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An HMM-Based Framework
for Video Semantic Analysis

Gu Xu, Yu-Fei Ma, Member, IEEE, Hong-Jiang Zhang, Fellow, IEEE, and Shi-Qiang Yang, Member, IEEE

Abstract—Video semantic analysis is essential in video indexing
and structuring. However, due to the lack of robust and generic al-
gorithms, most of the existing works on semantic analysis are lim-
ited to specific domains. In this paper, we present a novel hidden
Markove model (HMM)-based framework as a general solution to
video semantic analysis. In the proposed framework, semantics in
different granularities are mapped to a hierarchical model space,
which is composed of detectors and connectors. In this manner,
our model decomposes a complex analysis problem into simpler
subproblems during the training process and automatically inte-
grates those subproblems for recognition. The proposed frame-
work is not only suitable for a broad range of applications, but also
capable of modeling semantics in different semantic granularities.
Additionally, we also present a new motion representation scheme,
which is robust to different motion vector sources. The applications
of the proposed framework in basketball event detection, soccer
shot classification, and volleyball sequence analysis have demon-
strated the effectiveness of the proposed framework on video se-
mantic analysis.

Index Terms—Event detection, hidden Markov models (HMMs),
sports videos, video semantic analysis.

1. INTRODUCTION

FFICIENT video indexing and retrieval have emerged as

challenging research problems in multimedia applications.
Various features such as color, shape, texture, and motion have
been used for video indexing and retrieval. However, the perfor-
mance of the existing approaches to video indexing and retrieval
using these features is far from satisfactory due to the gap be-
tween these low-level features and the high-level semantics pre-
sented in video data. Therefore, recent works on video indexing
and retrieval have witness an interesting shift from low-level
feature-based approaches to high-level semantic analysis.

In this paper, we argue that video semantic analysis should
be decomposed into analysis at a number of granularities, in-
stead of viewing it at a single level. To date, most existing ap-
proaches to video semantic analysis only focus on a particular
semantic level. From the point view of human cognition, how-
ever, the process of understanding is an interaction of informa-
tion and knowledge at different semantic levels or granulari-
ties. For instance, when we read a book, from the visual text
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Fig. 1. Multilevel semantic understanding in book reading.

to content understanding, the information is continually trans-
formed and abstracted through different semantic granularities,
as illustrated in Fig. 1. As a partial reproduction of human per-
ception, automatic speech recognition also has achieved suc-
cess by using constraints in several semantic granularities, e.g.,
phoneme, word, and language grammar. Therefore, integrating
context constraints in different semantic granularities may be a
key point to push on the research on video semantic analysis
further.

Video signals are not arbitrary but are ruled by the continuity
of contents. Comparing with the book reading example, we also
could explain the continuity of contents in the form of con-
straints in different granularities. For example, in broadcasted
sports videos, the composition of events is controlled by shot
category and the sequences of shots are partially determined
by game genre. More specifically, we may make an analogy
with the typical speech recognition for better understanding, viz.
event versus phoneme, shot versus word, and sports genre versus
grammar. The basic ides of our approach is to introduce some
kinds of ”video grammar” to help video analysis and even gen-
eral computer vision problems. However, because the semantic
structure of videos, named “video grammar” also, is always
under constraint and unstable in various applications, we will
need a more general framework than that of the speech recogni-
tion to ensure that the approach could be applied.

In our approach, video semantic analysis may be viewed as
a set of filters in different semantic granularities, which extract
semantics hierarchically from visual or audio features. Conse-
quently, we proposed a layered framework in which context
constraints in different semantic granularities are represented at
separate layers. With this framework, analysis tasks in different
semantic granularities, e.g., event detection and shot classifica-
tion, may be integrated into a single model and obtain more
robust results by interacting and sharing internal information
for the correlations of those tasks. There are two types of fil-
ters in this framework, namely, detectors and connectors. De-
tectors determine the existence and confidence of certain se-
mantics according to low-level features, and connectors model
the causalities between semantics. By assuming that the causal-
ities between semantics follow a certain stochastic process, uni-
form connectors will be built. In this paper, we adopt hidden

1051-8215/$20.00 © 2005 IEEE
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Fig. 2. Overview of the proposed framework.

Markov models for efficiency to constitute uniform connectors.
As shown in Fig. 2, detectors produce hypotheses on the seman-
tics at the bottom layer, and connectors optimize the hypotheses
by maximizing the probability at the top layer.

The proposed framework is a generic and extendable model
for video semantic analysis. The main differences and advan-
tages of this framework compared with existing ones are as fol-
lows.

1) A uniform solution to video semantic analysis. The pro-
posed methodology is not tied to a specific analysis task
of videos in a specific domain, but is easy to adapt to all
specific analysis tasks as it converts the analysis task into
modeling detectors and connectors.

2) An efficient and simple representation to context con-
straints. The first-order hidden Markov models (HMMs)
are simple yet powerful. Therefore, in terms of imple-
mentation, complex context constraints can be efficiently
built by simple connectors in a uniform manner, that is,
first-order HMMs.

3) An integrated model for semantic extraction and segmen-
tation in multiple semantic granularities. In the proposed
model, a number of semantic granularities are considered
together. The analysis process is integrated by probabil-
ities, and recognition and segmentation are solved syn-
chronously.

The remainder of this paper is organized as follows. In Sec-
tion II, we briefly review the previous works on video semantic
analysis and compare the proposed framework with existing
HMM-based approaches. In Section III, the HMM based com-
putational framework is described in detail. In Section IV, ex-
ample applications of this novel framework are presented and
discussed. All experimental results are given in Section V. Fi-
nally, Section VI concludes this paper. Moreover, possible fu-
ture work is also presented in this section.

