
Scholars' Mine Scholars' Mine 

Doctoral Dissertations Student Theses and Dissertations 

Spring 2015 

Detection and recognition of R/F devices based on their Detection and recognition of R/F devices based on their 

unintended electromagnetic emissions using stochastic and unintended electromagnetic emissions using stochastic and 

computational intelligence methods computational intelligence methods 

Shikhar Prasad Acharya 

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations 

 Part of the Computer Sciences Commons, Electrical and Computer Engineering Commons, and the 

Operations Research, Systems Engineering and Industrial Engineering Commons 

Department: Engineering Management and Systems Engineering Department: Engineering Management and Systems Engineering 

Recommended Citation Recommended Citation 
Acharya, Shikhar Prasad, "Detection and recognition of R/F devices based on their unintended 
electromagnetic emissions using stochastic and computational intelligence methods" (2015). Doctoral 
Dissertations. 2373. 
https://scholarsmine.mst.edu/doctoral_dissertations/2373 

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This 
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2373&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2373&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2373&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2373&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/2373?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2373&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


DETECTION AND RECOGNITION OF R/F DEVICES BASED ON THEIR

UNINTENDED ELECTROMAGNETIC EMISSIONS USING STOCHASTIC

AND COMPUTATIONAL INTELLIGENCE METHODS

by

SHIKHAR PRASAD ACHARYA

A DISSERTATION

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

SYSTEMS ENGINEERING

2015

Committee Members

Dr. Ivan G. Guardiola, Advisor

Dr. Akim Adekpedjou

Dr. Steven Corns

Dr. Cihan H. Dagli

Dr. Randy H. Moss





iii

ABSTRACT

Radio Frequency (RF) devices produce some amount of Unintended Electro-

magnetic Emissions (UEEs). UEEs are generally unique to a device and can be

thought of as a signature of the device. This property of uniqueness of UEEs can

be used to detect and identify the device producing the emission. The problem with

UEEs is that they are very low in power and are often buried deep inside the noise

band which makes them difficult to detect. There are two types of UEE detection

methods. The first one is called stimulated detection method where the UEEs of a

device are enhanced using external stimulation signal and the detection is made based

on the analysis of the enhanced stimulated signal. This method, however, is resource

intensive as the generation, transmission, and reception of the stimulation signal re-

quires hardware components. The second UEE detection method is called passive

detection method where the UEE signals are not tampered with and are analyzed

in its original raw form. Since the UEEs are weak in strength, the challenge with

passive detection method is to measure and analyze UEEs in a noisy environment.

In order to detect and recognize RF devices through the UEE, the first step is

to measure the leakage of electric signal that is emitted outside of the RF devices as

UEEs. UEE samples are collected from two RF devices at three different distances

of 3 feet, 6 feet and 10 feet and also for noise in a similar environment. The three

methods explored in this research are Principal Components Analysis (PCA), Hidden

Markov Model (HMM), and Support Vector Machine (SVM). This research studies

the performance of these three algorithms for passive detection of UEEs and compares

it with the performance of Neural Network (NN). The explored methods gives signif-

icant better results than existing methods and can be used as an alternative for the

costly and resource intensive stimulated detection methods. One of the major appli-

cation of UEE is in the detection of Improvised Explosive Devices (IEDs). Effective

IED detection system for military operation should accurately perform the task of

detection, localization, and direction of malicious devices. This research contributes

to the detection and recognition of IED detection system by proposing models based

on stochastic and computational intelligence methods. These methods proved to

have promise if it can be implemented in real life with more applied research.
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1. INTRODUCTION

The number of wireless devices available has grown substantially during the last

few decades. Nowhere is this growth more evident than in the growth of mobile/cel-

lular phone subscribers. Figure 1.1 illustrates the increase in the number of mobile

subscriptions in the United States per 100 people from 1984 to 2012 [1]. Less than

1% of the United States population had a mobile phone in 1984; eleven years later,

that number had reached 10%. The number of subscribers has grown exponentially

thereafter, reaching almost 100% in 2012. People use a variety of wireless devices

in their daily lives. These include headphones, speakers, computer keyboards, com-

puter mouses, printers, garage door openers, and Global Positioning System (GPS)

receivers. The sale of wireless devices has grown with their use. An example of this

growth can be seen in the sales of GPS receivers. GPS receivers are wireless devices

that can calculate the position and velocity of objects based on the signals received

from the GPS satellite system [2]. There were 69 million GPS receiver units sold

in 2005 alone. These sales increased to over 122 million in 2010 [4]. It is estimated

that one billion GPS enabled devices will be sold in 2014 [3].

The growth of wireless technology will likely continue in the future as many

non-wireless devices are currently being built to have wireless capabilities. Many

traditional accessories (e.g., watches and spectacles) have some wireless features em-

bedded within them. The use of wireless technology in jewelry has been around for

decades. Common examples include an embedded microphone on a necklace and

earphone in earrings [5]. Several automobile companies have begun to provide high

speed 4G LTE in vehicles [6]. The tremendous growth of wireless devices has made

them ubiquitous in modern society, and this growth is not expected to slow down in

the immediate future.

Wireless technology has improved the quality of life in many ways. The prolifer-

ation of wireless devices has enabled people to connect and communicate with almost

anyone wherever and whenever they want. For example, the Himalayan region, an
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Figure 1.1 Mobile Cellular Subscriptions in US (per 100 people)

area considered one of the most remote places on the planet, is now connected to the

rest of the world through wireless devices [7].

Wireless devices are incredibly useful in the relief operations during a natural

disaster. Wireless devices are particularly useful during specific operations like lo-

cating, tracking, and providing immediate relief to the victims [8]. For example,

after an earthquake, searching for victims beneath collapsed structure such as build-

ings and bridges is very risky. There is a significant risk that the rescue operation

will further destabilize the structure causing more fatalities amongst trapped victims

or the relief worker themselves. In this type of scenario, the robots with wireless

signal transmitter makes the relief operation safer and efficient. Small robots with

audio and video sensors with wireless signal transmitter can explore the remains of

collapsed structures and send information about the location and condition of the

victims [9] and [10].

Wireless telemedicine is another useful application of wireless technology. Wire-

less telemedicine is a fast and effective method to provide clinical health care to

patients located at a different geographical location from the health care providers

[11]. Telemedicine system generally consists of two units. The first unit is a mobile

unit that is located near the patient. It transmits vital information about the patient

such as electrocardiogram, pulse rate, etc. The second unit is called the consulta-
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tion unit that is located with the health care expert. The consultation unit receives

information from mobile unit. Based on the information received, the health care ex-

pert diagnose the medical condition of the patient and give directions for treatment.

These directions are implemented by medical staff located near the mobile unit [12].

Another similar application of wireless devices in medicine includes the real time and

continuous home monitoring of chronic and elderly patients [13]. Wireless technol-

ogy enables the monitoring of the health condition of such patients continuously and

in near real-time when the patient is at home. This reduces the medical cost of the

patient as they don’t have to pay for the costly medical bills of hospital stay [14].

These examples illustrates that the wireless technology has made this world a better

place to live.

As the saying goes that every coin has its other side, no matter how useful

wireless technology has become, there will always be some drawbacks. For example,

the increasing worldwide use of wireless devices has created an extensive amount

of electromagnetic pollution [15]. It is difficult to find an open area in the planet

without some amount of electromagnetic radiation. It is not completely known how

harmful this electromagnetic pollution is to the human health. Some preliminary

studies are suggesting negative health effects of such exposure [16]. Preliminary

results suggests a link between extensive usage of wireless devices cause minor health

issues such as sleep depravation and headache to major health concerns like cancer

[17]. Not only human beings, but plants and animals are also subjected to the

negative effects of electromagnetic pollution [18]. A study by Irmak et. al (2002)

observed the negative effect of electromagnetic radiation on rabbits. They observed

an increase in the stress levels in the animals under study [19].

Interference is another negative consequence of electromagnetic pollution. In-

terference is the undesired functioning of an electronic circuit due to an unwanted

external electromagnetic signal being conducted through the device [20]. Electro-

magnetic interference has been found to cause medical equipment malfunction [21].

Mobile phones are not allowed inside intensive care unit of hospitals as the interfer-

ence of electromagnetic radiation from the mobile phone with the medical equipment
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may be fatal for the patients [22]. For example, a pacemaker, which is a medical

device placed in the heart of a patient to control the heart rate is prone to exter-

nal interference. Interference of external electromagnetic signals have been found to

alter the basic functions of the pacemaker, sometimes causing adverse effects to the

patient [23]. One of the adverse effect of interference of cell phone on pacemaker

is the oversensing effect (pacemaker tracking an increase in the heart-beat rate of

the patient when the heart-beat rate is normal) causing the pacemaker to lower the

heart-beat rate of the patient [24].

Furthermore, some places completely restrict the use of wireless devices due

to security and privacy concerns. Examples of such places are customs offices and

courthouses, which prohibit the use of wireless devices as these devices may be used

to illegally record or interrupt the proceedings [25]. In some extreme cases, wireless

devices are used as weapons to inflict physical damage to others. In such cases, it

is very difficult to control or avoid the use of wireless devices. An example of such

usage of wireless technology in a malicious manner is Improvised Explosive Devices

(IEDs). IEDs are homemade explosive devices made from easily available, low cost

and legally available raw materials such as inorganic salts and peroxides that are

compounds generally found in commercially available fertilizers [26]. A picture of an

IED is depicted in Figure 1.2 [27]. The picture shows an IED where a walkie talkie

is connected to explosive materials through a wire. The purpose of wireless device is

to remotely detonate the IED. There are two methods to detonate an IED. First, is

to wire the explosive material to the RF receiver directly. A call is then made to that

walkie talkie, which acts as an detonator. Secondly, a timer is set using the internal

alarm of the RF receiver. The IED will detonate when the alarm is triggered [28].

IEDs were the primary cause of a large number of coalition fatalities during the

Afghanistan and Iraq war. Figure 1.3 illustrates the number of coalition fatalities in

Afghanistan and the number of those fatalities attributed to IEDs. It can be observed

in the figure that a large number of deaths is caused by the IEDs. Table 1.1 further

clarifies the fact that IEDs are the major weapons used by the terrorists against

coalition forces. IEDs caused 40.75% of the total deaths of the coalition fatalities
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Figure 1.2 Improvised Explosive Device (adapted from commons.wikimedia.org)
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Table 1.1 Percentage of Fatal-
ities of Coalition Forces from 
2001 to 2013 Caused by IED

Year Fatalities due to IED
2001 0.00%
2002 5.71%
2003 5.17%
2004 20.00%
2005 15.27%
2006 21.47%
2007 33.62%
2008 51.53%
2009 52.78%
2010 51.76%
2011 44.52%
2012 32.84%
2013 32.50%

from 2001 to 2013. If it is somehow possible to detect IEDs present nearby, the

number of deaths can be significantly reduced not only in Afghanistan, but in other

hostile environments where this form of warfare exists. It can thus be concluded that

detection and localization of RF receivers in a hostile territory could be an effective

approach to reduce the number of fatalities.

One way of controlling undesired and illegal usage of wireless electronic devices
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is to detect them while they are inactive. The identification and detection of wireless

devices in prohibited areas will help to minimize their harmful effects and/or conse-

quences. Security officers like a bailiff in a court room can determine if there is an

illegal use of devices occuring. Army personnel can identify and locate IEDs in an

area and safely deactivate it before it can cause harm. There are different methods

for detecting devices. The following paragraphs discuss two of the most common de-

vice detection methods in use today: radio frequency identification (RFID) method

and bug scanning method.

RFID is one of the most commonly used methods for device detection and

identification. RFID is a method that enables the automatic identification of physical

objects through the use of radio signals. RFID consists of two parts, which are a

tag and a reader. The tag consists of a small microchip that can store information

and is capable of wireless data transmission [29]. The reader can detect the tag

by reading the information that is transmitted by the tag [30]. The major reason

for the popularity of RFID is its low cost. RFID are used by large and well known

companies and organizations such as Wal Mart, Procter and Gamble, and the United

States Department of Defense in a wide variety of products, further increasing its

popularity [29], [31]. One of the requirements of RFID is that the object that is to

be detected has to have a unique tag. This requirement restricts the use of RFID

as a device detection method in many cases. For example, to use RFID method to

detect IED, the tag of the RFID has to be attached to IED, which is not possible.

