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ABSTRACT

Qualitative Spatial Reasoning (QSR) has varying applications in Geographic

Information Systems (GIS), visual programming language semantics, and digital im-

age analysis [17, 53]. Systems for spatial reasoning over a set of objects have evolved

in both expressive power and complexity, but implementations or usages of these sys-

tems are not common. This is partially due to the computational complexity of the

operations required by the reasoner to make informed decisions about its surround-

ings. These theoretical systems are designed to focus on certain criteria, including

efficiency of computation, ease of human comprehension, and expressive power. Sadly,

the implementation of these systems is frequently left as an exercise for the reader.

Herein, a new QSR system, VRCC-3D+, is proposed that strives to maximize

expressive power while minimizing the complexity of reasoning and computational

cost of using the system. This system is an evolution of RCC-3D; the system and

implementation are constantly being refined to handle the complexities of the rea-

soning being performed. The refinements contribute to the accuracy, correctness,

and speed of the implementation. To improve the accuracy and correctness of the

implementation, a way to dynamically change error tolerance in the system to more

accurately reflect what the user sees is designed. A method that improves the speed of

determining spatial relationships between objects by using composition tables and de-

cision trees is introduced, and improvements to the system itself are recommended; by

streamlining the relation set and enforcing strict rules for the precision of the pred-

icates that determine the relationships between objects. A potential use case and

prototype implementation is introduced to further motivate the need for implemen-

tations of QSR systems, and show that their use is not precluded by computational

complexity.
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6.2 Range of Number of Nodes for DGP and Näıve Partitioning. . . . . . . . . . . . . . . . 82
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1. INTRODUCTION

Qualitative Spatial Reasoning (QSR) has varying applications in Geographic

Information Systems (GIS), visual programming language semantics, robotics, and

digital image analysis [17, 53]. Systems for spatial reasoning over a set of objects have

evolved in both expressive power and complexity. The design of each system focuses

on certain criteria, including efficiency of computation, ease of human comprehension,

and expressive power.

Spatial reasoning is a task that humans perform constantly; understanding the

structure of one’s surroundings is key in being able to navigate, interract, and exist.

Understanding basic principles such as object permanence, or an intuitive under-

standing of the basic tenants of physics allow humans to make decisions about poten-

tially life-threatening events. For example, imagine security camera footage showing

a person carrying a bag, but after walking behind a pillar (or other obstruction) and

emerging, is no longer carrying the bag. A human being watching the footage might

become suspicious, and take appropriate action. However, the information used by

the person taking action was not only supplied by the footage; humans understand

that the person who walked from behind the obstruction is indeed the same person

who originally passed behind it. Also, they know the bag must still exist; as such

the bag could be somewhere behind the obstruction. The observer knows all of this

information through experience and observation of the basic tenants of physics, not

through rigorous calcluation of obscuration and connection.

Integration of QSR with other information is not an easy task. A large number

of existing QSR systems have limitations that inhibit their usage. The majority of

the earlier systems such as the Region Connection Calculi (RCC) formulations are
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limited to two dimensions. Furthermore, few if any of the systems have implemen-

tations; the assumed or required representation of the data, while easy for humans

to comprehend, is very difficult to implement in a computer system. The concepts

behind the systems are sound, but implementations can only be application and data

representation specific.

Much of the difficulty in creating an implementation for these systems lies in

the vast number of calculations required to obtain enough data to reason on. Advances

in hardware (such as faster CPUs and general purpose GPU computing) have opened

the door to an era of unparalleled calculation potential. All hardware has limitations

and at the very least, must be constrained by the speed of light. As such, relying on

hardware to provide the needed performance is folly; the algorithms used to analyze

the data must be as efficient as possible.

This collection of work attacks the problem from three key directions:

1. Improvement and optimization of the used algorithms.

2. Refinements to the QSR system (VRCC-3D+) itself.

3. Implementation and prototype application of the system.

This dissertation is formatted as follows. First, a review of current literature

that concerns QSR systems is presented, followed by five papers accepted for publi-

cation or in review. In the first paper, a mechanism to allow dynamic error tolerance

based on the finite nature of the pixel and the distance of the object from the observer

in VRCC-3D+ is introduced. A method to dynamically build decision trees using a

composition table to speed up the computation of the relations is presented in the

second paper. The third paper is an exploration of one of many possible applications
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of an implementation of VRCC-3D+. In the fourth paper, a dual graph represen-

tation of three dimensional objects is used to improve the quality and efficiency of

bounding volume hierarchies. Finally, a refinement of the relations in VRCC-3D+

inspired by computational challenges is presented in the fifth paper.
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2. REVIEW OF LITERATURE

2.1. REGIONS AND CONNECTION

2.1.1. RCC-8. Introduced in 1992 by Randall, Cohn, and Cui, RCC was

initially an acronym for the names of the authors; later Region Connection Calculus

was deemed a more appropriate name for what was being modeled. RCC-8 was

the earliest system to define relationships between regions based on connection [52].

Randall, Cohn, and Cui define eight relationships (see Figure 2.1):

• Disconnected (DC)

• Externally Connected (EC)

• Partial Overlap (PO)

• Equal (EQ)

• Tangential Proper Part (TPP)

• Tangential Proper Part Inverse (TPPi)

• Non-Tangential Proper Part (NTPP)

• Non-Tangential Proper Part Inverse (NTPPi)

These relationships are Jointly Exhaustive Pairwise Disjoint (JEPD), meaning

that there is no configuration of physically feasible regions that cannot be described

by one of the relations, and no pair of regions can be described by more than one

relationship (they are not ambiguous).
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Figure 2.1: The RCC-8 Relationships (2D).

2.1.2. RCC-5. In 1994, Bennett simplified RCC-8 and encoded the relation-

ships as propositional logic [11]. Bennett’s initial premise was that while topological

information and first order predicate calculi are more expressive, they are more diffi-

cult to use in automated reasoning. Bennett reduced the number of relationships in

the original RCC from eight to five by removing distinction based on touching bound-

aries. The five relationships in RCC-5 are DiscRete (DR), PO, EQ, PP (Proper Part),

and PPi (Proper Part inverse) (see Figure 2.2). He justifies the lessened expressive

power of the system by stating that excessive expressive power wasn’t necessary for

some applications; if the problem of interest didn’t require knowledge of tangential

relationships, it didn’t need to use relationships like EC or TPP/TPPi. Encoding the

relationships using propositional logic increases the computational effectiveness of the

system while lessening the expressive power overall. This weakening of the expressive

power is due to the inability of the system to categorize the transition between DR

and PO (for example). It is known that at some point the regions were externally

connected, but that state was not captured by the system.



6

Figure 2.2: The RCC-5 Relationships (2D). Note the lack of distinction between
Tangential and Non-Tangential Proper Part.

RCC-5 is a good system to use if only parthood or lack thereof is important

in the problem set. RCC-5 is not capable of representing the moment at which

a transition from DC to PO occurs. You can only determine when the regions are

disconnected and partially overlapping, not when the change between those two states

occurs. RCC-8 encodes that change as an additional state: EC.

2.1.3. RCC-23 and RCC-62. Two later developed systems, RCC-23 [17]

and RCC-62 [48], took the opposite approach: they greatly increased the expres-

siveness of the system at the cost of automated reasoning ability. RCC-23 extends

RCC-8 to have 23 relations that allow the system to handle concave regions differ-

ently than convex regions. The relationships themselves are based on the convex hull

of the region (i.e., the minimal convex shape that encompases an arbitrary region).

It then determines the relationships of the regions by whether they are Outside (O),

Partially Inside (P) or Completely Inside (I) each other’s concave region: a relation-

ship in RCC-23 may look like RCC23(A,B) = OOE, meaning A is Outside of B’s

concave region, B is outside A’s concave region, and they are externally connected.
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The RCC-8 relationships are expanded using these convexity predicates: DC in RCC-

8 encompasses eight relationships in RCC-23 (OOD, OPD, OID, PID, PPD, POD,

IOD, IPD), while EC expands to nine RCC-23 relationships (OOE, OPE, OIE, PIE,

PPE, POE, IOE, IPE, IIE) (see Figure 2.3).

RCC-62 handles concave shapes in a different manner: it breaks up regions into

their boundaries, interiors, exteriors, and insides (for concave objects) (see Figure 2.4).

The 62 relationships are defined by the intersections of these areas of interest. RCC-62

is more expressive than RCC-23 at the expense of ease of reasoning and computation.

RCC-23 and -62 excel when concavity becomes an issue. One example for

which these systems would give more information about is shown in Figure 2.5. RCC-

8 would not be able to differentiate these two configurations, while the more complex

RCC systems would (i.e., RCC-8 would classify both configurations as DC(A,B),

whereas RCC-23 would classify them as OIE and OOE, respectively, and RCC-62

would classify them as relationship 23 and 15, respectively, (see [48] for an explanation

of these relationships).

2.1.4. RCC++. In 2007, Tiansi Dong exposed certain weaknesses in the

RCC theories [19]:

1. It is not intended for all regions (for example, curves or regions extended with

curves), it does not account for distance between regions.

2. It only allows two regions to be equivalent if the regions coincide in space (which

follows from the distance relations argument).

To address these weaknesses, the author introduces the concept of categories of re-

gions: regions of identical size and shape independent of the location. The author

also presents several axioms, such that if two regions are connected, then there exists

a region of every category that could connect the two regions. This axiom shows that

a point can be a category of a region. The author claims that RCC++ is superior to
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Figure 2.3: The 23 RCC-23 Relationships. Shaded regions are considered to be object
A.

s

Figure 2.4: A Subset of the 62 RCC-62 Relationships [48]. a0 is Object A’s Outside,
a1 is Object A’s Boundary, a2 is Object A’s Interior, and a3 is Object A’s Inside.
Object B Has the Same Regions.
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Figure 2.5: Two Systems RCC-8 Cannot Uniquely Classify.

the original RCC theory for all of the intended models in that it regards points as the

natural atomic unit instead of the region. This may be true for some applications.

However, as one of the weaknesses of the original theories was the inability to handle

regions with zero area (see Figure 2.6), the improvements are purely theoretical, and

do not translate to analyzing real world data, where zero volume regions cannot exist.

Computationally, it remains similar to RCC-8, but the difficulty of reasoning using

this theory increases.

Figure 2.6: A System RCC++ Can Analyze, but RCC-8 Cannot.
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2.2. OBSCURATION AND LINES OF SIGHT

2.2.1. LOS-14. LOS-14 [27] is a system introduced by A.P. Galton in 1994.

It classifies regions based on what can be seen in the Lines Of Sight (LOS) from a

given perspective. Fourteen relationships are defined based on obscuration (or the

lack thereof) from a given viewpoint (see Figure 2.7).

Figure 2.7: 12 of the LOS-14 Relations [27]. Omitted Relations are A Exactly Hides
B (EH(A,B)) and A is Exactly Hidden by B (IEH(A,B)).
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2.2.2. ROC-20. Another occlusion based calculus is ROC-20 [51]. It is

similar to LOS-14, but extends it to add support for concave objects, which allows

for mutual obscuration. Every spatial relationship in ROC-20 is defined in terms

of the occlusion present and an RCC-8 relationship (see Figure 2.8). This system

is significantly more expressive than LOS-14, and can apply to a greater number of

cases, as it handles concave regions correctly.

Figure 2.8: A Comparison of ROC-20, LOS-14, and RCC-8 [51]. In Each Example,
Object A is Gray.

2.2.3. OCC. The Occlusion Calculus (OCC) was introduced by Kohler in

2002 [36] and characterizes relationships between objects by their respective projec-

tions into an image plane. The author states that the information obtained is only
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from one perspective, and as such, this system should be paired with other QSR

methods to get a fuller picture. The system sacrifices expressiveness for reduced

computational and reasoning complexity.

2.2.4. OCS-14. Guha et al. introduced OCS-14 in 2011 [30]. OCS-14 was

designed to correct for insufficiencies in earlier occlusion methods that made them

infeasible for use in computer vision. Earlier methods had not accounted for whether

the occluder was a moving object or part of the static background, and whether or

not the visible part of an object was a connected blob or a fragment. As the OCS-

14 is designed for computer vision, feasibility of computation is a concern, but not

expressive power.

2.2.5. Interpreting Digital Images. Randal and Witkowski presented a

work in 2006 [53] that explored the use of Occlusion methods such as OCC (among

others) to analyze digital images. By defining aggregated pixels as regions, Region

Collision Detectors can be used to determine the occlusion of the regions, allowing

reasoning on the contents of the image. They provide algorithms for these collision de-

tectors, but in doing so expose one of the biggest weaknesses in the methods presented

thus far in this paper: they are generally restricted to working in two dimensions,

while we live in a three dimensional world.

2.3. COMBINING METHODS FOR QSR

No single system can account for all aspects of the world as we see it. However,

as stated in [36], sometimes systems can be combined to provide a more complete

picture of the problem of interest, and cover the shortcomings of each system. In

2010, Albath et al. presented work on one such system.

2.3.1. RCC-3D. RCC-3D [8] is a system designed to consider three dimen-

sions, be computationally feasible, and give the most comprehensive spatial informa-

tion about the system possible. Initially designed for use in analyzing the evolution
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of skeletal structures and other physical attributes, it also accommodates temporal

reasoning. Sample implementations of the logic behind the spatial intersection pred-

icates show the computational feasibility of the system, though large problem sets

still resulted in runtimes upward of eight hours.

Because RCC-3D was to be used in visualizing physical changes over time, a

GUI was deemed necessary. The resulting implementation was named VRCC-3D [7].

In implementation, certain ambiguities became apparent due to the finite nature of

both object representation and computational precision. In one example, the program

determined that the wings of an airplane were disconnected from the fuselage, when

visually, they appeared to be externally connected. As such, some aspects of VRCC-

3D needed to be redesigned.

2.3.2. VRCC-3D+. The result of this redesign is VRCC-3D+ [65]. As

an implementation, VRCC-3D+ focuses on computational feasibility and automated

reasoning power, but aims to sacrifice as little expressive power as possible. VRCC-

3D+ uses compound relationships to describe the spatial interaction between objects.

Each relationship consists of a 3D intersection relationship (one of the eight relation-

ships from RCC-8, though computed in three dimensions) and a 2D obscuration term.

In order to make the RCC-8 relationships valid in three space, the authors used a

formulation of the definitions similar to those in [21], using the intersection of the

boundaries, interiors, and exteriors to determine the appropriate 3D relationship.