II. RELATED WORK

There have been many attempts at video semantic analysis,
and some limited successes have been reported in general appli-
cation domains, such as periodical motion finding work [1], [2]
and temporal matching work [3]. Although those unsupervised
approaches have more expansibility when dealing with general
video data, the semantics extracted are limited to simple ones.

Low-level Features

Other recent work mostly focused on extracting high-level se-
mantics in confined application domains. In this manner, video
content may be modeled by supervised approaches. Such super-
vised semantic analysis mainly falls in three categories, namely,
video genre classification, concept learning, and event detec-
tion/recognition.

The video genre is the broad class to which a video may be-
long, such as sports, news, and feature movies. Roach et al.
[4] have classified video sequences into three predefined broad
classes of genres by motions. A reliable approach was presented
in [5], in which more genres have been classified. At a finer se-
mantic level, Messer et al. [6] proposed semantic cues to classify
sports videos into different types, such as tennis, swimming, and
yachting. However, these classification approaches are all lim-
ited to the coarsest level of semantics.

The objective of video concept learning is trying to automat-
ically index video content in a database by concepts, usually
represented by keywords. Liu and Bhanu [7] proposed a color-
based approach to learn visual concepts in videos. Bayesian net-
works were adopted in [8] to classify video contents according
to feature sensors. In order to exploit the interrelationships of
concepts, language-like model [9] and graphical model [10],
[11] have been used to model the dependences between con-
cepts. Instead of classifying key frames into several categories,
shot classification may be deemed as a special case of concept
learning in the clip level. Although there is a lack of general
learning models for arbitrary videos, it has been widely used in
specific domains, for example, news [12] and sports [13].

Events are the most important part of video semantic con-
tents. Events represent the temporal interactions and variation
that compose the story line in a video program. Because sports
activities have clear semantic structure, many research efforts
have been attracted on sports video analysis. Tan et al. [14] pro-
posed a system to detect basketball events using motion vec-
tors from MPEG streams. In the work presented in [15] and
[16], events in tennis and soccer games were recognized by se-
mantic object information, such as court-line and players loca-
tions. Zhong and Chang [17] combined the statistical model and
manual verification rules for recurrent event detection, such as
pitching and serving views in baseball games. The rules in these
works were defined explicatively and manually. A different ap-
proach was presented in [18], in which rules were trained by an
entropy-based inductive tree-learning algorithm.
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Fig. 3. Semantic space and model space in basketball event detection.

As another important aspect of video content analysis, con-
text constraints have been addressed in many literatures. Due
to the temporal interactions and interrelations between frames
in video, HMMs are a natural and simple way to model tem-
poral relationships. Liu and Kender [19] used HMMs to ex-
plore the structure of documentaries. Meanwhile, they also have
conjectured that the parameters of trained HMM’s may repre-
sent certain semantics, named “stylistic.” As an extension of this
idea, Sanchez et al. [20] proposed an unsupervised scheme for
video content clustering. The approach is based on the parame-
ters of Markov chains instead of low-level features. Rather than
the relationships between video frames, Markov assumptions
are also made, separately, at different levels depending on the
applications. In the event level, Petkovic ef al. [21] have rec-
ognized strokes in tennis by HMMs. Xie et al. [22] proposed
an HMM-based approach for soccer play/break event detection.
Video contents in one shot are temporally continuous, indicating
that shots with similar contents may show similar temporal pat-
terns. For example, Huang et al. [23] employed HMMs for video
shot classification. The attempts at exploiting the relationships
between shots by using HMMs are also reported. Wolf [24] has
used HMMs to parse video programs for semantic recognition.
A similar approach is adopted in [25] for slow-motion highlight
detection. In order to utilize the video syntax more efficiently,
multilayer HMMs have been used in [22] and [26]. Meanwhile,
they also were employed for other purposes, such as modality
fusing [10] or gesture abstraction [27] in video content analysis.
In these approaches, isolated HMMs in different layers are con-
nected directly or indirectly, and the final results are given by
maximizing the probability of the entire model instead of cer-
tain HMM. However, few of these aforementioned approaches
are able to extend to more generic analysis tasks.

The proposed framework may be similar to the aforemen-
tioned works based on HMM. However, the idea is quite dif-
ferent. Connectors in our proposed framework not only provide
the video syntax constraints, but also represent video seman-
tics. The video semantics in different granularities are entirely
mapped to a model space composed of detectors and connec-
tors. From the point view of applications, the framework will
allow correlative tasks to be solved more efficiently by bringing
them together rather than dealing with them separately.

1II. HMM-BASED FRAMEWORK FOR VIDEO
SEMANTIC ANALYSIS

A video program is not merely a sequence of images. The
temporal context information in videos is one of significant cues
for content understanding. The purpose of video semantic anal-
ysis may be of discovering the hidden states or semantics behind
video signals. In this view, video signals could be looked as the
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observations of semantics. If we denote video signals as O, and
semantics as S, therefore in terms of probabilities, the basic ap-
proach in semantic analysis may be formulized as follows:

Sy = argmax Pr (s |0y ) Pr (s|Si—1, St—2,...). (1)

Obviously, any analysis approach could be divided into two
parts, that is, likelihood models Pr(s|O;) and temporal con-
text constraints Pr(s|S;_1,St_2,...), represented as detectors
and connectors, respectively, in this paper. Though the form of
detectors depends on features and applications, the connectors
may be universal if we assume that context constraints follow
a certain stochastic process. HMMs have been proven to be ef-
fective in sequential pattern analysis and have been successfully
applied in speech recognition [28]. In this section, therefore, we
present how to build a general framework using uniform con-
nectors, namely HMMs.