Bug scanning is another common method used for the detection of electronic

devices. In the bug scanning method, the device that is to be detected is exposed

by an external source of strong electromagnetic radiation and the re-emitted electro-

magnetic radiation is analyzed for the detection process [32]. Bug scanning is capable

of detecting any device that contains PN junction. A PN junction is the area of a

semiconductor where two types semiconductor materials are joined together. If a

PN junction is present in the electronic device, the junction will cause the stimulated

signal to bounce back with its harmonics and the presence of this reflected harmonics

signifies the presence of electronic devices [33]. Seguin (2009) has pointed two major
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drawbacks of this method that causes serious limitations in its application for device

detection. Firstly, not only PN junction, but different types of junctions including

metal junctions will rectify the stimulated signal. This, in turn, increases the false

positive rates of detection to an unacceptable level as even a simple metal junction

such as a rusty nail will be classified as an electronic device. Secondly, the electro-

magnetic signals that are re-emitted are extremely weak in power. This low power

signal is difficult to capture and measure [32]. The power of the re-emitted signal can

be increased by using a very strong stimulation signal. However, the strong stimu-

lation signal increases the false positive rates by interacting with many more metal

junctions within surroundings. Due to these disadvantages, bug scanning method

have serious limitations in IED detection. The drawbacks of RFID method and the

bug scanning methods makes those methods unsuitable for IED detection. Thus,

there is a need for robust IED detection and recognition methods.

The primary purpose of Systems Engineering is to bring a system into existence

that satisfies the need of the customer. Effective IED detection system for a military

operation should accurately perform the tasks of detection, localization, and direc-

tion of malicious device at a long distance. This research contributes to the detection

aspect of the overall IED detection system by exploring various stochastic and com-

putational intelligence methods based on the leakage of electromagnetic signals from

electronic device components. It also contributes to the passive detection approach

of malicious devices by proposing methods that are capable of not only detection but

also of recognition. The proposed methods has a potential of being implemented in

real life applications of military operations of IED detection system.

The next section will introduce Unintended Electromagnetic Emissions (UEEs)

and explain how it can be used for IED detection. It will discuss the generation and

characteristics of UEE and explain the challenges associated with UEE detection and

recognition.
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2. UNINTENDED ELECTROMAGNETIC EMISSIONS

All electronic devices emit some form of electromagnetic radiation. Electronic

devices with any kind of electronic circuits or which work at RF frequencies emit some

amount of Unintended Electromagnetic Emissions (UEEs) [34]. These emissions are

generated by the signals created by a local oscillator within an integrated circuit. As

an example, a circuit diagram of a local oscillator is reproduced in Figure 2.3 [35].

In this figure, Q denotes a transistor, L denotes an inductor, C1 and C2 denotes

the two capacitors, and, RL and REE denotes the two resistors. The local oscillator

emit electromagnetic signals which couple with device’s antenna, connection wires,

or housing of the device and are radiated outside the device as UEEs [36], [37]. An

example of an UEE signal is shown in Figure 2.1. The Figure consists of amplitude

in dBm plotted against 1001 data points. Each data point represent a frequency

that are 20 Hz apart. The details of the data collection process for the UEE signal

is explained in Section 4.1.2. An increase in the power in the UEE signal can be

observed around the central frequency, which is denoted by a shadowed area with

dotted lines in Figure 2.1. Figure 2.2 shows both an UEE signal and a noise signal

to illustrate the difference between them. In the case of the UEE signal, a significant

increase in power can be observed between 450 and 550 data points. But the difference

in noise is that there are many non-significant but random increases in power within

the signal trace. A consistent but significant increase in power is a feature of UEE

that helps us to detect UEEs from the ambient noise. As the magnitude of increase

in power in UEEs, and the range within which increase in power occurs is different

for different devices, UEEs can also be used for device recognition. The challenge in

UEE detection and recognition, however, is that the increase in power is low and the

range within which an increase in power occurs is small. In addition, UEEs are often

buried in the ambient noise band. The method of UEE detection and recognition

should be robust enough to overcome these challenges.

The characteristics of the UEEs depend upon the configuration and charac-
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Figure 2.1 Unintended Electromagnetic Emission from a walkie talkie radio

teristics of the various components of the electronic device emitting the UEEs [38].

There always exist some differences between various internal electronics components

such as resistors and transistors between different devices. The main reason of the

difference between these components is due to the fact that the tolerance of the com-

ponents are different for different devices. Tolerance of any component can be defined

as the variation allowed for that component. For example, a 1K Ω resistor with a

tolerance of 10% can be expected to measure between 900 Ω and 1100 Ω whereas

a 1K Ω resistor with a tolerance of 2% can be expected to measure between 980 Ω

and 1020 Ω. Let us now take the example of the oscillator illustrated in Figure 2.3.

There may be different devices that use the oscillators with exactly the same circuit

design as in Figure 2.3. But the characteristics of the oscillators will differ between

different devices due to the operating values and the tolerances of these electronic

components. Since the combination of the characteristics of these components are

unique, the characteristics of the UEEs generated by these devices will also be unique.

This uniqueness feature of UEEs can reveal valuable information about a particular

electronic device [37]. UEEs can thus be taken as a unique signature of electronic

devices that can be used for device detection and identification.

In this research, the attention is focussed on the UEEs from Radio Frequency

(RF) devices. Typical RF devices have either superheterodyne or super-regenerative

receivers (SRR) [39]. The superheterodyne receiver architecture was invented by

Edwin Armstrong in 1918. This architecture is popular since it allows the RF signal
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Figure 2.2 UEE and Noise Signal

to be converted down to a fixed lower Intermediate Frequency (IF), replacing a low

Q tunable RF filter with a low cost high Q-IF filter [40]. A block diagram of a

superheterodyne receiver is illustrated in Figure 2.4. The energy generated by the

local oscillator is intended to be used only within the receiver. However, in practice,

some amount of this energy usually escapes into the environment resulting in UEEs

[41] [42].

As illustrated in the block diagram of a SRR in Figure 2.5, there is a feedback

in the SRR which connects the output of the receiver to the input. The purpose of the

quench generator is to periodically interrupt the main RF oscillation [43]. Ideally, all

of the energy generated by this quench generator should be absorbed by the receiver.

In reality, however, some leakage occurs in this process and some amount of energy

generated by the quench generator is emitted as UEEs [39].
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Figure 2.3 Local Oscillator

Figure 2.4 Block Diagram of Superheterodyne Receiver

Figure 2.5 Block Diagram of Super Regenerative Receiver

Detection of RF receivers using their UEEs at a significant distance is difficult

due to the high levels of ambient noise [32]. Another difficulty arises due to the fact

that the power of the UEEs are weak and also varies according to the receiver model

and year [40]. The challenge is to detect the low power, variable strength UEE signals
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which are deeply buried within the ambient noise band. The next section will discuss

some of the methods of detection of these signals found in the current literature. It

will highlight the most relevant approaches to identify, detect, and recognize UEE

signals from every day wireless devices.
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3. BACKGROUND

This section discusses the most common detection and recognition methods

associated with UEEs that are available in the current literature. Detection is the

process of distinguishing UEEs from ambient noise in a specific frequency band,

whereas, recognition is the process of distinguishing between multiple sources of UEEs

in a specific frequency band. The methods of detection and recognition of UEEs can

be further classified into two types: stimulated detection and passive detection.

In the stimulated detection methods, the underlying characteristics of UEE is

strengthened and stabilized by an external stimulation signal. Stimulation detection

method is based on the fact that the characteristics of the UEEs become more consis-

tent when subjected to an appropriate external RF stimulation. External simulation

not only improves the quality of the UEEs, but also helps in consistent receival of

the UEEs. Receiving a consistent UEEs is important in detection as UEEs are of-

ten buried in the noise band and are sometimes even below the ambient noise level.

The stimulation signal increases the intensity of the low power UEE signal and also

enables the steady flow of the consistent signal, thus making it easier for detection.

Unlike stimulated detection of UEEs, the UEEs in the passive detection meth-

ods are not tampered with and are analyzed in their raw form [43], [32]. The challenge

of passive detection is that UEEs are low in power and it makes it difficult to detect

and analyze the UEEs in a noisy environment. This section will discuss the com-

mon methods available in literature for both stimulated and passive detection and

recognition of UEEs.

3.1. DETECTION METHODS

For the purpose of this research, detection is defined as the the process of

identifying UEEs in a specific frequency band. Moreover, detection is the process of

detecting UEEs that are buried in the ambient noise and determine if there exists

UEEs in a specific frequency band or not.
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3.1.1 Stimulated Detection Methods. The three stimulated detection

methods commonly found in the literature and discussed in this section are: the

modulation method, the long PN code method and the Stagner method. In all of

the methods discussed in this section, an external source is used to strengthen and

improve the quality of the UEEs. It is necessary for the creation of external stimulus

signal in all the three methods. Arrangements has also to be made for capturing and

measuring the reflected signals. All these methods also require the computation of

a specific threshold value to decide the presence or absence of UEEs. The threshold

value is calculated based on the measurements in a semi-anechoic chamber. Semi-

anechoic chamber insulates the inside of the chamber from external electromagnetic

radiation to prevent interference with signals within the chamber.

3.1.1.1 Modulation method. In the modulation method, amplitude mod-

ulated signals are used as the stimulus signal to strengthen the UEEs from a device. 

This results in the characteristics of the reflected UEEs to be more consistent and 

enhanced, making it easier to detect the presence of the electronic device emitting 

the UEEs [32]. In this method, the energy of the reflected stimulated signal is pre-

determined in a semi anechoic chamber. The decision of whether a device is present 

or not is based on the comparison of correlation coefficient of the energy level of 

tested stimulated signal with the predetermined stimulated signal. An electronic 

device is considered to be detected if the correlation coefficient of the energy level 

of stimulated and the reflected signal is greater than a specific threshold value pre-

determined in the semi anechoic chamber. It is claimed in [32] that the probability 

of detection is increased and the probability of false alarm, which is defined as the 

detection of signal when it is not present, is significantly decreased as compared with 

passive detection method of cascading correlation. This method, however, requires 

many overhead operations as compared to any of the passive detection methods.

3.1.1.2 Long PN code method. Long Pseudo-Noise(PN) Code Method for 

UEE detection uses PN sequence as the stimulation signal [43]. The PN sequence is
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uniformly distributed and independent periodic sequence of binary bits that repeats

after a certain number of bits called the length of the PN sequence. The PN sequence

appears to be random, however, they are not statistically random [44] as it repeats

itself after the length of the PN sequence. In [45], Universal Software Radio Peripheral

(USRP) was used for the purpose of transmitting a PN sequence and receiving the

reflected stimulated UEEs. A PN sequence of a specific length was used as the

stimulation signal. The reflected stimulated signal consisted of UEEs modulated

with with the PN sequence. The reflected PN sequence is then correlated with the

original PN sequence in the stimulated signal. A device is determined to be detected

if this correlation value is larger than the previously determined threshold value. This

threshold value is determined in a noiseless semi-anechoic chamber.

The range of detection is depended on the length of the PN sequence. Lower

length of the PN sequence can detect device for a shorter distance but as the length of

the PN sequence increases, so did the detection range [43]. This effect of an increase

in detection range with an increase in the length of PN code is illustrated in Table

3.1. We can observe in Table 3.1 that when the PN sequence of 63 bits was used as

stimulation signal, the detection range was 26 feet. The detection range subsequently

increased to 48 feet with PN sequence of 2047 bits and to 62 feet with PN sequence of

8191 bits. Even though the Long PN Code Method increases the range of detection

as compared to the modulation method, the actual accuracy of the method was not

given in the research papers [43], [45].

Length of PN sequence Detection range
63 bits 26 feet
2047 bits 48 feet
8191 bits 62 feet

Table 3.1 Detection Range for Long PN Code Method
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3.1.1.3 Stagner method. In this stimulated detection method, the stimu-lated 

signal used is the sum of input RF and local oscillator signal [46]. Selection of 

stimulation signal is comparatively easier than for Modulation Method and Long Code 

PN Method as the restrictions for the signal is that the duration and the power should 

be high [46]. The experiments performed in [46] showed an improved per-formance 

over passive detection method. The disadvantage of this method is that a threshold of 

matched filter value has to be determined for each devices to be detected. This is 

required for the detection process as a detection is made when the number of matches 

of test signal is greater than pre-determined threshold value. Another limitation of this 

study is this is a theoretical study where the signals used were simulated and were not 

the actual signals recorded in an lab based or real world settings.

3.1.2 Passive Detection Method. The six passive detection methods com-

monly found in the literature and discussed in this section are: matched filter method, 

cascading correlation method, Hurst parameter method, granulometric size distri-

bution method, and principal components analysis method. The first three meth-

ods (matched filter method, cascading correlation method, and the Hurst parameter 

method) are threshold based methods. These methods require the calculation of a 

specific threshold value in an semi-anechoic chamber to decide the presence or absence 

of UEEs. The last two methods (granulometric size distribution method and princi-

pal components analysis method) are not threshold based methods and thus doesn’t 

require the overload of calculation of threshold value in a semi-anechoic chamber.