Similar information is gathered from the 2D projection onto an image plane for the

obscuration term in the compound relationship. Tables 2.1 and 2.2 show the set

theory formulations of the 3D and 2D relationships, respectively.
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Table 2.1: Definition of 3D Intersections Through Intersection Predicates.

IntInt IntBnd IntExt BndInt BndBnd BndExt ExtInt ExtBnd

DC False False True False False True True True
EC False False True False True True True True
EQ True False False False True False False False

NTPP True False False True False False True True
NTPPc True True True False False True False False

PO True True True True True True True True
TPP True False False True True False True False
TPPc True True True False True True False True

Table 2.2: Definition of 2D Obscurations Through Intersection Predicates.

IntInt IntExt ExtInt o oc
T

pObs T
F

T T F

T
pObs c T T

F
F T

pObs e T T T F F
T F
F TpObs m T
T T
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eObs c T F F F T
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The reason there are not 72 possible relations in VRCC-3D+ is that not every

obscuration term is possible for every RCC-8 intersection term. For example, if two

objects are disconnected, they cannot be equal distance from the camera and have

the projections exactly overlap (eObs e), as that would make the objects sharing the

same space exactly (EQ). The 37 possible relationships are shown in Table 2.3.

Table 2.3: The Possible Obscurations for RCC-8 Relationships.
n
O
b
s

n
O
b
s
c

n
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b
s
e

p
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p
O
b
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p
O
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s
e

eO
b
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b
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cO
b
s
c

cO
b
s
e

DC * * * * * * * * *
EC * * * * * * * * *
PO * * * * * * * *
EQ *

TPP * * * *
TPPc * * * *
NTPP *
NTPPc *

Significant work [63, 24, 43, 23] continues to make VRCC-3D+ a computa-

tionally feasible and correct system through the use of composition tables, dynamic

error tolerances, and more intelligent intersection algorithms to reduce the number of

computations required to determine the relationships between an arbitrary number

of objects in a scene. With 37 relationships, VRCC-3D+ is not as simple as RCC-8

in automated reasoning, but efforts continue to improve the model and its implemen-

tation in that respect [43, 25]. The computational efficiency of the algorithms used in

the implementation have been examined and improved up through more intelligent

primitive partitioning in the bounding hierarchy creation [26].
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ABSTRACT

Computational geometry is a field that is relevant to computer graphics render-

ing, computational physical simulation, and countless other problem domains involv-

ing the use of image data. Efficiently determining the intersection of the boundaries,

interiors, and exteriors of two objects can mean the difference between a realistic and

relevant simulation, and a slow program that produces results that do not keep pace

with user manipulation of the object. However, the speed of these calculations is not

the only area of concern. Taking into consideration the finite unit of resolution in a

computer display (the pixel) and error in the floating-point representation of num-

bers, it may be the case that the perceived correctness of these computations does

not necessarily correspond to the accuracy with which the calculations are carried
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out. In this paper, we examine two of the most well-known methods of determin-

ing such intersections, as well as various programming language libraries available to

perform these calculations. These existing approaches are considered with respect to

limitations in human perception, display resolution, and floating point error. We also

propose a new method which lends itself to exploiting the inherently parallel nature

of these calculations.

1. INTRODUCTION

VRCC-3D+ [11, 12, 6, 7, 5] is a mathematical model that describes relations

between three dimensional objects in space in terms of the connectivity and obscu-

ration between each pair of objects in a scene. The system facilitates knowledge

discovery by determining possible intermediate configurations of the objects from

one state to another. Implementing the VRCC-3D+ mathematical model resulted

in computational inefficiency (unacceptable delays between initial model loading and

the calculation of the spatial relations between all pairs of objects). Our investigation

of a more efficient method to perform these computations focused on determination

of the intersections between the interiors, exteriors, and boundaries of the objects.

2. VRCC-3D+INTERSECTIONS

The VRCC-3D+ system distinguishes eight types of 3D connectivity relations

using eight intersections that involve the boundary, interior, and/or exterior of one

object with those of another (see Table 2.1).

Connectivity in 3D is only one part of each (composite) VRCC-3D+ relation.

The other part of each VRCC-3D+ relation characterizes the obscuration between the

two objects of interest, which can be none, partial, or complete (as well as converse
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Table 2.1: Definition of 3D Spatial Relationships Using Intersection Predicates. Φ
denotes empty intersection set, ¬Φ denotes non-empty intersection set.

IntInt IntBnd IntExt BndInt BndBnd BndExt ExtInt ExtBnd
DC Φ Φ ¬Φ Φ Φ ¬Φ ¬Φ ¬Φ
EC Φ Φ ¬Φ Φ ¬Φ ¬Φ ¬Φ ¬Φ
EQ ¬Φ Φ Φ Φ ¬Φ Φ Φ Φ

NTPP ¬Φ Φ Φ ¬Φ Φ Φ ¬Φ ¬Φ
NTPPc ¬Φ ¬Φ ¬Φ Φ Φ ¬Φ Φ Φ

PO ¬Φ ¬Φ ¬Φ ¬Φ ¬Φ ¬Φ ¬Φ ¬Φ
TPP ¬Φ Φ Φ ¬Φ ¬Φ Φ ¬Φ ¬Φ
TPPc ¬Φ ¬Φ ¬Φ Φ ¬Φ ¬Φ Φ Φ

relations for each). Obscuration in VRCC-3D+ is determined by the overlap of the

projections into the image plane and the object depth. The techniques (Triangle

Triangle intersection, AABB Bounding Boxes) and considerations (error tolerance and

speed) discussed in this paper will apply to the calculations of both the connectivity

and obscuration parts of the VRCC-3D+ relations.

Definition of the spatial relations using Table 2.1 results in an over-determined

system [11]. A symmetry argument also applies. The intersection of the interior of

object A and the boundary of object B is the same as the intersection of the boundary

of object B and the interior of object A: IntBnd(A,B)=BndInt(B,A). Thus, an efficient

algorithm for IntBnd will provide an efficient algorithm for BndInt, and vice versa.

This also holds for the intersections of boundaries and exteriors.

These four intersection predicates are insufficient to uniquely distinguish all

relationships. For example, DC and EC are indistinguishable using these four pred-

icates, and require either the BndBnd or the IntInt predicate. Computing the inter-

section of the boundaries allows us to determine the 3D relationships of two objects

while avoiding unnecessary computation to determine the interior or exterior. The re-

maining predicates that do not involve the boundaries are unnecessary and inefficient

for our implementation.
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3. COMPUTATION OF BOUNDARY INTERSECTION

A naive method of computing the boundary intersection predicate is to use

an algorithm such as that presented in [9] to determine pairwise intersection between

the triangular faces of objects A and B: an O(fafb) algorithm with fa and fb as the

number of faces in objects A and B. A more sophisticated method, AABB trees,

uses nested axis-aligned bounding boxes to decrease the number of faces that require

the intersection calculation. The use of trees presents an opportunity to reduce the

complexity by reducing the number of calculations. CGAL [4] is a computational

geometry toolkit that uses AABB trees to implement intersection and distance al-

gorithms. Table 3.1 shows the runtimes of the triangle intersection and the CGAL

methods on two spheres (see Figure 3.1), each of which has approximately 2000 faces.

All timing was done on an AMD Bulldozer processor running at 3.1Ghz. Results

were obtained using a C module and the CGAL bindings for Python and averaged

100 runs.

Table 3.1: Intersection Test Runtimes.

Implementation Average Runtime (s)
C Triangle Intersection 12.0349209094

CGAL AABB 0.186076021194
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Figure 3.1: Two Disconnected Objects (DC).

4. HUMAN PERCEPTION AND FLOATING POINT

ERROR

There is no ambiguity in Figure 3.1 regarding the intersection of boundaries.

However, in a more complicated case such as that shown in Figure 4.1, more rigorous

calculations are required. Upon cursory examination of the rendering of the airplane,

it appears that all of the wings are attached to the fuselage. However, according

to the computational intersection of boundaries, the wings and the fuselage do not

intersect: they cannot be considered externally connected.

While the calculations are being carried out accurately, they do not reflect the

cognitive perception of the image. This could be attributed to several factors such

as errors in the representation of floating point numbers in both the viewer display

and model generation software, or the minimum distance that can be represented in

rendering to a monitor with finite resolution.

To remedy this, we must allow some tolerance: the shortest distance between

the two planes must be less than some small value, ε. Implementing this in the direct

triangle intersection test is trivial. However, using the CGAL AABB implementation

requires a significant change in the algorithm itself: instead of determining whether
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Figure 4.1: Model of an Airplane.

Figure 4.2: Nut and Bolt Model.

the triangles intersect, we need to find the minimum distance between the two closest

faces. One way to do this is to determine all of the segments that make up the faces

of the object and find the closest distance to a face in the other object.

Table 4.1 shows the timings for these modified epsilon tolerance tests. Both

algorithms also were used to determine the intersection of a high resolution depiction

of a nut and bolt (Figure 4.2).

Table 4.1: Intersection Runtimes Using ε Tolerance.

Airplane Spheres Nut and Bolt
Obj1 Name / Face Count Wings 4 / 18 A / 1984 Helix01 / 43872
Obj2 Name / Face Count Prop 4 / 144 B / 1984 Helix02 / 27432

C Triangle Intersection Runtime(s) 0.015720 12.017024 388.967400
CGAL AABB Runtime (s) 0.0110691 0.23603410 86.336132
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5. ε DETERMINATION

Once a tolerance test was developed for the intersection, it was necessary to

determine an appropriate value of epsilon. Trial and error yielded an ε of approxi-

mately 10−4. Appropriate values of epsilon will change based on the precision with

which the values are stored in the model and the finite nature of the pixels that com-

prise the image. Of these two factors, we can both calculate and control the effect of

the latter at the viewer level. Knowing the distance in world units from the virtual

camera to the viewing plane (f in world units), the horizontal width in pixels of the

scene (h in world units, w in pixel count), and the field of view angle (θ) allows the

calculation of the physical size of the pixel at the image plane (see Figure 5.1). We

can determine this value as follows. Let ”px” be pixel units and ”units” be world

units:

h = f ∗ tan
(
θ

2

)

We calculate the size in world units per pixel as

h
w
2

units

px
=

2h

w

units

px

The size of one pixel on the image plane is then

εf =
2h

w

units

px
∗ 1px =

2h

w
units =

2f

w
tan

(
θ

2

)
units

The default visualizer parameters yield a value of approximately 1.4∗10−3, which is a

greater tolerance than the 1 ∗ 10−4 that was found through manual experimentation.

This value of ε gives the perceived results for Figure 4.1, and is only dependent upon

the position of the objects and the resolution of the viewer window.
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Figure 5.1: Camera and Image Plane.

The minimum visible distance is directly proportional to the object distance

from the camera. This calculation can be broken into two cases: the two objects

have equal depth from the image plane, and the two objects have differing depths.

The first case is trivial: given two objects of depth d from the camera, we use similar

triangles (as depicted in Figure 5.1) to obtain the smallest distinguishable distance,

εw, at that depth:

εf
f

=
εd
d

Since

εf
f

=
2f
w
tan( θ

2
)

f

=
2

w
tan(

θ

2
)

we can calculate the epsilon value at a depth d from the camera as

εd =
2d

w
tan(

θ

2
)
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This result can be reinterpreted to generalize it to all points regardless of

distance to the camera. The above states that due to the finite nature of the pixel,

we can define a sphere around any point with radius εw
2
in which we cannot determine

the actual position of the point (see Figure 5.2). This concept of a probability cloud

is frequently used in Quantum Physics to approximately describe the locations of

electrons in given states. We say that two points P1 and P2 are indistinguishable if

their probability clouds overlap; that is, if |P1− P2| is less than or equal to the sum

of the radii of their probability clouds. If ε1 and ε2 are the respective epsilon values

computed for these points P1 and P2, the resulting tolerance is:

ε =
ε1
2
+

ε2
2

=
ε1 + ε2

2

In Figure 5.2, the points C1 and C2 are considered to be within the error tolerance

because the probability clouds overlap. The same holds for points C2 and C3. C1

and C3 are not within the error tolerance even though C3 is at the same depth as

C2.

Figure 5.2: Using a Probability Cloud to Dynamically Determine ε Tolerance.
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6. FUTURE WORK

This problem space is inherently parallel: the intersection of any pair of faces

is independent of the intersection of any other pair of faces. The large number of

similar calculations on a large, but static, set of data should be enough to overcome

the primary downfall of using general purpose GPU computing technologies (e.g.,

OpenCL [2], CUDA [3] by NVIDIA, or Stream [1]) by AMD: the time it takes to

transfer the data to the graphics card [8]. For the intersection of triangles method to

be as fast as AABB trees, we require a speedup of 50X (e.g. 12.02
0.236

for the spheres),

which is well within the plausible speedups reported in [10].

A heavily parallelized AABB algorithm may also work, but would not nec-

essarily be as cost efficient due to the recursive nature of trees. Exploration of an

OpenCL implementation of these algorithms may even allow these computations to

be done efficiently on mobile devices with sufficiently new integrated graphics.

7. SUMMARY

Being able to efficiently calculate the intersections between the boundaries,

interiors, and exteriors of 3D objects introduces new ways to program simulations,

collisions, and model transformations over time. Exploiting the ability of VRCC-3D+

to identify impossible states and eliminating some calculations would lead to more

efficient collision detection in game and simulation engines, and modeling software.

In this paper we have explored two methods of calculating these intersec-

tions and discussed methods of dynamically determining the error tolerance. These

strategies will help to make spatial reasoning applications such as VRCC-3D+ more

practical for knowledge validation and discovery in real-time.
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ABSTRACT

In order for Qualitative Spatial Reasoning applications to be both useful and

usable, the information feedback loop between the computational engine and the

user must be as seamless as possible. Inherently, computational geometry can be

quite expensive, and every effort must be made to avoid inefficient or unnecessary

calculations. Within the field of Region Connection Calculi, the 9-Intersection model

often is used to determine the spatial relation between two regions. Consequently,

optimization efforts typically focus on calculations involving the intersections between

the interiors, boundaries, and exteriors of the regions, or the use of composition tables

to narrow down the possibilities for the relations that can hold between two regions.

