most recently reported velocity. This assumption is not realistic under road-
network constraints; roads are more often curvy than straight, and maintaining a
steady velocity is difficult. Therefore in general, queries generated based on the
aforementioned approaches lack accuracy with respect to predictive queries under
road network constraints.

This chapter discusses a solution to the aforementioned challenge and intro-
duces a novel, efficient, and effective indexing structure. The indexing structure
manages moving objects under road-network constraints that support predictive
queries. In particular, we propose a new indexing structure called the RD-tree; here,
D stands for direction.

The rest of this chapter is organized as follows: Chapter 4.1 introduces the
proposed index structure – the RD-tree. Chapter 4.2 presents the tree maintenance
algorithms and Chapter 4.3 briefly presents the queries supported by the indexing
structure.

4.1. THE RD-TREE INDEX STRUCTURE
The RD-tree indexes two types of data: road-network information and object

location information. The road network is represented as a graph G = (V , E),

42

where V is the set of vertices and E is the set of edges. Each edge e = {v1,v2} ∈
E represents a road segment2 in the network where v1,v2 ∈ V; v1 and v2 are
starting and end nodes of the road segment, respectively. Furthermore, each edge
is associated with two parameters: l and s, where l is the length of the edge and s
is the maximum possible speed on that edge.

A moving object O is represented by the tuple {oid, xt, yt, ot
e, ot+1

e , ot
v, ogd, t}

where oid is the unique object ID, xt and yt are the coordinates of the moving object
at the latest update timestamp t, ot

e is the current road segment that the object is
on, ot+1

e is the next road segment that the object is heading to, ot
v is the object’s

velocity (or speed), and ogd is the object’s travel destination; it is assumed that
most moving objects are willing to disclose their tentative traveling destinations
to the service provider (server) in order to obtain high-quality services, albeit the
destination may change during the trip.

Figure 4.1 illustrates the overall structure of the RD-tree. The RD-tree is
designed as a disk-based structure since its potential need for a huge amount of
storage space to store large amount of vehicles and complex road maps. Such
storage may not be available at the service provider end that usually support
multiple types of services simultaneously. The RD-tree is composed of an R*-tree
[63] and a set of hash tables. The road-network information is indexed by the
R*-tree. Each entry in the non-leaf node is in the form of (node MBR, child ptr),
where node MBR is the MBR covering the MBRs of all entries in its children
pointed to by the child ptr. Leaf nodes in R*-tree pointing to hash tables represent
vehicles at each road segment. Each entry in the leaf node is in the form of
(edge MBR, obj ptr), where edge MBR is the MBR of a road segment and obj ptr
links to a hash table storing objects moving on this edge.

Each hash table has an Nd hash bucket, where Nd is the number of traveling
directions. Each bucket has two linked lists that provide a finer grouping for
objects based on their traveling directions. Moving objects with similar traveling
directions are hashed to the same hash bucket and stored in one of the sorted
linked lists maintained in that hash bucket. Moreover, for easy update, each object
also has a pointer directly linked to the edge that it is currently moving on. The
details of the construction of the hash table and link lists will be elaborated shortly.

The critical issue in constructing the hash table is to determine an effective
hash function which groups objects with similar traveling directions. The object’s
traveling direction is determined by the angle between the horizontal line and the

2Road segments and edges may be used interchangeably throughout this paper

43

Figure 4.1 Index Structure for the Road Network with Nd = 8

line connecting the object’s current position to its destination. For example, in
Figure 4.2(a), object O’s traveling direction is indicated by θ, and its destination
is indicated by the star. After equally partitioning the 360 degree space into 8
directions, in this example, object O’s traveling direction falls into the direction 0.
This is treated as a hash value. The formal definition of an object’s hash value is
given in Definition 1.

(a) Object Traveling Direction w.r.t. Current
Road Segment

(b) Objects with the Same Destination but Dif-
ferent Traveling Directions

Figure 4.2 Object Traveling Direction Calculation

44

Definition 1. Let O be a moving object currently on road segment ot
e with traveling

destination ogd. Let θ denote the angle between the horizontal line of the coordinate system
and the line connecting ogd and the midpoint of ot

e. O’s hash value H(O) is defined by
Equation (2), where Nd is the number of buckets in a hash table.

H(O) = bθ /
360
Nd
c (2)

This strategy has to the following rationale: Consider the two objects O1 and
O2 moving on the same road segment with the exact same destination depicted
in Figure 4.2(b). These two obtain two different directions, 0 and 1, respectively,
simply because of their minor difference in their current positions. From the
querying perspective, these two objects are expected to be stored together since
they are very likely to have similar or the same travel path. Therefore, to ensure
the same hash value, the middle point of the road segment was used, instead of
the current position, in computing the angle.

Once the hash bucket is selected, the object is stored in one of the linked
lists. Selecting the corresponding linked list is based on the geographical direction
in a finer granule. In this process, the central angle, considered for hash bucket
selection, is further divided into two angles to maintain a linked list for each
subdivision. The equation for selecting the linked list is shown in Equation (3).

list index =

0 if 0 ≤ θ − [360·H(O)
Nd

] ≤ 360
2·Nd

;

1 if 360
2·Nd
≤ θ − [360·H(O)

Nd
] ≤ 360

Nd
;

(3)

Figure 4.3 shows the two vehicle destination positions, ending up in a
different linked list of the same hash bucket. The dotted lines represent the margins
of the linked list’s area and dashed lines represent that of the hash bucket’s area.
Further, in each list, objects are arranged in a descending order of the Euclidean
distance between their destinations and the mid point of the current edge. Such
arrangement will help speed up queries as discussed in the next section.

45

Example

When θ is 30 degrees and Nd equals to 8, H(O) will be b30 /(360/8)c
= 0. Thus, applying θ, H(O), and Nd in Equation (3), θ− [360·H(O)

Nd
]

becomes 30. Hence, the list index is 1. That means object O will be
stored in the first linked list in the first hash table slot.

(a) (b)

Figure 4.3 Two Examples for a Linked List Selection

4.2. INSERTION, DELETION, AND UPDATE IN RD-TREE

4.2.1. Insertion. When an object enters into the system, it sends an insertion
request containing object’s ID oid, destination ogd, current road segment ot

e, current
position (xt, yt) and velocity os. First, the RD-tree is searched to locate the leaf node
containing the current road segment. After that, a hash value is computed based
on the road segment ot

e and the destination ogd, and the object’s current information
is inserted into the corresponding hash bucket linked to the leaf node.

4.2.2. Deletion. An object exiting the system sends a request to delete itself
from the system. The request contains the object’s ID oid, previously reported road
segment ot

e, and the previously reported destination ogd. Similar to the insertion
process, first, the RD-tree is searched to find the leaf node containing ot

e that the
object was on. Once the leaf node is located, the hash value is computed according

46

to Definition 1 using ogd. Once the the corresponding hash bucket is located, the
object is deleted from the RD-tree.

4.2.3. Update. An object position update can be seen as a deletion
followed by an insertion. The update process, however, is optimized with some
modifications. An update request contains the object ID oid, previous road segment
ot

e, and destination ogd, current road segment ot+1
e , current position (xt+1, yt+1) and

velocity ot+1
s , and the new destination o∗gd (if changed).

First, similar to the way the object was searched in the delete operation, the
object is searched in the RD-tree. The update procedure is as follows:

• If the object’s previous and current road segment as well as the travel
desitnations are the same, i.e., (ot

e == ot+1
e) ∧ (ogd == o∗gd), only the object’s

new position (xt+1, yt+1) and the new velocity ot+1
s information need to be

updated in the hash bucket.

• If the above condition is not present, the object’s old information is deleted
and followed up with the following insertion steps:

– Check if the object is still on the same road segment but with a new
destination, i.e., (ot

e == ot+1
e) ∧ (ogd 6= o∗gd). If so, the update is

conducted under the same leaf node.

– Otherwise, if (ot
e 6= ot+1

e), RD-tree is traversed to locate the leaf node
containing ot+1

e . Once found, a hash value is computed based on
the new road segment ot+1

e and destination ogd. The object current
information is inserted to the corresponding hash bucket linked to the
leaf node. Note that, here o∗gd is considered instead of ogd, if the travel
destination has changed.

4.3. QUERYING RD-TREE
RD-tree can support traditional types of queries, such as RQ and KNNQ.

Concerning the road network constraint, we refine the range query to the line
query. Instead of locating objects in a certain rectangular or circular range, the
line query estimates the moving objects which may enter the query road segment
(i.e., a line) at the query time. The motivation of such line query is that people are
usually more interested in the traffic condition of a particular road that they need
to pass by, rather than the traffic condition of a wide range which may contain

47

roads irrelevant to the query issuers’ traveling routes. The formal definition of the
predictive line query and the detailed query algorithms are discussed in Chapter
5 and 6.

4.4. SUMMARY
This chapter proposed a novel, efficient, and effective indexing structure,

namely RD-tree, that supports queries on mobile objects under road network
constraints. The tree comprised of an R*-tree and a hash table in which the objects
are stored depending on their geographical moving direction. The proposed
indexing structure facilitates efficient query processing on objects’ predictive
information. Storing based on the moving direction promotes moving objects
with similar traveling directions to be stored together in separate hash buckets.
Thus, when the predictive queries are processed the required information can be
accessed efficiently.

48

5. PREDICTIVE LINE QUERIES : SNAPSHOT QUERY

This chapter presents an advanced and a novel query type named PLQs
that predicts traffic jams ahead of time. PLQs help commuters plan their trips
more effectively and efficiently, and enhance their location-based experience.
Specifically, this chapter presents one of the two versions of PLQs – the SPLQ
– proposed in this work; the other version, the CPLQ, is presented in Chapter
6. Furthermore, this chapter presents three query algorithms for the SPLQ with
an increasing number of heuristics and, hence, a coinciding increase in pruning
power.

Existing traffic related queries are mostly queries on real-time traffic infor-
mation, which is not sufficient to help commuters plan their trips ahead of time.
For example, by the time traffic information is received, it may be too late for a
commuter to select an alternative route to avoid a newly formed traffic jam on
his/her current travel route.

As an example, consider Figure 5.1, where a user (commuter) is interested
in the traffic condition of the highlighted road segment in the near future. A
predictive query result will help the user to make adjustments on his/her travel
plan based on impending traffic conditions. The proposed service is capable of
answering queries like ‘‘What will be the traffic condition on Highway 44

near St.Louis in half an hour"?

Figure 5.1 An Example of a Predictive Line Query (PLQ)

49

The formal definition of the PLQ is found in Chapter 5.1. Chapter 5.2, 5.3,
and 5.4 present the three algorithms proposed for CPLQ, respectively. These query
algorithms are supported by the RD-tree3 that was designed to support predictive
queries under road network constraints. A cost analysis of the algorithms can be
found in Chapter 5.5 and, finally, Chapter 5.6 presents the performance study of
these algorithms.

5.1. DEFINITIONS

Definition 2. [Predictive Line Query (PLQ)] A Predictive Line Query retrieves all
moving objects which will be on the query road segment eq at the query time tq, where
tq > tc; tc is the current time at which the query is issued.

The Predictive Line Query (PLQ) is a one-time snapshot query. It does not
consider possible changes of the predicted traffic condition when the query issuer
moves closer to the querying road. In order to provide timely and up-to-date
information to the query issuer, we model moving objects as a linear function of
time, which has proven effective in many prior works [5, 6, 10–12]. Vehicles are
assumed to report their locations and velocities to the server whenever there is a
significant change of their moving functions.

Definition 3. [Ring Query (R0Q)] A Ring Query R0Q = (eq, r1, r2) retrieves moving
objects whose current locations are in the ring defined by the concentric circles with the
mid point of the query road segment eq as center and r1 and r2 as radii, where r1 =

vmin · (tq − tc) and r2 = vmax · (tq − tc). tq is the query request time and tc is the query
issuing time; (tq > tc).

A Graphical explanation of the ring query is illustrated in Figure 5.2. Its
formal definition is given in Definition 3. The ring query aims to define a more
restricted search range than the general rectangular or circular Range Queries (RQs),
so that fewer intermediate results are generated. The basic idea is to find the
current positions of the furthest vehicle and closest vehicle which may enter the
query road segment eq at the query time tq, and then use their current distance to
the eq to define concentric circles as the query ring. More specifically, the furthest
candidate vehicle is currently at a distance vmax · (tq− tc) from eq, while the closest
candidate vehicle is currently moving at a vmin · (tq − tc) distance, both moving
towards eq. Here, vmax and vmin are the maximum and minimum speed limits

3See Chapter 4 for a detailed discussion.

50

Figure 5.2 The Initial Filtering with a Ring Query

respectively. The area covered by the R0Q is π · (v2
max− v2

min) · (tq− tc)2, while that
of the RQ is π · v2

max · (tq − tc)2. The smaller range, given by the R0Q, reduces the
number of objects that needs to be accessed in the index.

5.2. BASIC ALGORITHM
The first PLQ algorithm is the basic algorithm. It consists of two phases:

the filtering phase and the refining phase. The filtering phase retrieves candidate
objects using a Ring Query (R0Q). The second phase refines the results by
estimating the candidate objects’ traveling routes.

Given a PLQ, the basic algorithm first computes its corresponding ring query.
Once the query ring is determined, a search is initiated in the RD-tree to find the
road segments that intersect with the query ring. For each such road segment,
its hash table is checked to find objects currently moving on it. In fact, it is
not necessary to access the entire hash table, but only access the hash buckets
which contain objects with traveling directions toward the query road segment.
Afterwards, the following calculation is performed.

1. First compute the angle θq between the horizontal line and the line connect-
ing the mid points of the current road segment ot

e (Refer Chapter 4.1) and the
query road segment eq.

2. Then, plug θq Equation (2) to obtain a hash value Hq.

51

In this version of the algorithm, both linked lists of the obtained hash buckets
are accessed. Figure 5.3 illustrates the idea, where the hash value is 0. As evident
in Figure 5.3, the query θq is located at the border of the hash bucket 0. To obtain
more accurate query results, one more bucket, adjacent to Hq, is considered when
θq is close to the border with less than θx degree (which is set at a 15 degree as
default). In the example, both buckets 0 and 1 are considered in the query, which
gives four linked lists: Linked lists 0 and 1 of both buckets.

Figure 5.3 Marginal Query Angle Selection in Basic Algorithm

After obtaining a set of candidate objects from the ring query, the second
phase of the query processing eliminates objects which cannot possibly enter
the query road segment eq by examining objects’ tentative traveling routes. The
shortest route of an object’s destination is computed when an object initially
registers in the system or issues an update of its destination. During the query,
we check to see if the shortest route of the candidate object contains the query road
segment at the query time. If so, the candidate object will be included in the final
result. It is worth noting that being a prediction, the query results may not be 100%
accurate.

The query algorithm is summarized in Algorithm 1. Lines 5-11 are the first
phase. When a user (moving object) sends a query request, he/she does not
need to always specify the query time. The algorithm estimates the time taken
for the query issuer to enter the query road segment as the query time tq when
it is not provided (line 2). The function ‘getDirection()’ returns two consecutive

52

Algorithm 1 Basic Algorithm for Predictive Line Query
Inputs: (xt, yt)q – current location of the query issuer, eq – query road segment, tq
– query time, tc – Query issuing time
Output: Result – a set of objects that may be on eq at tq

1: if tq =NULL then
2: tq = timeToEnter(v, e, tc)
3: end if
4: Result = ∅
5: Edges = RingQuery(eq, vmin · (tq − tc), vmax · (tq − tc),)
6: if (Edges <> null) then
7: for each ei ∈ Edges do
8: Direction = getDirection(ei, eq)
9: Result = Result

⋃
getVehicles(ei, Direction)

10: end for
11: end if
12: for each object oi in Result do
13: if not getVehiclesContainPaths(eq, oi, tq) then
14: Result = Result− {oi}
15: end if
16: end for

hash buckets with the hash value of the direction to the query road segment.
The function ‘getVehicles()’ checks the hash table of the particular edge and only
retrieves moving objects with the hash values given by ‘getDirection()’. Candidate
objects are stored in a set Result. Line 12-16 are the second phase. The estimated
traveling route of each candidate object in Result is checked. If the traveling route
does not contain the query road segment at the query time, the object will be
removed from Result.

5.3. ENHANCED ALGORITHM
The enhanced algorithm also consists of two phases as the basic algorithm.

The improvement is at the ‘getVehicles()’ function in Algorithm 1, where the
potential destinations of objects are considered for pruning purposes. Observe
the example shown in Figure 5.4. The road segment AB is a candidate road
segment retrieved form the ring query in Figure 5.2. O1 and O2 are two objects
whose destinations are d1 and d2 respectively. Remaining traveling routes of both
objects from point B onwards are shown as bold lines. As shown, the route of
O1 ends before the querying road segment, which means that O1 will not pass by

53

the querying road segment unless it changes its destination later on. Based on
currently available information, the query results should only include O2.

Figure 5.4 An Early-Destination-Pruning Heuristic Example

The above observation leads to the conclusion that it may not be necessary to
examine all objects in the linked list. Thus, objects are stored in descending order
according to the distance between current edge and their destinations. In the above
example, object O2 will be stored before O1 in the linked list. When accessing
the list of vehicles, the destination of the vehicles is also considered. The search
stops when reaching the object whose destination is earlier than the querying road
segment.

5.4. COMPREHENSIVE ALGORITHM
The comprehensive algorithm aims to further improve the accuracy of the

query results obtained by the enhanced algorithm. The idea is to choose a
more confined set of objects by carefully selecting traveling directions towards
the querying road segment. In the previously discussed basic and enhanced
algorithms, the traveling directions, i.e., the number of hash buckets, being
considered is either one or two according to the closeness (15 degrees in our
experiments) to the margins of an area. Thus, the total area considered is the area
made by the central angle 2 · (360/Nd) or (360/Nd).

The comprehensive algorithm introduces a method which considers an area
equal to that of exactly one central angle 360/Nd. This restricted area reduces
the number of individual vehicles considered compared to that of the other two
algorithms of the RD-tree. Besides, in this way, the area considered is nearly

54

symmetric on the line to the query road segment. Thus, chances of neglecting
possible candidates are less. As the end result, this method will result in accurate
results with lesser number of page accesses.

Execution of the ring query in the comprehensive algorithm is the same as
that of the basic algorithm. For each road segment retrieved from the ring query,
relevant hash value Hq is obtained from Equation (1). Based on this hash value, the
relevant linked list index is found from Equation (3). The second linked list is the
list which is closest to the first list. In this case, the second linked list could either
be from a bucket adjacent to Hq or from the same bucket, depending on which
linked list covers the closest central angle. Figure 5.5(a) and 5.5(b) show examples
of obtaining the second list from the same hash bucket and an adjacent hash bucket
respectively.

(a) Both Linked Lists from Same Hash
Bucket

(b) Linked lists from Two Adjacent Hash
Buckets

Figure 5.5 Two Examples for Two Linked List Selections

Vehicles are retrieved from the selected two sorted linked lists considering
the remaining distance to the destination and to the querying road segment (the
same way as the enhanced algorithm did). Retrieved vehicles are then applied to
the second phase of the query algorithm as explained under the basic algorithm.

5.5. QUERY COST ANALYSIS
In this section, we analyze the query cost in terms of the number of disk page

accesses. For clarity of the presentation, Table 5.1 summarizes the notations in the
following discussion.