3.1.2.1 Matched filter method. Shaik et al. (2006) used matched filter to 

detect electronic devices based on their UEEs [34]. A matched filter to the signal 

s(t) is a linear time-invariant filter with impulse response h(t) = s(T-t), where s(t) 

is assumed to be confined to the time interval 0 ≤ t ≤ T [47]. Matched filters are 

linear filters that are generally used to detect signals corrupted by white Gaussian 

noise[41]. To identify the existence of a particular device, a matched filter is first
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constructed from a given device. The signal that is to be detected is then passed

through this filter. A signal is determined to be detected if the power of the output

is greater than a predetermined threshold. Even though this is a noble method for

detection of UEEs, the accuracy of the method decreases significantly as the distance

of the source of emission increases [32]. The matched filter in [34] was constructed

from the noiseless data of semi-anechoic chamber.

3.1.2.2 Cascading correlation method. Cascading Correlation is the pro-cess 

of combining different signals by iteratively correlating them together. Cascading 

Correlation method for UEE detection consists of characterizing a device by using 

specific parameters of the emissions in both time and frequency domain. The pa-

rameters are the shape, rate, and frequency content of the emissions pulses, the 

change in frequency content over time, and the change in emissions characteristics 

when subject to different noise conditions and environments [32]. An ideal pulse is 

then developed by iteratively cross correlating a statistically significant number of 

characterized pulses. The normalized pulse value is obtained after correlating all the 

pulses and is called the ”ideal pulse”. The emission that is to be determined is then 

correlated to the constructed ideal pulse. If the value is above a certain threshold, 

then the emission is determined to be from the corresponding device that generated 

the ideal pulse [32]. Experimental results of this method showed that this method 

can identify the presence of UEEs with an area under the Receiver Operating Char-

acteristic (ROC) curve of 98% at 3 meters. The primary drawback of this method is 

that the ideal pulse has to be determined in a semi-anechoic chamber. This method 

also requires a large number of signals to create the ideal pulse for each device to be 

detected.

3.1.2.3 Hurst parameter method. Hurst Parameter is a measure for the 

long range dependence of a signal. A time series is considered to have long range 

dependence if there is a correlation between time series that sustains throughout the 

time scales [48]. A series is considered to possess long range dependence if the value
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of Hurst parameter is between 0.5 and 1 [48]. Hurst Parameter was first used for UEE

detection by Hertenstein et al. (2011). [49] used Hurst value is used as a threshold

for differentiating noise and UEEs [49]. All the test signals with Hurst value above

the threshold value is assumed to be UEEs. This method is based on the assumption

that the long-range dependence characterized by the the Hurst parameter can be

used as an indicator of presence of patterns of data. The experimental study found

that ROC curve of the Hurst parameter was higher than the other methods [49].

The drawback of this method was that the range of detection was only 25cm

and this method is not capable of differentiating between two or more devices. The

false positive rate of this method, which is the detection of noise as an UEE, is

so high that its practicality is limited. The minimum Hurst parameter for noise is

calculated and any signals with higher hurst parameter is considered as UEE signals

[39]. Higher false positive rate and the inability to differentiate between two or more

devices are the drawbacks of this methods. Hurst parameters are difficult to measure

[50], and this difficulty in measurement adds another limitation on this method.

3.1.2.4 Granulometric size distribution. The methods discussed so far for 

UEE detection is a threshold based method. In threshold based method, a specific 

threshold value is determined based on device characterization. Any value such 

as correlation coefficient or match filter value above the threshold value signifies a 

presence of device and value less than threshold signifies noise. Granulometric Size 

Distribution (GSD) method, proposed in [51], can be considered a novel method as 

it is not a threshold based method.The GSD of a given curve is a function of the 

structuring element size which plots the area under the opened curve against the area 

under the original curve [52]. GSD is basically a morphology based technique where 

a signal is characterized based on the shape of the curve. Any difference between 

the UEE signal and noise signal will be characterized in their GSD. That is, the 

GSD plot of UEE signal ideally should be different from the GSD plot of noise. This 

difference in shape of the signal can be used to differentiate between UEE and noise 

[51]. The next step is to classify the GSD curve of UEE from the GSD curve of
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noise. Guardiola and Mallor (2013) accomplished this step by classifying the GSD

curves from both the UEEs and the noise into two groups using the Partition Around

Medoids (PAM) algorithm. PAM is a clustering algorithm that classifies data points

based on the distances they are apart from each other and the cluster head called

medoids represents the center of the classified class [53]. PAM has an advantage over

k-means as the cluster head of k-means is just the means of the all the data points

in that cluster whereas in the case of PAM the cluster head is one of the actual data

points that is centrally located in that particular cluster [54]. This method works

well in accurately detecting the UEEs but according to the results presented in [51]

the false positive rate was considerably higher at 36 percent.

3.2. RECOGNITION METHODS

Recognition, for the purpose of this research, is defined as the process of iden-

tifying between two or more sources of UEEs. In case where there is an existence of

two or more sources of UEEs, the process of recognition identifies and recognizes the

individual source of UEEs. Recognition is a more sensitive process than detection

because when multiple sources of UEEs exists, the process of detection can only de-

termine that UEEs exists in that frequency band but cannot determine if there are

UEEs from multiple sources. The process of recognition, however, can distinguish

between multiple sources of UEEs.

3.2.1 Neural Networks. Neural Networks (NNs) are machine learning al-

gorithms that are based on the functioning of human brain. A detailed discussion 

of NNs can be found in Section 4.4. NNs are used to detect and identify devices 

ranging from a toy truck to vehicles in [38] and [55]. The NNs presented in Dong 

et al. (2006) consists of a multilayer perceptron with 5 neurons and sigmoid acti-

vation function for the first hidden layer and 1 neuron and linear transfer function 

for the output layer [55]. The network was trained using the Levenberg-Marquardt 

algorithm. The amplitude vs time plot from eight frequency bands were selected as 

an input to the NN. This method yielded a good detection accuracy of 98 percent.
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Dong et al. (2006) not only detected but also identified between Toyota Tundra, a

GM Cadillac, a Ford Windstar, and ambient noise with 99 percent accuracy. Their

NN architecture comprised of feedforward neural network trained with back propa-

gation algorithm. The input features are the maximum spectral magnitude, average

magnitude over a frequency band divided by the average magnitude over the entire

time-frequency plot, standard deviation of magnitude over a frequency band, number

of points within 3 dB of the maximum spectral magnitude and the number of pulses

over a frequency band.

The major drawback of this method is that it is a black box model which doesn’t

give information regarding the actual procedure of generation and emissions of UEEs.

The computational costs of NNs are generally higher as the training consists of many

trials and errors to find the appropriate NN architecture parameter that gives the

best result.

3.3. SUMMARY

The stimulated detection method requires detailed information about the elec-

tronic device and its emissions to create the external stimulation signal. In addition,

extra devices are required for the purpose of generating the stimulus signal and then

collecting the reflected stimulated UEEs. For example, the long PN code method

discussed in Section 3.1.1.2 used USRP for the transmission and the receival of the

stimulus signal. Passive detection methods are the ones that doesn’t require the

stimulation signal.

The methods for UEE detection and recognition discussed in this section (except

GSD and NNs) are threshold based methods. In threshold based methods, there is

a need to quantify a certain threshold such that the decision can be made that

detection occurs above the threshold. There are two disadvantages of threshold

based methods: The first disadvantage is that the threshold value is calculated in

a noise free environment of a semi-anechoic chamber, requiring extra work. The

second disadvantage is that the threshold based methods can only be used for device

detection but not for recognition. The reason for this limitation in threshold based
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methods is that detection occurs for all the values higher than the threshold value.

Any test value higher than the threshold value denotes a presence of device. But

there is no way of identifying two or more devices.

The review of available literature in UEE detection methods demonstrates a

lack of methods that are capable of not only detecting if there is a presence of device

but also distinguishing between two or more devices. The capability of recognition

of UEE makes the implementation of IED detection system for military operation

more effective. For example, in a military field operation, some of the devices of

the military may emit UEEs. In such circumstances, if the UEE detection system

doesn’t have the capability of differentiating between two or more devices, then the

false alarm rate will be high. This research attempts to fill the gap by exploring

stochastic and computational intelligence methods that can perform passive detec-

tion and recognition of malicious devices based on their UEEs. These methods will

increase the effectiveness of the IED detection system by enhancing its detection and

recognition capability with the less costly passive detection approach. The Neural

Network method, described in section 3.2.1 is the only method that can not only

detect devices, but can also identify and differentiate between devices. Two or more

than two devices can be modeled by NNs by assigning different target values to each

devices. Based on training data, NN will train itself to identify given targets as dif-

ferent devices. Even though NNs has the additional capability of identifying devices,

there are some limitation. The selection of hidden nodes and training parameters is

heuristic, all the parameters have to be re-estimated if one or more devices are added

to the model. The computational cost of this method is high as training neural

networks with large data set takes a significant amount of time.

The next section will discuss in details how Principal Components Analysis

(PCA), Hidden Markov Model (HMM), and Support Vector Machine can be used in

detecting and recognizing electronic devices based on their UEEs. As NN is the only

method found in the literature that can not only detect but also identify different

sources of UEE, this research will compare all the proposed methods of UEE detection

and recognition with NNs for the purpose of validation.
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4. METHODOLOGY

Section 3 reviewed the available literature on the detection of UEEs. There are

many methods available that can detect the presence of UEE. But as discussed in

the previous Section, most of those methods were threshold based methods. Being

threshold based methods, they do not have the capability of differentiating between

two or more sources of UEEs. This Section will explore the models that are capable

of both detecting and recognizing UEEs. As the focus of this research is on the

passive detection approach where the signals to be detected are weak in power and

are often buried in the noise band, the methods should be versatile enough to over-

come these challenges. This section investigates the performance of three methods,

namely, Principal Components Analysis (PCA), Hidden Markov Models (HMMs),

and Support Vector Machines (SVMs) that has the promise to meet the objective

of recognition capability and overcome the challenge of low power signal buried in

the noise band. This section will introduce the mathematical formulations of each

of these methods and will discuss how these methods can be applied in detecting

and identifying UEEs from RF devices. The common passive detection methods for

UEE detection are discussed in sections 2.2.1 through 2.2.5. Specifically, the passive

detection methods Matched Filter, Cascading Correlation, Hurst Parameter, and

Granulometric Size Distribution have been applied to accurately detect the presence

of UEEs. These methods can not, however, identify and differentiate between two

sources of UEEs. There exists minimal difference between the properties of UEEs of

two RF devices and thus the methods discussed in Section 3.1.2, with the exclusion

of Neural Networks (NNs), are not sensitive enough to capture the differences. This

work is not only about exploring new methods for accurately detecting UEEs, but

it is also about finding new methods that can identify and recognize between two

sources of UEEs. There is a need for more methods like Neural Networks that can
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detect and identify two different but similar sources of UEEs.

4.1. PRINCIPAL COMPONENTS ANALYSIS

Data that describe a process or a system are generally multivariate in nature

[56]. As the dimension of data increases, so does the difficulty of analyzing and

extracting useful information from such data. Data with large number of variables

results in the curse of dimensionality, which is the exponential increase in data space

that is required to train and gather information from such data set [57]. Silverman

(1986) illustrates the problem of curse of dimensionality with the help of an example.

He calculated the number of observations required to estimate the standard multi-

variate normal density function such that the Mean Square Error (MSE) is less than

0.1 [58]. The result of Silverman (1986) is illustrated in Figure 4.1.

It can be seen in Figure 4.1 that for a dataset of one dimension, four samples

are enough to estimate the standard normal density function with MSE less than
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Figure 4.1 Number of Observations Required to Estimate the Standard Multivariate 
Normal Density Function such that the Mean Square Error is less than 0.1
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0.1. But as the dimension of dataset increases, the required sample size to estimate

the standard multivariate normal density increases tremendously to attain MSE less

than 0.1. The figure shows that the required number of samples required to maintain

the MSE error less than 0.1 requires 19, 223, 2790, 43700, and 84200 as the dimension

of dataset increases to 2, 4, 6, 8, and 10 respectively. This increase in the required

sample size with the increase in dimensionality of the dataset is commonly referred

to as the curse of dimensionality.

One way to deal with the problem of curse of dimensionality is to reduce the

dimension of the dataset. Principal Components Analysis (PCA) is one of the most

common method used for reducing the dimensionality of data [59]. PCA reduces

the original set of variables, into a new set of variables called principal components

(PCs). PCs are the linear combination of original variables. The first PC is the

direction that signifies the maximum variation in the original data set. The second

PC is the direction that signifies maximum variation that is uncorrelated to the first

PC. Similarly, subsequent PCs signify the directions of maximum variation that are

uncorrelated to the previous PCs [60]. Moreover, as explained in 4.1.1, PCs are the

Eigenvectors of the covariance matrix of the variables arranged by Eigenvalues [61].

The reduction in variable occurs as the transformation takes place from original set

of variables to the PCs and the number of PCs are always less than or equal to the

number of original variables. The original variables are represented by lesser number

of PCs, thus reducing the dimensionality.