The few implementations of spatial reasoners that have been attempted have been
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simply proofs-of-concept and/or have been limited to two dimensions. Herein we

present a novel approach that combines the use of composition tables and decision

trees to efficiently determine the spatial relation between two objects in 3D considering

both connectivity and obscuration. This approach has been fully implemented for the

VRCC-3D+ spatial reasoning system, and benchmarks are included to corroborate

our claims of efficiency.

1. INTRODUCTION

Qualitative Spatial Reasoning (QSR) has the potential to further enhance the

functionality of applications for diverse fields such as Geographic Information Systems

(GIS), visual programming language semantics, and digital image analysis. Unfortu-

nately, the practicality of automated spatial reasoning may be diminished if expensive

and unnecessary calculations are not avoided; every delay in the information feedback

loop inhibits not only real-time user interaction, but also knowledge discovery.

The foundation of many QSR systems are Region Connection Calculi (RCC),

which use a 9-Intersection model to distinguish spatial relations based on the inter-

sections of the interiors, boundaries, and exteriors of two or more regions. It has been

shown that the 9-Intersection model can be reduced to a 4-Intersection problem [13]

through the use of a decision tree. Although examining fewer intersections provides

a tremendous savings in computational effort, the amount of time to determine the

spatial relation between two regions still can be unacceptable in real time if additional

optimizations are not employed.

There are a variety of different RCC models, each with different degrees of ex-

pressivity. Unfortunately, few actual implementations of RCC systems exist. Those

that do exist are incomplete (e.g., Albath’s original RCC-3D system [2]), still in the

alpha or proof-of-concept stage [17, 15], or limited to two dimensions [17]. Many
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libraries in existence that allow computation of the 9-Intersection model, and thus

computation of the RCC-8 relations, also share these limitations [7] or require special

representations of data [16, 6, 18]. Not only has the lack of full implementations lim-

ited the actual use of these models, it also has concealed many of their computational

challenges.

Herein we present a novel approach for efficiently calculating spatial relations.

It utilizes decision trees and composition tables to avoid as many unnecessary compu-

tations as possible. This approach has been implemented for a QSR system (VRCC-

3D+ [15]) that determines the spatial relation between two objects in 3D considering

both connectivity and obscuration. We also provide benchmarks to show the viability

of our approach.

2. BACKGROUND AND RELATED WORK

2.1. RCC-8

Introduced in 1992 by Randall, Cohn, and Cui, RCC was initially an acronym

for the names of the authors; later Region Connection Calculus was deemed a more

appropriate name for what was being modeled. RCC-8 was the earliest system to

define relationships between regions based on connection [11]. Randall, Cohn, and

Cui define eight relationships (see Figure 2.1):

• Disconnected (DC)

• Externally Connected (EC)

• Partial Overlap (PO)

• Equal (EQ)

• Tangential Proper Part (TPP)
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• Tangential Proper Part Converse (TPPc)

• Non-Tangential Proper Part (NTPP)

• Non-Tangential Proper Part Converse (NTPPc)

These relationships are Jointly Exhaustive Pairwise Disjoint (JEPD), meaning that

there is no configuration of physically feasible regions that cannot be described by one

of the relations, and no pair of regions can be described by more than one relationship

(they are not ambiguous).

2.2. VRCC-3D+

VRCC-3D+ [15] is a GUI for and an extension of the RCC-3D [2] system that

was designed to maximize both computational feasibility and the comprehensiveness

of resulting information. It defines relations in three dimensions using a composite

relation of the form R O(A, B) for two regions A and B. The R part of the VRCC-3D+

relation (herein referred to as the base relation) is one of the eight RCC-8 relations,

although computed in three dimensions, not two dimensions.

The O part of the VRCC-3D+ relation represents obscuration as determined

for a particular two dimensional projection plane; there are fifteen possible obscu-

ration relations, characterized by intersections for the interiors and exteriors of two

regions, and a qualitative depth parameter (see Table 2.1). An obscuration rela-

tion has a base type of either No Obscuration (nObs), Partial Obscuration (pObs),

Complete Obscuration (cObs), or Equal Obscuration (eObs). Additional qualifiers,

including converse obscuration ( c) or equal depth from camera ( e) are added to

further enhance the expressive power of the obscuration relation. Every obscuration

relation is conversely related to exactly one other obscuration. Not every obscuration
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Figure 2.1: Examples of the Eight JEPD RCC-8 Relations.

relation is applicable to every base relation; in all, there are 46 VRCC-3D+ relations

(as shown in Table 2.2). See [15] for a more detailed discussion of the VRCC-3D+

model.

2.3. DECISION TREES

The field of research in Top-Down Induction of Decision Trees produced many

algorithms for the creation of such trees. Iterative Dichotomiser 3 (ID3) [9] creates a

simple and minimal decision tree from a sample of classified training data. Traversing

the tree leads to a leaf node that provides a classification for a given entity based on

the values of certain attributes of the entity. The construction of the tree requires

that each non-leaf node makes a decision based on the attribute that results in the

greatest gain of information. ID3 produces a tree by using the informational entropy

of the training set; this is the amount that making a decision decreases the entropy

in the sub groups generated by splitting the training set based on the value of the

attribute.
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Table 2.1: Characterization Table for Obscuration Relations [14]. Int = interior, Ext
= exterior; F = No (empty intersection), T = True (Non-empty) intersection. InFront
= Y means A is closer to the viewing plane than B. N means B is closer than A. E
means mutual obscuration or A and B are equidistant to the viewing plane.

IntInt IntExt ExtInt InFront
nObs F F F Y

nObs c F F F N
nObs e F F F E
pObs1 T F T Y
pObs2 T T T Y

pObs c1 T T F N
pObs c2 T T T N
pObs e T T T E
eObs T F F Y

eObs c T F F N
eObs e T F F E
cObs T T F Y

cObs c T F T N
cObs e1 T T F E
cObs e2 T F T E

Table 2.2: The Possible Obscurations for RCC-8 Relationships [14].

D
C

E
C

P
O

E
Q

T
P
P

T
P
P
c

N
T
P
P

N
T
P
P
c

nObs * *
nObs c * *
nObs e * *
pObs1 * * *
pObs2 * * *

pObs c1 * * *
pObs c2 * * *
pObs e *
eObs * * * *

eObs c * * * *
eObs e * * *
cObs * * * * *

cObs c * * * * *
cObs e1 * * *
cObs e2 * * *
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Decision trees have been used previously to classify spatial relations. Sab-

harwal et al. [13] used decision trees to reduce the 9-Intersection characterization of

spatial relations to 4-Intersections. A decision tree for classifying a relation in RCC-8

is shown in Figure 2.2. This decision tree allows for identification of an RCC-8 rela-

tion in as few as two truth predicates, or at most four truth predicates. Clementini

et al. [3] also proposed decision trees as the standard way of classifying relations, and

gave multiple decision trees for the eight RCC-8 relations, based on different ways of

calculating the probability of a specific intersection being empty.

Figure 2.2: The Hand Generated Decision Tree [13] Hierarchy of the Intersection
Predicates for the RCC-8 Relations.

While having a decision tree might increase the ease and efficiency of spatial

relation determination, manual creation of the tree might be difficult and error prone,

particularly for some of the RCC models that have many relations (e.g., RCC-23 [4]

has 23 relations, VRCC-3D+ [1] has 46 relations, and RCC-62 [8] has 62 relations).

A decision tree also exposes another problem: the predicates are not all equal in their

execution time or complexity. For example, the first decision node in the tree proposed

by Sabharwal et al. [13] is IntInt. This is because IntInt distinguishes DC and EC

from all of the other RCC-8 relations (i.e. PO, EQ, TPP, NTPP, TPPc, and NTPPc).

However, in the current implementation of VRCC-3D+, any intersection calculation
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that does not involve the boundary (i.e., IntInt) is avoided. This decision is influenced

by the fact that our datasets are Wavefront OBJ formatted files that only provide

boundary information. Other factors such as whether a GPU (e.g. OpenCL, CUDA,

or Stream) is being utilized could influence the decision to prioritize the computation

of certain predicates over others in a particular implementation.

Our goal is to develop a method by which the nodes in the decision tree

can be dynamically (rather than manually) generated based on the relations in the

composition table. Recall that given objects (or regions) A, B, and C, and knowledge

of relations R(A,B) and R(B,C), the composition table entry R(A,B) ◦ R(B,C) is the

set of all possible relations for R(A,C). We want to avoid complete pre-computation

of the decision trees for the following reasons:

• A general mechanism for deciding the most appropriate decision predicate can

be adapted for use with other RCC systems (e.g., RCC-23 and RCC-62), as well

as for relations that do not simply use binary terms in the predicates (e.g., in

VRCC-3D+ the obscuration relations utilize a ternary term, InFront).

• Intersection predicates are not necessarily equal in terms of computational effi-

ciency. A sequential execution core (standard CPU) may have an efficient algo-

rithm for implementing the intersection of interiors. However, a massively par-

allel computation platform (GPGPU through CUDA, OpenCL, or Stream) may

be able to perform a näıve pairwise facial intersection test (e.g., for BndBnd)

much faster than it could perform a tree implementation for IntInt. A gen-

eralized predicate selection algorithm can more easily be modified to utilize

whichever predicates execute most efficiently for a particular hardware config-

uration.
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• There are 247 total subsets of the RCC-8 relations of cardinality 2 through

8. However, in the composition table, a relatively small percentage (≈10%) of

these subsets actually occur. Precomputation of all 247 (or indeed even the

actual subsets) would be an inefficient use of memory and effort.

It should be noted that although this discussion has focused on RCC-8 relations

(which represent the base relations in VRCC-3D+), the method presented herein is

not limited to RCC-8, and can be extended directly to any RCC system in which the

relations can be represented as combinations of binary predicates.

3. IMPLEMENTATION

3.1. ALGORITHM

Quinlan’s ID3 [9] generates decision trees based on a training set of data,

classifying inputs based on attributes. Quinlan also introduced another decision tree

algorithm, C4.5 [10], that addresses some of the weaknesses in ID3, including: (1)

trees can become excessively large, depending on the number of attributes and classes

in the system, and (2) some decision paths may result in unknown decisions if the

training set is not complete.

We mitigate these problems by having a very small number of attributes (i.e.,

the intersection predicates), and having complete knowledge of the determination of

the relations with respect to the predicates. As such, we can show that no matter

what subset of RCC-8 relations we want to be able to differentiate between, we can

come up with a tree of decision nodes of finite size that will always yield a single

RCC-8 relation as a terminating node. The additional overhead of C4.5 over ID3,

although negligible, is unnecessary for our application. Consequently, we use the

attribute selection step of ID3 to allow selection of the most informative predicate to

calculate.
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Generating the entire decision tree for a subset of RCC-8 relations is inefficient:

with unambiguous binary predicates, determining the order of the decision nodes for

the unused sub-tree would be wasted computation. Only determining the decision

nodes along the path to the bottom of the tree also would not result in a useful

representation.

In the following pseudo-code, truePreds is a hash map, containing key-value

pairs where the key is an intersection predicate and the value is the set of possi-

ble relations that result from the intersection predicate, BndInt, being true (e.g.

truePreds[BndInt] = {NTPP, PO, TPP}).

p r ed i c a t e s = { Int Int , IntBnd , BndInt ,

BndBnd , BndExt , ExtBnd}

de f r a t i o (S , pred ) :

i n t e r s e c t i o n = S & truePreds [ pred ]

r e turn | i n t e r s e c t i o n | / | S |

de f entropy (S , pred ) :

i f | S | < 2 :

r e turn 0 .0

sum = 0.0

r = r a t i o (S , pred )

// i f r i s 1 or 0 , that means i t does

// not con t r i bu t e to the entropy

//and we have a l r eady

// pa r t i t i o n ed on that p r ed i c a t e

i f r > 0 :

sum += r ∗ l g ( r )
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i f 1−r > 0 :

sum += (1− r ) ∗ l g (1− r )

r e turn −sum

de f entropy (S ) :

i f | S | < 2 :

r e turn 0 .0

re turn l g ( | S | )

de f ga inRat io (S , pred ) :

i f | S | == 0 :

re turn 0 .0

branchT = S & truePreds [ pred ]

branchF = S − t ruePreds [ pred ]

tEntropy = entropy ( branchT )

fEntropy = entropy ( branchF )

sp l i tH = | branchT | ∗ tEntropy

sp l i tH += | branchF | ∗ fEntropy

sp l i tH /= | S |
i f s p l i tH > 0 :

r e turn ( entropy (S) / sp l i tH ) − 1

re turn 0 .0

We can then rank the predicates by their informational gain ratio. The predi-

cate with the highest gain ratio is the predicate that should be chosen next to calcu-

late.
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This algorithm presents another route with which we can shorten the informa-

tion feedback loop. Optimization of algorithms is still a necessity, but the potential

gain from doing so is lost if time is wasted calculating uninteresting or redundant

predicates. Again we emphasize that the overall goal is to determine the spatial

relation between two objects in space, and to do so in the most efficient way pos-

sible. Previous efforts have addressed this problem from two different directions.

Composition tables [11] reduce the number of possible relations by using global in-

formation about the relations of the objects relative to other objects in the scene.

Decision trees, specifically hand generated decision trees, reduce the problem from

9-Intersection predicates to at most 4-Intersection predicates [13] but do not take

global information into account. By algorithmically selecting the decision nodes of

the decision tree as needed we aim to combine these methods and use both global in-

formation (by iteratively using the global information in the composition table) and

local information (the use of decision nodes) to generate the relation between two

objects.

By using a function (CTFilter(A,B)) that allows us to use global information

to reduce the number of possible relations, we can determine the relationship between

two objects now as follows:

de f calcRCC8 (A,B) :

p o s s i b l eRe l s = CTFilter (A,B)

whi l e | po s s i b l eRe l s | > 1 :

// p r ed i c a t e s so r t ed on dec r ea s ing

// in fo rmat ion gain r a t i o

preds = sor t ed p r ed i c a t e s

p = c a l c u l a t e preds [ 0 ]

p o s s i b l eRe l s = { po s s i b l eRe l s | p}
r e turn po s s i b l eRe l s
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This algorithm uses the composition table to use global information to reduce the

possible number of relations between objects A and B. As long as the number of

relationships in the resulting list is greater than one, the predicates are sorted based

on decreasing information gain ratio, the first (most useful) predicate is calculated,

and the relations are filtered such that possibleRels only contains the relations in

which the calculated predicate holds. These filtered relations are used in the next

iteration.