A. Architecture of Framework

As aforementioned, to be a generic solution to video semantic
analysis, the proposed framework also should be composed of
two components, that is, likelihood models and context con-
straints. In this paper, we use the concepts of detectors and con-
nectors to describe them precisely.

Before the detailed descriptions are given, we first introduce
two terms, that is, semantic space and model space. Actually,
from the point view of supervised approaches, semantics in-
volved in a specified application are finite, which constitute
the semantic space V. An alternative denotation is Uk which
is the subset of semantics in the kth semantic granularity. In
addition, we virtually create a model space M equivalent to
the semantic space, as shown in Fig. 3. Each semantic in ¥
is mapped to a submodel (detector or connectors) in M. For
convenience, we also use M* to denote the subset of the sub-
models corresponding to semantics in ¥*. Obviously, there is a
one-to-one relation between semantic space ¥ and model space
M. In this manner, video semantic analysis may be translated
into a problem of seeking an optimal sequence of submodels in
the model space.

In this mapping, we divide the semantic space into two parts
corresponding to detectors and connectors, respectively, in the
model space. Actually, semantics in each granularity are evi-
dently correlated if we take into account the abstracted seman-
tics in a higher granularity. Therefore, connectors are used to
model the context constraints provided by the abstracted seman-
tics and rule the composition of semantics at the lower granu-
larity. However, in the lowest granularity, the relationships be-
come much more complicated because low-level features are
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Fig. 4. State dependences unrolled in time.

involved. So, in order to make the definition of the framework
more general, another kind of submodels, that is detectors, is
proposed to draw a confidence inference of certain semantics
from the low-level features. In conclusion, M1 is composed of
detectors and the rest are connectors.

Because the form of detectors depends on low-level features
and applications, detectors could be considered as black boxes
in our formulation, whose inputs are low-level features and out-
puts are probabilities of the presence of semantics. For connec-
tors, a uniform definition may be achieved by inheriting from
that of HMMs, that is,

MF = (mpg, Apgs, MF71)

2

MFeMFE>1 (2

?

where 7 is the initial probability vector and A is the transition
probability matrix. They are only trainable parameters in con-
nectors. The specification of states is completely determined by
M*=1, The state number equals to |M*~| and the state likeli-
hoods are the outputs of M*~1,

More generally, we suppose that the semantics in ¥ span n
granularities. Therefore, the model space is also composed of n
layers. Fortunately, the n-layer model space could be considered
one HMM with [T} _, |M k| hidden states. If we align the whole
model with video timeline, the state dependences unrolled in
time are shown in Fig. 4.

As mentioned earlier, the n-layer model space could be de-
noted as one HMM {S, 7, A, B}, where S is the set of states,
7 is a vector of state initial probabilities, A is a matrix of state
transition probabilities, and B is the collection of observation
probability distribution in each state. More specifically, 7 (s) is
the initial probability of state s, A(s1 , $2) is the transition prob-
ability from state s; to s, and B;(O) is the probability of state
s given observation O. Each element s in S is a combination of
submodels in each layer, written as s = (s!,s2,...,s™), where
s* is any element of M*. The submodel s*(k > 1) is a con-
nector, which is denoted in the form of (2). All of the parame-
ters in the n-layer model may be computed according to all the
submodels as follows:

n

5] =[] |M*] 3)
k=1

n—1

sn) = HWSL»+1 (Sk) (4)

k=1

m(s)=m(s', s* ...
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A(s1,82) = A ((s1,87.---57), (s3.83,...5%))
—1
= {AS;;+1 (811)7812)>pH 7r8§+1 (S§)7 n>p>2
k=1
Asf (5%73%)7 p= 1
p:max{k|s]f7és§,n2k21} ®))
BS (O) :B(Sl’sl,“_sn) (O) = 81(0) (6)

where 7.« (z9) and Ak (z1,x2) are the parameters of the sub-
model s*, which are defined as the initial probability of zy and
the transition probability from z; to x5 (zq, x1, and x5 are the
elements of M*~1), and s!(O) is the probability output of de-
tector s! when the observation O is given. Thus, we have inte-
grated all submodels into one HMM, and the optimization may
be achieved by Viterbi algorithm. When the optimal sequence
of sub-models is determined, the most likely semantics in each
granularity are also obtained, including temporal segmentation
boundaries.

B. Submodel Training

As basic components of the proposed framework, detectors
and connectors are highly coupled in recognition. From the per-
spective of training, however, each submodel is completely in-
dependent. In this manner, a complex model is decomposed
into several simple parts, which greatly reduces the complexity
of model training. The training of detectors should be trying
to maximize the probability outputs with respect to training
samples. However, for the various applications and available
features, the implementation of detectors may quite different.
Therefore, in this section, we mainly discuss the training of con-
nectors.

As aforementioned, connectors introduce constraints on the
composition of submodels at lower layer. So the objective of
connectors’ training is to model the dependences between se-
mantics at lower granularity along temporal axis. Given training
samples and semantic space, the samples can be hierarchically
segment into semantic clips at each granularity from the top
down, as shown in Fig. 5. For a connector M} (M} € M* k >
1), equivalent to U¥, all the clips labeled as U¥ are picked out
and their label sequences in the & — 1th granularity are taken
as training data. Denote the set of training samples of MF as
DM = {pM* pMi  pMiFY For each training sequence
DM ¥ the ith element is denoted as DM ’ik(i), where D} Zk(L) an
element of Mik_l. In the maximum-likelihood formulation, the
state initial probability vector 7 and the transition probability
matrix A are calculated as follows:

1y, k .
mas(m) = 5 |{i [} (1) =m0z 521

(m e M*1) (7
N ,
Akjl]c(ml7m2): Z (n]i[l,(::zf)m) (ml,mQEMk_l)
méEMk-L '
Naw = [{ [0} @ =a. D} 41 = b.C2j21})
(8)
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Fig. 5. Hierarchical segmentation.

where N(a,b) calculates the number of pairs in sequences in
which a is followed by b.

