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(\ Proceedings: Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, 
~ March 11-15, 1991, St. Louis, Missouri, Paper No. 1.46 

Effects of Hysteretic Shape on Dynamic Response 
Per B. Seines and Farrokh Nadim 
Norwegian Geotechnical Institute, Oslo, Norway 

SYNOPSIS: The parameters determined in laboratory tests for use in dynamic analyses are usually the secant modulus and 
the area of the hysteresis loop. The accuracy of this approach was studied for highly non-linear behaviour through 
analytical solutions and numerical simulations of a single degree of freedom system. Only the effect of the shape of 
the hysteresis loop was studied, i.e. the stiffness and the area of the loop were kept constant independent of 
amplitude. The study shows that irregular hysteresis may cause a significant increase in the response of the system in 
higher frequencies compared to what would be expected from visco-elastic and standard non-linear models. The area of 
the hysteresis loop provides a good measure of the damping also for high degrees of non-linearity. 

INTRODUCTION 

Highly non-linear soils are often represented by visco­
elastic or hysteretic models in analytical procedures. In 
such models the stiffness is usually set equal to the 
secant modulus and the damping is obtained from the area 
of the hysteresis loop based on results from cyclic or 
dynamic laboratory tests. Non-linear soil behaviour, such 
as thl· change in the secant modulus and damping value with 
bmplitude (strain), has been studied quite extensively in 
tl:.: pa:;t (e, g. Seed , :1d !driss, 1970; Hardin and urnevich, 
1972; Roesset, 1989). Effects of the shape of the 
hysteresis loop seems, on the other hand, to have received 
little attention. 

This study investigates the effect of the shape of the 
non-linear hysteresis loop on the dynamic response of a 
single degree-of-freedom (1DOF) system. The influence of 
the other non-linear effects are excluded by keeping the 
area of the hysteresis loop and the secant stiffness 
constant independent of amplitude. 

NON-LINEAR ELASTIC SPRINGS 

Theoretical resonance values were obtained for free 
vibration of a 1DOF system with non-linear elastic spring. 
The equation of motion is: 

M·U + K(u)•u = 0 

where: M = mass 
K(u) non-linear spring 

u = displacement 
U = acceleration 

(1) 

This equation may be solved by expanding the displacement 
as a sum of harmonic motions. In order to determine the 
resonance frequency for different forms of the spring, the 
equation of motion for free vibrations is rewritten as: 

K(u) = - M·U/u (2) 

A simple solution is obtained by using only two terms in 
the series expansion for the displacement: 

(3) 
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Choosing M = 1 for simplicity gives: 

K(u) = ~2(A1 sin~t + 9A3sin3~t)/ 
(A 1 sin~t + A3sin3~t) 

Setting K(u) and u equal to 1 for ~t = n/2 gives: 

umax = Al - A3 = 1 

K(u=1) = ~2(A1 - 9A3) = 1 

The resonance frequency, ~. for the system in free 
vibration is thus obtained: 

(4) 

(5) 

(6) 

(7) 

This means that the resonance frequency may be smaller or 
greater than one, depending on the value of A3 • The 
resonance frequency based on the secant stiffness would of 
course be equal to one (M = K = 1) independent of the 
value of A3 • 

Plot of the elastic restoring force, K(u)·u, versus the 
displacement, u, is shown on Fig. 1 for ~ = 0.8, 0.9, 1.0, 
1.1, and 1.2. 

Resonance frequency based on secant stiffness= 1.0 
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Displacement (varies from -1 to + 1) 

Fig. 1 Non-linear elastic force-displacement curves with 
different resonance frequencies 



HYSTERETIC SPRINGS 

The response of a system with a hysteretic spring was 
studied through a numerical simulation where the 
amplification and damping of different non-linear springs 
were compared with the theoretical solutions for visco­
elastic and hysteretic systems. Figure 2 shows the 
hysteretic shapes that were used in the study: 

curve A is typical of a standard hysteretic or visco­
elastic material 
curve B represents the shape often used in non-linear 
models (Ramberg-Osgood, hyperbolic or !wan models) 
curve C is a bi-linear curve often used in non-linear 
models 
curveD is a laboratory curve from a highly non-linear 
soil 
curve E is a mirror image of curve D with the same 
Fourier spectrum 

Displacement (varies from -1 to + 1) 

Fig. 2 Hysteretic shapes used in the study 

The parameters and effects studied were the amplification, 
resonance frequencies based on both forced and free 
vibrations, damping ratio from the maximum amplification 
and the logarithmic decrement, and the spreading of 
energy. 

Numerical Analysis 

A computer program which determines the dynamic response 
of a 1DOF system with non-linear spring was developed. 
The program solves the following differential equation: 

M·O + C·u + K(u)·u = P·sin~t (8) 

where the damping parameter C may be a constant (viscous 
damping), zero, or inversely proportional to frequency 
(hysteretic damping). The stiffness K(u) is specified as 
a table of force-displacement values and the force P may 
be a constant (harmonic excitation) or zero (free 
vibration). 