Table 3.1 shows the gain ratios obtained for five intersection predicates for

three different subsets of RCC-8 relations, each subset obtained from the RCC-8

composition table: TPPc ◦ TPP = {PO, TPP, TPPc, EQ}, TPP ◦ TPPc = {DC,
EC, PO, TPP, TPPc, EQ}, and TPPc ◦ EC = {EC, PO, TPPc, NTPPc}.

Table 3.1: Gain Ratios for Varying Input Sets.

S = {PO, TPP, TPPc,EQ} S = {DC,EC, PO, TPP, TPPc,EQ}
BndBnd 0.0 0.3359
IntBnd 1.0 0.6309
BndInt 1.0 0.5510
ExtBnd 1.0 0.5510
BndExt 1.0 0.5510

S = {EC,PO, TPPc,NTPPc}
BndBnd 0.2619
IntBnd 0.2619
BndInt 0.2619
ExtBnd 1.0
BndExt 0.0

In the first two cases, we see that calculating the BndBnd intersection predicate

gives us the least information. However in the first case, that calculation, in fact,

would be wasted effort, as it would result in no new information. The third input

set shows that not only would calculating BndExt be wasted effort, but ExtBnd
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gains us the most information, as it has a significantly higher gain ratio than the

other predicates. Based on the results for the first example, we would calculate any

predicate except BndBnd; BndBnd would give us no new information, and in fact is

a scenario where having a modification that allows us to bias the gain ratio for faster

algorithms/implementations would be useful. In the second example, the IntBnd

predicate would be selected for calculation. The ExtBnd predicate would be chosen

for calculation in the third example. This sample input set also shows a scenario in

which we have a definitively more useful predicate, but also a predicate that would

be wasted effort (BndExt).

3.2. COMPLEXITY CONSIDERATIONS

The complexity of calculating any of the intersection predicates is dependent

on many factors, not the least of which is the specific implementation. For example,

our implementation of BndBnd uses trees of Axis Aligned Bounding Boxes (AABBs)

to narrow down the number of triangular faces between the objects that could possibly

intersect before resorting to computing triangle-triangle intersections [12]. Because

of this, the worst case complexity for this predicate is O(fA ∗ fB), where fA and fB

are the number of faces in the respective objects A and B. This only happens if the

objects are situated such that all Axis Aligned Bounding Boxes in the objects overlap.

The best case is if none of the Axis Aligned Bounding Boxes in the tree overlap, in

which case we have a constant time comparison that is not dependent on the number

of faces.

Hence, because the complexity of these calculations depends on the face counts

of the objects and the relative orientation, the cost of calculating the next predicate

to use is negligible compared to the cost of calculating the predicate.
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4. EXPERIMENTAL TIMING AND RESULTS

4.1. EXPERIMENTAL SETUP

We timed the execution of our implementation of three predicates: BndBnd,

BndInt, BndExt. It has been shown [5] that implementing these three predicates

is sufficient to uniquely determine the RCC-8 relation of two objects because some

predicates can be implemented with respect to others; IntBnd(A,B) == BndInt(B,A)

and ExtBnd(A,B) == BndExt(B,A). The experiments were run 100 times on each of

44 model files that contained two 3D spheres in various configurations. Each sphere

consisted of approximately 2000 faces; the execution time of the predicates depends

mainly on the relative configuration of the spheres. File IO and internal representation

generation were ignored across all executions of the predicates. Timing was performed

on an AMD Bulldozer processor running at 3.1 GHz, with 12 GB of RAM available.

Table 4.1 shows the results of the timings.

Table 4.1: Timing Statistics for Predicate Calculations.

BndBnd BndInt BndExt
Average (sec) 0.0103 6.66 0.188

Min (sec) 0.00000431 0.000433 0.000459
Max (sec) 0.849 71.8 1.17

StdDev 0.2170442 17.846823 0.261670587

The complexity of the predicate chooser is dependent on the number of rela-

tions in the input set. For every execution of the predicate selector, a random subset

of the RCC-8 relations with cardinality 1 < k ≤ 8 was chosen out of all possible

subsets of RCC-8. The timings reported are the average of 100 executions of the

predicate selector.



43

Figure 4.1: Predicate Selection Runtime vs. Input Subset Size.

4.2. RESULTS

Table 4.1 shows some statistical analysis of the runtimes of the three imple-

mented intersection predicates. Figure 4.1 shows the runtime of the predicate selec-

tion algorithm for varying sized subsets of the RCC-8 relations. Selecting a predicate

takes on average 1/100th of the time it takes to calculate the predicate itself. Using

this approach avoids unnecessary calculations, and also allows us to bias calcula-

tions that are more efficient and precise on a given system. Currently, BndBnd is

the most precise and efficient algorithm based on the data representation we use in

our implementation. This ability to bias the selection allows us to avoid the most

computationally expensive algorithms unless absolutely necessary.
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5. ADDITIONAL OPTIMIZATIONS: MEMOIZATION

5.1. DEFINITION

Memoization is an optimization technique in which a function‘s result for a

unique set of inputs is cached. When the function is called with the inputs again,

the cached results are reused and the computation is avoided. This approach has two

tradeoffs: memory usage and the overhead associated with checking the cache key. If

checking a cache key is computationally negligible compared to the computation, the

speedup is significant. Part of the overhead of checking the cache key is associated

with the time it takes to access the cache: if the cache is too large to fit in memory,

then cache hits become expensive. The tradeoffs between memory and speed must

be weighed against each other. In our application, it was decided that the relatively

small maximum number of possible cache keys (247) (namely, the number of possible

subsets of RCC-8 relations) made the cost of additional memory negligible when

compared to the theoretical magnitude of the speedup.

5.2. EXPERIMENTAL SETUP

The effect of memoization on the predicate selection algorithm was tested by

executing the algorithm 10n times, for 0 ≤ n ≤ 7. Between each set of executions,

the cache for the memoizer was cleared so that solutions for keys would have to be

regenerated. For each input n, the experiment was run 100 times. The runtime

reported for each input is an average over all runs for that parameter value.
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Figure 5.1: Memoized Predicate Selection Runtime per Number of Iterations.

5.3. RESULTS

Figure 5.1 shows that as the memoizer is allowed to run for more iterations, we

reach the overhead of checking a cache key. Using memorization for a small number

of iterations is more expensive then no memorization at all due to the overhead of

checking the cache. After several iterations, the cost of checking the cache key is

negligible compared to choosing the next predicate, resulting in more than a 100x

speedup. It is worth noting that these timings were determined as if every subset of

RCC-8 was possible. As a small number of these subsets can actually occur in the

composition table, the chance of a cache miss will go to zero significantly faster, and

as such the runtime will reach the time of checking the cache key in fewer iterations.
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6. FUTURE WORK

Shortening the feedback loop is vital to efficient analysis of three dimensional

data. Eliminating unnecessary calculations is just one step in achieving this goal. Fu-

ture efforts will focus on further optimizing the calculations involved in the intersec-

tion predicates by investigating more efficient intersection algorithms and exploiting

the resources available on modern computers, including general purpose computing

on graphics cards and distributed computing.

7. CONCLUSIONS

In order for Qualitative Spatial Reasoning applications to be both feasible and

useful, the information feedback loop between the computational engine and the user

must be made as efficient as possible. Herein we presented a novel approach that

combined the use of composition tables and decision trees to efficiently determine the

spatial relation between two objects. Specifically, we showed how to leverage the ben-

efits of calculating the intersection predicate with the highest informational gain. We

also showed that the cost of caching the decision tree information greatly increases

the efficiency of the predicate selection even at the cost of requiring additional mem-

ory. As the proliferation of 2D and 3D datasets continue, we hope that this work

facilitates the implementation of other spatial reasoning systems in the future.
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ABSTRACT

Qualitative spatial reasoning (QSR) is a powerful tool in automated computer

reasoning, a necessary step forward in fields like computer vision and media analy-

sis. Stereographical multimedia has rapidly become a prevalent part of technological

culture, and the amount of these kinds of data that exists is staggering. Humans

interpret depth information using prior knowledge that a computer lacks. This prior

knowledge stems from remembered observance of the basic laws of physics. While the

computer lacks the intuitive understanding of these principal physical properties, it

is capable of determining more precise information through faster calculation. Herein

the authors explore the information that can be gained from an amalgamation of QSR

methods and physics, and present some preliminary results from an implementation

based on this powerful combination.
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1. INTRODUCTION

Human perception of three dimensions is a complex field. A person determin-

ing the shape of an object must rely heavily on visual cues in the form of lighting,

shape, and depth information [18]. Where this information is insufficient to unam-

biguously identify an object, the observer must make a judgment that may not be

consistent with that of all other observers [18]. Research has shown that an individ-

ual’s desires can influence the way things are perceived (“Wishful Seeing”) [7].

This raises some important questions in the field of computer vision, including:

• How can the computer deal with ambiguous visual information?

• With no base of previous experience, what information should the computer

use to reduce ambiguity?

• How can the information gain of the system be maximized while the computa-

tional cost is minimized? In other words, what calculations should be done to

obtain the most information with the least work?

With stereoscopic media becoming ubiquitous in the form of 3D movies and

consumer electronics (e.g. televisions and portable gaming devices), there is a grow-

ing, urgent need for computational analysis of these data. Such technology could have

impact in physical security (e.g. analysis of images from multiple sources such as se-

curity cameras), robotic vision, and defense (e.g. identification of potential dangers

and suspicious behavior from stereoscopic information).

Image processing techniques can provide insight into a system recorded stereo-

scopically, but only about what can be seen by the cameras. Humans use experience

and prior knowledge to make assumptions about parts of the scene that are hidden

from view. One example of this is a speaker behind a podium; an audience member
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would know that a human standing behind a podium most likely has legs, and that

the podium does not continue back into infinity because the objects in the scene

(human, podium) are known quantities that have been encountered before. The com-

puter does not have this same experience; image processing techniques alone would

only allow the computer’s camera to know about what is directly visible.

In this paper, the authors explore the use of Qualitative Spatial Reasoning

(QSR) methods and basic physical properties in addition to visual information from

the scene to reduce the amount of incomplete visual information. Spatial information

gained from QSR and physics is retroactively applied to the scene to further reduce

ambiguity; present knowledge about a system is used to revise past assumptions,

which improves the precision of current and future data. In section 2, an introduction

to image processing, QSR, and physical properties is presented. Section 3 describes

the constrained experimental system. Section 4 contains initial experimental results,

while Sections 5 and 6 describe the evolution of the system and the results the system

modifications. Conclusions and future work are discussed in Section 7.

2. BACKGROUND AND RELATED WORK

2.1. IMAGE PROCESSING AND DISPARITY

Image processing is an important field in computer and robotic vision. A

significant amount of research in this area has been devoted to finding computationally

efficient algorithms; images are inherently two dimensional, which implies that most

naive algorithms are at best O(m × n) in their computational complexity for an

m× n image. The persistence of high resolution images (full high definition already

being common and 4k resolution beginning to emerge) means that these algorithms

will be computationally expensive. Many image formats are 4-channel (giving an
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m×n× 4 data structure size to hold RGBA or HSVA (Hue Saturation Value Alpha)

information, two popular information formats), which only serves to incresae the

amount of computation needed on a single image.

Disparity [3, 9, 6] and the parallax effect are two concepts exploited in image

processing to mimic human perception of depth; objects closer to the observer appear

larger than more distant objects. Thus, by determining the parallax between occur-

rences of an object in each of a pair of stereo images, the relative distance from the

cameras to the object can be determined. Disparity also has been used to estimate

the motion of objects [6]. It is an invaluable tool in determining spatial information

from multiple observations of the same scene.

2.2. HUMAN PERCEPTION IN THREE DIMENSIONS

Human 3D perception is fascinating: by all reckoning, such a feat should

be mathematically impossible with the abstract data the brain receives from the

eyes [18]. Regardless, humans are capable of making relatively consistent judgments

about shapes and motion in three dimensions using only data from two “cameras” (the

eyes) and a base of experience. Learned behavior such as object permanence [2] show

that prior knowledge is required to make judgments about three dimensional space.

Mimicking human perception with a computer is an important facet of computer and

robotic vision.

2.3. QUALITATIVE SPATIAL REASONING (QSR)

Qualitative Spatial Reasoning (QSR) has varying applications in Geographic

Information Systems (GIS), visual programming language semantics, and digital im-

age analysis [11, 5, 10, 14]. Systems for spatial reasoning over a set of objects have
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evolved in both expressive power and complexity. The design of each system focuses

on certain criteria, including efficiency of computation, ease of human comprehension,

and expressive power.

The spatial reasoning system chosen for this investigation is VRCC-3D+ [15],

an expansion and implementation of the RCC-3D [1] system designed by Albath et

al. As opposed to other RCC systems (many of which have no implementation), the

relations in VRCC-3D+ express both connectivity (in 3D) and obscuration. Obscu-

ration will change from viewpoint to viewpoint, but connectivity is a global property

that can be used to discern new information at every perspective in the system.

For this work, the authors focus on the obscuration element of the VRCC-

3D+ relation. The connectivity portion of the relation will become important as the

system is expanded to handle an arbitrary number of cameras and vantage points.

VRCC-3D+ identifies four basic kinds of obscuration: no obscuration (nObs), par-

tial obscuration (pObs), complete obscuration (cObs), and equal obscuration (eObs).

The system further breaks each base obscuration into three different classes: regular

obscuration (object A obscures object B), converse obscuration (object A is obscured

by object B), and equal/mutual obscuration (object A and object B obscure each

other). At this point in the investigation, this further classification is unimportant; it

only matters if obscuration is present between two objects, not which object is being

obscured.

2.4. INERTIA AND CONSERVATION OF MASS AND ENERGY

There are a multitude of physical properties that can be used to discern infor-

mation about spatial relationships. Every property used to derive spatial information

introduces a new computational cost and has an upper limit to the amount of infor-

mation it can deduce. The ideal property would be one that would give insight into

the system without requiring any new calculation. When this is impossible, the goal
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should be to maximize the ratio of information gain to computational cost. One of

the goals of this research is to discover a combination of physical properties that

maximizes this ratio.

As a starting point, two physical properties will be examined: inertia and

conservation of mass and energy. Inertia is best described by its colloquial definition:

an object at rest tends to stay at rest, and an object in motion tends to stay in motion.

More formally, inertia is the resistance a physical object has against a change in its

state of motion or rest. This can provide useful insight into the physical relationship

of two objects. Given two objects, if one passes behind another, it can be used

to determine whether or not the objects collided at any point. In terms of spatial

connectivity, this collision will correspond to a change from a disconnected (DC) state

to an externally connected (EC) state. This in turn gives useful information because

it defines a known point on the (possibly hidden) boundary of one or both objects.