55

Table 5.1 Terms and Their Descriptions

Term Description
vmax Maximum speed limit of the entire map
vmin Minimum speed limit of the entire map
tq Querying time
tc Current time
countetotal Total number of road segments
countepage Number of road segments per disk page
Areamap Total area of the map
countmoPerRdSeg Average number of vehicles moving on a road segment
countmo−page Maximum number of vehicles per disk page
Nd Number of hash buckets

Given a query, the disk access cost includes two aspects: (1) the number of
disk pages (Countq) visited to find the road segments covered by the ring query;
(2) the number of disk pages (Countv) visited to find the vehicles that may be the
query answers.

Countq is determined by the area covered by the query ring, which is:

π(v2
max − v2

min) · (tq − tc)
2 (4)

Assuming that the road segments are distributed evenly throughout the
entire area, the average number of road segments per unit area counte−unitArea is
counte−total /Areamap. Thus, the average number of road segments in ring area is:

counte−total · π(v2
max − v2

min) · (tq − tc)2

Areamap
. (5)

Let the maximum number of road segments per disk page, a system design
parameter, be counte−page. Then the number of disk pages required for road
segments in the ring area is:

Countq =
counte−total · π(v2

max − v2
min) · (tq − tc)2

Areamap · counte−page
. (6)

For the second part of the query cost, vehicles are assumed to be distributed
uniformly throughout the road segments. Let countmoPerRdSeg denote the average
number of vehicles moving on a road segment. The number of vehicles moving on

56

road segments covered by the ring area can be estimated as follows:

counte−total · π(v2
max − v2

min) · (tq − tc)2 · countmoPerRdSeg

Areamap
. (7)

The total number of hash buckets is Nd. Since only one bucket in the hash
table is considered during one query process, the maximum number of disk pages
for vehicles are expressed as:

Countv =
counte−total · π(v2

max − v2
min) · (tq − tc)2 · countmoPerRdSeg

Areamap · countmo−page · Nd
. (8)

At the end, the total number of disk page accesses can be estimated by
summing up the cost in (6) and (8):

Costdisk = Countq + Countv (9)

5.6. PERFORMANCE STUDY
Experiments were conducted on moving object data sets generated by the

Brinkhoff’s generator [64]. Real road maps of US states were provided to the
generator. The number of moving objects ranged from 10K to 100K. The object
speeds ranges from 30mph to 60mph. The California state map was used as the
default, which contains 53, 112 road segments. We generated predictive queries by
randomly selecting query road segment and predictive time length.

Performance of our proposed RD-tree with the comprehensive query algo-
rithm was compared with recent related work, i.e., the R-TPR±-tree [36] which
supports predictive queries on moving objects under road network constraints.
In addition, performance of all three algorithms – Basic, Enhanced, and Compre-
hensive – were also compared in order to study the effect of the individual im-
provements. For notational convenience, the Basic, Enhanced, and Comprehensive
algorithms will be referred to as RDB-tree, RDE-tree, and RDC-tree, respectively,
throughout the rest of the discussion. .

All four algorithms were evaluated by varying three parameters: the number
of moving objects, the predictive time length, and the road topology. The perfor-
mance was measured in terms of I/O cost (the number of disk-page accesses), CPU
time, and query accuracy. CPU time does not include initial bulk loading of the
road map or objects, but considers only the query processing time. Query accuracy
was examined by comparing the number of objects in the predictive query results

57

with the actual number of objects on the query road segment at the query time.
Each test case was run for 250 queries, and the average cost is reported. Parameters
and their values are summarized in Table 5.2, where default values are highlighted
in bold.

Table 5.2 Simulation Parameters and Their Values for Snapshot PLQ Algorithm

Parameters Values
number of moving objects 10K, 20K, . . . , 50K, 60K, . . . , 100K
predictive time length (in minutes) 10, 20, 30, 40, 50, 60
road maps CO, AR, NM, CA (California)

5.6.1. Effect of the Number of Moving Objects. Both the R-TPR±-tree and
the RD-tree were tested for different sizes of moving object data sets generated
using the default road map, the CA map. Figure 5.6 shows the results of the
R-TPR±-tree and the RD-tree with the comprehensive algorithm (the RDC-tree),
while Figure 5.7 compares the RDB-tree, the RDE-tree, and the RDC-tree. RDC-tree
outperforms in all three performance metrics.

Figure 5.6(a) shows that the proposed RDC-tree requires about slightly more
than a 50 % less page accesses than the R-TPR±-tree. The reasons are mainly three-
fold. First, the RDC-tree uses the ring query to retrieve candidate objects which
are usually less than objects retrieved using the range query. Second, the RDC-
tree arranges objects according to their traveling directions. Finally, the objects are
ordered according to the distance of the destination from the edge. Thus, the RDC-
tree greatly reduces unnecessary page accesses. As a result, the query only needs
to check objects that probably will be on the query road segment, i.e. those objects
heading the query road segment.

With respect to the accuracy, the RDC-tree also significantly outperforms the
R-TPR±-tree as shown in Figure 5.6(b). The number of query results returned
by the RDC-tree is very close to the actual number of objects on the query road
segment. However, that of the R-TPR±-tree is a considerable diversion from the
correct result. It should also be noted that in most of the test cases, the accuracy
of the RDC-tree is slightly less than the actual result. The reason for this kind of
behavior is due to the restricted number of hash buckets considered in the query
processing.

The powerfulness of the RDC-tree pruning techniques is more visible in
Figure 5.6(c). The graph shows the performance in terms of CPU time. Note that

58

10K 20K 30K 40K 50K 60K 70K 80K 90K100K

100
150
200
250
300
350
400
450
500
550
600

Num. of Moving Objects

Pa
ge

A
cc

es
se

s

R-TPR± Tree
RDC-Tree

(a) Page Accesses

10K 20K 30K 40K 50K 60K 70K 80K 90K100K
0

50

100

150

200

250

300

Num. of Moving Objects

Ve
hi

cl
e

C
ou

nt
in

th
e

Q
ue

ry
R

es
ul

t

R-TPR± Tree
RDC-Tree
Actual Value

(b) Query Accuracy

10K 20K 30K 40K 50K 60K 70K 80K 90K100K
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
·105

Num. of Moving Objects

Ex
ec

ut
io

n
Ti

m
e

(m
s)

R-TPR± Tree
RDC-Tree

(c) Execution Time

Figure 5.6 Query Performance of RDC-tree and R-TPR±-tree with Varying Num-
ber of Moving Objects

the execution time is in logarithmic scale. Since the RDC-tree prunes the search
space more efficiently, the number of individual edges and vehicles considered are
much less than that in the R-TPR±-tree, which leads to less CPU time.

The performance of three query algorithms on the RD-tree is shown in Figure
5.7. In particular, Figure 5.7(a) depicts the comparison in terms of page accesses.
The RDC-tree yields the smallest number of page accesses compared to the other
two algorithms. The other two algorithms consume a similar number of page
accesses when the number of vehicles are less than 70k but diverge afterwards.

When the number of vehicles is small, on average, the number of vehicles per
hash bucket is also small. The performance difference between the RDB-tree and

59

RDE-tree can be seen only when vehicles with destinations beyond the query road
segment are stored in multiple disk pages. In other words, the early-destination
pruning metric helps reduce disk page accesses when vehicles being pruned are
stored in different disk pages.

Figure 5.7(b) compares the predicted number of vehicles in the query results
obtained from the three query algorithms with the actual number of vehicles on
the road segment at the query time. We can observe that the predicted number
by the RDC-tree is always closest to the actual value, while the RDB-tree and RDE-
tree perform similarly in most cases. This again indicates the superiority of the
RDC-tree.

10K 20K 30K 40K 50K 60K 70K 80K 90K 100K
−20

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320

Num. of Moving Objects

Pa
ge

A
cc

es
se

s

RDB-Tree
RDE-Tree
RDC-Tree

(a) Page Accesses

10K 20K 30K 40K 50K 60K 70K 80K 90K 100K

2

4

6

8

10

12

14

16

18

20

22

24

Num. of Moving Objects

Ve
hi

cl
e

C
ou

nt
in

th
e

Q
ue

ry
R

es
ul

t

RDB-Tree
RDE-Tree
RDC-Tree
Actual Value

(b) Query Accuracy

10K 20K 30K 40K 50K 60K 70K 80K 90K100K

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Num. of Moving Objects

Ex
ec

ut
io

n
Ti

m
e

(m
s)

RDB-Tree
RDE-Tree
RDC-Tree

(c) Execution Time

Figure 5.7 Query Performance of RD-tree Query Algorithms with Varying Number
of Moving Objects

60

In terms of the execution time, the RDE-tree and the RDC-tree are very similar
while the RDB-tree is slowest. This is mainly attributed to the sorting feature
introduced in the enhanced query algorithm that prunes vehicles which cannot
reach the query segment.

5.6.2. Effect of the Predictive Time Length. The effect of the predictive
time length was studied by varying it from 10 minutes to 60 minutes. Figure 5.8
shows the performance comparison of the R-TPR±-tree with the RDC-tree. As
shown in Figure 5.8(a), both trees access more disk pages when the time length
increases. This is because the longer the time to look into the future, the bigger the
query range will be, which results in more page accesses. We also observed that
the query cost using the RDC-tree only slightly increases whereas the query cost
using the R-TPR±-tree increases drastically.

The advantage of the use of ring query by the RD-tree is more prominent
when the query time length is longer. The area of a query ring increases less
significantly than the area of a query circle. Therefore, the number of objects need
to be retrieved in the RDC-tree also increases very slowly.

Figure 5.8(b) compares the accuracy of the R-TPR±-tree and RDC-tree with
the actual query result. The results obtained by the RDC-tree query algorithm are
very close to the actual values, and the accuracy is relatively stable for different
query time lengths. Any minor inaccuracy may be caused by the difference of the
estimated traveling routes and the actual routes taken by some objects.

The accuracy in the R-TPR±-tree is much lower compared to the RD-tree.
Especially when the predictive time length is longer, e.g., 60 minutes, the R-TPR±-
tree query algorithm returns a number more than 10 times the actual number of
objects on the query road segment. The R-TPR±-tree query algorithm works well
when the predictive time length is extremely short so that the query range mainly
covers road segments next to the query road segment, and objects in the query
range can at most move to the next road segment at the query time. When the
predictive time length is long, such estimation introduces lots of errors.

The execution time for the R-TPR±-tree increases gradually with the pre-
dictive time length. As shown in Figure 5.8(c), the execution time of RDC-tree
is relatively steady for all predictive time lengths. Moreover, the RDC-tree is
about 250 times faster than the R-TPR±-tree when the predictive time length is
10 minutes. The performance gap between the two algorithms is further enlarged
with the increase of the predictive time length.

61

10 20 30 40 50 60

−200
0

200
400
600
800

1,000
1,200
1,400
1,600
1,800
2,000

Predictive Time Length (mins)

Pa
ge

A
cc

es
se

s

R-TPR±-Tree
RDC-Tree

(a) Page Accesses

10 20 30 40 50 60
−100

0

100

200

300

400

500

600

Predictive Time Length (mins)

Ve
hi

cl
e

C
ou

nt
in

th
e

Q
ue

ry
R

es
ul

t

R-TPR±-Tree
RDC-Tree
Actual Value

(b) Query Accuracy

10 20 30 40 50 60

−0.1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
·106

Predictive Time Length (mins)

Ex
ec

ut
io

n
Ti

m
e

(m
s)

R-TPR±-Tree
RDC-Tree

(c) Execution Time

Figure 5.8 Query Performance of RDC-tree and R-TPR±-tree with Varying Predic-
tive Time Length

Next, we compare the performance of our three query algorithm (see Figure
5.9). Overall, the RDC-tree performs best. The RDC-tree has the fewest page
accesses and the best accuracy. However, it does require slightly more execution
time due to the complexity of the bucket selection algorithm. The RDB-tree and
the RDE-tree behave very similarly in all cases. As previously discussed in Section
5.6.1, 50 K moving objects do not represent a large enough sample to illustrate the
advantage of the sorted list in the enhanced algorithm. In addition, we can see that

62

10 20 30 40 50 60

0

50

100

150

200

250

300

350

Predictive Time Length (mins)

Pa
ge

A
cc

es
se

s

RDB-Tree
RDE-Tree
RDC-Tree

(a) Page Accesses

10 20 30 40 50 60
−2

0

2

4

6

8

10

12

14

16

18

20

22

24

Predictive Time Length (mins)

Ve
hi

cl
e

C
ou

nt
in

th
e

Q
ue

ry
R

es
ul

t

RDB-Tree
RDE-Tree
RDC-Tree
Actual Value

(b) Query Accuracy

10 20 30 40 50 60

0
1
2
3
4
5
6
7
8
9

10

Predictive Time Length (mins)

Ex
ec

ut
io

n
Ti

m
e

(m
s)

RDB-Tree
RDE-Tree
RDC-Tree

(c) Execution Time

Figure 5.9 Query Performance of RD-tree Query Algorithms with Varying Predic-
tive Time Length

the cost increases slightly in all algorithms. This is mainly due to the increment of
the query area caused by the increase of predictive time length.

5.6.3. Effect of the Road Topology. The effect of road topology was
evaluated by testing different road maps: Colorado (CO), Arkansas (AR), New
Mexico (NM), and California (CA). The average road segment length in these maps
is different, which are 0.152 miles in CO, 0.101 miles in AR, 0.92 miles in NM,
and 0.81 miles in CA. Figure 5.10 shows the results for the RDC-tree and the R-
TPR±-tree. Observe that the RDC-tree significantly outperforms the R-TPR±-tree

63

in all cases. Moreover, the performance of the RD-tree is relatively independent of
the road topology, while the R-TPR±-tree performs worse when the road segment
becomes shorter. In the RD-tree, longer road segments result in more objects per
hash bucket, and hence slightly affects the performance.

CO AR NM CA
−100

0

100

200

300

400

500

600

States

Pa
ge

A
cc

es
se

s

R-TPR±-Tree
RDC-Tree

(a) Page Accesses

CO AR NM CA
−40
−20

0
20
40
60
80

100
120
140
160
180
200
220
240

States
Ve

hi
cl

e
C

ou
nt

in
th

e
Q

ue
ry

R
es

ul
t

R-TPR±-Tree
RDC-Tree
Actual Value

(b) Query Accuracy

CO AR NM CA
−1

0

1

2

3

4

5

6

7

8

·104

States

Ex
ec

ut
io

n
Ti

m
e

(m
s)

R-TPR±-Tree
RDC-Tree

(c) Execution Time

Figure 5.10 Query Performance of RDC-tree and R-TPR±-tree for Different Road
Topologies

In contrast, the R-TPR±-tree performs better for maps with lengthier road
segments. The possible reason is that each TPR-tree in the R-TPR±-tree groups
objects better when the road segment is longer. As shown in Figure 5.10(b), the R-
TPR±-tree contains a significant amount of false positives in the query result. The

64

actual value is even 75 % less than that of R-TPR±-tree. As shown in Figure 5.10(c),
the execution time of the R-TPR±-tree is in the range of 10 k to 100 k milliseconds
while that of RD-tree ranges from 1 to 10 milliseconds.

This significant increase of execution time in the R-TPR± is due to the
individual consideration of road segment, obtained from the range query specified
by a circle. Since, the ring query applied in the RDC-tree reduces the number of
edges, the number of individually considered edges are also less and hence the
processing power reduces significantly.

Figure 5.11 shows the performance of all three versions of the RD-tree query
algorithms. Again the RDB-tree and the RDE-tree perform similarly in terms of
page accesses and query accuracy due to the same reason as previously discussed.
However, in terms of execution time, the RDE-tree is much faster than the RDB-tree
due to the use of sorting list for pruning vehicles with early destinations. Since
the RDC-tree inherits all the pruning power of the other two versions, it achieves
overall best performance.

5.6.4. Update Cost. We also examined the update cost in the tree versions
of the RD-tree and the R-TPR±-tree. Figure 5.12 shows the average cost after all
objects have been updated once. In the experiment, 50 pages of buffer was used.
We can see that all three versions of RD-tree gives the same update cost. That is
because the update algorithms in the RD-tree do not depend on the differences of
the query algorithm. Additionally, R-TPR±-tree also behaves similar to RD-tree.
This is possibly due to the similarity of the update algorithms. In both trees, the
update cost includes two portions. One is for the search in the R*-tree to locate the
road segment, and the other is for the search in either the hash table in the RD-tree
or the TPR-tree in the R-TPR±-tree to find the actual object.

5.7. SUMMARY
This chapter presented a novel query type named PLQs that predicts traffic

of a user given road segment and three query algorithms for snapshot PLQ
processing. Each algorithm has two phases: the filtering phase and the refining
phase. All three algorithms share the refining phase. The differences come in the
filtering phase. The filtering phase utilizes a novel concept to efficiently extract
the road segments from the RD-tree that might contain the objects which will be
on the querying road segment. The algorithms capitalize RD-tree’s key feature -
storing objects moving towards the same destination- to get the objects from the

65

CO AR NM CA
−50

0

50

100

150

200

250

300

States

Pa
ge

A
cc

es
se

s

RDB-Tree
RDE-Tree
RDC-Tree

(a) Page Accesses

CO AR NM CA
−4
−2

0
2
4
6
8

10
12
14
16
18
20
22
24

States

Ve
hi

cl
e

C
ou

nt
in

th
e

Q
ue

ry
R

es
ul

t

RDB-Tree
RDE-Tree
RDC-Tree
Actual Value

(b) Query Accuracy

CO AR NM CA
−4
−2

0
2
4
6
8

10
12
14
16
18
20
22
24

States

Ex
ec

ut
io

n
Ti

m
e

(m
s)

RDB-Tree
RDE-Tree
RDC-Tree

(c) Execution Time

Figure 5.11 Query Performance of RD-tree Query Algorithms for Different of Road
Topologies

extracted edges. In fact, the algorithms finds the geographical direction of the
querying road segment for each extracted road segment and select objects from
the RD-tree’s hash bucket that would be traveling with the same direction. The
three algorithms selects objects from hash bucket differently. The first algorithm
finds out the best matching hash bucket and get objects in that hash bucket. The
second algorithm uses the same hash bucket selection with a sorted list of objects
according to the objects destination. It then selects objects only whose destination
is after the querying road segment. The third algorithm selects the best matching
two object lists which can be from one or two hash buckets. The refinement

66

10k 20k 30k 40k 50k 60k 70k 80k 90k 100k

82.1

82.2

82.3

82.4

82.5

82.6

82.7

82.8

82.9

83

83.1

83.2

83.3

Num. of Moving Objects

Pa
ge

A
cc

es
se

s

R-TPR±-Tree
RDC-Tree

Figure 5.12 Update Cost

phase examines the objects traveling routes and refines the objects retrieved in the
filtering phase.

Gathered experimental results shows that the ring and the destination based
grouping has improved the performance of the algorithms compared to that of
range query based algorithm in RTPR-±-tree.

67

6. PREDICTIVE LINE QUERIES : CONTINUOUS QUERY

Route calculation and planning based on current traffic condition, e.g. traffic
jam prediction based on Snapshot Predictive Line Query (SPLQ), while enhances
commuters’ driving experience, may not be optimal due to the dynamic nature
of the query objects and their influence over each other. This chapter proposes a
solution to this problem by constructing a continuous traffic prediction system. The
problem is formalized as a CPLQ. The primary contributions of this chapter are:

• The Continuous Predictive Line Query (CPLQ) that allows a user to specify a
road that he/she would like to know the traffic condition of. The query then
returns predicted traffic condition of the querying road at the estimated time
that the user may pass by using a SPLQ. If there is any significant change of
the prediction results on the querying road due to location updates of other
vehicles, the updated query result will be automatically sent back to the user;

• A novel data structure, the Time-Parameterized Query R∗-tree (TPRQ-tree), that
indexes queries and efficiently handles the query result updates that evolve
with time is designed to speed up the query processing and to reduce the
query maintenance cost; and

• Three query algorithms that leverage the TPRQ-tree and achieve increased
efficiency for predictive traffic queries. We have carried out both theoretical
and empirical study. Our experimental results demonstrate the effectiveness
and efficiency of our approach.