Although the specific implementations of detectors are not
presented in this section, how to balance the payload between
detectors and connectors is still critical for the overall model.
The detectors should not be too strong so that the connectors
have chances to correct errors caused by noises. Meanwhile,
weak detectors are easy to be trained and reused in other ap-
plication domains.

IV. APPLICATIONS OF THE PROPOSED FRAMEWORK

In this section, we introduce the usage of the proposed generic
framework in detail. As sports activities are governed by rules,
the semantics in sports videos are usually well defined. There-
fore, we use sports videos as sample applications to evaluate
the proposed framework. Recent work on semantic analysis in
sports videos mainly focuses on three semantic granularities,
i.e., events, shot categories and genres. In this work, the pro-
posed framework has been applied to three kinds of video, one
at each of three semantic granularities: basketball event detec-
tion, soccer shot classification, and volleyball sequence anal-
ysis. Since motion is the most important feature for capturing
the semantic contents in video, especially for sports videos, we
have proposed a novel representation of dominant motions for
these sample applications. Also, instead of precisely detecting
and tracking object as many other works, a statistical learning
approach is adopted to build semantic models based on a set of
motion filters.

A. Statistical Motion Feature

The proposed motion representations are generic and may
be applied to common motion analysis for broad video content
analysis. There are two key ideas in the proposed motion rep-
resentation converting a video to a temporal feature sequence.
First, motions between two video frames are viewed as an en-
ergy redistribution process, in which each video frame is rep-
resented by an energy distribution function. Second, a set of
motion filters are designed, and each is most responsive to a
certain type of dominant motion. These filters are applied to the
sequence of energy distribution functions, respectively, and each
response sequence presents the characteristics of certain motion
pattern on time axis.

1) Energy Redistribution: This motion representation is de-
rived from motion vector fields (MVFs), which are estimated

v M)y v (M

Fig. 6. Hierarchical segmentation.

by block-based motion estimation algorithms. Although the real
motion in videos often cannot be accurately described in the way
of MVFs, the loss is trivial compared to its efficiency. Partic-
ularly, if videos are in MPEG format, the motion vector fields
are readily available. The proposed representation views motion
vectors as the forces to alter the distribution of “energy” associ-
ated with each block from which one motion vector is extracted,
and measures the distribution change between two frames by an
energy redistribution function.

More specifically, each block in MVFs is viewed as a basic
energy container. We assume that all of blocks in the initial
frame have the same amount of energy. Motion vectors are fig-
ured as the outside forces that cause energy exchange between
blocks, as show in Fig. 6. Therefore, the change of energy dis-
tribution may reflect motion characteristics.

The redistribution of energy depends on the corresponding
position in the next frame. The energy at block(x, y) is denoted
by E, ,. The energy redistribution function is represented as

> (overlapS; jzy X E; ;)

i,

E,, = i,j € [1L,LW,] (9)

2 )
Wy

where overlapS; ; .., denotes the overlap portion of the rectan-
gular regions corresponding to block(i, 7) in the previous frame
and block(z,y) in the current frame, and W is the size of
blocks. If a block moves out of the frame boundary, in order
to keep the same amount of energy, we decrease the magnitude
of vector to ensure the block is just in frame.

2) Motion Filters: In order to discover temporal motion pat-
terns, we need to convert such measure of energy distribution
function into temporal motion features. For this purpose, we
have designed a set of motion filters, each of which is a weight
matrix with the same size as blocks divided in video frames.
Elements in the weight matrix are denoted by w; ;. When we
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Fig. 7. Examples of feature curves. (a) Key frame of clips. (b) Feature curve. (c) Example for weight templates (1: horizontal motion; 2: vertical motion; 3: radial

motion).

apply each of these filters to the energy distribution of a video
frame, the response in a frame is defined as

ER:ZEi,j X Wi j, 1,] € [1,Wb].
i

By arranging elements in a weight matrix with different values,
we may design filters with different sensitivities to different mo-
tion patterns. As shown in Fig. 7, each plot (b) contains three
curves, i.e., time series of the responses to three filters. The
key-frame of the corresponding video clips are shown in (a),
and the filters used and result in strong responses (indicated by
bold curves) are listed in (c). The crests on curves indicate the
presence of salient motions, and the type and shape of crests
show the direction and characters of the motions.

3) Sequential Feature Curves: Like in audio signal pro-
cessing, a sliding window is used in calculating motion features
of a video sequence. The first frame in the window is the initial
frame with even energy distribution. Then, the energy redis-
tribution function (9) is applied to frames in the window one
by one, until the last frame is reached. This process produces
a sequence of energy distribution functions. Each function is
filtered by three motion filters, respectively, to produce three
sequences of responses, as defined by (10). We calculate the
means of three response sequences within sliding window
separately and use them to present the motions simply but
effectively. The three motion filters are designed to detect
three kinds of dominant motions, say, horizontal, vertical, and
radial, respectively, as shown in Fig. 7. The width of the sliding

(10)

window and the sampling frequency (defined by the number of
skipped frames when the window slides) determine the accu-
racy of results. Therefore, it is easy to balance computational
complexity and performance by adjusting the two parameters.