Conservation of mass and energy will also be used in conjunction with inertia

to gain additional information. If an object becomes obscured by another object, its

trajectory can be estimated. If the actual trajectory is different than the calculated

trajectory, then something must have changed the state of motion or rest of one or

both objects. Using the difference in expected and actual position at a given time to

revise earlier calculations results in a corrected physical model that yields additional

information about the entire system.

2.5. CURRENT WORK IN QUALITATIVE SPATIAL AND TEMPO-

RAL REASONING

Qualitative spatial and temporal reasoning has been an active field in recent

years. Takahashi [17] explored using a new expansion to RCC-8 in which he uses two

specific vantage points such that the lines of sight are perpendicular. Connectivity and

obscuration were determined from each location to give a more precise determination
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about the objects in the scene. Takahashi’s work differs from this work in that he

uses a front and bird’s eye (“side” and “upper”) view to obtain information. In

contrast, this work focuses on emulating human sight using stereo images, which will

be expanded to include information from additional visual sources.

Renz [12] proposed efficient algorithms for determining tractable subsets of

RCC-8 and the Interval Algebra by phrasing the problem as a consistency satisfac-

tion problem CSPSAT(S) and refining the relation set when necessary. Directly de-

termining the relations between objects in space and time is not a direct consequence

of these tractable subsets, but any reduction in the size of the subset of possible

relations can substantially increase the efficiency of determining actual relations be-

tween objects [8]. These tractable subsets can be used to aid in the disambiguation

of information from multiple sources and will be exploited in this research.

Renz and Ligozat [13] performed a theoretical analysis of spatial temporal rea-

soning systems and showed that if a system exists such that weak composition does

not result in actual composition, path consistency no longer applies. In these cases,

algebraic closures of the system must be used to determine composition. They exam-

ine the effects of weak composition on spatial temporal reasoning systems and provide

a methodology to analyze spatial and temporal calculi. While purely theoretical, this

work benefits qualitative spatial and temporal reasoning. Path consistency and com-

position are two important attributes of a QSR system that have been exploited to aid

in automated reasoning; analysis of this work to show these facets of spatio-temporal

reasoning are not violated will be important to the continued usefulness of the system.

Ye and Hua [19] explored using depth cameras to determine three dimensional

spatial relations. They did not apply their work to a series of images over time, and

use specialized depth finding cameras to determine depth (the Xbox Kinect). As the

research presented in this paper is expanded to include additional visual sources, Ye

and Hua’s work may be investigated as another kind of information source.
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In 2007, Santos [16] investigated a framework in which the depth and motion of

an object may be used in reasoning while accounting for the observer’s viewpoint. He

presented a formal logic based approach to reasoning about depth and motion that he

used in a robotic vision application called the Depth Profile Calculus (DPCC). DPCC

uses depth maps obtained through disparity calculations to determine information

about three dimensional space, but ignores many other visual cues available (such as

color, lighting, and other physical properties). In this work, the authors use similar

methods, but incorporate additional information to get a more accurate view of the

world.

3. COMPUTATIONAL SPATIAL AND TEMPORAL

REASONING

As an initial exploration, the authors constrained the system of interest as

follows:

• The system is modeled as a single rolling green sphere that passes behind a

stationary blue sphere but does not collide (Figure 3.1).

• The system is simulated using Blender 2.64 [4] with two separate camera po-

sitions to guarantee that frames from the cameras would be showing different

perspectives of the same point in time.

• The cameras were aligned such that the direction of views were parallel and

the top row of the left camera’s image corresponded to the top row of the right

camera’s image. This differs from human vision slightly, as the computer does

not need to “focus” on an object by pointing both cameras at it; its visual

information is more complete than a human’s over the entire image.

• The floor of the system was transparent.
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• The moving sphere’s trajectory was perpendicular to the view direction of the

cameras.

(a) Frame 133: nObs. (b) Frame 135: nObs to pObs.

(c) Frame 165: pObs to cObs. (d) Frame 169: cObs to pObs.

(e) Frame 196: pObs to nObs.

Figure 3.1: Images From Analyzed Video: as Seen From the Left Camera. The green
sphere is further from the cameras than the blue sphere, and as such appears smaller.

The following constraints were placed on the system to allow simplifications

that are considered to be unimportant in the context of this work:

• Masking the image using HSV (Hue Saturation Value) values was used for image

segmentation into objects.

• Disparity was calculated for each object by finding the center of the matching

bounding box of objects and determining the difference in the x direction.
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Analysis of stereoscopic videos is a three step process: frame analysis. obscuration

analysis, and object analysis.

3.1. FRAME ANALYSIS

In the context of this work, a frame pair is a pair of stereo images from a

left and right oriented camera that portray the same moment in time from different

perspectives. For every frame pair in the videos the following actions are taken:

• The images are converted from the default representation to HSV.

• Range filtering is used to determine the locations of both objects in the images.

• The disparity and bounding rectangle are calculated for each object.

• The bounding rectangle and disparity for each object are stored, along with the

frame number.

3.2. OBSCURATION ANALYSIS

For this paper, obscuration and object analysis occur with respect to the left

camera. The results could be refined by using information from both cameras.

The following pseudocode is used to determine the obscuration from the left

camera at every step. The list of bounding rectangles and disparities from the frame

analysis is stored in steps. The green sphere corresponds to object A in the pseu-

docode, the blue sphere is object B, and bbox refers to an object’s bounding box.

obss = [ ] #the l i s t o f ob s cu ra t i on s

f o r s in s t ep s :

i f ob j e c t A has a bbox in s :

xa = A’ s bbox x l o c a t i o n in s
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wa = A’ s bbox width in s

i f ob j e c t B has a bbox :

xb = B’ s bbox l o c a t i o n in s

wb = B’ s bbox width in s

i f the bboxes over lap :

lastO = ’pObs ’

e l s e :

lastO = ’nObs ’

e l s e :

lastO = ’ cObs ’

e l s e :

lastO = ’ cObs ’

obss . append ( lastO )

The eObs obscuration type is combined with cObs; not enough information exists in

this experiment to distinguish between cObs and eObs.

Note that there is no distinction as to which object obscures the other, just

that some obscuration occurs. It was visually verified that this code correctly iden-

tified changes in obscuration with respect to the left camera’s video feed. Figure 3.1

shows the frames identified as changes in obscuration occurred from the left camera’s

perspective.

3.3. OBJECT ANALYSIS

In the object analysis step, the positions and depths of each object are deter-

mined. Position is determined using the right most edge of the bounding box. If no

obscuration is detected from either perspective, the depth and position of the object
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are directly recorded. Otherwise a polynomial is fit to the previous values recorded

and used to estimate the current location. Every direction of movement (x, y, z) is

handled independently. Due to the simplicity of the nature of this system, a linear fit

was used; as the system is generalized, the order of the polynomial can be increased

to handle differing kinds of acceleration and forces.

4. EXPERIMENTAL RESULTS

Figure 4.1 shows the positions of objects from a bird’s eye view of the system.

Every marker on the graph shows an observed or estimated object location of a

particular object. This information can be remarkably helpful in learning about the

structure of the system. For example, it may be possible to determine from using

only the stereo images that the blue sphere does not extend into infinity due to the

perspective nature of the projections. However, depending on the intrinsic properties

of the camera, there could be a large area in space that may or may not contain

the blue sphere. Using the information gained from projecting the path of the green

sphere behind the blue sphere, it can be concluded that the green sphere did not

collide with the blue sphere, so an upper bound is placed on how far back the blue

object can extend.

This figure illustrates that this line of inquiry shows promise: a relatively

accurate extrapolation of the green ball’s location is feasible with a relatively small

number of data points. This estimation could be improved further by including

the observed position of the green ball in later frames, then using that information

to retroactively correct the estimations of the location of the ball. This will allow

information inferred from that estimation to be refined even further.
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Figure 4.1: Observed and Extrapolated Positions. Each data point is a frame. Motion
is from left to right.

5. THE MOVE TO DETECTORS AND COLLISION

DETECTION

The implementation described has two severe limitations: a significant amount

of preprocessing is required (in the form of frame and obscuration analysis) and it is

resistant to expansion and refinement. As such, the architecture was redesigned to

use detectors.

5.1. DETECTORS: THE BASIC BUILDING BLOCK

In the scope of this work, a detector is defined as a function or functor that

takes as parameters the object image masks from each camera and a history of loca-

tions for each object. The action the detector takes depends on the purpose of the
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detector. A motion detector might update the location history of each object. An

obscuration detector could update an internal state reflecting the current obscura-

tion present between two objects. Analysis of videos using this detector architecture

addresses the major downfalls of the initial implementation. Analyzing stereo videos

now follows these steps:

i n i t i a l i z e d e t e c t o r s (motion , obscurat ion , . . . )

i n i t i a l i z e ob j e c t l o c a t i o n h i s t o r y

whi l e s topping c r i t e r i a not met :

generate ob j e c t masks

f o r each de t e c t o r :

apply de t e c t o r and handle emitted s i gna l s , i f n ece s sa ry

By making the detectors self-contained and independent, this system is easy to modify

and maintain.

5.2. COLLISION DETECTION

As a proof of concept of this architecture, a simple collision detector was

implemented. This detector works on the principle of inertia; an object in motion

tends to stay in motion, while an object at rest tends to stay at rest. At a given time

step t, if an object’s position at times t− 1 and t− 2 were identical, but the position

at time t was different than at t − 1, a collision was reported to the user. For now,

only motion in the x dimension determines collision, although this will be expanded

to other dimensions in the future.
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Figure 6.1: Observed and Extrapolated Positions. Each data point is a frame. Motion
is from left to right.

6. RESULTS WITH COLLISION AND DETECTORS

Figure 6.1 shows a position map for a video where collision occurs between

the green and blue balls, causing the blue ball to roll to the right side of the scene.

This position map is not as clear as Figure 4.1, but the anomalies can be explained.

The estimated positions for the green ball extend far past where the calculated points

begin again. Physically this makes sense; when the green ball collides with the blue

ball, some kinetic energy is transferred to the blue ball, causing the velocity of the

green ball to decrease. Because the estimations use the velocity as calculated before

collision, the final estimated position of the green ball is significantly different than

observed. This is a phenomenon that will facilitate a retroactive learning detector;

information like this can teach a great deal about the shapes of the objects in the

system.
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Figure 6.2: Frame at Which the Detector Noted Collision.

The depth appears in striations because the disparity is an integer number of

pixels, and the calculated depth will be discrete values, not a continuous variable. It

is for this reason the depth was not initially used to determine collisions. Also, as the

depth of an object changes, the observed x coordinates do not behave as expected.

This is due to the number of degrees of freedom in the outline of an object. As

objects travel across the scene, a single point of reference is needed to determine its

location. The center of mass of the object is a possibility, but as the objects obscure

each other, the perceived center of mass changes. Using the leading or trailing edge of

the bounding box around the object works until the object is obscured as well. Also,

as objects get closer to the camera, the object will appear bigger, changing both the

center of mass and the leading and trailing edges of the bounding box. This poses

an interesting open research question: can there be a reliable point of reference in an

object that can be used to describe its position in 3-space?

The collision detector flagged a collision between the objects at the frame

shown in Figure 6.2. This collision was visually verified.
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7. CONCLUSIONS AND FUTURE WORK

Using physical properties in conjunction with QSR and image processing meth-

ods is a promising direction in the field of computational vision and spatio–temporal

reasoning. This could have applications in physical security (automated CCTV anal-

ysis), media analysis, and many other multimedia fields.

In this paper, the authors have initiated an exploration into using these three

areas to accomplish automated spatio–temporal reasoning. The results of this initial

research are encouraging. This work will be continued to allow analysis of systems

with fewer constraints, consider additional physical properties, and eventually be

applied to video feed of live events from cameras, not just rendered static physical

simulations. Different combinations of physical properties and image processing tech-

niques also will be investigated to find a high information gain to computational cost

ratio.
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ABSTRACT

Bounding Volume Hierarchies (BVHs) are essential tools in performing col-

lision detection on three-dimensional information. They reduce the number of ex-

pensive calculations required to determine whether or not two geometrical entities

collide by using inexpensive calculations to rule out parts of the objects that could

not possibly intersect. Quickly producing a high quality BVH is an important aspect

of three-dimensional multimedia analysis. As such a powerful optimization, efficient

and high quality BVHs are still an active area of research. Herein, the authors present

a novel BVH representation that reduces the redundancy in the tree structure by al-

lowing a node to contain an arbitrary number of children, as well as compressing

non-unique nodes and combining their children. A new partitioning scheme using a

graphical representation of the object is also presented to improve the quality of the

generated BVH.
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1. INTRODUCTION

The current trend toward big (multimedia) data analysis necessitates the abil-

ity to quickly process and analyze the vast amount of three dimensional information

that is being generated. Collision detection between rendered static objects is a com-

putationally complex process; even performing a ray-casting collision check can be a

time-consuming process if steps are not taken to optimize the number of calculations.

A commonly used mechanism to significantly optimize the computation time is a

Bounding Volume Hierarchy (BVH) [14]. A BVH subdivides a portion of space into

smaller volumes containing objects of interest. Each sub-volume is then adaptively

divided until some atomic level is reached. The BVH is used to efficiently pare out

parts of a volume space that could not possibly contribute to the intersection query,

resulting in the removal of a large number of potentially expensive calculations.

A BVH is commonly created in one of three different ways: Top-Down, Bottom-

Up, or Iterative Insertion. Each of these generation mechanisms has strengths and

weaknesses relating to the creation time and the quality of the resulting BVH [10].

One BVH is considered to be of higher quality than another BVH if collision queries

can be performed faster. As such, a higher quality BVH tends to minimize the total

volume contained in the bounding volumes and be as compact as possible. This is

roughly analogous to the Surface Area Heuristic (SAH), a mechanism used to deter-

mine the expected cost to perform a ray trace [11], though recently additional quality

metrics on Bounding Volume Heuristics have been suggested [2]. Because collision

detection is frequently used in determining the spatial relation between objects in
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qualitative spatial reasoning systems such as VRCC-3D+ [13], the implementation

of a BVH subsequently can play a pivotal role in a spatial reasoner’s information

feedback loop and the user’s overall experience with an application.