The concept of Signal to Noise Ratio (SNR) can be used to explain why PCA

can be used for UEE detection. SNR is defined as the ratio of signal power to the

noise power [44]. Shlens (2005) has demonstrated that the ratio of consecutive PCs

is nothing but the SNR of the signal [62]. The ratio of two consecutive PCs of the

noise signal has to be lower than the ratio of two consecutive PCs of the UEEs as

the noise has lower SNR than the UEEs. Thus, fewer PCs will be able to explain

most of the variation in UEEs whereas many PCs of noise signal will be required to

explain most of its variation.

This concept can be verified with the help of examples. PCA was first performed
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on White Gaussian Noise (WGN) to study the characteristics of PCs on WGN. Figure

4.2 demonstrates the contribution of top 10 PCs on those noise signals. It can be

observed in Figure 4.2 that the top 10 PCA explains almost equal amount of variation

in the data. The contribution of each of the top 10 PCs are about 3.5% and the top

10 PCs explain only about 32% of the variation in the dataset.

The PCA was then performed on the square signal, triangle signal, and the

sawtooth signal with the same dimension as the noise signal. The pareto diagram of

the top PCs of square, triangle, and sawtooth signals are illustrated in the Figures

4.3, 4.4, and 4.5. It can be observed in the figures that top 9 PCs explained 100% of

the variation for all the three types of signals. But in the case of noise, the percentage

of variation explained by top 10 PCs is only 32.29%. The contribution of top 10 PCs

of the three signals and the noise is illustrated in Table 4.1 and Figure 4.6 for clarity.

Noise are signals that fluctuates randomly. The variation of amplitude of noise signal

is constant throughout the signal. Due to this constant variation in noise, all the

PCs explains almost equal amount of variation. In case of any other signals, however,

Figure 4.2 PCA of White Gaussian Noise
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Figure 4.3 PCA of Square Signals

there is a variation of amplitude throughout the signal. The amplitude of the signal

will be higher in some portion of the signal whereas it will be lower in other portions.

Due to this variation of amplitude, the top PCs will explain most of the variation of

the signal. Since the variation of amplitude of UEEs is not random, the top PCs of

UEE will explain most of the variation. This property of PCA can be used to detect

UEEs from noise.

PC Square Signal Triangle Signal Sawtooth Signal Noise
1st 22.59% 18.19% 16.44% 3.57%
2nd 37.60% 32.68% 31.57% 6.99%
3rd 49.70% 46.58% 44.97% 10.37%
4th 60.36% 58.96% 56.39% 13.63%
5th 70.16% 68.97% 67.34% 16.88%
6th 79.15% 78.09% 76.84% 20.04%
7th 86.46% 86.12% 85.47% 23.17%
8th 93.46% 93.54% 93.04% 26.24%
9th 100.00% 100.00% 100.00% 29.29%
10th 100.00% 100.00% 100.00% 32.29%

Table 4.1 Distribution of Variation Explained by Principal Components
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Figure 4.6 Percentage of Variation Explained by Each of the Top 10 PCs of Noise, 
Square Signal, Triangle Signal, and Sawtooth Signal

Section 4.1.1 will mathematically define the PCA approach and section 4.1.2

will discuss the PCA methodology employed with the UEE and noise dataset.

4.1.1 Definition. PCA is an eigenvalue analysis of the covariance matrix that 

ranks the components that explain most variation in the data [63]. The derivation 

of PCA given in [64] will now be briefly summarized.

Let Ap be input data where X is a set of m-dimensional input vectors with {x1,

x2, ... , xm} as the m attributes. The objective of PCA is to find m dimensional

orthogonal vectors l that can represent the variation in X such that l ≤ m and l is the

number of principal components. An orthogonal transformation matrix Q has to be

found that can transform the original input vector X into a reduced dimensionality

input vector Xr such that:

Xr = QX

Let a = [a1, a2, ... , am]
T be a set of projections where

{aj | j = 1, 2, ... ,m}. The projection can now be defined as the inner product

of the vector X and unit vector q such that

Ap = XT q = qTX

Let us denote the variation of Ap by σ2, such that:

σ2 = E[Ap
2]
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= E[(XTq)(qTX)]

= qTE[XXT ]q

= qTRq

where R is the correlation matrix of X

Let a and b to be any m × 1 vectors, then

aTRb = bTRa

The variance of projection Ap can be written as a function of the unit vector q

as follows:

ψ(q) = qTRq

The next step is to solve the following eigenvalue problem

Rq = λp (1)

where λp are the eigenvalues of the correlation matrix R and the values of q

associated with λp are the eigenvectors.

Eigenvalues λp is computed using the relation

(R - λp)q = 0

The eigenvectors Q = [q1, q2, ... , qm] represent the set of orthogonal vectors of

the projection and the associated eigenvalues define the contribution of each eigen-

vector to the overall variation in the data. Total variance of the projected data is

given by
∑l

j=1(λp)j

The percentage of variation of individual component denoted by Pr is given by:

Pr =
(λp)l∑l
j=1(λp)j

(2)

Power(Watt) = 10[(Power(dBm)−30)/10)] (3)
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Figure 4.7 Experimental Setup for Data Collection

Orthogonality of the transferred variables is one of the important assumption of

PCA [65]. Principal Components, the transferred variable in PCA are the variables

that should be orthogonal to each other. Principal Components are the eigenvectors

of the covariance matrix, and since eigenvectors are orthogonal to each other, the

assumption of orthogonality of the transferred variables are satisfied.

4.1.2 UEE Detection Using PCA. Data collection for this project was done 

using U3700 spectrum analyzer by Advantest and VERT400 tri-band antenna. 

CXT225 Two-Way Radio from Cobra MicroTalk and XR150U Business Two-Way 

Radio are selected as simple RF radios for the purpose of proof of concept exploration. 

The reference name of D1 and D2 will refer to the previously mentioned RF receivers 

respectively. The operating frequency of the devices is from 450 to 470 MHz. As 

UEEs have very low power emissions, for the purpose of clarity, a 20 KHz span was 

chosen for each device. The span of D1 was from 441001.140 kHz to 441021.140 kHz 

and the span of D2 was from 438215.064 kHz to 438235.064 kHz. The readings were 

taken at 3, 6, and 10 feet from the spectrum analyzer. So there are data sets for 

seven cases with six cases for two devices at three different distances and one case
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Figure 4.8 Application of PCA for UEE detection

for noise collected within the same operating environment. A schematic setup for

data collection is shown in Figure 4.7. To collect data, the spectrum analyzer was

set to - 30db level to appropriately display the signal on screen. On every collection

instance of an UEE, a sample of 1,001 points are stored. 40 such instances of UEE

are collected for noise and both D1 and D2 at three distances.

4.1.3 Feature Extraction. The process flow diagram for UEE detection is 

illustrated in Figure 4.8. The first step is collecting the data. A detailed explanation 

of how the data was collected for two devices for three different distances and for 

noise is explained in section 4.1.2. The second step is the data preparation step. The 

unit of dBm is a logarithmic scale, so it is converted to Watt for easier calculation 

using Equation 3. All the data computations are done by computer software and they 

utilize their own built in algorithms for calculating data. But even the basic operation 

like multiplication is different for a log data than for any other type of numeric 

data. The conversion from decibel to watt ensures that the data processing software 

doesn’t take decibel data like any other numeric data and perform mathematical 

operations that results in unwanted results. A covariance matrix is then calculated 

for each dataset. If there are m observations of amplitude against frequency, then the 

dimension of covariance matrix R will be mXm. Since there are 1001 observations of 

amplitude against frequency, the dimension of the covariance matrix is 1001X1001. 

As all covariance matrix are square matrix, eigenvectors and eigenvalues is calculated 

for the covariance matrix R by solving the Equation 1. The eigenvectors are then 

ordered based on the value of their eigenvalues. The percentage contribution of each 

component was calculated by dividing the percentage component of each PC by the
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sum of all percentage contribution using Equation 2. The results are discussed in

Section 5.1.

4.2. HIDDEN MARKOV MODELS

Hidden Markov Models (HMMs) are doubly embeded stochastic process in

which one stochastic process is a markov chain that is not observable and another is

an observable stochastic process. Inference about the hidden process is made through

its relationship with the observable process. Figure 4.9 illustrates the basic struc-

ture of an HMM. The hidden layer consist of a Markov chain in which the states

are denoted by S1, S2, ..., Sn. The Markov chain cannot be observed directly because

it is a hidden layer. There is another stochastic process which is observable and

is related to the hidden Markov chain. The observations of this stochastic process

are denoted by O1, O2, ..., On in Figure 4.9. Inference about the hidden layer, and

thus the system in general is made by a set of well developed algorithms such as

forward algorithm, Viterbi algorithm, and Baum-Welch algorithm. Details of these

algorithms are discussed in Sections 4.2.3, 4.2.4, and 4.2.5.

HMMs are used in a number of areas. They are particularly useful in stochas-

tic processes in which complete information on the transition of a system from one

state to another is unavailable, but there exists another stochastic process which is

observable and is dependent on the hidden process. HMMs have been successfully

used in speech recognition [66], biological sequence recognition such as protein se-

quence recognition and DNA sequence recognition [67], gesture recognition [68],

handwriting recognition [69], and more. Some researchers have even attempted to

apply HMM to detect rare events like earthquake [70].

Gesture recognition system can be modeled using HMM by representing the

silhouettes of gait cycle as observations and the different boundaries formed by the

pixels of the silhouette plots as the hidden states [71]. HMM can model facial expres-

sion detection by representing different features from the face videos as observations

and the flow of different emotions of human beings as hidden states [72]. HMM can
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Figure 4.9 Basic Structure of Hidden Markov Model

be used to label any unlabeled string of nucleotides by representing the nucleotide

sequence as observations and different DNA sequence as the hidden states [73]. In

case of handwriting recognition system, features extracted from writing like the an-

gle between two successive points measured at regular intervals can be considered as

observations and combinations of characters can be considered as hidden states [69].

In speech recognition, perhaps the most successful application of HMM, acoustic fea-

ture vectors such as mel-frequency cepstrum coefficients are used as states and the

different phonemes of sound are used as observations [74]. In case of earthquake de-

tection, Beyreuther et. al (2012) modeled HMM by using the principal components of

seismogram data as observations and the clustered data of different geological events

as hidden states [75]. The next section discusses the observations and hidden states

of HMM as it relates to UEEs.

4.2.1 HMMs and UEEs. It has been illustrated in Figure 2.4 and Figure 2.5 

that UEEs are generated due to the leakage in internal circuitry of the device. The 

leakages then couple with the device’s antennae and is emitted to the outside 

environment as UEEs. Since it is extremely difficult to predict the actual amount of



34

Figure 4.10  Hidden Markov Model for UEE Identification

leakage at a point in time, we cannot accurately model the UEE generation process

directly. But the properties of UEEs after they are generated and unintentionally

emitted to the outside environment can be measured. This process can be modeled

using HMM: The information gathered from the observation can be used to infer the

inside working mechanisms of the device that produced the UEEs. This process is

schematically described in Figure 4.10. The leakage from electromagnetic devices

are classified into two types: lower power leakage and higher power leakage. These

two leakages are taken as the two hidden states and are referred as low leakage

and high leakage. Low leakage is taken as state 1 and high leakage is taken as

state 2. It is very difficult to measure the total leakage from the device, but the

unintended emissions due to the leakages from various sources of the internal circuitry

can be measured. These measurable observations are classified into four classes:

low emission, medium emission, medium-high emission and high emission. HMMs

with unique parameters for each devices can be constructed using the information of

hidden state and observations. The overall signal identification process is illustrated

in Figure 4.11.

4.2.2   Definition. Hidden Markov Models (HMMs) are doubly embeded stochas-

tic process with an underlying stochastic process that is not observable, but can only
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Figure 4.11 Signal Identification Process

be observed through another set of stochastic processes that produce the sequence

of observations [66]. We can define an HMM by the following five elements [66].

1. The number of states in the model is the first element to define an HMM. We

will denote this number by N. It represents the total number of states present

in the hidden stochastic process. The individual states will be denoted as S =

{S1, S2, ..., SN}.

2. The second element to characterize the HMM is the number of observation

symbols. It represents the total number of distinct observations and we repre-

sent it by T in this paper. The individual observations will be represented by

O = {O1, O2, ..., OT}.

3. The state transition probability distribution is the third element of HMM. We

represent it by A = {aij} where aij = P[qt+1 = Sj | qt = Si], 1≤i, j≤N

4. The observation symbol probability distribution in state j, B = {bj(k)} where

bj(k) = P[Ok = t | qt = Sj], 1≤j≤N, 1≤k≤M

5. The initial probability distribution is the fifth element that characterize HMM

and it is represented by π = {πi} where πi = P[q1 = Si], 1≤i≤N

for convenience, an HMM is denoted by the tuple λ = (A, B, π)

4.2.3 Three Problems for HMM. There are three problems that can be 

solved by a HMM [66]. They are:
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1. The evaluation problem is the computation of the probability that a given set

of observations is produced by a particular HMM. This makes it possible to

choose a best model from a set of competing models. Mathematically, if a set

of observation is represented by O = {O1,O2, ..., OT} and we have a HMM λ

= (A, B, π), evaluation problem is the calculation of P(O | λ). This is solved

using the forward algorithm.