B. Applications to Sports Videos

In this section, the applications to sports videos will be
discussed in detail. According to the proposed motion features,
a direct approach to detector design is a single Gaussian model.
Although simple detectors have more tolerance on noises, a
single Gaussian model may be too simple to model meaningful
semantics, which leads to an inconvenience of manual anno-
tation. Therefore, we have to find those “hidden” detectors
through the semantics in a higher granularity. Fortunately, if
we consider the detector layer and the first connector layer to-
gether, we obtain the common HMMs [28], named compound
connectors. In this manner, we only need to determine the
number of detectors for each abstracted semantic, that is, the
number of states of each connector in the second layer. So, the
detectors at the bottom layer and the connectors at the second
layer are trained together. In our implementation, the same
architecture will be used in all sample applications. It must be
mentioned that the form of detectors is not limited to a single
Gaussian model what is used in this paper.

Although sample applications have different focuses in re-
search, the proposed framework, a general solution to video
semantic analysis, is implemented in a similar manner. In the
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TABLE 1
MODEL AND SEMANTIC SPACE IN THE BASKETBALL APPLICATION
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TABLE 1II
MODEL AND SEMANTIC SPACE IN THE SOCCER APPLICATION

Semantics
Basketball Shot
16 Pre-defined Basketball Events

Hidden Semantics

Layer | Sub-models
3rd Connectors, (HMM)
2nd Connectors, (HMM)

Ist Detectors, (Single GM)

feature part, only the proposed motion representation is used,
except the soccer application. Three filters presented in Sec-
tion III-A, which are sensitive to horizontal, vertical, and radial
motions, respectively, are employed to generate three motion
curves. In theory, they are complete for any dominant motion
that may be regarded as a linear combination of the three-direc-
tional motions. Because some temporal patterns are only dis-
tinct in the differential curves, we combine three original and
three differential curves, and one six-dimensional vector is used
as observation vector and input into compound connectors. In
training process, video sequences are manually annotated and
segmented at each granularity. The video clips at the lowest
granularity are the training samples of compound connectors
and the sequences of semantics in each granularity are used to
build regular connectors described in Section III-B. After all
submodels are trained independently, the integrated model con-
stituted by submodels is able to segment the test sequences into
separate clips and annotate those clips in different granulari-
ties. In this manner, video sequence may be automatically con-
verted into a number of semantic sequences at different granu-
larities. By using the information of semantic sequences, such
as in sports videos, users are allowed to quickly locate the clips
of interests from a long video sequence based on semantics and
further customize the highlight generated by computers.

1) Basketball Event Detection: Most of existing works on
event detection assume that video sequences are presegmented
into clips and each clip contains only one event. Our approach
is different. In the proposed framework, our goal is to find an
optimal sequence of semantics to explain video content. There-
fore, the tasks of our framework are not only recognition but
also segmentation. We have applied the proposed framework to
basketball videos to decompose each shot in basketball videos
into a sequence of predefined events. Semantic space and corre-
sponding model space in this application are shown in Table I.

According to the game rules, editing manners, and viewers’
interests, we defined 16 basketball events: 1) offence at left
court; 2) offence at right court; 3) fast break to left court; 4)
fast break to right court; 5) lay-up at left court; 6) lay-up at right
court; 7) shot at left court; 8) shot at right court; 9) track player
to left; 10) track player to right; 11) lay-up in close-up view; 12)
shot in close-up view; 13) foul shot in close-up view; 14) general
close-up; 15) wipe; and 16) stillness. Obviously, some of these
definitions are not considered as events in existing work. Our
approach is to explain video content with semantics, which re-
quires that the predefined semantics are complete for a specific
domain. Therefore, we may need to define some “nonevent” se-
mantics, such as “stillness” and “general close-up,” to tolerate
noises on the timeline and avoid model breakdown in the HMM
recognition process.

Layer | Sub-models Semantics
4th Connectors, (HMM)
3rd Connectors, (HMM)
2nd Connectors, (HMM)

Ist Detectors, (Single GM)

Soccer Video Sequence

7 Pre-defined Soccer Shot Categories

12 Pre-defined Soccer Sub-semantics

Hidden Semantics

The detailed implementations of the framework have been
presented at the beginning of this section. However, how to de-
fine a state topology for each compound connector still remains
a problem. The direct approach is to define a specific topology
for each compound connector by manually studying training
samples. However, it is too time-consuming, especially when
the event variation is large. Considering the fact that the connec-
tions between states can be broken in training process, we use
a complete connected six-state compound connector as a gen-
eral prototype for all basketball events. According to the exper-
imental results, the six-state compound connector is reasonable
for all events’ modeling. In addition, while definitely requiring
more training data, increasing the number of states has no dis-
tinct improvement on recognition performance.

In this application, the optimization is achieved at shot level.
That is, the model segments each shot into event clips indepen-
dently. The results of basketball event detection given by our
system are the event sequences of shots, including event bound-
aries.

2) Soccer Shot Classification: Soccer is one of the most
popular worldwide sports and attracts a great deal of research
attentions [13], [22]. Play/break status in soccer videos is
important information for soccer video analysis, in which shot
classification is a key technology [22]. Therefore, we also
applied this framework to soccer shot classification. Although
the granularity of shot categories is higher than that of events,
we still define coarse semantics at event level to increase the
overall toleration of shot variations. The semantic space and
corresponding model space in soccer shot classification are
shown in Table II.