Consider the following example. Bob plans to travel from Rolla to St. Louis
which is about 100 miles (i.e., about 2-hour driving). Assume a traffic jam on his
way to St.Louis when he sets off. If the navigation system computes the travel
route for Bob based on current traffic condition, the route will probably include
a detour to bypass the traffic jam. However, its possible that the traffic jam to be
cleared an hour later while Bob is already on his detour route; Bob doesn’t need to
take the detour in the first place if the navigation system was able to calculate the
route with predicted traffic condition.

Scenarios, such as the aforementioned, inspire designing a traffic prediction
system that can provide better insight to travel planning. Moreover, the traffic
prediction should be proactive/pervasive in that once the user initiates a traffic

68

condition prediction query, the system should continuously monitor the prediction
results and report any changes that may be caused by the dynamic traffic.

Figure 6.1 illustrates an example of continuous traffic prediction. Specifically,
Figures 6.1(a) and 6.1(b) show snapshots of three vehicles at time t1 and t2

respectively. The query road segment is AB, and the current travel plans of the
vehicles are highlighted by bold lines. As shown in Figure 6.1(a), three vehicles V1,
V2, and V3 may enter the querying road AB. However, as time passes, vehicle V1

changes its travel plan by making a right turn earlier at time t2. As a result, only
two vehicles (V1 and V3) may enter the query road, which requires an update of
the previous query results.

(a) Vehicles at Time t1 (b) Vehicles at Time t2

Figure 6.1 Dynamic Nature of Continuous Traffic Prediction Information

None of the existing approaches can be directly adopted to build the above
envisioned system. The closest related work that can provide traffic information
include range queries and density queries. A range query reports traffic information
in a given circular or rectangular area [44, 46, 47], but also contains traffic informa-
tion on irrelevant roads rather than just the routes that the query issuer may pass
by.

The density query [29,58,59,61] outputs even coarser information that include
regions with more than a certain threshold value of vehicles. Moreover, most
of the solutions to these query types assume an environment that objects move
freely, which is not the case when the road network constraints are applied. Very
few works [15, 36] can be found that consider road network constraints. Those

69

few, however, only support queries on current traffic condition but not on traffic
prediction.

The rest of this chapter is organized as follows: Chapter 6.1 formally defines
the problem; Chapter 6.2 introduces our proposed data structures, followed by
Chapter 6.3 which elaborates the query algorithms; Then, Chapter 6.4 presents an
analytical cost model; and Chapter 6.5 reports the experimental results.

6.1. DEFINITIONS

Definition 4. [CPLQ] A continuous predictive line query CPL = (eq, tq, tc, ρ) contin-
uously monitors the moving objects which will be on the query road segment eq at the
query time tq, and returns query results whenever the number of query results differ more
than a threshold ρ. Specifically, let Ri denote the query results at time ti (tc ≤ ti ≤ tq),
the CPLQ returns the query results in the form of {(R1, tc), (R2, t2), · · · , (Rk, tq)}, and
|Ri+1| − |Ri| > ρ.

The Continuous Predictive Line Query (CPLQ) is developed based on the
PLQ introduced in Chapter 5. As an example, CPLQ = (AB, 0800, 0730, 20)

means that the user issued a query at 7:30a.m. (i.e., tc) and is interested in the
traffic at road AB at 8:00 a.m. (i.e., tq). The query issuer expects the server to
report changes in prediction results if the difference of the number of vehicles on
the querying road is more than 20.

Note that it is not necessary for the query issuer to specify the threshold
parameter. Instead, the threshold can be automatically chosen by the server
according to past experience (traffic flow records) to reflect significant traffic
changes. Moreover, the server can also provide the query issuer the traffic
information in an easy-to-understand form like “may have traffic jam” or “traffic
flow will be good” based on the raw number of query results and the number of
lanes on the specific road.

CPLQs have an inherent temporal aspect in which the query continuously
monitors moving objects on the requested query road segment. A naive approach
to answer a continuous query is to reprocess the same query at every timestamp
till the query lifespan expires. Such an approach is computationally inefficient if
there are no change of the query results at consecutive timestamps.

A better approach is to update the query results only when an object in the
current result becomes invalid or a new object joins the query result due to its
moving function changes. Given the possibility of large number of moving object

70

updates per timestamp, this requires an indexing structure that facilitates quick
identification of which updates affect which CPLQ in order to achieve efficient
query performance.

6.2. TPRQ-TREE
A new data structure named Time-Parameterized Query R∗-tree (TPRQ-tree) is

proposed to efficiently answer CPLQs issued by users and to efficiently index road
networks and moving objects. In what follows, we describe the two data structures
in detail.

The TPRQ-tree does not simply index the query road segment of a CPLQ, but
instead, indexes an Influence Region (IR) for each CPLQ. The Influence Region is the
region which covers majority of moving objects that may enter the desired query
road segment at the future query time. In other words, if objects in the IR update
their movement functions, the query results may be affected.

To better understand the concept of IR, consider Figure 6.2 that illustrates a
query Q that aims to predict moving objects entering a predefined road segment;
Figure 6.2(a) shows the IR of Q at query issuing time and Figure 6.2(b) the IR after
30 minutes have elapsed. As shown, the IR has a ring shape with its inner radius
denoting the road distance traveled by the object at minimum speed > 0 and its
outer radius denoting the road distance the object can travel at its fastest moving
speed in 30 minutes (the query interval)4. All moving objects covered by this ring
can potentially enter the query road segment.

As time evolves and gets closer to the future query time, the remaining time
to reach the queried road segment shortens, resulting the IR to shrink as shown in
Figure 6.2(b). More specifically, at the query issuing time, the CPLQ considers all
objects within a 30 minutes radius to reach the road segments. After 10 minutes of
the query issuing time, the CPLQ only considers objects that are within 20 minutes
to enter the road segments. This example also exemplifies the temporal nature of
IR.

Modeling the shrinking IR requires it to be stored as a parameterized ring
which has moving speed attached to both inner and outer radius. The inner radius
is associated with a minimum moving speed towards the query road segment
while the outer radius is associated with a maximum speed towards the query

4Outliers such as objects stopped at gas stations, hence minimum speed equal to zero, are
excluded from calculations.

71

(a) Influence region at query issuing time: tc (b) Influence region at a later timestamp: t′c

Figure 6.2 Shrinking Influence Region at Time tc and t′c(> tc)

road segments as shown by the arrows in Figure 6.3. The time-parameterized IR is
formally defined as follows.

Figure 6.3 Shrinking Speeds of the Influence Region

Definition 5. [Influence Region (IR)] Let Q = (eq, tq, tc, ρ) be a CPLQ. The Influence
Region (IR) is a time-parameterized ring in the form of IR = (c, r1, speedmin, r2,
speedmax), where c is the middle point of the querying road eq, r1 and r2 are the radius
of the inner and outer circles respectively, and speedmin and speedmax are the shrinking
speed of the inner and outer circles respectively. The radii are computed as follows:
r1=RoadDist(speedmin · (tq − tc)) and r2=RoadDist(speedmax · (tq − tc)).

Figure 6.4 illustrates the structure of a TPRQ-tree. The base structure of the
TPRQ-tree is the R∗-tree. There are three types of nodes in the TPRQ-tree, the leaf

72

nodes, immediate parent node of the leaf nodes, and higher-level internal nodes.
These are elaborated as follows:

(a) Leaf nodes in the TPRQ-tree (b) An Overview of the Entire TPRQ-tree

Figure 6.4 The Structure of the TPRQ-tree

• Leaf nodes: An entry in the leaf node of the TPRQ-tree stores information of
a group of CPLQs. The information includes each query’s parameters (eq, tq,
tc, ρ), the corresponding Influence Region (IR), a list of query issuers, and a
pointer to the query results.

• Intermediate parent nodes: Each entry in the parent node of the leaf nodes
stores a pointer to the leaf node and a time-parameterized MBR that bounds
all the IRs of the queries in the leaf node. The time-parameterized MBR has
a speed attached to each edge as shown in Figure 6.5. The speed of each
edge is the minimum speed among the speeds of outer rings of all IRs in
the MBR. The moving direction of each edge is pointing to the center of the
MBR so that the MBR shrinks as time passes and bounds the shrinking IRs.
The time-parameterized MBR is stored as a six-tuple (x1, y1, x2, y2, speed, tu)

where (x1, y1) is the coordinates of the left lower corner of the MBR, (x2, y2)

is the right upper corner of the MBR, speed is the speed of each edge, and tu

is the latest time that the parameters of the MBR is updated.

• Higher-level internal nodes: An entry in higher level internal nodes contains
a pointer to the child node and a time-parameterized MBR that bounds MBRs
in the child node. Each edge of the MBR is associated with a minimum speed
among the speeds of its child MBRs and each edge is moving towards the
center as well.

73

Figure 6.5 Shrinking Speeds of the MBR

There are three types of basic operations in the TPRQ-tree: inserting a new
query, deleting an existing query, and updating an existing query.

An outline of the insertion algorithm is shown in Figure 6.6. Given a new
CPL query, its IR (denoted as IRnew) is calculated (line 1). The TPRQ-tree is then
searched to find the proper leaf node to store the new query. The algorithm to
identifying the leaf node (chooseSubTree() on line 2) will be described shortly in
the next paragraph. At the end of the search, if the same query is found in a leaf
node (since other users may have already issued the same query), the results stored
with the query will be directly returned to the user and the ID of this user will be
appended to the list of query issuers.

Note that two queries are considered the same if they are querying traffic
of the same road segment at the same near-future timestamp. Moreover, without
affecting the service quality much, the query cost can be significantly saved by
requiring users to specify the query time at a lower resolution of the time (e.g.,
every 10 minutes instead of every second) so that the probability of having the
same queries at the same timestamp will be increased. If the new query does not
exist in the tree, it will be inserted into the identified leaf node (line 5-10) and the
predictive line query algorithm will be executed to obtain the initial query results
for this new query (line 11).

It is worth noting that the insertion at the leaf node may trigger updates to its
parent nodes all the way up to the root node in that the speed and the size of the
MBRs of its ancestor nodes may need to be adjusted to ensure the newly inserted

74

query is enclosed. In addition, if the insertion encounters a node that is full (line
10), the node will be split. The node splitting algorithm is similar to that in the
R*-tree. The only difference is that the speeds of the MBRs after the splitting need
to be re-calculated.

Procedure TPRQ-tree Insert
Input : Q
Input : QResult

1. IRnew ← Q.getIR(Q.time())
2. node← TPRQ.chooseSubTree(TPRQ.root, IRnew, Q.time())
3. if node = DATA then
4. QResult ← node.result()
5. else
6. numO f Children← node.numChildren()
7. if numO f Children < QueryRTree.MAX then
8. node.addAChild(Q)
9. else
10. NodeSplit(node, Q, Q.time)
11. QResult ← RD.snapshotQuery(Q)
12. return QResult

Figure 6.6 Description of the TPRQ-tree Insert Operation

The chooseSubTree() algorithm is explained in Figure 6.7. This process
starts from the root. For each node being examined during the search, the
chooseSubTree() algorithm first computes the MBR of each entry of this node at
the current timestamp based on the shrinking speed of the corresponding MBR.
The entries with the MBRs that fully cover IRnew will be considered first (i.e.,
areaEnl = 0). If none of the MBRs fully cover IRnew, the entry with the MBRs
that needs the minimum enlargement to include IRnew will be considered. If there
are several candidate entries, the entry with the MBRs with the smallest area will
be chosen to break the tie. At the end of the search, the algorithm returns either
an existing query (if the same query is found) or a leaf node for inserting the new
query.

The deletion algorithm is introduced next. A CPL query needs to be deleted
from the TPRQ-tree either when the query issuer passes the querying road segment
or when the issuer withdraws the query before the query expires. Figure 6.8
outlines the deletion process.

75

Procedure chooseSubTree
Input : parent, IRnew, time
Output : atreenode

1. minAreaEnl ← BIGNUMBER
2. minArea← BIGNUMBER
3. for each children ∈ parent do
4. areaEnl ← f indAreaEnlargement(children, IRnew, time)
5. area← f indArea(children, IRnew, time)
6. if (minAreaEnl > areaEnl) or (minAreaEnl = areaEnl and (minArea > area)) then
7. newNode← children
8. minAreaEnl ← areaEnl
9. minArea← area
10. if newNode not LEAF then
11. return chooseSubTree(newNode, IRnew, time)
12. else if newNode = LEAF then
13. duplicate← newNode. f indDuplicate(IRnew, time)
14. if duplicate = nil then return children
15. return duplicate

Figure 6.7 Description of the ChooseSubTree Operation

Given a query to be deleted, the first step of the deletion process is to locate
this query. The search starts from the root of the TPRQ-tree. At each level, the
entries with the MBRs that fully cover the query’s IR will be considered (line 1),
and their children nodes will be checked in the same way until the leaf nodes are
reached. Then, check each located leaf node to identify the one that contains the
query to be deleted. After deleting the query from the leaf node, the MBRs of
the leaf node may need to be re-calculated, and the update may propagate to the
ancestor nodes of this leaf node all the way to the root of the tree. In addition,
if the deletion causes a node underflow (containing entries fewer than half of
the capacity), the under-flow treatment will be applied (line 6). The under-flow
treatment considers merging with a sibling node first. If the merging can not be
done due to the relatively full occupation of the sibling nodes, entries of the under-
flowed node will be deleted and reinserted into the tree.

A query update is processed as follows. First, we search the TPRQ-tree to
locate the leaf node containing the query. If the query with the new parameters is
still covered by the MBRs of the leaf node, we will update the query parameters as
well as the speed of the MBRs of this leaf node if the speed needs to be changed
to the new query parameters. If the new query can no longer be included in the

76

current leaf node, we delete the query and treat it as a new query to be inserted
into the tree.

Procedure TPRQ-tree Delete
Input : Q

1. parentNode← TPRQ.search(Q)
2. if parent 6= null then
3. parentNode.remove(Q)
4. updateMBR()
5. if parentNode.numChildren() < QueryRTree.MIN then
6. under f lowTreat(parentNode)

Figure 6.8 Description of the TPRQ-tree Delete Operation

6.3. CONTINUOUS PREDICTIVE LINE QUERY ALGORITHMS
In this section, we present the CPLQ algorithm which consists of two phases:

the initial phase and the maintenance phase. The initial phase computes the query
result that is valid at the query issuing time. The maintenance phase maintains the
query results as time passes.

6.3.1. Initial Phase. Upon receiving a new query from a user u, the
TPRQ-tree will be updated as discussed in Chapter 6.2. Recall that if the new query
coincides with a previously stored query in the TPRQ-tree, there is no need to
execute this query again. Instead, the stored query results will be directly returned
to the user u, and hence repeated query execution is avoided. This is one of the
advantages of the TPRQ-tree. In practice, it can be expected that many people
might be interested in some particular road segments. That could be because the
road segments often have traffic congestion issues, or they are the hubs for many
popular destinations. Thus, in this kind of situation, using the TPRQ-tree to group
the same users with respect to the same query helps save on query cost.

If the new query cannot be found in the TPRQ-tree, we will first insert the
new query into the tree, and then execute a snapshot predictive line query [65] to
identify those moving objects that may enter the query road segment at the query
time based on their current movement functions. These initial query results will be
reported to the user and stored along with the new query in the TPRQ-tree. Due to

77

the characteristics of mobile objects, the initial query results will need to be revised
during the subsequent maintenance phase until the query expires.

6.3.2. Maintenance Phase. The query results computed at the initial phase
may need to be updated upon changes of some vehicles’ travel plans as shown in
Figure 6.1.

If a vehicle changes its moving direction or speed dramatically, the vehicle
will send an update to the server. Upon receiving the update message, the server
performs two tasks. The first task is to update the object in the RD-tree [65]. The
second task is to check if the update affects existing queries by answering the
following two questions: (1) Is this object currently included in any existing query
result? (2) Is this object going to be in some queries results’ after the update? Given
an object update and one query, there are four cases for the above two questions:

1. The object is included in the query result, and is still the query result after the
update.

2. The object is included in the query result but will no longer be a valid query
result after the update.

3. The object is not included in the query result but will become the query result
after the update.

4. The object is not included in the query result and will also not be the query
result after the update.

Among these four cases, only the second and third cases influence the query
results. In the second case, we need to remove the updated object from the
affected query results; while in the third case, we need to add the object to the
affected query results. The challenge is how to efficiently categorize each update
message into one of the four cases against all existing CPL queries. A brute-force
approach that scans all the queries and checks if the object is in or is expected
to appear in their query results is obviously time consuming since an object
may just affect a small set of existing queries. Therefore, to reduce unnecessary
comparisons, we leveraged the proposed TPRQ-tree and proposed three query
maintenance algorithms with increasing performance achievements: (1) solo-
update maintenance; (2) solo-object maintenance; (3) batch-object maintenance.

78

The details of the three maintenance algorithms are presented in the following
subsections.

6.3.2.1. Solo-update (SU) maintenance. The solo-update (SU) maintenance
algorithm considers the update of an object information as two parts separately:
the deletion of the old object information and the insertion of new object informa-
tion. Correspondingly, the SU algorithm conducts two searches on the TPRQ-tree
for each object update. The first search looks for a set of CPL queries (denoted as
Qold) which the object belonged to at the object’s previous update timestamp told;
the second search looks for a set of CPL queries (denoted as Qnew) to which the
object will belong to after its update at the current timestamp tnew. Note that in the
case when a new object joins the system (an insertion only), the first search will be
skipped and only the second search will be executed. In contrast, when an object
exits the system (a deletion only), only the first search will be executed.

To obtain the query set Qold, we start the search from the top of the TPRQ-tree.
For each entry of the visited internal tree node, we compute its MBR at told.
Recall that MBRs and influence regions stored in the TPRQ-tree are associated with
shrinking speed. Therefore, to obtain the MBR at told, we need to expand it on all
the four directions by MBRspeed · (tu − told), where tu is the last time that the MBR
is updated. Then, we check if the old object position falls into the expanded MBR.
If so, that means this object may be included in the CPL queries stored under the
children leaf nodes of this entry. Therefore, we will further check the children
nodes of this entry in the similar way.

When the search reaches the leaf node, we do not simply scan all the query
results associated with each query in this node because it could be time consuming.
Instead, we take the advantage of the object travel destination and the influence
region to prune queries that definitely do not contain the old object position. First,
we prune the CPL queries whose query road segments are not on the traveling
direction of the object according to its old travel destination. Then we compute the
influence regions of the remaining queries at told. The center of the old influence
region is the same as the one stored in the tree, while the inner radius (rold inner)
and the outer radius (rold outer) are computed based on the inner/outer speed
multiplied by the time difference as shown in Equations 10 and 11, respectively.
If the old object position is within the old influence region of the CPL query, that
means this object may be included in the corresponding CPL query. Then, we
further check the actual query results of this query and remove the object if found.

79

Moreover, the speed of the influence regions of the affected CPL queries and the
MBRs in their ancestor nodes may need to be recalculated if the deleted object
contributes to the minimum or maximum shrinking speed.

rold inner = RoadDist(speedmin · (tq − told)) (10)

rold outer = RoadDist(speedmax · (tq − told)) (11)

An example of computing Qold is illustrated in Figure 6.9 which shows an
object’s old position (the black circular point), its old destination (denoted as a
star) and the influence regions of five CPL queries (a, b, c, d, e) at told. Queries a, b
and c are pruned using the object’s old travel destination since they are not in the
traveling direction of the object. Then, the influence regions at told of queries d and
e are computed. Since the object is located in both queries’ influence regions, the
result lists of the two queries will both be checked.