2. The decoding problem is concerned with the calculation of most likely states

that generate a given set of observations. This problem is essentially to decode

the hidden state from visible set of observations. Mathematically, given O =

{O1,O2, ..., OT} and λ = (A, B, π), the decoding problem is to calculate the

most likely sequence of states the hidden stochastic process went through to

generate O. This problem is solved by the Viterbi algorithm.

3. The learning problem is related to the training of the model parameters. We

want to train λ = (A, B, π) with the objective of maximizing P(O | λ). This

is solved using Baum Welch algorithm.

4.2.4  Solution to the Evaluation Problem.  The problem in this case is to 

calculate P(O | λ), which is to calculate the probability of occurrence of the 

observation sequence O = O1,O2, ..., OT given the model λ = (A, B, π). To solve this 

problem, a forward variable αt(i) is defined such that:

αt(i) = P(O1,O2, ..., Ot, qt = i | λ)

Forward probability is defined as the probability of the partial observation se-

quence O1,O2 ,..., Ot and state i at time t, given the model λ [66]. αt(i) can be solved

inductively as follows:

1. The first step initializes the forward probabilities as the joint probability of

state i and initial observation o1 as follows:

αt(i) = πibi(o1), 1≤ i ≤ N

2. The second step is of induction which shows how state j can be reached at time

t+1 from the N possible states at time t:
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αt+1(j) = {∑N
i=1 αt(i)αij}bj(ot+1), 1≤ t ≤ T and 1≤ j ≤ N

3. The third step gives the value of P(O | λ) by summing all the forward variables

αT (i) :

P(O | λ) = ∑N
i=1 αT (i)

4.2.5  Solution to the Decoding Problem. δt(i) is defined as the best score 

along a single path, at time t, which accounts for the first t observations and ends in 

state i as:

δt(i) = maxq1, q2, ..., qt−1 P[q1, q2, ..., qt−1, qt = i, o1o2...ot | λ]

By induction,

δt+1(j) = [maxiδt(i)aij].bj(ot+1)

Another variable ψ1(i) is defined to keep track of the argument that maximized

δt+1(j) for each value of t and j. Following steps summarize the viterbi algorithm:

1. First step initializes the variables δt(i) and ψ1(i) such that

δt(i) = πibi(o1), 1 ≤ i ≤ N

ψ1(i) = 0

2. Subsequent values for the variables initialized in step 1 is calculated by the

process of recursion

δt(j) = max1≤i≤N [δt−1(i)aij]bj(ot), 2 ≤ t ≤ T and 1 ≤ j ≤ N

ψ1(i) = arg max1≤i≤N [δt−1(i)aij], 2 ≤ t ≤ T and 1 ≤ j ≤ N

3. Third step is to terminate the recursion started in step 2

P ∗ = max1≤ i ≤ N [δT (i)]

q∗T = arg max1≤ i ≤ N [δT (i)]

4. The final step consists of determining the state sequence by backtracking the

variable ψ1(i) defined earlier

q∗t = ψ∗
t+1(q

∗
t+1), t = T-1,T-2,...,1
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4.2.6 Solution to the Learning Problem. In HMM, the term learning

denotes the process of training the algorithm based on existing data set [66]. To

solve the learning problem, a variable ξt(i,j) and γt(i) is defined such that

ξt(i,j) = P(qt = i, qt+1 = j | O,λ )

γt(i) =P(qt = i | O,λ )

Following are the re-estimation formula for the HMM parameters:

πi = γo(i)

ai,j =
∑T

t=1
ξt−1(i,j)∑T

t=1
γt−1(i)

bj(k) =

∑T

t=1{Ot=k}
γt−1(i)∑T

t=1
γt−1(i)

4.2.7  Data Collection and Preprocessing. The data collection process is 

described in Section 4.1.2. The raw data was converted from dBm to Watt using 

Equation 3. The reason for this conversion is that the dBm data is in logarithmic scale. 

All the data calculations are done by computer software and they utilize their own 

built in algorithms for calculating data. But even the basic operation like 

multiplication is different for a log data than for any other type of numeric data. The 

conversion from decibel to watt ensures that the computer doesn’t take decibel data 

like any other numeric data and perform mathematical operations that results in 

unwanted results. Windowing operation was then performed on each instances of 

data. Each window consisted of 100 data points and has an overlap of 50 data points.

4.2.8 Feature Extraction. Some features from the observable process 

is required to model a system by HMM. The average power of the signal in each 

window created is taken as the feature vector of the UEE signal. The process of 

creation of window is described in 4.2.7. Average power is calculated by 

integrating the power at each frequency of the window by rectangular 

approximation and dividing by the number of samples in the window as shown in 

Equation 4.
1

w2− w1

∫ w2

w1
Sx(w)dw (4)
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Figure 4.12 Ergodic Markov Chain

4.2.9 Training. The four levels of emissions are the four observations of the 

HMM and the two levels of overall device leakage are the two hidden states. The 

topology of Markov chain is ergodic for the UEE is taken as ergodic. Figure 4.12 

illustrates the ergodic Markov chain for the UEE Markov chain. An ergodic Markov 

chain is one where it is possible for a state of the Markov chain to reach any other 

state. The leakage from the RF devices are taken as states. The two states are 

low emission and high emission. Since the states represents the leakage of the 

device, having just one state is not enough to capture the different levels of leakage 

from the device. But two states can model the leakage of device by allowing the 

device to be either in one of the low emission leakage state or high emission leakage 

state. Even though more number of states can be taken, two states can accurately 

model the differences in the leakage level from the device. As the state can move 

from low emission to both low emission and high emission and from high emission 

to both high emission and low emission, ergodic markov chain is the most natural 

topology to represent UEE emission. The average power are the observations and 

there are four discretized observations which are low emission, medium emission, 

medium−high emission and high emission. The observations are the set of features 

extracted from the UEE signal discussed. In the case of UEE signal, the observations 

are the average power. The calculation of the observed power for each window is 

discussed in Section 4.2.8. The average power is divided into four interquartile range 

and each range is taken as one of the four observation signal. These observations



40

are passed as an input to the Baum Welch algorithm to train the HMM discussed

in Section 4.2.6. HMMs are trained with these observation with the 30 training

data set. Maximum Iteration value of 500 or the tolerance of 10−6, whichever is

first achieved is taken as the stopping criteria for the Baum Welch algorithm. The

initial probability for each state is taken as 0.5. The output of this process is a

trained HMM. Viterbi algorithm discussed in Section 4.2.5 was then applied to the

trained HMM. A pairwise comparison of D1 and D2 at three different distances of

3 feet, 6 feet, and 10 feet was performed. Pairwise comparison of both devices at

three distances was also performed with noise. The results of the experiment are

illustrated on the Results section.

4.2.10 Assumptions of HMM. Statistical methods are based on some un-

derlying assumptions. Like any other models the theory of HMMs are also based 

on some assumptions. According to Rabiner (1989), and Bhat et. al (2002), the 

Markovian assumption is the major assumption to the theory of HMM [66], [76]. 

The Markovian assumption states that the probability of being in a given state at 

time t+1 is depended only on the state at time t and not on any previous states, 

such that:

aij = P[qt+1 = Sj | qt = Si], 1≤i, j≤N

This assumption pose a serious limitations on the applicability of HMMs. Var-

ious applications of HMMs were discussed in Section 4.2. Speech recognition is

considered to be the most successful application of HMMs [77]. One of the most

cited paper on speech recognition system is by Rabiner (1989) but he unequivocally

states in the paper that these assumptions are violated for speech sounds. One of

the beauties of HMMs lies in the fact that in spite of the limitations of assumptions

of HMMs being violated, the method works extremely well in speech recognition

problem [66].

The Markovian assumption can be verified by testing for the null hypothesis

of independent Markov chain against the alternate hypothesis of first order Markov

chain:
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Null Hypothesis (Ho): aij = P[qt+1 ̸= Sj | qt = Si], 1≤i, j≤N

Alternate Hypothesis (H1): aij = P[qt+1 = Sj | qt = Si], 1≤i, j≤N

The χ2 test statistic to test independence against first order Markovian depen-

dence is given in [78] as:

χ2 test statistic = 2
n∑

i=1

n∑
j=1

fij|ln
Pij

P.j

| (5)

with (n− 1)2 degree of freedom, where,

n = number of states

fij = the frequency of state transitions from state i to state j

P.j =
∑n

i=1
fij∑n

i=1

∑n

j=1
fij

The data collected from two devices at three different distances were converted

from dBm to Watt using Equation 3 in order to test the hypothesis. Windowing

operation was then performed as discussed in Section 4.2.7 and average power for

each window is calculated using Equation 3. The details of data processing steps can

be found in Section 4.2.7 and Section 4.2.8. The value of n is taken as 2 as the HMM

for UEE is modeled by two states. fij is calculated using TPM for Markov chain

as calculated and explained in Section 4.2.9. The only difference between the TPM

calculated in Section 4.2.9 and here is that in Section 4.2.9, only 30 data set were

used to calculate TPM for the training purpose, but for the verification of Markov

assumption, all 40 available data sets were used to calculate the TPM.

Device Chi Square Value p value Verdict
Device 1 at 3 ft 325.7302 <0.00001 Reject H0

Device 1 at 6 ft 541.5781 <0.00001 Reject H0

Device 1 at 10 ft 559.5422 <0.00001 Reject H0

Device 2 at 3 ft 278.7866 <0.00001 Reject H0

Device 2 at 6 ft 312.0549 <0.00001 Reject H0

Device 2 at 10 ft 528.0602 <0.00001 Reject H0

Noise 565.5422 <0.00001 Reject H0

Table 4.2 Chi Square Test for First Order Markov Chain
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Table 4.2 summarizes the results of χ2 test for first order Markov assumption.

It can be observed in the Table that the calculated χ2 value for all the seven cases is

greater than the tabulated χ2
(0.05,1) value of 3.841. The null hypothesis of independent

Markov chain is thus rejected and we assume that first order Markovian assumptions

holds true.

4.3. SUPPORT VECTOR MACHINE

The mathematical theory of Support Vector Machine (SVM) was developed

by Vapnik in the 90s [79], [80]. SVM is generally used for pattern classification

and nonlinear regression [64]. In SVM, the margin of separation between different

classes of input vectors is maximized by the separating hyperplane. An illustration

of SVM is illustrated in Figure 4.13. The figure illustrates how two class of linearly

separable vectors, which are represented by circles and squares, are separated by

SVM. The vectors which are closest to the separating plane are called the support

vector. It is denoted by SV in Figure 4.13. SVM considers only the support

vectors while constructing the separating plane. There can be many plane that can

separate the two class of vectors. For example, in Figure 4.13, L1, L2, and L3 are

the three separating plane that separates the vectors into two distinct classes. The

separating plane created by the SVM is such that the margin of separation between

the separating plane and the vectors is highest. It can be observed in Figure 4.13

that L1 is the plane where the margin of separation is the highest.

SVM is mostly applied to the problems that are related to pattern classification

and nonlinear regression [81].

A mathematical representation of SVM will now be presented. If (xi, di), i =

1,,N be a set of patterns where diϵ(+1, -1) then the separating hyperplane created

by SVM is represented by:

wTx+ b = 0, where w and b are the weight vectors and the bias.

The input points closest to the separating hyperplane are called support vectors.

In Figure 4.13, the support vectors are represented by SV. We can observe in Figure

4.13 that there are two support vector for square class and two support vector for class
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Figure 4.13 Support Vector Machine

the circle class. The margin of separation, denoted by ρ, is the distance between the

separating hyperplane and the support vectors. Unlike other classifiers like Neural

Networks, SVM creates the separating hyperplane that maximizes the margin of

separation. So L1 is the separating hyperplane created by SVM in Figure 4.13.

Optimum values of the weight vector and bias, represented by wo and bo are given

by:

w0 =
∑N

i=1a0,idixi where a is Lagrange multiplier

b0 = d(s) - wT
0 x

(s)

Please refer to [64] for detailed derivation.

SVM are equally capable of separating non linear patterns. The two theorems

that enables SVM in separating non linear data set are the Cover’s Theorem and

the Mercer’s Theorem. Cover (1965) states that ”A complex pattern-classification
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problem, cast in a high-dimensional space nonlinearly, is more likely to be linearly

separable than in a low-dimensional space, provided that the space is not densely

populated” [82]. So a data set that is not linearly separable can be separated by

projecting it into some higher dimensional space. There is no need to calculate

the weight vector w0 and just specifying the kernel will perform the task of data

separation in the higher dimensional space and this procedure is called kernel trick

[64]. Mercer’s Theorem is applied to determine if a particular kernel function can

be used in SVM. It states that the general form of inner product is defined by the

function K(x, y) that satisfies the condition:∫
K(x, y)z(x)z(y)dxdy ≥ 0

for all functions z(x), z(y) satisfying the inequality∫
z2(x)dx ≤ ∞ [80].