The seven predefined shot categories are: 1) wide-angle;
2) zoom-in; 3) close-up (after wide-angle); 4) close-up (after
replay); 5) wipe (before replay); 6) wipe (after replay); and
7) replay. Also, we decompose those categories into several
subsemantics at event level, including: 1) play in the field; 2)
shoot or attempt to shoot in the field; 3) track player to left
in zoom-in view; 4) track player to right in zoom-in view; 5)
general close-up in zoom-in view; 6) track player to left in
close-up view; 7) track player to right in close-up view; 8)
general close-up in close-up view; 9) wipe; 10) track player
or ball to left in replay view; 11) track player or ball to right
in replay view; and 12) general close-up in replay view. Such
definitions of semantics at event level are coarse and do not
even contain most of highlighted events, such as “corner kick”
or “free kick.”

In soccer games, the dominant color is quite stable in wide-
angle shots due to the large range of grass field. In order to uti-
lize this significant cue, we use multistream HMMs [29] in com-
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TABLE III
MODEL AND SEMANTIC SPACE IN THE VOLLEYBALL APPLICATION

Layer |Sub-models Semantics
4th Connectors, (HMM)
3rd Connectors, (HMM)
2nd Connectors, (HMM)

Ist Detectors, (Single GM)

Volleyball Video Sequence
8 Pre-defined Volleyball Shot Categories
14 Pre-defined Volleyball Events

Hidden Semantics

pound connectors. A multistream HMM is obtained by com-
bining the multiple single-stream HMMs and introducing the
weights for each stream. The first stream is still the motion fea-
ture vector same as in the basketball application, and the second
stream is the vector of the mean RGB values of each frame. The
color feature is only the secondary information and unreliable
in other kind of shots, thus we use a lower weight on the color
feature stream. The topology of each single-stream HMM fol-
lows the definition of basketball application.

In soccer shot classification, we perform the optimization at
sequence level. Therefore, adjacent shots are no longer inde-
pendent in recognition. In effect, the recognition results given
by this model are composed of two parts, viz. the sequence of
shot categories and the sequences of coarse events for each shot.
Since what are concerned with is only shot classification, the
sequences of coarse events are discarded even though they may
provide more detailed information than shot categories. In our
implementation, the shot boundaries are labeled manually, in
order to suppress negative effects of inaccurate shot boundaries.
Therefore, the recognition process is divided into two steps, say,
shot level recognition and sequence level recognition. These two
steps are interactively and tightly connected by probabilities.

3) Volleyball Sequence Analysis: Volleyball analysis is an-
other application example of the proposed framework. Volley-
ball videos are more predictable in structure, which motivates
the idea of sequence analysis. That is, an integrated approach
is designed for both event detection and shot classification in
a uniform manner. The semantic space of this application and
corresponding model space are given in Table III. From the im-
plementation point of view, this application is similar to the
soccer shot classification presented in Section IV-B2 excepting
the features used. Therefore, the detailed implementations of
those parts are omitted.

Basically, we divide volleyball shots into eight categories,
that is: 1) serve; 2) wide-angle (after serve); 3) wide-angle (after
zoom-in); 4) zoom-in; 5) close-up; 6) wipe (before replay); 7)
wipe (after replay); and 8) replay. However, in order to distin-
guish more detailed events, we attach the information of serving
team to each shot category, so the number of shot categories is
doubled. In this manner, more precise events may be recognized,
which is impossible for one individual shot analysis. So, the pre-
defined events in volleyball are divided into 14 categories. Some
events are further extended to a number of events by attaching
high level semantic attributes, viz. error and scoring. The 14
event categories include: 1) serve at right or left court; 2) of-
fence at right or left court; 3) attack to right or left court; 4)
stroke at right or left court; 5) block at right or left court; 6)
zoom-in when playing; 7) jump serve/serve in close-up view by
right or left team; 8) cheer in right or left court; 9) track player
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to right or left; 10) general close-up; 11) stillness; 12) wipe; 13)
slow motion of stroking in right or left court; and 14) slow mo-
tion in close-up view. The semantics predefined in this applica-
tion is extraordinary comprehensive and describe the content of
volleyball videos precisely. Without regarding to computational
complexity, we can build an analysis system in a broad domain
by integrating a number of models like this one.

V. EXPERIMENTS

Before experimental results and discussions are given, we
first present the evaluation of the proposed motion features. All
three applications are based on this motion features, hence the
feature performance is critical to any further applications.

A. Feature Effectiveness Study

In Section ITI-A, we proposed a novel representation of domi-
nant motions which are derived from MVFs. However, different
block matching algorithms produce different MVFs. Although
the full-search strategy is employed to obtain MVFs in bas-
ketball application, it is extremely time-consuming. Therefore,
our goal is to find a balance point between computational com-
plexity and recognition performance in the following experi-
ments. We use basketball application to characterize the changes
of recognition performance when different sources of MVFs are
employed.

Three MVFs obtained by three different ways are studied
in this experiment. The first one is full-search strategy, which
emphasizes accuracy and disregards speed. The second is the
diamond-search strategy [30], which pays attention to both
accuracy and speed, and the last one is the MVFs directly
extracted from MPEG-I streams, specifically, P-frame mo-
tion vectors. Though a variety of block matching algorithms
may be used in the MPEG-I coding systems, all of them are
highly accelerated for real-time compression with a compro-
mise on accuracy. Usually, there are three types of frames in
MPEG-I streams, namely, I-frames, P-frames, and B-frames.
As P-frames are not continuous and the interval is variable, we
fill the “blanks” between P-frames to make the P-frame MVFs
usable for our experiment. In normal MPEG-I streams, frame
sequences always begin with an [-frame and end with a P-frame,
which means each “blank” sequence is followed by a P-frame.
Supposing there are n continuous “blank™ frames preceded by
a P-frame, the MVFs of the n 4 1 frames, including n “blank”
frames and a posterior P-frame, are equal to MVFp/(n+1),
where MVFp denotes the MVF of the posterior P-frame.