The process for identifying the query set Qnew is very similar to that for Qold.
The main differences are the computations of the MBRs and the influence regions
used during the search. Since tnew is after tu (the latest update time of the MBR),
the MBR at tnew is computed by shrinking the stored MBR at four directions by
MBRspeed · (tnew − tu). The influence regions of CPL queries at tnew is computed
based on the following equations.

rnew inner = RoadDist(speedmin · (tq − tnew)) (12)

rnew outer = RoadDist(speedmax · (tq − tnew)) (13)

Figure 6.9 Influence Regions at told in a Leaf Node of the TPRQ-tree

80

For each CPL query in the obtained Qnew, we add the object’s new position
to its query result. Also, the speeds of the influence regions of the queries in the
Qnew and the MBRs of their ancestor nodes may need to be updated based on this
object’s new speed.

Finally, we record the number of changes for each query result during the
object update. If the number exceeds the specified threshold ρ, the server will
return the latest query results to the query issuer. An outline of the SU maintenance
algorithm is given in Figure 6.10, and Figure 6.11 outlines the algorithm to check
the overlap of the point and the node-MBR.

Procedure SU Maintenance
Input : told, xold, yold, desold, tnew, xnew, ynew, desnew, vId
Output : Qnew and Qold

1. if told is not NULL then
2. Qold ← isContainPoint(told, xold, yold, TPRQ.root)
3. DeleteOldResult(Qold, vId)
4. if tnew is not NULL then
5. Qnew ← isContainPoint(tnew, xnew, ynew, TPRQ.root)
6. InsertNewResrult(Qnew, vId)
7. Report updated query results to the user

Figure 6.10 Description of the Solo-Update Maintenance Algorithm

6.3.2.2. Solo-object (SO) maintenance. In general, an object’s new and
old positions in the same update message are relatively close to one another since
they share two consecutive positions on the object’s path and are bounded by the
maximum moving speed multiplied by the maximum update interval. Therefore,
the new and old positions in an object’s single update message are very likely to
be covered by the influence regions of the same or nearby CPL queries. In other
words, these two positions may affect the CPL queries stored in the same or sibling
nodes in the TPRQ-tree. Based on this observation, we propose the solo-object (SO)
maintenance algorithm that considers the object update message as a whole and
computes the two sets of CPL queries affected by the update (i.e., Qnew and Qold)
simultaneously in one round of the search in the TPRQ-tree.

The SO algorithm is expected to be more efficient than the previous discussed
SU algorithm because the SU algorithm carries out two rounds of the search

81

Procedure isContainPoint()
Input : t, x, y, destination, root
Output : Q

1. node← root
2. Q← empty
3. nodeList← {node}
4. while node not lea f node do
5. for each entry ent ∈ node do
6. MBR← compute ent.MBR at time t
7. if (x, y) is in MBR then
8. nodeList← nodeList

⋃{ent.child} − {node}
9. node← nodeList[0]
10. while nodeList not empty do
11. for each entry ent ∈ node do
12. if ent.CPL is on the object′s destination then
13. IR← compute the influence region of ent.CPL at time t
14. if (x, y)isinIR then
15. if (x,y) is included in the ent.CPL then
16. Q← Q

⋃
ent

17. return Q

Figure 6.11 Description of the IsContainPoints() Algorithm

separately (for the new and the old positions) to identify the two sets of CPL
queries, which may visit the visit the same tree nodes repeatedly.

Figure 6.12 presents an outline of the SO maintenance strategy. In particular,
we start the search from the root of the TPRQ-tree. For each entry of the visited
internal node, we compute its MBRs at told and tnew, respectively, similar to the
computation discussed in the SU algorithm. If the object’s old or new position is
covered by the MBRs, the child node of this entry will be added for checking as
well. Until the leaf level is reached, the influence regions of the CPL queries stored
in the visited entries will be computed at told and tnew, respectively. Then, the old
and new positions will be compared against the respective influence regions. If the
old position is included in the influence region of a CPL query, the old position will
be removed from the query result. If the new position contributes to a CPL query,
the new position will be inserted into the query result. Next, the shrinking speeds
of influence regions of all the updated CPL queries will be recalculated. The MBRs
of the ancestors of the updated entries will be recomputed as well. At the end, if
the query results have been changed significantly (exceeding a certain threshold),
a query update report will be sent back to the query issuers.

82

Procedure SO Maintenance
Input : told, xold, yold, tnew, xnew, ynew, vId

1. Qold ← empty
2. Qnew ← empty
3. node← root
4. nodeList← {node}
5. while node not lea f node do
6. for each entry ent of the node do
7. MBRold ← computee.MBRattimetold
8. MBRnew ← computee.MBRattimetnew
9. if (oldx, oldy)isinMBRold then
10. nodeList← nodeList

⋃{ent.child}
11. else if (newx, newy) is in MBRnew then
12. nodeList← nodeList

⋃{ent.child}
13. remove node from nodeList
14. node← nodeList[0] \\get the first node in the nodeList
15. NodeUpdateList← empty
16. while nodeList is not empty do \\now check the leaf nodes
17. for each entry ent of the node do
18. if ent.CPL is on the object’s old destination then
19. IRold ← compute the influence region of ent.CPL at time told
20. if (oldx, oldy) is in IRold then
21. if(oldx, oldy) is included in the ent.CPL then
22. remove (oldx, oldy) from ent.CPL
23. NodeUpdateList← NodeUpdateList ∪ ent
24. else if ent.CPL is on the object’s new destination then
25. IRnew ← compute the influence region of ent.CPL at time tnew
26. if(newx, newy) is in IRnew then
27. if(newx, newy) are the new answer to ent.CPL then
28. add (oldx, oldy) to ent.CPL
29. NodeUpdateList← NodeUpdateList ∪ ent
30. Recalculate the IR of entries in NodeUpdateList
31. Update the MBRs of the ancestor nodes of entries in NodeUpdateList
32. Report updated query results to the user

Figure 6.12 Description of the Solo-Object Maintenance Algorithm

83

6.3.2.3. Batch-object maintenance. With the increase of the number
of moving objects, the number of object updates at each timestamp will also
grow larger. Among the large amount of updates that are received at the same
timestamp, it is likely that some are from nearby objects and, hence, they may
influence the same or nearby CPL queries. According to this observation, we
take one step further from the previous SO algorithm by considering all updates
received at one single timestamp as a whole, and propose a batch-object (BO)
maintenance algorithm.

Upon receiving the update messages at a timestamp, the BO algorithm first
conducts two rounds of grouping: (i) grouping objects based on their update
timestamps; (ii) grouping objects based on their location proximity. In the first
round of grouping, the objects’ new positions can be easily grouped together
as they are all at the same current timestamp. The challenging design issue
is the grouping of the objects’ old information. This is because objects which
issue updates at the same time now may have issued their last updates at totally
different timestamps. In other words, the different timestamps associated with the
old positions make these old positions incomparable.

It isn’t possible to directly group the old positions based on only location
proximity while overlooking their update timestamps. To overcome this problem,
we group old positions based on their updated timestamps by putting the old
positions with the same updated timestamp into the same group. So far, we have
obtained one group for the objects’ current positions and multiple groups for the
objects’ old positions. The benefit of the first round of grouping is that it avoided
repeated computation of the MBRs and influenced regions in the TPRQ-tree for
objects falling into the same timestamp. Next, we divided the obtained groups into
sub-groups based on the location proximity. Specifically, we employed a similar
technique in the R∗-tree by constructing MBRs for the nearby objects. For the sake
of clarity in subsequent discussion, we call the MBRs constructed from update
messages, the message-MBRs.

Figure 6.13 illustrates the group formation for a set of object-update mes-
sages. In Figure 6.13(a), the circles denote the old positions and the black points
denote the new positions of six objects: A, B, C, D, E, and F. All these update
messages were received at time tnew. The previous updates of objects A, B, C, D, E
and F were made at time t1, t1, t0, t3, t1, and t3 respectively. Figure 6.13(b) shows
the update messages grouped according to their timestamps. As shown in the
figure, new positions form a single group as they all have the same timestamp.

84

(a) Object’s New and
Old Positions

(b) Object Grouping
based on Timestamps

(c) Message-MBRs

Figure 6.13 Group Formation for a Set of Update Messages

Old information, however, forms three different groups with object C in the first
group, objects A, B and E in the second group, and objects D and F in the third
group. Then, Figure 6.13(c) shows the message-MBRs of further partitioning of the
three groups based on their location proximity.

After the grouping, the next step of the SO algorithm is to search the
TPRQ-tree to find the CPL queries that overlap with the message-MBRs, i.e., to
find the CPL queries that may be affected by this set of object updates. Here, if we
search each message-MBR in the TPRQ-tree, repeated node accesses will still be
exist. For example, suppose that the received update messages form two message-
MBRs. Figure 6.14(a) and 6.14(b) show the search of the first and second message-
MBRs, respectively, where the dashed rectangles denote the message-MBRs and
the number is the count of the page accesses).

As shown, the two searches accessed the same tree nodes consecutively and
resulted in a total of eight total node accesses. If the two searches are carried
out simultaneously as shown in Figure 6.14(c), the repeated node accesses can
be avoided and the cost will be cut in half. Therefore, in our BO algorithm, we
consider all message-MBRs against the MBR in the same tree node to ensure that
each tree node is not to be accessed more than once for a set of updates received at
the same timestamp.

Also noticeable is that not all message-MBRs overlap with the MBR of the
examined tree node. Figure 6.15 illustrates this kind of situation, whereby the
two message-MBRs M1 and M2 overlap with different nodes in the TPRQ-tree.

85

(a) Tree Search for 1st message-MBR (b) Tree Search for 2nd Message-MBR

(c) Tree Search for Two Simultaneous Message-
MBRs (Node Accesses = 4)

Figure 6.14 Different Strategies for Searching the Message-MBRs

If a message-MBR does not overlap with the MBR of a node in the TPRQ-tree,
there is no need to further consider this message-MBR under the branches of this
tree node. Our BO algorithm leverages this pruning criteria which greatly reduces
the amount of comparison as well as the computation of the MBRs and influence
regions needed for the comparison.

Figure 6.15 Message-MBRs Overlapping with MBRs in the TPRQ-tree

86

An overview of the BO algorithm is shown in Figure 6.16. First, the message-
MBR are obtained (line 2–3). Then, the search starts from the root of the TPRQ-tree
(line 4). For each visited internal node, we check the flags of all the message-MBR
to see if this node’s parent overlaps with the message-MBRs. If so, we further
compare this message-MBR with the MBRs of each entry in the examined node.
Flags are updated for the children node of each entry after the comparison (line
13). As for the leaf (line 16–27) node, we also check the flags first. For the candidate
CPLQs obtained from the search, we finally evaluate the query against the actual
object position in the update message to adjust the query results similarly to that
in the previous two maintenance algorithms.

6.4. QUERY COST ANALYSIS
The CPL query algorithms consist of two phases: the initial phase and the

maintenance phase. At the initial phase, a snapshot predictive line query is
executed. The cost of this snapshot query has been analyzed in [65]. Moreover,
all the proposed three algorithms share the same initial phase, but they differ in
the maintenance phase. Therefore, we focus on the analysis of the maintenance
cost in this section.

In our cost analysis, we assume that both moving objects and querying road
segments are uniformly distributed in the space being considered. Without loss of
generality, we also assume that all moving objects are alive during the life time of
the queries and all the queries considered are issued at the same timestamp with
the same life-time length. We estimate the average maintenance cost in terms of the
number node accesses (or disk page accesses assuming one node per disk page).
Specifically, the average maintenance cost per query per timestamp is computed
as the total number of disk page accesses (Costtotal) divided by the product of the
total number of CPL queries (Nq) and the total timestamps (T) during the query
life time, which can be expressed as:

Cost =
Costtotal

Nq · T
(14)

6.4.1. Cost of Solo-Update (SU) Maintenance. To obtain the average
maintenance cost according to Equation 14, we only need to estimate the unknown
value, i.e., Costtotal. The total number of page accesses (Costtotal) during the query

87

Procedure BO Maintenance Algorithm
Inputs : updates: a set of update messages received at the same time stamp
Outputs : QResult

1. G← groups of object updates at the same timestamp
2. for each group G do
3. message-MBR← group objects in G according to location proximity
4. node← root of the TPRQ-tree
5. nodelist← {node}
6. while node is not the leafnode do
7. for each message-MBR do
8. if flag(node, message-MBR) is true then

\\this node’s parent overlaps with the message MBR
9. for each entry in node do
10. compute the MBR at the message-MBR’s timestamp
11. if MBR overlaps with the message-MBR then
12. add this entry’s child node to the NodeList
13. set the f lag(entry.child, message-MBR) to true
14. remove node from nodeList
15. node← nodeList[0] \\get the first node in the nodeList
16. while nodeList is not empty do
17. for each entry in the node do
18. for each message-MBR do
19. if f lag(node, message-MBR) is true then
20. compute the IR at the message-MBR’s timestamp
21. for each position contributes in message-MBR do
22. if the position is in IR and position is included in the ent.CPL then
23. if message-MBR’s timestamp is the new timestamp then
24. add position to ent.CPL
25. else
26. remove position from ent.CPL
27. NodeUpdateList← NodeUpdateList ∪ ent
28. Recalculate the IR of entries in NodeUpdateList
29. Update the MBRs of the ancestor nodes of entries in NodeUpdateList
30. Report updated query results to the user

Figure 6.16 Description of the Batch-Object Maintenance Algorithm

life time using the SU algorithm is the multiplication of two factors: the number
of times that the TPRQ-tree is accessed and the number of page accesses per tree
access.

The number of times that the TPRQ-tree is accessed is twice that of the total
number of update messages in the system. This is because the SU maintenance
approach treats one update message as a deletion followed by an insertion. Let

88

mi denote the total number of update messages from an object i during the query
life time T. The total number of update messages in the system is computed as
ΣN

i=1(mi), where N is the total number of objects. Then, the total number of tree
accesses (denoted as Totalta) by the SU algorithm is 2× ΣN

i=1(mi).
The second step is to estimate the cost of searching the TPRQ-tree for a single

operation (either a deletion or an insertion). Given an object’s old or new position,
the average number of CPL queries whose influence regions may contain this
position is determined by the area of the influence region at the update timestamp
and the density of the queries in the space being considered. The area covered by
the outer circle of an influence region at the query update timestamp tu is estimated
as Π · [(T− tu) · SpeedMax]2, where (T− tu) · SpeedMax is the outer radius rout of
the influence region at tu. Since tu evolves from time 0 to T, the average area of the

influence region (denoted as AreaIR) during T is the integration
∫ T

0 Π·routdt
T which is

equal to the following:

AreaIR =
Π · (SpeedMax)2 · T2

3
Take the object position as the center and draw a circle of the size of AreaIR as

illustrated in Figure 6.17, where the dark point in the center represents the object
O’s position and the circles drawn in solid lines represent the outer circle of the
CPL queries’ influence regions. If the CPL query road segment intersects with the
object’s circle, this query’s influence region may contain the object. In other words,
the CPL query whose querying road segments are in the shaded area should be
considered.

Next, we estimate the number of queries that may fall into the object’s influ-
ence circle. Assuming the road segments being queried are uniformly distributed,
the number of CPL queries per unit area is Densityquery = Nq/Areatotal. Thus, the
number of queries in the object’s influence circle is the multiplication of the area of
the influence circle and the density, which is nq = AreaIR ·Densityquery. Since these
nq queries are close to one another, they are likely to be stored close to one another
in the TPRQ-tree as well. Therefore, the average number of leaf nodes containing
the nq queries is estimated as nq/ f , where f is the fanout (i.e., average number
of entries per node) of the TPRQ-tree. The number of the parent nodes of the leaf
nodes containing these nq queries is estimated as nq/ f 2. In general, the number
of nodes accessed at the level l of the tree is e (nq/ f l), where the level of the leaf
node is 1. After summing up the node accesses at each level, we obtained the total

89

Figure 6.17 Example of the CPL Queries that may Contain the Object

number of node accesses during one round of the tree search: Ctree =
h
∑

l=1
(nq/(f l)),

where h is the height of the tree.
Finally, we can compute the average query cost of the SU maintenance as

follows:

Costsu =
Totalta · Ctree

Nq
(15)

=
2× ΣN

i=1(mi) ·Π · (SpeedMax) · T)2 · (1− (1/ f h))

3 · (f − 1) · AreaTotal
(16)

6.4.2. Cost of Solo-Object (SO) Maintenance. The SO cost analysis follows
the same procedure as that of the SU. The SO algorithm also utilizes Equation 14.
To find the total cost for the entire query life time, the number of tree accesses
during the query life time and the average page accesses for a tree access must be
estimated.

The SO algorithm accesses the TPRQ-tree each time it receives an update
message (Figure 6.12). Furthermore, it compares the entire update message against
the TPRQ-tree. Thus, the number of tree accesses in SO is simply the total number
of update messages: ΣN

i=1(mi).
The search cost for one tree access (i.e., for an update message) for the SO

algorithm is also estimated using the same calculation method used for the SU

90

algorithm. Thus, we first find the area where the object can influence query results
as shown in Figure 6.18. The small circles at the center of the bigger circles are the
object’s new and old positions. The bigger circles represent the maximum query
overlap area of each position. The distance between two positions is d. The total
query-affected area is the area covered by the boundaries of the two circles: (2Π ·
r2

out) − (r2
out · arccos(d

2rout
)) and the average query-affected area over the T time

period is

AreaIR,SO =

∫ T
0 (2Π · r2

out)− (r2
out · arccos(d

2·rout
))dt

T
,

which is equivalent to:

[2 ·Π · s2 · T2]− [
s2 · T2 · arccos(d

2·s·T)
2

] + [
d

6s2T
· ((u

1.5
T − u1.5

0)

3
+

d2 · (u0.5
T − u0.5

0)

4
)]

where s is the SpeedMax, and ui = (SpeedMax · t)2 − (d2

4); i ∈ {0, T}.

Figure 6.18 Maximum Query Overlapping Area Corresponding to One Update
Message

The number of queries in the influence region nq,SO is AreaIR,SO ·Densityquery.
Following the same procedure as in SU cost analysis, the total number of node
accesses during one round of tree search Ctree,SO is obtained as: Ctree,SO =

h
∑

l=1
(nq/(f l)) (h is the height of the tree). Then the average query cost of SU

maintenance becomes:

Costso =
ΣN

i=1(mi) · AreaIR,SO · (1− (1/ f h))

(f − 1) · AreaTotal
(17)

91

Theorem 1. The maintenance cost of the SO algorithm is always no greater than the cost
of the SU algorithm.

Proof. The worst case of the SO algorithm is obtained when each point accesses
entirely different tree nodes. This means that no overlap between the circles
showed in Figure 6.18 exists. When there is no overlap between circles, d becomes
zero and the area covered by two circles (i.e, AreaIR,SO) becomes (2Π · r2

out). When
the value of AreaIR,SO is plugged on Equation 17, it is simplified to Equation 16,
which is the cost for SU algorithm.

6.4.3. Cost of Batch-Object (BO) Maintenance. The BO algorithm also
needs to find the number of tree accesses and the number of page accesses per
each tree accessed to estimate the Costtotal in Equation 14.

The number of tree accesses in BO algorithm depends on the number of
distinct timestamps at which update messages are initiated, because, the BO
algorithm groups update messages received at the same timestamp and access
the tree only once per all messages in the same timestamp. Thus, assuming the
number of distinct update message timestamps are Nts, the TPRQ-tree accesses is
also Nts.