Herein the authors investigate the use of a dual graph representation of a three-

dimensional object with triangulated surface boundary to improve on the quality of

a BVH generated by using a bottom-up approach. This approach is not designed to

replace existing BVH creation algorithms; it should be considered as an enhancement

that can be integrated into already existing algorithms that use other optimizations.

An implementation of a BVH using Axis Aligned Bounding Boxes (AABB) as the

bounding volume and a representation that removes internal redundancy is presented

here for use in benchmarking the dual graph partitioning scheme.

The remainder of this paper is organized as follows. Section 2 reviews Bound-

ing Volume Hierarchies and Dual Graphs. Section 3 introduces the internal structure

of the AABB Tree used in the implementation of VRCC-3D+ that reduces redun-

dancy and number of nodes. The Dual Graph partitioning scheme is presented in

Section 4. Section 5 outlines the experimental setup; results from these experiments

are presented in Section 6. Conclusions drawn from the results are presented in

Section 7. Section 8 outlines the future work that will be undertaken.

2. BACKGROUND

2.1. BOUNDING VOLUME HIERARCHIES

BVHs are an efficient method for quickly handling ray intersection and collision

detection in a three dimensional environment. BVHs can reduce the computation time

of ray/collision detection logarithmically, as a child node in the hierarchy doesn’t need

to be calculated if a parent node is not in the intersection.
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There are three kinds of commonly employed methods: Top-Down, Bottom-

Up, and Iterative Insertion. Top-down is the most common approach as it is faster

than näıve collision detection, easy to implement, and efficient to create [15, 10]. If

performed correctly, a bottom-up tree generation is likely to produce a higher quality

tree than a top-down approach [5]. Insertion methods are commonly used when not

all objects in a scene are visible, as they allow objects to be added dynamically

[6]. These approaches are based on the assumption that geometric primitives are

predetermined. Trees are sometimes dynamically created based on the complexity

and intersection outcome of the objects. In the surface-surface intersection, none of

these methods is sufficient [7].

The Top-Down method works by wrapping a scene or an object in a bounding

volume, typically the root of a tree. This bounding volume is subdivided into smaller

volumes, with these volumes becoming the children of the root of the tree. This pro-

cess is recursively performed until some stopping criterion is met. Common stopping

criteria are minimum bounding volume, minimum number of primitives contained in

a tree node, or maximum depth of the tree [9].

The Bottom-Up creation algorithm begins with the primitives and groups

them, creating a bounding volume around each grouping. This process is repeated,

treating each bounding volume as a new primitive. This process minimizes the

unnecessary space contained within the internal nodes, and frequently produces a

higher quality tree than a top-down method provided all the primitives are pre-

determined [16].

The third method, Iterative Insertion, begins with an empty tree, and inserts

objects into the tree as they become visible. This allows for a dynamic scene to be

processed using a BVH [9].
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Herein the authors focus on a modification of the Bottom-Up approach. By

using a dual graph (see Section 2.2) to represent a three-dimensional object, primitives

can be grouped such that they are spatially close to each other, resulting in a more

optimal tree than a näıve grouping. A novel representation of a BVH that reduces

the internal size of the tree by removing redundancy is used as a benchmark; a more

thorough examination of the implementation is presented in Section 3.

2.2. DUAL GRAPHS

In graph theory, the dual graph of graph G = (V,E), is denoted as G∗. In

G∗ = (V ∗, E∗), a vertex v∗ ∈ V ∗ represents a face in G. An edge e∗ ∈ E∗ exists

between any two vertices v∗1 and v∗2 if the faces they represent in G share at least one

edge [17].

A common representation of three-dimensional objects in CAD/CAM software

is the ANSI B-rep model utilizing the triangulation of the boundary surface. The

object boundary is specified as a mesh of vertices in space, with edges connecting

those points, and triangular faces enclosed by the edges. This is directly analogous to

a graphical representation of the object. By considering every vertex as a node in the

graph, and edges between vertices as edges in the graph, the mesh representation of

the object boundary becomes a graph. The triangles that comprise the approximation

of the surface are called the faces of the object.

A dual graph directly follows; by allowing each triangular face in the object to

be represented as a vertex in G∗, edges are defined in G∗ as any two faces that share

exactly two vertices vi, vj ∈ V of G(V,E). The dual graph allows visualization of how

faces are arranged, and insights into the structure of the object can be gleaned from

a simple breadth-first or depth-first search of the graph. In using the geometric Dual

Graph to partition the faces of an object, the breadth-first search is used to form a

spanning tree of half of the faces so as to keep the groupings as compact as possible.
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(a) DC(red, blue). (b) EC(red, blue). (c) PO(red, blue).

(d) EQ(red, blue). (e) NTPP(red, blue) =
NTPPc(blue, red).

(f) TPP(red, blue) =
TPPc(blue, red).

Figure 3.1: The VRCC-3D+ Connectivity Relations. The centers of all spheres lie in
the same YZ plane; only the X coordinate changes.

3. BVH IN VRCC-3D+

VRCC-3D+ [3, 13, 12] is the implementation of a region connection calculus

that qualitatively determines the spatial relations between three dimensional objects,

both in terms of connectivity and obscuration. The VRCC-3D+ connectivity rela-

tions are calculated in three dimensions, and include: disconnected (DC), externally

connected (EC), partial overlap (PO), equality (EQ), tangential proper part (TPP),

non-tangential proper part (NTPP), tangential proper part converse (TPPc), and

non-tangential proper part converse (NTPPc); see Figure 3.1. A composite VRCC-

3D+ relation specifies both a connectivity relation and an obscuration relation. Ob-

scuration is considered from a 2D projection and a depth relation. There are fifteen

different obscuration relations defined in VRCC-3D+; each is a refinement of basic

concepts: no obscuration, partial obscuration, and complete obscuration. For a more

complete discussion of VRCC-3D+, see [3, 13, 12].
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The implementation of VRCC-3D+ utilizes a large number of collision detec-

tion determinations to calculate the connectivity relationships between objects, and

ray-casting techniques to determine how objects obscure one another from a given

vantage point. If the size or location of an object in a scene changes, the object’s

spatial relationships with other objects in the scene may change. In turn, each recal-

culation of a VRCC-3D+ relation requires creation and/or queries of BVHs.

The VRCC-3D+ BVH implementation uses Axis Aligned Bounding Boxes

(AABBs) as the bounding volume. The creation of an AABB is efficient, requiring

only the minimum and maximum coordinate in each dimension. This operation is

linear in the number of points that are being bounded if there is no known ordering of

the points. Intersection tests involving AABBs are simple in their logic and execution

for several types of primitives, including line segments, rays, and other AABBs. For

these reasons, libraries such as CGAL [1] have AABB trees implemented as part of

the standard set of tools used in computational geometry.

As with any BVH, the AABB has some drawbacks. There are many cases

where the AABB might not be an optimal (tight fitting) bounding volume. Other

bounding volumes, like Oriented Bounding Boxes [4] (OBBs) may give tighter bounds.

However, their creation is more complex. Other bounding volumes, such as Bounding

Spheres are easier to test for intersection with. Bounding spheres are easy to create,

but the creation process is an approximation; it is unlikely that a Bounding Sphere

will be tightly fitting around the points it encloses.

For the initial implementation, it was decided that the AABB was the best way

to proceed. The simple creation of the bounding volume and the ease of representing

the intersection calculations allowed for fast implementation and testing. The BVH

in VRCC-3D+ is designed such that a different bounding volume can be used without
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significant effort. Also, because the boxes are aligned along the global axes, multiple

groupings of points are more likely to have identical bounding boxes. This property

is exploited in the representation introduced below.

The BVH used in VRCC-3D+ is in the worst case a binary tree. Algorithm 1

shows the tree creation pseudocode; the nodes are partitioned into two sets, and

then trees are created from the partitions. When implemented as a tree, the result

is a binary tree. However, in the initial implementation, several redundancies were

noticed: the same bounding box appeared multiple times as an internal node.

As such, the implementation was modified in a way inspired by the work

presented in [8]. The underlying tree structure was changed to be a dictionary (or

hash map), in which the key-value pairs represented a node and a list of its children.

Instead of setting a node’s left and right child, the list of children is extended. This

implementation removed redundancy from internal nodes, reducing the height of the

tree and preventing repeated queries against the same bounding box. Figure 3.2

shows a scenario in which a bounding box appears multiple times in the tree. The

bounding box for triangle b completely contained the box for triangle d, and as such

the bottom-up method for tree construction created a parent node for both box B

and box D that was identical to box B. This redundancy initially expressed itself

as a bug where nodes were deleted from the tree as it was being created, causing

inconsistencies and incorrect query results.

This tree representation lends itself to a clean implementation. Algorithm 1

shows the pseudocode for generating the BVH. The pseudocode (using some Python

notation) assumes the following:

• root is the root of the tree object being generated.

• tree is the internal representation of the tree and is a hash map, in which the

key is an AABB, and the value is a list of either AABBs or triangular faces.
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• The AABB constructor takes a list of faces or boxes and generates an AABB

containing all objects passed to it.

• faces is a set (only unique faces).

Algorithm 1 VRCC-3D+ Tree Creation: Bottom Up.

function Make Tree(faces)
if faces.length=1 then

face← faces.pop()
root← AABB(face)
tree[root]← face
return root

end if
(left, right)← partition(faces)
lbox←Make Tree(left)
rbox←Make Tree(right)
root← AABB(lbox, rbox)
tree[root].append(lbox)
tree[root].append(rbox)
return root

end function

4. DUAL GRAPH PARTITIONING (DGP)

In a three-dimensional object represented by the ANSI boundary representa-

tion, every face contains three vertices connected by three edges. This is directly

analogous to a graph G = (V,E), in which the set of vertices in the graph is the

vertices of the triangular faces in 3-space, and an edge in the graph is a connection

between two vertices in the facial boundary representation of the object. The dual

graph G∗ can be constructed as a graph in which each face is represented by a vertex,

and an edge represents two faces that share two vertices in V ; connectivity in G∗

guarantees that two faces are spatially close.
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Figure 3.2: Redundancy in a BVH. In a bottom up approach, AABB B is a box that
contains face b, but also fully encloses bounding box D. As such, it appeared multiple
times in the tree, introducing redundancy and unnecessary calculations.

The dual graph can be used to partition the faces into groups of faces that are

spatially close to each other. By choosing an arbitrary starting face in a set of faces,

a breadth-first search to create a spanning tree that contains half of the vertices in

the graph ensures that all faces in the partition are connected in the dual graph, and

as such are spatially close relative to each other.

It is known in this implementation that the dual graph will be a sparse graph;

every vertex has exactly three neighbors because every vertex represents a triangular

face. As a sparse graph, it is efficient to represent it as an adjacency list. Algorithm 2

shows how the dual graph partitioning generates two partitions of faces.

5. EXPERIMENTAL DESIGN

The purpose of this experiment is to determine the effect that the dual graph

partitioning scheme has on the runtime and quality of the tree. An algorithm in

which partition() was implemented to split the set of faces in half by index was used

as a control. It was then modified to accept and use the adjacency list of the dual

graph to determine how the faces should be split when recursively creating the tree.
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Algorithm 2 Dual Graph Partitioning.

function Dual Partition(faces, adj)
right← set()
currFace← faces.pop()
nextF ← queue()
right← {currFace}
goal ← faces.length/2
while right.length < goal do

adjFaces← faces ∩ adj[currFace]
adjFaces← adjFaces− right
numToAdd← goal − right.length
if numToAdd > 3 then

numToAdd← 3
end if
toPush← set(adjFaces[0 : numToAdd])
right← right ∪ toPush
faces← faces− toPush
enqueue(nextF, toPush)
currFace←Dequeue(nextF )

end while
return faces, right

end function

This implementation has some interesting features that evolved as the VRCC-3D+

implementation was growing, specifically that the bounding hierarchy is represented

as a dictionary/hash map, and each internal node has a set that contains the children.

This has an interesting side-effect: while the tree is constructed as a binary tree, if

two grouped faces have the same bounding box, then the internal node in the tree will

expand and have more than two children. This directly affects the size and average

height of the tree, making those aspects of the tree smaller.

All timing was performed on an Intel Core i5 processor, running at 3.2GHz,

with 16GB of RAM. All implementations are written in Python, using the timeit

module to collect runtime information. Timing does not include the creation of the

adjacency list unless otherwise specified; this is a one time cost that can be amortized

over every tree creation.



79

5.1. CONFIGURATION 1

For the purposes of testing VRCC-3D+, a collection of 68 .obj files was created,

each file depicting one of the VRCC-3D+ relations between two objects. Each of these

files portrays two polyhedrons ranging from tetrahedrons (four triangular faces) to

spheres (with 2000 triangular faces per polyhedron). These files were used for testing

each of the BVH creation implementations.

The BVH creation time was averaged over 100 executions on each of the 68

sample files using both partitioning schemes. The number of internal nodes and

average box volume was collected when using each partitioning scheme for every file.

5.2. CONFIGURATION 2

For a BVH, the act of determining which primitives a geometry can intersect

is called querying the tree. Determining which faces from an object could intersect

with faces from another object is called a box-box query (because boxes from one

BVH are queried against boxes in the second).

Every .obj file contains two discrete objects. The box-box query time between

the two objects was averaged over 100 runs for the same file set as in Configuration

1 for both partitioning schemes by implementing the algorithm presented in Algo-

rithm 3.

5.3. CONFIGURATION 3

The need to create the adjacency list is an additional overhead that could

impact performance. However, because the faces of the objects should never change

their position relative to each other, the adjacency list can be precalculated and stored

. This has a known memory cost (linear in the number of faces in the object). If



80

Algorithm 3 Box-Box Query.

function Box Box Query(tree1, node1, tree2, node2)
isect← dict() � Dictionary of (node, list of nodes) pairs
if Intersect(node1, node2) then

for n1 ∈ tree1[node1] do
for n2 ∈ tree2[node2] do

if isAABB(n1) and isAABB(n2) then
isect← isect+Box Box Query(tree1, n1, tree2, n2)

else if isAABB(n1) then
isect← isect+Box Box Query(tree1, n1, tree2, node2)

else if isAABB(n2) then
isect← isect+Box Box Query(tree1, node1, tree2, n2)

else
isect[node1].append(node2)

end if
end for

end for
end if
return isect

end function

memory is a problem, this list could be generated every time the BVH is generated.

In this configuration, the time to create the adjacency list is averaged over 100 runs

on the same set of files as in Configuration 1.