Total test video sequences have been composed of six ses-
sions of basketball games, about 15 min each. Two sessions
were used for training and the remains for testing. All sequences
were segmented into shots and further labeled with predefined
events. Event transcriptions of test sequences were used as
ground truth. According to the three aforementioned MVFs,
three different recognition results were obtained based on the
same training and test data. As event transcriptions are given
as final recognition results, it is not reasonable to compare
them with ground-truth by orderly one by one matching. We
need to deal with the cases of the event insertion, deletion and
replacement. A dynamic-programming (DP) approach, similar
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Fig. 8. DP approach for event transcription comparison.
TABLE IV
RECOGNITION PERFORMANCE USING DIFFERENT MVFs
Clip Full-search Diamond-Search MPEG-I Stream
Cor. Acc. | Cor. Acc. Cor. Acc.
I 70.65% | 19.74 | 73.17% | 20.59 58.41% | 23.51
1 76.59% | 19.63 | 73.36% | 19.68 56.62% | 26.08
11 71.21% | 19.55 | 74.24% | 20.10 60.20% | 25.77
v 77.82% | 19.28 | 75.16% | 19.67 56.11% | 24.69

to the measure of speech recognition [31], is employed to assess
recognition results obtained from three MVFs, respectively, as
shown in Fig. 8. Because the edges of some predefined events
may be unclear sometime, the ground truth is not deemed
as the exclusive explanation for the given video sequences.
Considering this fact, some event pairs, including “lay-up”
and “shot,” “close-up” and “tracking,” have been combined by
setting the replacement costs to zero. In other cases, the costs
of insertion, deletion, and replacement are all equal to one.

Based on the DP matching scheme, we have defined two mea-
sures for result evaluation, that is, the correctness and the accu-
racy, which score the performance of event detection and seg-
mentation respectively. They are defined as follows:

Cmax - C’min
Rigy = —0ax = min 4% (11)
Cmax
RaCC: ) |Q| eQ|CBbogin_ngogin|-|_|CBcnd_gBond| (12)

where C\;n and Cpax denote the minimal and maximal cost
of DP matching, respectively, {2 is the set of matched events,
CBpeginx and c¢BZ ; are the two boundaries of event x in recog-
nition results, and ngD”egim and gBZ , are in ground truth. The
experimental results are listed in Table IV.

Because the motion vectors in MPEG-I streams are not only
inaccurate but also incomplete, the scores of correctness and
accuracy are the lowest when MPEG MVFs are employed.
However, even in this case, the highest score of correctness
approaches to 60% and the accuracy score also shows that the
average error of segmentation is no more than one second. The
full-search- and diamond-search-based approaches all obtain
higher scores compared to that of the MPEG MVF-based
approach. The correctness is evidently increased, although the
improvement on accuracy is not distinct. This experiment has
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TABLE V
EVALUATION OF BASKETBALL EVENT DETECTION
Shot Num Assessment Score
Good Mod. | Bad Refu.
85 576 156 112 33 77.5%
441 3385 918 685 102 77.1%
532 3822 1093 769 97 76.9%
699 3201 885 834 50 74.1%
470 2990 758 919 30 72.2%
359 1500 321 457 9 72.9%
2586 15474 | 4131 3776 | 321 75.0%

verified that the proposed features are robust to various MVFs
in terms of segmentation. The correctness of diamond-search is
not higher than that of full search, but more stable. Therefore,
the diamond-search algorithm, designed based on the matching
probability distribution, is likely to produce true motion vectors
under noises. In conclusion, the diamond-search algorithm is
the best solution to the proposed motion features at aspects of
both performance and computational complexity.

B. Evaluation of Basketball Event Detection

The total duration of our experimental basketball videos is
more than 6 h and over 2500 shots, including MPEG-7 test
videos. About 20 sample clips have been used to train each
compound connector and 380 event transcriptions to build the
top-layer connector.

Considering the ambiguity of semantics, we have carried
out evaluation experiments by user study. A web-based eval-
uation system has been designed for user assessment from
the website. The subjects were invited and required to score
computer-generated results online. In our evaluation system,
the event information was extracted from the database and
presented to users by speeches and texts simultaneously when
an event was emerging. At each end of shots, the subjects
were required to select an assessment: good, neutral, or bad.
If a subject thinks the current shot cannot be described by
our predefined events, he/she is allowed to refuse the assign-
ment. We define the rate of users’ satisfaction as follows:

NGood - 100 + NNoutral - 50
NGood + NNeutral + NBad

where Ngooq 18 the number of the “good” assessments, Nyeutral
is the number of the “neutral” assessments, and Np.q is the
number of the “bad” assessments. In total, 15 subjects were in-
volved in this experiment. The results of user study are listed in
Table V, which indicates that the predefined events are reason-
ably complete, as only 1.35% assignments were refused by sub-
jects. The average user satisfaction rate approaches 75%, which
indicates that our framework is effective for basketball event
detection.

SatRate = -100%

13)

C. Evaluation of Soccer Shot Classification

Three soccer matches have been used in this evaluation, in
which one match (about 76 min) was for training and the other
two matches (about 3 h) for testing. Based on the conclusion
of the feature study, we adopted the diamond-search approach
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TABLE VI
EVALUATION OF SOCCER SHOT CLASSIFICATION
Shot Category Precision Rate Recall Rate
Wide-angle 90.2% 88.6%
Zoom-in 85.2% 89.2%
Close- up 86.3% 90.8%
Wipe 99.0% 89.2%
Replay 94.8% 79.8%

to extract motion vectors. In this manner, the speed of feature
extraction is tripled approximately. As the shots in soccer videos
change frequently, the training data for subsemantics and shot
categories are adequate. We have obtained more than 20 sample
clips to train each subsemantic model and over 700 subsemantic
transcriptions of shots to build connectors at upper layers.