The average page accesses per each tree access depends on the number of
subgroups and their MBR extent. Figure 6.19(a) shows a subgroup whose MBR
dimensions are d1 x d2 with a maximum query overlap area. The MBR of the
subgroup is represented by the filled rectangle and the maximum distance to a
query road segment from the MBR boundary is the rout. The area covered by the
dashed-line shape is the influence region of the MBR. Its area is calculated as
follows:

ai = (d1 · d2) + 2(di1 · rout) + 2(di2 · rout) + Πr2
out. (18)

Since all MBRs are compared simultaneously against each tree node, repet-
itive node accesses are not counted. The page accesses per one tree-search is the
total distinct node accesses on the TPRQ-tree. This means that the common areas
in different query influence regions should be counted only once. Figure 6.19(b)
shows an example of overlapped query-influence areas. This area is given in
Equation 19.

92

n−1

∑
i=0

ai −
n−2

∑
i=0

n−1

∑
j=i+1

Overlapi,j (19)

The answer to this calculation is approximated to the area of the MBR covered
by all round-cornered rectangles AreaIR,BO (Figure 6.19(b)). Then the average
number of queries that can overlap with the area is:

nq,BO = AreaIR,BO · Densityquery (20)

Following the same cost estimation steps as in the SU and SO cost analysis,
the average BO maintenance cost becomes:

CostBO =
Nts · AreaupdateMBR · (1− (1/ f h))

(f − 1) · AreaTotal
(21)

Theorem 2. The maintenance cost of the BO algorithm is always less than the cost of the
SO algorithm.

Proof. The worst case of MO algorithm is obtained, when each MBR accesses
distinct tree nodes. To have distinct node accesses, no overlap should exist among
MBRs. This can be explained with Equation 19. According to 19, when Overlapi,j

(a) for a sub-group of same time
stamped positions

(b) for a group of sub-groups

Figure 6.19 Maximum Query-overlap Area

93

∀i, j is zero, the maximum effective area is obtained and it is simply the summation
of all MBRs areas.

Then, let us consider the number of elements in a group is elementsg. Hence,
Nts in Equation 21 can be re-written as Totalmessages/elementsg. The number of
subgroups also can be obtained in terms of elementsg. For that, assume the average
number of elements in a subgroup to be elementssg. Then, the average number
of subgroups n = 1 + (elementsg/elementssg). The maximum aggregated area
of MBRs is obtained when n is large. The largest n is obtained when elementsg

is largest and elementssg is the smallest. The smallest possible elementssg is one.
When, elementssg is one, each ai in Equation 19 becomes Πr2

out, according to
Equation 18. With the deduced parameter values Equation 21 can be simplified
as follows:

CostBO =

Totalmessages
elementsg

·
elementsg+1

∑
i=0

Πr2
out · (1− (1/ f h))

(f − 1) · AreaTotal

In this equation, when elementsg = 1, cost for SO algorithm is obtained. To
sum up, the BO algorithm obtains the SO maintenance cost, when: (i) no overlaps
between subgroups exists, (ii) the number of objects in one group is one, and (iii)
the number of elements in sub groups is one (i.e., two subgroups in the group).

6.5. PERFORMANCE STUDY
The proposed algorithms were evaluated on moving object data sets gener-

ated by the Brinkhoff generator [64]. The moving object datasets were generated
using four real road maps selected from different states in United States. The road
maps contain a similar number of road segments, but different topologies. The
number of moving objects in each dataset ranges from 10 k to 100 k.

For each dataset, sets of queries were randomly generated by randomly
selecting a query issuer and its query issuing position. Then the querying road
segment was selected from its path which will be reached by the end of the
predictive query length. The predictive query lengths were ranged from 10 to 60
minutes. The chosen parameters and their values are presented in Table 6.1. The
bold values represents the default value for each parameter.

We compare our proposed approaches with a naive approach that executes
snapshot predictive line queries [65] for every update message. Since the initial
phase of the four approaches are the same in the following, we only report the

94

Table 6.1 Simulation Parameters and Their Values for Continuous PLQ Algorithm

Parameters Values
Buffer YES, NO
Query Percentage 0.5%, 2%, 5%, 20%, 40%, 60%, 80%, 100%
Number of moving objects 10K, 20K, . . . , 50K, 60K, . . . , 100K
Predictive time length 10, 20, 30, 40, 50, 60 (mins)
Road maps Alpine (CA), Charles (MD), Salem (NJ), Worth (MO)

comparison of their maintenance cost. Their performance is measured in terms
of the prediction error rate and the I/O cost. The error rate was computed by
comparing the number of objects in the predictive query results with the actual
number of objects on the query road segment at the query time. The I/O cost is the
number of disk page accesses. The reported I/O cost is the average page accesses
per query per timestamp. It first calculates the average page accesses (averaged
per query and per timestamp) during each 5 minute time interval throughout the
query life time (AvgPg(5min)). The average page accesses for the entire query life
time is, then, calculated by taking the average of all AvgPg(5min)’s in the query
life time.

6.5.1. Maintenance Phase. In the following, we evaluated various factors
that may affect the query performance including time, number of queries, number
of moving objects, predictive length, road topology, and buffer size.

6.5.1.1. Query performance over the query lifetime. First, we evaluated
the performance of the query result maintenance as time passes. We compute the
average maintenance cost and prediction error rate per timestamp within each 5-
minute interval for 30 minutes. Figure 6.20(a) and 6.20(b) report the performance
of the naive approach and the three proposed approaches: Solo-Update (SU), Solo-
Object (SO), and Batch-Object (BO).

From Figure 6.20(a), we can observe that our proposed three algorithms
consistently yield a much lower prediction error than the naive approach. This is
because the naive approach defines the query ring based on the Euclidean distance
to the query road segment [65], whereas the influence regions employed by SU, SO
and BO consider the road distance, which is a more accurate method of estimating
vehicles that may enter the query road segment. In addition, we can also see that
the prediction accuracy of our three algorithms is similar, which is not affected by
the various maintenance algorithms adopted.

95

5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

Query Elapsed Time (mins)

A
ve

ra
ge

Er
ro

r
R

at
e

(%
)

Naïve Approach
Solo-Update
Solo-Object
Batch-Object

(a) Error Rate

5 10 15 20 25 30
0

10

20

30

40

50

60

70

Query Elapsed Time (mins)

Pa
ge

A
cc

es
se

s

Naïve Approach
Solo-Update
Solo-Object
Batch-Object

(b) Query Cost

Figure 6.20 Query Performance Over the Query Life Time

Figure 6.20(b) shows the average maintenance cost. As expected, our
proposed three algorithms all perform better than the naive approach, and the
BO approach performs best. This is because the naive approach needs to execute
each query at every timestamp, which may involve duplicate efforts when there is
no change in results.

The TPRQ-tree, which is utilized by the proposed algorithms, takes object
update messages and checks all affected queries simultaneously, which helps
reduce unnecessary efforts on the query processing significantly. The reason that
the BO approach achieves the least maintenance cost is that the BO approach is
the most aggressive compared to the other two approaches and considers the most
possibilities for simultaneous executions for cost saving.

In addition, the experimental results also demonstrate the evolvement of the
maintenance cost with time. As shown in Figure 6.20(b), the closer to the end of the
query life time (i.e., the time when the query issuer will enter the querying road
segment), the less maintenance cost is needed in general. The possible reason for
such behavior is that the influence regions are shrinking as time passes and hence
the number of objects to be checked become fewer. Note that the BO approach
shows a slight increase of the maintenance cost at the beginning. The reason is
that the BO approach considers all the updates issued at one timestamp and the

96

number of updates are fewer when the system is just starting because the objects
take some time to speed up.

6.5.1.2. Effect of the number of queries. In this round of experiments, we
evaluated the effect of the number of queries on the query performance by varying
the total number of queries from 0.5% of the total number of moving objects to
100%. As shown in Figure 6.21, the naive approach exhibits a relatively stable
performance regardless of the number of queries. This means that the average cost
per query is independent from the total number of queries being executing. Each
query is applied in the same process and on the same tree (RD-tree). Hence, the
cost depends only on the size of the RD-tree, but not the number of queries.

Our proposed SU, SO, and BO approaches, however, access the TPRQ-tree;
furthermore, the number of queries stored in the tree changes the tree structure. In
fact, the number of queries decides the tree fanout (f) and the height of the tree (h).
These two factors directly impact the query maintenance cost. The query cost, in

all three proposed algorithms, is proportional to the expression
1− 1

f h

f−1 . The impact
of h and f is contravened in both the this expression and the average query cost.

For smaller h values, the impact of both f and h is significant. For example,
for 0.5% (250 in count) of queries, all queries can be accommodated in the root;
which means h is one and f is greater (Table 6.2). When the number of queries
is increased up to 2%, the number of tree levels increases and, at the same time,
fanout decreases. Both these changes result to increase the value of the expression.
When h gets bigger, the expression becomes nearly independent of h as 1

f L becomes
insignificant. The expression is, then, left only to f . Hence, as the number of
levels is increased (i.e, higher number of queries), a smooth query cost decrement
is demonstrated.

Table 6.2 TPRQ-tree Structure’s Information

Query Percentage 0.5% 2% 5% 20% 40% 60% 80% 100%
Number of Queries 250 1000 2500 10000 20000 30000 40000 50000
Number of tree levels 1 2 2 2 2 2 2 3
fanout 231 182 159 180 180 174 180 179

6.5.1.3. Effect of buffer utilization. We repeat the set of experiments
conducted in the previous section to see the effect of the buffer utilization.

97

Specifically, we employ a buffer with 50 k capacity and LRU (Least Recently
Used) replacement policy. Figure 6.21(b) reports the query cost for deferent query
percentages with the buffer.5 As the figure shows, the query maintenance cost up
to 20% is essentially a zero and the rest of the query sets shows an increased query
cost. The increased costs are comparable to that in Figure 6.21(c).

0.5 2 5 20 40 60 80 100

1

2

3

4

5

6

7

Query Percentage (%)

A
ve

ra
ge

Er
ro

r
R

at
e

(%
)

Naïve Approach
Solo-Update
Solo-Object
Batch-Object

(a) Error Rate

0.5 2 5 20 40 60 80 100
0
5

10
15
20
25
30
35
40
45
50
55

Query Percentage (%)
Pa

ge
A

cc
es

se
s

Naïve Approach
Solo-Update
Solo-Object
Batch-Object

(b) Page Access (with Cache)

0.5 2 5 20 40 60 80 100

10

20

30

40

50

60

70

Query Percentage (%)

Pa
ge

A
cc

es
se

s

Naïve Approach
Solo-Update
Solo-Object
Batch-Object

(c) Page Access (Without Cache)

Figure 6.21 Effect of Number of Queries

Comparing Figure 6.21(c) with Figure 6.21(b), it is clear that a query per-
formance improvement of up to 20% has occurred due to buffer usage. This is
because, up to 20%, the number of tree nodes in the entire tree structure is less
than 50. This means that the entire tree can be accommodated by the buffer. Thus,
at most, one disk access is made per one tree node. Once the node is stored in the

5Since the accuracy is not affected by the buffer, it is omitted in the discussion

98

buffer, no buffer replacement is required. When the number of nodes in the tree
exceeds the buffer size, the buffer cannot accommodate all necessary tree nodes
simultaneously. Thus, buffer-miss rate increases and hence page access count
increases.

6.5.1.4. Effect of number of moving objects. In this round of experiments,
we evaluated performance based on the number of moving objects increasing from
10 K to 100 K. Figure 6.22(a) shows the average error rate of proposed algorithms
together with the naive approach. As the figure shows, similar to the other cases
reported in early sections, all three algorithms show competitive accuracy. The
error rates, in all approaches, increase slightly with the number of objects. This is
because the more moving objects, the more uncertainty in prediction. However,
our approach always achieves a lower error rate for the same reason discussed in
the previous section.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·105

1

2

3

4

5

6

7

8

Num. of Objects

A
ve

ra
ge

Er
ro

r
R

at
e

(%
)

Naïve Approach
Solo-Update
Solo-Object
Batch-Object

(a) Error Rate

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·105

0

10

20

30

40

50

60

70

80

90

Num. of Objects

Pa
ge

A
cc

es
se

s

Naïve Approach
Solo-Update
Solo-Object
Batch-Object

(b) Page Access

Figure 6.22 Effect of Number of Objects

Figure 6.22(b) shows the query cost of all four algorithms. According to
the graph, one common feature of all the algorithms in this study is that they all
consumed more page accesses when the object count was increased. In the naive
approach, this happens because the RD-tree expands with the higher number of
objects and, hence, the number of node accesses is increased. In the proposed
algorithms, the tree structure remains unchanged, but the number of update
messages compared against the tree is increased.

99

Another vital observation is the naive approach gives the worst query cost for
a lesser number of objects, and it defeats the performance of SU when the number
of objects are increased (approximately at 60k). The reason can be explained as
follows. The page access count in the naive approach depends on two factors: the
size of the RD-tree and the number of update messages received. The expansion
of the RD-tree is slower for higher object counts than the smaller object counts.
This same expansion speed will be applied on the page access count as well.
Additionally, the number of update messages is directly proportional to the access
count, because for each update message, the RD-tree is searched.

However, the SU algorithm also accesses the TPRQ-tree per each update
message. In fact, SU algorithm accesses the TPRQ-tree twice per each message.
So, the SU algorithms’ page access count increases at a faster rate compared to the
naive approach. Similarly, the naive approach and the SO algorithm performance
curves are more likely parallel to each other (i.e., the same rate). This is because,
both naive and SO algorithms access their trees once per each message. The gap
between two plots explains the advantage of the TPRQ-tree over the RD-tree.

The BO algorithm, on the other hand, behaves totally different to the other
approaches and shows extremely better performance. As the figure shows, the BO
algorithm has not been affected by the number of objects as it was in the other
three algorithms, especially when the number of objects was higher. As a matter
of fact, the BO algorithm’s performance depends only on the number of different
time stamps and it is countably finite, within the 30-minute time period. Thus, the
BO shows a bounded query cost independent of the number of objects.

6.5.1.5. Effect of predictive time length. In this set of experiments, the
predictive time length is varied from 10 to 60 minutes. As shown in Figure 6.23(a),
the error rate stayed in a similar range regardless of the predictive time length
for both approaches. The behavior can be explained as follows. For the naive
approach, it executes the query at every timestamp and, hence, any change of
object travel plan will be captured. Similarly, in proposed approaches, the effect of
the object update on the query results at every timestamp is considered.

On the other hand, the predictive time length does affect the query cost as
shown in Figure 6.23(b)). The query cost of the naive approach increases when the
predictive time length is longer. This is because in the naive approach, a bigger ring
query is generated for a longer predictive time length. In the proposed approaches

100

10 20 30 40 50 60

1

2

3

4

5

6

7

8

9

Query Window (mins)

A
ve

ra
ge

Er
ro

r
R

at
e

(%
)

Naïve Approach
Solo-Update
Solo-Object
Batch-Object

(a) Error Rate

10 20 30 40 50 600
10
20
30
40
50
60
70
80
90

100
110
120

Query Window (mins)

Pa
ge

A
cc

es
se

s

Naïve Approach
Solo-Update
Solo-Object
Batch-Object

(b) Page Access

Figure 6.23 Effect of Predictive Time Length

the query cost also increases with the length of the query window; but, at a slower
rate. This is again due to the advantage of the TPRQ-tree utilization.

As explained in Section 6.4, the proposed algorithms’ total query cost
depended on either the number of update messages (for SU and SO) or the number
of different time stamps within the query life time (for BO). The average query cost
for a 5-min time interval depended on the message counts within the 5 minutes.
Thus, no matter how long the predictive query window was, the average query
cost depended on the average number of messages within the query window.

Given a fixed number of objects and (assuming the same mobile patterns
for any query window size) the average number of messages independent on
the query window. The other factor that affected the query cost of the proposed
algorithms was the query influence area: The higher the query window, the higher
the query effective area. Thus, all three proposed approaches experienced slightly
higher query costs with the wider query window.

6.5.1.6. Effect of road topology. This section evaluates the effect of the
road topology by testing different maps: Alpine (CA), Charles (MD), Salem (NJ),
and Worth (MO). The number of edges in each map was 1576, 1766, 1789, and
1573 , respectively, and the average road segment length was 232 m, 370 m, 515
m, and 551 m, respectively. By observing the average error rate of individual
topology in Figure 6.24(a), the overall conclusion tended to confirm that the larger
the number of edges, the lower the error rate. Regarding the page accesses as

101

shown in Figure 6.24(b), our approach was relatively independent of the number of
edges. However, all three algorithms show better performance when the average
road segment length was bigger. This is because, when the road segments are
lengthier, the update messages time interval is more spaced out (further apart).
Thus, algorithms handle less update messages.

Alpine Charles Salem Worth
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6

Query Window (mins)

A
ve

ra
ge

Er
ro

r
R

at
e

(%
)

Naïve Approach
Solo-Update
Solo-Object
Batch-Object

(a) Error Rate

Alpine Charles Salem Worth
0

10

20

30

40

50

60

70

80

90

100

Query Window (mins)
Pa

ge
A

cc
es

se
s

Naïve Approach
Solo-Update
Solo-Object
Batch-Object

(b) Page Access

Figure 6.24 Effect of Road Topology

6.5.2. Cost Model Evaluation. This section validates the cost model
discussed in Section 6.4 for maintenance cost of the proposed three algorithms.
The evaluation was performed based on Equations 16, 17, and 21. Figure 6.25
compares the estimated cost computed from the cost model with the experimental
results obtained from the proposed three maintenance algorithms. Figure 6.25(a)
shows the effect of the number of objects. In this case, the cost model’s error rate
is below 10%. Figure 6.25(b) shows the effect of the number queries, whereby
the estimation is getting close to the actual cost with the increase of the number
of queries. The reason is straightforward. The cost model is developed based on
uniform distribution of queries and when there are more queries, their distribution
will be closer to uniform distribution.

Figure 6.25(c) shows the comparison of the estimated cost and the actual
cost in the case when the predictive query length is varied. Again, we can see
that the cost model yields an error of around 10%. Finally, Figure 6.25(d) reports
the comparison results when testing different map topologies which also shows

102

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·105

0

10

20

30

40

50

60

70

80

90

Num. of Objects

Pa
ge

A
cc

es
se

s

Solo-Update
Solo-Update-Model
Solo-Object
Solo-Object-Object
Batch-Object
Batch-Object-Model

(a) Number of Objects

0.5 2 5 20 40 60 80 100

10

20

30

40

50

60

70

Query Percentage (%)

Pa
ge

A
cc

es
se

s

Solo-Update
Solo-Update-Model
Solo-Object
Solo-Object-Object
Batch-Object
Batch-Object-Model

(b) Query Percentage

10 20 30 40 50 60
5

10
15
20
25
30
35
40
45
50
55
60
65

Query Window (mins)

Pa
ge

A
cc

es
se

s

Solo-Update
Solo-Update-Model
Solo-Object
Solo-Object-Object
Batch-Object
Batch-Object-Model

(c) Query Predictive Length

Alpine Charles Salem Worth
0

10

20

30

40

50

60

70

80

Topology

Pa
ge

A
cc

es
se

s

Solo-Update
Solo-Update-Model
Solo-Object
Solo-Object-Object
Batch-Object
Batch-Object-Model

(d) Topology

Figure 6.25 Cost Model Validation

comparatively good accuracy of the cost model. To sum up, our cost model
achieved around 90% accuracy in most cases.