Radial basis function, which can be represented as:

K(x, xi) = exp {− |x−xi|2
σ2 }

is one of the kernel that satisfies Mercer’s conditions [64].

30 data set was used for training purpose and 10 were used as testing purpose

for two devices at three different distances. Support vector machine was run on

R programming language, version 3.0.0 using e1071 package. Radial basis was the

kernel used in training and predicting purpose because it satisfies Mercer’s conditions.

The results of this experiment is illustrated in Section 5.

4.4. NEURAL NETWORKS

Artificial Neural Networks (ANNs), commonly abbreviated as Neural Networks

(NNs) are machine learning algorithms that is based on the functioning of human

brain. Wernick et. al (2010) defined machine learning as a set of methods to make

predictions on a new data set based on the relationship of variables that is learnt and

understood in the existing data set [83]. This definition defines machine learning

as a two step process. The first step consists of learning the relationship between

variables in data set. The second step consists of making predictions based on the
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knowledge gained in the first step on a new data set that is not part of the training

process.

Neural Networks have been successfully used to solve many problems from dif-

ferent areas. Widrow et. al (1994) identifies three key areas of successful application

of NNs and they are Pattern Recognition, Financial Analysis and Prediction, and

Optimization and Control [84]. Credit card fraud detection is one of the most

well known pattern recognition application of NNs. One of the earliest application

of credit card fraud detection using Neural Networks was developed by Ghosh et.

al (1994). They trained the NNs with different credit card transactions and used

target values such as fraud transaction from lost card, stolen card, and counterfeit

card. This NNs based credit card fraud detection system was implemented in Mellon

Bank’s credit card portfolio as the NNs were able to detect more fraudulent trans-

actions with 20% less false positive prediction than the traditionally used rule based

detection system [85].

Stock market price forecasting is another major application of NNs. The reason

that NNs is an effective method for stock market forecasting is that financial market

exhibit non linearity and NNs is a very good tool to model nonlinear process [86].

Hawley et. al (1990) were one of the earliest researchers proposing the application

of NNs for financial decision making [87]. In one of the application of NNs in stock

market price prediction, Schierholt et. al (1996) trained NNs with inputs such as

closing value of current day’s S & P 500 Index value, change in index value in one

week and two weeks. The network was designed with three output: buy, sell, and

keep current status. The result demonstrated that NNs gave better performance

relative to the & P 500 Index [88].

NNs have been used to detect electronic devices through their UEEs. NNs

are used to detect and identify devices ranging from a toy truck to vehicles in [38]

and [55]. The NNs of Dong et al. (2006) consists of a multilayer perceptron with

5 neurons and sigmoid activation function for the first hidden layer and 1 neuron

and linear transfer function for the output layer. The network was trained using the

Levenberg-Marquardt algorithm. The amplitude vs time plot from eight frequency
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Figure 4.14 Neural Networks

bands were selected as an input to the NN. This method yielded a good detection

accuracy of 98 percent.

Dong et al. (2006) not only detected but also identified between Toyota Tundra,

a GM Cadillac, a Ford Windstar, and ambient noise with 99 percent accuracy. Their

NN architecture comprised of feedforward neural network trained with back propa-

gation algorithm. The input features are the maximum spectral magnitude, average

magnitude over a frequency band divided by the average magnitude over the entire

time-frequency plot, standard deviation of magnitude over a frequency band, number

of points within 3 dB of the maximum spectral magnitude and the number of pulses

over a frequency band. The accuracy of this method is 99.3%. As NNs have been

successfully used to detect and identify devices using their UEEs, the performance

of the proposed methods in this research would be compared to the performance of

the NNs for the validation purpose.

Figure 4.14 shows a schematic diagram of a NN. x1, x2, ..., xm are the input

signals to the NNs and wkj where j is the input index and k is the neuron index. µk

is the output of the summation junction and the output signal yk = ϕ(µk+ bk) where

ϕ is the activation function and bk is the bias. The NN used backpropagation learning

algorithm with Sigmoid activation function. There were two hidden layers and five
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number of inputs. The learning rate was 0.5. The stopping criteria was maximum

iteration of 1000 or minimum gradient of 0.0001, whichever was first reached. The

results of this experiment is illustrated on Section 5.

This section provided the theoretical background on PCA, HMM, SVM, and

NN. It also described the methodology on how these methods can be used to detect

and recognize electronic devices based on their UEEs. Since NN is the only method

found in the literature that can not only detect but also identify different sources

of UEE, comparison of PCA, HMM, and SVM is done with NN. Next Section will

provide the results of the performance of the three methods (PCA, HMM, and SVM)

and its comparative performance as it relates to NN.
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5. RESULTS

Three new methods are proposed in this research for passive detection of UEEs.

The three methods are PCA, HMM, and SVM. Each of these methods along with

all the details of the experimentation is discussed in details in Section 4. This sec-

tion provides the results of the experimental study described in Section 4. Section

5.1 will provide the results on detection and Section 5.2 will provide results on the

performance of the algorithms regarding the recognition of electronic devices.

5.1. DETECTION

For the purpose of this research, detection is defined as the ability of the three

methods (PCA, HMM, and SVM) in distinguishing UEEs from noise. This section

will discuss the performance of these three methods in detecting UEE signals based

on the experimental study discussed in Section 4.

5.1.1 Principal Components Analysis. This work proposes PCA as a 

method for UEE detection. The premise behind this proposal is that, as discussed 

in Section 4.1, the top PCs of noise should have equal contribution in explaining the 

variation in the dataset whereas the few top PCs on UEE signal should explain most 

of the variation in the dataset.

The contribution of top 10 PCs of noise and two devices at three different

distance is illustrated on Table 5.1. The first column lists the number of principal

components. The next six columns lists the contribution of each of the 10 principal

components for two devices at three different distances and the last column lists the

same for noise.

It can be observed in Table 5.1 that the top two PCs of both devices at three

different distances of 3 feet, 6 feet, and 10 feet explains at least 64% of the variability

of the UEE signal. This proportion is less than 22% for the noise signal. The top five

principal components of the devices explains at least 80% of the total variation but
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PC D1-3ft D1-6ft D1-10ft D2-3ft D2-6ft D2-10ft Noise

1st 57.15% 49.97% 61.85% 43.68% 83.11% 51.84% 13.04%

2nd 80.23% 73.39% 82.49% 65.97% 88.50% 64.00% 21.64%

3rd 89.24% 85.39% 89.75% 77.16% 93.00% 72.97% 29.05%

4th 95.19% 92.08% 94.93% 84.62% 95.70% 76.92% 34.77%

5th 98.19% 96.36% 97.75% 90.54% 97.04% 80.42% 40.37%

6th 98.87% 97.90% 98.60% 93.61% 97.91% 82.84% 45.75%

7th 99.33% 98.90% 99.31% 95.84% 98.52% 84.62% 50.37%

8th 99.59% 99.35% 99.61% 97.30% 99.01% 86.31% 54.77%

9th 99.72% 99.62% 99.75% 98.25% 99.36% 87.43% 58.69%

10th 99.82% 99.77% 99.84% 98.76% 99.54% 88.49% 62.21%

Table 5.1 Cumulative Contribution of Top 10 Principal Components (PC)

in case of noise, it is less than 50%. Similarly, top ten principal components of the

devices explains at least 85% of the variation whereas for noise it is less than 65%.

Table 5.2 further clarifies the contribution of PCs of devices by taking the

average of two devices at three different distances and comparing it with the top

10 contribution of PCs of noise. The same information is presented in Figure 5.1.

Taking average makes the comparison between contribution of PCs more easier to

understand and visualize. Top two PCs of devices contributes 75.76% of variation

whereas the contribution is only 13.04% in case of noise. Top five PCs of device

contribute 93.38% of variation but top 5 PCs of noise is only 40.37%. If all the top

10 principal components are considered, the contribution for device is 97.50% but it

is only 62.21% for noise.

Figures 5.2 through 5.8 illustrates the explained variability in all seven cases

in a pareto plot. A pareto chart is a bar plot where a line graph represents the

cumulative effect of the bars in the plot [89].

Based on these observations, a decision table is developed as shown in table

5.3 to detect UEE signals from noise signals.
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Principal Components Device (Mean) Noise
1st 57.93% 13.04%
2nd 75.76% 21.64%
3rd 84.59% 29.05%
4th 89.91% 34.77%
5th 93.38% 40.37%
6th 94.96% 45.75%
7th 96.09% 50.37%
8th 96.86% 54.77%
9th 97.36% 58.69%
10th 97.70% 62.21%

Table 5.2 Average Contribution of Top 10 PCs for Devices and Noise
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Figure 5.1 Average Contribution of Top 10 PCs for Devices and Noise

No. of Top PC Total Variation Explained Results

2 less than 50% NOISE

2 greater than 50% UEE

5 less than 75% NOISE

5 greater than 75% UEE

10 less than 80% NOISE

10 greater than 80% UEE

Table 5.3 Decision Table to Detect UEE
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Figure 5.5 Principal Components of Device 1 at 10 feet
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Figure 5.7 Principal Components of Device 2 at 6 feet
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5.1.2  Hidden Markov Models. Results show that HMM can detect whether 

there is any electronic device active within a detection range or not. Table 5.4 sum-

marizes the performance of the model in detecting UEEs’. It illustrates the pairwise

comparison of noise with each devices at three different distances. The detection rate is

100% for devices at 3 feet but the accuracy decreased to 95% as the distance is

increased to 10 feet.

Test Device
Predicted Noise D1-3 feet

Noise 10 0
D1-3 feet 0 10
Accuracy 100%

Predicted Noise D1-6 feet
Noise 10 0

D1-6 feet 0 10
Accuracy 100%

Predicted Noise D1-10 feet
Noise 10 1

D1-10 feet 0 9
Accuracy 95%

Predicted Noise D2-3 feet
Noise 10 0

D2-3 feet 0 10
Accuracy 100%

Predicted Noise D2-6 feet
Noise 10 0

D2-6 feet 0 10
Accuracy 100%

Predicted Noise D2-10 feet
Noise 9 1

D2-10 feet 1 9
Accuracy 90%

Table 5.4 Device Detection using HMM

The power of UEE is higher when the source of signal is near and the power

decreases as the distance increases. As the distance increases, power of UEE decreases

and it starts getting buried in the ambient noise. The difference between the noise

and UEE signal become less prominent at larger distance. Due to this reason, the
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accuracy of HMM in device detection is higher at small distance and the accuracy

decreases as the distance increases.

5.1.3  Support Vector Machine. SVM gives 100% accuracy in detecting 

UEEs. The result is illustrated in table 5.5.It was discussed in Section 4.13 that SVM

creates a separating hyperplane such that the the margin of separation between noise

and UEE is maximized by the separating hyperplane. This means that the boundary

that separates noise and UEE is placed exactly in the middle between the two classes.

Hence any test signals are more likely to be classified correctly resulting in high

detection accuracy.

Test Device
Predicted Noise D1 at 3 feet

Noise 10 0
D1 at 3 feet 0 10
Accuracy 100%

Predicted Noise D1 at 6 feet
Noise 10 0

D1 at 6 feet 0 10
Accuracy 100%

Predicted Noise D1 at 10 feet
Noise 10 0

D1 at 10 feet 0 10
Accuracy 100%

Predicted Noise D1 at 3 feet
Noise 10 0

D2 at 3 feet 0 10
Accuracy 100%

Predicted Noise D2 at 6 feet
Noise 10 0

D2 at 6 feet 0 10
Accuracy 100%

Predicted Noise D2 at 10 feet
Noise 10 o

D2 at 10 feet 0 10
Accuracy 100%

Table 5.5 Device Detection using SVM
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Test Device
Predicted Noise D1 at 3 feet

Noise 10 0
D1 at 3 feet 0 10
Accuracy 100%

Predicted Noise D1 at 6 feet
Noise 10 0

D1 at 6 feet 0 10
Accuracy 100%

Predicted Noise D1 at 10 feet
Noise 10 0

D1 at 10 feet 0 10
Accuracy 100%

Predicted Noise D1 at 3 feet
Noise 10 0

D2 at 3 feet 0 10
Accuracy 100%

Predicted Noise D2 at 6 feet
Noise 10 0

D2 at 6 feet 0 10
Accuracy 100%

Predicted Noise D2 at 10 feet
Noise 10 o

D2 at 10 feet 0 10
Accuracy 100%

Table 5.6 Device Detection using NN

5.1.4 Neural Networks. NNs are the only passive detection technique 

cur-rently available in literature that is capable of both detecting and recognizing 

two or more sources of UEEs. Hence NN was selected as the model that will be 

used for comparing the results of proposed algorithms of this research for the 

purpose of validation. The performance of Neural Network in detecting UEEs is 

illustrated in table 5.6. We can observe in table 5.6 that the accuracy of NN in 

detecting UEEs is 100%.