5.4. CONFIGURATION 4

To test scalability, each algorithm was executed 100 times on a file with two ob-

jects with significantly larger numbers of faces (9144 and 14624). The same statistics

as in Configuration 1 were collected.
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6. RESULTS

All times in these results are reported in seconds. All volume measurements

are presented as cubed world units. Box and whisker plots are used to report quartile

values over the input file set.

6.1. CONFIGURATION 1

Table 6.1 shows that, on average, the time to create a tree using DGP is about

15% longer than using a näıve partitioning scheme. Figure 6.1 shows that for smaller

objects, in the best case, DGP can run as quickly as a näıve method.

The average box volume is also shown in Table 6.1 and Figure 6.3; note that

the volume is, on average 5% smaller when the tree is generated using DGP. Table 6.1

and Figure 6.2 reflect the size of the tree through the number of internal nodes. A

BVH created using DGP is, on average, slightly smaller than one created with a näıve

partitioning method. In some cases, an increase is seen, but the average and median

volumes are smaller when using DGP.

Figure 6.1: Range of Runtime for DGP and Näıve Partitioning.
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Figure 6.2: Range of Number of Nodes for DGP and Näıve Partitioning.

Table 6.1: Average and Standard Deviation: Configuration 1.

μ: runtime σ: runtime μ: box volume σ: box volume
DGP 0.105168340627 0.0714088494841 1.8130619326 3.24021971564
Näıve 0.090840193454 0.0613155721599 1.96238023672 3.16972935732

μ: node count σ: node count
DGP 2202.60294118 1491.67271031
Näıve 2275.45588235 1556.73862926

6.2. CONFIGURATION 2

Table 6.2 shows the average execution time of a box-box query between two

objects. Again, DGP shows an improvement over the näıve partitioning process.

6.3. CONFIGURATION 3

Table 6.3 shows that the overhead of creating the list is small; it is less than

half of the time required to generate the tree. If memory is a limitation, the adjacency

list can be generated at tree creation, though the runtime will be half again as long.
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Figure 6.3: Range of Box Volume for DGP and Näıve Partitioning.

Table 6.2: Average and Standard Deviation of Query Runtime Over Test Files.

μ: runtime σ: runtime
DGP 0.528159871522 0.574440745841
Näıve 0.641162978411 0.51794431845

Table 6.3: Average and Standard Deviation of Adjacency List Creation Over Test
Files.

Average Standard Deviation
0.0472587228873 0.0422061185621

6.4. CONFIGURATION 4

The average creation time, number of nodes, and box volume taken from trees

created on significantly larger objects are shown in Table 6.4. Note the mixed results;

for one object, DGP generates fewer boxes but has a higher box volume, while for

the other object, DGP results in more boxes with a smaller average box volume.
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Table 6.4: Creation Time, Tree Size, and Box Volume on Larger Objects.

Faces Average Creation Time Average Number of Nodes
DGP 9144 0.8753760600090027 15768
Näıve 9144 0.7410803198814392 15712
DGP 14642 1.4204304003715515 25688
Näıve 14642 1.193346061706543 25863

Average Box Volume
DGP 271249.03166667151
Näıve 290342.60701300012
DGP 285103.56916561484
Näıve 265531.88658817636

7. CONCLUSIONS

7.1. CONFIGURATIONS 1 AND 2

The results from the first and second testing configurations are encouraging for

the DGP scheme. Using DGP introduces a slight increase in the average BVH creation

time (approximately 0.014 seconds, a 15% increase on the tested input object files).

However, the query time to determine whether two objects could possibly intersect

by performing a box-box query decreases by more than .11 seconds; this is almost an

18% improvement in runtime. The gain in query performance is almost eight times

the slowdown introduced in the BVH creation.

To put this in perspective, consider a scene with n objects, requiring exactly

n AABB creations. In the worst case, the VRCC-3D+ implementation would per-

form
(
n
2

)
box-box queries (O(n2)) to exactly determine the three-dimensional spatial

relationships. Determining the obscuration relation requires additional queries to the

tree; one of the predicates used to determine the obscuration is whether an object is

in front of another.
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In determining the obscuration between two objects, the implementation of

VRCC-3D+ projects the three dimensional objects onto the view plane. If the two

projections overlap, a number of evenly distributed points is chosen from the overlap.

A ray starting at the camera and passing through each of these points is queried

against the BVH to determine which object is passed through first. The precision

and correctness of this operation increases as the number of points distributed across

the overlapping projection increases. If p points are chosen from the intersection of

the projection, then the number of ray queries made against the tree is O(p).

It can be seen that the number of queries made to the tree quickly surpasses

the number of tree creations: O(n) < O(n2) + O(p). As such, the time savings are

significant. Not even the time overhead to create the adjacency list on the fly is

enough to negate the benefit of using DGP over a näıve partitioning mechanism.

The box volume tells an interesting story. The average and median box vol-

umes are smaller when using DGP. However, on occasion, DGP produces a larger

total bounding volume than the näıve partitioning. While using the spanning tree

of the dual graph ensures that the bounding volumes are spatially close, the start-

ing point used in generating the tree can have an effect on the overall shape of the

enclosing bounding volumes.

7.2. CONFIGURATION 3

As shown in the testing results from Configuration 3, the time it takes to

generate the adjacency list is smaller than the time of tree generation. In cases where

there is not enough memory to create and store the adjacency list for all objects on

initialization, the list may be generated as the tree is being built. The additional

runtime does not cause the increase in the creation time to overshadow the benefits

to the query time. Indeed, the total time to create the adjacency list and generate

the tree is smaller than the time savings in a single query.
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7.3. CONFIGURATION 4

The results from testing Configuration 4 show that the DGP scales as well

as a näıve partitioning scheme. The increase in runtime remains a constant factor

(∼ 18%). The trees generated show some inconsistencies; for one of the objects,

the tree created using DGP has more nodes than the one created with the näıve

partitioning method, but has a significantly smaller average box volume. For the

other, larger object, this relationship is flipped: DGP results in a larger average box

volume, but a smaller number of nodes. This suggests that for any partitioning,

the shape of the object affects the results. Other work has been done in which the

primitives are partitioned along the longest axis of the overall bounding box [5]; DGP

would perhaps benefit here from a different starting point for the breadth-first search.

As a field, computer science is about problem solving with an emphasis on

efficiency and elegance. A given solution may not work well on all representations

of a problem; multiple approaches to a solution are beneficial as it allows flexibility

in the application of the solution to different problem representations. Computer

graphics and multimedia are very broad subjects: objects can be represented in a

myriad of ways, making a single approach to analysis and computation tools nearly

impossible. Bounding Volume Hierarchies are powerful tools; they allow for efficient

collision queries by exploiting the logarithmic complexity of tree structures to quickly

prune expensive calculations. Dual Graph Partitioning is an approach to generating

these tree structures that can be applied to representations of scenes that do not

lend themselves well to other tree creation algorithms. It is another tool in the

large toolbox of powerful multimedia analysis mechanisms available to the modern

computer scientist.
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8. FUTURE WORK

Improving the quality and efficiency of the BVH implementation in VRCC-

3D+ is an ongoing process. Optimizing the improvements gained by introducing

DGP and the hash-map based tree representation will continue with the integration

of other bottom-up tree improvements, such as those suggested in [5].

Areas for improvement include analyzing the effect that different breadth-first

search starting points has on the quality of the resulting BVH and determining the

feasibility and practicality of using threading to build pieces of the tree in parallel.
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ABSTRACT

VRCC-3D+ is an implementation of a region connection calculus that qualita-

tively determines the spatial relation between two 3D objects in terms of connectivity

and obscuration. The eight connectivity relations are conceptually the same as RCC8,

but calculated in 3D rather than 2D. The fifteen obscuration relations are calculated

using the projection of the 3D objects on a particular 2D plane and the distance

of the objects from the viewpoint. Herein we present a smaller, more precise set of

VRCC-3D+ obscuration relations that retains the qualities of being jointly exhaus-

tive and pairwise disjoint. However, this new set of relations overcomes two problems

that existed in the previous set of fifteen relations: (1) lack of a precise mathemat-

ical definition for a key predicate, InFront, and (2) lack of an intuitive mapping of

converse relations.
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1. INTRODUCTION

Qualitative spatial reasoning (QSR) in two dimensions is a well-studied field,

and includes models such as the connectivity-based RCC systems [3, 10, 12], and

obscuration-based systems such as LOS-14 [6], OCS-14 [7], and OCC [8]. These

systems, while expressive, do not accurately portray the real world wherein objects

exist and are perceived in three dimensions, not two. As computing power increases

and the need to analyze three-dimensional data (e.g., stereoscopic video, robotic

vision, etc.) increases, two-dimensional reasoning systems can be inefficient, or even

inadequate, for sophisticated applications.

To ameliorate the shortcomings of two-dimensional QSR systems, Albath et al.

developed RCC-3D [2], which eventually evolved into VRCC-3D+ [13]. VRCC-3D+

uses composite relations that express both connectivity and obscuration from a given

perspective. The connectivity-based relations are the RCC8 relations (DC, EC, EQ,

PO, TPP, TPPc, NTPP, NTPPc) defined in three dimensions; these relations have

been an ongoing focus of optimization and refinement in the implementation as a

QSR system [5]. The obscuration portion of the composite relations are refinements

on the basic concepts of no obscuration (nObs), partial obscuration (pObs), equal

obscuration (eObs), and complete obscuration (cObs). Over time these relations

have been enhanced to improve their expressive power.

There are three criteria that the relations must meet to maintain the quality

of the QSR system: the set of relations must be Jointly Exhaustive and Pairwise

Disjoint (JEPD), every relation should map to exactly one converse relation, and the

relations should have an intuitive mapping to natural language. If the relations are

not jointly exhaustive, there will be physical configurations of objects that simply

cannot be expressed by any relation. Relations that are not pairwise disjoint will
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result in ambiguous classification of object configurations. An intuitive mapping of the

relations to natural language aids in human usefulness and usability of the system, and

ensures that the expressive power of the system does not become needlessly complex;

relations that cannot be differentiated in natural language typically do not add to the

reasoning power of the system and overburden the computational complexity. Herein

the authors focus on refining the obscuration terms of the composite VRCC-3D+

relations.

2. BACKGROUND AND RELATED WORK

2.1. OCCLUSION

Occlusion of one object by another object is contextually dependent on the

observer’s location (usually called the view point, the perspective reference point, or

the center of perspective projection) relative to the objects. It follows that the occlu-

sion decision can be made from the projection on a view plane. QSR applications are

interested in deriving spatial obscuration relations and classification from projection

of 3D objects on a 2D projection plane.

There are two types of projections as shown in Figure 2.1: parallel and perspec-

tive. Both have their advantages and disadvantages. The parallel projection is easier

to compute, but loses the concept of depth. With the perspective projection, the ob-

ject is scaled by the distance from the view point then projected; depth information

is preserved. Obscuration predicates are based on two parameters: the perspective

projection in a plane and depth (distance of the object from the perspective reference

point).

The terms in front, occulusion, and closer are closely related. In natural

language, the term in front between two objects A and B is synonymously interpreted

as “A is in front of B”, “A occludes B”, and “A is closer than B”.
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BA

(a) Parallel Projection.

A B

(b) Perspective Projection.

Figure 2.1: The Differences Between Parallel and Perspective Projections. In both
cases, object A obscures object B.

2.2. QSR AND OCCLUSION

One of the best known obscuration-based QSR systems is LOS-14 [6] which

was introduced by A.P. Galton in 1994. It classifies regions based on what can be

seen in the Lines Of Sight (LOS) from a given perspective. Fourteen relationships

are defined based on obscuration (or the lack thereof) from a given viewpoint.

Another occlusion-based calculus is ROC-20 [11]. It is similar to LOS-14, but

extends it to add support for concave objects, which allows for mutual obscuration.

Every spatial relationship in ROC-20 is defined in terms of the occlusion that is

present and an RCC8 relationship. This system is significantly more expressive than

LOS-14 and can apply to a greater number of cases, as it correctly handles concave

regions.

The Occlusion Calculus (OCC) was introduced by Kohler in 2002 [8] and

characterizes relationships between objects by their respective projections into an

image plane. The author states that the information obtained is from one perspective,

and as such, this system should be paired with other QSR methods to get a fuller

picture. The system sacrifices expressiveness for reduced computational and reasoning

complexity.
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Guha et al. introduced OCS-14 in 2011 [7]. This model was designed to

correct for insufficiencies in earlier occlusion models that made them infeasible for

use in computer vision. Earlier methods had not accounted for whether the occluder

was a moving object or part of the static background, and whether or not the visible

part of an object was a connected blob or a fragment. As OCS-14 is designed for

computer vision, feasibility of computation is a concern, but not expressive power.

2.3. RCC-3D

RCC-3D [2] was designed by Albath et al. to consider three dimensions, be

computationally feasible, and give the most comprehensive spatial information about

the system possible. Initially designed for use in analyzing the evolution of skeletal

structures and other physical attributes, RCC-3D used the concepts of connectivity

and obscuration to accomplish the design goals of completeness and computational

feasibility. Because RCC-3D was to be used in visualizing physical changes over time,

a GUI was deemed necessary. The resulting implementation was named VRCC-3D [1].

However, conceptual ambiguities that were uncovered in the implementation resulted

in an evolution of the system, resulting in a revised model called VRCC-3D+ [13].

2.4. VRCC-3D+

Initially the obscuration portion of the VRCC-3D+ relationships simply were

determined by overlapping boundaries and interiors of the projections of the objects

in an image plane; the relations were limited to no obscuration (nObs), partial ob-

scuration (pObs), complete obscuration (cObs), and equal obscuration (eObs). As

the implementation of the system progressed, it became clear that a vital piece of

information was missing; there was no concept of which object was obscuring the
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other. As such, an additional ternary predicate was added called InFront. For two

objects A and B, possible values for InFront(A,B) were: YES (A is in front of B),

NO (B is in front of A), and E (A and B are equidistant).

The ternary InFront predicate was used to refine the concepts of nObs, pObs,

eObs, and cObs to express whether an object obscured the other, whether an object

was obscured by the other (thereby adding c to the relation name), or whether they

obscured each other (thereby adding e to the relation name). Some of these relations

had an ambiguous combination of predicate values. As such, some of the relations

were split, expanding the total number of relations to 15, as shown in Table 2.1.