6.6. SUMMARY
This chapter addressed the effect of temporal domain on SPLQs result.

Specifically, this chapter presented an efficient and effective method to track
changes over time in SPLQ result which will be reported to the issuer if any
significant change of the prediction is identified. The proposed method utilizes
a novel indexing structure, namely TPRQ-tree, to index query information. Three
algorithms were also proposed to efficiently manage the update messages with the
aid of the information in the TPRQ-tree. The TPRQ-tree maintains each query’s

103

Influence Region, which covers the set of objects that will enter into the query
segment at the query time. Three algorithms composed of two phases: initial
phase and maintenance phase. The initial phase finds the SPLQ result and the
maintenance phase maintains it. Three algorithms (Solo-Update, Solo-Object, and
Batch-Object) employ different techniques to handle update messages and see
its impact on the initial result. Solo-Update maintenance algorithm handles the
deletion and the insertion of new object information separately while the Solo-
Object maintenance algorithm considers both deletion and insertion together. The
Batch-Object maintenance algorithm, on the other hand, handles update messages
group-wise.

All three algorithms perform better than the naive approach, which repeat-
edly executes the initial phase. Among three proposed algorithms, the Batch-
Object maintenance algorithm shows the best performance.

104

7. PREDICTIVE DENSITY QUERIES

This chapter explores solutions to the traffic congestion problem by providing
information to users on possible future traffic congestions. Predicting traffic
information based on the current and future traffic contributors’ behavior, using
Continuous Predictive Line Query (CPLQ), presents travelers with influential infor-
mation to evade possible traffic en-route. However, CPLQs are demand-driven
queries, i.e., the user specifies a road of interest to him/her and the query returns
predicted traffic condition of the demanded road segment at the estimated time
that the user specifies, and may not produce the most relevant query information
due to their inherent discrete nature. Thus, the key contributions of this chapter
are:

• to redefine the density query and introduce Predictive Density Query (PDQ)
to provide more relevant, realistic, and reliable query results that takes road
network into account to provide predictive traffic information;

• to design and implement an efficient query processing algorithm for predic-
tive traffic information; and

• to perform extensive experimental study and analysis to evaluate the pro-
posed algorithm.

Drawbacks of on-demand type queries are best exemplified using an example
as follows. Consider Figure 7.1 that shows a PLQ request for road segment AB.
Here, the filled circles represent mobile objects, the rectangles surrounding the
circles represent high density road segments, and arrows beside mobile objects
represent its moving direction. A snapshot of vehicles at t0 is illustrated in Figure
7.1(a), and the predicted vehicle information at time t1 and at time t2 are shown in
Figures 7.1(b) and 7.1(c) respectively.

As shown, the predicted mobility information at t2 acts in favor of two
potential dense areas: DS1 (on AB); and DS2. This, however, is not a realistic
traffic congestion since a traffic congestion at some other road segment a priori,
DS3 at t1 for example, could influence the vehicles to deviate from their previously
reported (e.g., the destination) or inferred (e.g., the shortest path) information. As a
result, the traffic congestion predicted for AB on t2 would not take place, resulting

105

in either a congestion on a different road segment or no congestion on the network
at time t2 due to the detours.

A more practical scenario is explained in Figure 7.2. Due to the dense road
segment DS3, some vehicles (which are moving on the road segments covered
by the shaded area) would not be able to continue on their previously planned
path as expected. As a result, road DS1 would not be dense. DS2, however,
might remain unchanged. This scenario explains that predicting dense areas on
a given timestamp could be inaccurate unless the influence of former possible
dense areas are taken into consideration. Consequently, evaluating traffic on
arbitrary timestamps (e.g., user defined query timestamps), makes the prediction
ineffective.

(a) A snapshot of vehicles at t0 (b) Predicted Traffic Informa-
tion at t1

(c) Predicted Traffic Informa-
tion at t2

Figure 7.1 Predicted Traffic Information on Different timestamps

The closest query type that provides proactive-based predicted traffic infor-
mation is the density query; the density query presents information on regions with
more vehicles than a certain threshold. However, density query solutions simply
consider the object’s mobility on the Euclidean space thus not based on real world
settings.

This chapter augments both demand-based queries and density queries by
proposing a novel proactive query type named the Predictive Density Query
(PDQ). In short, the term mutually independent refers to the dense road segments
where one road segment’s density does not influence another road segment’s
density (the formal definition can be found in Section 7.1). PDQ improves
upon density queries by considering road networks under constraint rather than
assuming an Euclidean space.

106

(a) A snapshot of vehicles at t0 (b) Proposed Approach with
Quarantine Area at t1

(c) Proposed Approach with
Quarantine Area at Time t2(>
t1)

Figure 7.2 Influence of Prior Dense Areas on Later Dense Areas

The PDQ identifies the earliest dense road segments that are mutually
independent. The term earliest means that the query process excludes two types
of follow-up dense areas: (i) possible upcoming dense road segments that were
already identified as dense before; and (ii) newly formed dense road segment
occurrences due to the influence of an previous dense area. The first case is
considered because the dense road segments are already at full road capacity
hence, cannot be assumed to carry any through-traffic until the situation is
resolved. The second case is considered due to the fact that the vehicles’ reactions
for a future condition has not been yet reported and hence unknown.

The rest of the chapter is organized as follows. Section 7.1 formally defines
the density query problem. Section 7.2 and 7.3 present the utilized index structure
and query algorithms, respectively. Section 7.4 reports the experimental results.
The chapter is summarized in Section 7.5.

7.1. DEFINITIONS
Without loss of generality, the definition of density query assumes uni-

directional or bi-directional roads with separate lanes for each direction. In
other words, it is assumed that the high traffic density of one direction does not
affect the traffic on the other direction. Under this assumption, in what follows
presents definitions for Density, Dense Road Segment, Mutually Independent Dense
Road Segments, and Density Query.

107

Definition 6. [Density] The density of a road segment r is represented as density(r) =

N/m ∗ len(r), where N is the number of objects on r, len(r) is the length of road segment
r, and m is the number of lanes.

Definition 7. [Dense Road Segment (DRS)] Given a density threshold ρ and a road
segment s, the road segment s is dense, if and only if the density is greater than the threshold
ρ.

Definition 8. [Mutually Independent Dense Road Segments (MIDRS)] Given any two
dense road segments Ra and Rb with occurrence times ta and tb, respectively, Ra and Rb

are mutually independent dense road segments, if

1. Oa ∩Qb = 0, where Oi is the engaged object set of density on Ri, i ∈ (a, b) and

2. Network distance between the closer end-points of Ra and Rb are greater than a
threshold σ.

Here, the first condition is used to ensure that only concurrent dense road
segments are considered; dense road segments caused by the vehicles that have
already been accounted for in antecedent dense road segment are excluded from
considered mutually independent. For example, only the earliest dense road
segment of a chain of dense segments is considered. The second condition ensures
to avoid considering any subsequent dense road segment developed due to a
previous density propagation. For example, vehicles moving on a road segment,
say Ra, may change their route and avoid traveling through Ra due a predicted
congestion and consequently contribute to a new congetion on Rb. In such a case,
the second condition discards new road segment Rb.

Definition 9. [Predictive Density Query (PDQ)] Given a road map G and a time window
tmax, a Predictive Density Query (PDQ) gives a list of predicted mutually independent
dense road segments {DS1, DS2, DS3, ..., DSn}, where the occurrence times t1 ≤ t2 ≤
t3 ≤ · · · ≤ tn(tn ≤ tmax); ti is the occurrence time of DSi.

7.2. DATA STRUCTURE
Predictive Density Query (PDQ) utilizes an indexing structure that maintains

both the network and mobile object information, and a two dimensional histogram
which maintains the vehicle count of the cell for discrete timestamps. The PDQ
can be supported by any indexing structure that supports predictive queries on
objects moving under road network constrains, such as IMORS (Indexing Moving

108

Objects on road sectors) [15], the ANR-tree (Adaptive Network R-tree) [17], the
R-TPR±-tree [36], and the TPRuv [38]. The proposed algorithm utilizes a recently
proposed, efficient mobile object indexing structure, the RD-tree [65], to index the
road networks and moving objects.

The RD-tree6 indexes the road segments in its R*-tree where the object
information is indexed with respect to the road segment. The two-dimensional
histogram comprises of squared shaped cells that covers the road network. The
cells maintain the counts of moving objects that might cross the cell within the time
period [tnow; tnow + H] for equally calibrated timestamps; here H is the horizon –
the time window in which the prediction is valid. The histogram is initialized
according to the moving object’s estimated traveling path.

7.3. QUERY ALGORITHM
The query algorithm consists of three phases – filtering, refinement, and

refreshing – that are explained below.

7.3.1. The Filtering Phase. The filtering phase utilizes the histogram to
extract out the most potential grid cells that may contain dense road segments (see
Figure 7.3). The extracted cells are enqueued into a priority queue. The priority
of the queue is decided according to, first, the timestamp and, next, the adjusted
density. The adjusted density for time ti (densityi) is calculated as:

number o f objects in the cell at ti

total length o f road segments in the cell

The cell en-queuing process first accesses the histogram values of every
cell for the same timestamp (line 2-3) and calculates its adjusted density (line 6).
Each calculated adjusted density is compared with the system parameter cell
density threshold (line 7-8). The ones that surpasses the threshold comparison
are enqueued to a priority queue. The same process is performed for the all of the
timestamps from the smallest (i.e., the earliest) to the highest.

Figure 7.4 illustrates an example of en-queuing process of the cells. Figure
7.4(a) shows each cell’s histogram followed by the total length of road segments in
the cell. For example, [8, 12, 7, 3] in cell A is the histogram and [4] is the total
length of road segments covered by cell A. Figure 7.4(b) shows the placement of the
candidate cells in the priority queue selected based on the histogram information

6RD-tree was discussed in details in Chapter 4

109

Filtering Phase
Input : Cell Histograms, quary time tq
Output : a priority Queue : Q

1. t← tq
2. while t < tq + H do
3. for each cell c do
4. N← c.number of vehicles at t
5. l← c.total road segment length
6. adjusted density (d)← N

l
7. if (d > threshold) then
8. Q.add(c, d, t)
9. t = t+ ∆ T
10. for each cell c in Q do
11. findInfluencedCells(c)
12. return Q

Figure 7.3 Filtering Phase of the Predictive Line Query Algorithm

with an assumed cell density threshold of 2.1. Based on the histogram information,
cell A has the highest priority (12/ 4 = 3) as it is the cell whose histogram has the
earliest (at t2) highest adjusted density. Both B’s and D’s histograms show similar
potential at t3. Among them, D gets the next priority in the queue since D has the
next highest density (D’s 16/5 = 3.2 > B’s 17/7 = 2.4).

(a) Vehicles Histogram and Road Segments
per Cell for t1, t2, t3, and t4

(b) Candidate Dense Cells in the Priority
Queue with Density Threshold ≥ 10

Figure 7.4 Histogram and Candidate Dense cells

Each cell c in the queue maintains a list of influenced cells whose priority is
lesser than its own, along with the number of vehicles coming from the cell c (line

110

11). The list is maintained to prevent repetitive access to the histogram to get the
latest adjusted densities (This will be discussed in more detail later in this chapter).

7.3.2. The Refinement Phase. The refinement phase first dequeues
the highest prioritized cell from the priority queue. The dequeued cell is then
passed to the first of the three stages: coarse-grained, mid-grained, and the fine-
grained. This procedure is repeated for the next highest prioritized cell in the same
timestamp. If no cell is available for the same timestamp, the Refreshing phase is
activated in which the entires in the queue and their priority would be changed.
Then the highest prioritized cell from the updated queue is selected and passed
through the refinement phase.

Refinement Phase
Input : a priory queue with potential dense cells : Q, density threshold ρ
Output : a set o f road dense segments

1. while (Q <> null) do
2. E← Q.poll
3. tq ← E.t
4. c← E.c
5. CenterX ← c.CentreX
6. CenterY ← c.CentreY
7. innerL← c.length

2 + (vmin · t)
8. outerL← c.length

2 + (vmax · t)
9. Edgesring = predictive Squared Ring Query(CenterX, CenterY, t, innerL, outerL)
10. if (Edgesring <> null)
11. for each ei ∈ Edgesring
12. Directions = getDirections(ei, c)
13. Vehicles = Vehicles

⋃
getVehicles(ei, Directions)

14. for eachvehiclevi ∈ Vehicles
15. edge← vi. f indRoadSegmentAt(tq)
16. if edgei ∈ c.edges
17. Ni ← (edgei.N) + 1
18. if Ni

li
> ρ

19. Densed Segments← ⋃
edgei

20. return Densed Segments

Figure 7.5 Refinement Phase of the Predictive Line Query Algorithm

The coarse-grained stage finds the road segments that carry the vehicles that
might travel through the cell at the querying time. This is performed in a similar
way to the ring query first introduced in 5 with the exception of the ring shape

111

which is now a square shaped ring, called square-shaped-ring (instead of a circular
shaped ring) as in line 9 in Figure 7.5.

The squared shaped ring query is graphically explained in Figure 7.6. The cell
is shown in dashed lines. The square shaped ring is represented by the shaded area
between solid-lined squares. The dimension of the square-shaped-ring is determined
according to the road network information (line 7-8). The lengths innerL and
outerL are the distances to the closest and the farthest vehicle that “might” be able
to cross the cell according to the road speed limits.

The mid-grained stage employs the road segments obtained from the coarse-
grained stage and retrieves vehicles in the relevant hash bucket of each road seg-
ment found in the coarse-grained stage (line 10-13). The relevancy is determined
according to the geometric area formed by the two lines that begin at the mid
point of the road segment and go through the outer most corners of the square
(see Figure 7.7).

Figure 7.6 Squared Shaped Ring Query in the Coarse-Grained Filtering Phase

The corners of the square that the lines go through and the number of buckets
correspondence with the geometric area depend on the time that the density is
being looked for (in another term, distance to the cell from the mid point of the
edge) and the total number of hash buckets set up. The Figure 7.7 illustrates
two cases where the number of hash buckets are 8 and different distances to the
querying cell (due to the difference in times the density is looking for: ta and
tb > ta). As the figure shows the number of hash buckets selected to examine

112

cell A’s density is 3 (hash bucket 1, 2, and 3) where that for cell B is only bucket 0
and 1.

Figure 7.7 Two Examples of Modified Hash Bucket Selection

The bucket selection with respect to the cell provides two advantages: (i)
it avoids multiple access to the same set of vehicles, which results in higher
performance in terms of CPU time as well as page accesses. This is because the
vehicles for all of the road segments in the cell is considered together, instead of
considering vehicles per each edge where multiple considerations for the same
bucket is possible (ii) it alleviates the mismatch between the geographical direction
of vehicle’s destination and the querying road segments, with respect to the
vehicles current position. The mismatch may introduce false positives in the query
result.

An example for bucket selection mismatch which explains its effect on false
positives is illustrated in Figure 7.8. The filled dot V is the vehicle’s current
position, the star represents its destination, and the set of lines connected the dot
and the star is the vehicle’s tentative path. According to the vehicle’s current
position and the destination, the vehicle is stored in hash bucket 1 (because the
dotted arrow lies on the area corresponding to bucket 1). Thus, the vehicle
V would not be satisfied by the bucket selection and would not be taken for
further consideration where its tentative path is examined. This omission would
contribute to a false negative in the query results.

The fine-grained stage uses vehicle’s shortest path and road speed limits to
determine the vehicles that will be traveling on roads in the cell. This step also
compares the vehicles in a way that each path needs to consider only once for all
of the road segments in the cell. To implement this, each edge is associated with a
vehicle count. Each vehicle’s tentative path is then examined. The edge on which

113

Figure 7.8 Bucket Selection Mismatch between Vehicle’s Destination and Querying
Road Segment

the vehicle’s future position lies increases its vehicle count. After analyzing all of
the vehicles, the edge’s vehicle count is compared against the density threshold
and reports the dense road segments, if any found.

The Refinement phase will repeat for the next element in the queue if it
has the same timestamp as the previous cell. If no cell is available for the same
timestamp, then the Refreshing phase is activated.

7.3.3. The Refreshing Phase. If dense areas were found in the filtering
phase, the Refreshing phase perform two (independent) actions before the filtering
phase is repeated: (i) rejuvenate the data by disengaging extraneous data (lines 1-5
in Figure 7.9) (ii) update the priority queue (lines 6- 16).

In the rejuvenate process, a quarantine area is defined for each identified
dense road segment within the same timestamp. The area contains the dense road
segments and the segments that the congestion would propagated to. The formal
definition of quarantine area is defined in Definition 10. Value of n can be defined
per each road segment or for the entire road network, depending on the behavior
of its density propagation, based on the past data.

Definition 10. [Quarantine Area] Given a road network G(V , E) and a set of dense road
segments S ; where S ⊂ E . The quarantine are of S is a set of road segments, Q =⋃

i∈|S|(Si ∪ Sn
i). Here Sn

i is the n -hop adjacent edges of ith edge in S .

114

Refreshing Phase
Input : a set o f dense road segments : Densed Segments, priory queue : Q
Output :

\\Rejuvenating data
1. for each dense segment si in Densed Segments
2. quarantinesegments ← si.getQuarantineRoadSegments()
3. quarantinevehicles ← si.getQuarantineVehicles()
4. updateRD− tree(quarantinesegments)
5. updateVehicles(quarantinevehicles)
\\Update Priority Queue
6. for each denseCell cnow in denseCell list do
7. for each cnext in cnow.adjCell list do
8. t← cnow.time
9. l← cnext.total road segment length
10. N ← cnext.number o f vehicles at (t + ∆T)
11. N ← N − cnext.vehicles f rom cnow
12. adjusted density d← N

l
13. if (d < threshold) then
14. Q.remove(cnext)
15. else
16. Q.update(cnext)

Figure 7.9 Refreshing Phase of the Predictive Line Query Algorithm

The quarantine areas for a road segment AB is illustrated in Figure 7.10.
The road segment AB is the dense road segment and the dashed lined-road
segments are the once with the propagation traffic effect. The vehicles on these
road segments are then disregard from subsequent dense area identification.

Figure 7.10 Example of the CPLQs That May Contain the Object

115

Queue update process utilizes the influence cell list associated with the cells
in the queue. For each cell that contains a dense road segment, its influential
cells’ adjusted density is updated. The process is exemplified in Figure 7.11.
Figure 7.11(a) shows the queue that was presented in Figure 7.4. The gray colored
elements, Cell A and C, represent the cells that have been gone through the
refinement phase. Assume that the refinement phase has identified one or more
dense road segments and no dense segments in cell A and cell C, respectively.
Since cell c has no dense road segments in in, it will not affect the queue. Cell
A, however, has dense road segments in it, cells in its adjacent list (i.e, cell B and
D) are updated. In fact, the adjacent list shows that 2 vehicles in cell A will next
traverse to cell B. Since the vehicles in cell A are stopped due to the high density
of cell A, the total number of expected vehicles in cell B would be decreased. The
new adjusted density of cell B becomes 15/7 = 2.1. Similarly, cell D’s new adjusted
density is 1.8. According to the new values, cell D, marked in dashed lines, will be
dropped from the queue and cell B will be moved to the front of the queue.

(a) Priority Queue Updating Process at t3 (b) Updated Priority Queue
at t3

Figure 7.11 Queue Update in Refreshing Phase

7.4. PERFORMANCE STUDY
The system was implemented and tested on a 2.40 GHz Intel(R) Xeon(R)

E5620 CPU desktop with 11 Gigabytes of memory. The page size was 4 k. The

116

implementation of RD-tree adopted the R∗-tree implementation of [66]. The
internal nodes of a tree being pinned in a LRU buffer of 50 pages.