5.2. RECOGNITION

For the purpose of this research, recognition is defined as the ability of the

three methods (PCA, HMM, and SVM) in recognizing and differentiating UEEs
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from two different RF devices. This section will discuss the performance of these

three methods in recognizing UEE signals from two different sources based on the

experimental study discussed in Section 4.

5.2.1  Principal Components Analysis. Results of PCA analysis on Sec-tion 

5.1.1 showed that top PCs of UEE explain most of the variation in the dataset but in

case of noise, top PCs represent comparatively less variation in the dataset as

compared with UEEs. This property was used to differentiate UEE signal from the

ambient noise. But if we closely observe the PCs on all devices, there is no pattern in

the PCs of devices that will help us differentiate UEE sources from two different

devices.

PCs D1 - 3ft D2 - 3ft D1 - 6ft D2 - 6ft D1 - 10ft D2 - 10ft
2 80.23% 65.97% 73.39% 88.50% 82.49% 64.00%
5 98.19% 90.54% 96.36% 97.04% 97.75% 80.42%
10 99.82% 98.76% 99.77% 99.54% 99.84% 88.49%

Table 5.7 Total Variation Explained by top 2, 5, and 10 PCs of Two Devices

Table 5.7 illustrates the total variation explained by top 2, top 5, and top 10

PCs of two devices. At 3 feet, the contribution of PCs of D1 is greater than the

contribution of PCs of device D2 for all the three cases (i.e. top 2, top 5, and top 10

PCs). At 6 feet, the situation is reversed and the the contribution of PCs of D2 is

greater than the contribution of PCs of device D1 for all the three cases. The results

at 10 feet is similar to the results at 3 feet such that the contribution of PCs of D1

is greater than the contribution of PCs of device D2. These results shows that there

is no consistent pattern on the contribution of PCs of devices that can be used to

distinguish UEE from one device to another.

5.2.2 Hidden Markov Models. HMM can not only detect if there is 

a source of UEE present at a particular distance, but can also recognize between

two
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sources of UEEs. The performance of HMM in recognizing UEE is illustrated in

table 5.8. The recognition accuracy is 90% at 3 feet but the accuracy decreases as

the distance increases.

Predicted D1 at 3 feet D2 at 3 feet
D1 at 3 feet 8 0
D2 at 3 feet 2 10

Accuracy 90%

Predicted D1 at 6 feet D2 at 6 feet
D1 at 6 feet 5 1
D2 at 6 feet 5 9

Accuracy 70%

Predicted D1 at 10 feet D2 at 10 feet
D1 at 10 feet 8 2
D2 at 10 feet 2 8

Accuracy 80%

Table 5.8 Device Recognition using HMM

Test Device
Predicted D1 at 3 feet D2 at 3 feet
D1 at 3 feet 10 0
D2 at 3 feet 0 10
Accuracy 100%

Predicted D1 at 6 feet D2 at 6 feet
D1 at 6 feet 10 0
D2 at 6 feet 0 10
Accuracy 100%

Predicted D1 at 10 feet D2 at 10 feet
D1 at 10 feet 10 1
D2 at 10 feet 0 9
Accuracy 95%

Table 5.9 Device Recognition using SVM

5.2.3 Support Vector Machine. Pairwise comparison was performed 

be-tween D1 and D2 at 3 feet, 6 feet, and 10 feet. The result is presented in Table

5.9.



59

Test Device
Predicted D1 at 3 feet D2 at 3 feet
D1 at 3 feet 10 0
D2 at 3 feet 0 10
Accuracy 100%

Predicted D1 at 6 feet D2 at 6 feet
D1 at 6 feet 8 1
D2 at 6 feet 2 9
Accuracy 85%

Predicted D1 at 10 feet D2 at 10 feet
D1 at 10 feet 9 1
D2 at 10 feet 1 9
Accuracy 90%

Table 5.10 Device Recognition using NN

We can observe in table 2 that SVM can accurately identify between two devices at

three different distances. Pairwise comparison showed that the accuracy is 100% at 3

feet and 6 feet, and the accuracy is 95% at 10 feet. The decrease in accuracy can be

explained by the fact that the signal strength of the UEE decreases as the distance

between the devices emitting the signal increases.

5.2.4 Neural Networks.  The performance of NNs in recognizing between two 

sources of UEEs at three different distances is illustrated in Table 5.10. The accuracy 

is 100% at 3 feet and it decreases to 85% and 90% as the distance increases to 6 feet 

and 10 feet respectively. The accuracy of NNs is greater than the accuracy of HMM 

but is equal with the accuracy of SVM in detecting UEEs. NNs and SVM gave equal 

accuracy for detection, but the accuracy of SVM is greater than the accuracy of NNs 

for recognition.
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6. CONCLUSION AND FUTURE WORKS

Current methods for detecting UEEs can be divided into two types: stimulated

detection and passive detection. Stimulated Detection is the method of detection

of UEEs where the underlying characteristics of UEE is strengthened and stabilized

by an external stimulation signal. The UEEs in the passive detection methods are

not tampered with and are analyzed in its raw form. Stimulated detection methods

suffers from the following disadvantages:

1. Stimulated detection methods have only been used for detection, and not for

identification of devices

2. There is a work overload of creating and emitting the stimuli signals

3. Extensive characterization measurements of the target devices are required

4. Sometimes, there is a risk that the stimuli signal will interact with the device

with unwanted consequences. For example in IED detection, there is a risk

that the stimuli signal might detonate the explosive

Passive detection methods don’t suffer from these disadvantages, except the

third one where characterization of device is required to create the threshold value

that is used for deciding if the signal is UEE or noise. The challenge lies in the

fact that UEEs are low in power and are often buried deep in the noise band. This

research studied the performance of three methods, namely, PCA, HMM, and SVM

in the passive detection and recognition of UEEs.

It has been illustrated in Section 5 that PCA can be used to detect UEE from

noise but cannot be used to differentiate between two sources of UEE. The reason for

this is that the contribution of top PCs of UEE explain most of the variation in data

whereas top PCs of noise explain less variation in data. Based on this information,

a decision table can be made as illustrated in Section 5.3 that can be used for UEE

detection.
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It was found that PCA is not capable of differentiating two sources of UEE.

The difference between the PCs of UEEs from two devices is not large enough such

that top PCs of one device could give extra information from the top PCs of another

device. The PCs of two devices at 3 feet, 6 feet, and 10 feet are similar with each other

and there is no specific pattern that can differentiate between two similar sources of

UEEs.

HMMs can be used for both detection and recognition of UEEs. The accuracy

of HMM decreased as the distance of the source of UEE increased. The magnitude

of this decrease in accuracy was lower in device detection but considerably higher for

device recognition. As illustrated in Figure 4.11, both the detection and recognition

are performed by comparing the probability of a particular test signal being emitted

by a HMM. Comparison of the probability is made and the device (or noise) that

gives the greater probability is chosen. The difference in probabilities of the test

signal between noise and UEE has a larger margin than the difference in probabilities

between two UEE signal. As the margin of difference in the probability value is small,

it is more likely that an incorrect HMM will be selected when comparing the UEEs

from two devices. Due to this reason, the accuracy of HMM decreases significantly

during device recognition but performs satisfactorily for device detection.

The accuracy of NNs is greater than the accuracy of HMM but is equal with the

accuracy of SVM in detecting UEEs. There exists a significant differences between

noise and UEE signal for these two algorithm to create a boundary of separation that

perfectly separates UEE signal from noise. But in the case of recognizing between two

sources of UEE, SVM gave better performance than NNs. UEEs from two devices are

very similar with one another. The differences in the characteristics of UEE signals

from two devices is very small as compared to the differences in the characteristics

of noise and UEE signal. When the difference in characteristic is larger, then the

separating hyperplane created by NN was good enough to correctly classify two

two classes of noise and UEE signal. In case of UEE signal from two devices, the

separating hyperplane of NNs may misclassify few data points as the separating

hyperplane of NNs are not optimal. But SVM creates an optimal hyperplane between
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the boundary of UEE signal from two devices. Due to this reason, the accuracy of

SVM is greater than the accuracy of NNs.

This research has advanced the field of passive detection and recognition meth-

ods of UEE. Most of the current focus on UEE is on the costly stimulated detection

methods. This research has shown that less costly passive detection methods can

be used for UEE detection at short distances. Moreover, most of the current meth-

ods for UEE detection cannot separate between two sources of UEEs. The methods

explored in this research, with the exception of PCA, can not only detect but also

identify and recognize between two sources of UEEs.

The major limitation of this research is that the UEE data is just for two

devices and the UEEs are collected only for three different distances. It would be

interesting to study the performance of the methods employed in this research to a

wide range of RF devices such as cell phones and remote control devices including

car key and garage door openers. As the basic characteristics of UEEs are similar,

the methodology proposed in this research should be able to detect other RF devices.

The only difference will be in determining the bandwidth where consistent UEEs are

produced for those devices. The training and testing procedure will be the same.

The decision table proposed in Section 5.3 can be constructed with more ac-

curacy if data from many devices are available with large number of observations.

Moreover, if data can be collected for a larger number of distances rather than just

three distances of 3 feet, 6 feet, and 10 feet, a thorough investigation can be performed

to determine the relationship between distance of UEE source and the accuracy of

each method. It will also enable to determine the critical distance for each method

beyond which the accuracy decreases significantly and a particular method should

not be used for detection and recognition of UEEs.

The military has a need for an effective IED detection system. An IED detec-

tion system should perform the task of detection, localization, and the direction of

the malicious devices. This research was focused on the detection aspect of IED de-

tection system. It contributed to the IED detection system by proposing stochastic

and computational intelligence methods that can not only detect but also recog-
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nize between two sources of UEEs. Recognition ability enhances the performance of

UEE detection system by providing it with the capability of differentiating malicious

sources of UEEs from the ones that are not malicious. NN is the only current passive

detection method that has recognition capability. This research also contributed to

the passive detection methods of UEE by proposing the application of HMM and

SVM, where SVM using radial basis function showed a better performance. Another

contribution of this research is in the application of PCA for UEE detection based

on the differences between contribution of top principal components of UEE signal

and noise.

The first natural extension to this work is to conduct applied research to im-

plement the IED detection system in a real world scenario. It would consist of im-

plementing the methods proposed in this research in relevant hardware and conduct

IED detection and recognition by collecting the leakage of electromagnetic signals

from RF devices in the form of UEEs. Another immediate extension to this research

would be to apply the three proposed algorithms for stimulated detection method.

Stimulated detection is nothing but increasing the intensity of the signal so that it

would be easier to detect the signal in the ambient noise. Detection and recognition

still has to be performed on the stimulated emission. This work will not only increase

the detection and recognition range, but will also increase the accuracy.

This research was focussed on the passive detection of low power signals. An

additional future work might be the study of performance of algorithms employed

in this research to detect and identify low power electromagnetic signals other than

UEEs.
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Matlab Code for UEE Data Processing

%%%This MATLAB program take s 40 t e x t f i l e s o f Unintended

Elec t romagnet i c Emissions

%%%as input , and performs the data proce s s ing t a s k s f o r HMM

close a l l ;

clear a l l ;

clc ;

warning o f f ;

%Def in ing no o f data s e t s to be used f o r t r a i n i n g in Baum−

Welch

n o t r a i n s e t = 30 ;%tra i n i n g s e t f o r Baum Welch

%Def in ing the number o f t r a i n i n g s e t

no t r a i n i n g s e t = 30 ;%Training s e t f o r e s t ima t ing TPM and EPM

%Def in ing v a r i a b l e s f o r ove r l ap and window s i z e

w s i z e = 100 ;%Window Si ze

over lap = 50 ;%Overlap S i z e

%Counter f o r i n t i a l i z i n g the windows

cWindow = 1 ;

%de f i n i n g range f o r windows f o r e s t ima t i on

rangeWindows = 9 : 1 1 ;

rangeForWindow = max( rangeWindows )−min( rangeWindows )+1;
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%de f i n i n g t h r e s h o l d f o r the purpose o f c a l c u l a t i n g the

%number o f peaks in each window

th r e sho ld = 1 .0 e−011 ∗ 0 . 1 ;

%%%%%

%%%%%%

%C l a s s i f i c a t i o n c r i t e r i a f o r s t a t e s f o r the average power f o r

each o f the

%cen t r a l 3 windows where we have UEE

no s t a t e s = 4 ;

no obse rva t i on s = 5 ;

%i n t i a l i z i n g two c e l l arrays to s t o r e data in dB in wat t s%

ce l l dataWatt=c e l l ( 1 , 40 ) ;

c e l l dataDb = c e l l ( 1 , 40 ) ;

%i n t i a l i z i n g two c e l l arrays to dynamica l ly s t o r e data in dB

in wat t s%

dataDb = [ ] ;

dataWatt = [ ] ;