In this application, subsemantics are only defined as mid-
level steps between low-level features analysis and high-level
shot categorization. Though subsemantic transcriptions are also
given in recognition results, we do not take them as a part of the
result evaluation. Because shot boundaries are determined be-
fore recognition, we need not concern the accuracy of segmen-
tation. Meanwhile, the semantic granularity of shot categories is
relative high, so the divergences on shot classification may not
be distinct. We manually labeled each shot in test sequences as
ground truth and used precision rate and recall rate to evaluate
recognition results. The results are given in Table VI.

From this table, we can see that both the precision rate and
recall rate are satisfactory. As motion patterns in wipes are most
distinguishable, the highest score has been obtained in this cate-
gory. Wide-angle, zoom-in, and close-up, which are helpful for
the determination of play/break status in games, are also well
classified. In conclusion, the experimental results have demon-
strated the good capability of the proposed framework in shot
classification.

D. Evaluation of Volleyball Sequence Analysis

In volleyball application, two sessions (about 40 min) are
used for training, and seven sessions (about 110 min) for
testing. Because the occurrences of different events are ex-
tremely uneven, we cannot obtain adequate samples for some
events though 40-min videos are employed. However, most of
the compound connectors are well trained by at least 10 sam-
ples. More than 400 event transcriptions of shots are utilized to
build connectors at upper layers.

The recognition results are composed of two parts, e.g.,
subsemantic transcriptions for event detection/segmentation
and shot category transcriptions for shot classification. We
evaluate the two parts of recognition results, respectively, with
the similar schemes in basketball and soccer applications. In
the evaluation experiment for event transcriptions, 10 subjects
were invited for assessment. The experimental results of shot
classification and event detection are listed in Tables VII and
VIII, respectively.

Comparing Table VII with Table VI, it is evident that better
performance on shot classification is obtained in this applica-
tion. However, the recall rate of zoom-in is only 58.8%, which
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TABLE VII
EVALUATION OF VOLLEYBALL SHOT CLASSIFICATION
Shot Category Precision Rate Recall Rate
Wide-angle 99.3% 97.6%
Zoom-in 100% 58.8%
Close-up 100% 85.7%
Serve 87.6% 99.4%
Wipe 100% 94.1%
Replay 100% 94.1%
TABLE VIII
EVALUATION OF VOLLEYBALL EVENT DETECTION
Shot Num Assessment Score
Good | Mod. | Bad Refu.
203 1074 464 275 30 72.0%
218 1312 484 276 4 75.0%
107 727 209 125 2 78.4%
157 1138 286 138 17 82.0%
260 1682 494 409 6 74.6%
217 1487 403 273 4 78.1%
135 889 241 187 1 76.7%
1297 8309 2581 1683 | 64 76.4%

is much lower than that of the other categories. Unlike in soccer
videos, zoom-in shots are rare in volleyball videos, which
may result in insufficient training of the related submodels. As
aforementioned, each shot category also preserves which is
the serving team. We use this information to predict the scores
of match teams. The predict error is no more than two points
for each team in our experiment, which shows that the serving
team information can also be effectively extracted.

In Table VIII, only 0.5% of assignments are refused by sub-
jects, which is much fewer than that in basketball analysis. It is
because more comprehensive events can be detected by the inte-
grated model. The average user satisfaction exceeds 76%, which
is also higher than that in basketball. Usually, the finer event
category results in lower satisfaction rate due to more recogni-
tion errors. However, a higher score has been obtained though
the predefined events in volleyball are finer than those in bas-
ketball. In general, we can conclude that semantics at different
granularities may be more efficiently modeled by the proposed
framework than those dealing with them separately. The reason
is that the recognition results given by the integrated model are
optimized in a broader model space.

VI. CONCLUSION

In this paper, we have presented a novel HMM-based frame-
work as a generic solution to video semantic analysis. There are
three advantages in the proposed framework compared to ex-
isting work: 1) it is a uniform solution to video semantic anal-
ysis; 2) an efficient and simple representation is proposed to
sufficiently utilize context constraints in video sequences; and
3) it is an integrated model for semantic recognition and seg-
mentation in multiply semantic granularity. Specifically, in the
proposed framework, the semantics at different granularities are
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mapped to a hierarchical model space which is composed of de-
tectors at bottom layer and connectors at upper layers. Detec-
tors are application-dependent models which convert low-level
features to weak hypotheses of semantics. On the other hand,
connectors, a kind of HMM, are universal models, which op-
timize those hypotheses from detectors or connectors at lower
layer according to context constraints. In this manner, the pro-
posed model decomposes a complex issue into simple subis-
sues represented by detectors or connectors when training and
automatically integrates those submodels for recognition. The
applications to basketball event detection, soccer shot classifi-
cation and volleyball sequence analysis have demonstrated that
the proposed framework is not only suitable for a broad range of
applications, but also capable of handling semantics at different
granularities. Another contribution of this paper is the robust
temporal motion representation scheme. The evaluation experi-
ments have validated the effectiveness of this motion represen-
tation. Moreover, the robustness of this representation is also
testified by the performance study.

The proposed framework is open and extendable. Rather than
the single Gaussian model, various generative models may be
used as detectors, such as mixture Gaussian Model and Bayesian
networks, for better performance in specific application domain.
However, weak detectors are still expected in terms of the per-
formance of whole model.
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