The proposed algorithm was evaluated on moving object data sets generated
by the Brinkhoff generator [64]. The generator was fed with four different US state
maps: IA, WA, AZ, and CA. The differences between states come in total land
area, number of road segments, and average road segment length, which results in
different mobile object distributions. The statistics of the chosen states are given in
Table 7.1.

Table 7.1 Statistics of the Data Generator’s Input Topologies

State Land Area Number of Road Segments Average Road Segment Length
IA 55,857 3392 356
AZ 66,455 4935 383
WA 113,594 1442 628
CA 155,779 8062 225

The number of moving objects in each dataset ranges from 10K to 100K.
Average traveling time of each data set was 60 minutes. The chosen input
parameters and their values are presented in Table 7.2 with the default value is
in bold.

Table 7.2 Simulation Parameters and Their Values for PDQ Algorithm

Parameters Values
Number of mobile objects 10,20,30, . . . , 50, . . . , 100 k
Road network topology IA, AZ, WA, CA
Predictive time window (minutes) 10, 20, 30, . . . , 60
Cell density threshold (ρ) 0.05, 0.1,0.15, . . . , 1
Road density threshold (ε) 0.5, 1, 1.5, . . . , 3
Grid size (d) 30, 50, 70, 90
Vehicles equipped with the system 25%, 50%, 75%, 100%
Step size (minutes) 2, 5, 10, 15

The performance of the proposed algorithm (PDQ) is compared with that
of a naive approach, the simple query (also known as SDQ) that evaluates each
object’s shortest path to estimate the future dense road segments. In the evaluation
process, the SDQ also identifies the quarantine segments as of PDQ and discards
from future evaluations.

117

The performance is measured in terms of number of dense segments found,
error, and I/O cost. The number of dense road segments is the count of unique dense
road segments. The error is reported in terms of false positives and false negatives
with respect to the SDQ’s result. Both PDQ and SDQ assume all objects to be in
secondary disk. The I/O cost is the average (disk) page accesses per time step.
PDQ first calculates the page accesses at each t-minute (t = 5 minutes, in default
settings) step throughout the query life time (tstep). The average page accesses for
the entire query life time is, then, calculated by taking the average of all tstep’s in
the query life time. SQ accesses all the pages that the vehicles are stored.

Vehicles’ shortest path is not assumed to be stored, they are calculated
calculated on the fly. Thus, with 50 k objects (the default number of objects), and
20 bytes of space for each vehicle, it takes 250 page accesses to find dense road
segment at one time stamp. SQ does not have the advantage of either the cache
utilized or the quarantine areas identified. SQ would be constantly replacing pages
in Cache since SQ would have to look at all of them. identified quarantine area,
on the other hand, does not eliminate any object consideration as the object must
be accessed to identify its quarantine status. Thus, SQ will have a constant page
access count for a fix number of moving objects. However, its CPU cost (which has
not been reported in this chapter, but expected to be done in future) will increase
excessively.

The best fit default values of the system parameters, excluding the vehicles
equipped with the system whose default value was fixed to 100%, were selected to
minimize the cost of the system. The cost of the system is defined as the summation
of the page accesses, false negatives, and the false positives. However, the pre-
experimental results, generated with scaled-down input data set (i.e., with Worth
county in Missouri state and other default input parameters) showed that the false
positives are mostly independent on the system parameter setting and is relatively
small as shown in Figure 7.12.

False negatives and page accesses, on the other hand, have inverse rela-
tionship each other as Figure 7.13(a) and 7.13(b) show. Thus, the cost model
for the Linear Regression analysis was formed as in 22; where ρ, d , and α are
the cell density threshold, grid size, and a parameter in the regression model,
respectively. Table 7.3 shows different values for α, the best fit value of ρ, d, and
their corresponding simulation results. The rest of the simulations selected α to be
0.05, which considers both page accesses and false negative equally important.

118

0

5 ·
10
−2

0.10.1
5 0.20.2

5 0.30.3
5 0.40.4

5 0.50.5
5 0.60.6

5 0.70.7
5 0.80.8

5 0.90.9
5

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

7
7.5

8

Threashold

Fa
ls

e
Po

si
ti

ve
s

30×30
40×40
50×50
60×60
70×70
80×80
90×90
100×100

Figure 7.12 False Positives for Varying Grid Sizes, Cell Threshold and Worth
County Road Network

cost panelty = α · ρ + (1− α) · d (22)

Table 7.3 Results from Regression Analysis for different model parameter

α ρ d False Negatives False Positives Page Accesses
0.1 0.1 30 0.292 0.031 262
0.2 0.05 30 0.123 0.046 705
0.3 0.05 30 0.123 0.046 705
0.4 0.05 30 0.123 0.046 705
0.5 0.05 30 0.123 0.046 705
0.6 0.05 50 0.108 0.031 1124
0.7 0.05 50 0.108 0.031 1124
0.8 0.05 50 0.108 0.031 1124
0.9 0.05 50 0.108 0.031 1124

7.4.1. Effect of Cell Density Threshold. Figure 7.14 illustrates the perfor-
mance of DQ and SQ with respect to cell density threshold ρ. The performance
of SQ does not change with the cell density threshold as SQ is independent on
the grid. According to Figure 7.14(a), DQ algorithm, however, exhibit better
I/O cost for higher cell thresholds. This is because the number of cells passes

119

from the filtering phase to refinement phase is smaller. The number of identified
dense road segments, however, gets smaller producing poor performance. This is
further explained in Figure 7.14(c). It shows that the false negatives has reached
100 % for thresholds bigger than 0.75. This is again due to the fewer cells pass
to refinement phase. This prevents road segments to be identified dense, which
would be otherwise if it was examining individual road segments.

0

5 ·
10
−2

0.10.1
5 0.20.2

5 0.30.3
5 0.40.4

5 0.50.5
5 0.60.6

5 0.70.7
5 0.80.8

5 0.90.9
5 1

10

20

30

40

50

60

70

80

90

100

Threashold

Fa
ls

e
N

eg
at

iv
es

30×30
40×40
50×50
60×60
70×70
80×80
90×90
100×100

(a) Vehicles at Time t2

0

5 ·
10
−2

0.10.1
5 0.20.2

5 0.30.3
5 0.40.4

5 0.50.5
5 0.60.6

5 0.70.7
5 0.80.8

5 0.90.9
5 1

101

102

103

104

105

Threashold

Pa
ge

A
cc

es
se

s

30×30
40×40
50×50
60×60
70×70
80×80
90×90
100×100

(b) Vehicles at Time t2

Figure 7.13 Dynamic Nature of Continuous Traffic Prediction Information

7.4.2. Effect of Road Density Threshold. The page access count increases
as the road density threshold ε increases (Figure 7.15(a)). That is because, the
higher ε means that the lesser number of road segments are identified as dense.
This results in reduced number of quarantine road segments, which leaves more
road segments for later dense road segment identification. Thus, the average page
access per one time stamp becomes higher.

Due to the same reason mentioned before (i.e., the higher ε means that the
lesser number of road segments are identified as dense), both DQ and SQ identifies
fewer number of dense road segments as Figure 7.15(b). However, this decrement
does not implies a higher false negatives. In fact, false negatives and positives
remain almost stable with the road density threshold. This is exhibit in Figure
7.15(c).

7.4.3. Effect of Grid Size . The grid size also does not effect on the
performance of SQ as shown in Figure 7.16. DQ has lower PA on smaller grids and

120

it get stable as the grid size is larger (i.e., smaller the cell size). The reason is that,
when the grid size is small, lesser cell will be counted to have potential dense road
segments. When the area of a cell is larger, adjusted density of that cell is lower
than that of individual adjusted densities, if the large cell is divided into small cells.
So, the lesser the number of cells passed to the refinement phase, the smaller the
page accesses. Additionally, having smaller cells might have introduced multiple
access to the same object lists where this effect might not exist with bigger cells.
Both the number of dense road segments and the error rate is better when the grid
has smaller cells.

7.4.4. Effect of Number of Mobile Objects. First note that the reported
page accesses in Figure 7.17(a) is in the logarithmic scale. As the figure shows both
SQ’s and DQ’s page accesses increase as the number of moving objects increase.
But the rate of the increment in SQ is significant compared to that of DQ. SQ’s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

Cell Density Threshold

Pa
ge

A
cc

es
se

s

SQ
DQ

(a) Page Accesses

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20
40
60
80

100
120
140
160
180
200
220
240
260
280

Cell Density Threshold

N
um

.o
fD

en
se

R
oa

d
Se

gm
en

ts SQ
DQ

(b) Number of Identified Dense Road
Segment

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

Cell Density Threshold

Er
ro

r
Pe

rc
en

ta
ge

(%
)

False Negatives
False Positives

(c) Error in Prediction

Figure 7.14 Query Performance of PDQ with Varying Cell Density Threshold

121

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
120

140

160

180

200

220

240

260

280

300

Road Density Threshold

Pa
ge

A
cc

es
se

s

SQ
DQ

(a) Page Accesses

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400

Road Density Threshold

N
um

.o
fD

en
se

R
oa

d
Se

gm
en

ts SQ
DQ

(b) Number of Identified Dense Road
Segment

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0
2
4
6
8

10
12
14
16
18
20
22
24

Cell Density Threshold

Er
ro

r
Pe

rc
en

ta
ge

(%
)

False Negatives
False Positives

(c) Error in Prediction

Figure 7.15 Query Performance of PDQ with Varying Road Density Threshold

increment is because of the increased number of shortest paths. DQ, on the other
hand, will pass more cells to refinement phase. Since the filtering phase selects
only a limited number of cells, DQ needs to consider objects in highest possible
cells in the refinement phase compared to that of in SQ.

The number of identified dense road segments are illustrated in Figure
7.17(b). It shows that both SQ and DQ shows the same trend for the number of
identified dense road segments with the number of moving objects. In fact, as the
number of moving objects increases both algorithms find more dense segments.
The fewer number of unidentified dense road segments in DQ, compared to SQ,
would be eliminated with a reduced cell threshold which allows the filtering phase
to pass more cells to the refinement phase. Recall that the default cell threshold and
the grid size were chosen to equally weigh the importance of page accesses and the
accuracy.

122

30 40 50 60 70 80 90
140

160

180

200

220

240

260

280

300

Grid Size

Pa
ge

A
cc

es
se

s

SQ
DQ

(a) Page Accesses

30 40 50 60 70 80 90

225
230
235
240
245
250
255
260
265
270
275

Grid Size

N
um

.o
fD

en
se

R
oa

d
Se

gm
en

ts SQ
DQ

(b) Number of Identified Dense Road
Segment

30 40 50 60 70 80 90
0
2
4

6

8
10
12

14

16

18

20

Grid Size

Er
ro

r
Pe

rc
en

ta
ge

(%
)

False Negatives
False Positives

(c) Error in Prediction

Figure 7.16 Query Performance of PDQ with Varying Grid Size

Confirming the assumption made by observing the pre-experimental results,
DQ’s false positives is negligibly small as shown in Figure 7.17(c). The number of
false negatives, however, are big, especially for smaller number of objects. They get
better, when the number of objects in the system is higher. This is because when
the total number of objects is small, one miss could highly impact the precision
negatively.

7.4.5. Effect of Road Network Topology. Regardless of the topology, the
number of page accesses does not much vary on the topology that is being used.
This is shown in Figure 7.18(a). However, the model formed shows that the page
accesses depend on the area of the topology, number of road segments, and the
road segment length.

Both DQ and SQ shows the same behavior for finding the number of dense
road segments for different topologies (Figure 7.18(b)). Here again, the system has

123

10 20 30 40 50 60 70 80 90 100
0

50
100
150
200
250
300
350
400
450
500
550
600

Num. of Moving Objects

Pa
ge

A
cc

es
se

s

SQ
DQ

(a) Page Accesses

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

450

Num. of Moving Objects

N
um

.o
fD

en
se

R
oa

d
Se

gm
en

ts

SQ
DQ

(b) Number of Identified Dense Road
Segment

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

Num. of Moving Objects

Er
ro

r
Pe

rc
en

ta
ge

(%
)

False Negatives
False Positives

(c) Error in Prediction

Figure 7.17 Query Performance of PDQ with Varying Number of Mobile Objects

missed some dense road segments, which can be easily read with false negatives
in Figure 7.18(c).

7.4.6. Effect of Percentage of Vehicles Equipped. The percentage of
vehicles equipped with the system certainly will reduce the accuracy as it does
not have information about some mobile objects to predict dense road segments
more accurately. However, the system adjusts its parameters to cooperate the
missed information. In fact, the cell and the road density thresholds are adjusted
according to the missing vehicle percentage. For example, if the vehicles equipped
percentage is 75 %, the default values, i.e., ρ = 0.05 and ε = 1, are adjusted to ρ =
0.0375 and ε = 0.75. The experiments were expanded to see this effect as well. The
plot labeled DQ w/o Adjust is corresponds to the DQ with this adjustment.

As Figure 7.19(a) shows, the page access difference between two DQ al-
gorithms gets smaller as the percentage of vehicles equipped the system and,

124

IA AZ WA CA

160

180

200

220

240

260

280

300

Topology

Pa
ge

A
cc

es
se

s

SQ
DQ

(a) Page Accesses

IA AZ WA CA
100
150
200
250
300
350
400
450
500
550
600
650

Topology

N
um

.o
fD

en
se

R
oa

d
Se

gm
en

ts

SQ
DQ

(b) Number of Identified Dense Road
Segment

IA AZ WA CA
0

5

10

15

20

25

30

35

40

Topology

Er
ro

r
Pe

rc
en

ta
ge

(%
)

False Negatives
False Positives

(c) Error in Prediction

Figure 7.18 Query Performance of PDQ with Varying Topology

obviously, they become the same at 100 %. The difference between page access
count had been introduced due to the threshold differences. Specifically, when
the cell threshold is reduced, filtering phase passes more cells to the refinement
phase increasing the page accesses. This penalty paid with page accesses can be
surpassed by the improvement in the additional number of dense road segments
found (shown in Figure 7.19(b)). This is affirmed by the false negative difference
illustrated in Figure 7.19(c)

7.5. SUMMARY
This chapter presented a proactive based approach to provide user with pre-

dicted traffic information. The information is provided by the query type named
Predictive Density Query (PDQ). Contrast to the traditional density queries, PDQ
has three key features. First, it identifies and reports dense areas in terms of

125

25 50 75 100

40

60

80

100

120

140

Equipped Vehicle Percentage (%)

Pa
ge

A
cc

es
se

s DQ w/o Adjusted
DQ

(a) Page Accesses

25 50 75 100

50

100

150

200

250

300

350

Equipped Vehicle Percentage (%)

N
um

.o
fD

en
se

R
oa

d
Se

gm
en

ts

DQ w/ Adjusted
DQ w/o Adjusted
SQ

(b) Number of Identified Dense Road
Segment

25 50 75 100
0

10

20

30

40

50

60

70

80

90

Equipped Vehicle Percentage (%)

Er
ro

r
Pe

rc
en

ta
ge

(%
)

False Positives w/ Adjusted
False Positives w/o Adjusted
False Negatives w/ Adjusted
False Negatives w/o Adjusted

(c) Error in Prediction

Figure 7.19 Query Performance of PDQ with Varying the Percentage of Vehicles
Equipped with the System

road segments considering the underlying road network. Secondly, it provides
predictive density information in which users will find more practical than the
current density information. Thirdly, it finds the mutually independent dense
road segments, which are less, if not zero, impacted from previously dense road
segments; hence, it provides a reliable result.

PDQ processing is supported by the RD-tree and a 2-dimensional histogram.
The RD-tree maintains road network and mobile object information. The his-
togram maintains a summary of object information per cell of which the network is
divided into. Query processing algorithm identifies dense road segments in three
phases: filtering, refinement, and refreshing. The filtering phase extracts cells that
are possible to have dense road segments by analyzing the histogram information.
It en-queues those cells in a priority queue. The priority is being the timestamp
and the adjusted density. The refinement phase de-queue each cell and extracts

126

necessary mobile object information to identify dense road segments within the
cell. The refreshing phase, reorder the priority queue, if previously found dense
road segments influence the cells in the queue.

Extensive list of parameters were experimentally tested to study their effect
on the algorithm’s performance. The study shows that the proposed algorithm
gives better I/O cost than the naive approach. The PDQ algorithm, however,
exhibit a small percentage of false negatives where false positives are nearly zero.

127

8. CONCLUSION

This research was conducted to develop a new indexing scheme targeting
support for predictive as well as current queries on objects moving under the road
network constraints and define and design predictive query algorithms.

8.1. CONTRIBUTIONS

• A mobile data indexing structure that index mobile object’s information,
know as RD-tree, was developed in support of both current and future LDQs
queries.

• An on-demand-based predictive query was proposed which provides com-
muters future traffic information. The query was termed a Predictive Line
Query. Two versions of the query were considered: snapshot query and
continuous query.

– The snapshot query estimates future traffic condition of a user specified
road segment based on the mobile object’s current information and
currently known future information, such as the destination. Three
algorithms were developed to provide the query result.

∗ Basic Algorithm

∗ Enhanced Algorithm

∗ Comprehensive Algorithm

– The continuous query addresses the issues arose in snapshot query due
to the volatility nature of individual mobile object behavior. Three
algorithms were developed to monitor the changes of the snapshot
query result that could occur as time evolves. The algorithms were:

∗ Solo-Update Maintenance

∗ Solo-Object Maintenance

∗ Batch-Object Maintenance

• A proactive-based predictive query type namely Predictive Density Query was
developed. The query considers the object’s possible influence on other
objects which were not considered in the Predictive Line Query. A query
algorithm was developed to answer the Predictive Density Query.

128

• The extensive experiments performed on aforementioned contributions show
the performance vise benefits of the proposed indexing structure as well as
the supporting query algorithms.

8.2. FUTURE WORK

• Developing indexing structures for road networks that preserves the network
connectivity would be a great problem to address. R-tree based indexing
structures are common indexing structures that have been utilized to index
road networks. These indexing structures were designed to support Eu-
clidean based spatial queries and does not preserve the network connectivity.
Hence, tree is not capable to return relevant network information effectively.

• The modern, advanced technologies embedded into the mobile objects have
introduced high computational capabilities to them. Thus, studying the the
proposed query types and their solutions in the distributed domain would
bring more interesting research issues.

129

BIBLIOGRAPHY

[1] Brian McKenzie, “Out-of-State and Long Commutes: 2011 Report,” https://
www.census.gov/library/publications/2013/acs/acs-20.html, 2013.

[2] INRIX, “AMERICANS WILL WASTE $2.8 TRILLION ON TRAFFIC BY
2030 IF GRIDLOCK PERSISTS INRIX,” http://www.inrix.com/press/
americans-will-waste-2-8-trillion-on-traffic-by-2030-if-gridlock-persists/,
2014.

[3] the Statistics Portal, “the Statistics Portal,” http://www.statista.com/
statistics/218112/forecast-of-global-pnd-market-size-since-2005/, 2014.

[4] Y. N. Silva, X. Xiong, and W. G. Aref, “The RUM-Tree: Supporting Frequent
Updates in R-Trees Using Memos,” The VLDB Journal, vol. 18, no. 3, pp. 719–
738, Jun. 2009.

[5] S. Šaltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez, “Indexing the
Positions of Continuously Moving Objects,” SIGMOD Record, vol. 29, no. 2,
pp. 331–342, May 2000.

[6] Y. Tao, D. Papadias, and J. Sun, “The TPR*-Tree: an Optimized Spatio-
Temporal Access Method for Predictive Queries,” in Proceedings of the 29th

International Conference on Very Large Data Bases, ser. VLDB ’03, vol. 29. VLDB
Endowment, 2003, pp. 790–801.