Table 2.1: The 15 Current VRCC-3D+ Obscuration Relations.

IntInt IntExt ExtInt InFront
nObs F T T YES

nObs c F T T NO
nObs e F T T EQUAL
pObs1 T T T YES
pObs2 T F T YES

pObs c1 T T T NO
pObs c2 T T F NO
pObs e T T T EQUAL

cObs T T F YES
cObs c T F T NO

cObs e1 T T F EQUAL
cObs e2 T F T EQUAL
eObs e T F F EQUAL
eObs c T F F NO
eObs T F F YES
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3. IMPROVEMENTS TO THE RELATIONS

The first step in improving the obscuration relations is dealing with the math-

ematically imprecise predicate InFront. The ternary nature of this predicate and lack

of rigorous mathematical definition led to different interpretations of the same scene

by different entities. To replace this predicate, two new predicates are proposed: Ob-

scures (o(A,B)) and ObscuredBy (oc(A,B)). The Obscures predicate is defined as

follows:

Let fO(x, y) be a function that maps the point (x, y) on the image plane back

to the point (x′, y′, z′) in object O that projects to the point (x, y) and is closest to

the image plane. If no point in object O projects to point (x, y), then fO(x, y) =

(∞,∞,∞). Also, let C be the location of the camera in world coordinates. The

Obscures predicate for objects A and B is defined in Equation 1.

o(A,B) =

⎧⎪⎪⎨
⎪⎪⎩

T : ∃ x, y s.t.|C − fA(x, y)| < |C − fB(x, y)| <∞
F : otherwise

(1)

In natural language, the meaning of this predicate is that it evaluates to true if

there is a point at which the projections overlap and, within that projection, the first

object hides some part of the second object. The definition of the converse relation

oc(A,B) is simply oc(A,B) = o(B,A).

Note that the Obscures predicate only considers points at which the projection

overlaps. This ameliorates cases such as that shown in Figure 3.1. If we remove the

condition that the distance between the camera and each of the two points be finite,

object B would be reported to obscure object A at a point where the object A does

not have a projection in the image plane.
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A B

Figure 3.1: Partial Obscuration: Object A Obscures Object B.

Table 3.1: Mapping of InFront to o, oc.

InFront o(A,B) oc(A,B)
YES T F
NO F T

EQUAL F(or T) F(or T)

Table 3.1 shows the mapping of the original InFront predicate values to the

values of the new Obscures and ObscuredBy predicates. Note that a value of EQUAL

for the InFront predicate will map to either both o and oc being true (T), or both

being false (F).

The table of obscuration relations is rewritten as shown in Table 3.2. The

first simplification of the relation set follows directly from the predicate extension:

when there is no obscuration between two objects, the projections do not overlap. As

such o and oc will always be false. It follows that nObs and nObs c are impossible

relations; only nObs e is allowed by the predicate set, and only when the values of

the new predicates are both false. This leads to the obscuration characterizations in

Table 3.3.

3.1. HANDLING PATHOLOGICAL CASES

Consider the projection shown in Figure 3.2a. In this image, object B is

partially obscuring object A, and A is partially obscuring object B. Under the previous

set of 15 obscuration relations, the only way to express this would be cObs e, when
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Table 3.2: The 15 Current VRCC-3D+ Obscuration Relations with o and oc.

IntInt IntExt ExtInt o oc
nObs F T T T F

nObs c F T T F T
nObs e F T T F/T F/T
pObs1 T T T T F
pObs2 T F T T F

pObs c1 T T T F T
pObs c2 T T F F T
pObs e T T T F/T F/T

cObs T T F T F
cObs c T F T F T

cObs e1 T T F F/T F/T
cObs e2 T F T F/T F/T
eObs e T F F F/T F/T
eObs c T F F F T
eObs T F F T F

Table 3.3: The Reduced Set of VRCC-3D+ Obscurations (nObs and nObs c re-
moved).

IntInt IntExt ExtInt o oc
nObs e F T T F F
pObs1 T T T T F
pObs2 T F T T F

pObs c1 T T T F T
pObs c2 T T F F T
pObs e T T T F/T F/T

cObs T T F T F
cObs c T F T F T

cObs e1 T T F F/T F/T
cObs e2 T F T F/T F/T
eObs e T F F F/T F/T
eObs c T F F F T
eObs T F F T F
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pObs e is more intuitively correct. The reason for this is that the interior of the

projection of object A does not intersect with the exterior of the projection of object

B, resulting in an (intuitively incorrect) identification of cObs as the base obscuration

type.

AA

B

(a)

AA

B

(b)

Figure 3.2: Two Examples of Mutual Obscuration. (a) A’s projection completely
contained in B’s projection, (b)A’s projection partially overlaps B’s projection.

To address this issue, the structure of the relations themselves are examined.

Currently, relations have a base of either nObs, pObs, eObs, or cObs. Appended to

this base are the refinements of converse ( c) and equality ( e). To simplify this defini-

tion, a consistent structure is proposed: obscurations will have the form xObsy, where

x correlates to the extent of obscuration (Table 3.4) and y corresponds to refinements

on the obscuration (Table 3.5). To clarify the meaning of mutual obscuration, a new

suffix is introduced: m.

A Cartesian product of the prefixes and suffixes show that there are 16 possible

obscuration relations. However, it has already been shown that there can only be a

single version of nObs; there is not a way to map suffixes directly to prefixes. As

such, each relation must be individually handled.

3.1.1. Partial Obscuration (pObs). For partial obscuration, all cases

where both objects are visible must be considered. The definitions of pObs and

pObs c remain unchanged. The characterization of pObs e does not change, and has

values of false for both o and oc.The mutual refinement for pObs must handle the
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Table 3.4: Prefix and Extent of Obscuration.

Prefix (x) Meaning
n No Obscuration
p Partial Obscuration
e Equal Obscuration
c Complete Obscuration

Table 3.5: Suffix and Obscuration Refinement, with Mapping to o and oc.

Sufffix (y) Meaning o(A,B) oc(A,B)
[none] Obscures T F

c Is Obscured By F T
e Equally Obscure Each Other F F

m (new) Mutually Obscure Each Other T T

case shown in Figure 3.2a as well as that shown in Figure 3.2b. The case shown

in Figure 3.2b is straightforward. Figure 3.2a is more complicated: it must handle

when object A is either object. As such, it maps to two characterizations of pObs m.

Table 3.6a shows the new characterizations for all pObs relations.

3.1.2. Equal Obscuration (eObs). Equal obscuration, by definition, oc-

curs when the size and shape of the projections are identical; the values of the IntInt,

IntExt, and ExtInt predicates will always be T, F, and F, respectively. The eObs e

obscuration should only occur if two objects are identical. Mutual equal obscura-

tion can occur (Figure 3.3), so that case must be handled. Table 3.6b shows the

characterizations of the new eObs relations.

Figure 3.3: Equal Mutual Obscuration.
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3.1.3. Complete Obscuration (cObs). By definition, complete obscura-

tion means that one object cannot be seen. As such, there is no cObs m relation.

Table 3.6c shows the cObs characterizations.

Table 3.6: The new VRCC-3D+ Obscuration Characterizations.

(a) New pObs characterizations.

IntInt IntExt ExtInt o oc
T

pObs T
F

T T F

T
pObs c T T

F
F T

pObs e T T T F F
T F
F TpObs m T
T T

T T

(b) New eObs characterizations.

IntInt IntExt ExtInt o oc
eObs T F F T F

eObs c T F F F T
eObs e T F F F F
eObs m T F F T T

(c) New cObs characterizations.

IntInt IntExt ExtInt o oc
cObs T T F T F

cObs c T F T F T
T F

cObs e T
F T

F F

3.2. IDENTIFICATION OF CONVERSE OBSCURATIONS

One of the problems with the old set of VRCC-3D+ obscuration relations was

that there were cases where there was no consistent intuitive mapping from a relation

to its converse. For example, nObs e, pObs e, and eObs e map to themselves as
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converses, which is logical; if A and B obscure each other, then B and A should also

obscure each other. However, there was not a single cObs e relation but two. These

two relations were the converse of each other. This inconsistency hindered both the

implementation and reasoning with the system; it muddled the meaning of the e

suffix. Under this new relation set, every normal (no suffix) obscuration’s converse

relation is the converse obscuration (named with the c suffix). The mutual ( m) and

equal ( e) relations map to themselves as converse. Table 3.7 shows the full set of

obscurations and their identified converse relation.

Table 3.7: Full Obscuration Relation Set with Identified Converse Relations.

IntInt IntExt ExtInt o oc Converse
nObs e F T T F F nObs e

T
pObs T

F
T T F pObs c

T
pObs c T T

F
F T pObs

pObs e T T T F F pObs e
T F
F TpObs m T
T T

T T pObs m

eObs T F F T F eObs c
eObs c T F F F T eObs c
eObs e T F F F F eObs e

eObs m T F F T T eObs m
cObs T T F T F cObs c

cObs c T F T F T cObs
T F

cObs e T
F T

F F cObs e
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4. EFFECT ON VRCC-3D+

The new set of obscurations directly benefits the implementation of VRCC-

3D+ on two fronts: it is easier to verify that the implementation of the predicates is

correct (leading to more correct results), and the reduced set of obscurations and di-

rect mapping to a converse relation improves the computational complexity of relation

determination. Migration from using the ternary InFront to two binary predicates

immediately improved the unit test pass rate for obscuration relations from 29% to

77%. The expected output for the unit tests was determined by visual inspection;

moving to the more mathematically precise predicates caused the implementation to

more closely emulate human perception; several of the common errors reported stem

from the perspective point being different for the person analyzing the file and the

implementation, and more are due to floating point rounding errors. The majority of

the errors that were fixed stemmed from an incorrect suffix on the base obscuration.

Also, the use of two binary predicates instead of a single ternary predicate makes it

trivial to implement a decision tree predicate picker similar to that presented in [4],

which has been shown to improve the speed of computation.

The primary improvement in computational complexity is due to the unique

mapping of a relation to a converse relation. In order to fully describe a scene contain-

ing objects A and B using VRCC-3D+, the system must compute the relationship

between objects A and B, but also between B and A (the converse relation). To

calculate an RCC8 relation in three dimensions, the computational complexity is in

the worst case O(fa × fb), where fa and fb are the number of faces in objects A

and B, respectively. Generating the projections for objects A and B is O(fa) and

O(fb), respectively; calculating the values of the predicate values is dependent on the

(non-constant) complexity of performing intersection operations on the projections
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and the cost of ray casting to determine which object is closer to the view point. Re-

gardless of the implementation of these operations, the cost of computing the values

of the predicates is more than linear. In contrast to this, if the relationship between

objects A and B is known, and both parts of the composite relation have well-defined

converses, the relationship between objects B and A can be determined to be the

converse of each part of the composite relation: a lookup operation with complexity

O(1).

Every QSR system is designed as a balance of three criteria: ease of reasoning

with the system, computational complexity, and expressive power of the system. An

improvement to one aspect of the system comes at the cost of another. RCC-3D

(the system that over time became VRCC-3D+) was initially designed to balance the

three: by using compound relations, high expressive power and low computational

complexity could be obtained without sacrificing too much in the way of ease of

reasoning with the system. Herein, by reducing the 15 obscuration relations to 12 and

introducing the concept of mutual obscuration as a refinement, both computational

complexity and ease of reasoning have been improved.

Table 4.1 shows the new set of 34 composite relations present in VRCC-3D+ (a

reduction from the 46 relations stemming from the old set of 15 obscuration relations),

and also serves to illustrate the importance of working to minimize the number of

obscuration relations; if the four obscuration relations with multiple characterizations

were expanded to 9 separate obscurations, the number of VRCC-3D+ relations would

grow to 50 relations. Usage of a QSR system becomes increasingly more complex as

the set of relations in the system increases. An illustrative example of this is the

composition table for the system which increases the speed of classifying relations

by reducing the number of possible relations between two objects; in a scene with

three objects A, B, and C, if the relationships between A and B, and B and C

are known, the composition table reduces the set of relationships that are possible
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between objects A and C. This can be used in conjunction with a decision tree [4]

to speed up computation. Calculation of this table has a non-constant polynomial

complexity in the number of relationships.

Table 4.1: Mapping of RCC8 Relations to Obscuration Relations.
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PO X X X X X X X X X
EQ X
TPP X X X
TPPc X X X
NTPP X
NTPPc X

5. FUTURE WORK

Future work will focus on mapping the revised VRCC-3D+ relations to natural-

language terms suitable for end-user applications involving spatial querying. Pre-

liminary efforts in this direction have commenced for the VRCC-3D+ connectivity

relations [9]. Given the ambiguity of natural-language terms such as in front/behind,

occludes, and closer/nearer, it may prove difficult to find unambiguous mappings for

the mathematically precise VRCC-3D+ obscuration relations. Extensive human ex-

periment studies will need to be conducted, and likely domain-specific ontologies will

have to be developed for the relation-to-term associations.
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6. CONCLUSIONS

In this paper, simplifications to the 15 obscuration relations present in VRCC-

3D+ have been analyzed and presented. This change in the mathematical set of

relations improved the computational correctness from 27% to 77%. The VRCC-

3D+ obscuration relations are now easier to understand and computationally easier

to implement because of the introduction of a new predicate for classification and a

new class of obscuration.
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SECTION

3. CONCLUSIONS

Qualitative Spatial Reasoning (QSR) is a powerful tool that has the potential

to revolutionize the way computers interact with the world. Unfortunately, most

QSR systems have severe limitations, such as being limited to two dimensions or

being purely theoretical. RCC-3D was a first attempt to be an implemented system

that was computationally feasible, worked in three dimensions, and enabled temporal

reasoning. However, it still exhibited some shortcomings, including a lack of a visual

user interface. VRCC-3D, and later VRCC-3D+, ameliorated many of the weaknesses

present in the original system, RCC-3D. Over time, VRCC-3D+ has grown into a

powerful theoretical system with an accompanying implementation.

This collection of work has provided a series of improvements to VRCC-3D+

that have increased the ease and correctness of implementation, made reasoning with

the system simpler while retaining its expressive power, and have demonstrated a

potential application domain for a completed implementation. Improvements in tol-

erance handling have allowed implementations to produce results that agree with

human perception, an important aspect of such a system. Optimizations to the com-

putational complexity and speed of calculations have led to an implementation more

suitable for real-time reasoning. As a whole, this body of work has brought QSR

closer to enabling the computer to accurately and quickly reason about the world.
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