The solution is based on direct integration of Newton's 
second law (explicit method). The time step used in the 
integration to obtain a stable solution is about 1/1000 of 
the period. Iterations on each half cycle are used to 
obtain the desired shape of the force-displacement 
relationships. 

The accuracy of the program was tested and found 
acceptable by comparisons with theoretical amplification 
values for a visco-elastic and a hysteretic material 
(Selnes and Nadim, 1989), and with the theoretical values 
for the resonance of the non-linear elastic springs 
described earlier. The latter results are presented in 
Table 1. It may be seen that the program gives reasonable 
agreement with theory even for the shapes with negative 
stiffness in part of the loop. 
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Table 1 Comparison between resonance values from theory 
and numerical analysis for the non-linear 
elastic springs shown on Fig. 1 

Resonance Frequency 

Theoretical .8 .9 1. 1.1 1.2 
Computer prog. .827 .89 1. 1.1 1.18 

Damping and Resonance 

Results of the response computations for the different 
hysteretic shapes are shown in Table 2. The damping in 
free vibration (logarithmic decrement), resonance 
frequency and amplification factors are listed. All 
shapes have hysteretic area corresponding to critical 
damping ratio equal to 0.1. This corresponds to 
amplification values of 5.01 and 5.0, and resonance 
frequencies of .99 and 1.0 for visco-elastic and 
hysteretic materials, respectively. 

Table 2 Amplification at resonance, resonance frequency 
determined from free vibrations and damping 
determined from logarithmic decrement and from 
maximum amplitude 

Hysteretic Shape (Fi~. 2) 
A B c D E 

Amplification 4.95 5.0 5.07 4.75 4.85 
Resonance .99 1.0 1.0 .76 .91 

log. dec. .1 .1 .1 .13 .125 
Damping 

.1 .1 .1 .105 .103 max .amp. 

It may be seen from the table that the shapes often used 
in non-linear analyses (Band C) are not able to represent 
the behaviour of highly non-linear materials. The shapes 
D and E cause a significant shift in resonance frequency 
relative to the secant value. They also have somewhat 
higher damping in free vibration. The reason for the 
higher damping in free vibration is probably the reduction 
in amplitude coupled with the asymmetric loading and 
unloading cycle. 

Amplification curves and attenuation in free vibrations 
are shown in Figs. 3 through 5. The shapes A and B give 
values close to the theoretical values for visco-elastic 
and hysteretic materials, while the highly non-linear 
shape D gives a significant shift in the resonance 
frequency. 
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Spreading of Energy 

A non-linear system under harmonic excitation does not 
only respond at the forcing freque~cy. It also transfers 
energy to other, mainly higher frequencies. Figure 6 
shows the Fourier spectra of the computed accelerations 
for hysteretic shapes D and E compared to shape A for 
forcing frequency equal to 1. The values are normalized 
to the same maximum acceleration. It may be seen that the 
highly non-linear shapes transfer energy to higher 
frequencies in distinct frequency bands. Figures 7 and 8 
show the normalized response spectra for the same motions. 
It may be seen that the response from the irregular shapes 
D and E are different from the harmonic shape A, and that 
shapes with the same energy spreading characteristics 
(i.e. Fourier spectra) have different responses. 

Energy spreading will cause a frequency-dependent apparent 
damping with low or even negative values for high 
frequencies, and increased damping for low frequencies. 
Apparent damping due to inhomogeneities was described by 
Menke et al. (1986). This work indicates that apparent 
damping may also be caused by non-linear behaviour. 
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CONCLUSIONS 

The results of the study may be summarized as follows: 

Damping values determined from the area of the 
hysteresis loop and from the maximum amplification ar 
in good agreement even for materials with highly non­
linear behaviour, while damping values from the 
logarithmic decrement may be in less accord. 

High non-linearity may change the resonance frequency 
by up to 25-30% compared to what would be expected 
from the secant stiffness. 

Non-linearity causes spreading of energy towards 
higher frequencies, which may give significant 
frequency-dependent apparent damping. 

Hysteretic shapes often used in non-linear analyses 
give a dynamic response similar to that of a visco­
elastic material - i.e. standard non-linear analyses 
do not provide realistic modelling of highly non­
linear materials. 

Figure 9 shows that high degrees of non-linearity may 
cause responses that are quite different from visco­
elastic or standard non-linear models. The figure shows 
acceleration responses for the motions computed from a 
visco-elastic model and from a model with highly non­
linear stiffness. As seen from the figure, the response 
for high frequencies is in this case up to 5 - 6 times 
higher for the non-linear spring than for a visco-elastic 
system with the same damping and the same secant 
stiffness. The visco-elastic model is obviously not able 
to represent this type of non-linear behaviour. High non­
linearity may give considerably higher response in high 
frequency structures and structure components than would 
be expected from visco-elastic or standard non-linear 
models. 
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