[7] D. Papadopoulos, G. Kollios, D. Gunopulos, and V. Tsotras, “Indexing Mobile
Objects on the Plane,” in Proceedings of 13th International Workshop on Database
and Expert Systems Applications, 2002, pp. 693–697.

[8] S. Saltenis and C. S. Jensen, “Indexing of moving objects for location-based
services,” in Proceedings. 18th International Conference on Data Engineering, ser.
ICDE ’02, 2002, pp. 463–472.

[9] J. M. Patel, Y. Chen, and V. P. Chakka, “STRIPES: An Efficient Index for
Predicted Trajectories,” in Proceedings of the 2004 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ‘04. ACM, 2004, pp. 635–646.

[10] C. S. Jensen, D. Lin, and B. C. Ooi, “Query and Update Efficient B+-tree based
Indexing of Moving Objects,” in Proceedings of the 30th International Conference
on Very Large Data Bases, ser. VLDB ’04, vol. 30. VLDB Endowment, 2004, pp.
768–779.

[11] S. Chen, B. C. Ooi, K.-L. Tan, and M. A. Nascimento, “ST2B-tree: a self-tunable
spatio-temporal b+-tree index for moving objects,” in Proceedings of the 2008
ACM SIGMOD International Conference on Management Of Data, ser. SIGMOD
’08. New York, NY, USA: ACM, 2008, pp. 29–42.

https://www.census.gov/library/publications/2013/acs/acs-20.html
https://www.census.gov/library/publications/2013/acs/acs-20.html
http://www.inrix.com/press/americans-will-waste-2-8-trillion-on-traffic-by-2030-if-gridlock-persists/
http://www.inrix.com/press/americans-will-waste-2-8-trillion-on-traffic-by-2030-if-gridlock-persists/
http://www.statista.com/statistics/218112/forecast-of-global-pnd-market-size-since-2005/
http://www.statista.com/statistics/218112/forecast-of-global-pnd-market-size-since-2005/

130

[12] M. L. Yiu, Y. Tao, and N. Mamoulis, “The Bdual-Tree: Indexing Moving
Objects by Space Filling Curves in the Dual Space,” The VLDB Journal, 2008.

[13] C. Shahabi, M. R. Kolahdouzan, and M. Sharifzadeh, “A road network em-
bedding technique for k-nearest neighbor search in moving object databases,”
in Proceedings of ACM international symposium on Advances in geographic infor-
mation systems, 2002.

[14] H.-J. Cho and C.-W. Chung, “An Efficient and Scalable Approach to CNN
Queries in a Road Network,” in Proceedings of the 31st international conference
on Very large data bases, 2005.

[15] K.-S. Kim, S.-W. Kim, T.-W. Kim, and K.-J. Li, “Fast Indexing and Updating
Method for Moving Objects on Road Networks,” in Web Information Systems
Engineering Workshops, 2003. Proceedings. Fourth International Conference on,
2003.

[16] J. Chen, X. Meng, Y. Guo, S. Grumbach, and H. Sun, “Modeling and Predicting
Future Trajectories of Moving Objects in a Constrained Network,” in Proceed-
ings of the 7th International Conference on Mobile Data Management, ser. MDM
’06, 2006.

[17] J.-D. Chen and X.-F. Meng, “Indexing Future Trajectories of Moving Objects
in a Constrained Network,” Journal of Computer Science and Technology, 2007.

[18] K. S. Bok, H. W. Yoon, D. M. Seo, M. H. Kim, and J. S. Yoo, “Indexing of
Continuously Moving Objects on Road Networks,” IEICE - Trans. Inf. Syst.,
2008.

[19] J. Feng, J. Lu, Y. Zhu, and T. Watanabe, “Index Method for Tracking Network-
Constrained Moving Objects,” in Proceedings of the 12th international conference
on Knowledge-Based Intelligent Information and Engineering Systems, Part II, 2008.

[20] J. Chen and X. Meng, “Update-Efficient Indexing of Moving Objects in Road
Networks,” Geoinformatica, December 2009.

[21] L. Guohui, L. Yanhong, L. Jianjun, L. Shu, and Y. Fumin, “Continuous Reverse
K Nearest Neighbor Monitoring on Moving Objects in Road Networks,” Inf.
Syst., 2010.

[22] “Broadcasting a Means to Disseminate Public Data in a Wireless Environment
Issues and Solutions,” ser. Advances in Computers, M. Zelkowitz, Ed. Else-
vier, 2006, vol. 67, pp. 1–84.

[23] J. Zhang and L. Gruenwald, “Spatial and Temporal Aware, Trajectory Mobil-
ity Profile based Location Management for Mobile Computing,” in Proceedings
of the 13th International Workshop on Database and Expert Systems Applications,
2002, pp. 716–720.

131

[24] H. Wang and R. Zimmermann, “Snapshot Location-based Query Processing
on Moving Objects in Road Networks,” in Proceedings of the 16th ACM
SIGSPATIAL international conference on Advances in geographic information sys-
tems, ser. GIS ’08, 2008.

[25] D. Kwon, S. Lee, and S. Lee, “Indexing the Current Positions of Moving
Objects Using the Lazy Update R-Tree,” in Proceedings of the 3rd International
Conference on Mobile Data Management, 2002, pp. 113–120.

[26] Y. Tao, D. Papadias, and X. Lian, “Reverse KNN Search in Arbitrary Dimen-
sionality,” in VLDB, 2004, pp. 744–755.

[27] L. Qin, J. X. Yu, B. Ding, and Y. Ishikawa, “Monitoring Aggregate K-NN
Objects in Road Networks,” in Proceedings of the 20th international conference
on Scientific and Statistical Database Management, ser. SSDBM ’08, 2008.

[28] Y. Xia and S. Prabhakar, “Q+Rtree: Efficient Indexing for Moving Object
Databases,” in Proceedings of the Eighth International Conference on Database
Systems for Advanced Applications, 2003.

[29] C. Jensen, D. Lin, B. C. Ooi, and R. Zhang, “Effective density queries on
continuouslymoving objects,” in Data Engineering, 2006. ICDE ’06. Proceedings
of the 22nd International Conference on, 2006.

[30] R. A. Finkel and J. L. Bentley, “Quad Trees: A Data Structure for Retrieval on
Composite Keys,” Acta Informatica, 1974.

[31] H. Samet, “The Quadtree and Related Hierarchical Data Structures,” ACM
Comput. Surv., vol. 16, no. 2, pp. 187–260, June 1984.

[32] S. Chen, C. S. Jensen, and D. Lin, “A Benchmark for Evaluating Moving Object
Indexes,” Proc. VLDB Endow., 2008.

[33] D. Pfoser and C. S. Jensen, “Indexing of network constrained moving objects,”
in Proceedings of the 11th ACM international symposium on Advances in geographic
information systems, 2003.

[34] E. Frentzos, “Indexing Objects Moving on Fixed Networks,” in Advances
in Spatial and Temporal Databases, ser. Lecture Notes in Computer Sci-
ence, T. Hadzilacos, Y. Manolopoulos, J. Roddick, and Y. Theodoridis, Eds.
Springer Berlin Heidelberg, 2003.

[35] V. T. De Almeida and R. H. Güting, “Indexing the Trajectories of Moving
Objects in Networks*,” Geoinformatica, 2005.

[36] J. Feng, J. Lu, Y. Zhu, N. Mukai, and T. Watanabe, “Indexing of Moving
Objects on Road Network Using Composite Structure,” in Knowledge-Based
Intelligent Information and Engineering Systems, 2007.

132

[37] K. Mouratidis, M. L. Yiu, D. Papadias, and N. Mamoulis, “Continuous
Nearest Neighbor Monitoring in Road Networks,” in Proceedings of the 32nd

international conference on Very large data bases, ser. VLDB ’06, 2006.

[38] P. Fan, G. Li, L. Yuan, and Y. Li, “Vague continuous K-nearest neighbor queries
over moving objects with uncertain velocity in road networks,” Information
Systems, 2012.

[39] J. Le, L. Liu, Y. Guo, and M. Ying, “Supported High-Update Method on Road
Network,” in Wireless Communications, Networking and Mobile Computing, 2008.
WiCOM ’08. 4th International Conference on, 2008.

[40] H. Kejia and L. Liangxu, “Efficiently Indexing Moving Objects on Road
Network,” in Computational Intelligence and Software Engineering, 2009. CiSE
2009. International Conference on, 2009.

[41] D. Stojanovic, A. N. Papadopoulos, B. Predic, S. Djordjevic-Kajan, and
A. Nanopoulos, “Continuous range monitoring of mobile objects in road
networks,” Data Knowl. Eng., 2008.

[42] H. Jeung, M. L. Yiu, X. Zhou, and C. S. Jensen, “Path Prediction and Predictive
Range Querying in Road Network Databases,” The VLDB Journal, 2010.

[43] J. Dai and C.-T. Lu, “DIME: Disposable Index for Moving Objects,” in Mobile
Data Management (MDM), 2011 12th IEEE International Conference on, 2011.

[44] H. Wang and R. Zimmermann, “Processing of Continuous Location-Based
Range Queries on Moving Objects in Road Networks,” Knowledge and Data
Engineering, IEEE Transactions on, 2011.

[45] Y. Cai and K. A. Hua, “An Adaptive Query Management Technique for
Real-Time Monitoring of Spatial Regions in Mobile Database Systems,” in
Proceedings of the Performance, Computing, and Communications Conference, 2002.
on 21st IEEE International, 2002.

[46] Y. Cai, K. Hua, and G. Cao, “Processing Range-Monitoring Queries on
Heterogeneous Mobile Objects,” in Mobile Data Management, 2004. Proceedings.
2004 IEEE International Conference on, 2004.

[47] H. Hu, J. Xu, and D. L. Lee, “A Generic Framework for Monitoring Contin-
uous Spatial Queries Over Moving Objects,” in Proceedings of the 2005 ACM
SIGMOD international conference on Management of data, ser. SIGMOD ’05, 2005.

[48] S. Prabhakar, Y. Xia, D. V. Kalashnikov, W. G. Aref, and S. E. Hambrusch,
“Query Indexing and Velocity Constrained Indexing: Scalable Techniques for
Continuous Queries on Moving Objects,” IEEE Trans. Comput., 2002.

133

[49] K. Mouratidis, D. Papadias, and M. Hadjieleftheriou, “Conceptual Partition-
ing: An Efficient Method for Continuous Nearest Neighbor Monitoring,” in
Proceedings of the 2005 ACM SIGMOD international conference on Management of
data, ser. SIGMOD ’05, 2005.

[50] T. Xia and D. Zhang, “Continuous Reverse Nearest Neighbor Monitoring,” in
Data Engineering, 2006. ICDE ’06. Proceedings of the 22nd International Conference
on, 2006.

[51] S. Nutanong, E. Tanin, J. Shao, R. Zhang, and R. Kotagiri, “Continuous
detour queries in spatial networks,” Knowledge and Data Engineering, IEEE
Transactions on, 2012.

[52] D. Stojanovic, S. Djordjevic-Kajan, A. N. P. B. Predic, and A. Nanopoulos,
“Continuous Range Query Processing for Network Constrained Mobile Ob-
jects,” in 8th International Conference on Enterprise Information Systems (ICEIS),
2006.

[53] B. Gedik and L. Liu, “MobiEyes: A Distributed Location Monitoring Service
Using Moving Location Queries,” Mobile Computing, IEEE Transactions on,
2006.

[54] X. Xiong, M. F. Mokbel, and W. G. Aref, “SEA-CNN: Scalable Processing of
Continuous K-Nearest Neighbor Queries in Spatio-temporal Databases,” in
Proceedings of the 21st International Conference on Data Engineering, ser. ICDE
’05, 2005.

[55] R. Nehme and E. Rundensteiner, “SCUBA: Scalable Cluster-Based Algorithm
for Evaluating Continuous Spatio-temporal Queries on Moving Objects,” in
Advances in Database Technology - EDBT 2006, 2006.

[56] F. Liu and K. A. Hua, “Moving Query Monitoring in Spatial Network
Environments,” Mob. Netw. Appl., 2012.

[57] K. Mouratidis, D. Papadias, S. Bakiras, and Y. Tao, “A Threshold-Based
Algorithm for Continuous Monitoring of K Nearest Neighbors,” IEEE Trans.
on Knowl. and Data Eng., 2005.

[58] D. G. Marios Hadjieleftheriou, George Kollios and V. J. Tsotras, “On-Line
Discovery of Dense Areas in Spatio-temporal Databases,” in International
Symposium on Advances in Spatial and Temporal Databases, SSTDn, 2003.

[59] J. Ni and C. Ravishankar, “Pointwise-Dense Region Queries in Spatio-
temporal Databases,” in Data Engineering, 2007. ICDE 2007. IEEE 23rd Inter-
national Conference on, 2007.

[60] X. Hao, X. Meng, and J. Xu, “Continuous Density Queries for Moving
Objects,” in Proceedings of the Seventh ACM International Workshop on Data
Engineering for Wireless and Mobile Access, ser. MobiDE ’08, 2008.

134

[61] J. Wen, X. Meng, X. Hao, and J. Xu, “An Efficient Approach for Continuous
Density Queries,” Frontiers of Computer Science, vol. 6, no. 5, 2012.

[62] C. Lai, L. Wang, J. Chen, X. Meng, and K. Zeitouni, “Effective Density Queries
for Moving Objects in Road Networks,” in Proceedings of the joint 9th Asia-
Pacific web and 8th international conference on web-age information management
conference on Advances in data and web management, ser. APWeb/WAIM’07,
2007.

[63] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The R*-Tree: An
Efficient and Robust Access Method for Points and Rectangles,” in Proceedings
of the 1990 ACM SIGMOD International Conference on Management of Data, 1990.

[64] T. Brinkhoff. (2004) A Framework for Generating Network-based Mov-
ing Objects. http://www.fh-oow.de/institute/iapg/personen/brinkhoff/
generator.

[65] L. Heendaliya, D. Lin, and A. Hurson, “Predictive Line Queries for Traffic
Forecasting,” Database and Expert Systems Applications, 2012.

[66] E. Achtert, H. Kriegel, E. Schubert, and A. Zimek, “Interactive data mining
with 3d-parallel-coordinate-trees,” in Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data.

http://www.fh-oow.de/institute/iapg/personen/brinkhoff/generator
http://www.fh-oow.de/institute/iapg/personen/brinkhoff/generator

135

VITA

Lasanthi Nilmini Heendaliya was born in the city of Rathnapura, Sri Lanka.

She attended the Convent of the Child Jesus, Ratnapura for her primary education

and later attended the Ferguson Girls High School for her secondary education

specialized in Mathematics. Lasanthi completed the island-wide Sri Lanka GCE

Advanced Level (A/L) exam in 2000 that earned her the opportunity to attend

the Engineering School at the University of Peradeniya, Sri Lanka starting October

2001. Lasanthi completed her undergraduate degree in Computer Engineering in

January 2006.

In Fall 2007, she enrolled in the MS program in the department of Computer

Science at the St. Cloud State University in St. Cloud, Minnesota. Lasanthi

graduated with her MS degree in Fall 2009 and joined the Ph.D. program in

Computer Science at the Missouri University of Science and Technology (Missouri

S&T) in Rolla, Missouri. Her graduate research advisor is Dr. Ali Hurson. She

received her Ph.D. in Computer Science from Missouri S&T in May 2015.

Another conference paper has been submitted for review. Lasanthi’s primary

research was in the mobile data indexing and querying. She has published

two conference papers and two journal papers within the work conducted at

Missouri S&T. Her other research interests are in the area of Mobile databases,

Big Data, Distributed Computing, and Parallel Computing. Her experience at

Missouri S&T expands to the teaching career as well. She served the Computer

Science Department as a teaching assistance for more than 5 consecutive semesters.

Her teaching interests includes, Computer Programming, Database Management

Systems, Data Structures and Algorithms, Operating Systems, Calculus, Linear

Algebra, and Numerical Methods.

	Enabling near-term prediction of status for intelligent transportation systems: Management techniques for data on mobile objects
	Recommended Citation

	ABSTRACT
	ACKNOWLEDGEMENT
	LIST OF ILLUSTRATIONS
	LIST OF TABLES
	ACRONYMS
	1 Introduction
	1.1. Query Processing Under Road Network Constraints
	1.2. Motivation
	1.3. Objectives

	2 Preliminaries
	2.1. Mobile Object Applications Infrastructure
	2.2. Location Dependent Query Taxonomy
	2.3. Performance Metrics

	3 Literature Survey
	3.1. Indexing Moving Objects on Euclidean Space
	3.1.1. R-tree-based Indexing Structures
	3.1.2. B+-tree-based Indexing Structures
	3.1.3. Quadtree-based Indexing Structures
	3.1.4. Hybrid Indexing Structures
	3.1.5. Summary

	3.2. Indexing Moving Objects on Road Network
	3.2.1. Disk-based Indexing Structures
	3.2.2. Memory-based Indexing Structures
	3.2.3. Hybrid Indexing Structures
	3.2.4. Summary

	3.3. Query Processing Under Road Network Constraints
	3.3.1. Continuous Monitoring on Static Queries
	3.3.2. Continuous Monitoring on Moving Queries
	3.3.3. Summary

	3.4. Density Queries
	3.4.1. Summary

	3.5. Summary

	4 Indexing under road network constraints
	4.1. The RD-tree Index Structure
	4.2. Insertion, Deletion, and Update in RD-tree
	4.2.1. Insertion
	4.2.2. Deletion
	4.2.3. Update

	4.3. Querying RD-tree
	4.4. Summary

	5 Predictive Line Queries : Snapshot Query
	5.1. Definitions
	5.2. Basic Algorithm
	5.3. Enhanced Algorithm
	5.4. Comprehensive Algorithm
	5.5. Query Cost Analysis
	5.6. Performance Study
	5.6.1. Effect of the Number of Moving Objects
	5.6.2. Effect of the Predictive Time Length
	5.6.3. Effect of the Road Topology
	5.6.4. Update Cost

	5.7. Summary

	6 Predictive Line Queries : Continuous Query
	6.1. Definitions
	6.2. TPRQ-tree
	6.3. Continuous Predictive Line Query algorithms
	6.3.1. Initial Phase
	6.3.2. Maintenance Phase
	6.3.2.1. Solo-update (SU) maintenance
	6.3.2.2. Solo-object (SO) maintenance
	6.3.2.3. Batch-object maintenance

	6.4. Query Cost Analysis
	6.4.1. Cost of Solo-Update (SU) Maintenance
	6.4.2. Cost of Solo-Object (SO) Maintenance
	6.4.3. Cost of Batch-Object (BO) Maintenance

	6.5. Performance Study
	6.5.1. Maintenance Phase
	6.5.1.1. Query performance over the query lifetime
	6.5.1.2. Effect of the number of queries
	6.5.1.3. Effect of buffer utilization
	6.5.1.4. Effect of number of moving objects
	6.5.1.5. Effect of predictive time length
	6.5.1.6. Effect of road topology

	6.5.2. Cost Model Evaluation

	6.6. Summary

	7 Predictive Density Queries
	7.1. Definitions
	7.2. Data Structure
	7.3. Query Algorithm
	7.3.1. The Filtering Phase
	7.3.2. The Refinement Phase
	7.3.3. The Refreshing Phase

	7.4. Performance Study
	7.4.1. Effect of Cell Density Threshold
	7.4.2. Effect of Road Density Threshold
	7.4.3. Effect of Grid Size
	7.4.4. Effect of Number of Mobile Objects
	7.4.5. Effect of Road Network Topology
	7.4.6. Effect of Percentage of Vehicles Equipped

	7.5. Summary

	8 Conclusion
	8.1. Contributions
	8.2. Future Work

	BIBLIOGRAPHY
	VITA