%To ge t a l l the dB data f i l e s in matlab workspace

%Please remember t ha t t h e r e shou ld be 40 t e x t f i l e s on the

same f o l d e r as

%t h i s matlab code

for i =1:40

s=[ ’ load d ’ int2str ( i ) ’ . txt ’ ] ;

eval ( s ) ;
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end ;

%Import ing data from workspace in t o the c e l l array f o r power

in dB

for i =1:40;

ce l l dataDb { i } = importdata ( sprintf ( ’d%d . txt ’ , i ) ) ;

end

%Convert ing data from dB to watt by import ing i t f i r s t i n t o

% separa t e array . Af ter t ha t s t o r i n g i t to array o f wat t s and

pu t t i n g i t

% in to c e l l array f o r wat t s

for p=1:40;

dataDb=ce l l dataDb {p } ;

for q=1: length ( dataDb ) ;

dataWatt ( q ) = 10ˆ(( dataDb (q )−30)/10) ;

end

ce l l dataWatt {p}=dataWatt ;

end

%de f i n i n g array f o r dynamic assignment o f windows from 1001

data po in t s

dataWindow = [ ] ;

data ce l l w indow = [ ] ;

%Creat ing windows f o r each da t a s e t and pu t t i n g those windows

in the c e l l

%array crea t ed f o r windows

%Define one c e l l array f o r windows
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ce l l w indow = c e l l (40 ,1001) ;

%Access the f i r s t da t a s e t from c e l l o f arrays o f power in

wat t s

%i . e . c e l l w a t t and i n t i a l i z e the f i r s t window fo r f i r s t

da t a s e t

%i . e . c e l l w a t t {1}

dataWatt = ce l l dataWatt {1} ;

ce l l w indow {1 ,1}= dataWatt ( 1 : w s i z e ) ;

q=w s i z e ;

s=1;

while s<=40;

%I n t i a l i z i n g wi th f i r s t window

dataWatt = ce l l dataWatt { s } ;

c e l l w indow {s , 1} = dataWatt ( 1 : w s i z e ) ;

%Def in ing counter f o r wh i l e loop

%i n t i a l i z i n g counter f o r en t e r ing in t o the inner wh i l e

loop to c r ea t e

%19 windows f o r each 48 data s e t s

counter = 1 ;

%re i n t i a l i z i n g q to window s i z e f o r en t e r ing in t o the

inner wh i l e loop to c r ea t e

% 19 windows f o r each 48 data s e t s

q=w s i z e ;
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%r e i n t i a l i z i n g cWindow so t ha t i t s t a r t c r e a t i n g the

window form 2

%through 19 f o r each data s e t . f i r s t window i s a l r eady

i n t i a l i z e d above

%the s e i n t i a l i z a t i o n s

cWindow = 1 ;

%enter the wh i l e loop i f counter i f counter and q i s

l e s s than 952

while ( counter< length ( dataWatt ) + 1 − over lap )&&(q< length (

dataWatt )+1 −over lap )

%increment ing counter by 50 i . e . ove r l ap

counter=counter+over lap ;

%increment ing q by 50 i . e . ove r l ap

q=q+over lap ;

%increment ing cWindow by 1 to c r ea t e 19 windows

cWindow=cWindow+1;

%pu t t i n g data from dataWatt to each window

ce l l w indow {s , cWindow}= dataWatt ( counter : q ) ;

end ;

%increment ing s by 1

s=s+1;
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end ;

%ca l c u l a t i n g the maximum s i z e o f c e l l array to s t o r e data in

psd format

p s i z e = (max( rangeWindows ) ) ;

%de f i n i n g the c e l l array to s t o r e psd data

c e l l a v g p s d=c e l l (1 , p s i z e ) ;

c e l l p e a k p sd=c e l l (1 , p s i z e ) ;

%de f i n i n g an array f o r the data manipu lat ion form watt to psd

format

dataAvgPsd = [ ] ;

dataPeakPsd = [ ] ;

%running two f o r l oops . Outer loop f o r each 40 f i l e s

%inner f o r loop f o r windows in the range de f ined above

for i =1:40

for j=min( rangeWindows ) :max( rangeWindows )

%conver t ing data from watt to dspdata format

dataAvgPsd=dspdata . psd ( ce l l w indow { i , j }) ;

%ca l c u l a t i n g the average o f each window

c e l l a v g p s d { i , j}=avgpower ( dataAvgPsd ) ∗10ˆ12;

%ca l c u l a t i n g the no o f peaks f o r each window above

t h r e s h o l d

c e l l p e a k p sd { i , j } = numel ( f indpeaks ( dataAvgPsd , ’

minpeakheight ’ , th r e sho ld ) ) ;
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%ending the inner f o r loop

end

%ending outr f o r loop

end ;

%Def in ing an array f o r i n t e rm id i a t e opera t i ons to append data

avg pow = [ ] ;

no peak win = [ ] ;

for i =1: n o t r a i n i n g s e t

for j=min( rangeWindows ) :max( rangeWindows )

avg pow append = c e l l a v g p s d { i , j } ;

avg pow = [ avg pow ; avg pow append ] ;

peak pow append = c e l l p e a k p sd { i , j } ;

no peak win = [ no peak win ; peak pow append ] ;

end ;

end ;
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Matlab Code for PCA calucation of UEEs

%load ing UEE data

mydatada = load ( ueedata ) ;

%conver t ing the data from c e l l array format to array format

mynewdata = ce l l 2mat (mydatada ) ;

%reshap ing and tak ing t ranspose

mynewdata1 = reshape (mynewdata , 400 , 40) ;

mynewdata1 = mynewdata1 ’ ;

%performing the p r i n c i p a l components us ing the Matlab

func t i on princomp

[ pc , score , l a t e n t ] = princomp (mynewdata1 ) ;

%pr i n t i n g the c on t r i b u t i on o f top 10 p r i n c i p a l components

lm = cumsum( l a t e n t ) . /sum( l a t e n t ) ;

lm ( 1 : 1 0 ) ;

%p l o t t i n g the p r i n c i p a l components

pareto ( l a t e n t )

pr inc ipa lname = { ’ 1 s t ’ , ’ 2nd ’ , ’ 3 rd ’ , ’ 4 th ’ , ’ 5 th ’ , ’ 6 th ’ , ’ 7

th ’ , ’ 8 th ’ , ’ 9 th ’ , ’ 10 th ’ } ;

xlabel ( ’ P r i n c i p a l Components ’ ) ;

ylabel ( ’ Var ia t ion Explained by Pr i n c i pa l Components ’ ) ;

t i t l e ( ’ Device 1 at 3 f e e t ’ ) ;
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R code for Baum Welch algorithm

# This R program computes the Baum−Welch Algorithm us ing RHmm

package

#load sw3 datawatt t r a i n i n g data

myndata trainsw3 <− read . t ab l e (” sw3 avgpower 400 tra in . txt ”)

myndata trainsw3 <− as . l i s t ( myndata trainsw3 )

#f i t the data with Baum Welch

sw3hmm <− HMMFit( myndata trainsw3 , nStates = 2)

#load sw3 t e s t i n g data

myndata testsw3 <− read . t ab l e (” sw3 avgpower 400 test . txt ”)

myndata testsw3 <− as . l i s t ( myndata testsw3 )

# c a l c u l a t e the V i t e rb i path

VitPathsw3 <− v i t e r b i (sw3hmm, myndata testsw3 )

VitPathsw3$logProbSeq
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D. R code for Support Vector Machine
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R code for Support Vector Machine

# R program for SVM using e1071 package

r e qu i r e ( e1071 )

r e qu i r e (R. matlab )

# import data in R

bw3 <− readMat (” comprehensive data bw30 .mat”)

bw3 <− bw3 [ 1 ]

sw3 <− readMat (” comprehens ive data sw30 .mat”)

sw3 <− sw3 [ 1 ]

#convert l i s t data to data frame

dbw3 <− data . frame ( matrix ( u n l i s t (bw3) , nrow=40, byrow=T) )

dsw3 <− data . frame ( matrix ( u n l i s t ( sw3 ) , nrow=40, byrow=T) )

# adding l a b e l to data set

dbw3$label <− ’bw3 ’

dsw3$labe l <− ’ sw3 ’

# merge data frame us ing ’merge ’

traindbw3 <− dbw3 [ 1 : 3 0 , ]

testdbw3 <− dbw3 [ 3 1 : 4 0 , ]

tra indsw3 <− dsw3 [ 1 : 3 0 , ]

testdsw3 <− dsw3 [ 3 1 : 4 0 , ]

# combining t r a i n i n g data and t e s t data
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t r a i n l a b e l a l l <− rbind ( traindbw3 , tra indsw3 )

t e s t l a b e l a l l <− rbind ( testdbw3 , testdsw3 )

# sepa ra t ing the c l a s s l a b e l from t r a i n data

t ra indata <− subset ( t r a i n l a b e l a l l , s e l e c t = − l a b e l )

#t r a i n l a b e l <− subset ( t r a i n l a b e l a l l , s e l e c t = l a b e l )

t r a i n l a b e l <− t r a i n l a b e l a l l [ 1 : 6 0 , 7 ]

# sepa ra t ing the c l a s s l a b e l from t e s t data

t e s tda ta <− subset ( t e s t l a b e l a l l , s e l e c t = − l a b e l )

#t e s t l a b e l <− subset ( t e s t l a b e l a l l , s e l e c t = l a b e l )

t e s t l a b e l <− t e s t l a b e l a l l [ 1 : 2 0 , 7 ]

# conver t ing t r a i n i n g and t e s t i n g l a b e l to f a c t o r from data

frame

t r a i n l a b e l <− as . f a c t o r ( t r a i n l a b e l )

t e s t l a b e l <− as . f a c t o r ( t e s t l a b e l )

# t r a i n i n g the svm

mysvm <− svm( tra indata , t r a i n l a b e l )

#t e s t i n g the support vec to r machine

pred <− p r ed i c t (mysvm, t e s tda ta )

#check the accuracy o f the model

t ab l e ( pred , t e s t l a b e l )
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Data segment for D1 at 3 feet

Center Frequency (Hz) Span (Hz)

441011140 20000

TraceA

−96.18

−98.14

−98.64

−97.69

−96.8

−96.14

−94.93

−93.46

−92.57

−92.74

−94.05

−95.82

−95.82

−95.74

−93.94

−92.34

−92.54

−96.23

−95.35

−92.16

−90.27

−90.61

−93.72
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F. Data segment for D1 at 6 feet
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Data segment for D1 at 6 feet

Center Frequency (Hz) Span (Hz)

441011140 20000

TraceA

−95.08

−95.82

−100.56

−100.25

−97.04

−95.12

−95.33

−97.53

−100.3

−101.18

−100.69

−100.06

−100.06

−98.85

−96.51

−94.12

−92.72

−92.96

−95.44

−100.89

−103.18

−103.16

−105.95
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G. Data segment for D1 at 10 feet
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Data segment for D1 at 10 feet

Center Frequency (Hz) Span (Hz)

441011140 20000

TraceA

−96.31

−97.97

−100.28

−102.97

−104.32

−103.16

−101.56

−100.07

−99

−98.55

−97.66

−96.67

−96.67

−97.61

−102.73

−100.21

−97.19

−96.23

−97.05

−96.48

−94.59

−93.17

−92.62
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H. Data segment for D2 at 3 feet
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Data segment for D2 at 3 feet

Center Frequency (Hz) Span (Hz)

438225064.7 20000

TraceA

−96.7

−95.04

−94.2

−94.77

−98.34

−103.32

−99.84

−96.03

−93.57

−93.19

−95

−97.18

−97.18

−99.72

−101.87

−99.85

−95.64

−92.21

−91.35

−95.07

−99.79

−96.12

−92.07
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I. Data segment for D2 at 6 feet



88

Data segment for D2 at 6 feet

Center Frequency (Hz) Span (Hz)

438225064.7 20000

TraceA

−97.28

−94.53

−93.1

−92.96

−94.7

−99.96

−103.21

−101.13

−97.99

−94.62

−92.16

−91.44

−91.44

−92.46

−93.11

−92.03

−90.63

−90.09

−91.55

−100.54

−95.39

−89.71

−85.98
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Data segment for D2 at 10 feet

Center Frequency (Hz) Span (Hz)

438225064.7 20000

TraceA

−107.49

−105.67

−104.19

−104.33

−103.38

−101.12

−98.86

−97.84

−98.13

−97.82

−96.97

−96.89

−96.89

−97.43

−98.36

−99.24

−96.67

−93.86

−92.78

−93.84

−93.77

−91.24

−88.55



APPENDIX K

K. Data segment for Noise
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Data segment for Noise

Center Frequency (Hz) Span (Hz)

438225064.7 20000

TraceA

−102.97

−102.23

−102.23

−102.6

−102.6

−104.64

−104.64

−108.13

−110.22

−110.22

−109.48

−109.48

−107.49

−107.49

−105.37

−102.98

−102.98

−100.45

−100.45

−98.54

−98.54

−97.84

−98.69
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